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Att Hantera Andningsrörelse Vid Str̊albehandling av

Lungcancer

Populärvetenskaplig sammanfattning

Av de 70 000 personerna som blev diagnoserade med cancer i Sverige 2021, fick runt 4000
lungcancer. Lungcancer är vanligen elakartade celler som utg̊ar fr̊an lungans slemhinna.
Behandling innefattar oftast operation eller str̊alterapi, ibland i kombination med cellgifter
eller immunterapi.

Inför str̊albehandling gör patienten en röntgenundersökning som ger bilder i tre dimen-
sioner, en s̊a kallad datortomografiundersökning. Läkarna använder sedan dessa bilder för
att markera ut omr̊adet som man vill bestr̊ala, och organ runt om som man vill undvika
att bestr̊ala. Efter detta görs en dosplan där behandlingen simuleras i ett datorprogram för
att göra en s̊a optimerad behandling som möjligt. Där kan parametrar som str̊alfältstorlek,
str̊alslag och ing̊angsvinkel bestämmas för att ge en hög och jämn fördelning av str̊alningen
till tumören och s̊a lite som möjligt till intilliggande frisk vävnad.

Vid behandling ligger patienten p̊a en brits under en linjäraccelerator som producerar
joniserande str̊alning. För lungcancer används ibland en speciell teknik som ger mycket hög
dos till liten volym med mycket snabbt dosfall i intilliggande vävnad. Detta kallas stereotak-
tisk str̊albehandling. Vid denna typ av behandling är det mycket viktigt att patienten ligger
helt still.

Om tumören ligger i bröstkorgen, vilket är fallet för lungcancer, kan den röra sig under
behandling p̊a grund av andning. Risken är d̊a att str̊alningen missar tumören om den rör
sig med andningen. Läkarna kompenserar ofta för detta genom att göra det omr̊ade som ska
behandlas n̊agot större än den faktiskta tumören baserat p̊a datortomografiundersökningen.
Detta säkerställer att tumören bestr̊alas trots rörelsen. En sv̊arighet som kan uppst̊a är
att vi ofta andas olika och rörelsen som uppst̊ar kan variera mycket för samma person vid
olika tillfällen. Detta innebär att det finns en risk att patienten andas annorlunda under
behandling jämfört med under datortomografiundersökningen.

Vi behöver därför verktyg för att kontrollera hur andningen ser ut före och under behan-
dling. Ett verktyg för att göra detta är optiska ytskanningssystem. Dessa system mäter hur
mycket bröstkorgen rör sig och kan eventuellt ge en indikation p̊a tumörrörelsen. Eftersom
man inte ser själva tumören blir detta alltid en uppskattning, och för att bli säkrare p̊a att
tumören rör sig som förväntat med bröstkorgen eller magen kan en statistisk korrelation
göras mellan dessa.

Detta arbete har undersökt denna faktiska statistiska korrelationen mellan bröstkorgens
rörelse och tumörens rörelse i kroppen p̊a lungcancerpatienter. Som hjälp har jag använt
data fr̊an optiska ytskanningssystem samt datortomografibilder och undersökt hur många
millimeter som de b̊ada rör sig. Som tillägg till detta har jag även gjort en datormodell som
ska hjälpa att förutsp̊a var tumören kommer att ligga utifr̊an bröstkorgsrörelsen.
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Abstract

Purpose: The purpose of this master thesis was to retrospectively investigate correlation
between surface and tumour motion in lung cancer patients, alongside deep learning appli-
cations of the results. Additional correlations such as age, tumour volume and anatomical
placement of the tumour were also investigated.

Materials and Methods: 48 lung cancer patients treated with Stereotactic Body Radiation
Therapy (SBRT) were included in this study. Delineation of the tumours was made on 4-
Dimensional Computed Tomography (4DCT) images where each tumour was delineated in
each of the eight respiration phases. Tumour volume and centre of mass coordinates in Left-
Right (LR), Anterior-Posterior (AP) and Superior-Inferior (SI) directions were retrieved in all
respiration phases. The total translational shift from maximum exhale phase was computed.
Surface motion data was acquired from a surface imaging system which was recorded during
4DCT simulation of the patient.

The Spearman Correlation Coefficient (SCC) between tumour and surface motion was
calculated. An additional Spearman correlation was calculated between the SCC and patient
features (age, tumour volume, smallest distance to thoracic wall, distance to thoracic spine
and to chest surface, lung volume, and use of abdominal compression belt). Wilcoxon’s rank
sum test was performed to determine statistical significance between the groups with and
without abdominal compression belt.

An artificial neural network (ANN) model was created to investigate the possibility to
predict tumour motion given the surface motion as an input to the model. The model was
built like a feed-forward ANN with two hidden layers using Rectified Linear Unit (ReLU)
activation functions. Training, validation, and test data set split were 36/45, 6/45 and 3/45
respectively.

Results: Strong correlation (0.70 < SCC < 1.0) was found for 36%, 49%, 67% and 73% of
the patients in the LR, AP, SI, and total 3D direction respectively. The correlations between
SCC and patient features investigated were weak (SCC < 0.30). There was a statistically
significant difference in correlation coefficient values (p < 0.05) between groups with and
without abdominal compression belt in SI direction. A stronger correlation was seen in the
patient cohort with abdominal compression belt (SCC = 0.79) than in the patient cohort
without (SCC = 0.70).

When taking the ANN model uncertainty in terms of the mean squared error, 87.5% of
the ground truth values were within the predicted interval.

Conclusion: The correlation between surface and tumour motion was strong in majority of
the patients in SI and total 3D direction. However, SCC varied amongst the patient data
set and the result should therefore be interpreted as an indication of possible further indi-
vidualisation of treatment and treatment planning. If correlation is to be used for treatment
planning, an action plan could be applied for when the patient breathing pattern is irregular
or different.
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Abbrevations

4DCT - 4-Dimensional Computed Tomography
Adam - Adaptive Moment Estimation
AP - Anterior-Posterior
ANN - Artificial Neural Network
COM - Center of Mass
CT - Computed Tomography -
CTV - Clinical Target Volume
FANN - Feed-forward Artificial Neural Network
GTV - Gross Target Volume
IGRT - Image Guided Radiotherapy
LR - Left-Right
MRI - Magnetic Resonance Imaging
MSE - Mean Squared Error
PTV - Planning Target Volume
ReLU - Rectified Linear Unit
ROI - Region of Interest
RT - Radiotherapy
SBRT - Stereotactic Body Radiotherapy
SCC - Spearman’s Correlation Coefficient
SGD - Stochastic Gradient Decent
SGRT - Surface Guided Radiotherapy
SI - Superior-Inferior
SUS - Sk̊anes Universitetssjukhus
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1 Introduction and aim

Out of the approximately 70 000 people diagnosed with cancer in Sweden in 2021[1], close to
4000 were diagnosed with lung cancer[2]. The predominant form of lung cancer involves the
proliferation of malignant cells that grow on the mucous membrane in the lung and can both
be primary or secondary tumours. In the latter case it is called metastasis. Metastases often
grow in the lungs since the blood circulates through the lungs first after coming back to the
heart[3]. Treatment is usually surgery or radiotherapy (RT), and it is common to combine
RT with chemotherapy which are medicines that target the cancer cells[3].

