
Predicting Protein Stability with Machine Learning
A Master’s Project in Biophysical Chemistry

Lucas Carlsson

September 2023

Abstract

Protein stability is a property of high importance and is of interest in a variety of
fields. It determines if a protein has its native fold and can be of influence in certain
diseases such as Parkinson’s and Alzheimer’s disease [1]. It can also be of interest in
an industrial setting to optimise the stability of enzymes in certain physicochemical
environments. Recent developments in machine learning have yielded novel methods
able to predict protein characteristics with surprising accuracy solely from sequence
information. However, few such models have been proposed for predicting protein sta-
bility. The aim of this project was to create a model able to predict protein stability
from sequence information, by utilising a multiple sequence alignment based protein
language model. Different models were developed to predict two quantities relating
to protein stability, Gibbs free energy of unfolding and the heat denaturation temper-
ature. Due to limited training data the performance of the models predicting Gibbs
free energy was poor. One of the models predicting heat denaturation temperature,
proved more promising, with higher performance than a previously published model
trained on similar data. However its ability to predict conventionally obtained heat
denaturation temperatures was poor.

1

2

Acknowledgements

I would like to start with expressing my gratitude to Ingemar, Sofia Andersson and
Vera for all of the help and valuable input that I have received as well as for the
interesting discussions we have had. I also want to thank Kristine, Frida and Sofia
Canas for reviewing my thesis in detail and providing feedback. Furthermore I want to
thank the rest of the members of André lab for the pleasant months working together
with you.

3

Contents

Abstract 1

Acknowledgements 3

1 Introduction 7

2 Background 9
2.1 Proteins . 9
2.2 Thermodynamics of Proteins . 9
2.3 Multiple Sequence Alignments . 12
2.4 Machine learning . 13
2.5 Sequential models . 19
2.6 MSA Transformer . 20
2.7 Experimental Characterisation of Proteins 22
2.8 Datasets . 23
2.9 Previous Studies . 24

3 Method 27
3.1 Data and Model Handling and Availability 27
3.2 Data processing . 27

3.2.1 ProThermDB . 27
3.2.2 Leuenberger’s Data . 27
3.2.3 Meltome Atlas . 27
3.2.4 All Datasets . 28
3.2.5 Feature processing . 29

3.3 Models . 29
3.4 Model development . 33

4 Results 35
4.1 Models Trained on ProThermDB . 35
4.2 Models Trained on Meltome Atlas . 36
4.3 Models Trained on Meltome Atlas Predicting Conventional Tm 39

5 Discussion 41

6 Summary 45

References 49

A Appendix 51
A.1 Notations and Symbols . 51

4

A.2 Metrics . 51
A.3 Commands . 52
A.4 Figures and tables . 53

5

6

1 Introduction

The introduction of modern sequencing techniques has for the last decades led to
a rapid increase in the number of known proteins. However, protein characterising
techniques that obtain information on protein properties such as structure, function
and stability have not improved as significantly, leading to a large divide in knowledge
between experimentally characterised and uncharacterised proteins.

To bridge the gap between sequence information and protein properties, computa-
tional models based on the artificial intelligence technique deep learning have been
developed. The perhaps most famous example is AlphaFold, that can predict pro-
tein structures with impressive results. However, computational models for estimating
protein stability, has not yet had a breakthrough.

For most proteins to function, the proteins have to be folded into a three-dimensional
structure. The stability of this structure depends on the protein’s amino acid sequence
as well as the chemical and physical environment surrounding the protein. Knowledge
of a proteins’ stability is of importance in a wide array of settings. During develop-
ment of new thermostable enzymes in industrial settings more thermostable enzymes
are sought after since they can be used at higher temperatures, which increases the
catalytic activity. It can also be useful while designing therapeutic antibodies to make
them more stable and therefore suitable for treatment, as well as study evolutionary
lineages of proteins [2]. However, conducting stability experiments can be a costly and
time consuming endeavour, especially if a large number of proteins require character-
isation.

There is therefore an interest in estimating the stability with in silico methods, which
can be faster, cheaper and can be automated. The commonly used stability prediction
models to date are molecular dynamics simulations, which require a three-dimensional
structure of the protein and can be time consuming [2]. There has also been devel-
opment of models based on sequence information, however the vast majority predict
changes in stability upon point mutation, therefore requiring a value of the original
protein’s stability.

The growth of large-scale sequence datasets as well as the recent development of nat-
ural language models have enabled the creation of protein language models, able to
represent proteins in a novel manner. One such protein language model is the mul-
tiple sequence alignment, MSA transformer that by learning how to predict multiple
sequence alignments could make predictions about protein structure [3]. The models
represent the amino acids and their dependencies to each other in a complex manner,
which can be utilised by other models for extracting features [4].

The aim of this project was to create a model able to predict the stability of a protein
from a multiple sequence alignment. The model was developed utilising machine
learning and transfer learning of the MSA transformer published by Rao et al. [3].

7

8

2 Background

2.1 Proteins

A protein is a chain of amino acids in a specific order, or differently phrased, an amino
acid sequence. Directly after being synthesised by the ribosome the protein has no
function and in order to gain its function it has to be folded into a three-dimensional
structure. The protein’s function arises from the amino acids being arranged in a
manner that creates a local physicochemical environment that allows the function to
be carried out. As an example, for enzymes to catalyse a reaction, the active site must
be formed to allow interactions with substrate that stabilise the reaction’s intermediate
states.

Most proteins fold spontaneously by random motion of the unordered chain, with non-
covalent interactions between amino acids and between amino acids and the surround-
ing environment guiding the chain into a functional native fold. The main interactions
are van der Waals interaction, hydrogen bonds as well as the hydrophobic effect.

2.2 Thermodynamics of Proteins

The change of state between the folded, native state and the unfolded denatured state
is commonly approximated as a reversible two-state system, see Equation 2.1 . In
the two-state system a protein is considered to either have the native fold, N, or
an unfolded denatured structure, U. The approximation only allows for one native
state and populations of intermediates are neglected. Therefore, proteins that do
not have the native fold are considered unfolded, U. However, worth noting is that
both states are so called macrostates, meaning that they are sets containing numerous
configurations of protein. There is therefore not merely one configuration that is
categorised as native, rather all configurations that can carry out the protein function
are considered native.

N ⇀↽ U (2.1)

The physical quantity determining the populations of the native or unfolded states at
equilibrium is the difference in Gibbs free energy, ∆G ≡ GU − GN . It can be related
to the equilibrium constant, K, through Equation 2.2, where R is the gas constant
and T is the temperature.

∆G = −RT lnK (2.2)

The equilibrium constant, K, in turn describes the relative population of the two
states at equilibrium through Equation 2.3. Where XN , and XU are the fractions of
native and unfolded proteins respectively, at temperature T . The previous restriction

9

of proteins exclusively being in the native or unfolded states, gives XN +XU = 1.

K =
[U]

[N]
=

XU

XN

=
1−XN

XN

(2.3)

Equal populations of the N and U give XN = 0.50, which corresponds to ∆G = 0.
A majority of native proteins, XN > 0.50, corresponds ∆G > 0, while a majority of
unfolded proteins XN < 0.50 correspond to ∆G < 0. This enables utilising ∆G as a
metric for the stability of a protein’s native fold.

How ∆G depends on temperature is described by Equation 2.4, which further relates
∆G to the difference in enthalpy of the two states ∆H and the difference in entropy
of the states ∆S. Enthalpy, ∆H, can be understood as the difference in energy of
non-covalent interactions, while ∆S is a measurement of the difference in how ordered
the system is.

∆G = ∆H − T∆S (2.4)

The main contribution to ∆G is the hydrophobic effect, which is caused by the repul-
sion of water molecules on hydrophobic amino acids due to not being able to integrate
into the water’s hydrogen bond network. The lack of interaction causes hydrophobic
residues to have an apparent attraction to each other, thus stabilising the folding [5].

The effect of hydrogen bonds on folding is more complicated. A typical protein can
form hundreds of hydrogen bonds due to containing hydrogen bond donors and accept-
ors, both in the backbone as well in the hydrophilic side chains. In an unfolded state
the hydrogen bonds are intermolecular, interacting with surrounding water molecules
or other solutes, however in a folded state a considerable proportion of the hydrogen
bonds are intramolecular, with interactions within the protein. Due to hydrogen bonds
being formed regardless of folding, its effect on ∆H is comparatively small [5].

Repulsion of amino acids can be caused by over-packing, leading to a repulsive van
der Waals interaction, as well as charge-charge interactions of amino acids of the same
charge. However, the main destabilising effect arises from the change in conformational
entropy, ∆Sconf . The difference in entropy is due to the fact that from a statistical
perspective, the folded state is highly unlikely to form if each possible conformation
of a protein is considered [5].

Integrating thermodynamic identities enables relating the enthalpy and entropy at a
given temperature, ∆H(T) and ∆S(T), to the enthalpy and entropy of a reference tem-
perature, ∆H(T0) and ∆S(T0), by utilizing the heat capacity ∆Cp, which is generally
weakly dependent on temperature [2]. See Equations 2.5 and 2.6.

∆H(T) = ∆H(T0) +

∫ T

T0

dT ′∆Cp = ∆H(T0) + ∆Cp(T − T0) (2.5)

∆S(T) = ∆S(T0) +

∫ T

T0

dT ′∆Cp

T ′ = ∆S(T0) + ∆Cp ln (T/T0) (2.6)

Choosing the heat denaturation temperature, Tm, as reference temperature enables the
utilization of the following relation ∆S(Tm) = ∆H(Tm)/Tm, derived from Equation

10

2.4. This is due to Tm being the temperature where half of the protein population is
denatured or ∆G(Tm) = 0.

Combining Equations 2.5 and 2.6 with Equation 2.4 and Tm as the reference temper-
ature, gives rise to Equation 2.7, which describes how the stability, ∆G, depends on
temperature, T, based on the parameters ∆Hm, Tm and ∆Cp.

∆G(T) = ∆Hm

[
Tm − T

Tm

]
−∆Cp

[
Tm − T

(
1− ln

[
T

Tm

])]
(2.7)

Figure 2.1 shows how ∆G depends on T , according to Equation 2.7 and how alterations
of thermodynamic properties affects the stability. Alterations of ∆Hm or ∆Cp change
the maximal value of the ∆G- curve as well as at which T the maxima is located,
while alterations of Tm slides the ∆G-curve along the axis of the temperature.

Figure 2.1: The thick black line is plotted based on the thermodynamic values
∆Hm = 40kcalmol−1, Tm = 55K and ∆Cp = 0.9kcalmol−1K−1. The other
lines are variations of the thick black line where a single parameter has been
altered. The blue line has ∆Hm altered to 80kcalmol−1, while the olive line
has Tm set to 90◦C and the green line has ∆Cp set to 0.4kcalmol−1K−1.

