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Abstract
This Master’s thesis in Biomedical Engineering investigates the performance and gener-
alizability of linear regression models in context of prosthesis control for short residual
limb amputees. This thesis uses intramuscular electromyography data, and a regression and
emplys a regression technique called Elastic Net Regression - a technique that combines
L1 and L2-regularization - to predict 1-DOF isometric forces outputs from fingers and the
wrist. The elastic net not only functions as a regression model but also as a feature selector,
which is especially useful with higher-order interaction terms. The aim of the thesis was not
merely to create a working model with high performance metrics but also to possibly train
a multi-channel model that can be readily used on a new amputee without need for recali-
bration. Another goal was to ensure the model remains transparent and easily interpretable.

The results however, indicate that while the elastic net regression offers improved perfor-
mance over standard single-channel models for the same subject, it struggled to generalize
across different subjects, likely due to overfitting to individual subjects distinct characteris-
tics. The elastic net regression model generally performed worse with lower R2-scores than
the bare bones single-channel model when applying the model to new subjects.
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1 Introduction

1.1 Purpose and motivation
This thesis is exploratory work into the idea of using multi-channel intramuscular elec-
tromyography (iEMG) to estimate 1-DOF, isometric force outputs from wrist and finger
actions. In this thesis a more transparent and interpretable multi-channel model will be
tried and tested, compared to the more black box, neural network approach used in previous
papers [1]. A model hopefully providing a clearer insight into the relationship dynamics be-
tween the inputs and outputs. Specifically, the model under investigation will be elastic net
regression model, a model which combines Ridge and Lasso regularization. Furthermore,
polynomial interaction terms will be integrated into the model to discern and capture the
non-linear components between the iEMG and force dynamics. Aside from just obtaining
robust performance on validation sets, another aspiration of this thesis is to create a model
with high generalizability to new subjects. A multi-channel model that would seamlessly
accommodate new subjects, and not need re-calibration.

In the work by [1], it was shown that using multiple iEMG channels (as input to an
ANN) of nearby muscles to estimate finger and wrist forces outperforms One-to-One strate-
gies, where only the matching iEMG channel for a specific hand movement is used. This
finding suggests that, in spite of the spatially local nature of signals, iEMG from muscles
not directly actuating the relevant DOF can provide contextual information that aid in de-
coding motor intent [1]. Although the degree to which activity in nearby muscles impacts
the resultant force exerted by the hand remains unknown.

The concept of muscle synergies states that the nervous system simplifies the control of
muscles by activating groups of muscles together as a unit, rather than individually. This
allows for efficient and coordinated movement. It is suggested that a limited number of
these muscle synergies are sufficient to explain a wide range of movements ([2], [3]). The
concept of muscle synergies could therefore justify the use of multiple iEMG muscle chan-
nel recordings when estimating single degree-of-freedom (DOF) finger and wrist forces.
Measurements of the activity of multiple muscles could potentially provide more accurate
estimates of the isometric forces produced by fingers and the wrist.

In the literature there are many findings suggesting that there is high linear correlation
between iEMG features and isometric finger and wrist forces [4]. Also, the Pearson corre-
lation coefficient between features extracted from iEMG and grasping force was found to
be close to 0.9 by [5]. It is described in [6] that, for small muscles with narrow motor unit
recruitment force ranges, such as the first dorsal interosseous (FDI) muscle, the observed
relation between force and the average rectified value (ARV) of surface EMG is reported as
being approximately linear. This would support the idea that a linear model for iEMG might
also be suitable for different type of 1-DOF hand forces. However, a study investigating the
relationship between integrated sEMG and extensor carpi radialis (ECR) force found the
relationship to be more nonlinear. This study suggested that a double exponential function
could best describe the two main mechanisms behind voluntary contraction, namely recruit-
ment and firing rate ([7]). Regarding grasping force estimation using iEMG, [8] showed that
an exponential fit between grasping force and features of the iEMG is superior to a linear
fit. The authors also showed that an ANN performed better than a linear model, indicating
that some type of non-linear regression model could work to improve finger and wrist force
estimation as well.
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1.2 Dataset Overview and Delimitations
The iEMG-force-dataset is collected by the neuroengineering group at department of Biomed-
ical Engineering at LTH [9]. It has recorded intramuscular electromyography (iEMG) and
synchronous forces as a subject is performing a number of ”isometric movement” tasks.
The dataset includes simpler 1-DOF tasks such as, flexion and extension of the wrist and
fingers, as well as more complex multi-DOF movements such as pinching or grasping.

There is a total of fourteen able-bodied, male subjects recorded in the dataset, where
half are differentiated with two different recording protocols, the short residual limb (SRL)
and the long residual limb (LRL) [9]. The SRL protocol targeted the following muscles:

• Flexor Carpi Radialis (FCR) - responsible for wrist flexion

• Extensor Carpi Radialis longus (ECR) - responsible for wrist extension

• Pronator Teres (PT) - responsible for forearm pronation

• Flexor Digitorum Profundus (FDP) - responsible for flexion of fingers D2-D5

• Extensor Digitorum Communis (EDC) - responsible for extension of fingers D2-D5

• Abductor Pollicis Longus (APL) - responsible for thumb abduction

This master thesis is limited the analysis to 1-DOF movements of the short residual limb
protocol, using data from four subjects: subjects 2, 3, 7, and 15. These were specifically
chosen for having the best quality iEMG recordings according to [4]. Furthermore, only 5
forces out of 18 in total were chosen: Middle finger extension, little finger flexion, wrist
extension, wrist flexion, and thumb flexion. The rationale behind selecting these five forces
is that they all have direct correspondence to specific iEMG channels in the SRL proto-
col ([4]). This allows for a comparison between multi-channel models and single-channel
models, aswell as making the results more concise and comprehensible.