Stereotactic body radiation therapy (SBRT) is an RT technique defined by high fractional
radiation dose (> 5 Gy) delivered to a small volume (< 7 cm diameter)[4] with steep dose
gradients. The total dose is delivered in a small number of fractions. At Sk̊ane University
Hospital (SUS), Lund, lung cancer can be treated with SBRT delivering 45 Gy over 3 fractions
(15 Gy per fraction) over a week for peripheral targets. Depending on the location of the
tumour, an abdominal compression belt can be used to reduce the intrafractional motion
according to the local clinical routine.

SBRT is sensitive to patient motion due to the high fraction dose and low number of
fractions delivered. During a small fraction dose the effect of missing the target is smaller
than for a high fraction dose which SBRT uses. The effects on both potential reduction
in total dose to the target and the damage on healthy tissue increases in this case. The
dosimetric consequences are therefore larger for SBRT if the target is affected by motion due
to respiration.

Respiration causes intrafractional motion, i.e. motion during treatment delivery. In-
trafractional motion is caused primarily by anatomical motion, e.g. motion of skeletal muscu-
lar, cardiac, and gastrointestinal systems. In contrast, interfractional motion occurs between
treatment sessions and includes setup uncertainties[5].

Respiratory motion affects the thoracic and abdominal regions and contribute to artefacts
in computed tomography (CT) images, affects the need for increased planning target volume
(PTV) and deviation in planned and delivered dose[5]. Motion artefacts give less optimal
basis for the planning stage with regards to incorrect density in artefact volume as well as
visually identifying the tumour. The respiratory motion alone requires an increased PTV
margin to account for positions of the target in the different respiratory phases. This in return
increases the radiation field size and introduces an increased risk of harming healthy tissue
around the tumour[5]. Regarding the radiation delivery there is an introduced deviation in
planned and delivered dose to target due to the multi-leaf collimator (MLC) component and
target moving differently in relation to each other i.e. interplay effects[5].

To minimise the radiation dose to primarily organs at risk while maintaining the high
target dose, several motion compensation techniques can be used. Keall et al.[5] mentions
five main methods of motion compensation in RT: (1) motion-encompassing methods (such as
slow CT or 4-Dimensional Computed Tomography (4DCT), to capture the entire respiratory
motion), (2) respiratory gated techniques, (3) breath-hold techniques, (4) forced shallow-
breathing methods, and (5) real-time tumour tracking with adaptive beam repositioning.
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Currently at SUS a 4DCT examination is performed on patients for SBRT for lung cancer
in the preparatory stage of the workflow. This is to encompass the whole respiratory motion
of the patient and to retrieve an average position of the tumour. This is used, in combination
with the average position of the tumour in different respiratory phases, to ensure that the
PTV is covering the full motion range.

An abdominal compression belt (forced shallow-breathing method) is used when the tu-
mour is located in the lower area of the lungs according to local routines. This decreases
superior-inferior (SI) motion and allows usage of smaller target volume margins.[6]

4DCT imagery at SUS is used together with the optical surface system Sentinel (C-Rad
Positioning AB, Uppsala, Sweden) to monitor patient motion and respiration. This method
is called Surface Guided RT (SGRT) and is non-ionising[7] and non-invasive[8] in comparison
to x-ray imagery and surgically implanted markers. SGRT can also be used for several of the
aforementioned motion compensations such as gating and breath hold[8], but the application
this study will explore is real-time tumour motion monitoring.

Respiratory motion of the patient can, however, vary both during and between treatment
fractions[5]. This can affect the treatment if the planning was based on one breathing pattern
and during treatment the patient breathes according to another pattern. This means that
the motion-encompassing methods might not be enough to ensure high precision treatment
delivery. The respiration needs to be monitored throughout the treatment delivery to make
sure the patient is breathing approximately the same way as during the 4DCT examination.
Even then it can not be guaranteed that the tumour will follow the same breathing pattern.
Therefore, it would be of greatest interest if we could find a correlation.

To use SGRT for real-time tumour motion monitoring, there must be a strong correlation
between tumour motion and surface motion. Correlation between patient surface and internal
anatomical motion has been studied in several ways before[9; 10; 11; 12]. These studies show
that there is correlation between both surface motion and internal landmarks[12], and strong
correlation (correlation coefficient between 0.70 and 1.0) between surface motion and tumour
motion[9]. In addition, if there is correlation there might be a possibility and potential for
a deep learning model to predict the motion of the tumour based on the surface motion.
Artificial neural networks (ANN), a subfield of deep learning, can be used for many fields
such as regression and pattern recognition[13].

1.1 Aim

The aim of this study was to investigate the correlation between the tumour motion and
the surface respiratory motion for lung cancer patients. Other variables such as anatomical
placement of tumour, tumour volume, use of abdominal compression belt and their correlation
to the internal/external motion were also studied. Further, the possibility to predict tumour
motion based on surface data was investigated using an in-house developed ANN model.
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2 Background

2.1 Lung anatomy and respiration

Respiration operates as gas exchange of oxygen and carbon dioxide in the arterial blood
and is an involuntary function of the body, i.e. we perform it even unconscious[14]. The
lungs are located in the thoracic cavity and are surrounded by the rib cage. Inspiration
requires respiration muscles that expands the lung volume and thus pulling in air. These
include the diaphragm and intercostal muscles between the ribs. The diaphragm pulls the
lungs downward and pushes the abdomen inferiorly and anteriorly. The intercostal muscles
contract and pulls the ribs superiorly and anteriorly. During expiration the muscles return
to pre-inspiration position due to their elasticity.[14]

The lungs are divided by mediastinum and the heart. The lungs themselves are sepa-
rated into structures called lobes. These can be identified by the fissures between the lobes
(figure 1). The right lung has one oblique and one horizontal fissure, giving it three lobes:
upper, middle and lower lobe. The left lung, however, only has one oblique fissure dividing
it into an upper and lower lobe.[15]

(a) Lung fissures in left lung. (b) Lung fissures in right lung.

Figure 1: Lung fissures in both left and right lung, marked with arrows for clarification.
Images are from the same patient.
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2.2 CT and 4DCT

4DCT can be used when tumour or anatomical motion needs to be taken into account during
treatment planning of RT. 4DCT was first mentioned back in 2003[16] and is a 3D volume
CT acquired over multiple phases in a periodic motion[17], such as the respiratory cycle.
CT images are acquired simultaneously as a respiratory monitoring system, such as a sur-
face imaging system, which acquires respiratory amplitude data. The acquisition is usually
performed over several respiratory cycles when the CT couch moves in the gantry and are
sorted either retrospectively or prospectively into bins. Each bin represents a phase in the
respiratory cycle and is then 3D reconstructed into volumes. These bins can be shown in a
loop over the phases to visualise the motion during the respiratory cycle[16].