Protein stability is commonly quantified with either ∆G approximated at 25 ◦C, or
the Tm value. Which of the two quantities is used depends on convention as well as
the experimental method used. However as seen in Figure 2.1 do the two quantities
correspond to different properties that both can be argued quantify protein stability,
but different aspects of it.

Rees and Robertson [6] summarised different empirical findings on how ∆Hm and
∆Cp could be approximated by the peptide length N , and constructed an expression
for how ∆G(T) could be approximated from Tm and the protein sequence length, N ,
alone.

∆G(T) = (2.92N + 0.058N(Tm − 333))

[
Tm − T

Tm

]
− 0.058N

[
Tm − T

(
1− ln

[
T

Tm

])]
kJmol−1 (2.8)

11

2.3 Multiple Sequence Alignments

Due to genetic information, in the form of DNA/RNA, being passed on from one
generation to the next imperfectly, divergence from a common ancestor can arise.
The types of mutations occurring during reproduction are point mutations, insertions,
deletions and translocations. If the mutation severely impacts the organism’s fitness,
by for example destabilising a vital protein, it is unlikely for the organism to reproduce
due to the disadvantage it poses. However, mutations that do not negatively impact
the fitness can be passed on to coming generations.

By aligning biological sequences, namely DNA, RNA, and protein, similarities and
differences of sequences can be identified, which enables detection of homology. Higher
order information such as structure, function or phylogeny can also be inferred by
aligning a sequence to databases of already studied sequences. Sequence alignment is
done by finding similarities between the sequences and introducing gaps to increase
the degree of alignment between the sequences. In evolutionary terms a gap can be
thought of as an insertion or deletion mutation, and a mismatch of a nucleotide or
residue as point mutations. An example of a pairwise alignment can be seen in Figure
2.2.

Figure 2.2: An example of pairwise alignment of two DNA sequences. The alignment
algorithm tries to maximize the number of paired nucleotides by introducing
gaps, which are shown as dashes(-). ([7], Creative Commons Attribution
License)

Aligning multiple sequences through a multiple sequences alignment, MSA, enables
extraction of more information than a pairwise alignment, by comparing sequences
from multiple families. If a residue or region is well aligned among a wide array of
proteins, it is considered conserved, due to not being replaced during the protein’s
evolution, and is therefore most likely to be of high importance for the proteins’ func-
tion, structure or stability[8]. This can be rephrased as MSAs containing information
of properties such as stability. An example of how this can be used is that over 20
examples in literature, reported by Sternke et al. [9], had engineered de novo proteins
with stability higher than any of the in-going sequences in an MSA by simply utilising
the MSAs consensus sequence. The consensus sequence of an MSA is constructed by
choosing most common amino acid in each position of the sequence.

Viewing mutations on a protein level, contrary to nucleotide level, requires taking
the properties of the amino acids into consideration. This is done through a scoring
system where alignment of amino acids with similar physicochemical properties give a
positive score, whereas alignment of dissimilar properties gives a negative score. Two
popular scoring systems, or as more commonly called substitution matrices, are Blocks
Substitution Matrix, BLOSUM, and Point Accepted Mutation, PAM matrix.

12

UniProtKB is a curated protein sequence database containing 249 million entries as of
writing [10]. It is a good candidate for aligning unknown sequences to find homolog-
ous sequences, however the large size poses problems. In order create a representative
of UniProtKB with reduced size Uniclust was created. It clusters sequences of Uni-
ProtKB with sequence similarities above a certain threshold and chooses a represent-
ative sequence for the cluster [11]. Utilising Uniclust for constructing MSAs therefore
enables alignment of a wide representation of sequences.

2.4 Machine learning

Machine learning, ML, is a field that utilises computer programs to process data,
extract information from it and make predictions about some unknown property. The
program is developed through a generic model being trained on data, or phrased
differently, the program learns from exposure to data [12].

Deep learning is a sub-field of ML focusing on the use of so called deep Neural Net-
works, NNs. Deep NNs are considered a state-of-the-art method in ML and can
successfully model complex relationships between variables. Deep NNs can for in-
stance be used for determining what object is present on an image, a so-called image
classification problem [12].

To successfully grasp how an NN is built, it is helpful to understand the concept of
linear regression. Linear regression utilises a parametric model in order to find a linear
function, f , that from the input variables, x, is able to predict an output, f(x), that is
close to the real value, y. In linear regression the output, f(x), is a continuous variable,
and the aim of the regression is to minimize the error, ϵ, which is the difference between
the predicted value of input, f(x), and the real value y, see Equation 2.9.

y = f(x) + ϵ (2.9)

The linear function, f , consists of the parameters w and b, the slope and intercept,
see Equation 2.10. The learning of the model is performed by altering the model
parameters, w and b, to minimise the error, ϵ, until an optimal linear function, f ,
is found. This model is then able to perform predictions on new input data, x, by
utilising the at this stage already learned model parameters, w and b.

f(x) = w1x1 + w2x2 + ...+ wmxm + b = wTx+ b (2.10)

If multiple outputs of the model, f , are needed, logistic regression can be carried out
in parallel through matrices, see Equation 2.11.

f(x) =

f1(x)
f2(x)
...

fn(x)

=

w1,1x1 + w1,2x2 + ...+ w1,mxm + b1
w2,1x1 + w2,2x2 + ...+ w2,mxm + b2

...
wn,1x1 + wn,2x2 + ...+ wn,mxm + bn

= WTx+ b (2.11)

As previously is the learning of the model performed by optimisation of the model
parameters, W and b, to reliably describe how x relates to y.

13

The term neural network stems from the fact that NNs were first developed to imitate
how brains process information through biological neurons. A simple description of
how a neuron processes information is as follows: the neuron obtains stimuli from
multiple sources and internally processes the stimuli. If the stimuli is strong enough
the neuron reacts with an output. Designing a mathematical model with similar
properties, the artificial neuron, and constructing a network of such artificial neurons
by aligning them in parallel and in sequence, yielded a general model suitable for ML
[13].

The building block of an NN, the artificial neuron can be seen as a modification of
linear regression. It consists of a linear function, z = wTx + b , that imitates the
reception and internal processing of stimuli, as well as an activation function g(z),
that imitates the evaluation of the combined signals and the output of the neuron. In
deep learning there is furthermore a change in terminology, instead of describing w
and b as slope and intercept, they are described as weights and bias. This is due to wi

determining the weight of influence xi has on the artificial neuron, and b determining
how strong bias the neuron has for activation.

There are many possible activation functions, g. Two common ones are the sigmoid
function (Equation 2.12) and the Rectified Linear Unit, ReLU (Equation 2.13), which
are plotted in Figure 2.3. What all activation functions have in common is non-
linearity. If an activation function was linear, the artificial neuron would comprise of
two linear functions following each-other, which can always be condensed into a single
linear function.

gsigmoid(z) =
1

1 + e−z
(2.12)

gReLU(z) = max(0, z) (2.13)

Figure 2.3: Two common activation functions. The vertical axis shows the output of the
activation function g(z), while the horizontal axis shows the result of the
linear function, z.

An arbitrary NN can be broken down into so called layers. All NNs consist of an input
layer, one or more hidden layers and an output layer. A common representation of a
simple NN, with the different layers is shown in Figure 2.4. The x values represent
input values to the network, the black circles artificial neurons or also called nodes,
the arrows how inputs and outputs are connected to the artificial neurons. The output

14

of the NN is the predicted value ŷ. Each layer consists of a user-chosen number of
artificial neurons in parallel.

Figure 2.4: A basic fully connected feed forward artificial neural network, commonly
called a multilevel perceptron, MLP.

The first layer in Figure 2.4 consists of four nodes, which all receive the three input
values. The four nodes have their own weights and biases, similar to the multiple linear
regression (Equation 2.11), resulting in four calculated values. The results from the
linear functions are passed through the activation functions to yield the first layer’s
output values. The four output values of the first layer are then passed on to the
second layer as input values. The second layer consists of two nodes, meaning that
the linear function has four input variables and two output variables. The results
of the linear function are once again passed through an activation function and the
outputs are fed to the next layer. The output layer in this example consists of a node,
that yields the output value of the whole NN. While performing regression the output
node’s activation function can be omitted, to not restrict which values the model can
output.

The type of network with fully connected layers just described is commonly used in
deep learning and is called a feed forward layer or a multilevel perceptron, MLP. The
sizes of the layers vary depending on the number of input variables, output variables
and the wanted complexity of the model. However it is common to use two or three
layers [14].

Similar to linear regression, the mechanism of learning in deep learning is performed
by gradually altering the model parameter values until a useful model is reached. This
poses two requirements, firstly a way to evaluate how well a model is performing, and
secondly how to alter the parameters based on the model performance.

The model evaluation is quantified through a loss function, L, that relates the predicted
value of the model, ŷ, to the actual value, y. A good prediction leads to a low loss,
while a bad prediction leads to a high loss. By utilising an optimisation algorithm,
a minima of the loss function can be found, which if implemented correctly should
correlate to a model predicting ŷ closer to y.

A suitable optimisation algorithm is gradient descent, which is visualised in Figure 2.5.
The gradient descent can be described by starting with a randomly initialised model,
calculating the loss and the gradient at the initial state with respect to the model
parameters. The parameters are then altered in the direction against the gradient.
The loss and the gradient are calculated once again, and the processes is repeated
until a sufficiently low loss is reached.

15

Figure 2.5: The checkered surface represents a loss landscape of an arbitrary
two-dimensional model, meaning that the height of the surface corresponds to
the loss at the given parameters. The orange crosses represent states of the
model, while the orange arrows are steps against the gradient at a cross.

To efficiently calculate the output value of an NN as well as the gradients a method
called backpropagation was developed. It calculates the result of the NN in what
is called forward propagation. The gradients are calculated by utilising the chain
rule of calculus and is calculated from the last layer backward and is therefore called
backward propagation. An interested reader can read more about it in the book
Machine Learning: A first course for engineers and scientists by Lindholm et al. [12].

A somewhat more mathematical description of the gradient descent is the cycle of the
following four steps:

1. Compute the loss L(ŷ, y).

2. Compute the partial derivative of the loss function for each weight, ∂L
∂wj

, and bias
∂L
∂b
.

3. Compute the gradient step, ∆w and ∆b, by multiplying the partial derivat-
ives with a user-defined learning rate, α: ∆w = −α∇wL(w, b) and ∆b =
−α∇bL(w, b).

4. Update the weights and biases: w := w+∆w and b := b+∆b.

The learning rate, α, is a parameter set by the user which alters how much the para-
meters are changed during each iteration. If α is too low will the optimisation take
an unnecessarily long time, but is it too large is there a risk that the optimisation will
overshoot a loss minima and not be able to find useful parameter values.

