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Abstract
Wireless communication has seamlessly integrated itself into our daily lives,

with Ericsson pioneering the development of comprehensive mobile ecosystems.
As the demand for data traffic continues to surge, the enhancement of both
cellular radio systems and backhaul infrastructure remains paramount. Within
this context, Ericsson leverages microwave transport network solutions to address
backhaul needs. However, the implementation of microwave radio solutions
introduces its own set of challenges, particularly concerning physical movements
and meteorological fluctuations. The thesis focuses on analyzing a typical link
using microwave radio solutions, which rely on a Line of Sight (LoS) path and
narrow beam width for high gain. However, the very attribute that renders the
link efficient—its narrow beam width—also renders it vulnerable to potential
deterioration or malfunction due to factors such as antenna and mast movements.

In response to these challenges, the thesis puts forth a comprehensive solution
involving the deployment of sensors for movement detection. This approach
encompasses the development of sensor fusion models and innovative signal
processing methodologies. The primary objective revolves around accurately
estimating the deviation of the antenna’s orientation from the optimal LoS
alignment. Existing scholarly works have harnessed magnetometer data from an
Inertial Measurement Unit (IMU) sensor to refine estimation precision. However,
the radio system under consideration features an embedded sensor located directly
on its circuitry. This circuitry is ensconced within a casing, potentially offering
shielding against external magnetic fields. To bolster the accuracy of the sensor
model, the proposed strategy is to incorporate Received Signal Strength Indicator
(RSSI) measurements.

The research outlined within the thesis encompasses two areas. First and
foremost, it seeks to establish a correlation between the movements of the antenna
and the corresponding variations in the received signal strength. By probing this
relationship, the aim is to arrive at an understanding of the underlying causes
for the observed link degradation. The second facet of this research delves into
the domain of estimation using a variant of Kalman Filter. Specifically, the
thesis endeavors to estimate the deviation in the antenna’s orientation from its
optimal alignment. This estimation process is fortified by leveraging properties
from historical data to estimate current deviations and possibly forecast future
deviations. Moreover, the thesis recommends certain corrective measures that
hold the potential to mitigate the impacts of link degradation. However,
the implementation or validation of these corrective actions is not explicitly
undertaken within the scope of this study. Instead, this constitutes a fertile
ground for subsequent research investigations to explore and validate further.
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warm welcome to the team, and their support during the embedded software
development phase, as well as their constructive input on the practical viability
of the thesis research.

Furthermore, I’d like to extend my appreciation to other members at
Ericsson—Anders Claesson R, Giuseppe Moschetti A, Maniteja Darisipudi, Lars
Skog J, Lars Manholm, and Mikael Erdegren—for their invaluable contributions at
various junctures of the thesis’s progression. Your collective insights and support
have proven invaluable.

5



Contents

1 Introduction 15
1.1 Network Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Microwave Backhaul Systems . . . . . . . . . . . . . . . . . . . . . 16
1.3 Current Research Work . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Challenges and Questions 23
2.1 Antenna-Radio Configurations . . . . . . . . . . . . . . . . . . . . 23
2.2 Mast Swaying Behavior . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Questions to be Answered . . . . . . . . . . . . . . . . . . . . . . . 27

3 Resources Provided by Ericsson for the Thesis 28
3.1 Hardware Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Software Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Embedded C I2C Driver Development for Extracting IMU Data 32
4.1 Data From the IMU Sensor and the Radio . . . . . . . . . . . . . . 32
4.2 Signal Processing Requirements . . . . . . . . . . . . . . . . . . . . 33
4.3 Data Collection Methodology . . . . . . . . . . . . . . . . . . . . . 34
4.4 Packing IMU Sensor Data and RSSI Data . . . . . . . . . . . . . . 34

5 Understanding IMU Sensor Data and RSSI Data for Various
Movements/Oscillations 36
5.1 Case1: Stationary System . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Case2: Manually Induced Oscillations, Unbalanced . . . . . . . . . 41
5.3 Case3: Motor Induced Oscillations, Almost Balanced . . . . . . . . 43
5.4 Case4: Motor Induced Oscillations, Almost Unbalanced . . . . . . 45
5.5 Case5: Motor Induced Oscillations with Short Deep Fade . . . . . 47
5.6 Case6: Motor Induced Oscillations with Slight Variation in

Oscillation Frequency and High Variance in Peak RSSI . . . . . . . 48
5.7 Case7: Motor Induced Oscillations with Bad Jitter . . . . . . . . . 50
5.8 Case8: Motor Induced Oscillations with Null Crossings . . . . . . . 52
5.9 Case9: Motor Induced Oscillations with Multiple Strong Frequency

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.10 Summary of the Presented Scenarios . . . . . . . . . . . . . . . . . 55

6 Correlation Between the Gyroscope and RSSI Sensor Value 56
6.1 Doubling IMU Sensor Data Frequency . . . . . . . . . . . . . . . . 57
6.2 IIR Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Cross Correlation Results . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Single Session Logs - 10 Seconds Each . . . . . . . . . . . . 64
6.3.2 All Day Cross-Correlation Plots . . . . . . . . . . . . . . . . 73

6



7 Kalman Filter Model 78
7.1 Approximations and System Requirements . . . . . . . . . . . . . . 80

7.1.1 Unknown Focal Point . . . . . . . . . . . . . . . . . . . . . 81
7.1.2 Using Gain vs Angle Model . . . . . . . . . . . . . . . . . . 82
7.1.3 Polarization Angle Ambiguity . . . . . . . . . . . . . . . . . 84
7.1.4 Missing APC Info . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.5 Small Scale Fading . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.6 Large Scale Fading . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.7 Precipitation Based Fading . . . . . . . . . . . . . . . . . . 88
7.1.8 Antenna Movements on the Other Side of the Link . . . . . 88

7.2 Establishing Gain-Angle Relationship . . . . . . . . . . . . . . . . 89
7.2.1 Antenna Specification . . . . . . . . . . . . . . . . . . . . . 89
7.2.2 Simplifying Polynomial Regression Equation . . . . . . . . 90
7.2.3 Estimating Maximum Angle Limit for Polynomial Regression 91
7.2.4 Estimating Equation from Polynomial Regression Results . 93
7.2.5 Alternative Methods for Estimating the Relationship . . . . 94

7.3 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.2 Extended Kalman Filter (EKF) Equations: . . . . . . . . . 97
7.3.3 EKF Model Parameter Summary . . . . . . . . . . . . . . . 99

7.4 Feature Extraction Based on Oscillation Properties . . . . . . . . . 101
7.5 FIR Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6 Selecting Gyroscope Sensor that Correlates Best with RSSI . . . . 104

7.6.1 Almost Balanced Oscillation . . . . . . . . . . . . . . . . . 105
7.6.2 Partially Balanced Oscillation . . . . . . . . . . . . . . . . . 106
7.6.3 Almost Unbalanced Oscillation . . . . . . . . . . . . . . . . 107

7.7 Filtering and Synchronization Between the Gyroscope and RSSI . 108
7.7.1 Almost Balanced Oscillation . . . . . . . . . . . . . . . . . 110
7.7.2 Partially Balanced Oscillation . . . . . . . . . . . . . . . . . 111
7.7.3 Almost Unbalanced Oscillation . . . . . . . . . . . . . . . . 112

7.8 Estimating the Angle Deviation from Optimal Alignment . . . . . 113
7.8.1 Almost Balanced Oscillation . . . . . . . . . . . . . . . . . 114
7.8.2 Partially Balanced Oscillation . . . . . . . . . . . . . . . . . 115
7.8.3 Almost Unbalanced Oscillation . . . . . . . . . . . . . . . . 116

7.9 Estimating the Gyroscope Scaling Factor . . . . . . . . . . . . . . 117
7.9.1 Almost Balanced Oscillation . . . . . . . . . . . . . . . . . 118
7.9.2 Partially Balanced Oscillation . . . . . . . . . . . . . . . . . 119
7.9.3 Almost Unbalanced Oscillation . . . . . . . . . . . . . . . . 119

7.10 EKF Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.10.1 Almost Balanced Oscillation . . . . . . . . . . . . . . . . . 121
7.10.2 Partially Balanced Oscillation . . . . . . . . . . . . . . . . . 122
7.10.3 Almost Unbalanced Oscillation . . . . . . . . . . . . . . . . 122

8 Model Parameter Estimation Using Historical Data 124

7



9 Predicting Future State Values 130

10 Conclusion 131

A The Impact of the Antenna Feed Shift on the Radiation Pattern133

B Register Values and Settings 136

C Methodology to Verify Low Multipath Impact on the Antenna
Radiation Pattern 137

D Frame of Reference Between the IMU and the Antenna 140

E Bias and Variance From Stationary Data 141

F Understanding 2nd Order Differential Equation 144

G Model Performance When Tx Antenna Oscillates Instead of Rx 149

H Identifying Window Size for a Moving Average Filter 153

8



List of Figures
1 Network architecture [1] . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Example of a dish antenna and a mast system . . . . . . . . . . . . 16
3 Examples of radiation patterns representations . . . . . . . . . . . 18
4 Antenna radiation pattern specification for different antennas . . . 19
5 Antenna radiation pattern specification for different antennas -

magnified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Common antenna feed types [2] . . . . . . . . . . . . . . . . . . . . 21
7 Various backhaul antenna-radio systems provided by Ericsson [3] . 23
8 Understanding focal points . . . . . . . . . . . . . . . . . . . . . . 24
9 Case1 - Rotation around the mast (focal point 2) . . . . . . . . . 25
10 Case2 - Moving along the LoS path (focal point 3) . . . . . . . . . 25
11 Case3 - Moving perpendicular to the LoS path (focal point 3) . . 26
12 Antenna physical dimension specification (courtesy of Ericsson) . 30
13 Mast sway system coupled with the antenna-radio system for data

collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14 Overview of software development work and various hardware

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15 Balanced and unbalanced oscillation . . . . . . . . . . . . . . . . . 37
16 Sensor data - Stationary (time domain) . . . . . . . . . . . . . . . 39
17 Sensor Data - Delayed manually induced oscillations (time domain) 41
18 Sensor Data - Delayed manually induced oscillations (frequency

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
19 Sensor Data - Motor induced oscillations, almost balanced (time

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
20 Sensor Data - Motor induced oscillations, almost balanced

(frequency domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
21 Sensor Data - Motor induced oscillations, almost unbalanced (time

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
22 Sensor Data - Motor induced oscillations, almost unbalanced

(frequency domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
23 Sensor Data - Motor induced oscillations, with deep fade (time

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
24 Sensor Data - Motor induced oscillations, increase in oscillation

frequency (time domain) . . . . . . . . . . . . . . . . . . . . . . . . 48
25 Sensor Data - Motor induced oscillations, increase in oscillation

frequency (frequency domain) . . . . . . . . . . . . . . . . . . . . . 49
26 Sensor Data - Motor induced oscillations with bad jitter (time domain) 50
27 Sensor Data - Motor induced oscillations with bad jitter (frequency

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
28 Sensor Data - Motor induced oscillations, with nulls (time domain) 52
29 Sensor Data - Motor induced oscillations, 3 strong frequency

components (time domain) . . . . . . . . . . . . . . . . . . . . . . 53

9



30 Sensor Data - Motor induced oscillations, 3 strong frequency
components (frequency domain) . . . . . . . . . . . . . . . . . . . . 54

31 Comparing filter responses for different filter types . . . . . . . . . 61
32 IIR filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
33 Case1 - All sensor plots with bad jitter . . . . . . . . . . . . . . . 64
34 Case1 - IIR filtering results for sensor gyroscope Z-axis . . . . . . . 64
35 Case1 - All sensor plots after IIR filtering . . . . . . . . . . . . . . 65
36 Case1 - Cross-correlation results after IIR filtering . . . . . . . . . 65
37 Case1 - All sensor plots after peak frequency doubling and IIR

filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
38 Case1 - Cross-correlation results after peak frequency doubling and

IIR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
39 Case2 - All sensor plots with deep fade . . . . . . . . . . . . . . . . 67
40 Case2 - IIR filtering results for sensor gyroscope Z-axis . . . . . . . 67
41 Case2 - All sensor plots after IIR filtering . . . . . . . . . . . . . . 68
42 Case2 - Cross-correlation results after IIR filtering . . . . . . . . . 68
43 Case2 - All sensor plots after peak frequency doubling and IIR

filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
44 Case2 - Cross-correlation results after peak frequency doubling and

IIR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
45 Case3 - All sensor plots with unbalanced case . . . . . . . . . . . . 70
46 Case3 - IIR filtering results for sensor gyroscope Z-axis . . . . . . . 70
47 Case3 - All sensor plots after IIR filtering . . . . . . . . . . . . . . 71
48 Case3 - Cross-correlation results after IIR filtering . . . . . . . . . 71
49 Case3 - All sensor plots after peak frequency doubling and IIR

filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
50 Case3 - Cross-correlation results after peak frequency doubling and

IIR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
51 Sensor info - No motor induced oscillation . . . . . . . . . . . . . 74
52 Correlation without frequency doubling - No motor induced

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
53 Correlation with frequency doubling - No motor induced oscillation 75
54 Maximum correlation considering all sensors and axes - No motor

induced oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
55 Sensor info - Motor induced oscillation . . . . . . . . . . . . . . . 76
56 Correlation without frequency doubling - Motor induced oscillation 76
57 Correlation with frequency doubling - Motor induced oscillation . 77
58 Maximum correlation considering all sensors and axes - Motor

induced oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
59 Misalignment outcomes . . . . . . . . . . . . . . . . . . . . . . . . 81
60 Various oscillation types . . . . . . . . . . . . . . . . . . . . . . . . 83
61 Examples of fresnel zone obstructions [4] . . . . . . . . . . . . . . . 87
62 Antenna specification . . . . . . . . . . . . . . . . . . . . . . . . . 89
63 Example of an antenna pattern . . . . . . . . . . . . . . . . . . . . 90
64 Slopes of differential gain . . . . . . . . . . . . . . . . . . . . . . . 92