Identifying the phases of the respiratory cycle can be performed either through measur-
ing respiration amplitude (amplitude binning) or via temporal allocation (phase binning)
(figure 2). For measuring respiratory motion for the purpose of treatment planning at SUS,
retrospective acquisition and phase binning are used.

Figure 2: Schematic presentation of amplitude binning (left) and phase binning (right).
In amplitude binning the phases are determined by the fraction of maximum recorded
amplitude[16]. In phase binning the phases are determined by the temporal relationship
to the respiratory cycle, i.e. the cycles are separated in fractions of time between defined
occurrences, most commonly peak inhalations[18]. Stars in the phase binning image indicates
defined peak inhalations.

2.3 Surface imaging systems in RT

Surface imaging systems for RT uses a non-ionising method of monitoring patient motion
and is used in SGRT. SGRT have high temporal and spatial accuracy and the use of these
types of systems have increased rapidly the last decade[7]. Al Hallaq et al.[7] describes in
the AAPM TGR 302 that modern surface imaging systems use several different principles
to detect patient motion such as laser scanning, time-of-flight, stereovision, and structured
light imaging. Phase and amplitude can be extracted from the respiratory motion data and
can be used for monitoring and gating.
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An example of an optical surface scanning system is the Sentinel System (C-Rad Posi-
tioning AB, Uppsala, Sweden). Sentinel uses laser scanning technology with a laser divided
into three lines that sweeps over the patient to collect data for a 3D surface image[8]. The
laser scanning system is based on the report by Brahme et al.[19], where the unit includes a
laser emitter, an optical scanner and a camera. The laser emitter emits a narrow-line laser
which is manipulated by the optical scanner, consisting of a mirror mounted on a galvanome-
ter (figure 3). This in turn can sweep the laser over the patient. The camera is made of a
metal-oxide semiconductor detector that captures the laser lines. The location of contour
data in 3D space is calculated with optical triangulation, which uses the angle of incidence
on the detector to relate the captured image with the distance of reflection[20]. The pixels
are then back projected, and a 3D surface can be reconstructed per camera image.[19].

During 4DCT, the purpose of the surface imaging system is to record the patient surface
motion in a defined region of interest (ROI) to acquire a respiration curve during 4DCT
(figure 4).

Figure 3: Schematics of a laser scanning optical system. The narrow-line laser is emitted
on the mirror mounted on the galvanometer. This reflects onto the patient surface which in
turn is picked up by the camera. Image inspired by Brahme et al.[19].

6
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Figure 4: An example of a monitored breathing curve (bottom graph) and surface scan (top
image) from the Sentinel system. The red dot on the patient surface (top image) marks the
region of interest (ROI) that acquires the breathing motion. Blue and red markers in the
breathing motion (bottom graph) marks inhale and exhale maxima respectively. Gray area
represents where recording of the breathing motion is enabled, i.e. connection of the Sentinel
system and the CT-scanner, and the white area between the gray intervals represents the
breathing motion that was recorded during 4-dimensional computed tomography (4DCT)
acquisition.

2.4 Artificial neural network

An Artificial Neural Network (ANN) is a series of functional transformations that is struc-
tured into layers[13; 21]. The name comes from the resemblance of the axon structures in the
nerve cells, where each layer or node in the ANN represents a neuron in the axon[21]. The
layers, also called hidden layers, consist of non-linear functions that transform activations,
which are linear combination of input data, weight and bias parameters[13].

The layers can be fully connected between themselves, meaning every layer node has
input from all previous layer nodes[21; 22]. Fully connected layers are also called dense layers
(figure 5).

There are several types of ANN, including feed-forward, recurrent, competitive and proba-
bilistic. In this study the feed-forward ANN (FANN) will be discussed since the FANN model
architecture can accept inputs and process them in a forward direction without the need for
any feedback loops, making them less complex than other neural network architectures and
more efficient and easier to train[23].

The data used for an ANN model is traditionally divided into training, validation and
test data sets. The training set makes up the majority of the data and is solely used for
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training and optimising the model parameters. The validation set is used to monitor the
training progress of the trained model performance. The test set is used for final assessment
of the model and should not be intersecting the other sets[21].

Figure 5: Visualisation of a typical fully connected feed-forward artificial neural network
(FANN) with input data x, weight and bias b, output y. In this visualisation, the input has
a shape of four units and the output has a shape of one unit. The layers between the input
and output layers are usually called hidden layers.

2.4.1 Activation function

An activation function, sometimes called transfer function, is the function in each layer that
transforms the activations to a fitting format for output. It can be viewed as a function that
determines decision boundary, i.e. when the node is being activated. The choice of activation
function is determined by the data set’s appearance and distribution, but it is required to
be non-linear. Otherwise, there would be a stacking of linear function layers resulting in a
overall linear transformation independent of input, dimensionality, or repetition.[24; 13]

The Rectified Linear Unit (ReLU) is a common activation function and a truncation of a
linear function (figure 6).[22]

ReLU(z) = max(0, z) (1)

8
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Figure 6: Plot of the rectified linear unit (ReLU) function.

The ReLU function does not change the size of the input and it solves the problem other
activation functions face, namely vanishing gradients. During common training protocols of
the ANN, error backpropagation is used. This method uses gradients of the error propagated
backwards through the model to train it. These gradients are usually fractional and with
many layers to pass through, the gradients become negligibly small. This will limit the model
ability to learn from the training data set. The ReLU function surpasses this by keeping its
gradient to 1.[24]

For the output layer, a different activation function must be chosen. It is determined by
the purpose of the output, e.g. binary classification or scalar values. For regressions, a linear
function is recommended[13].

2.4.2 Loss function

Loss functions are used in ANN model training and are used to measure discrepancy be-
tween the output predictions and the corresponding targets. The goal is to minimise the
loss function and therefore the discrepancy, where the model parameters are optimised
accordingly[13; 21].

For regression problems, a standard mean squared error (MSE) function is used as loss
function. If there are n predictions (ŷ) and n targets (y), the MSE is computed as

MSE =
1

n

n−1∑
i=0

(ŷi − yi)
2. (2)

2.4.3 Optimisation Algorithm

To minimise the loss function, there are several methods of optimisation. A common method
is Stochastic Gradient Decent (SGD) which is built on the classic gradient decent method[21].
Gradient decent uses the derivative of the function to find the local minimum, in this case

9
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the loss function. It uses a learning rate term η to determine the ”step size” of the decent
and therefore the convergence time. Each gradient decent iteration needs to iterate through
all of the training set, which can be a workload for large training sets. To ease this workload,
SGD approximates the loss function with only one target-prediction pair per iteration[21].