So far the following parameters have been introduced: layer size, w, b and α. The
parameters w and b are directly related to the model, since these are altered to train
the model, while layer size and α remain constant during training or directly affect
the training process. Parameters that are not an intrinsic part of the model, such as
layer size and α are called hyperparameters.

16

In order to draw useful conclusions from a model developed by ML techniques, it is
important to handle the available data wisely. The common practice is to separate
the model development and the available data into three stages with accompanying
datasets, namely training, validation and testing. The training set is the largest and
is used to train the model through updating the model parameters. To ensure that
the final model yields valuable results once deployed, the training data should, to the
largest extent possible, represent the end user’s data. The training and validation
sets are used to develop the model, however the validation set is not used to optimise
the model parameters, but rather to compare models during development and to tune
hyperparameters. The test set ensures that the model has not overfitted to the training
and validation sets and should therefore only be used once the model is ready to be
deployed [14].

To determine if a model is overfitting, one compares the loss value from predictions
of different datasets. During model development this is commonly done with respect
to the duration of the training, which is quantified by epochs, the amount of times
the training dataset has been used on the model. An epoch is therefore an iteration
through the entire training set. The expected behaviour of a DL model is that at the
beginning of training both the training and validation loss decrease, however if the
training is allowed to carry on for long enough, the model becomes overly specialised
on the training data and the loss value between the two sets will start diverging. An
illustration of this behaviour can be seen in Figure 2.6.

Figure 2.6: A schematic of overfitting. In the beginning of the training both training and
validation loss decrease, which is associated with enhanced prediction
performance. After a certain point the model reaches the best fit and more
training leads to the model being over-specialised on the training data, which
corresponds to an increased loss on the validation dataset.

Depending on the amount of available data the separation of data into training, val-
idation sets looks different. The preferred method of separation is what is known as
k -fold cross validation, which is illustrated in Figure 2.7. In k -fold cross validation
the data that is not designated to the test dataset is perceived as training data. The
training dataset is randomly partitioned into k number of folds. The model is trained
k times with each of the folds being excluded from the training in each iteration in
order to be used as validation. By averaging the performance of the folds an expected
performance of the model can be obtained. The standard is to set k to 10, since it is
deemed to offer reasonable trade off between bias and variation [14]. However, if the
amount of available data is so large that training the model repeatedly is unfeasible,

17

can a single division into training and validation sets be necessary.

Figure 2.7: Illustration of how the training set is separated during k -fold cross validation.

Two commonly used concepts in ML are high variance and high bias. High variance
corresponds to overfitting to training data and can be caused by the model being too
complex. In order to decrease overfitting there are multiple options, namely obtain-
ing more training data, reducing the complexity of the model, or increasing regular-
isation. There are multiple ways to regularise a model, some common options are
L2-regularisation and dropout. L2-regularisation adds a term to the loss function pen-
alising large weight values while dropout ”shuts down” nodes with, the user-defined,
pdrop probability. When done properly both methods ensure that the model cannot
rely on specific nodes to make predictions and increases the model’s robustness and
generality. High bias corresponds to underfitting and is a symptom of a model too
simple to learn patterns in the training data. High bias can be tackled by increasing
the model size, increasing the number of input features or by decreasing regularisation
[14].

As previously mentioned is the basis of ML creating models that learn from data. The
learning described so far has been framed as using some features or input variables,
x, in order to predict a property or output y. In order to train a model for this
kind of prediction labeled data is needed, meaning that for each x there is a known
corresponding y. Training a model to predict a label, y, from the features x is called
supervised learning. However, availability of labeled data is often limited, compared
to the amount of unlabeled data, and obtaining more can be an expensive and time
consuming endeavour due to it often requiring manually labelling unlabeled data.
Which is the current state within the field. There are a vast number of known protein
sequences, with unknown properties such as stability.

This is where unsupervised learning is of interest, due to it enabling learning from
unlabeled data. In unsupervised learning, the model is instead tasked to predict the
input data. This is performed by giving the model incomplete inputs and letting the
model predict the missing values. As previously are unsuccessful predictions penalised
by parameter alteration, which forces the model to learn dependencies among the
input features. This leads to the model having the ability, to perform abstractions of
the input data, without a bias toward any label that supervised learning would restrict
it to. This makes it of interest to use unsupervised models trained on large datasets,

18

such as the MSA transformer, for other task with much smaller amounts of available
labeled data.

2.5 Sequential models

A protein has sequential information in the sense that it consists of amino acids in a
specific order. It can be compared to sentences, where each amino acid can be thought
of as a word. As the order of the words impact the meaning of a sentence, the order
of amino acids impact the folding and properties of the protein.

So far the described architecture treats each data point as independent variables and
therefore cannot interpret the order of sequences. However, two popular architec-
tures able to interpret sequential information are recurrant neural network, RNN, and
transformers.

An RNN processes the input sequence step by step, or in this context amino acid
by amino acid. As it processes each step of the sequence it has two types of input
and two types of output, as seen in Figure 2.8. One of the inputs stems from the
sequence itself, while the other input is from the previous processing step in the same
layer that is interpreting the sequence. The input from the previous step is not seen
from the outside and is therefore called the hidden state. Similarly the outputs are
to the next layer and to the hidden state to the next step of the same layer. This
enables a transverse flow of information, which is impossible with a regular feedforward
architecture, where information only flows in and out of the layer, and not within the
layer.

Figure 2.8: The structure of a generic RNN. The input sequence x, consists of the steps
x1, x2, ...xn. The boxes denoted N are the recurring network that receive
inputs from the sequence step xi as well as the previous step’s hidden state,
hi−1. Each node in the figure outputs yi, as well as a hidden state hi.

The flow of information within the RNN layer enables learning sequential patterns,
however a more sophisticated architecture is needed to learn long-range interactions.
Two RNN architectures able to learn long-range interactions are long short-term
memory cell, LSTM, and gated recurrant unit, GRU. An LSTM consists of recur-
ring blocks that utilise two states passed between the steps, the hidden state and a
cell state. The hidden state functions similarly as described in the previous paragraph,
while the cell state is more complex. The cell state influences the hidden state and has
mechanisms that can alter the input information or suppress information from being
passed forward. GRU has mechanisms similar to LSTM, but utilises only one hidden
state, making it less computationally heavy.

19

Figure 2.9: Visualisation of tensors with different dimensionalities and a description of
their shapes. Each box represents a numerical value. The left-most tensor can
also be called a row vector, and the second left-most tensor a matrix.

The transformer architecture was developed by Vaswani et al. [15]. Instead of inter-
preting the sequence step by step as RNN models do, it interprets the whole sequence
at the same time. The sequential understanding of the model stems from an attention
mechanism that quantifies how much attention each sequence step should pay to the
other steps. This approach has two main benefits over the RNN architecture, firstly
that even longer interactions can be learned, since the information does not need to
be passed down through a large number of hidden states during the processing of the
sequence. Secondly it can increase the speed of the model since it utilises vectorisa-
tion to a high degree. Shortly described vectorisation means that the model relies
on structuring information in so called tensors and utilising matrix operations rather
than breaking it up into repeating computations. A tensor is a multidimensional array,
and can be viewed as a matrix of higher dimensions or a generalisation of a matrix.
Matrices are two-dimensional in the sense that they are arranged by rows and columns,
while a tensor can structure its elements in an arbitrary number of directions. Tensors
therefore allow information to be ordered into dimensions higher than two. By util-
ising tensors and matrix operations the computer can save, load and compute more
efficiently, than if the information was separate. A visualisation of how tensors can be
seen in Figure 2.9.

2.6 MSA Transformer

The MSA Transformer is a protein language model developed by Rao et al. [3] utilizing
MSAs. It was trained through unsupervised learning to learn complex dependencies
and patterns in MSAs. The training was performed by masking residues in MSAs
and letting the model predict the masked residues. The model consists of 100 million
parameters and outperformed previous protein language models with 650 parameters.
It is trained on 26 million MSAs, with an average of 1192 sequences per MSA. Rao
et al. [3] showed that the model’s representations of MSAs could be used for structure
and contact prediction, even though it had only been trained on MSAs and had not
been exposed to any structural information. It outperformed the previous state-of-the-
art models with unsupervised training on sequence data. It had therefore learned to
extract structural information from MSAs in order to more accurately predict them.
Due to both structure and stability being of high importance for a protein to function,

20

it is likely that the MSA transformer also has learned to interpret protein stability
from MSAs. The following section describes how the MSA transformer interprets and
processes MSAs.

An MSA can be described as a two-dimensional matrix of M number of sequences
of sequence length L. In order to make the MSA interpretable for a computer each
position is represented by an integer. The vocabulary the MSA transformer utilises
has 29 tokens, 20 of which are standard amino acids, five are non-standard amino
acids, the remaining four are an alignment character, a gap character, a start token
as well as a mask token.

Each position in the MSA was represented by an embedding vector of 768 elements.
This enables the model to internally represent each amino acid residue through 768
features. The features can be viewed as the model’s annotations of the residues. The
usage of feature vectors enables comparing residues to one another. Two residues with
similar properties should be close to each other in the vector space, while dissimilar
residues have a larger distance in the vector space.

Figure 2.10: A representation of embeddings. The box at the bottom is a protein
sequence, of length L, with each circle being a residue. The vertical objects
are embedding vectors, with F number of features, describing the residues.
The whole sequence is represented by a L by F two-dimensional matrix.

In the context of MSAs, attention can be interpreted as the importance amino acids
have on each other. It can be in the form of two amino acids together being of
importance for stability and therefore co-evolving. Due to MSAs’ two-dimensional
structure, the MSA transformer’s attention mechanism would relate each position in
the MSA to all other positions, meaning that the attention-maps would scale O(ML)2

unless restrictions were put in place. The MSA Transformer therefore utilises two types
of attention, tied row attention and column attention. This reduces the attention maps
to O(L2) and O(M2L) for tied row attention and untied column attention respectively.

Furthermore, since the order of the residues affect the properties of a protein, the posi-
tion has to be represented in the embedding. This is done through so called positional
encoding, the embedding is altered by addition of a vector uniquely describing the
residues position in the sequence. This enables the network to recognise the absolute
position of a residue in the protein, but also the distance between two residues [14].

21

2.7 Experimental Characterisation of Proteins

The conventional methods for obtaining thermodynamic values of proteins are differen-
tial scanning calorimetry, DSC, and cosolvent denaturation experiments. To conduct
conventional stability experiments the protein of interest must be isolated and the
solution it is suspended in, must be well characterised.

DSC experiments measure the partial molar heat capacity, Cp, and its dependency
on temperature. The definition of Cp is the amount of heat needed to increase the
temperature of a mole of the protein with 1◦C , in a diluted solution at constant
pressure. The experiment is conducted by heating the protein solution as well as a
reference solution and comparing the difference in Cp between the two solutions. In
the temperature range of a protein’s unfolding there is a dramatic increase of Cp due to
the amino acids absorbing more heat to shift into higher energy conformations. This
excess Cp is directly associated to the unfolding of the protein and is used to estimate
∆H and Tm [5].