10



65 Polynomial regression for various even order of polynomials . . . . 93
66 Example of peaks and dips for partially unbalanced case . . . . . . 101
67 FIR filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
68 Example of almost balanced oscillation . . . . . . . . . . . . . . . . 105
69 Comparison of cross-correlation results for all gyroscope axes -

almost balanced oscillation . . . . . . . . . . . . . . . . . . . . . . 105
70 Example of partially balanced oscillation . . . . . . . . . . . . . . . 106
71 Comparison of cross-correlation results for all gyroscope axes -

partially balanced oscillation . . . . . . . . . . . . . . . . . . . . . 106
72 Example of almost unbalanced oscillation . . . . . . . . . . . . . . 107
73 Comparison of cross-correlation results for all gyroscope axes -

almost unbalanced oscillation . . . . . . . . . . . . . . . . . . . . . 107
74 Gyroscope and RSSI after FIR filtering for almost balanced oscillation110
75 Detecting triplet sets for balanced oscillation (ignoring the first 1

second) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
76 Gyroscope and RSSI after FIR filtering for partially balanced

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
77 Detecting triplet sets for partially balanced oscillation (ignoring the

first 1 second) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
78 Gyroscope and RSSI after FIR filtering for almost unbalanced

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
79 Detecting triplet sets for almost unbalanced oscillation (ignoring the

first 1 second) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
80 Estimated offset-angle using triplet information for almost balanced

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
81 Estimated offset-angle using triplet information for partially

balanced oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
82 Estimated offset-angle using triplet information for almost

unbalanced oscillation . . . . . . . . . . . . . . . . . . . . . . . . . 116
83 Estimated scaling factor for almost balanced oscillation . . . . . . 118
84 Estimated scaling factor for partially balanced oscillation . . . . . 119
85 Estimated scaling factor for almost unbalanced oscillation . . . . . 119
86 EKF results for almost balanced oscillation . . . . . . . . . . . . . 121
87 EKF results for partially balanced oscillation . . . . . . . . . . . . 122
88 EKF results for almost unbalanced oscillation . . . . . . . . . . . . 122
89 Sliding window design . . . . . . . . . . . . . . . . . . . . . . . . . 124
90 Mounting antenna-radio system on a pole . . . . . . . . . . . . . . 126
91 Sensor data with excitation on two axes . . . . . . . . . . . . . . . 127
92 Estimation results from the EKF . . . . . . . . . . . . . . . . . . . 128
93 Antenna feed positional change due to rotational movements . . . 133
94 A simplified representation of Figure 93 . . . . . . . . . . . . . . . 134
95 Antenna view for different positions . . . . . . . . . . . . . . . . . 137
96 Verifying radiation pattern accuracy . . . . . . . . . . . . . . . . . 137
97 Diffraction of Tx signal around object . . . . . . . . . . . . . . . . 138
98 IMU accelerometer and gyroscope axis in relation to antenna axis . 140

11



99 Allan deviation with angle random walk for multiple stationary logs 143
100 Simulation plot for balanced oscillation . . . . . . . . . . . . . . . . 146
101 Simulation plot for balanced oscillation (doubling β) . . . . . . . . 146
102 Simulation plot for balanced oscillation and non-zero mean . . . . 147
103 Simulation plot for balanced oscillation with decay . . . . . . . . . 148
104 Kalman filtering results for almost balanced oscillation with no

gyroscope data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
105 Kalman filtering results for partially balanced oscillation with no

gyroscope data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
106 Kalman filtering results for almost unbalanced oscillation with no

gyroscope data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

List of Tables
1 Bias and variance info for gyroscope sensor and RSSI sensor . . . 40
2 Estimation results from EKF with the available gyroscope data . . 123
3 IMU sensor register details . . . . . . . . . . . . . . . . . . . . . . 136
4 Table of manual angle measurements for almost balanced oscillation 139
5 Table of manual angle measurements for partially unbalanced

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Summary of stationary logs . . . . . . . . . . . . . . . . . . . . . . 141
7 Estimation results from EKF with no gyroscope data . . . . . . . . 152

12



Acronyms

4G 4th Generation
5G 5th Generation

APC Adaptive Power Control
AWGN Additive White Gaussian Noise

BCA Band and Carrier Aggregation
BL Boot Loader

dB deciBel
DC Direct Current
DFT Discrete Fourier Transform
dps degrees per second

EKF Extended Kalman Filter

FIFO First In First Out
FIR Finite Impulse Response

G Gravity
Gbps Gigabits per second
GHz Giga Hertz
Gx Gyroscope x-axis
Gy Gyroscope y-axis
Gz Gyroscope z-axis

H/H Horizontal/Horizontal
Hz Hertz

I2C Inter-Integrated Circuit
IAB Integrated Access Backhaul
IDE Integrated Development Environment
IF Intermediate Frequency
IIR Infinite Impulse Response
IMU Inertial Measurement Unit

KHz Kilo Hertz

LoS Line of Sight

MATLAB MATrix LABoratory
MHz Mega Hertz

13



MIMO Multiple Input Multiple Output
mm millimeter
ms milliseconds

OFDM Orthogonal Frequency Division Multiplexing

RF Radio Frequency
RSSI Received Signal Strength Indicator
RTOS Real Time Operating System
Rx Receiver (x)

Tx Transmitter (x)

USB Universal Serial Bus

V/V Vertical/Vertical
Var Variance

WSL Windows Subsystem for Linux

XPIC Cross(X) Polarization Interference Cancellation

14



1 Introduction

1.1 Network Infrastructure
Communication in today’s world thrives on the interplay of wired and wireless

infrastructures, a realm that has witnessed remarkable growth in recent decades.
The inception of wireless technology traces back to the 1970s when wireless
phones and the first professional wireless network emerged [5]. These early
strides primarily catered to voice communication, and yet today, we find ourselves
immersed in an era where data streams at speeds surpassing 1 Gigabits per
second (Gbps).

Before delving into the intricacies of backhaul systems, it’s useful to
understand the fundamental components that constitute the end-to-end network
infrastructure, preceding the core network stage. Figure 1 below illustrates a
plausible network infrastructure layout. At the outermost edges of this framework
are the ubiquitous mobile phones, engaging in communication with base stations
or WiFi access points. The traffic originating from these mobile devices is directed
to the Aggregation point or service provider, which then forwards it to the core
network through backhaul infrastructure (e.g. millimeter wave, microwave, and
wired). This network traffic subsequently finds its way to the intended destination
via packet-based networks or dedicated links. For incoming traffic, this journey
unfolds in a reverse manner.

In response to the growing demand for data transfer to and from mobile devices,
there is a pressing need not only to improve the mobile network infrastructure but
also to upgrade the backhaul infrastructure. This upgrade empowers the routing of
escalated traffic volumes to their intended destinations. The broader classification
of backhaul infrastructure spans both wired and wireless realms, each with its
unique characteristics and capacities.

Figure 1: Network architecture [1]
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The heart of this thesis resides in the analysis of wireless microwave backhaul
systems, specifically with the intent to deduce and forecast antenna movements.
Microwave backhaul systems, integral to the communication landscape, have
evolved in response to escalating data demands. Yet, these evolutionary
trajectories have engendered novel challenges that warrant examination—an
exploration that shall be delved into in the next section.

1.2 Microwave Backhaul Systems
Ericsson’s microwave backhaul antenna systems predominantly comprise dish

antennas (Figure 2a), which hinge on unobstructed line-of-sight signals for
establishing dependable communication links. Illustrated in Figure 1, the integrity
of these backhaul links may deteriorate due to an array of factors, encompassing
precipitation (rain, snow, and vapor), impediments (foliage, birds, and drones),
or the non-rigidity of antenna mast structures (Figure 2b) that can prompt
swaying induced by the wind[6]. A degradation in link quality precipitates reduced
channel efficiency, consequently diminishing the data rates achievable through the
link. In reaction to variations in channel quality metrics, the radio possesses the
capability to adjust transmission link channel parameters. These adjustments may
encompass modifications to the coding rate, modulation order, transmit power, or
other elements often denoted as link adaptation[7]. This proactive approach serves
to enhance the overall dependability of transmissions.

(a) Dish antenna - Ericsson (b) Mast system [6]

Figure 2: Example of a dish antenna and a mast system
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The evolution of backhaul infrastructure [8] is achieved through the
incorporation of the following features:

• Cross Polarization Interference Cancellation (XPIC [9])

• Band and Carrier Aggregation (BCA [10])

• Integrated Access Backhaul (IAB [11])

• Line of Sight1; Multiple Input Multiple Output2 (LoS, MIMO)

• Adopting higher frequency spectrum such as E-Band [12] (60 - 90 GHz)

• Higher gain and lower impact from multipath with narrower beams

The characteristics of the antenna radiation pattern exhibit variability
contingent upon diverse factors, including antenna dimensions, channel frequency,
orientation concerning another antenna within a link, in conjunction with external
influences unrelated to the radio system, such as weather conditions, obstacles
along or near the propagation path, and other such factors.

Parabolic antennas demonstrate a highly directional radiation pattern,
typically depicted using a polar radiation plot, as illustrated in Figure 3a.
Alternatively, they may be represented in a rectangular radiation pattern plot, as
demonstrated in Figure 3b. Both of these representations aim to illustrate signal
attenuation as the antenna’s orientation deviates from the LoS path. Within the
thesis, LoS orientation will also be referred to as optimal alignment or optimal
orientation.

In the case of perfect alignment between the transmitter (Tx) and receiver
(Rx), the attenuation is 0 dB. However, as the alignment deviates, the
attenuation becomes non-zero, resulting in increased signal loss at the receiver.
This attenuation is separate from the attenuation caused by electromagnetic wave
propagation through space, commonly known as path loss.

1Line of Sight : A direct path or link between the transmitter and receiver
2Multiple Input Multiple Output : More than one transmit antennas and more than one

receive antennas
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For subsequent analysis, only rectangular radiation pattern representation
will be utilized but can be extended to the polar radiation pattern as well if
needed. None of the subfigures from Figure 3 depict specific radiation pattern
specifications; instead, they serve as visual examples for better understanding.

(a) Polar radiation pattern [13] (b) Rectangular radiation pattern [13]

(c) Radiation pattern represented in 3D [14]

Figure 3: Examples of radiation patterns representations
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Figure 4 depicts the radiation pattern specifications for several antennas
endorsed by Ericsson for utilization with their radios in backhaul links. This
graphical representation encompasses an aggregate of antenna specifications,
exhibiting diversity in antenna size and channel frequency.

Figure 4: Antenna radiation pattern specification for different antennas

To facilitate a clearer understanding of the plot’s intricacies, identical colors
(or line style) correspond to identical frequencies, while consistent marker shapes
signify the same antenna size. Please consult Figure 5, which specifically zooms
in on the angle of the main lobe, restricting the gain to -50 dB and the angle to
10 degrees.

Within this context, two significant observations can be gleaned by confining
our focus to points exclusively located within the main lobe3 for all categories of
antennas.

• Beam width tends to decrease when higher frequencies are employed

• Beam width tends to decrease when larger antenna sizes are utilized

3Determining the maximum azimuth angle encompassed by the main lobe might not be
immediately evident solely from the visualization. For a comprehensive explanation, please
consult Section 7.2.3
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Figure 5: Antenna radiation pattern specification for different antennas -
magnified

As microwave backhaul systems evolve to use higher spectrum and narrower
beams for increased capacity and efficiency, the susceptibility to link degradation
due to antenna movements becomes a significant concern. The reduction in beam
width, while beneficial in terms of interference and signal gain, also makes the link
more vulnerable to disruptions caused by external factors such as antenna swaying,
weather conditions, and obstructions. Adopting higher spectrum and narrower
beams are inevitable outcomes of the backhaul evolution, and such problems need
to be addressed.
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1.3 Current Research Work
Ericsson is actively engaged in research work addressing the challenge of

estimating antenna orientation angle deviation from the LoS orientation using a
high-quality Inertial Measurement Unit (IMU) sensor. This sensor chip installed
on a separate circuitry is intended to be directly integrated onto the back surface
of the parabolic reflector, strategically positioned to avoid obstructing the signal
propagation path to the antenna feed (as depicted in Figure 6). By utilizing
data from the IMU sensor, Ericsson aims to dynamically adjust the antenna
orientation to maintain alignment with the LoS path.

While this solution holds promise and is technically feasible for deployment, it
introduces a noteworthy increase in the product costs compared to conventional
parabolic antennas. This cost escalation arises due to a range of necessary
modifications and additions. These include the provision of a separate casing for
the IMU, a separate power feed, additional cabling to link the external IMU system
with the radio, creation of a new antenna physical structure to accommodate the
attachment of the IMU casing, efforts to develop embedded drivers, installing a
motor controlled adjustable antenna feed system, and implementation of other
requisite adjustments to the existing antenna-radio systems.

Figure 6: Common antenna feed types [2]

21



As part of the thesis, cost-effective options are explored to address this
challenge. One such solution is to embed the IMU sensor directly onto the
radio unit. This strategy aims to achieve the estimation of antenna movements
indirectly, without necessitating most of the modifications outlined earlier. The
key additional effort in this approach is the integration of the IMU sensor onto
the radio circuit board, along with the associated driver development effort to
extract the IMU data. By adopting this approach, the need for a separate IMU
casing, distinct power feed, extra cabling, additional processor or microcontroller,
modifications to the antenna structure, and the new motor systems to adjust
antenna feed orientation can be circumvented, resulting in a substantial reduction
in additional costs.

However, this alternative solution does involve certain trade-offs that warrant
careful consideration. While it offers cost savings, it may introduce compromises
in terms of estimation accuracy compared to the more comprehensive setup
involving a separate IMU sensor installed on the back surface of the parabolic
reflector. The extent to which accuracy is sacrificed for cost efficiency will need to
be carefully evaluated. The scope of the thesis not only encompasses the proposal
of a model to estimate antenna movements but also extends to specifying the
inherent limitations of this model.

As part of its conclusions, the thesis will undertake the application of the
proposed model to simulated antenna movements and manually induced mast
swaying data. This practical evaluation aims to ascertain the accuracy of the
model’s estimations. Through these comprehensive efforts, the thesis provides
valuable insights and solutions to the challenges posed by antenna movements
within microwave backhaul systems.
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2 Challenges and Questions

2.1 Antenna-Radio Configurations
Given that the IMU sensor is integrated into the radio unit rather than

the antenna, a significant challenge emerges in accurately discerning antenna
movements. This challenge is particularly pronounced when the frames of reference
for the antenna and the IMU sensor are not aligned. Ericsson offers a diverse array
of antenna-radio configurations, exemplified by various configurations as depicted
in Figure 7. These configurations represent a comprehensive spectrum of scenarios
in which the relative alignment and orientation between the antenna frame and
the IMU frame can significantly differ.