The Adam (Adaptive moment estimation) optimisation algorithm is a further develop-
ment on the SGD method. Where the classic SGD use one learning rate for all parameters
that does not change throughout training, the Adam optimiser use individual learning rates
for all parameters that updates during training. It combines two other SGD extensions; Adap-
tive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp)[25].

2.4.4 Regularisation

Overfitting is a challenge in some ANN models and means that the model can perform well
on predicting the training data but fails to achieve the same performance on the validation
and test data, i.e. it can not generalise. To avoid overfitting, the operator can use certain
approaches such as 1) use a larger dataset, 2) make the model simpler, or 3) introduce a
regularisation term in the layers[21].

There are several regularisation methods to choose from such as L1 and early stopping.
The L1 regularisation term is introduced in the hidden layers and forces the parameter
elements to zero. This changes the impact of each parameter and levels out the prioritisation.
The amount of levelling is decided by a weighting factor λ, where lower λ gives heavier
levelling[21].

Early stopping is a type of regularisation where the training is stopped before the vali-
dation loss starts increasing, i.e. the amount of training epochs is restricted. An advantage
of early stopping is that it does not modify the loss function or parameter vector like L1
regularisation does[21].

3 Materials and Methods

3.1 Patient inclusion

A total of 48 patients with lung cancer treated with SBRT, 45 Gy/3 fractions at SUS were
retrospectively enrolled in this study. Inclusion criteria were lung cancer diagnosis, frac-
tionation, and patients treated 2019 (3 patients, used for uncertainty evaluation) and 2021
and after (45 patients, used for tumour delineation). Of the 45 patients used in delineation,
14 patients were treated using abdominal compression belt. Anatomical tumour placement
varied across the population of 45 patients where 16 patients had their tumour in left upper
lobe, 3 in left middle lobe, 9 in left lower lobe, 11 in right upper lobe, and 6 in right lower
lobe. All patients were previously scanned with 4DCT using a Siemens Somatom Defini-
tion AS (Siemens Medical Solutions, Erlangen, Germany) prior to treatment combined with
respiratory motion monitoring, Sentinel.

10
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The 4DCT protocol for all patients had 3 mm slice thickness in SI direction, 0.09 pitch,
500 mm FOV, 120 kVp and 40 mAs/rotation (dose reduction software used). The reconstruc-
tion software used was Siemens’ SAFIRE (I30s medium smooth kernel), and the software for
binning the dataset of approximately 800 projections into eight phases utilised phase binning.

The Regional Ethical Review Board in Lund has approved retrospective research of ra-
diotherapy data (No. 2013/42).

3.2 Delineation and center of mass retrieval

A total of 45 patients from 2021 and after were delineated. Delineations were made in the
contouring module of Eclipse treatment planning system (v.15.6, Varian Medical Systems,
Palo Alto, CA, USA). Delineations of the tumour volume were made on 4DCT images. The
lungs, trachea and bronchial tube volumes were automatically segmented with the automatic
tool using predefined Hounsfield unit values. To minimise errors, the bronchial tube and
trachea volumes were not removed. They were assumed to maintain their volume throughout
the eight respiration phases.

For each patient, the tumour was delineated in each phase and the 3D center of mass
(COM) coordinates in X, Y and Z corresponding to left-right (LR), anterior-posterior (AP),
and SI respectively were retrieved alongside lung volume and tumour volume. Tumour vol-
ume was delineated to replicate a gross target volume (GTV). The maximum exhalation
phase was used as starting point and the COM motion was relative to this phase. The
maximum exhalation phase was identified as the phase with the smallest lung volume. Max-
imum exhalation phase was also used for surface motion data analysis. One person made all
delineations.

For calculation of the total 3D tumour motion between each phase the vector was com-
puted with origin in the maximum exhalation phase COM. The vector length D was calcu-
lated using equation 3,

D =
√
(qx − rx)2 + (qy − ry)2 + (qz − rz)2 (3)

where q is the tumour coordinate in the maximum exhalation phase, and r is the tumour COM
in other phases. Similarly, the standard combined uncertainty of D (uc) was calculated as
the positive square root of the combined variance u2

c which in turn is given by equation 4[26],

u2
c =

N∑
i=1

(
∂D

∂xi

)
u2(xi) (4)

where each u(xi) is a standard approximated uncertainty and xi is the i:th variable in function
D.

3.3 Evaluation of tumour delineation uncertainties

The three patients from 2019 were used for an uncertainty evaluation of tumour delineation.
Two of the investigated patients had a spherical shaped tumour (figure 7,8) whereas the
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third patient had an irregular tumour shape (figure 9). For each of the three patients, the
tumour volumes (the GTV) were repeatedly delineated 11 times by one person, performing
the delineations over two days to minimise effect of habit. The tumours were delineated in all
CT phase images, and volume and COM-coordinates in X, Y and Z direction were acquired.

For each delineation i, positions on the axes xp
i , y

p
i , z

p
i were acquired for each phase

p = {1, 2, 3, 4, 5, 6, 7, 8}, and the mean value of the axis position was calculated (xp
mean, y

p
mean, z

p
mean).

The absolute deviation of each position from the respective mean values was then calculated
as

xp
dev,i = |xp

i − xp
mean|

ypdev,i = |ypi − ypmean|
zpdev,i = |zpi − zpmean|.

(5)

A mean value of these was in turn calculated to get a mean deviation per phase,

xp
dev,mean = 1

11

∑
i=1 x

p
dev,i

ypdev,mean = 1
11

∑
i=1 y

p
dev,i

zpdev,mean = 1
11

∑
i=1 z

p
dev,i.

(6)

Since there were eight phases, each set included eight values (one for each phase). A mean
value was calculated over each set in turn as

xn
dev,mean = 1

8

∑
p x

p
dev,mean

yndev,mean = 1
8

∑
p y

p
dev,mean

zndev,mean = 1
8

∑
p z

p
dev,mean

(7)

where n denotes patient. Lastly, a mean value over the patients thus a standard approximated
uncertainty of the COM position in each direction ux, uy, uz was calculated:

ux = 1
3

∑
n=1 x

n
dev,mean

uy = 1
3

∑
n=1 y

n
dev,mean

uz = 1
3

∑
n=1 z

n
dev,mean.

(8)

To qualitatively investigate how delineation errors affected the deviation from the mean
COM coordinate, systematic errors were investigated as part of the uncertainty evaluation.
Five systematical error delineations were introduced for each patient. These were a combi-
nation of over- and underestimated volume delineation and missing the tumour (figure 10).
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(a) Transversal projection. (b) Sagittal projection. (c) Frontal projection.

Figure 7: Overlapping delineation volumes for the first uncertainty patient in all projections.

(a) Transversal projection. (b) Sagittal projection. (c) Frontal projection.