1.3 Problem Statements
In essence, this is a sequential or time series dataset. Standard procures when working with
a timeseries, e.g. a series daily temperatures, is to use previous values or prediction errors in
the time series to predict future values, i.e. using a standard AutoRegressive (AR) or more
complex models such as Seasonal AutoRegressive Integrated Moving Average (SARIMA)
models [10]. In time series modeling one can also add exogenous variables to predict new
values in a time series. An example of such a model would be an ARMAX (AutoRegressive
Moving Average with eXogenous) model [10]. However, in the context of an amputee, one
would not have access to preceding force values when estimating current force values. The
goal is ultimately prosthesis control for amputees, meaning that you would not be able to
measure any type of finger or wrist forces to feed back into the model. Moreover, in real
scenario there is not really any discernible time dependence that can be used. The force
exerted by a finger at t = 0s provides little to no information about the force exertion at t =
5s, which could range anywhere from 0 to maximum voluntary contraction (MVC). In this
data set it is known how the force signal will move, so to use too much temporal information
may perhaps even be detrimental to real life applications, where the amputee should be able
to manipulate their hand prosthesis however they please. It could create a model which
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assumes a certain temporal structure, which might work well within the dataset, but in
reality where the temporal structure is not pre-determined, the model could be completely
erroneous.

Another tricky thing in regards to using simple or multiple linear regression for non-
stationary time series applications, is the issue of misinterpretation and spurious relation-
ships. One might mistakenly interpret that one time series is is highly predictive or causative
of another time series, when in fact it might just be the result of coincidental pattern or a
’lurking’ variable which drive both processes. However, in the context of this thesis, it is
physiologically known that muscle activity in the forearm cause movements of the hand.

2 Theory

2.1 Electromyography
Electromyography (EMG) is a technique used to measure the electrical activity of muscles.
EMG signals are generated by the activation of muscle fibers, which produce electrical
potentials that can be detected by electrodes placed on the skin or within the muscle tissue
[8]. EMG signals can provide information about the intensity and timing of muscle activity,
which can be used to control prosthetic devices or to study muscle function [8].

There are two main types of EMG: surface electromyography (sEMG) and intramuscu-
lar electromyography (iEMG). sEMG involves placing electrodes on the surface of the skin
to measure the electrical activity of muscles, while iEMG involves inserting fine-wire elec-
trodes directly into the muscle tissue to measure the electrical activity of individual muscle
fibers [9].

sEMG is non-invasive and provides information about the overall muscle activity, mak-
ing it a popular choice for many applications. However, the use of sEMG as a control signal
for prostheses has some limitations such as being able to measure only from superficial
muscles, being sensitive to crosstalk, and causing skin irritation with repeated use [11].

iEMG, on the other hand, is an invasive method that provides more detailed and local in-
formation about the electrical activity of individual muscle fibers. It is less affected by noise
and crosstalk from adjacent muscles and it can be recorded from deep muscles. iEMG has
been proposed for use in controlling prosthetic devices as it offers possibilities for chronic
implants and can overcome some limitations of sEMG. However, it should be noted that due
to its high selectivity, iEMG signals may offer limited representation of the global muscle
activity and force produced by the muscle [5].

2.2 Linear regression
Linear regression is a statistical modeling technique used to establish a relationship between
a dependent variable and one or more independent variables [12]. Simple linear regression
focuses on understanding the relationship between a single dependent variable and one in-
dependent variable, while multiple linear regression extends the analysis to include multiple
independent variables.

The general idea behind multiple linear regression is to fit a linear equation to the data
points that best represents the relationship between the dependent variable and the indepen-
dent variables. The equation for multiple linear regression can be written as:

6



Y = β0 + β1X1 + β2X2 + ...+ βpXp + ϵ (1)

Where Y is the dependent variable, X1, X2, ..., Xp are the independent variables, β0 is
the intercept, β1, β2, ..., βn are the coefficients associated with each independent variable,
and ϵ is the residual error. In standard linear regression the ϵ is assumed to be normally
distributed. The goal is to estimate the coefficients β0, β1, ..., βn that best describe the
relationship between the independent variables and the dependent variable. There are a
number of assumptions associated with multiple linear regression [13],

• Linearity: The relationship between the dependent variable and the independent vari-
ables is linear. This assumption implies that the coefficients represent the change in
the dependent variable associated with a one-unit change in the independent variables.

• Independence: The observations are independent of each other. In the context of
sequential data, this assumption implies that there is no time dependency between
observations. Autocorrelation occurs when the residual errors of the model exhibit
(statistically significant) correlation or dependence over time. Violation of this as-
sumption may lead to biased coefficient estimates, i.e. coefficient estimates tend to
consistently overestimate or underestimate the true relationship.

• Homoscedasticity: The residual errors have constant variance across all levels of
the independent variables. Homoscedasticity ensures that the variability of the errors
is consistent throughout the range of the independent variables. Heteroscedasticity,
where the variance of the errors varies across the independent variables, can lead
to inefficient coefficient estimates, i.e. they are no longer the best estimates, in the
sense of having the smallest possible variance. Techniques like weighted least squares
(WLS) regression can mitigate the inefficiency caused by heteroscedasticity.