Figure 7: Various backhaul antenna-radio systems provided by Ericsson [3]

The diversity exhibited by the various antenna-radio configurations leads to
discrepancies in the frames of reference between the radio’s integrated IMU sensor
and the associated antenna. This disparity presents a challenge in applying a
uniform reference frame transformation matrix across all configurations. For
optimal accuracy, a tailored transformation matrix must be established for
each individual configuration. However, this approach demands a dedicated
transformation matrix for every existing antenna-radio setup, accompanied by
ongoing costs and efforts to incorporate forthcoming configurations.
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2.2 Mast Swaying Behavior
To describe the various scenarios of mast swaying, a simplified representation

of the antenna, radio, and mast system is depicted in Figure 8b. This simplified
model treats these components as rigid bodies and introduces the concept of “focal
points” (Figure 8a) that possess a certain degree of freedom in rotational motion
when an object linked to the focal point is subjected to external forces. This
freedom of motion could arise from factors such as weak joints, degraded structural
integrity over time, or other reasons. The main external force contributing to such
motion is wind, although impacts from objects such as hailstones or any flying
object could also play a role.

(a) Definition of focal point [15] (b) Simplified rigid body

Figure 8: Understanding focal points

The motion of the rigid body around these focal points can lead to
misalignments with the LoS path. For the sake of illustration, the Figures 9,
10, and 11 depicts a configuration where the radio is directly mounted behind the
antenna, and the IMU sensor’s Z-axis direction is in the exact opposite direction
of the antenna orientation. It is important to note that these drawings are for
descriptive purposes only; the actual antenna-radio system used for data collection
in the thesis does not share the same configuration. The component situated
between the antenna and the radio is the waveguide [2], which is a highly rigid
structure in reality.
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Please refer to Figure 12 and Figure 98 (Appendix D) to visualize the
antenna-radio system employed in this thesis. To comprehend the potential
movements of the system, consider them as combinations of the fundamental
motions illustrated in Figure 9, Figure 10, and Figure 11. On the right side
of each figure, a rainbow-colored ellipsoid-shaped lobe is drawn next to the
transmitter figure, which serves as an approximate visual representation of the
radiation pattern’s shape for parabolic antennas [2]4.

Although the drawings are original unless specified, credit for the distinctive
rainbow lobe shape in the below figures goes to [14].

Figure 9: Case1 - Rotation around the mast (focal point 2)

Figure 10: Case2 - Moving along the LoS path (focal point 3)

4Please note that the radiation pattern shapes in the figures may not necessarily align precisely
with the radiation specifications of the antenna used in this thesis.
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Figure 11: Case3 - Moving perpendicular to the LoS path (focal point 3)

The aforementioned figures are based on the assumption of rigid body motion,
although mast systems might not necessarily be rigid. It is essential to note that
only the antenna-radio system, as detailed in the preceding subsection, can be
considered rigid due to the close integration between the antenna, waveguide, and
radio components. The diverse range of movement types, varying focal point
locations, and non-rigid structures present a substantial challenge in formulating
a model to accurately characterize antenna movements.
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2.3 Questions to be Answered
As previously mentioned, a key distinction from existing approaches is that

the IMU sensor is not directly placed on the antenna. Instead, this thesis explores
the potential for inferring antenna movements through an indirect association with
movement data acquired from the IMU sensor integrated into the radio. The thesis
thus aims to answer the following primary questions:

1. How can insights from existing published literature be leveraged to determine
the sampling and signal processing requirements?

2. Can a correlation between received signal strength variation and IMU sensor
data be effectively measured for strong oscillations?

3. Is it feasible to utilize the Kalman Filter or its variants to estimate,
sample-by-sample, the deviation of the antenna oritentation from the optimal
orientation?

4. What is the impact of fluctuating received signal strength on link
performance, and what measures can be taken to mitigate these issues?
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3 Resources Provided by Ericsson for the Thesis
Since incorporating IMU sensors onto radios is a relatively recent approach

undertaken by Ericsson, there is a lack of swaying data from existing deployed
networks. Therefore, a setup was arranged involving a new radio equipped with
an embedded IMU chip and a motor system designed to simulate mast swaying.

3.1 Hardware Resources
• Parabolic Antenna with waveguide: ANT3 C 0.3 HPX 15 (Figure 12)

• Radio: 63xx Series

• Mast Sway Generator System: Simplex Motion Motor with an integrated
rotation mechanism

• Mast on the Roof

• Transmitter system: Transmitting a wireless signal with a fixed power level
at approximately 15 GHz carrier frequency.

• Node5

• Signal generator to test the radio

• Coaxial Cable (Power + Node connection)

• USB Type C (Extract IMU sensor data and RSSI data)

• Laptop for embedded development, data collection, and signal processing

5Node is a separate processing unit that connects directly to the radio to receive intermediate
frequency (IF) signal for baseband processing
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3.2 Software Resources
• Visual Studio: Windows based IDE for Software development

• WSL2: Linux environment for source code editing, compiling, debugging and
unit testing

• MCUXpresso IDE: Load symbols onto radio, set breakpoints for real-time
debugging, and hardware debugging (BL3 ARM build and debugging
environment on Windows)

• TomSender: Software tool to configure radio parameters via serial port
(USB)

• Logtool: Software tool to read serial port data (USB) and convert raw hex
data to legible log using string maps

• TeraTerm: Open source software tool to read serial port

To simulate mast swaying, the clamps used to attach the antenna-radio system
to the pole, as depicted in Figure 12, were substituted with a mast sway generator
motor system, as illustrated in Figure 13.
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Figure 12: Antenna physical dimension specification (courtesy of Ericsson)
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Figure 13: Mast sway system coupled with the antenna-radio system for data
collection
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4 Embedded C I2C Driver Development for
Extracting IMU Data

Owing to the proprietary nature of Ericsson’s radio software, extensive
technical specifics cannot be shared. However, this section addresses fundamental
signal processing requisites. For a succinct overview of the codebase, refer to
Figure 14.

4.1 Data From the IMU Sensor and the Radio
The Inertial Measurement Unit (IMU) sensor offers essential information,

including accelerometer data and/or gyroscope data, while certain IMU sensor
models may also supply additional details such as temperature and magnetometer
data. For this thesis, the selected sensor can furnish linear acceleration (G’s)6 for
all three orthogonal axes, angular velocity (degrees/sec) for three rotational axes,
temperature (◦C), and a time-stamp (counter value).

Temperature data is included in the IMU sensor results but is not utilized
in the realm of signal processing or analysis. The time-stamp information plays
a role in identifying any gaps in the data collection process. By assessing the
continuity of values, instances of missing samples can be identified. These gaps
might stem from issues such faulty external connectivity (USB disconnections)
or more complex radio failures, encompassing both software and hardware
malfunctions.

The RSSI measurements are obtained from a dedicated module within the
radio software architecture, known as the radio controller. These measurements
represent the received signal strength of the transmitter signal, and they are
expressed in decibels (dB). This module interfaces with the Radio Frequency
(RF) components and updates the RSSI variable value approximately every 6
milliseconds (ms).

The crux of the analysis hinges on the data obtained from key sensors:
the accelerometer, gyroscope, and RSSI. These sensors provide the fundamental
dataset that will be subjected to thorough examination and processing.
Subsequent sections will present numerous plots displaying the data from all
sensors within the IMU, along with the RSSI values collected from the radio.

6In this context, ’G’ represents gravity, which is a predefined value ∼ 9.8m/s2. The sensor’s
accelerometer data is provided in units of gravity (’G’) rather than meters per second squared
(m/s2)
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4.2 Signal Processing Requirements
The paper [16] provides an insightful overview of mast swaying, including its

various properties such as the frequency range of fast swaying (0.4 Hz - 5 Hz)
and the amplitude of deflections for thin poles (1◦ − 4◦). Additionally, the paper
discusses the occurrence of non-periodic deviations with durations ranging up to
several minutes. However, the focus of the thesis will be limited to addressing
fast-swaying scenarios and assuming the presence of thin poles. Thicker poles
tend to exhibit lower deflections, which makes their estimation relatively simpler
given sufficient measurable movements.

Regarding non-periodic slow deviations, these can be tracked using methods
such as monitoring the shift in gravity direction through accelerometer data, a
technique commonly employed in digital angle finders. However, this method
might not work effectively for movements where the direction of gravity remains
constant, such as pure twists (rotational motion axis aligns with the direction
of gravity) or vertical movements (direction of motion perfectly aligned with
gravity). Furthermore, translating linear acceleration data into angular motions
can be challenging, especially if the exact focal point of rotation is unknown [17].
For these reasons, the thesis will not cover methods relying on accelerometer data.

The fluctuations in RSSI caused by swaying can manifest within a frequency
range spanning from the mast swaying frequency (one-sided oscillation from peak
- Figure 21) to twice the mast swaying frequency (balanced two-sided oscillation
across peak - Figure 19). Given a maximum mast swaying frequency of 5 Hz,
this implies that RSSI fluctuations can occur at frequencies up to 10 Hz. In
signal processing tasks such as filtering and frequency domain analysis on the
RSSI signal, it’s essential to adhere to the Nyquist theorem, which stipulates that
the sampling rate should be at least twice the maximum frequency of interest
(10 Hz × 2 = 20 Hz ).

For effective filtering, both IIR and FIR filters necessitate a transition from the
pass band to the stop band frequency, referred to as the roll-off [18]. To ensure
that the roll-off has minimal impact on the frequency of interest, oversampling is
recommended. Therefore, a sampling rate of 100 Hz has been selected for both
the IMU sensor data and RSSI measurements. It’s worth noting that while the
IMU sensor is capable of very high sampling frequencies (> 6 KHz ), increasing
the sampling frequency introduces higher noise levels in measurement data and
quicker processing requirements. It is counterproductive to exploit higher sampling
frequencies unless there are clear signal processing benefits.
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4.3 Data Collection Methodology
As part of thesis work, a commercially low cost IMU sensor chip was mounted

on a radio but required driver development to extract the IMU data from the
sensor chip. Since there was no provision for an interrupt from the IMU sensor
chip to the radio’s processor for the provided radio system, an alternative approach
was taken to extract IMU data. The method employed deviates from the use of
a First-In-First-Out (FIFO) mechanism [19] for extracting IMU data. Instead, a
straightforward approach was adopted wherein sensor data is read through register
access at pseudo-periodic intervals, achieved by introducing a sleep interval of 10
ms between consecutive register reads. With this approach, a sensor data reading
is obtained approximately every 10 ms, resulting in a sampling rate of about 100
Hz. This sampling rate aligns with the recommendation put forth in the preceding
subsection. The specific register values and configurations utilized for interfacing
with the IMU sensor are documented in Appendix B.

4.4 Packing IMU Sensor Data and RSSI Data
The software module responsible for collecting data from the IMU and

the radio controller will be termed as “data gatherer”. Potential conflicts can
arise when simultaneous write-to-variable operations (performed by the radio
controller) and read-from-variable operations (executed by the data gatherer)
occur for the RSSI data. This necessitates the implementation of critical sections,
similar to mutex locks[20], to ensure data consistency. Given that the radio
software operates on the FreeRTOS [21] platform, the processes involving writing
to and reading from variables are encapsulated within what is termed a “task
critical section”.

The raw binary data retrieved from the IMU sensor registers undergoes a
processing step to convert them into floating-point numbers. These processed
sensor readings are then structured and organized into a unified format. Following
this organization, the data is transmitted through a USB interface. Once received,
this data can be accessed and read using applications capable of serial port
communication. It is crucial that the tool being used understands the data
encoding format. MATLAB[22] software was utilized for various tasks, including
the reading of serial data and subsequent signal processing on the data.
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Figure 14: Overview of software development work and various hardware
components
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5 Understanding IMU Sensor Data and RSSI
Data for Various Movements/Oscillations

Before delving into the specifics of signal processing, it’s important to highlight
certain characteristics of sensor outputs. These characteristics need to be taken
into account when calculating the correlation factor and developing the final
estimation model. The following impacts should be considered:

• Sensor bias error

• Stochastic noise

• Short deep fades in RSSI value

• Attenuation in RSSI value due to precipitation such as rain, fog, snow, etc

In this thesis, the terms “balanced oscillation” and “unbalanced oscillation”
have been introduced to describe the two contrasting scenarios of antenna
oscillations. As illustrated in Figure 15, if the antenna oscillates equally on
both sides of the optimal orientation or LoS alignment, it is referred to as a
“balanced oscillation”. Conversely, if the antenna oscillates exclusively on one
side of the optimal orientation, it is termed an “unbalanced oscillation”. There
are also cases of “partially balanced” (or partially unbalanced) oscillation that
fall roughly between the balanced and unbalanced type. Due to challenges in
simulating exact balance or unbalanced cases, terms such as “almost balanced”
and “almost unbalanced” oscillations are used to denote scenarios that are in
proximity to the balanced and unbalanced type respectively.
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Figure 15: Balanced and unbalanced oscillation

To gain familiarity with the terminology, the proposed transition terms
between balanced and unbalanced are as follows:

balanced ↔ almost-balanced ↔ partially-balanced7 ↔ almost-unbalanced ↔
unbalanced

↔ signifies proximity of the oscillation type. Moving from left to right in the
above terminology sequence, “balanced” and “almost-balanced” exhibit a slight
difference. In the case of “balanced”, the antenna sways approximately equally
on both sides of the optimal alignment. Conversely, “almost-balanced” implies
that the antenna sways slightly more on one side of the optimal alignment. If
the oscillation angle on one side of the optimal alignment is about half that
of the other side, it is considered “partially balanced”. When the oscillation is
predominantly on one side of the optimal alignment, it falls into the category
of “almost-unbalanced”. If the oscillation is entirely on one side, it is termed
“unbalanced”.

Most swaying systems fall into a category between balanced and unbalanced
oscillation, and is further elobarated with different logs possessing different
oscillation types. Some oscillations fall outside this category, explained with
samples logs and in Section 7.1.2.

7“partially balanced” and “partially unbalanced” represent the same type of oscillation, but
only “partially balanced” term will be used
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In the following subsection, 10-second logs are presented, each accompanied
by a concise description. These logs provide examples of different scenarios,
showcasing the signal’s characteristics and variations. The analysis encompasses
both the time and frequency domains. Majority of the data is generated through
motor-induced mast swaying to simulate real-world conditions. Nonetheless,
certain cases are not representative of the natural mast swaying behavior or
represent extreme corner cases that pose significant challenges for modeling. In
such instances, a statement “will not be addressed within the thesis” is highlighted
in red and underlined for clarity.

In certain logs that exhibit oscillatory behavior, frequency domain analysis is
employed to identify peaks. By utilizing peaks detected from various sensors, we
can derive properties that are subsequently utilized in the determination of model
parameters for estimating antenna movements. The cross-visualization between
the time domain and the frequency domain provides additional properties that
can be valuable in later stages.