Figure 8: Overlapping delineation volumes for the second uncertainty patient for in all pro-
jections.
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(a) Transversal projection. (b) Sagittal projection. (c) Frontal projection.

Figure 9: Overlapping delineation volumes for the third uncertainty patient in all projections.

(a) Underestimated volume
delineation of the tumour.

(b) Overestimated volume de-
lineation of the tumour. (c) Missing the tumour.

Figure 10: Examples of systematic errors used to qualitative study the delineation uncer-
tainty.

3.4 Surface motion data from Sentinel system

To monitor surface respiratory motion, the Sentinel system uses a 2 cm diameter ROI placed
manually on an anatomical reference location on the patient, e.g. between the navel and solar
plexus. The included patients were free breathing during 4DCT acquisition, meaning that
no visual or audio aid nor breathing instructions were given to the patient. The recorded
breathing amplitude was connected to the 3D space and isocenter of the room.

Surface motion data for the patients were retrospectively retrieved from Sentinel system
log files. It consisted of respiratory amplitude (only in vertical direction, i.e. AP direction
anatomically) and phase division as well as markers for the software’s identified inhalation
and exhalation points. Additional information such as time and timestamps of when scan
and study started was also available in the log files (figure 4). The respiratory motion data
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was sampled based on the 4DCT phase data to retrieve which respiratory amplitude data
points belonged to which phases. The mean respiratory amplitude for each phase was then
calculated using these data points.

The surface motion relative to maximum exhalation phase was calculated by subtracting
the amplitude of exhalation phase with the amplitude of the other phases.

3.5 Motion data analysis

Spearman’s correlation coefficient (SCC) was used to evaluate the internal/external corre-
lation. The Spearman’s correlation is a non-parametric evaluation technique that operates
on the rank of the data set rather than the raw data[27] and detects monotonic trends but
not linearity. Each variable, in this case tumour and surface motion, is ranked separately
from lowest to highest. A sum of the squares of the difference of ranks between the vari-
ables is normalised to an interval SCC = [−1, 1]. SCC can then be calculated according to
equation 9,

SCC = 1− 6
∑n

i=1 d
2
i

n3 − n
(9)

where d denotes the difference between ranks for each data pair and n denotes the number
of data pairs[27].

The SCC is insensitive to data outliers as well as non-normal distribution since it oper-
ates on the ranks rather than the raw data. For this study, cut off values of SCC defined
as weak (SSC < 0.30), moderate (SCC = [0.30, 0.69]) and strong (SCC = [0.70, 1.0]) were
established to interpret the external/internal correlation in accordance with Wang et al[9].
The SCC was calculated in Excel (Microsoft Corporation, Redmond, WA, USA) by con-
verting the tumour motion and surface motion for each patient into ranks separately with
the RANK.AVG function. The CORREL function was then applied on these ranked sets to
retrieve the SCC. This was done in LR, AP, SI and total 3D direction.

Spearman’s correlation analysis was made between the computed SCC and patient age,
tumour volume, smallest distance to thoracic wall, distance to thoracic spine and to chest
surface, lung volume, and with/without abdominal belt compression. The data set of all
patients’ SCC and patient features were separately ranked with the RANK.AVG function,
and the CORREL function was then applied to the SCC data set and one feature at a time
to acquire the correlation coefficient between the SCC and patient feature.

The linearity of the internal/external correlation was studied by completing a linear fit
between tumour motion and surface motion in Excel and acquiring the coefficient of deter-
mination R2. R2 is the proportion of variation of data points explained by the regression line
or model[28], and the closer R2 is to 1 the better the regression fit.

A Wilcoxon’s Rank Sum test was performed on the groups with and without belt compres-
sion to investigate statistically significant differences between the groups. This is similarly
to Spearman’s correlation a non-parametric statistical test appropriate for data sets where
a normal distribution can not be assumed. It is designed for independent samples with the
null hypothesis that the compared groups come from the same distribution. The data is
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ranked like in Spearman’s correlation, and the lowest of the two rank sums are used as com-
parative test statistics[28]. The Scipy package in Python was used for Wilcoxon’s Rank Sum
test evaluation, computing a p-value. In this case p < 0.05 was used to indicate statistical
significance[29].

3.6 ANN modelling

The goal of the ANN model was to predict the tumour motion by using surface motion as
input.

3.6.1 Training, validation and test data

There were in total 20 input attributes used for the model; surface motion (eight attributes,
one for each phase), surface mean motion, surface median motion, use of compression belt
(one-hot encoded), and if the tumour was positioned in upper, lower or middle lobe (one-hot
encoded). The tumour motion (eight attributes, one for each phase) were the output for the
model to predict based on the input attributes.

The data used to build the model was drawn from the patient data collected from the
previous data analysis (45 patients from 2021). The dataset was randomly divided into
training, validation and test sets. 36 patients were used for training the model, 6 patients
were used for validation, and 3 patients were used for test.

3.6.2 Model architecture

Link to full code can be found at GitHub at https://github.com/caisakj/ANN-model-tumour-
prediction.git. The ANN model was built like a FANN with two dense hidden layers with 128
units in each utilising ReLU activation functions. An L1 kernel regulariser (λ = 0.0001) was
used in both layers to minimise overfitting. The output layer had eight units to obtain eight
data points resembling the tumour motion attributes and used a linear activation function.
For model compilation, the Adam optimiser was used. Chosen loss function was MSE and
400 epochs was used during training.

An uncertainty interval was created around the predicted tumour motion data points from
the model. The interval was defined as [+

√
MSE,−

√
MSE] where MSE is the retrieved MSE

value from the model computed according to equation 2. This represented the interval which
the model could predict the tumour motion to be within.

Predictions were made with the model on the test data, where in total 3x8 data points
were acquired (three patients with eight data points each). The uncertainty interval was
applied and centered around the predicted data points and plotted together with the true
values for each test patient respectively.
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4 Results

4.1 Motion data analysis

Acquired absolute mean values of the correlation coefficient SCC were 0.53 (LR), 0.58 (AP),
0.73 (SI) and 0.74 (total 3D motion), all ranging from moderate to strongly correlated.
Medians were 0.57 (LR), 0.66 (AP), 0.77 (SI) and 0.80 (total 3D motion). The values varied
between and within the directions (figures 11a-11f). Distribution of patients between the
correlation classifications is presented in table 1.

Table 1: Table of patient percentage proportion within the correlation classifications.

LR AP SI Total 3D
N.o patients 45 45 45 45

N.o strongly correlated
(0.70-1.0)

16 (36%) 22 (49%) 30 (67%) 33 (73%)

N.o moderately correlated
(0.30-0.69)

17 (38%) 13 (29%) 12 (27%) 10 (22%)

N.o weakly correlated
(<0.30)

12 (27%) 10 (22%) 3 (7%) 2 (4%)

A statistically significant difference (p = 0.004) was found between the groups with and
without compression belt in the SI direction. The group with compression belt showed a
higher SCC (0.79) compared to the group without compression belt (0.70). Correlation
between SCC for total 3D motion and patient features showed weak correlation (< 0.30)
over all features.