Cosolvents are polar molecules present in such high concentrations that they are con-
sidered a solvent, rather than a solute. A denaturant is a cosolvent that interacts more
favourably with the protein backbone compared to the backbone’s interaction with wa-
ter, leading to a stabilisation of the unfolded state or a decrease of ∆G. Due to the
cosolvent interacting weakly with the protein, the change in free energy is proportional
to the denaturant concentration, C, leading to the Equation 2.14.

∆G(C) = ∆G0 +mC (2.14)

Where ∆G0 is the free energy of unfolding with none of the cosolvent species present
and m is a constant describing the cosolvent species’ effect on stability. The relation
enables estimation of ∆G0 by measuring ∆G at different C and performing a simple
linear regression. This method of determining ∆G(T) is commonly called the linear
extrapolation method. ∆G(C) can be determined by methods such as fluorescence
spectroscopy or circular dichroism, spectroscopy. Fluorescence spectroscopy methods
determiningXU utilise the fact that residues of unfolded proteins are exposed to a polar
physicochemical environment, thereby broadening and shifting the emission spectra.
Circular dichroism spectroscopy can be used to estimate concentration of secondary
structures as well as the mobility of aromatic side-chains, both of which are related to
the amount of unfolding. Even if the linear extrapolation method differs from DSC,
the ∆G0 values usually agree well with the ∆G values from the DSC experiments [5].

A high-throughput method for estimating Tm was developed by Leuenberger et al. [16].
The method obtains apparent Tm values on a proteome level by examining whole cell
samples in shotgun mass spectrometry, MS. Shotgun MS methods are able to compare
concentrations of proteins and peptide fragments between samples [17]. This is done
by high precision determination of the molecular mass of protein fragments. The
fragments are created by treating the protein samples with high specificity proteases,
meaning that the protein chain is cut at sites with amino acid in a specific order.
For known protein sequences these protein fragments and their molecular mass can
easily be determined, due to the high specificity of the used proteases. A shotgun
MS experiment therefore use sequence databases in order to map which proteins the
fragments stem from.

22

The novelty of the method by Leuenberger et al. [16] is that it initially uses a ther-
mostable broad-specificity protease with an increased activity for locally unfolded seg-
ments. By using the protease at different temperatures, it is argued that, it can be used
to monitor local unfolding. The partially digested samples from the different temperat-
ures are then run through the shotgun MS protocol, which involves the high specificity
protease trypsin, to compare how the initial broad specificity protease altered the pep-
tide fragments and their concentrations. The method therefore yields curves of how
the relative intensity of peptide fragments changes at different digestion temperat-
ures. The reported apparent Tm value is the temperature at which the concentration
of protein unaffected by the broad-specificity protease was halved, compared to the
concentration at the lowest temperature. For larger proteins consisting of multiple
domains or folding units are apparent Tms for each domain expected. The reported
apparent Tm for each protein, is the lowest apparent Tm of the protein domains.

An alternative high-throughput method similar to the previously described one was
performed by Jarzab et al. [18]. The method, thermal proteome profiling, TPP, is
somewhat simpler due to it not using the broad-specificity protease and instead meas-
uring the amount of protein precipitation as a function of temperature. This was
performed by heating the sample and then centrifuging it to remove the precipit-
ate. The soluble fraction was trypsinated and labeled and shotgun MS was used to
determine the relative concentrations of each soluble protein species at the different
temperatures. The temperature at which half of the protein concentration has been
lost due to precipitation is therefore determined as the apparent Tm. The authors note
that the apparent Tm obtained cannot be directly compared to the thermodynamically
defined Tm, due to this method depending on unfolding and precipitation.

The high-throughput methods state apparent Tm values, rather than regular Tm, since
the methods cannot assure reversibility between the native and unfolded states due to
the digestion and precipitation.

2.8 Datasets

ProThermDB is a database published in November 2020 containing thermodynamic
information on proteins. It currently holds about 31 500 entries with information about
thermal heat denaturation temperature, Tm, free energy of unfolding from thermal and
denaturant denaturing, ∆G, change of thermal heat denaturation temperature upon
mutation, ∆Tm, change of free energy upon mutation, ∆∆G, enthalpy of unfolding,
∆H, as well as change of heat capacity of unfolding ∆Cp. The data is collected from
studies using conventional methods to study stability such as DSC, circular dichroism
and fluorescence spectroscopy [19]. However, redundancy occurs, most entries are of
mutants and not all entries contain ∆G or Tm values.

As previously mentioned did Leuenberger et al. [16] develope a method to estimate Tm

on a proteome scale. The method was used on cell samples from four different species,
namely E. coli, S. cerevisiae, T. hermophilus and human. Their values were published
for public use.

23

The meltome atlas was published in April 2020 and contains values of 48 000 proteins
from 13 species, obtained through TPP as described in the previous section. The
samples were either whole cells or lysate.

2.9 Previous Studies

ProTstab was published in in 2019 by Yang et al. [20]. It utilises the ML method
gradient boosting regression trees and is trained on data presented by Leuenberger
et al. [16]. In 2022 the authors published ProTstab2, which utilises data also from
the meltome atlas. Including the meltome atlas resulted in the amount of usable
entries growing from 3 500 to roughly 35 000. Furthermore ProTstab2 utilises another
method, light gradient boosting machine, which performed better during development.
The models utilise features generated by protr, RECON, ProtDCal, ProtParam as well
as amino acid group counts and frequencies [21].

A model successfully utilising the MSA Transformer for transfer learning is S-Pred
by Hong et al. [22]. The model predicts secondary state structures, accessible surface
areas and intrinsically disordered regions from embeddings and row attentions from
the MSA Transformer. S-pred first processes the embeddings and row attentions as
described in the Method Subheading 3.2.4. It is then passed through two bi-directional
LSTM-layers. The last layers depend on which features to predict and if it was a
classification or regression problem. See Figure 2.11 for a visualisation of the model
architecture.

24

Figure 2.11: The architecture of the S-pred model. (Hong et al. [22], Creative Commons
Attribution 4.0 International License.)

25

26

3 Method

3.1 Data and Model Handling and Availability

The models were implemented using PyTorch version 2.1.0.dev20230419

py3.9 cuda11.8 cudnn8.7.0 0. The embeddings and attention maps were obtained
by running the MSA transformer version esm_msa1b_t12_100M_UR50S. The developed
models utilising the embeddings and attention maps were based on the code published
by Hong et al. [22]. The developed models were trained on a NVIDIA GeForce RTX
4090 (24 GB) GPU card.

In order to enable replication of experiments the environment, data preprocessing
scripts, models as well as training and testing sets was made available on GitHub on
https://github.com/luciduci2/stability_predict_masters_23.

3.2 Data processing

3.2.1 ProThermDB

The ∆G values from thermal and chemical denaturation experiments were pooled to-
gether to obtain enough data. Some of the proteins in the database had multiple entries
of stability measurements, due to conducting experiments at different conditions. Of
the entries concerning the same protein but conducted at different conditions, only
the mean of the entries from experiments conducted closest to pH 7 and temperature
of 25 ◦C were used. The relative stability, ∆∆G and ∆Tm, of the mutants was further
related to the absolute stability, ∆G and Tm, of the wild-type in order to estimate the
absolute stability of the mutants.

3.2.2 Leuenberger’s Data

No specific preprocessing was carried out on the dataset.

3.2.3 Meltome Atlas

For species with both whole cell and lysate data, the apparent Tm values of the lysate
was used, since it can be argued that the chemical environment of the lysate is more
similar to the chemical environment of conventional protein stability experiments,
thus having higher resemblance to ProThermDB. However, if a species’ entries only
consisted of whole cell data, then it was also included to increase the amount of data.

27

https://github.com/luciduci2/stability_predict_masters_23

3.2.4 All Datasets

The sequence information of the proteins was downloaded through UniProt’s REST
API [23] using the proteins’ accession codes. The mutants’ FASTA were then altered
to match the described mutations. The length of the proteins were restricted to only
allow amino acid chains longer than 40 residues, in order to mainly include proteins
but also allow some polypeptides. Due to computational limitations only sequences
shorter than 512 residues were included.

The imposed restrictions result in 4 666 number of entries from ProThermDB and
16 719 number of entries from the meltome atlas. See Table 3.1 for division between
wild-type and mutant entries of ProThermDB and the meltome atlas. The data by
Leuenberger et al. [16] resulted in 4 242 entries, however it was omitted during training
and a subset of it was used during testing. ProThermDB and the meltome atlas were

Table 3.1: Number of stability measurements from the datasets after preprocessing, by
the type of stability measurement and if the measurements are of a wildtype of
mutant. The number of entries with both measurements, or the overlap
between the two groups, in ProThermDB is included in the columns ”Have
both ∆G and Tm.”

ProThermDB Meltome Atlas
Have ∆G Have Tm Have both ∆G and Tm Have Tm

Wild-type 296 519 177 16 719
Mutants 2 319 2 348 639 -
Total 2 615 2 867 816 16 719

separated into training, validation and testing data differently. In order to easily
compare to ProTstab2 the test set of the meltome atlas was based on the test set
constructed by Yang et al. [21] in the paper describing ProTstab2. This was also the
approach for the data published by Leuenberger et al. [16]. It is worth noting that the
test sets are not identical due to the size limitation imposed in this project. While the
data by Leuenberger et al. was not used for training or validation, the meltome atlas
was. Due to the size of the meltome atlas the remaining entries were split once into a
training and validation set, rather than utilising k-fold cross validation. It was further
motivated by a trial run utilising 5-fold cross validation, where each of the folds were
nearly inseparable. The sorting of the meltome atlas into training and validation sets
was randomised, with 10% of the non-test entries into the validation set and the other
90% into the training set.

ProThermDB was initially not separated into training, validation and testing, rather
every entry was used during 10-fold cross validation. The dataset was divided first prior
to running the tests run in Section 4.3 Models Trained on Meltome Atlas Predicting
Conventional Tm. Before separating ProThermDB into training, validation and testing
sets, the entries were clustered together based on sequence identity, through CDHit.
The clustering was performed at default settings and clustered together protein with
over 80% sequence identity, see Appendix A.3 for specifics. After clustering one tenth
of the clusters containing wildtype entries with Tm values were labeled test clusters,
and were not used in this project. The rest were labeled as training clusters and used

28

as validation.

3.2.5 Feature processing

By utilising the retrieved and altered sequences MSAs were constructed through the
software HHblits[24] with uniclust30 2018 08[11] as reference database. The search
was over three iterations. Otherwise MSA generation was run at default settings, see
Appendix A.3 for specifics.