On the other hand, stationary logs primarily serve to highlight “bias” errors
present in the IMU sensor data. These bias errors, alongside other properties such
as Allan variance, are carefully documented and become valuable information for
later stages of the analysis, correction and estimation processes.

As detailed in Section 4, the data gatherer operates by collecting sensor data
from both the IMU and the radio. Subsequently, it transfers this data in the form
of a standard packet over USB. MATLAB utilizes serial port read functions to
receive and unpack the incoming packets, storing each set of sensor data using
distinct variables. The sampling rate employed in this process is 100 Hz, resulting
in a total of 1000 samples gathered over a 10-second duration.
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5.1 Case1: Stationary System

Figure 16: Sensor data - Stationary (time domain)

Figure 16 represents an example of an almost stationary antenna-radio system.
In an ideal IMU sensor, the gyroscope values should be close to zero. However,
most IMU sensors exhibit a non-zero offset, known as bias error. This bias
error remains relatively consistent over the sensor’s lifecycle unless the sensor
undergoes significant physical movements or impacts. When estimating antenna
movements, it is crucial to consider and incorporate these bias errors into the
proposed models. This is essential for accurately estimating the deviation of
antenna orientation from its optimal alignment.

It’s crucial to note that when representing sensor data, there’s a distinction in
scaling. The accelerometer and gyroscope data employ a linear scale, while the
RSSI data is expressed in decibels (dB), which utilizes a logarithmic scale.

Minor variations in RSSI can occur even under relatively stable conditions.
The non-stationary nature of the medium between the receiver (Rx) and
transmitter (Tx), including factors such as airborne particles, objects such as
foliage, and humidity in the air can induce RSSI variations. These variations can
also arise from the receiver’s signal processing characteristics and thermal noise
generated by hardware components.
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For the given radio equipped with the embedded IMU sensor, Table 1 presents
the bias error and variance associated with the gyroscope data and RSSI data.
The bias and variance values were obtained by keeping the radio in a stationary
position for extended periods of time. Multiple logs were collected with the radio
in a stationary position with different orientations, and the mean values of the
measurements are presented. Information pertaining to the log data for this
dataset can be located in Appendix E.

Sensor Gx Gy Gz RSSI
Bias 0.10 -1.14 0.33 NA

Variance 6.9 × 10−4 9.8 × 10−4 6.2 × 10−4 23.5 × 10−4

Allan variance 6.76 × 10−6 7.84 × 10−6 5.76 × 10−6 NA

Table 1: Bias and variance info for gyroscope sensor and RSSI sensor

Obtaining equivalent data for accelerometers is more complex due to the
presence of natural gravity, which can affect multiple axes unless the radio is
perfectly aligned with the force of gravity. Achieving such precise alignment
can be challenging without specialized leveling equipment, resulting in bias
errors in the sensor’s accelerometer measurements and some degree of influence
from gravitational forces. The difficulty lies in determining the proportion of
the measurement data that is attributed to bias error as opposed to natural
gravitational effects. This serves as an additional justification for excluding
accelerometers from the final model.
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5.2 Case2: Manually Induced Oscillations, Unbalanced

Figure 17: Sensor Data - Delayed manually induced oscillations (time domain)

Irrespective of the oscillation type, Figure 17 illustrates a behavior commonly
observed in various structures: oscillations around the resonance frequency when
influenced by an external force. This behavior often leads to a dominant
frequency component in the frequency domain analysis (IMU sensor data8, namely
accelerometer and gyroscope data), with relatively weaker energy distributed
across other frequencies. This behavior can be leveraged in the signal-processing
techniques. As depicted in Figure 18, a strong frequency signal can be observed
around 5.2 Hz for sensors that exhibit favorable excitations.

8RSSI may have two dominant frequency components depending on the type of oscillations,
and will be discussed in greater detail in subsequent sections
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Figure 18: Sensor Data - Delayed manually induced oscillations (frequency
domain)

Before conducting the Discrete Fourier Transform (DFT), the mean value was
subtracted from the sensor data to reduce bias error. This adjustment ensures
that the intensity at 0 Hz or the Direct Current (DC) offset component is not
vital in the frequency domain analysis. The focus can then be on the oscillatory
frequency components. For one sided RSSI oscillation (unbalanced oscillation),
subracting the mean value does not remove the DC component.

The non-DC component (higher than 0.5 Hz and below 10 Hz) is picked up as
primary oscillation frequency, as shown in RSSI stem plot in red. The peak RSSI
sensor frequency is about 5.2 Hz, similar to the gyroscope and accelerometer
frequency. The term “RSSI main freq” (shown in Figure 18, subplot Frequency
domain plot (Amplitude spectrum) for RSSI) should signify the frequency that
best characterizes a well-balanced oscillation (approximately double the gyroscope
or accelerometer frequency). In instances of unbalanced oscillation, the DFT plot
fails to exhibit a robust signal (frequency component) indicative of a balanced
scenario. Consequently, this poses challenges when attempting to accurately
estimate certain model parameters.

Due to challenges in computing Kgyro (described in Section 7.9) and calculating
β parameter for modeling (described in Appendix G), this case of pure unbalanced
oscillation will not be addressed within the thesis.
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5.3 Case3: Motor Induced Oscillations, Almost Balanced

Figure 19: Sensor Data - Motor induced oscillations, almost balanced (time
domain)

Figure 19 depicts an example of an almost balanced RSSI oscillation. This
situation arises when oscillations occur in a manner that consistently passes
through the optimal orientation, covering almost equal angles on both sides of
the optimal orientation. Notably, there’s a difference in the relative Gyro-RSSI
frequency shown in Figure 20 as compared to Figure 18. In cases of balanced
oscillations, the frequency of RSSI variations will be approximately double that of
the sensor frequency. At each end of the oscillations, the RSSI value reaches a local
minimum. Over a complete mast swaying cycle, the RSSI hits the local minima
twice, resulting in a frequency that is twice that of the oscillation frequency.
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Figure 20: Sensor Data - Motor induced oscillations, almost balanced (frequency
domain)

The RSSI sensor value oscillates at a frequency of approximately 5.9 Hz, which
is roughly twice the frequency of the gyroscope and accelerometer sensors, both at
approximately 2.9 Hz. The deviation from an exact integer multiple is attributed
to the resolution limit of 0.1 Hz due to the DFT size.
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5.4 Case4: Motor Induced Oscillations, Almost Unbalanced

Figure 21: Sensor Data - Motor induced oscillations, almost unbalanced (time
domain)

Figure 21 illustrates a more general scenario of almost unbalanced RSSI
oscillations. In this case, the antenna direction passes through the optimal
orientation but with unequal angles on both sides of the optimal orientation.
Such a situation could arise from improper initial antenna alignment (antenna not
at optimal orientation even in stationary state) or a deviation from the optimal
orientation due to continuously induced external forces. To develop a model for
estimating antenna movements, it becomes necessary to accurately estimate the
deviation of the antenna from the optimal orientation. The methodology employed
is explained in more detail in Section 7.8.
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Figure 22: Sensor Data - Motor induced oscillations, almost unbalanced (frequency
domain)

Owing to the inherent imbalance within RSSI signal oscillations, a duality
of robust frequency components (0.5 Hz and 1 Hz in Figure 22, subfigure Freq
domain plot(Aplitude spectrum) for RSSI) emerges, contrasting with the singular
dominant frequency component below 10 Hz evident in the IMU sensor data (all
other subplots in the same Figure 22).
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5.5 Case5: Motor Induced Oscillations with Short Deep
Fade

Figure 23: Sensor Data - Motor induced oscillations, with deep fade (time domain)

Figure 23 (“RSSI” plot at around 600 unit on the Time axis) illustrates a
scenario characterized by deep fading resulting from a temporary obstruction to
the LoS path during a balanced oscillation. Though uncommon, it is possible for
natural objects such as birds [23], floating objects, flying objects (e.g. drones), or
humans on the roof to intermittently obstruct the LoS, albeit for brief periods.
The model needs to exhibit resilience against such drops in RSSI values, ensuring
its ability to gauge antenna deviations by leveraging data from IMU sensors during
periods of disrupted communication links.
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5.6 Case6: Motor Induced Oscillations with Slight
Variation in Oscillation Frequency and High Variance
in Peak RSSI

Figure 24: Sensor Data - Motor induced oscillations, increase in oscillation
frequency (time domain)

Figure 24 depicts a more natural oscillation process characterized by a minor
decrease or increase in oscillation frequency over time. This phenomenon could
occur due to various factors such as gradual changes in wind velocity or direction,
as well as energy dissipation over time. It’s worth noting that an increase in
oscillation frequency results in higher peak values in the gyroscope sensor data,
as the swaying object needs to complete the same oscillation cycle in a shorter
time (indicative of faster rotational movements). On the other hand, a decrease
in frequency leads to the opposite effect. The gyroscope Z-axis peak values
exhibit distinct levels in the first and second halves of the plot, offering insight
into the underlying changes in oscillation characteristics. While the example
was motor-induced, similar processes occurring naturally might be linked to
wind behavior (direction change) or energy dynamics (energy dissipation from
oscillating obejcts).

Observing the RSSI data, a scenario unfolds marked by a higher variance
of peak RSSI power, despite the relative constancy in gyroscope behavior
except for its oscillatory pattern frequency. This distinct behavior frequently
materializes during instances of rainfall or heightened precipitation. Rainfall
induces supplementary signal attenuation, albeit with a stochastic essence,
culminating in this capricious amplitude fluctuation.
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To precisely gauge the departure of the antenna orientation from the optimal
alignment, it becomes imperative to accurately ascertain the peak RSSI value
(value at zero rainfall induced attenuation and optimal alignment). Given the
stochastic attribute of this phenomenon, a potential remedy involves computing
the peak value across a wide sampling window of past data (e.g. a 10-second
window) and incorporating this data into the model to estimate antenna
movements with greater accuracy.

Figure 25: Sensor Data - Motor induced oscillations, increase in oscillation
frequency (frequency domain)

There is a slightly wider frequency spead around the peak component, as
compared to oscillations with stictly one frequency component, attributed to the
slight variation in oscillation frequency.
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5.7 Case7: Motor Induced Oscillations with Bad Jitter

Figure 26: Sensor Data - Motor induced oscillations with bad jitter (time domain)

Figure 26 illustrates a scenario characterized by bad jitter in the system, leading
to an exceptionally high frequency of vibration in the sensor data. Although
strong jitters are not likely to occur, minor jitter due to inherent noise is more
common. The model for estimating antenna movements should be designed to be
robust in the face of such sensor data irregularities. An extreme version of this
scenario can exhibit a strong high-frequency component (> 10 Hz), alongside a
moderate-frequency component, in the gyroscope data (e.g. gyroscope Z-axis).
This occurrence could arise when mast structures possess multiple weak joints.

50



Figure 27: Sensor Data - Motor induced oscillations with bad jitter (frequency
domain)

In addition to the primary oscillation frequency observed in the IMU sensor
data at 1.8 Hz, several other significant components are present, notably at 18.6 Hz,
20.4 Hz, and 25.9 Hz, among others. To effectively address the issue of undesirable
jitter, it is recommended to implement a filtering mechanism that attenuates
frequency components exceeding 10 Hz. This filtering method is explained in
more detail in Section 6.2 and will contribute to mitigating the adverse effects
caused by these high-frequency oscillations.
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5.8 Case8: Motor Induced Oscillations with Null Crossings

Figure 28: Sensor Data - Motor induced oscillations, with nulls (time domain)

Figure 28 presents an instance in which the antenna transitions into null
points within the radiation pattern as depicted in Figure 63. This situation
can arise when the antenna undergoes pronounced one-sided oscillations with
respect to the optimal oritentation and hence never crosses the optimal orientation.
This can lead to extreme non-linearities and discontinuities in RSSI fluctuations
making it difficult to model such behaviors. Due to challenges in using
Gain-Angle relationship (described in Section 7.2), modeling this case will not
be addressed within this thesis. For the proposed model aimed at estimating
antenna movements, it’s imperative that the antenna passes through the optimal
orientation during oscillations.
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5.9 Case9: Motor Induced Oscillations with Multiple
Strong Frequency Components

Figure 29: Sensor Data - Motor induced oscillations, 3 strong frequency
components (time domain)

Figure 29 portrays an oscillation induced by a motor, featuring three
pronounced frequency components. Although multiple strong frequency
components can arise through motor controls, such occurrences are not typically
observed in actual mast swaying behaviors due to the tendency of physical
systems to converge to a resonant frequency. Furthermore, wind intensity
and direction are not expected to undergo drastic changes. Due to challenges
in filtering out non-essential components via IIR filtering after doubling IMU
sensor data frequency (described in Section 6.1), this case will not be addressed
within this thesis. The proposed model for estimating antenna movements relies
on oscillations characterized by a single dominant frequency component and is
designed to tolerate multiple weaker frequency components.
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Figure 30: Sensor Data - Motor induced oscillations, 3 strong frequency
components (frequency domain)

In the context of mast swaying behaviors, the presence of multiple robust
frequency components is not observed and presents a complex challenge for
accurate modeling.
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5.10 Summary of the Presented Scenarios
The nine cases previously discussed offer a concise overview of the potential

RSSI signal patterns when exposing the antenna-radio system to mast sway
behavior. Through in-depth time and frequency domain analyses of various
oscillation types, valuable properties have been identified such as peak frequency
components, bias errors, relationships between RSSI and IMU sensor frequency
components, filtering requirements, and more.

Oscillation types characterized as balanced, almost-balanced,
partially-balanced, and almost-unbalanced oscillations have been considered
as potential cases for constructing the estimation model. Frequency components
ranging from 0.5 Hz to 5 Hz for IMU data and from 0.5 Hz to 10 Hz for RSSI
data are regarded as valid frequency ranges observed in mast swaying scenarios.
Bias error and variance are critical parameters in our model and can be estimated
from stationary data. While we have covered certain challenging scenarios (null
crossing, multiple strong frequency componenets, and unbalanced oscillation) for
educational purposes, these scenarios will not be included in the construction of
the final model.
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6 Correlation Between the Gyroscope and RSSI
Sensor Value

A straightforward approach to validate the relationship between antenna
movements and RSSI fluctuations is to examine the (cross-)correlation between
signals representing antenna motion and the RSSI signal value. As explained
earlier, the dominant frequency component in the RSSI signal can range from
the frequency of gyroscope/accelerometer oscillations (unbalanced oscillation)
to twice the frequency (balanced oscillation). When the oscillation frequencies
of two signals are similar, their cross-correlation result will exhibit a strong
peak. Conversely, if two signals have frequencies such that the higher frequency
is an exact integer multiple of the lower frequency, then the two signals are
orthogonal. For such signals, the cross-correlation result will be close to zero9. To
address the challenge of dealing with orthogonal frequencies, a solution involves
upconverting the sensor frequencies before conducting the cross-correlation
analysis against RSSI. To achieve this, a simple technique of doubling10 the
gyroscope/accelerometer frequency is employed, as elaborated in Section 6.1.