The mean R2 value was 0.63 and the median was 0.68. The R2 varied between patients
(figure 11e). There was no statistical difference of R2 between groups with and without
compression belt in neither direction (p = 0.05).
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(a) Left-right (LR) correlation. (b) Anterior-posterior (AP) correlation.

(c) Superior-inferior (SI) correlation. (d) Total 3D motion correlation.
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(e) R2 values. (f) Correlations (total group) in all directions.

Figure 11: Violin plots of Spearman’s correlation coefficients (SCC) in a) LR, b) AP, c) SI
and d) total 3D directions separated into groups of with and without compression belt and
both combined (total). E) Similar violin plots of R2 from fit between surface and tumour
motion separating the patient group into with and without compression belt and total patient
group. F) Violin plots of the SCC (total patient group) in all directions.

4.2 Tumour delineation uncertainties

The ratio between largest and smallest delineated target volume Vmax and Vmin respectively
in all phases and patients is presented in table 2. Generally, Vmax/Vmin < 2 for the spherical
tumours (patient one and two) except for one outlier in the first CT-phase. Vmax/Vmin < 3
for the non-spherical tumour (patient three).

Table 2: Table of Vmax/Vmin over the phases in the three patients. The value is unitless.

Vmax/Vmin

CT phase Patient 1 Patient 2 Patient 3
1 1.23 2.50 2.06
2 1.70 1.44 1.46
3 1.36 1.29 2.47
4 1.64 1.43 1.45
5 1.42 1.29 1.70
6 1.33 1.38 2.21
7 1.55 1.71 2.05
8 1.21 1.63 2.50

Figures 12-14 show how the mean deviation from mean COM position in each phase varied
in all directions. A common trend was that the deviation in SI was larger than the other
directions. All deviations were under 1 mm except for patient three (non-spherical tumour).
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Figure 12: Plot of mean center of mass (COM) deviations from mean COM position for
patient one. X-axis is the CT-phase, y-axis is the mean deviation in mm. Circle points are
left-right (LR) direction, square points are anterior-posterior (AP) direction, and diamond
points are superior-inferior (SI) direction.

Figure 13: Plot of mean center of mass (COM) deviations from mean COM position for
patient two. X-axis is the CT-phase, y-axis is the mean deviation in mm. Circle points are
left-right (LR) direction, square points are anterior-posterior (AP) direction, and diamond
points are superior-inferior (SI) direction.
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Figure 14: Plot of mean center of mass (COM) deviations from mean COM position for
patient three. X-axis is the CT-phase, y-axis is the mean deviation in mm. Circle points are
left-right (LR) direction, square points are anterior-posterior (AP) direction, and diamond
points are superior-inferior (SI) direction.

When evaluating the systematic errors, the general result was that the deviation from
mean COM position within the dataset increased (table 3).

Table 3: Systematic error evaluation. Position deviation denotes the general trend of de-
viation from the mean center of mass (COM) position over all directions (LR, AP, SI) in
number of data points. If no specific amount of data points is written, it implies all data
points. Total amount of data points is 24 (eight per direction).

Position deviation

Patient 1
Without error <1 mm

With error
12/24 <1 mm
12/24 >1 mm and <2 mm

Patient 2
Without error <1 mm

With error
11/24 <1 mm
13/24 >1 mm and <2 mm

Patient 3
Without error

22/24 <1 mm
2/24 >1 mm and <2 mm

With error
8/24 <1 mm
9/24 >1 mm and <2 mm
7/24 >2 mm

The calculated mean deviation in each direction, which in turn becomes the estimated
standard uncertainty for COM position, was computed with equations 5-8 as ux = 0.4 mm,
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uy = 0.3 mm and uz = 0.6 mm, which is smaller than the voxel size of the image. With
evaluation with the voxel size, it was decided that the voxel size was going to be used as the
COM position uncertainty.

4.3 ANN model

The training and validation loss is presented in figure 15a. The square root of MSE was√
MSE = 2.7 mm, acting as basis for the prediction interval as shown in figure 15b. Regard-

ing the accuracy, 87.5% of the test data was within the predicted interval ±2.7 mm. The
plots of the remaining test patients are presented in Appendix A.

(a) Plot of the model performance, how the
loss function value progressed for the training
and validation. X-axis is epoch number and
y-axis is loss function value. The two data
sets are separated by colour, but the valida-
tion data is less stable than the training data.

(b) One of the three patients from the test
data set. X-axis is CT-phase number and
y-axis is tumour motion in mm. Model
predicted value has circle points and actual
values have triangle points. Shaded area
marks the square root of mean squared error√
MSE interval and it is centered around the

predicted values.

Figure 15: The performance of the artificial neural network (ANN) model on the a) validation
and b) test data sets.

22



Discussion and Conclusion Lund University 2023

5 Discussion and Conclusion

5.1 Correlation and data analysis

In many cases of the patient group, assumption of correlation between tumour motion and
surface motion is valid as is needed for use of SGRT. Even though this might sound promising,
it is important to consider the variation of SCC over the patient group.

The value of R2 is interpreted as how well the data fits the linear regression model. With
an R2 closer to 1, the data can be well approximated with a linear model. The data is fairly
linear but there was a wide spread of these values for these patients (figure 11e) which needs
to be considered. The patients with R2 < 0.5 (n = 12) all had SCC< 0.6 except for one
(SCC= 0.68), which intuitively says that a smaller R2 does not necessarily mean small SCC.
However, more data is needed to be able to carry out statistical tests.

The statistically significant difference between the groups with and without abdominal
compression belt in SI direction can be caused by respiratory motion affecting the anatomy
a lot in SI direction with the diaphragm expanding and contracting. The compression belt
restricts motion of the abdomen and diaphragm thus actively affecting the SI motion. This
could mean that if the patient’s internal/external correlation is used during treatment plan-
ning and delivery, the abdominal compression belt could improve the correlation and whatever
parameters are changed with it. It is difficult to say whether it is possible or not with this
small of a sample size, the fact that it is a secondary finding, and that there is no paired
data in this study.

The higher correlation for the group with compression belt can not tell, however, if the
tumour motion itself is smaller or equally large as without compression belt. There can still
be a correlation between a small-motion tumour and a high-motion stomach and vice versa,
as long as their motion patterns coincide.

Performing a statistic test on the groups with different lung lobe placements was consid-
ered. It was never done because of the uneven and small sample sizes in each group. If this
analysis is to be performed in the future, more patients with a larger spread of tumour posi-
tioning need to be collected such that a statistically representative number of patients are in
each group. There are studies[5], however, that have shown that anatomical placement can
make a difference in tumour motion. There is therefore a possibility that further inclusion
of patients would show different correlation between surface and tumour motion, depending
on anatomical placement, in this study as well.