In order to limit computational cost the MSAs were set to have a depth, M , of max-
imally 128 sequences. To reduce the MSA depth the sequences were sampled through
a method that maximizes the differences of the sequences in the reduced MSA. The
method therefore maximises the so-called Hamming distance. Due to the MSA trans-
former utilising an embedding size of 768, the embedded output of the MSA trans-
former describing a protein has the shape [M,L, 768]. Since the first sequence in the
MSA is the query sequence, the subset of the tensor corresponding to the first line of
the MSA, should hold the most relevant information of the query protein. In order
to reduce computational cost only the embedding of the query sequence was used,
therefore reducing the tensors size to [1, L, 768], which is inspired by Hong et al. [22].

Furthermore the MSA transformer consists of 12 layers, each consisting of 12 attention
heads. The model outputs all attention maps from these layers. The row attentions
are tied and have the shape [12, 12, L, L]. Since it is tied, all sequences in the MSA
have the same identical row attention map. It relates the amount of attention payed
to the other residues of the same sequence, for each attention head of the 12 layers.
Like the embedding, the row attention was also manipulated to reduce the size of the
tensors.

The two dimensions reflecting the 12 attention heads and 12 layers were flattened into
one dimension by collating the 144 attention maps. Each attention map was averaged
both column- and row-wise, resulting in a [144, 1, L] sized tensor as well as a [144, L, 1]
sized tensor. The latter was reshaped and concatenated with the first to yield a tensor
of size [288, 1, L].

3.3 Models

Two types of network architectures both with similarities to S-pred were tested, one
based on an RNN-layer and the other on a transformer-layer. Two types of models
from each architecture type were tested, leading to in total four different models. All
models use the preprocessed embeddings and attentions as described in the previous
section. In order to condense the embeddings further to 192 features, an MLP of three
fully connected layers were used, see Table 3.2 for specifics. The output of the MLP
were then concatenated with the reshaped row attention tensor to create a tensor of
shape [1, L, 480]. See Figure 3.1 for an illustration of the feature preprocessing and
the initiating layers of the models.

29

Figure 3.1: Visualisation of the initial part of all models. The upper blue box represents
embeddings and illustrates how it is processed through selection of the query
sequence’s embeddings and further processing by the MLP. The orange box
represents the tied row attention maps and how it was reduced by average
pooling and later concatenated with the embedding information. (A cropped
version of a figure by Hong et al. [22], Creative Commons Attribution 4.0
International License.)

Table 3.2: The MLP processing the embedding features. The layers were applied in
descending order.

Layer Description
Dropout pdrop,1
Linear Input features: 768, Output features: 384

Instance Normalisation
LeakyReLU Slope = 0.01
Dropout pdrop,2
Linear Input features: 384, Output features: 192

Instance Normalisation
LeakyReLU Slope = 0.01
Dropout pdrop,2
Linear Input features: 192, Output features: 192

The RNN models did not utilise dropout and therefore pdrop,1 = pdrop,2 = 0. Due to
RNN layers being recurrent, the number of parameters of the RNN layer is independent
of the input sequences’ lengths. The number of parameters are instead affected by what
kind of RNN is used, which was GRU, the number of hidden nodes, number of layers
as well as if it is bidirectional, meaning that the sequence is also read backwards.
Since the residues of a protein interact with residues both forwards and backwards in
the sequence a bidirectional RNN layer was chosen. The two RNN models differed in
model complexity with one model consisting of 3 million trainable parameters, while
the other model consisted of 13 million trainable parameters. See Table 3.3 for details

30

regarding the differences in the RNN GRU layer for the two models.

Table 3.3: The differences of the RNN GRU layer for the two RNN models.

Hyperparameter RNN 3 million parameters RNN 13 million parameters
Number of input features 480 480
Number of hidden nodes 256 512

Number of layers 2 3
Bidirectional Yes Yes

Since the model’s interpretation of the entire sequence was of interest and not specific
parts, the output of interest from the RNN GRU layer was the hidden state of last
processing step, in the forward direction, as well as the hidden state of the last pro-
cessing step in the backward direction. The hidden states were concatenated and fed
to a second MLP that reduced the number of elements down to a single value, which
was the output. Figure 3.2 illustrates the flow of information in the latter part of the
RNN models. The two RNN models differed in number of parameters in the last MLP,
see Table 3.4 for details.

Figure 3.2: Illustration of the later part of the RNN models. At the top of the figure are
the concatenated embedding and attention features of the shape [1, L, 480],
which correspond to the last part of Figure 3.1. The features are processed by
the GRU based RNN. The most relevant hidden states’ output by the GRU
layers were concatenated into a tensor of shape [1, 1,#hidden nodes in GRU
∗2] and fed to an MLP. The output of the MLP was the final prediction of
the model. (An alteration of an image published by [22], Creative Commons
Attribution 4.0 International License.)

The two transformer based models utilise the preprocessed features as described pre-
viously and illustrated by Figure 3.1 and Table 3.2. However, due to the transformer

31

Table 3.4: The MLP processing the output of the RNN layer. The layers were applied in
descending order.

Layer RNN 3 million parameters RNN 13 million
parameters

Linear Input features: 512,
Output features: 128

Input features: 1024,
Output features: 512

LeakyReLU Slope = 0.01 Slope = 0.01
Linear Input features: 128,

Output features: 64
Input features: 512,
Output features: 256

LeakyReLU Slope = 0.01 Slope = 0.01
Linear Input features: 64,

Output features: 1
Input features: 256,
Output features: 1

not being recurrent, all of the sequences must be of the same length. In order to fulfil
the requirement, the tensors were padded along the length dimension. The padding
was performed by extending the tensor after the sequence with zeros up until the
length dimension had 511 elements, before being fed to the MLP and being concat-
enated. The outputs of the MLP were still concatenated with the preprocessed row
attentions yielding a feature tensor of size [1, L, 480], with a constant L of 511. The
reason why the sequence length was 511, rather than the intended 512 was due to a
misunderstanding of the sequence length criteria while generating the embeddings and
attentions of the MSA transformer.

The difference between the two transformer models are the dropout rates, pdrop, see
Table 3.5. The dropout rates of the transformer model without regularisation are
default values of the layers, while the dropout rates for the transformer model with
regularisation where chosen by manually testing different values.

The concatenated tensor from the initial part of the model was fed into a transformer
encoder, which output a tensor of the same size as the input, see Figure 3.3. The
transformer encoder consisted of three encoder layers each consisting of 8 heads. The
encoder performs dropout from a given dropout rate, pdrop,transformer, see Table 3.5,
for which dropout rate was used during training of the two models. The output tensor
is further processed by an MLP to reduce the number of features to 8 resulting in a
tensor of size [1, L, 8].

Table 3.5: The differences in dropout rates for two Transformer models.

Dropout rate Transformer without regularisation Transformer with regularisation
pdrop,1 0 0.1
pdrop,2 0 0.2

pdrop,transformer 0.1 0.3

The tensor was then reshaped to [1, 8, L] to perform a one-dimensional convolution
with a kernel-size of 25, and an output of 10 channels, which changes the tensor shape
to [1, 10, 487]. The features were then flattened to a vector of shape [1, 4870]. Lastly
a second MLP processed the features to yield the output of the model.

32

Figure 3.3: The later part of the transformer models. The top left tensor is the same
tensor as the last one in Figure 3.1. The right column is the continuation of
the processing of the left column. (An alteration of an image published by
[22], Creative Commons Attribution 4.0 International License.)

Table 3.6: The MLP processing the output of the transformer models. The layers were
applied in descending order.

Layer Description
Linear Input features: 4870, Output features: 4870

LeakyReLU Slope = 0.01
Dropout pdrop,2
Linear Input features: 4870, Output features: 512

LeakyReLU Slope = 0.01
Linear Input features: 512, Output features: 1

3.4 Model development

The tested models were trained for 20 epochs and utilised the loss function mean square
error, MSE. To update the model parameters the optimiser torch.optim.AdamW was
used. It utilises stochastic gradient descent, based on gradient descent as previously
described, and decoupled weight decay regularisation, which has a similar effect to
L2-regularisation. The optimiser requires defining the hyperparameters learning rate
and weight decay, of which multiple values were tested. By manually testing different
values while training the transformer model to predict values on ProThermDB it was
found that learning rate 1 × 10−4 and the weight decay 0.01 yielded the most stable
model with lowest validation loss. However when applied on data from the Meltome
atlas other values were found to yield better results. The learning rate and weight
decay used for the final transformer and RNN models are shown in Table 3.7.

33

Table 3.7: The learning rate and weight decay used during training of the RNN and
transformer based models.

Learning rate Weight decay
RNN models 5× 10−4 1× 10−4

Transformer models 1.05× 10−4 3× 10−4

34

4 Results

4.1 Models Trained on ProThermDB

The performance of the models during training were tracked by plotting the root mean
square error, RMSE, of training and validation as a function of the number of epochs.
See Appendix A.2 for definition of RMSE as well as other metrics.

Initially the transformer model was trained on all ∆G values from ProThermDB.
Utilising all entries in 10-fold cross-validation for 15 epochs of training, resulted in the
performance seen in Figure 4.1. With each epoch of training the model’s predictions
on the training set improve, which is seen as the constant decrease of RMSE on the
training dataset. The predictions of the validation set also continuously improve,
however after the 6th epoch the improvements are marginal.

Figure 4.1: Progression of RMSE during training and validation with 10-fold cross
validation to predict ∆G.

The model performs better than the baseline, which is defined as the RMSE value
equivalent to a model constantly guessing the mean stability value of the dataset.
However, it was not considered that proteins with high degree of similarity, for example
a wildtype protein and its mutants, could be in both the training set and the validation
set.

In order to study how this aspect affects the performance, entries were clustered to-
gether based on 80 % sequence similarity. The clusters were then the basis for the
10-fold cross validation. The clustering did not affect the training performance, as
seen in Figure 4.2, however the average validation RMSE was above the baseline. The
model therefore suffers from high variance.

Training the model to instead predict Tm values from ProThermDB, returned similar
results. The baseline RMSE differs from the baseline when predicting ∆G, due to being
a different unit, but is defined in the same manner. During clustered 10-fold cross-
validation the training RMSE was below the baseline value, however, the validation

35

Figure 4.2: Progression of RMSE during training and validation with 10-fold cross
validation to predict ∆G, with clustering. Note that the y-axis has shifted
compared to Figure 4.1.

RMSE converged with it, as can be seen in Figure 4.3. Therefore also this model
suffers from high variance.

Figure 4.3: Performing 10-fold cross validation to predict Tm from ProThermDB. The
baseline performance, guessing mean value, in the right sub-figure heavily
overlaps with the other lines.

4.2 Models Trained on Meltome Atlas

In order to train a model on more data the meltome atlas was used. At first 5-fold
cross validation was used. However due to all folds performing similarly, and in order
to save time, it was decided to create a fixed validation set. See Figure A.1 for the
behaviour of 5-fold cross validation.