Signal filtering will be necessary to reduce high-frequency signal components
and very low-frequency signal components that don’t hold much significance. IIR
filter was used and its design is described in Section 6.2. Filtering will help achieve
better cross-correlation results, with multiple cases described in Section 6.3. Since
the oscillation type can vary between a balance oscillation and an unbalanced
oscillation, performing cross-correlation on two datasets will be necessary. The
first dataset is the cross-correlation of the original IMU sensor data (gyroscope
and accelerometer) with the RSSI data; and the other is the cross-correlation after
performing frequency shift on the IMU data. The best of both results (highest
cross-correlation value) can be concluded as the final cross-correlation value.

The section is concluded by plotting results for the IMU data collected over
the entire day (or most of the day). Two cases are covered - one without motor
induced oscillation and one with motor induced oscillation.

9This property is leveraged in Orthogonal Frequency Division Multiplexing (OFDM), a
modulation scheme utilized in 4G and 5G cellular systems [24].

10Doubling the frequency implies shifting all the frequency components to double the frequency
value, and not doubling the intensity of each frequency component.
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6.1 Doubling IMU Sensor Data Frequency

Let us describe a signal characterized by sinusoidal properties, serving
as a representation of oscillations. This signal embodies one predominant
frequency component of significant strength, accompanied by a handful of weaker
components. In totality, this signal encompasses N distinct frequency components,
contributing to its overall dynamic behavior.

S(t) =
N∑

i=1
Ai sin(2πfit + ϕi) + n(t)

where n(t) is Additive White Gaussian Noise (AWGN) noise

fi is frequency of the ith component

ϕi is the phase of the signal at t = 0 for frequency component i

A1 >> A2 > A3 · · · AN−1 > AN (components are listed in decreasing order
of strength)

Due to the discrete nature of signal processing in discrete time, our capabilities
are confined by the resolution determined by the sampling rate. Consequently,
when performing DFT, there could be a minor discrepancy between the frequency
components that can be measured and the true value of the frequency components.
To address this, the frequency component value fi is redefined, as outlined in the
next equation, by expressing it as the sum of the measurable frequency Fi and the
deviation from the true value, which is denoted as δfi. This revision captures the
nuanced relationship between the measurable components and the true frequency
values, accounting for the limitations imposed by the discrete time framework and
sampling rate.

S(t) =
N∑

i=1
Ai sin(2π(Fi + δfi)t + ϕi) + n(t)

where fi = Fi + δfi
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Given that the frequency F1 can be ascertained through the results of
Discrete Fourier Transform (DFT), it’s possible to explore an approach involving
multiplication of the signal with a synthesized sine wave that share the same
frequency F1.

SF1(t) = S(t) · sin(2πF1t)

=
(

N∑
i=1

Ai sin (2π(Fi + δfi)t + ϕi) + n(t)
)

· sin(2πF1t)

Using simple trignometry equations 11,

SF1(t) =

A1

2 cos(2π(2 · F1 + δf1)t + ϕ1)

+A2

2 cos(2π(F2 + F1 + δf2)t + ϕ2)

+A2

2 cos(2π(F3 + F1 + δf3)t + ϕ3)

+ · · ·


shifted to higher frequency
(High Freq Components)

+A1

2 cos(2π(δf1)t + ϕ1)

+A2

2 cos(2π(F2 − F1 + δf2)t + ϕ2)

+A2

2 cos(2π(F3 − F1 + δf3)t + ϕ3)

+ · · ·


shifted to lower frequency
(Low Freq Components)

+ n(t) · sin(2πF1t)

11sin(A) · sin(B) = 1
2 (cos(A + B) + cos(A − B))
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Our specific focus pertains to isolating the term that incorporates twice
the primary frequency component (2 · F1 term in green ). Given that A1 is
significantly larger magnitude than A2, A3, · · · , AN , our priority is to eliminate
all terms involving A1 except for the 2 · F1 component. There exist another term
featuring a frequency close to zero (δf1 term in red ). Employing a high-pass
filter allows us to effectively eliminate this term.

Furthermore, to curtail the impact of the remaining components, filtering
strategies can be employed to remove frequencies exceeding 10 Hz and those
below 1 Hz. However, it’s important to acknowledge that complete elimination
of all non-relevant components is unfeasible, as the signal amplitude attenuation
from filtering cannot be −∞. Consequently, this prompts the consideration of
adopting a cross-correlation threshold below 1, a topic that will be explored in
greater detail in subsequent sections.

The proposed method is inspired from the working principle of the
superheterodyne receiver [25] used in radio systems. While delving into the
matter of filter selection, the potential viability of both Infinite Impulse Response
(IIR) and Finite Impulse Response (FIR) filters are assessed. This analysis is
elaborated upon in the forthcoming section, providing insights into the optimal
filtering approach for our context.
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6.2 IIR Filter Design
IIR filters possess the capacity to offer sharp and narrow transition region

surrounding the cutoff frequency; lower ripples in the pass band and/or stop band
and with less complexity (lower number of filter coefficients/taps). However the
primary drawback associated with IIR filters is the introduction of non-linear
phase distortion. This manifests as a situation where individual frequency
components may experience different phase shifts after filtering. Conversely, FIR
filter requires a lot more taps (higher complexity) to achieve the same sharp
transition region but suffers from higher ripples at the pass and stop band. FIR
filters, in contrast, do not introduce non-linear phase distortion. This implies
that each frequency component undergoes a uniform phase shift after the filtering
process.

To recapitulate the challenge at hand, the received sensor data within a
10-second window is characterized by a singular dominant frequency component.
The objective is to ascertain the peak cross-correlation value between this
frequency component and the RSSI data. Notably, the phase of the signal does
not exert any influence on the peak cross-correlation value. In light of this, an IIR
filter has been chosen as the preferred filter type, as it serves to reduce extraneous
frequency components that are not of interest. The characteristics of an IIR filter
are primarily defined by the placement of its poles and zeros. In MATLAB, these
values are determined using parameters such as the cutoff frequency and other
relevant factors, which will be discussed in greater detail on the following page.

Despite the filtering process, a handful of unwanted frequency components
with low intensity persist in the signal. Unfortunately, these components cannot
be reduced due to the specified frequency region of interest falling between 1
Hz and 10 Hz. However, it remains feasible to effectively reduce the impact
of low-frequency components that are below 1 Hz and those exceeding 10 Hz
through appropriate filtering strategies.

The Chebyshev Type II filter was chosen based on its optimal balance between
passband flatness and the ability to achieve a sharp transition from the passband
to the stopband. This performance comparison was made against other widely
used IIR filters, including Chebyshev Type I, Butterworth, and Elliptic filters.
A sample comparative plot is presented in Figure 31. Figure 32 illustrates the
frequency response of the IIR filter utilized in this context.
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Figure 31: Comparing filter responses for different filter types

Figure 32: IIR filter response

61



A combination of low-pass and high-pass filter is employed as part of the
filtering process. This filtering step is applied after the cross-correlation process
and serves to reduce undesired frequency components from the data.

Filter Configuration (Filter 1):

• Filter type : Low pass filter

• IIR type : Chebyshev Type II filter

• Filter order : 9

• Stopband attenutation : 50 dB

• Sampling rate : 100 Hz

• Cutoff frequency12 : 15 Hz

Filter Configuration (Filter 2):

• Filter type : High pass filter

• IIR type : Chebyshev Type II filter

• Filter order : 7

• Stopband attenutation : 50 dB

• Sampling rate : 100 Hz

• Cutoff frequency12: 0.5 Hz

12To use cheby2 function from MATLAB, Stopband edge frequency Ws needs to be provided,
which equates to 2/Sampling rate × Cutoff frequency
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6.3 Cross Correlation Results
To verify the correctness of the filter design and threshold criteria, a few cases

of real measurement data are covered in subsequent subsections. For all the cases,
the following data/results are provided

• Original IMU sensor data and RSSI measurements

• Frequency domain filtering results for gyroscope Z-axis sensor data (strongest
sensor data)

• Time domain filtering results for all sensor and RSSI data

• Cross-correlation results between RSSI and all IMU sensor data without
frequency doubling.

• Cross-correlation results between RSSI and all IMU sensor data after
frequency doubling.

• Conclusion

Cross-correlation between two signals f(n) and g(n) in discrete domain :

h(n) = f(n) ∗ g(n) =
+∞∑

i=−∞
f(i)g(i − n)

Two types of cross-correlation methods are employed: one is the standard
cross-correlation method as described by the formula listed above, and the
other is a normalized version. In the normalized version, the result obtained
above is divided by the maximum absolute value of h(n) to ensure that the
maximum absolute value does not exceed 1. In this section, we employ normalized
cross-correlation, whereas in Section 7.6, we utilize the standard cross-correlation
method.

To address the presence of other non-relevant frequency components that
cannot be easily filtered out, a normalized correlation threshold of 0.7 has been
chosen. If the normalized cross-correlation results for either the original sensor
data or the frequency doubled data indicate a value above 0.7 for even one of the
sensor outputs, the corresponding dataset is flagged as having a strong correlation
between RSSI variations and the antenna-radio system movements. In the event
of strong cross-correlation, it becomes less likely that the observed RSSI variations
are due to other factors such as issues with power control, obstructions in the LoS
path, malfunctioning receivers, and so on. The last two subsection (6.3.2, 6.3.2)
contains cross-correlation results for the entire day.
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6.3.1 Single Session Logs - 10 Seconds Each

Case1 : Partially Balance oscillation with bad jitter

Figure 33: Case1 - All sensor plots with bad jitter

Figure 34: Case1 - IIR filtering results for sensor gyroscope Z-axis

As depicted in the right plot of Figure 34, it’s evident that all frequency
components exceeding 10 Hz have been substantially attenuated due to IIR
filtering.
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Figure 35: Case1 - All sensor plots after IIR filtering

Figure 36: Case1 - Cross-correlation results after IIR filtering

Because of the characteristics of partially balanced oscillations, which lead
to the presence of two prominent frequency components—one matching the
gyroscope frequency and the other being twice the gyroscope frequency—it
is noticeable that the energy associated with the RSSI frequency component,
corresponding to the gyroscope frequency, is relatively diminished, resulting in
lower cross-correlation peaks. This observation is exemplified in Figure 36, where
none of the cross-correlation results surpass 0.7.
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Figure 37: Case1 - All sensor plots after peak frequency doubling and IIR filtering

Figure 38: Case1 - Cross-correlation results after peak frequency doubling and IIR
filtering

Conclusion : Upon doubling the frequency component of the sensor data
before conducting cross-correlation, the gyroscope X-axis, gyroscope Y-axis, and
gyroscope Z-axis datasets all meet the established threshold of 0.7, as visualized
in Figure 38. This observation strongly suggests that fluctuations in RSSI exhibit
a robust correlation with variations in the gyroscope, underscoring a significant
relationship between RSSI fluctuations and antenna movements.
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Case2 : Balanced Oscillation with Short Deep Fade

Figure 39: Case2 - All sensor plots with deep fade

Figure 40: Case2 - IIR filtering results for sensor gyroscope Z-axis
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Figure 41: Case2 - All sensor plots after IIR filtering

There is distortion present in the oscillation pattern within the RSSI subplot in
Figure 41 following the application of IIR filtering. This distortion subsequently
leads to unsatisfactory cross-correlation results, as evidenced in Figure 42. A
similar observation can be made when doubling the peak frequency of the IMU
sensor data, as illustrated in Figure 44. This instance serves as an example of
suboptimal correlation between the RSSI fluctuations and IMU sensor data.

Figure 42: Case2 - Cross-correlation results after IIR filtering
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Figure 43: Case2 - All sensor plots after peak frequency doubling and IIR filtering

Figure 44: Case2 - Cross-correlation results after peak frequency doubling and IIR
filtering

Conclusion: None of the sensors meet the cross-correlation threshold (0.7),
which is expected due to the deep fade impacting the RSSI measurements. If deep
fade didn’t occur, the cross-correlation peak would likely be around 0.9.
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Case3 : Almost Unbalanced Oscillation

Figure 45: Case3 - All sensor plots with unbalanced case

Figure 46: Case3 - IIR filtering results for sensor gyroscope Z-axis
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Figure 47: Case3 - All sensor plots after IIR filtering

Figure 48: Case3 - Cross-correlation results after IIR filtering
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Figure 49: Case3 - All sensor plots after peak frequency doubling and IIR filtering

Figure 50: Case3 - Cross-correlation results after peak frequency doubling and IIR
filtering

Conclusion : Since the RSSI oscillation was almost one-sided (almost
unbalanced), there are significant cross-correlation result exceeding the threshold
of 0.7 without the need for frequency doubling, as shown in Figure 48.
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6.3.2 All Day Cross-Correlation Plots

To validate the accuracy of the proposed methods for identifying strong
correlations between RSSI variations and movements, two daily plots are
summarized in the following subsections. Each plot instance in the sensor data
plot represents an approximate minimum and maximum value derived from a
10-second log, as opposed to each sensor sample instance every 10 ms in the
previous plots. Given the inherent variance in sensor data and the presence of
outliers, it becomes necessary to mitigate these issues. This is achieved through a
moving average process (for the variance issue) and mean of the maximas/minimas
(for outliers). The calculation of the optimal window size for the moving average
process is explained in Appendix H. Additionally, we calculate the mean of five
local maximas and minimas from each 10-second log. The rationale behind
selecting five points is that, for a minimum oscillation frequency of 0.5 Hz, there
will be at least five local maxima or minima in a 10-second window. For higher
frequencies ( > 0.5 Hz and < 10 Hz), there will be an increased occurrence of
local maxima and minima, ensuring the averaging technique is still applicable.