• Normality: The residual errors are normally distributed. This assumption allows for
the use of statistical tests and confidence intervals based on the normal distribution.

• No multicollinearity: The independent variables are not highly correlated with each
other. Multicollinearity can lead to unstable and unreliable coefficient estimates, mak-
ing it challenging to isolate the individual effects of the independent variables. Slight
changes in the data could lead to substantially different coefficient estimates.

2.3 Ridge (L2) regularization
Ridge Regression is used to address overfitting, a common issue where models with a high
number of independent variables perform well on training data but poorly on unseen data.
This problem is particularly pronounced in the presence of multicollinearity where coef-
ficients can become highly inflated. In multiple linear regression, ridge Regression is a
regularization technique that offers a solution to combat the issue of overfitting and poor
generalizability of models with highly correlated independent variables [14]. The ridge
regression optimization function can be written as:∑

i

(Yi − (β0 +
∑

j βjXij))
2 + λ

∑
j(βj)

2 (2)
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Where the left hand side is the optimization function for standard multiple linear regres-
sion, and the right hand side the L2 penalty term. If the coefficients take on large values the
optimization function is penalized, effectively promoting smaller coefficients. The regular-
ization parameter, λ controls the amount of shrinkage applied to the coefficient estimates.

2.4 LASSO (L1) regularization
In addition to shrinking coefficients, LASSO Regression is also able to set some of them to
exactly zero. This inherent feature selection makes Lasso regression especially useful if one
is looking for a sparse model [15]. The LASSO optimization function is written as:∑

i

(Yi − (β0 +
∑

j βjXij))
2 + λ

∑
j |βj | (3)

Similarly to ridge regression, the regularization parameter λ controls the amount of
regularization applied. Briefly explained, due to the geometric shape of the L1 constraint,
a diamond shape in case of a 2D-model, the best fit often occurs at the points where this
diamond touches an axes, which corresponds to one of the coefficients being set to zero.

The penalty term effectively selects a subset of the most important features and dis-
carding less relevant ones, creating a parsimonious model [14]. However, this strength can
also be a shortcoming in situations where features are highly correlated. LASSO tends to
arbitrarily pick only one of the collinear variables and shrink the others to zero. It has an
inconsistent selection and cannot perform grouped selection [15].

2.5 Elastic net regression
Elastic net regression combines the benefits of both ridge regression and LASSO regression.
It utilizes a combination of L1 (LASSO) and L2 (ridge) penalties to balance between the
advantages of both regularization techniques [16]. The elastic net regression optimization
function can be written as:∑

i

(Yi − (β0 +
∑

j βjXij))
2 + αλ

∑
j |βj |+ (1− α)λ

∑
j(βj)

2 (4)

Where λ is the regularization strength and α, a variable defined in the range (0,1), spec-
ifies the mix between L1 and L2 regularization. An α = 0 would mean the model is equiv-
alent to ridge regression and conversely, an α = 1 would mean it is equivalent to LASSO
regression. The combination of these penalties allows elastic net regression to perform a
’grouped’ feature selection [14], which might be useful in certain circumstances. When
faced with multicollinearity due to e.g. interaction terms, elastic net performs this grouped
feature selection. Meaning, instead of arbitrarily choosing one interaction term over another,
it keeps or discards groups of correlated variables together. This is useful when comparing
the subsets of chosen (independent) variables between models trained on different data,
where just LASSO would make it difficult due to its arbitrary feature selection.

2.6 Performance analysis, R2-score
R-squared (R2) is a commonly used performance measure in regression analysis that rep-
resents the proportion of the variance in the dependent variable that is explained by the
independent variables. The equation for calculating R-squared (R2) is as follows [17]:
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R2 = 1− SSR

SST
= 1−

∑n
i=1(Yi − Ŷi)

2∑n
i=1(Yi − Ȳ )2

(5)

Where SSR represents the sum of squared residuals (also known as the sum of squared
errors) and SST represents the total sum of squares. Yi is the observed value of the depen-
dent variable and Ŷi is the predicted value of the dependent variable for the ith observation.
Lastly, Ȳ is the mean of the observed values of the dependent variable.

The sum of squared residuals (SSR) measures the variation that is not explained by
the regression model, representing the discrepancy between the observed values and the
predicted values from the model. The total sum of squares (SST) measures the total variation
in the dependent variable. R2 normally ranges from 0 to 1, where a value of 1 indicates that
the model explains all the variation in the dependent variable, and a value of 0 suggests
that the model provides no improvement over the mean.The R2 score can be negative if the
model fits worse than the mean.

3 Methods
The preprocessing of the dataset was exclusively done using the Python programming lan-
guage [18]. Signal processing tools from Scipy package, such as butterworth filters, filtering
functions, spline interpolation were used. Figure 1 shows the basic outline of the prepro-
cessing.
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Figure 1: Preprocessing flowchart.

3.1 Data Collection and Preprocessing
The movements of interest in the dataset pertain to 1-DOF movements. There are a total of
eight such movements, which include:

• Index finger: flexion-extension

• Middle finger: flexion-extension

• Ring finger: flexion-extension

• Little finger: flexion-extension

• Thumb: flexion-extension

• Thumb: adduction-abduction

• Wrist: flexion-extension

• Wrist: supination-pronation

The recording procedure for each of these 1-DOF movements consisted of two tasks:
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1. Maximal Voluntary Contraction (MVC) Stage: In this stage, the subject exerts
the maximum voluntary force in the two opposing directions specific to the 1-DOF
movement.