Training a model with the transformer architecture on the meltome atlas for 20 epochs
led to the progression of RMSE seen in Figure 4.4. The RMSE during training de-
creased rapidly while the validation RMSE remained constant. A new baseline was
introduced, which was the RMSE value obtained by a model constantly guessing the
mean stability value of the proteins belonging to the same species. The validation
RMSE was below the first baseline, corresponding to guessing the whole sets mean
stability, but higher than the new baseline. In order to decrease the the variance of
the model it was tested to increase the regularisation by increasing the dropout rate
as well as the weight decay parameter. The change of hyperparameters delayed the

36

Figure 4.4: Progression of RMSE during training of the transformer without
regularisation. The dotted line corresponds to the loss value obtained by
solely guessing the mean stability of the dataset, the dashed line corresponds
to the loss of guessing the mean stability of the entries’ species.

Figure 4.5: Progression of RMSE during training of the transformer model with
regularisation. The dotted line corresponds to the loss value obtained by
solely guessing the mean stability of the dataset, the dashed line corresponds
to the loss of guessing the mean stability of the entries’ species.

overfitting in the sense that it took more epochs for the training RMSE to reach the
minimum value, see Figure 4.5. However, the validation performance remained largely
unchanged.

In order to see how the complexity of the the model impacted the performance, a
simpler architecture was utilised based on RNN. The two simpler models consisted of
3 and 13 million parameters and during training for 20 epochs without regularisation
they performed as seen in Figure 4.6 and 4.7.

To more easily compare the four models’ performance see Figure A.2. The validation
performance after 20 epochs of training is shown in Table 4.1. As previously mentioned
do the two RNN models differ by the amount of parameters, while the two transformer
models differ in the degree of regularisation during training. The two RNN models
perform better than the transformer models on the validation set, with lower MSE,
RMSE and MAE, and higher PCC and R2 scores. The two RNN models score similarly
with slightly higher performance for the model with 13 million parameters.

In order to inspect if the models exhibits overfitting to the validation data the, the test

37

Figure 4.6: Progression of RMSE for a RNN model with 3 million parameters.The dotted
line corresponds to the loss value obtained by solely guessing the mean
stability of the dataset, the dashed line corresponds to the loss of guessing the
mean stability of the entries’ species.

Figure 4.7: Progression of RMSE for a RNN model with 13.5 million parameters.The
dotted line corresponds to the loss value obtained by solely guessing the mean
stability of the dataset, the dashed line corresponds to the loss of guessing the
mean stability of the entries’ species.

38

Table 4.1: The performance of the models during validation. The best performance of a
metric is shown in bold.

RNN Transformer
Metric 3 mill 13 mill With regularisation Without regularisation
PCC 0.84 0.85 0.78 0.80
MSE 37.0 36.0 52.2 48.3

RMSE (K) 6.1 6.0 7.2 7.0
MAE (K) 4.7 4.6 5.4 5.4

R2 0.70 0.71 0.58 0.61

dataset of the meltome atlas as well as the test dataset of Leuenberger’s data. During
testing the RNN models again perform better than the transformer based models, as
well as ProTstab2, as can be seen by the lower MSE, RMSE and MAE, as well as the
higher PCC and R2 in Table 4.2. How the models performed on entries of the test
set belonging to the meltome atlas as well as the test set from Leuenberger’s data,
respectively, see Tables A.1 and A.2.

Table 4.2: The performance of the models while predicting the test dataset. It is a subset
of the test dataset presented by Yang et al. [21] . The best performance of a
metric is shown in bold.

RNN Transformer
Metric 3 mill 13 mill With regularisation Without regularisation ProTstab2
PCC 0.86 0.86 0.77 0.78 0.78
MSE 43.3 43.6 63.8 61.5 49.4

RMSE (K) 6.6 6.6 8.0 7.8 7.0
MAE (K) 4.9 4.9 5.7 5.7 5.3

R2 0.73 0.72 0.59 0.61 0.61

4.3 Models Trained on Meltome Atlas Predicting

Conventional Tm

In order to see how the four models trained on the meltome atlas performed while
predicting conventional Tm values, the training dataset of ProThermDB was used as a
sort of validation set. The performance of the models for predicting the conventional
Tm is shown in Table 4.3. Guessing the mean Tm value of the training set results
in a baseline RMSE of 17.3 K, which is reflected in the R2 value being close to 0 or
negative.

39

Table 4.3: Performance of models trained on TPP data to predict conventional Tm. The
best performance of a metric is shown in bold.

RNN Transformer
Metric 3 mill 13 mill With regularisation Without regularisation ProTstab2
PCC 0.51 0.46 0.52 0.49 0.48
MSE 277 303 280 308 315

RMSE (K) 16.6 17.4 16.7 17.6 17.7
MAE (K) 12.3 12.7 12.4 13.0 12.5

R2 0.07 -0.02 0.06 -0.04 -0.27

40

5 Discussion

The RNN based models performed better than ProTstab2 on the test set constructed
from the meltome atlas and the data published by Leuenberger et al. [16], as seen by
the lower MSE, RMSE and MAE and higher PCC and R2 in Table 4.2. The RNN
model with 3 million parameters scored the best, with an RMSE of 6.6 K and an R2

of 0.73. Furthermore, the RNN models performed surprisingly well on the test set
from the data published by Leuenberger et al., see Table A.2, considering that the
models had not been trained on data from that dataset, nor on data gathered from
the same experimental method. This in an indication that the Tm values published by
Leuenberger et al. and the meltome atlas correlate relatively well and that the models
could be of use for predicting the apparent Tm values obtained from high throughput
methods.

Interestingly, the models trained on the meltome atlas performed poorly while predict-
ing Tm values from ProThermDB, as seen by the R2 values in Table 4.3 that are all
close to 0. Regardless of the models’ performances on validation and test sets of high
throughput data. The R2 of the best performing model, RNN with 3 million paramet-
ers, drops from 0.73 on the meltome atlas test set, down to 0.07 on the ProThermDB
test set. The R2 close to 0 reflects next to none predictive ability of the ProThermDB
test set. The model is slightly more accurate than guessing the mean stability value
for each prediction. This confirms that the apparent Tm used for training, poorly
represents Tm. The two distributions are too dissimilar for the model to be of any use
for predicting Tm values.

All of the validation performances, except the one utilising unclustered k-fold cross
validation while predicting ∆G, Figure 4.1, converge with a value after very few epochs,
and neither increase nor decrease a considerable amount as training continues. As
described in the background and shown in Figure 2.6 is the expected behaviour of the
validation loss an initial decrease, and then an increase as the model starts overfitting
to the training set. The flatlining of the validation performance is not well described
in literature but is deemed to be due to overfitting. If a model is too complex it can
quickly learn to predict an average value for previously unseen proteins and develop
detection of specific features for some of the proteins in the training dataset. These
specific features make the proteins recognisable, but might not reflect protein stability
in a broader sense, which would correspond to the stagnant validation performance.

This indicates that more actions could have been made to make a more generic model
by utilising more training data, increasing regularisation, or decreasing model com-
plexity. At the beginning of the project, only ProThermDB was used and utilising the
meltome atlas was an attempt at the first approach, to use more training data.

Using the meltome atlas as training data did indeed improve the validation perform-
ance in the sense that the validation RMSE was lower than the baseline RMSE, of
guessing the dataset’s mean Tm. However, the RMSE was still higher than the baseline

41

corresponding to guessing the protein’s species of origin’s average protein stability.
This indicates that the model could be of use to predict the apparent Tm of proteins
with unknown species of origin or designed proteins. However, if the species of ori-
gin and the species’ average apparent Tm is known, then a smaller error is expected
by guessing the species’ average apparent Tm, rather than the models’ output. Fur-
thermore the models were still overfitting, which was seen by the training loss being
considerably smaller than the validation loss.

To decrease overfitting by increasing regularisation, different dropout rates and weight
decay values were tested. As seen in Figure A.2 did the training loss of the regularised
transformer model decrease slower than for the non-regularised model. However, the
validation performance was only marginally improved by increasing regularisation or
altering the other hyperparameters, as seen in Figure A.2 and Table 4.1. During
development higher dropout rates were tested, however none of the tested combinations
of dropout values affected the validation performance much.

By lastly using less complex models, with fewer trainable parameters, namely the
RNN models, there was an improvement of validation performance, as seen by the
lower MSE, RMSE and MAE and higher PCC and R2 in Table 4.1. The difference
in performance between the RNN models and the transformer based models was also
seen during testing, see Table 4.2. This indicates that the RNN models indeed were
more general and overfitted less. However, the models were still heavily overfitting.
It would therefore be interesting to try even smaller models or more regularised RNN
models to see how it impacts the performance.

When developing a model it is good to have a clear objective of what one wants the
model to actually predict. If a protein’s precipitation’s dependency on temperature is
wanted then the suitable way forward is to continue trying new methods to minimise
the losses of the meltome validation set. However, if one requires a model with ther-
modynamically relevant predictions, one should try to look less at the performance of
predicting data from high-throughput methods.

To investigate how well the RNN models capture knowledge of thermodynamic stabil-
ity, one should train the network on the ∆G and Tm entries from ProThermDB. This
wasn’t done due lack of time. An even more interesting investigation would have been
to use the RNN models trained on the meltome atlas and re-train them on data from
ProThermDB. This would investigate if the pre-training on the meltome atlas gave
the network some understanding of stability that could be transferred to predicting
non-apparent Tm values. This was also not performed due to lack of time.

Obtaining more values of ∆G proved hard and is why models predicting ∆G were not
investigated to the same degree as the Tm predicting models. The majority of published
stability values in databases are changes of stability upon mutation, ∆∆G and ∆Tm,
which require the wild-type’s ∆G or Tm value in order to be used. Furthermore, a
mutant’s stability is generally marginally different to that of a wild-type, meaning
that a database mainly containing stability values of mutants, with a small amount of
wild-type proteins, will not cover enough of the sequential landscape to be useful for
data-driven learning for predicting absolute stability.

42

An aspect that would have been beneficial to consider would have been the impact
of multi-domain proteins on training and prediction. A protein domain is a unit of
the protein chain that self-assembles independently from other domains and is self-
stabilising. Most domains are 50 to 150 residues long, meaning that proteins over 200
residues long are likely to be multi-domain [25]. Due to this project including protein
chains between 40 to 512 residues long, the models tried to learn to predict the stability
of both single- and multi-domain proteins. In order to make the problem simpler, it
would have been wise to train the model to predict the stability of single domain
proteins. It is also worth noting that the apparent Tm published by Leuenberger et
al. is the lowest apparent Tm of the protein domains. This means that if the dataset
would have been included in training the model, there would have been entries where
the apparent Tm only was directly connected to a certain part of the sequence. The
other parts of the sequence would therefore not have contributed to the stability value
in the database.