The cross-correlation plots display the maximum cross-correlation
value observed between the RSSI and each of the IMU sensors
(gyroscope/accelerometer). In each plot instance, a single value represents
the maximum cross-correlation result for each sensor and axis obtained from a
10-second log. A total of 6 different values are plotted for each plot instance,
namely accelerometer X-axis, accelerometer Y-axis, accelerometer Z-axis,
gyroscope X-axis, gyroscope Y-axis and gyroscope Z-axis. A cross-correlation
value exceeding 0.7 indicates a strong cross-correlation between the RSSI
variations and the antenna movements. To simplify the evaluation criterion, a
single peak cross-correlation value obtained from both the accelerometer and
gyroscope sensors, considering all available axes, is considered and compare
against the threshold of 0.7.

By rescaling the data on the time axis, it becomes possible to visualize the
entire day’s data within a single plot window. This approach facilitates the
assessment of the mast system’s reliability throughout the day.
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Case1 : No motor induced oscillation

Figure 51: Sensor info - No motor induced oscillation

Figure 52: Correlation without frequency doubling - No motor induced oscillation

74



Figure 53: Correlation with frequency doubling - No motor induced oscillation

Figure 54: Maximum correlation considering all sensors and axes - No motor
induced oscillation

As expected, there is poor correlation between the IMU sensor data and RSSI
data in both results (with and without frequency doubling), except for one instance
in Figure 54 (a single point in the plot that crosses 0.7 correlation factor at around
log count index 3800). This isolated correlation could be due to potentially strong
wind that induced minor oscillation on the gyroscope Y-axis, which happened to
correlate well with the one-sided RSSI oscillation.
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Case2 : Motor induced oscillation

Figure 55: Sensor info - Motor induced oscillation

Figure 56: Correlation without frequency doubling - Motor induced oscillation
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Figure 57: Correlation with frequency doubling - Motor induced oscillation

Figure 58: Maximum correlation considering all sensors and axes - Motor induced
oscillation

As anticipated, a strong correlation between the RSSI and IMU data can be
observed for most instances throughout the day, as shown in Figure 58.
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7 Kalman Filter Model
Having discussed the basic correlation properties between RSSI data and IMU

sensor data, this section will focus on constructing a model to predict the antenna
deviation from its optimal alignment. The ability to anticipate deviations from
the peak enables the implementation of corrective measures aimed at minimizing
the adverse effects of antenna movements on the reliability of data transmission
(Section 9). Due to the intricate nature of the problem at hand, it is essential to
employ certain approximations and assumptions to simplify its complexity and
facilitate a solution.

The unknown system properties can be summarized as follows:

• Relative frame of reference between the antenna and the IMU on the radio

• Type of movement/mast swaying

• Weather impacts to the signal strength (RSSI)

• Adaptive Power Control (APC) settings

• Degree of rotation for linearly polarized wave

The desired goal is to estimate the deviations of the antenna orientation
from optimal alignment, considering both the horizontal and vertical axes
independently. However, the limitation lies in having only a single RSSI value,
rendering the system underdetermined [26] (the number of equations is less than
the number of unknowns). As a workaround, the problem is redefined to ascertain
a solitary alignment deviation, albeit in any direction.

The subsequent sections can be summarized as follows:

• Section 7.1 provides a concise overview of the essential approximations and
prerequisites employed to streamline the complexity of the problem.

• Section 7.2 outlines the methodology of curve fitting used to establish the
mathematical relationship between changes in RSSI value and deviations of
the antenna from its optimal orientation.

• Section 7.3 explains the utilization of a variant of Kalman Filter, namely the
Extended Kalman Filter (EKF) model to estimate the antenna’s deviation
from its optimal alignment. To ensure the model’s effectiveness, certain
parameters within the model must be estimated using historical data.

• Section 7.4 identifies several valuable features that can be derived from
historical data. These features play a crucial role in identifying specific
parameters within the EKF model, aiding its accuracy and performance.
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• Section 7.5 explains the application of a FIR filter to eliminate
high-frequency noise components, subsequently enhancing the capability to
extract features from historical data.

• Section 7.6 elaborates on the process of selecting the gyroscope sensor axis
that exhibits the highest cross-correlation with RSSI data.

• Section 7.7 elaborates on the filtering procedure, and outlines the
synchronization technique used to align zero crossings. This synchronization
aims to obtain RSSI values at the peaks of antenna oscillations.

• Section 7.8 presents the results attained from estimating deviations from
peaks through illustrative examples. Additionally, it introduces a weighted
average formula employed to give precedence to more recent samples over
older ones, enhancing the accuracy of the estimation process.

• Section 7.9 explains the methodology utilized to determine the gyroscope
scaling factor, crucial in accurately representing gyroscope values in relation
to antenna oscillations.

• Section 7.10 demonstrates the outcomes of the EKF model subsequent to
the incorporation of updated estimated parameters into the EKF model.

To ensure the EKF model’s robustness to a variety of mast swaying types,
three logs are selected that differ in both the type of oscillation and the frequency
of oscillation:

• Almost-balanced oscillation, approximate oscillation frequency of 3 Hz.

• Partially-balanced oscillation, approximate oscillation frequency of 1 Hz.

• Almost-unbalanced oscillation, approximate oscillation frequency of 2 Hz.

Unfortunately, owing to the restrictions on using the mast sway generator,
a significant portion of the oscillations tend to stimulate the IMU sensors in a
comparable manner. Gyroscope Z-axis is always the strongest and correlates the
best with RSSI data. Section 8 delves into the scenario of manually inducing mast
sway with the aim of inducing motion in two distinct gyroscope axes, thereby
serving as a validation of the model’s performance.
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7.1 Approximations and System Requirements
Several approximations and requirements have been put forth to address the

intricate task of developing a model capable of accurately estimating antenna
movements across a range of antenna-radio configurations, as well as various
scenarios involving mast swaying. These approximations have been carefully
tailored to account for both the available equipment constraints pertinent to this
thesis and the necessity for the proposed model to function within a predefined level
of confidence. The subsequent sections will delve into a comprehensive breakdown
of these approximations and requirements, offering a succinct overview outlined
below.

Approximations:

• Floating body approximation

• Circular radiation pattern approximation

System requirements:

• Negligible impact due to antenna feed positional change

• No impact due to polarization rotation

• APC is disabled

• Antenna passes through or near the optimal orientation during oscillations

• Antenna osclllates only within radiation pattern main lobe limits

• Negligible small-scale fading

• No shadow fading but possibility of a short deep fade

• Model tolerance against precipitation based fading

• Antenna-radio system experiences movements around a single focal point at
any given time

• Antenna movement on either the transmitter or the receiver side of the
communication link

All the requirements mentioned above, except for the last one, are well within
reasonable expectations.
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7.1.1 Unknown Focal Point

As explained in Section 2.2, even in the case of a rigid body, multiple
potential motions arise from movements around distinct focal points. All the
motions detailed can be deconstructed as a combination of pure antenna rotation
(alteration in antenna orientation) and lateral movement of the receiving point
in space (changes in antenna feed position). Both these types of motions are
illustrated in Figure 59.

Figure 59: Misalignment outcomes

With a few exceptions (detailed in Appendix A), a positional shift of
the antenna feed do not contribute to the substantial variations in received
signal strength. The RSSI variations are primarily influenced by changes in
orientation, and for the purpose of simplification, all movements may be treated
as pure rotational motions. This approximation is termed the “Floating body
approximation” where the angular rotation of the IMU is proportional to the
angular rotation of the antenna. The constraint on the relationship is the
proportionality, and a method to estimate the constant of proportinality
(Kgyro) is covered in Section 7.9. In the scenario where the focal point precisely
lies between the IMU sensor and the antenna, and their reference frame axes are
parallel, the value of Kgyro should be 1.
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The IMU sensor supplies data regarding linear acceleration and angular
velocity, serving to characterize its motion. However, owing to the absence in the
knowledge about the focal point, the utilization of linear acceleration to estimate
angular rotation isn’t viable, since both the radius of rotation (distance from the
focal point to the IMU) and the direction of rotation are essential [17]. Instead,
reliance is placed on angular velocity. Despite this, it remains crucial to account
for the disparity between the IMU sensor’s frame and the frame of the antenna.
This is precisely why the term “Kgyro” is introduced to address this discrepancy
and factor it into the EKF model.

7.1.2 Using Gain vs Angle Model

In the context of all analyzed oscillations, a fundamental assumption is
that the antenna invariably traverses through the optimal or almost optimal
orientation. This assumption is crucial as it enables the utilization of the antenna
radiation pattern specification to estimate the relationship elucidated in Section
7.2. Figure 60 depicts a selection of potential antenna oscillations, utilizing
concentric ellipses to signify the extent of the antenna orientation deviation
from the optimal alignment. Notably, the red plots represent scenarios in
which the model proposed in this thesis will encounter challenges, leading to
inaccurate predictions of the antenna motion. The green plots, conversely, are
anticipated to function with a reasonable degree of accuracy. A state of (perfectly)
unbalanced oscillation poses challenges in estimating Kgyro and deviation angle
from optimal alignment using the proposed algorithms in this thesis. There may
exist a potential solution but this scenario falls beyond the scope of the thesis.
All oscillations types from almost unbalanced to balanced oscillation are within
the scope of the thesis.

The concept of peak crossing isn’t limited to an absolute singular point. Rather,
considering the antenna’s specification in Figure 62, the crossing lies within a 0.5◦

circular radius around the optimal orientation. This angle corresponds to a Loss
< 0.1 dB, or the first non-zero attenuation row as per the specification table in
Figure 62. Furthermore, owing to pronounced non-linearities and the inability to
establish the Gain-Angle relationship using simple expressions, instances involving
extreme oscillations where the antenna orientation aligns with null points (Figure
28) will be omitted from consideration. It is important to note that all oscillations
are presumed to fall within the confines of the main lobe’s boundaries.
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Figure 60: Various oscillation types
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7.1.3 Polarization Angle Ambiguity

When an electromagnetic wave traverses a medium, a linearly polarized wave
can undergoes rotation if it encounters water particles [27] or any object capable
of inducing rotation. The motion described in Figure 11 induces a relative
polarization rotation. Consequently, the polarization angle of the received (Rx)
signal may deviate from alignment with the horizontal (H/H) or vertical (V/V)
axis, as well as the polarization angle of the transmitted (Tx) signal. The provided
antenna-radio system is designed to capture a single RSSI value during each
sampling interval, aligned with the polarization angle. As a result, regardless
of any shifts in the polarization angle during the signal’s propagation from the
transmitter to the receiver, the RSSI measurement will consistently correspond
to the best polarization direction/angle. This situation leads to an inherent
ambiguity in determining the actual polarization angle, as the RSSI value remains
the same regardless of the polarization angle’s variation. To effectively assess
the effects of polarization rotation, it becomes necessary for the radio system to
measure RSSI across two orthogonal axes. However, the current apparatus lacks
this capability. It is recommended to consider the implications of polarization
rotation, particularly when implementing XPIC. Addressing the consequences of
polarization rotation lies beyond the scope of this thesis.

Given the challenge posed by the inability to determine the polarization
angle accurately, a pragmatic approach involves simplifying the problem by
assuming identical antenna specifications for both horizontal (H/H) and vertical
(V/V) polarizations. This simplification is referred to as the “circular radiation
pattern approximation”, in contrast to the actual antenna specification which
exhibits an elliptical radiation pattern (Figure 60). To establish a mathematical
correlation between the Gain and Angle (Section 7.2), the column exhibiting
higher attenuation will be used to ensure a more conservative estimate. This
corresponds to V/V column (Figure 63) or the vertical axis. Within the main
lobe region (From Section 7.2.3, 4.2◦), the maximum disparity between H/H and
V/V values for the same angle remains limited to 1 dB. Although this discrepancy
introduces some degree of estimation error into the final proposed model, it
remains modest enough not to render the model ineffective. Furthermore, it’s
important to note that for small angles (Figure 63, Angle <= 2◦), both V/V and
H/H polarizations adhere to the same radiation pattern, enhancing the validity
of the circular radiation pattern approximation.

In summary, the following observations can be drawn from the aforementioned
statements: No impact due to polarization rotation and Circular radiation pattern
approximation (H/H = V/V ).
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7.1.4 Missing APC Info

Adaptive Power Control (APC) is a common feature in most wireless systems,
enabling adjustments in response to transmission needs and changes in channel
characteristics. The methods proposed in this thesis hold applicability for systems
incorporating APC, given that the transmitter’s configured power is ascertainable
at the receiver’s end. However, the provided apparatus cannot record Tx power and
APC settings simultaneously with sensor and RSSI data samples at the receiver in
precise timing alignment. Consequently, during the collection of actual data, APC
remains disabled. Nonetheless, if APC is configured and power adjustments due to
APC are known, a simple formula can be employed to calculate the RSSI values
intended for utilization within the EKF procedures (as well as cross-correlation
computations outlined in the preceding section).

R(t) = Rrx(t) − ∆Rtx(t) − ∆PAP C(t) (1)

R : RSSI value for EKF and Cross-correlation

Rrx : Measured RSSI value from the radio receiver. This is known at the
receiver side for both APC and non-APC cases

∆Rtx : Increase in baseband Tx power with respect to Tx power in the
beginning of EKF process. This can vary due to several factors, encompassing
elements such as changes in the modulation scheme, changes in signal bandwidth,
changes in the multiplexed information between the data and control channels,
among others [28].

∆PAP C : Increase in power due to APC settings. This can vary due to several
factors, such as closed-loop power control [28] and adjustments based on channel
estimation, among others.

For accurate application of APC adjustments before providing the RSSI value
to the EKF process, it’s essential that both ∆Rtx and ∆PAP C are known at the
receiver side for each individual sample instance.
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7.1.5 Small Scale Fading

Small scale fading is composed of two main components: doppler spread and
multipath fading [29]. Doppler spread emerges when either the transmitter or the
receiver is in motion. In the context of mast swaying-induced antenna movements,
the predominantly oscillatory nature and frequency (less than 5 Hz) imply that
the effect of Doppler spread can be reasonably considered negligible. However,
precautions are necessary to ensure that multipath fading remains minimal. This
is especially crucial due to its potential to distort the antenna radiation pattern.

Directional antennas, such as the dish antenna employed in this thesis, can
experience an intriguing phenomenon with multipath signals. These multipath
signals, arriving at specific angles relative to the antenna, can lead to signal
amplification or attenuation based on their phase in relation to the LoS signal’s
phase. This phenomenon, in turn, has the potential to disrupt the expected
behavior of the radiation pattern, introducing inaccuracies to the proposed model.
It’s worth noting that the signal amplification or attenuation caused by a robust
multipath is not an abrupt occurrence, but rather a gradual process influenced
by the antenna’s swaying motion. A useful guideline for minimizing the influence
of strong multipath involves ensuring that no obstacles are present within the
Fresnel Zone radius [29]. This principle aims to mitigate the impact of multipath
interference and maintain signal integrity.