2. Sine Cue Force Matching Stage: After determining the MVCs, the subject then
engages in a task where they attempt to match their force output to a sinusoidal cue
signal, with a duration of 9 periods and a frequency of 0.1 Hz. During this task, the
subject uses both the protagonist and antagonist muscle pairs to create a force curve
which matches the sine cue signal.

An unfortunate consequence of combining opposing forces is that it becomes necessary
to split the force signal into two distinct signals, separating the forces produced by the
antagonistic muscles. This separation is necessary to be able to compare single-channel
estimation with multi-channel models. This would need to be dealt with in the preprocessing
stage.

Firstly, all force sensor signals and iEMG signals were low pass filtered at 10 Hz and 500
Hz respectively with a 2nd order Butterworth filter. Also, the iEMG signals were clipped at
1st and 99th percentile to mitigate the effect of voltage spikes. Both the force signals and
iEMG were then downsampled 1/10th to reduce computational costs. Resulting sampling
frequency was then 1024 Hz which roughly equals 1 ms between samples.

3.1.1 iEMG feature extraction

The Mean Absolute Value (MAV) is a commonly used feature in sEMG signal processing. It
quantifies the average magnitude of the EMG signal and provides an estimate of the overall
muscle activity. The MAV can be calculated using the following equation:

MAV (k) =
1

N

k∑
l=k−N

|X(l)| (6)

where, MAV represents the Mean Absolute Value at discrte time point, k. N is the win-
dow size and X(l) represents the iEMG signal voltage amplitude at time point k. There are
many other possible feature to use, such as Zero Crossings, Slope Sign Changes, Variance
etc but MAV was chosen for this thesis, because the following reasons:

1. Scope: This thesis is more about the use of multi-channel EMG than analysis of
different feature extractions. Thus, the work was limited to one type of extraction
feature.

2. Prevalence in EMG Studies: It is a very common feature used in EMG studies.
However whether it is the optimal feature for iEMG analysis is something that could
be discussed. In [4] one can see many different iEMG features compared, and MAV
ranks high among them.

3. Straightforward and Robustness to noise: MAV offers ease of interpretation due
to its straightforward computation. MAV provides an average measure, making it
inherently robust to transient spikes or anomalies in the data.

Mean absolute value (MAV) transformation of the rectified raw iEMG signals was per-
formed using a convolution between an iEMG channel and a rectangular window of unit
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amplitude and 500 ms length (512 samples). An overlapping window approach was em-
ployed with a step size of 32. In [9] it is stated that a window size of 250 ms has the best
trade-off between RMSE, correlation, and the controller delay. However, windows sizes
around 500 ms had the best RMSE and correlation and was therefore chosen. Window sizes
larger than 500 ms was shown in same paper to yield negligible improvements and even
decreasing results as the window size increased.

3.1.2 Force sensor measurements

In many of the force signals, a noticeable DC offset was present and in some signal, there
was even a noticeable baseline wander present jointly with the DC component, as seen in
figure 2. Obviously this type of baseline trend would affect the models estimation imple-
mented in future stages and was something that needed to be fixed. Two methods were
considered when fixing this issue, a high pass filter and spline interpolation.

Figure 2: Two examples of force measurement sensor signals recorded from subject 7. Some form
of baseline wander is present in the Wrist flexion- and extension force signal, jointly with a DC
offset. However in the little finger flexion-extnesion, there is only a DC offset, but no noticable

baseline wander.

For the high pass method filter method a frequency analysis had to be performed. Since
the sine cue signal that the subjects were supposed to follow had a frequency of 0.1 Hz, this
frequency needed to remain largely undistorted. If the cutoff frequency is too close to this
frequency, the amplitude response of the filter would attenuate this particular frequency too
much and ultimately distort the signal of interest. On the other hand, the cut off frequency
shoyld be kept as high as possible to remove as much of the low frequency noise as possible.
Figure 3 shows the amplitude response @ f = 0.1 Hz of a 2nd order Butterworth filter plotted
against cut-off frequencies ranging from 0.1 mHz to 0.1 Hz.

Forward-backward filtering (’filtfilt’ from Scipy) was used to prevent phase distortion
and ensure a linear phase response [19]. By filtering data in both forward and backward
directions, phase shifts from the forward pass are negated in the backward pass. A conse-
quence of the forward-backward filtering, is that the amplitude attenuation is applied twice,
i.e. the magnitude response of the filter is squared. Since the high pass filter method re-
moved the baseline wander and DC component, one could separate the signal easily into

12



flexion and extension by separating at zero.

Figure 3: Squared amplitude response @ f = 0.1 Hz, using high pass filter with different cut-off
frequencies ranging from 0.001 to 0.10. The red dot specifies the chosen cut-off frequency.

The spline interpolation method consisted of using information from the sine cue signal.
When the sinusoidal signal switches from positive to negative, it is the same time that the
subject should switch from e.g. flexion to extension, i.e. that’s where the signal should be
separated. Due to the fact that there can be noise at the zero-crossing point, an average of
the 50 points before and after the zero-crossing point was used as the interpolation point.
The sine cue signal is 9 periods per task, so in total there ends up being 20 points which are
spline interpolated. The interpolated signal is then used as the separating line between the
antagonistic forces.