There might be an issue of using the two groups of with and without compression belt
together in this study - from the beginning it was not thought to be a problem but since there
was a statistical significance, it should be taken into consideration in further studies to avoid
bias. In hindsight, it could be anticipated that the group of patients utilising an abdominal
compression belt would have less tumour and surface motion[6], potentially affecting the
correlation between surface and tumour motion, thus constituting a potential source of bias.
This selection bias stems from the fact that abdominal compression belt as a criterion was
not included in the patient selection, thus patients with abdominal compression belt were
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randomly included.
The correlation between surface and internal landmarks and tumours have been studied

previously. In a study by Vedam et al.[10], they used surrogate points on the apex of the
diaphragm for internal motion during respiration. Their data was acquired with fluoroscopy
studies of patients for internal motion, and with infrared camera-based systems for external
motion. Despite various breathing instruction such as audio instructions, visual feedback,
and no instructions at all, results showed a strong relationship (p < 0.0001) between external
motion and diaphragm motion during respiration.

A lung tumour is however not guaranteed to follow the diaphragm’s motion. In Fayad’s et
al.[11] study they investigated correlation between surface respiratory motion and anatomical
landmarks, as well as points of interest on the tumour. They used 4DCT images for internal
marking and a calculated distance map from 4DCT volumes was used for surface motion.
They found higher correlation with landmarks and surface regions of interest (ROI) placed
centrally on the chest and abdomen compared to those placed more peripherally. The use of a
real-time monitoring system was recommended for this type of use. The highest correlations
that were calculated had a value of approximately 0.8.

In another study by Wang et al.[9] they studied similar correlation to Fayad et al. They
used surface data from a real-time signal system (Varian RPM), and coordinates of outlined
tumours in the liver and lung from 4DCT images. The surface data was correlated to tu-
mour motion as well as other parameters such as tumour volume and patient age. Results
showed correlation with external and internal markers motion (values approximately 0.9),
but only moderate or weak correlation to the patient features age, gender, tumour volume,
internal tumour motion magnitude, and external marker motion magnitude (values < 0.5).
The authors emphasised on individual differences in external and internal motion, and that
individual assessment of correlation should be considered.

5.2 Uncertainty analysis

The reason the patients used for the uncertainty analysis are from a different year, and are not
included in further analysis, is that it was not discovered until after the uncertainty analysis
was done that there was not sufficient surface motion data on these patients to continue the
correlation analysis. The surface motion data was not used in the uncertainty analysis. After
the discovery, the patent selection was changed to the year 2021 and after, where sufficient
surface motion data could be found. The remaining patient inclusion criteria are the same,
however.

The tumour volume does not change with breathing. It can stretch and deform but the
volume does not change with it. The values in table 2 should therefore ideally be 1. Spherical
tumours seemed easier to reproduce with respect to target volume than irregularly shaped
tumours. Despite the volumetric variance, the deviations in the acquired COM were in many
cases kept below 1 mm in all directions (figure 12,13,14).

In an article by Weiss and Hess[30] they compiled various studies of interobserver vari-
ability for several diagnoses, lung cancer among them. They also addressed the difficulty that

24



Discussion and Conclusion Lund University 2023

is the medical concept of GTV and CTV, and how important experience is when delineating
target volumes. For lung tumours, the ratio between the largest target volume Vmax and
the smallest target volume Vmin differed from 1.6 to up to 3.74 in different studies compiled
in the article. The modalities used for these studies were either CT or CT combined with
Magnetic Resonance Imaging (MRI).

However, it can look different for intraobserver studies. Louie et al.[31] performed both
an inter- and intraobserver study and found that intraobserver variability was lower than
that for interobserver. This means that the uncertainties in delineations were reduced in this
study by only having one person to delineate, which might be the difference that is seen in
Vmax/Vmin values from this study and Weiss and Hess’ results.

In the current study, when systematic errors were introduced the deviation in COM
increased. There were in total 5 delineations out of 16 that were introduced systematic
errors in each phase in all patients. The order of magnitude of COM position deviation was
the same for both normal delineation and delineation including systematic errors in all three
patients. The values were higher, however, with the inclusion of systematic errors leading to
the trend observed in table 3. It is important to keep in mind that the mean COM position
changes with inclusion and exclusion of systematic error slightly, and this of course might
affect the deviations. All of this should be taken into consideration as a form of margin,
however this discussion is only qualitative and a set number for this margin is not possible
to acquire from the results of this study.

The larger errors occured for the irregularly shaped tumour (patient 3), which could be
an effect of the more complex position of the COM point. Each patient had a mix of different
systematic errors (figure 10), and these could together cause an error that is larger than if
only one of them was present.

Nonetheless, the larger dimension of the voxel size sets the limit of what we can observe,
and we need to consider the effects of eventual systematic errors. Thus, it was decided after
the uncertainty analysis to use voxel size as approximated uncertainty. These uncertainties
were used as u(xi) in computation of the propagated error with equation 4 for total 3D
motion, which resulted in propagated errors between 1-3 mm.

The approximated uncertainty and error were not used for correlation analysis. This is
because the uncertainty of the correlation coefficient is dependent on sample distribution
and coefficient value, rather than the error of the data[32]. Regarding the ANN model, the
approximated error was used as a frame of reference when assessing

√
MSE and comparing

the model’s uncertainty with the tumour motion uncertainty.
It is important to know the uncertainties that come with target delineation. A well-

known uncertainty is needed to apply not only correct PTV, but also correct GTV and CTV.
Delineation is dependent on the image quality as well as the one performing the delineation
and is an important part of the RT workflow. Image modality and data acquisition affect
the quality of delineation through e.g. introduction of artefacts. The clinical experience will
in turn introduce another uncertainty and variation between observers. The PTV is based
on other uncertainties such as intra- and interfractional motion as well as CT uncertainties,
in contrast to the CTV and the GTV[33].
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5.3 Surface motion data

According to local clinical routine, the ROI should be placed on a surface that moves with
respiration for the respiration study with Sentinel. According to the results by Fayad et
al.[11], the highest correlation coefficients between internal and external motion on a patient
is achieved on the central abdominal area. Taking this into account, it was justified placing
it between the navel and solar plexus. Such placement assured that the derived SCC was
maximised to the fullest extent.

An issue with the dataset acquired from the Sentinel system was that the data did not
exclude outliers (figure 17a,17c in Appendix A) in the respiratory motion data. There were
26 out of the 45 patients that had visible outliers or uneven breathing pattern. These outliers
can change the real mean position during a phase, as much as an uneven breathing pattern
(figure 17b in Appendix A) during the 4DCT scan. If these are not excluded, they can
also contribute to CT artefacts by being included in the image reconstruction thus affecting
delineation process.