Because the antenna used in the thesis is not of the omnidirectional
or widebeam variety, the Fresnel Zone radius calculated based on standard
references may not be accurate due to its narrow beam characteristics. Despite
the narrower Fresnel Zone radius, a critical requirement remains: ensuring that
no obstructions are present within the immediate frontal view of the antenna,
encompassing all swaying angles under analysis. As depicted in Figure 95a, even
if the object isn’t precisely in the LoS path, it can lead to pronounced multipath
effects owing to signal diffraction around the object. To delve further into the
verification of low impact from multipath on the antenna radiation pattern, refer
to Appendix C for comprehensive insights.

In summary, small-scale fading can be regarded as negligible, granted that the
antenna setup is carefully engineered to mitigate the influence of multipaths.
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Figure 61: Examples of fresnel zone obstructions [4]
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7.1.6 Large Scale Fading

Large-scale fading encompasses path loss and shadowing. Path loss, inherent
to signal propagation through free space, cannot be circumvented. However, this
doesn’t influence the model, since the model employs the RSSI value at the optimal
orientation as the reference or peak power level. For the employed microwave
backhaul system, the LoS path between the Tx and Rx are expected to remain
unobstructed. Additionally, since both the Tx and Rx are stationary except for the
oscillatory motion, the risk of moving into a shadowing region is minimal. While
transient obstructions by flying objects could cause short, deep fades (Figure 23)
in the LoS path, long-lasting shadow fading is not anticipated.

7.1.7 Precipitation Based Fading

Rain and humidity within the transmission medium between the Tx and Rx
can induce fading (high variance in RSSI data seen in Figure 24). This fading
can manifest as either gradual changes due to alterations in humidity and water
absorption or as rapid, small-amplitude, high frequency variations caused by rain.
A potential strategy to address the impact of precipitation-induced fading involves
employing filtering techniques and leveraging insights gained over several seconds
of historical data. This approach may hold the promise of mitigating the influence
of fading caused by rain and humidity by effectively smoothing out the effects and
reducing their impact on signal quality.

7.1.8 Antenna Movements on the Other Side of the Link

RSSI variations at the receiver can also arise exclusively from movements
of the transmitter antenna. The model can be adapted to anticipate these
transmitter antenna movements without relying on the gyroscope data at the
receiver side. This adjusted model will be effective for predicting deviations by
utilizing properties of the 2nd order differential equations. Moreover, there’s
potential for both the receiver and transmitter antennas to experience movement.
In such cases, the model may be able to estimate the relative motion. However,
due to the increased complexity and testing requirements, the thesis will primarily
concentrate on antenna movements on the receiver side of the link. The receiver
side, which is equipped with IMU sensor data, provides a more manageable and
comprehensive approach for the scope of the study. Appendix G delves into
a situation where gyroscope data is disabled while running the EKF model to
mimic movement on the transmitter antenna. However, conducting more extensive
investigations into this scenario and enhancing model estimation accuracy lie
outside the scope of the thesis.
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7.2 Establishing Gain-Angle Relationship
Establishing a mathematical relationship between the “Angle of azimuth

relative to the main beam axis” (referred to as Angle) and the “Gain relative to the
main beam (dB)” (referred to as Gain) using specification documents will prove
instrumental in modeling the filter or estimating the antenna deviation from its
optimal orientation. Figure 62 illustrates the specifications for the given antenna
(ANTC HPX 30).

7.2.1 Antenna Specification

Figure 62: Antenna specification

Given the requirement to establish a relationship (equation) between a single
variable as a function of another single variable, a common approach is to employ
a polynomial regression. This involves expressing the Gain (g) as a function of
increasing powers of Angle (θ), as outlined in Equation (2).

g(θ) =
∞∑

i=0
ai · θi (2)

where a0, a1, a2, · · · are coefficients for each polynomial term.
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7.2.2 Simplifying Polynomial Regression Equation

Analyzing a sample radiation pattern allows us to make observations that will
facilitate the simplification of Equation (2).

• In many specification documents, the exact location of side lobes isn’t
indicated. Instead, they often specify the peak power of these side lobes,
making it challenging to determine the positions of nulls. To enhance the
reliability of the estimated model, focusing on the main lobe and avoiding
extreme non-linearities due to nulls is beneficial. One method to identify the
transition to a side lobe involves assessing the slope of the differential Gain
between adjacent Angle points, as expressed in Equation (5). If the slope
decreases rather than increases, it indicates that the envelope is shifting from
the main lobe to a side lobe.

Figure 63: Example of an antenna pattern [13] 13

• The fact that the Gain value in the specification remains consistent on either
side of the main beam axis suggests that odd powers of θ cannot be employed
in the equation. This is due to the potential disparity between the results
obtained from positive and negative values of θ.
i ̸= 1, 3, 5, · · ·

13The figure is just an example and does not correspond to the antenna specification provided
in Figure 62.
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• At Angle 0, the Gain is 0 dB (first row of the antenna specification table in
Figure 62), implying that coefficient a0 should be zero.
a0 = 0

• To prevent utilization of an overfitted and intricate equation, a prudent
approach involves commencing with a lower order equation and progressively
increasing its order until a satisfactory fit against the specification is
achieved.
i << ∞

Rewriting Equation (2) (Non-zero even powers of θ)

g(θ) =
2·n∑
i=2

ai · θi ∀ 1 ≤ n << ∞ (3)

7.2.3 Estimating Maximum Angle Limit for Polynomial Regression

To exclusively account for specification points within the main lobe, it’s crucial
to determine the number of rows from the specification table that should be
treated as data points for the polynomial regression. In order to identify the row
index within the specification table corresponding to the side lobe, a methodology
involves calculating the differential slope using adjacent sets of Angle points
provided in the specification.

∆gj = gj+1 − gj (4)

where gj is the Gain relative to main beam listed in row/index j in the specification
table (Figure 62).

mj = ∆gj+1 − ∆gj

∆gj+1
(5)

where mj is the change in the differential slope using adjacent points.
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Tracing the radiation pattern plot towards the first null, it’s anticipated that
the slope will generally increase. Conversely, a decrease in slope could signify
transition to a side lobe. While this observation holds true, minor deviations
may occur due to factors such as antenna imperfections, material characteristics,
measurement inaccuracies, quantization errors, and more. These can potentially
result in semi-ideal radiation pattern, where the differential gain of the main lobe
is not strictly increasing upto first null point. To account for these factors, a
threshold of 0.1 or a 10% change will be employed to discern the shift from the main
lobe to a side lobe. This threshold will serve as a useful criterion for accurately
identifying these transitions.

Figure 64: Slopes of differential gain

Referring to Figure 64, it’s evident that Index 12 exhibits a notable decline in
the slope (-3 to 0), which signifies a transition to a side lobe. In the case of Index
9, there’s a reduction in slope, albeit not as pronounced. This subtle reduction can
likely be attributed to the inherent characteristics of real antenna systems with
semi-ideal radiation patterns. Of note is Index 11, corresponding to an angle of
4.2◦ or ∼ 0.0733 radians. When attempting to fit the equation to the specification,
it’s pertinent to consider the data points upto this angle, subsequently referred to
as the “Limit for equation fit” in subsequent plots.
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7.2.4 Estimating Equation from Polynomial Regression Results

Employing the 11 data points extracted from the specification table (Figure
62), a series of trials involving various polynomial orders will be conducted. The
aim is to identify the lowest order that yields a satisfactory fit against the data.
Rewriting Equation (3) in matrix form, assuming order of N (even number):



g1
g2
g3
...

g11

 =



θ2
1 θ4

1 θ6
1 · · · θN

1

θ2
2 θ4

2 θ6
2 · · · θN

2

θ2
3 θ4

3 θ6
3 · · · θN

3
... ... ... . . . ...

θ2
11 θ4

11 θ6
11 · · · θN

11





a2
a4
a6
...

aN



G = ΘA

Solving for A

A = Θ†G (6)

where Θ† pseudo-inverse [30] of Θ.

N = 2, 4, 6 are attempted with the plots shown in Figure 65.

Figure 65: Polynomial regression for various even order of polynomials
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It’s apparent that Order2 (N = 2) doesn’t align well with the theoretical
antenna gain, displaying deviations from this gain before reaching the “Limit for
equation fit”. On the other hand, both Order4 (N = 4) and Order6 (N = 6)
closely track the theoretical antenna gain. Order4 was chosen as the most suitable
option, as it effectively captures the characteristics of the theoretical antenna gain.
The coefficients for Order4 are provided in Equation (7).

g(θ) = −3.0339 × 105 · θ4 − 1.1741 × 103 · θ2 (7)

with a4 = −3.0339 × 105 and a2 = −1.1741 × 103 (approximated to 4 decimal
places).

7.2.5 Alternative Methods for Estimating the Relationship

The micrawave radiation pattern can also be expressed as a function of the
Bessel function (first kind with integral orders equal to 0) [31] or the same function
in infinite series [32], both equations are listed below:

J0(x) =
∞∑

k=0

(−1)k

k!Γ(k + 1)

(
x

2

)2k

where Γ(k + 1) =
∞∫

0

tke−tdt

J0(x) = 1 − 1
4x2 + 1

64x4 − 1
2304x6 + · · ·

While the equation presented will not be utilized due to the simplicity of
the polynomial regression and the resultant Equation (7), it’s worth noting the
similarity between the expression of the radiation pattern as a sum of the even
powers of x.
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7.3 Dynamic Model
To formulate a model to estimate antenna movements, the state space variables

must be identified. In this context, the hidden state to be estimated pertains
to the angle of deviation from optimal antenna alignment (θ). Conversely, the
known information or the output state is comprised of IMU gyroscope data and
the RSSI measurements.

7.3.1 Model Description

As elaborated in Section 7.2, the angle of deviation from optimal alignment
is constrained to fall within the bounds of the main lobe, with a maximum value
of less than 4.2◦. This threshold might vary depending on the specific antenna
type. By encompassing all plausible microwave antenna configurations offered by
Ericsson (Figure 4), it’s evident that the maximum angle of the main lobe does
not surpass 10◦. In light of this, the small angle approximation [33] is deemed
suitable within the confines of a 1% relative error. This approximation provides
a practical means to simplify calculations while maintaining a satisfactory level of
accuracy.

sin θ ≈ θ if θ ≤ 10◦ (8)

Upon analyzing different oscillation types as detailed in Section 5, it’s evident
that the oscillatory behavior can be effectively modeled using a second-order
differential equation. This equation bears a resemblance to those employed to
describe mass-spring oscillators.

θ̈ + αθ̇ + βθ = w2 (9)

Appendix F provides a comprehensive explanation of the meanings and
significance of α, β and w2, and the relationship to equations describing
mass-spring oscillators.

As discussed in 7.1, only the gyroscope data from the IMU sensor will be
utilized. Modeling two slowly varying offsets:

• b1 = gyro bias [rad/s], with a small slow random walk drift ḃ1(t) = w3(t)

• b2 = RSSI bias [dB], with a small slow random walk drift ḃ2(t) = w4(t)
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Collecting the hidden state variables in a vector x ∈ R4,

d

dt
x = d

dt


x1
x2
x3
x4

 = d

dt


θ

θ̇

b1

b2

 =


0 1 0 0

−β −α 0 0
0 0 0 0
0 0 0 0



x1
x2
x3
x4

+


w1
w2
w3
w4

 (10)

= Ax + w (11)

The gyroscope sensor and radio give us the measurements

gyro14 = 1
Kgyro

(θ̇) + b1 + v1 [rad/sec] (12)

RSSI = g(θ) + b2 + v2 [dB] (13)

Derived in Section 7.2, the RSSI measurement function

g(θ) = a4θ
4 + a2θ

2 = −3.0339 × 105 · θ4 − 1.1741 × 103 · θ2

After conversion of Equation (11) to discrete-time, with xk = x(kT ), where T

is the sample time (0.01s),

x(k) = exp(AT ) x(k − 1) + w(k) = Φ x(k − 1) + w(k)

Output states :

y(k) =
[

gyro
RSSI

]
=


1

Kgyro

(
x2(k)

)
+ x3(k)

g
(
x1(k)

)
+ x4(k)

+
v1(k)
v2(k)


= h

(
x(k)

)
+ v(k)

14For a detailed derivation of the equation, refer to Section 7.9.
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Using Taylor series [34] expansion for Φ,

Φ = exp(AT ) = I + AT + (AT )2

2! + (AT )3

3! + · · ·

When αT and βT are small, higher order terms (> 1) are negligible and the
below approximation holds

Φ = exp(AT ) ≈ I + AT =


1 T 0 0

−βT 1 − αT 0 0
0 0 1 0
0 0 0 1



Given that the state space model is non-linear, the Extended Kalman Filter
(EKF) [35], a derivative of the original Kalman Filter, will be employed. The EKF
operates by linearizing a non-linear system around an estimation of the current
mean and covariance of the states.

7.3.2 Extended Kalman Filter (EKF) Equations:

Time Update:

4 × 1 : x̂(k|k − 1) = Φx̂(k − 1|k − 1)

4 × 4 : Pk|k−1 = ΦPk−1|k−1ΦT + Q

To simplify matters, let’s assume that the noise terms w1 to w4 are
uncorrelated. This assumption results in a diagonal covariance matrix.

Q = Cov(w) = diag(q1, q2, q3, q4)

Similarly, the noise terms v1 and v2 are uncorrelated,

R = Cov(v) = diag(r1, r2)
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Measurement Update:

2 × 1 : ỹk =
gyro

RSSI

−


1

Kgyro

(
x̂2(k|k − 1)

)
+ x̂3(k|k − 1)

g
(
x̂1(k|k − 1)

)
+ x̂4(k|k − 1)



2 × 2 : Sk = HkPk|k−1H
T
k + R

4 × 2 : Kk = Pk|k−1H
T
k S−1

k

4 × 1 : x̂(k|k) = x̂(k|k − 1) + Kkỹk

4 × 4 : Pk|k = (I4 − Kk Hk)Pk|k−1

where,

Hk = ∂h

∂x

∣∣∣∣∣
x̂(k|k−1)

=

 0 1
Kgyro

1 0

g′
(
x̂1(k|k − 1)

)
0 0 1



g′(θ) = ∂g(θ)
∂θ

= 4a4θ
3 + 2a2θ
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7.3.3 EKF Model Parameter Summary

Certain parameters within the proposed model can be assessed by analyzing
historical data samples, while others are set during the initial configuration based
on properties derived from stationary data. Additionally, specific parameters
require calibration following the observation of outcomes from real-world data.
This section will provide a concise overview of the chosen methodology for
configuring these model parameters.