In the end, the high pass filter method was chosen, due to being a more straight forward
approach and easier to generalize. Figure 4 shows the before and after filtering using the
high pass filter method. A similar type of reprocessing on force measurement signals was
found to have been done in [20]. Even though the sine cue tasks (x.3) was largely undis-
torted, the high pass filter did unfortunately distort the data of the MVC tasks (x.1 and x.2).
The MVC stages are essentially two consecutive rectangular pulses (one negative and one
positive), which contain significant low-frequency components due to its sudden transitions
and finite width, and is thus distorted by the high pass filter.
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In the end, only the sine cue stages were used as modeling data, due to both of the base-
line wander removal methods not working properly on the MVC stages. Another method
that would not affect the MVC stages could be explored, but since there was more than
enough good data from the x.3 stages, this method sufficed. Additionally, the MVC stages
are very short and more data of constant contraction is not of great interest.

Figure 4: Unfiltered wrist force signal (blue) and filtered signal (orange). As seen in the filtered
signal, the baseline wander in no longer present. The sine cue-stages are largely undistorted.

However, upon more detailed inspection the MVC-stages were heavily distorted.

3.2 Modeling
The Python package, Statsmodels [21] was used for modeling. A simple linear regression
model between related iEMG channel and force type was created as a standard to compare
against the multi-channel model. An excel look-up sheet constructed by [9] was used to find
related iEMG channel and force.

3.2.1 iEMG channel Correlation matrix analysis

Prior to modeling, a correlation analysis was performed. In the use of multiple linear re-
gression models, one has to be careful if our independent variables are highly correlated
with each other, due to the issue of multicollinearity. Multicollinearity can cause problems
when applying the model to new, unseen data. The presence of multicollinearity can lead
to overfitting, which may not generalize well to new data. Another issue arises is when
we start dissecting the model to understand how each variable is contributing individually.
This is where multicollinearity muddles the waters because it can obscure the importance of
individual variables and make it hard to identify redundant variables. Unlike sEMG, iEMG
does not typically present issues with crosstalk. However, the possibility for multicollinear-
ity still needs to be investigated.

3.2.2 Specific Movement Task Modeling

In the Specific Movement Task Modeling, only data from the task, where the force of inter-
est is active, is used in training and validation. For example, if the force of interest is middle
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finger extension, then only data from the middle finger flexion-extension movement task is
used in the modeling. As stated in the introduction of the dataset, the sine cue signal for
each stage is approximately a 9-period long sinusoidal signal. The first 4/5 of the signal is
used for training and the last 1/5-part of the sine cue stage is left as a validation set. The
iEMG feature signals were standardized to have a mean of 0 and variance of 1. This ensures
that the estimated coefficients fall within a comparable magnitudes, allowing for meaning-
ful comparisons. Furthermore, the dependent variables were standardized to eliminate the
need for an intercept in the regression models.

An initial idea was to use standard multiple linear regression as an all-to-one model.
Meaning one coefficient for each iEMG feature channel is estimated. Then use significance
tests as basis for investigating which iEMG channels are relevant when estimating a spe-
cific force type. A standard statistical method is to use t-tests in order to determine whether
independent variables are statistically significant. However, due to unfulfilled assumptions
(autocorrelation, heteroschedasticity, non-normality) and large amount of data (high sam-
pling frequency), the accuracy and reliability of p-values became questionable. In addition
to the violated assumptions, the issue with a large amount of data points, is that even with
minor relationships between the independent variables and the dependent variable can result
in statistically significant p-values. While certain iEMG channels may appear significant
through p-values, the coefficient magnitude determines their actual importance.

Regularization was introduced to the multiple linear regression models to more rigor-
ously identify the relevant and irrelevant iEMG channels. LASSO seemed an apt choice,
since we are expecting a sparse solution, i.e. some iEMG channels are useful and others not
so much. LASSO had success in that it reduced the amount of coefficients, making a simpler
underlying model. However, even in these multi-channel models there was still temporal
structure left uncaptured, a notable large ’seasonal’ component present at 0.1 Hz in the Auto
Correlation Function (ACF). This indicated that the sinusoidal structure embedded into the
force signals Was not entirely captured by the multiple linear regression LASSO-model.

An idea to combat this was to use interaction terms to capture and identify the non-linear
components in the iEMG-force relationship. Elastic net was chosen as the ideal regulariza-
tion technique. Not only can it deal with overfitting issues that happens with many (and
likely collinear) interaction terms. It can also perform grouped feature selection of the in-
dependent variables. Allowing us to perhaps identify a set of independent variables that
explains the underlying iEMG-force-relationship, and investigate whether this set is consis-
tent across all subjects.

In elastic net regression, the hyperparameters λ and α from equation 4 need to be tuned
before performing regression. A conventional method for hyperparameter tuning in machine
learning is grid search [22], where we search over a 2D-space to determine the optimal pair,
λ and α, that maximizes the R2-score of the validation data. An example grid search 2D-
space from subject 7 is illustrated in figure 5. However, variability was encountered in
the optimal parameter pair across different forces and subjects. As a result, I opted for a
manual selection of parameters, settling on λ = 0.2 and α = 0.6. This choice leans slightly
towards LASSO, with a relatively high regularization strength to emphasize a sparse model.
However, even with the added interaction there were still uncaptured structure left in the
residuals. In future work, a study of the utility of even higher-order interaction terms could
be examined. However, the focus of this thesis will stay on the results of the 2nd order
interaction terms.
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Figure 5: R2-score from validation data estimation using different hyperparameter values. Data
collected from Thumb flexion task performed by subject 7.