When it comes to ML is there always a need for more high quality data, and this project
is not an exception. The high throughput methods contribute with large amounts of
data, however, as shown is their relevance for predicting thermodynamic properties
questionable. To develop a useful model from the chosen features with the help of
ML, more thermodynamic data is needed, or another type of model that incorporates
more empirical or physical knowledge into the prediction.

In this project has mainly the outputs or labels of the models been considered, but
it is also important to assess the input features. All models developed in this project
used the same input features, the query sequence embedding and a pooling of the row
attentions related to the query sequence. Since no other input features were tested
can no comparisons be made. To more properly investigate the MSA transformer’s
abilities, other feature preprocessing methods would have been interesting to test.

Furthermore, it is worth reconsidering the usefulness of MSAs for discovering the
relationship between amino acid sequence and protein stability. MSAs do capture
the mutations that have been able to withstand evolutionary selection, and most
proteins must be stable in order to function. However, protein stability is not the only
evolutionary pressure, and there is seldom an advantage for a protein to have excess
stability. This means that an MSA based language model, like the MSA transformer,
will have to learn about protein stability in order successfully predict MSAs, however
fully describing protein stability may not be congruent with the protein language
model’s learning objective.

43

44

6 Summary

During the project, multiple models were developed to predict the quantities, ∆G and
Tm, that are associated to protein stability. Due to the performance of the models
being hindered by the limited amount of published thermodynamic data, data from
high-throughput methods were also considered. A model trained on high-throughput
data was more successful than a published equivalent at predicting high-throughput
Tm values. However, due to the disconnect between Tm values obtained from high-
throughput methods and the thermodynamic definition of Tm, the relevance of the
model is questionable. However, the success at predicting the apparent Tm of the
high-throughput methods indicates that if the model can be trained on larger datasets
containing relevant data, it might be successful at predicting protein stability.

45

46

Bibliography

[1] Lene Clausen, Amanda B. Abildgaard, Sarah K. Gersing, Amelie Stein, Kresten
Lindorff-Larsen and Rasmus Hartmann-Petersen. “Chapter Two - Protein sta-
bility and degradation in health and disease”. In: Advances in Protein Chem-
istry and Structural Biology. Ed. by Rossen Donev. Vol. 114. Molecular Chap-
erones in Human Disorders. Academic Press, 1st Jan. 2019, pp. 61–83. doi:
10.1016/bs.apcsb.2018.09.002. url: https://www.sciencedirect.com/
science/article/pii/S1876162318300580 (visited on 23/08/2023).

[2] Stepan Timr, Dominique Madern and Fabio Sterpone. “Chapter Six - Protein
thermal stability”. In: Progress in Molecular Biology and Translational Science.
Ed. by Birgit Strodel and Bogdan Barz. Vol. 170. Computational Approaches
for Understanding Dynamical Systems: Protein Folding and Assembly. Aca-
demic Press, 1st Jan. 2020, pp. 239–272. doi: 10 . 1016 / bs . pmbts . 2019 .
12.007. url: https://www.sciencedirect.com/science/article/pii/
S1877117319302133 (visited on 10/07/2023).

[3] Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter
Abbeel, Tom Sercu and Alexander Rives.MSA Transformer. Pages: 2021.02.12.430858
Section: New Results. 13th Feb. 2021. doi: 10.1101/2021.02.12.430858. url:
https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1 (visited
on 02/05/2023).

[4] Tristan Bepler and Bonnie Berger. “Learning the protein language: Evolution,
structure, and function”. In: Cell Systems 12.6 (16th June 2021), 654–669.e3.
issn: 2405-4712. doi: 10.1016/j.cels.2021.05.017. url: https://www.
sciencedirect.com/science/article/pii/S2405471221002039 (visited on
13/07/2023).

[5] Bertil Halle, Kaare Teilum, Sara Linse, Kristofer Modig and Ingemar Andre.
Biophysical Chemistry. Lund: Division of Biophysical Chemistry, Faculty of En-
gineering, Lund University, 2022.

[6] Douglas C. Rees and Andrew D. Robertson. “Some thermodynamic implications
for the thermostability of proteins”. In: Protein Science : A Publication of the
Protein Society 10.6 (June 2001), pp. 1187–1194. issn: 0961-8368. url: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC2374017/ (visited on 09/05/2023).

[7] Scott Lloyd and Quinn O. Snell. “Hardware Accelerated Sequence Alignment
with Traceback”. In: International Journal of Reconfigurable Computing 2009
(26th Jan. 2010). Publisher: Hindawi, e762362. issn: 1687-7195. doi: 10.1155/
2009 / 762362. url: https : / / www . hindawi . com / journals / ijrc / 2009 /

762362/ (visited on 18/08/2023).

[8] Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena, Giovanni Bus-
sotti, Ionas Erb and Cedric Notredame. “Multiple sequence alignment model-
ing: methods and applications”. In: Briefings in Bioinformatics 17.6 (1st Nov.

47

https://doi.org/10.1016/bs.apcsb.2018.09.002
https://www.sciencedirect.com/science/article/pii/S1876162318300580
https://www.sciencedirect.com/science/article/pii/S1876162318300580
https://doi.org/10.1016/bs.pmbts.2019.12.007
https://doi.org/10.1016/bs.pmbts.2019.12.007
https://www.sciencedirect.com/science/article/pii/S1877117319302133
https://www.sciencedirect.com/science/article/pii/S1877117319302133
https://doi.org/10.1101/2021.02.12.430858
https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1
https://doi.org/10.1016/j.cels.2021.05.017
https://www.sciencedirect.com/science/article/pii/S2405471221002039
https://www.sciencedirect.com/science/article/pii/S2405471221002039
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374017/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374017/
https://doi.org/10.1155/2009/762362
https://doi.org/10.1155/2009/762362
https://www.hindawi.com/journals/ijrc/2009/762362/
https://www.hindawi.com/journals/ijrc/2009/762362/

2016), pp. 1009–1023. issn: 1467-5463. doi: 10.1093/bib/bbv099. url: https:
//doi.org/10.1093/bib/bbv099 (visited on 07/08/2023).

[9] Matt Sternke, Katherine W. Tripp and Doug Barrick. “Chapter Seven - The use
of consensus sequence information to engineer stability and activity in proteins”.
In:Methods in Enzymology. Ed. by Dan S. Tawfik. Vol. 643. Enzyme Engineering
and Evolution: General Methods. Academic Press, 1st Jan. 2020, pp. 149–179.
doi: 10.1016/bs.mie.2020.06.001. url: https://www.sciencedirect.com/
science/article/pii/S0076687920302500 (visited on 27/08/2023).

[10] UniProtKB. UniProt. url: https://www.uniprot.org/uniprotkb?query=*
(visited on 21/08/2023).

[11] Milot Mirdita, Lars von den Driesch, Clovis Galiez, Maria J. Martin, Johannes
Söding and Martin Steinegger. “Uniclust databases of clustered and deeply an-
notated protein sequences and alignments”. In: Nucleic Acids Research 45 (D1
4th Jan. 2017), pp. D170–D176. issn: 0305-1048. doi: 10.1093/nar/gkw1081.
url: https://doi.org/10.1093/nar/gkw1081 (visited on 25/05/2023).

[12] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten and Thomas B. Schön.
Machine Learning - A First Course for Engineers and Scientists. Cambridge
University Press, 2022. url: https://smlbook.org.

[13] Larry Hardesty. Explained: Neural networks. MIT News | Massachusetts Insti-
tute of Technology. 14th Apr. 2017. url: https://news.mit.edu/2017/
explained-neural-networks-deep-learning-0414 (visited on 23/08/2023).

[14] Sebastian Raschka, Yuxi Liu, Vahid Mirjalili and Dmytro Dzhulgakov. Ma-
chine learning with PyTorch and Scikit-Learn: develop machine learning and
deep learning models with Python. Expert insight. Birmingham Mumbai: Packt,
2022. 741 pp. isbn: 978-1-80181-931-2.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. Attention Is All You Need.
5th Dec. 2017. doi: 10.48550/arXiv.1706.03762. arXiv: 1706.03762[cs].
url: http://arxiv.org/abs/1706.03762 (visited on 02/05/2023).

[16] Pascal Leuenberger, Stefan Ganscha, Abdullah Kahraman, Valentina Cappel-
letti, Paul J. Boersema, Christian von Mering, Manfred Claassen and Paola
Picotti. “Cell-wide analysis of protein thermal unfolding reveals determinants
of thermostability”. In: Science 355.6327 (24th Feb. 2017). Publisher: American
Association for the Advancement of Science, eaai7825. doi: 10.1126/science.
aai7825. url: https://www.science.org/doi/10.1126/science.aai7825
(visited on 02/06/2023).

[17] Bruno Domon and Ruedi Aebersold. “Mass Spectrometry and Protein Analysis”.
In: Science 312.5771 (14th Apr. 2006). Publisher: American Association for the
Advancement of Science, pp. 212–217. doi: 10.1126/science.1124619. url:
https://www.science.org/doi/full/10.1126/science.1124619 (visited on
27/08/2023).

48

https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1016/bs.mie.2020.06.001
https://www.sciencedirect.com/science/article/pii/S0076687920302500
https://www.sciencedirect.com/science/article/pii/S0076687920302500
https://www.uniprot.org/uniprotkb?query=*
https://doi.org/10.1093/nar/gkw1081
https://doi.org/10.1093/nar/gkw1081
https://smlbook.org
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762 [cs]
http://arxiv.org/abs/1706.03762
https://doi.org/10.1126/science.aai7825
https://doi.org/10.1126/science.aai7825
https://www.science.org/doi/10.1126/science.aai7825
https://doi.org/10.1126/science.1124619
https://www.science.org/doi/full/10.1126/science.1124619

[18] Anna Jarzab, Nils Kurzawa, Thomas Hopf, Matthias Moerch, Jana Zecha, Niels
Leijten, Yangyang Bian, Eva Musiol, Melanie Maschberger, Gabriele Stoehr, Isa-
belle Becher, Charlotte Daly, Patroklos Samaras, Julia Mergner, Britta Span-
ier, Angel Angelov, Thilo Werner, Marcus Bantscheff, Mathias Wilhelm, Martin
Klingenspor, Simone Lemeer, Wolfgang Liebl, Hannes Hahne, Mikhail M. Savit-
ski and Bernhard Kuster. “Meltome atlas—thermal proteome stability across
the tree of life”. In: Nature Methods 17.5 (May 2020). Number: 5 Publisher:
Nature Publishing Group, pp. 495–503. issn: 1548-7105. doi: 10.1038/s41592-
020-0801-4. url: https://www.nature.com/articles/s41592-020-0801-4
(visited on 10/07/2023).