Furthermore, it can not be retrieved from the Sentinel data whether these outliers have
been manually excluded before reconstruction or not. It can be retrieved from the recon-
struction program, but the reconstruction data is regularly deleted due to hard drive space.
This means that for the patient group used (patients from 2021) this can not be done. This
can introduce a systematic error between the surface and tumour motion correlation with the
method used in this study, since no outliers or uneven breathing patterns were excluded. To
make the surface and tumour motion data more representable, the manual exclusion points
should be extracted and excluded from the surface data.

These outliers can affect the ANN model in turn, by giving partially erroneous input data
to train on. However, training on erroneous data might have the same effect as an image
recognition model training on blurry or noisy images. It could, with enough data, maybe
even see through the outliers on its own.

5.4 ANN modelling

The goal of the model is to reduce the loss (function) to as close to zero as possible. It is
difficult to know if 7.5 (approximately where the validation loss ends in figure 15a) is a low
enough number to be considered low since loss is arbitrary between models. However, it can
be compared to the size of the output. The output should be in the order of 1 mm to 10 mm,
and for the loss to be in the same order might indicate a relatively high loss function value
for the validation loss. It is important to keep in mind, however, that only six patients were
used in the validation set which is a very small data set, compared to the training data set
that had 36 patients and could achieve a lower loss function value.

The stability of the model loss should therefore be prioritised due to the acknowledged
small data sets. It shows how the training is progressing, and both the validation and train
loss seem to stabilise (figure 15a) which is important to avoid over- or underfitting.

As previously mentioned, overfitting is a common issue that can occur for ANN models.
Here, regularisation parameters, early stopping and changing the architecture was combined
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to reduce the overfitting as much as possible. However, the main issue with the fluctuating
validation loss (figure 5) is probably the too small dataset used. Comparing the train loss
that had 36 patients to train on, with a more stable curve, with the validation loss with 6
patients used, it is a clear difference.

At some point, it did not help adding heavier regulariser terms or less layers or units per
layer. In the end, the tumour motion pattern can be complex, and the model can not be too
simple either. That is where more patients would be needed to both validate and train the
model. Another method of avoiding overfitting is ”dropout”, where dropout layers are added
to exclude a certain number of neurons for training.

There are many ways of constructing an ANN model, and the model designed for this
study was made with a simple architecture. This was to reduce complexity and in turn
reduce overfitting as much as possible, but a similar effect could probably have been achieved
with various manipulations of the regularisation term L1, combining with other regularising
methods or adding more patients. This is just one method of optimising ANN models with
the data available.

For model accuracy, the validation nor model accuracy was not plotted. This is because
the accuracy in this case is the accuracy of the prediction for each point and not an interval,
which was not the intention with the model. It is very difficult to exactly pinpoint the
prediction and it would not be ”fair” to the model to try to predict on only 6 patients
during validation. The accuracy, for the purpose of this study, is instead the percentage of
data points within the interval which is calculated after model predictions. Even then, the
accuracy might be misleading and the MSE should be focused on instead. A large MSE
means large loss function and can be interpreted as an uncertainty of the model. The goal is
rather to decrease the MSE.

The uncertainty of the model, the MSE, can be compared to the uncertainty of 3D total
tumour motion acquired from error propagation. These errors varied between approximately
1 − 3 mm for all patients, which is the same order of magnitude as the

√
MSE (2.7 mm).

As of now they have comparable errors but hopefully the MSE can be reduced by optimising
the model further and introduce a larger training data set.

With all of these results, there is a possibility to apply an action plan for when the
patient respiration pattern is irregular or different at the time for treatment compared to
the planned situation. An example could be the use of a model similar to the one developed
in this study to predict the deviation of the tumour location from the assumed location
of treatment, in which an action in term of taking extra images or repositioning might be
required. Depending on how well the tumour and surface actually correlates, it would be
interesting to see if this could be used further for gating, or even live tumour tracking and
adaptive beam repositioning.
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6 Conclusion

The correlation between surface and tumour motion was strong (0.70 < SCC < 1.0) in
a large portion of the studied patients, especially in SI (67% of the patients) and total
3D (73% of the patients) directions. The SCC were not correlated to any patient feature
or anatomical position of tumour, but the use of an abdominal compression belt showed
statistically significant higher correlation (SCC = 0.79, p < 0.05). The correlation coefficient
value is varying, and the result should rather be interpreted as an indication of possible
further individualisation of treatment and treatment planning.

For those patients that have a strong correlation, surface imaging systems are appropriate
to help monitor the patient respiration. With further development of the used model, there
is a possibility to apply an action plan for when the patient respiration pattern is irregular
or different from planned pattern.

7 Future prospects

In the future, correlation between surface and tumour motion could be used for live tumour
monitoring during treatment or gating. Based on an understanding of the surface and tumour
motions relative to each other, the respiration pattern can be closely monitored with reduced
margins during treatment, and if an altered breathing pattern is detected, treatment can be
halted accordingly. This could open opportunities for more conform treatment delivery to
spare more healthy tissue surrounding the tumour, thus decreasing eventual treatment side
effects.

To further investigate if these steps can be made, a study with a larger patient data set
should be made. There need to be larger sample sizes of tumour position in lung lobes, and
larger sample sizes of groups with and without compression belt (and paired data as well), to
increase statistical power. The impact of abdominal compression should be more investigated
as well, and not just be a secondary finding.

Further, the model could be improved with a larger patient data set to both train and
validate on more data. With this, the internal uncertainty that is Mean Squared Error could
possibly decrease thus minimising the uncertainty interval. This might provide a more robust
prediction. The model could further be used and trained on surface data acquired during
treatment where x-ray images are taken to confirm tumour position and in return update the
model to produce more accurate predictions based on changed breathing pattern.
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8 Appendix A - Additional figures

In this section, figures not included in the report but still used as a basis of discussion are
included. Figures included are more plots of patient data used in the ANN model, and
examples of how the respiratory data from the Sentinel looks like when plotted to illustrate
the potential irregularity of the individual patient.

Figure 16: Plot of predicted and actual values alongside the predicted interval of tumour
placement. Test patient 2 and 3 used for validation of ANN model. X-axis is CT-phase
number and y-axis is tumour motion in mm. ANN-model predicted value has circle points
and actual values have triangle points. Shaded area marks the square root of mean squared
error

√
MSE interval and it is centered around the predicted values.
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(a) Sentinel breathing motion data for a patient with even breath pattern and no outliers.

(b) Sentinel breathing motion data for a patient with uneven breath pattern.
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(c) Sentinel breathing motion data for patient with outliers

Figure 17: Sentinel breathing motion data for different patients. This is a similar plot to
what is shown in figure 4. Blue and red markers marks inhale and exhale maxima, gray
area represents where breath motion recording starts outside 4DCT acquisition. White area
between represents breath motion recording during 4DCT acquisition. Important to note is
that the data is upside down.
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