For performance analysis, an idea of mine was to make use of having recordings from
multiple subjects in the validation process. Patterns that consistently emerge across differ-
ent subjects are very likely to be genuine, while randomness will not be consistently be
replicated. However, every subject’s body is unique, and as a result, a specific iEMG-force
model that performs well for one subject may not necessarily apply universally. Therefore,
a mix of performance measures for intra-subject performance and inter-subject performance
is presented in the results. Annotated heatmaps were created to visually to present the R2-
scores derived from validation data. Two types of R2-heatmaps were constructed:

1. Intra- and Inter-Subject, R2-score Heatmaps:
Here, models are trained on only a single subject’s training data. Then, tested on the
validation sets from all other subjects (including its own). The purpose of these kinds
of heatmaps is to get an idea of performance on its own validation data as well as
generalizability to the other subjects.
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2. Leave-One-Subject-Out, R2-score Heatmaps:
Here, the models are trained on data from all subjects except one, which is left out for
validation . This method parallels the leave-one-out cross-validation commonly seen
in machine learning. The point of the leave-one-subject-out heatmap is to measure
whether there is an increased generalizability when using training data from multiple
subjects and testing it on validation data from a new, unseen subject.

Additionally, a heatmap consisting of jaccard indexes, a measure of overlapping features
between subjects was constructed. The idea of this analysis was to explore the possibility
of there being an underlying set of channel interaction terms that explains a particular force,
i.e if there is a common set of independent variables chosen by the elastic net that is the
same across the four subjects.

The jaccard index is defined as

J(A,B) =
|A ∩B|
|A ∪B|

(7)

where A would be (in our context) the set of independent variables with non-zero coef-
ficients estimated subject X’s training data and B would be the set of non-zero independent
variables with non-zero coefficients estimated from subject Y’s training data.

3.2.3 All Movement Tasks Modeling

In the All Movement Tasks Modeling, data from all 1-DOF sine cue tasks are used ([1-8].3)
in training and validation. This type of model and evaluation might be considered more
realistic, because even during tasks where a certain force is inactive and is in a rest-state,
the iEMG amplitude and output force should be matching. Similarly to the specific task
modeling, the last 1/5th part from each task is extracted and collected into a validation set,
while the remaining is collected into a training set. Also, same type of performance analysis
and heatmaps were constructed as described in the specific movement task modeling.

4 Results
Figure 6 illustrates the estimation procedure on a validation set for the Specific Movement
Task Models. Both the multi-channel and the single-channel models are illustrated with an
arbitrary task and force. The All Movement Tasks Modeling approach would essentially be
equivalent but with multiple tasks as opposed to the single task presented.
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Figure 6: Illustration of the estimation procedure for Specific Movement Task Models. The elastic
net (multi-channel) model uses all available MAV-channel data as well as the 2nd order interaction

terms of them. The available MAV-channels are presented with an offset for increased visibility. The
2nd order interaction terms are not illustrated in the figure.

4.1 iEMG channel correlation
High correlation between some channels was found in Figure 7, notably for PT-FCR and
ECR-APL (for subject 3). Knowing that crosstalk is unlikely and the performed move-
ments where solely 1-DOF, the high correlation could suggest that there is some form of co-
activated and synergistic activation between these muscles. It not unreasonable that some
muscles have a secondary or stabilizing role in conjunction with the primary muscle for
certain movements, especially if they share close anatomical proximity.

Additionally, a large variation between correlation scores across subjects was observed.
For example, the cross-correlation between the PT- and FCR-channel were (0.56, 0.24, 0.82,
0.71) for subjects (s7, s3, s2, s15) respectively, indicating that there might be quite large
differences in the co-activation patterns across subjects. One would expect some differences
due to variation in environmental setting and electrode insertion, but correlation differences
to this degree was unexpected, indicating that it might be difficult for multi-channel models
to generalize to subject data that is not included in the training set. Especially, standard
multiple linear regression which would assume that the iEMG channel-to-force coefficients
have similar magnitude (and sign) across time and subject.
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Figure 7: Correlation matrices constructed from data from subjects 7, 3, 2, and 15. Showing
cross-correlations between MAV-transformed iEMG channels. Abbreviated names of the iEMG

channels are displayed on the rows and columns.

4.2 Specific Movement Task Modeling
In this section specific movement task modeling is employed. Figure 8 uses Elastic net
regression models on data from single subjects and presents R2-scores from intra- and inter-
subject validation sets. For every force type, there are four models trained on each subject’s
training data. Each model is then tested on the validation set of all other subjects, including
its own validation set. Thereby, creating a heatmap of dimension 4x4. In total, there are five
of these heatmaps, one for each force type.
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Figure 8: Multi-channel (Elastic net) models validated on other subjects using R2 as performance
measure. The purpose of the heatmaps is to get an idea of performance and generalizability between
subjects on validation data. Note that the subject data from which the model is trained stated on the

rows of the heatmaps and the columns state from which subject the validation data comes from.