[19] Rahul Nikam, A Kulandaisamy, K Harini, Divya Sharma and MMichael Gromiha.
“ProThermDB: thermodynamic database for proteins and mutants revisited
after 15 years”. In: Nucleic Acids Research 49 (D1 8th Jan. 2021), pp. D420–
D424. issn: 0305-1048. doi: 10.1093/nar/gkaa1035. url: https://doi.org/
10.1093/nar/gkaa1035 (visited on 12/07/2023).

[20] Yang Yang, Xuesong Ding, Guanchen Zhu, Abhishek Niroula, Qiang Lv and
Mauno Vihinen. “ProTstab – predictor for cellular protein stability”. In: BMC
Genomics 20.1 (Dec. 2019), p. 804. issn: 1471-2164. doi: 10.1186/s12864-
019-6138-7. url: https://bmcgenomics.biomedcentral.com/articles/10.
1186/s12864-019-6138-7 (visited on 26/05/2023).

[21] Yang Yang, Jianjun Zhao, Lianjie Zeng and Mauno Vihinen. “ProTstab2 for Pre-
diction of Protein Thermal Stabilities”. In: International Journal of Molecular
Sciences 23.18 (Jan. 2022). Number: 18 Publisher: Multidisciplinary Digital Pub-
lishing Institute, p. 10798. issn: 1422-0067. doi: 10.3390/ijms231810798. url:
https://www.mdpi.com/1422-0067/23/18/10798 (visited on 10/07/2023).

[22] Yiyu Hong, Jinung Song, Junsu Ko, Juyong Lee and Woong-Hee Shin. “S-Pred:
protein structural property prediction using MSA transformer”. In: Scientific
Reports 12.1 (16th Aug. 2022). Number: 1 Publisher: Nature Publishing Group,
p. 13891. issn: 2045-2322. doi: 10.1038/s41598-022-18205-9. url: https:
//www.nature.com/articles/s41598-022-18205-9 (visited on 26/04/2023).

[23] Andrew Nightingale, Ricardo Antunes, Emanuele Alpi, Borisas Bursteinas, Le-
onardo Gonzales, Wudong Liu, Jie Luo, Guoying Qi, Edd Turner and Maria
Martin. “The Proteins API: accessing key integrated protein and genome in-
formation”. In: Nucleic Acids Research 45 (W1 3rd July 2017), W539–W544.
issn: 0305-1048. doi: 10.1093/nar/gkx237. url: https://doi.org/10.1093/
nar/gkx237 (visited on 07/07/2023).

[24] Martin Steinegger, Markus Meier, Milot Mirdita, Harald Vöhringer, Stephan J.
Haunsberger and Johannes Söding. “HH-suite3 for fast remote homology de-
tection and deep protein annotation”. In: BMC Bioinformatics 20.1 (14th Sept.
2019), p. 473. issn: 1471-2105. doi: 10.1186/s12859-019-3019-7. url: https:
//doi.org/10.1186/s12859-019-3019-7 (visited on 02/05/2023).

[25] Dong Xu and Ruth Nussinov. “Favorable domain size in proteins”. In: Folding
and Design 3.1 (1st Feb. 1998), pp. 11–17. issn: 1359-0278. doi: 10.1016/
S1359-0278(98)00004-2. url: https://www.sciencedirect.com/science/
article/pii/S1359027898000042 (visited on 30/09/2023).

49

https://doi.org/10.1038/s41592-020-0801-4
https://doi.org/10.1038/s41592-020-0801-4
https://www.nature.com/articles/s41592-020-0801-4
https://doi.org/10.1093/nar/gkaa1035
https://doi.org/10.1093/nar/gkaa1035
https://doi.org/10.1093/nar/gkaa1035
https://doi.org/10.1186/s12864-019-6138-7
https://doi.org/10.1186/s12864-019-6138-7
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6138-7
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6138-7
https://doi.org/10.3390/ijms231810798
https://www.mdpi.com/1422-0067/23/18/10798
https://doi.org/10.1038/s41598-022-18205-9
https://www.nature.com/articles/s41598-022-18205-9
https://www.nature.com/articles/s41598-022-18205-9
https://doi.org/10.1093/nar/gkx237
https://doi.org/10.1093/nar/gkx237
https://doi.org/10.1093/nar/gkx237
https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1016/S1359-0278(98)00004-2
https://doi.org/10.1016/S1359-0278(98)00004-2
https://www.sciencedirect.com/science/article/pii/S1359027898000042
https://www.sciencedirect.com/science/article/pii/S1359027898000042

50

A Appendix

A.1 Notations and Symbols

Notation Unit Description
α - Learning Rate
b - Bias
∆G [kcal/mol] Gibbs free energy of unfolding
∆∆G [kcal/mol] Change in Gibbs free energy from mutation
∆H [kcal/mol] Enthalpy of unfolding
∆Hm [kcal/mol] Enthalpy of unfolding at the heat denaturation temperature Tm

∆S [kcal/mol/K] Entropy of unfolding
∆Cp [kcal/mol/K] Change in specific heat capacity of unfolding
DL - Deep Learning: an ML techniques that utilise deep neural networks
DSC - Differential Scanning Calorimetry: an experimental method
GRU - Gated Recurrent Network, a type of RNN.
LSTM - Long Short-Term Memory, a type of RNN
ML - Machine Learning
MLP - Multilayer Perceptron: a fully connected feedforward neural network
MS - Mass Spectrometry
MSA - ∆∆G
NN - Neural Network
ReLU - Rectified Linear Unit: a non-linear activation function
RNN - Recurrent Neural Network
Tm [K] or [◦C] The heat denaturation temperature
w - Weights

A.2 Metrics

In order to compare models more easily different metrics are useful. The metrics reflect
how well a model’s predicted values Ŷ correlates to the real values Y in different ways.
The Pearson correlation coefficient (PCC) measures the linear dependency between
two variables. For N number of samples it is calculated in the following manner:

PCC =
cov(Y, Ŷ)

σY σŶ

=

∑N
i=1[(ŷi − µŷ)(yi − µy)]√∑N

i=1(ŷi − µŷ)2
√∑N

i=1(yi − µy)2

Where cov(Y, Ŷ) is the covariance between the real and predicted values, σ the stand-
ard deviation of the defined variable and µ the mean value of the defined variable.
PCC can vary between -1 and 1, where 1 corresponds to a perfectly linear positive
correlation, 0 corresponds to no correlation and -1 to a negative perfect correlation.

51

In order to quantify the size of the errors in a more interpretable manner, mean square
error (MSE), root mean square error (RMSE) and mean absolute error (MAE) can be
used. The metrics are calculated by the following equations:

MSE =

∑N
i=1(yi − ŷi)

2

N

RMSE =

√∑N
i=1(yi − ŷi)2

N

MAE =

∑N
i=1 |yi − ŷi|

N

MSE and RMSE both square the errors, which accentuates larger errors’ contribution
to the metrics. MAE on the other hand uses the absolute of the error, meaning that all
errors’ contribution to the metric is proportional to the size of the error. The metrics
RMSE and MAE have the same unit as y and ŷ, while MSE has the squared unit,
making the result of RMSE and MAE often more intuitive.

R2, also known as coefficient of determination, is commonly used to quantify the
goodness-of-fit of a model. It this context it describes how well the predicted value
describes the real value, with an R2 of 1 corresponding to a perfect fit, with no predic-
tion errors. An R2 of 0 corresponds to the prediction errors being so large that using
the mean of the real values, µy, as a predictor would be equally successful. R2 can be
calculated by the following expression:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − µy)2

A.3 Commands

CDHit version 4.8.1 was used to cluster proteins based on sequence identity through
the line below, which was run in the terminal. The options can be described as the
following: -i all_seqs.FASTA defines the FASTA file of the sequences to be aligned,
-o all_seqs80, the name of the output file, -c 0.8, the sequence identity threshold,
-n 5, the word length, -M 1600, the allowed max memory in Mb and lastly -T 8, the
number of threads or CPUs.

cdhit -i all_seqs.FASTA -o all_seqs80 -c 0.8 -n 5 -d 0 -M 1600 -T 8

HH-blits version 3.3.0 was used to generate MSAs, with the command below used for
each MSA. The options meant the following: -i seq.FASTA, the file containing the
query sequence, -oa3m seq.a3m, the name of the output MSA file in a3m format. Both
seq.FASTA and seq.a3m were different for each protein, these are just example names.
The option -n 3 meant that the MSA was created through 3 iterations, -d dirLib

was used to specify the path of the uniclust30 database and lastly -cpu 4 specified
that 4 CPUs could be used for the MSA generation.

52

hhblits -i seq.FASTA -oa3m seq.a3m -n 3 -d dirLib -cpu 4

A.4 Figures and tables

Figure A.1: The performance during 5-fold cross validation on the Meltome atlas for the
transformer model without regularisation.

Figure A.2: The progression of RMSE during training of the four models trained on data
from the meltome atlas. In the figure regularisation is shortened to reg.

Table A.1: The performance of the models while predicting the test set of the meltome
atlas . It is a subset of the test dataset presented by Yang et al. [21] . The
best performance of a metric is shown in bold.

RNN Transformer
Metric 3 mill 13 mill With regularisation Without regularisation ProTstab2
PCC 0.86 0.86 0.77 0.78 0.79
MSE 36.6 36.0 54.2 53.6 52.0

RMSE (K) 6.0 6.0 7.3 7.3 7.2
MAE (K) 4.6 4.5 5.4 5.4 5.5

R2 0.73 0.72 0.58 0.59 0.60

53

Table A.2: The performance of the models while predicting a subset of the test set of
ProTstab (not ProTstab2). It is a subset of the test dataset presented by
Yang et al. [21] . The best performance of a metric is shown in bold.

RNN Transformer
Metric 3 mill 13 mill With regularisation Without regularisation ProTstab2
PCC 0.80 0.82 0.71 0.74 0.79
MSE 97.1 96.6 131.3 117.1 91.4

RMSE (K) 9.9 9.8 11.5 10.8 9.6
MAE (K) 7.2 7.3 8.4 7.6 7.3

R2 0.53 0.53 0.36 0.43 0.56

54

	Abstract
	Acknowledgements
	Introduction
	Background
	Proteins
	Thermodynamics of Proteins
	Multiple Sequence Alignments
	Machine learning
	Sequential models
	MSA Transformer
	Experimental Characterisation of Proteins
	Datasets
	Previous Studies

	Method
	Data and Model Handling and Availability
	Data processing
	ProThermDB
	Leuenberger's Data
	Meltome Atlas
	All Datasets
	Feature processing

	Models
	Model development

	Results
	Models Trained on ProThermDB
	Models Trained on Meltome Atlas
	Models Trained on Meltome Atlas Predicting Conventional Tm

	Discussion
	Summary
	References
	Appendix
	Notations and Symbols
	Metrics
	Commands
	Figures and tables