Figure 9 presents intra- and inter-subject R2-scores for single-channel models. The re-
sults here is used as a standard to compare against the elastic net model previous figure.
Single-channel models, refer to the fact that only one independent variable, the correspond-
ing iEMG channel to force type, is used in the linear regression model. In other terms,
it is just plain Simple Linear Regression, the most bare bones model possible. For every
force type, there are four models trained on each subject’s training data. Each model is then
tested on the validation set of all other subjects, including its own validation set. Thereby,
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creating a heatmap of dimension 4x4. In total, there are five of these heatmaps, one for each
force type. A list of the related iEMG-channel and force type used to construct figure 9 is
presented here for increased clarity for the reader:

• Extensor Digitorum Communis (EDC) - Middle finger extension

• Flexor Digitorum Profundus (FDP) - Little finger flexion

• Flexor Carpi Radialis (FCR) - Wrist flexion

• Extensor Carpi Radialis longus (ECR) - Wrist extension

• Abductor Pollicis Longus (APL) - Thumb flexion
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Figure 9: Single-channel models validated on other subjects using R2 as performance measure. The
purpose of this figure is to see how single-channel performs and generalizes compared to

multi-channel models in figure 8. Similarly to aforementioned figure, the subject data from which the
model is trained stated on the rows of the heatmaps and the columns state from which subject the

validation data comes from.

Figure 10 presents five jaccard index heatmaps, representing the common features cho-
sen by the elastic net regularization technique. A Jaccard index of 1 would indicate that two
models, each trained on data from different subjects, have the exact same non-zero indepen-
dent variables in the elastic net model. Conversely, an index of 0 would indicate that there
are no overlapping features, indicating that the chosen, underlying independent variables
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of the models are completely different. Note that the diagonal elements are all 1 due to
showing the common features for the same subject model.

Figure 10: Jaccard index matrices for single subject models, showing common independent
variables selected by the elastic net regularization between subjects.

Figure 11 presents R2-score for the leave-one-subject-out validation. It shows the elastic
net and single-channel models side-by-side for easy comparison.
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(a) Elastic Net models (b) Single-channel models

Figure 11: Leave-one-subject-out validation heatmaps. Rows indicate which force type the model
estimates, while columns represent the validation subject. For instance, the top-left square presents

the R2-score for Middle finger extension force estimated using validation data from subject 7. Thus,
the model was trained on data from subjects s3, s2, and s15, but excluded data from subject 7.

4.3 All Movement Tasks Modeling
In this section All movement Tasks Modeling is employed, meaning data from all sine cue
tasks are collected into the training and validation sets. All figures are equivalent to those
in the previous section (Section 4.2), but the difference being the models are trained on data
from all movement tasks.

• Intra- and inter-subject R2-scores for Elastic net models are presented in Figure 12.

• Jaccard indexes from the Elastic net regression are shown in Figure 13.

• The single-channel models, used as a comparison standard against multi-channel
models, can be found in Figure 14.

• Figure 15 displays the leave-one-subject-out validation, with side-by-side comparison
of both the elastic net models and single-channel models.
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Figure 12: All Movement Tasks, Multi-channel (Elastic net) models validated on other subjects
using R2 as performance measure. The purpose of the heatmaps is to get an idea of performance and
generalizability between subjects on validation data. Note that the subject data from which the model
is trained stated on the rows of the heatmaps and the columns state from which subject the validation

data comes from.
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Figure 13: All Movement Tasks, Jaccard index matrices for single subject models, showing common
independent variables selected by the elastic net regularization between subjects.
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Figure 14: All Movement Tasks, Single-channel models validated on other subjects using R2 as
performance measure. The purpose of this figure is to see how single-channel performs and

generalizes compared to multi-channel models in figure 8. Similarly to aforementioned figure, the
subject data from which the model is trained stated on the rows of the heatmaps and the columns

state from which subject the validation data comes from.
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(a) Elastic Net models (b) Single-channel models

Figure 15: All Movement Tasks, Leave-one-subject-out validation heatmaps. Rows indicate which
force type the model estimates, while columns represent the validation subject. For instance, the
top-left square presents the R2-score for Middle finger extension force estimated using validation

data from subject 7. Thus, the model was trained on data from subjects s3, s2, and s15, but excluded
data from subject 7.

5 Discussion

5.1 Reflections on Methods
In order to delimit the thesis, only one feature extraction type, MAV, was used. How-
ever, it’s debatable whether this is the optimal feature for iEMG. Further analysis could
explore if there’s a more physiologically accurate feature that better represents the iEMG-
force dynamics. Additionally, employing multiple features or a fusion of several features
might extract more relevant information from the raw iEMG signal for force estimation.
For instance, combining a time domain feature with a frequency domain feature could be
beneficial.

Another delimitation was the exclusive usage of R2 as performance measure in the re-
sults. Using an additional measure such as Variance, would provide a more comprehensive
understanding. While R2 provides good overview of how well the model performs com-
pared to the ground truth, a combined R2 and Variance measure could provide more infor-
mation about the consistency of the model’s estimations. However, the exclusive use R2
was in part a conscious choice to not overload the reader with too much information.

Additionally, in the method used for baseline wander removal, specifically the high-
pass filter approach, an ideal filter of a higher order could have been constructed. After
all, there are no time constraints on the preprocessing of the force signals. A high-order
high pass filter with steep cut-off could potentially leave the frequencies of interest entirely
undistorted.
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5.2 Specific Movement Task Modeling
The elastic net regression model based on polynomial iEMG MAV features used in this
project shows mixed results for estimating a concurrent 1-DOF, isometric force produced
by a finger or wrist, as seen in figure 8. If a complex multichannel model like this was to be
used, the model would need to be trained on same subject, due to the wildly different result
when generalizing to new subjects. Perhaps contralateral (opposite side arm) training on
an amputee subject is something that could be explored to calibrate model for an amputee
subject. This however assumes that the opposite side arm have very similar iEMG-force-
dynamics to the amputated side.

Generally, the elastic net model performs better than single channel model in figure 9,
when trained and validated on the same subject, but fails to reliably deliver when general-
izing the model to new subjects and can at times produce extremely poor results with very
large negative R2-scores. On average, the single-channel models seem to generalize better
to new subjects, indicating that there is a pattern of overfitting to a particular subject with
the elastic net models.

Even in the correlation matrix analysis in figure 7, it is apparent that there is large
differences between subjects, and generalizability is probably difficult to achieve. There
was a slight, perhaps naive, chance that the interaction terms would be able to correct for
this, but results indicate that it was not the case.

The jaccard index in figure 10, measuring overlapping features was very small, indicat-
ing that there is no consistent polynomial interaction feature set that describes the underlying
relationship between force and iEMG features, that generalizes across subjects. While there
often is only 1-2 overlapping variables among the models, these few shared variables are
likely the largest coefficients and represent the primary related iEMG-to-force channel. But
overall, it seems that there are a lot of selected variables that are specific to the individual
subject. In future studies or applications, a polynomial model with interaction terms could
be used to improve intra-subject estimates, but if the goal is merely improved prediction
score, a more advanced method such as an artificial neural network would be more suitable.

The leave-one-subject-out R2-scores of the multichannel models are generally worse
than single channel models, as seen in figure 11, It is not surprising due to the poor gen-
eralizability seen previously. In figure 8 the results are very varied, it can perform great
on some subjects, but extremely poorly on others. The pooled model of using data from
multiple subjects seem to perform in the middle ground of these two extremities, selecting
a set of variables that does not improve the result on the good subject pairings in figure 8,
but does not overfit to specific subjects as much.

5.3 All Movement Tasks Modeling
All the models in general show poor results when all movement tasks are included. When
rest stages are included in the training data, the iEMG feature and the related finger and wrist
force can become widely uncorrelated, which shows in the results. For both the single-
channel and multi-channel models with interaction terms, the results are poor. For some
subjects, e.g subject 7, the R2-score can perform well on it’s own validation data, but it is
the exception rather than the rule. The leave-one-subject-out R2-scores does not improve
upon much either. Additionally, considering the poor R2 performances, it is not surprising
that the jaccard indexes show high dissimilarity as well.

Upon deeper analysis, the poor R2-scores may not be completely unexpected results. If
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FDP and EDC are respectively responsible for flexion and extension of fingers D2-D5 as
said in [9], then it is actually expected for them to not correlate over all tasks performed.
Also, if the idea of muscle synergies is correct and some muscles acts as secondary or
supporting for unrelated 1-DOF forces, then one would also expect them not to remain
completely inactive when other tasks are performed. This is actually supported by relatively
good results in Section 4.2, in comparison to Section 4.3.

A Future model that could be made to improve performance in this type of setting,
where many 1-DOF tasks performed sequentially, would be a model could simultaneously
classify the type of task performed and then use the Specific Task model to estimate the
force produced by the task.

5.4 Model Improvements
There are several potential improvements that could be explored to further enhance perfor-
mance and address certain limitations of the current elastic net model.

• Threshold Models: An improvement worth considering is the use of threshold mod-
els. These models incorporate a non-linear output function, such as the activation
function, i.e. max(0, output), to account for any thresholds or limits in the dependent
variable. In the case of the force data, where there is a lower limit, e.g. extension force
measurements can only take on positive values, a threshold model using a non-linear
output function can capture this characteristic and potentially improve the model’s
performance. However, using a non-linear function generally make the optimization
and interpretability of coefficients more difficult.

The simplest solution is to just threshold the outputs from the model post-hoc, how-
ever, ideally one would want a model that ”understands” the dynamics of the variables
and adjusts the coefficients accordingly. This simple post-hoc method would likely
yield a slight increase in performance.

• HAC-Adjusted Standard Errors [23]: To obtain more accurate coefficient uncertain-
ties, utilizing Heteroscedasticity and Autocorrelation Consistent (HAC) standard er-
rors can be beneficial. HAC-adjusted standard errors account for heteroscedasticity
and autocorrelation in the residuals and provide more reliable estimates of the coef-
ficient uncertainties, by considering the temporal dependence and heteroscedasticity
in the model errors.

• Generalized Linear Models (GLMs) [24]: GLMs allow for the specification of dif-
ferent error distributions and link functions to better capture the underlying charac-
teristics of the data. This would require more rigorous study in what link function
could more accurately describe the iEMG-force-relationships or is more physiolog-
ically sound. In my tangential research I was not able to find one which performs
better than the linear.

• Time-dynamic models : While models utilizing preceding force values to predict
future values, might not be possible due to the physical limitation of feedback mech-
anisms in amputees, compared to other things like temperatures or stocks indexes. If
we were hypothetically given a continuous stream of force data with high sampling
frequency, time-dynamic models could prove effective, since force changes tend to be
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smooth and not super sudden and that subsequent force values tend to remain close
to preceding ones.
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