• α : Setting this parameter to zero is an option. RSSI/gyroscope output state
variables will govern the values of the hidden state variables.

• β : This parameter can also be initialized to zero. However, it necessitates
configuration when none of the gyroscopes exhibit correlation with RSSI
variations, which occurs in cases of movements on the transmitter (Tx)
inducing RSSI fluctuations on the receiver (Rx) side. Further elaboration on
this process is available in Appendix G.

• Kgyro : This parameter requires periodic configuration through the
observation of historical data samples. This updates the model with the
suitable scaling factor for accurate current and future state estimations.
Further elaboration on this process is available in Section 7.9.

• q1 : Requires calibration.

• q2 : Requires calibration.

• q3 : Equivalent to the Allan variance with angle random walk. The value
is selected from the gyroscope exhibiting the highest correlation with RSSI
values. Select gyroscope “Allan variance” value from Table 1.

• q4 : Equivalent to the Allan variance with Bias Random Walk for the RSSI
sensor. Given the challenges in estimating this value through “stationary
data”, the value is set to variance of peak values from historical data samples
divided by sample duration.

• r1 : Equivalent to the variance value of the gyroscope that exhibits the
highest correlation with RSSI values. Select gyroscope “Variance” value
from Table 1.

• r2 : Equivalent to the RSSI variance obtained from stationary data. Select
RSSI “Variance” value selected from Table 1.
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To initiate the EKF process, the hidden state variables must be initialized with
certain initial values.

• θ0 : Set to 0. The filtering process will facilitate the convergence of the state
value towards its actual value.

• θ̇0 : This can be configured to match the scaled value of the initial gyroscope
reading, once the bias error has been eliminated. The following formula is
used:
θ̇0 = (gyro0 − b1) × Kgyro

• b10 : The value of the bias error corresponding to the gyroscope reading that
exhibits the strongest correlation with the RSSI values is selected. Select
gyroscope “Bias value” from Table 1.

• b20 : Corresponds to the RSSI value at optimal orientation and is configured
based on observations from previous samples. It is essentially the maximum
RSSI value derived from the preceding 10-second sample window following
FIR filtering.
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7.4 Feature Extraction Based on Oscillation Properties
The nature of the oscillations offers the opportunity to extract intriguing

features. The EKF model encompasses numerous parameters that necessitate
meticulous adjustment to minimize estimation errors. Certain parameters can
be estimated by utilizing data from preceding time instances. Employing these
parameters within the EKF model facilitates the estimation of current hidden
state values, in addition to predicting future state values. This iterative process
of parameter estimation and state prediction enhances the model’s accuracy and
predictive capabilities. A summary of useful features is provided in this section,
with more details provided in subsequent sections.

Selecting the gyroscope that correlates the best with RSSI
Since the frame of reference between the IMU and antenna remains undisclosed,

determining the gyroscope sensor that exhibits the strongest correlation with
RSSI variations is pivotal in the feature extraction effort.

Estimating the angle between optimal alignment and extremes in an
oscillation

Based on the assumptions delineated in the earlier section, particularly Section
7.1.2, it becomes feasible to estimate the deviation from optimal alignment. This
can be achieved by examining the RSSI values at the oscillation peaks and dips as
shown in Figure 66.

Figure 66: Example of peaks and dips for partially unbalanced case
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Estimating the gyroscope scaling factor
Unless the focal point is precisely situated between the IMU (on the

radio) and the antenna, the angular rotation of the antenna will not equate
to the angular rotation derived from the gyroscope data. To reconcile this
discrepancy, a gyroscope scaling factor can be introduced. This scaling factor
is employed to ensure that the scaled gyroscope values accurately correspond to
the rotation of the antenna. By incorporating this factor, alignment between
the gyroscope-derived data and the actual antenna movement can be achieved,
enhancing the accuracy of the antenna deviation estimation.

For the sake of simplicity, the feature extraction and EKF processes are
carried out on the same dataset. In an actual implementation of the proposed
solution, the feature extraction is intended to be conducted on the most recent
10-second window of sensor data. Subsequently, utilizing the extracted features,
the parameters (most suitable gyroscope, Kgyro, q3, q4, r1) of the EKF model are
adjusted. Due to the substantial processing demands associated with feature
extraction, this procedure can be executed offline (not on the radio). Once the
parameters are determined, the EKF process can then be performed in real-time
(on the radio). The process of feature extraction can be set to occur periodically,
under the assumption that the oscillation’s nature will not undergo significant
changes within short intervals. For instance, the EKF, active at time t could be
refreshed every 1 second, following processing on the dataset ranging from t − 11
seconds to t − 1 seconds, allowing for 1-second processing overhead time. On
the contrary, the EKF is required to execute the sensor fusion process in real
time, accommodating sensor data arriving every 10 ms. The EKF procedures
encompass a series of matrix multiplication steps, and as such, the processing
duration should not exceed 10 ms, even for a radio system with relatively modest
processing capabilities. Section 8 delves into this approach in more detail using
data from manually induced mast swaying.

Upcomming sections are summarized below

• Removing high frequency noise using FIR filter

• Selecting a suitable gyroscope sensor

• Estimating the positions of peaks and dips

• Estimating the angle deviation from optimal alignment

• Estimating the gyroscope scaling factor

• Estimating the value for noise variance of different states

• Running EKF using current samples
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7.5 FIR Filter Design
To implement the approach discussed earlier, a precise time alignment

between the sensor data and RSSI data is essential. However, challenges arise
due to potential differences in frequencies between these two datasets—whether
they are the same or distinct (as in the balanced vs. unbalanced case)—as
well as the presence of high-frequency noise (> 10 Hz). The application of IIR
filters is impractical due to the inherent non-linear phase distortion they introduce.

In lieu of IIR filters, a more suitable option is the use of FIR filters. FIR
filters exhibit linear phase characteristics and provide a more suitable solution
for time alignment while minimizing phase distortion. Figure 67 illustrates the
frequency response of the FIR filter utilized in this context. This choice of filter
facilitates effective time alignment between the sensor and RSSI data, enhancing
the synchronization process for accurate analysis.

Figure 67: FIR filter response

Filter Configuration:
• Filter type : Low pass filter

• FIR window : Hamming window

• Filter order : 48

• Sampling rate : 100 Hz

• Cutoff frequency15 : 15 Hz
15To use fir1 function from MATLAB, Stopband edge frequency Ws needs to be provided,

which equates to 2/Sampling rate × Cutoff frequency
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7.6 Selecting Gyroscope Sensor that Correlates Best with
RSSI

The approach used to establish cross-correlations in the preceding Section 6.3 is
likewise employed to identify the gyroscope that yields the highest cross-correlation
factor. An important difference to note is that this section employs standard
cross-correlation, as opposed to the “normalized” cross-correlation utilized in
Section 6.3. A normalized cross-correlation between two signals always has a
maximum possible (absolute) value of 1. However, in a standard cross-correlation
process, the resulting value can exceed 1, depending on the intensity of the signals
being analyzed. This is done to highlight the emphasis that the model functions
optimally with gyroscopes demonstrating strong normalized cross-correlation as
well as high magnitudes. Higher magnitudes contribute to enhanced reliability
in feature extraction. It’s plausible that multiple gyroscopes could exhibit
robust cross-correlations, potentially allowing for the fusion of information from
various gyroscopes to estimate antenna movements. However, the scope of this
thesis is to determine the antenna deviation from optimal alignment, albeit in
any direction. The aspect of fusing information from multiple gyroscopes lies
outside the scope of the thesis, and the approach will be limited to utilizing
the most prominent cross-correlation among the three gyroscopes. This focused
methodology simplifies the analysis while still providing valuable insights into
antenna movements.

For all of the cases, the gyroscope Z-axis exhibits the highest cross-correlation
value, as clearly demonstrated in Figures 69, 71 and 73. It is worth noting that a
comparative analysis should be conducted between the performance of both cases:
the cross-correlation with the original gyroscope signal and the cross-correlation
with the gyroscope signal subsequent to doubling the peak frequency, with the
objective of selecting the most suitable gyroscope signal.
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7.6.1 Almost Balanced Oscillation

Figure 68: Example of almost balanced oscillation

Figure 69: Comparison of cross-correlation results for all gyroscope axes - almost
balanced oscillation
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7.6.2 Partially Balanced Oscillation

Figure 70: Example of partially balanced oscillation

Figure 71: Comparison of cross-correlation results for all gyroscope axes - partially
balanced oscillation
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7.6.3 Almost Unbalanced Oscillation

Figure 72: Example of almost unbalanced oscillation

Figure 73: Comparison of cross-correlation results for all gyroscope axes - almost
unbalanced oscillation
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7.7 Filtering and Synchronization Between the Gyroscope
and RSSI

Identification of triplets consisting of 2 dips and 1 peak will be necessary
to estimate deviation angle from optimal alignment. Under ideal conditions
of balanced oscillations, this angle will be zero. While the task of estimating
peaks and dips in RSSI measurements can be as straightforward as detecting
local minima and maxima, the received wireless signal is susceptible to various
forms of noise, including thermal noise and fading due to factors such as rain or
obstructions.

In order to mitigate the influence of noise, it’s advantageous to rely on IMU
sensor data, which remains less susceptible to such noise sources. When an object
undergoes rotational oscillation between two extremes, the object is stationary
for a brief duration at these extremes. Identifying the time instances when the
gyroscope value is zero and time-aligning these instances with the RSSI data
facilitates pinpointing the dips in the signal. For the peaks, the RSSI maxima
between two dips is selected.

Upon the application of FIR filtering, the emergence of ripples at the initial
moments can be expected for signals with non-zero starting values. This
phenomenon occurs due to a rapid temporal transition, which is associated
with the distribution of energy across all frequency components. Filtering
serves to confine this energy to the pass band, resulting in the manifestation of
high-frequency ripples during the transition from zero to a non-zero value. This
may lead to additional zero crossings that do not represent the original signal.
To counter this problem, the initial 1-second segment of the filtered output is
excluded from feature extraction, and its omission has minimal impact on the
results. Features extracted from the latter part of the 10-second window better
capture the current signal characteristics and are more representative of its
behavior.
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While zero crossing points effectively represent the oscillation extremes, they
can sometimes be misconstrued as minor ripples, especially when the antenna is in
a nearly stationary condition (as illustrated in Figure 16). To differentiate between
these scenarios, the following criteria are assessed after applying FIR filtering to
eliminate high-frequency components ( > 10 Hz).

• The separation between two consecutive zero crossings in the gyroscope data
must align with the oscillation frequency of interest, which ranges from 0.5
Hz to 5 Hz. This requirement translates to a time interval between 1 second
and 0.1 seconds16.

• Zero-crossing points from the gyroscope data are considered after the initial
1-second period, to discard induced ripple effects from FIR filtering.

• Detect only one RSSI peak (local maximum) occurring between the two
instances of zero crossing.

• The minimum angle estimated from any of the dips in the triplet must
exceed the minimum non-zero angle specified in the antenna specifications,
which, as depicted in Figure 62, corresponds to 0.5 degrees. This criterion
is essential to prevent false detections of triplets caused by noise or
rain-induced fading.

Pairs of zero crossings (those occurring outside the defined time limits or within
the initial one-second period) and triplets (those with more than one local RSSI
maxima or with estimated angle from the dips less than 0.5 degree) that do not
satisfy the specified criteria are subject to rejection.

16To clarify, a cycle with a frequency of 1 Hz, corresponding to a 1-second duration, crosses
zero points twice. This results in a zero-crossing interval of 0.5 seconds, which is half the duration
of the full cycle.
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7.7.1 Almost Balanced Oscillation

Figure 74: Gyroscope and RSSI after FIR filtering for almost balanced oscillation

Figure 75: Detecting triplet sets for balanced oscillation (ignoring the first 1
second)
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7.7.2 Partially Balanced Oscillation

Figure 76: Gyroscope and RSSI after FIR filtering for partially balanced oscillation

Figure 77: Detecting triplet sets for partially balanced oscillation (ignoring the
first 1 second)
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7.7.3 Almost Unbalanced Oscillation

Figure 78: Gyroscope and RSSI after FIR filtering for almost unbalanced
oscillation

Figure 79: Detecting triplet sets for almost unbalanced oscillation (ignoring the
first 1 second)
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7.8 Estimating the Angle Deviation from Optimal
Alignment

Given the knowledge of the RSSI value at the dips (Rd) and the peak RSSI value
(Rp), the angle can be determined using Equation (7). By utilizing the difference
in RSSI between dips and peaks, the angle on each side of optimal alignment can
be calculated through the resolution of the following polynomial expression.

(Rd − Rp) = a4 · θ4 + a2 · θ2 (14)
Based on Equation (7), a2, a4 is already known. Solving the aforementioned

expression will yield four θ values, comprising two complex values and two real
values. Among the real values, one will be positive, and the other will be negative,
both with equal absolute magnitudes. The absolute value of the real solution will
represent the angle value.

In an unbalanced scenario, the θ value will differ on either side of the optimal
alignment. This will be denoted as θl and θr, corresponding to the left and right
angles within a triplet. It is useful to determine the mid way position between
two extremes in an oscillation, which will be termed as “offset-angle”. For a stable
oscillation, the offset-angle should be nearly consistent.

θdev = θl − θr

2 (15)

Each point within the plots depicted in Figures 80, 81, and 82 corresponds
to a θdev value for every set of triplets as identified in the Section 7.7. Although
these values are not explicitly employed in the EKF model, they serve as a means
to verify the accuracy of the estimation, which will be discussed in greater detail
in Section 7.10.

Given the potential existence of multiple triplet instances within a single
window, employing a weighted average approach could be beneficial in determining
an approximate deviation value over the entire 10-second log. If there are M
such triplet instances within a 10-second window and assigning greater weights to
triplets more recent in time, the weighted average can be expressed as,

θ̂dev =

M∑
i=1

wi · θdevi

M∑
i=1

wi

(16)

where wi represents the time within the 10-second window when the
corresponding triplet was detected.
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7.8.1 Almost Balanced Oscillation

Figure 80: Estimated offset-angle using triplet information for almost balanced
oscillation

As anticipated, in the case of almost balance oscillation, the offset-angle is
minimal, with all values below 0.05 degrees.
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7.8.2 Partially Balanced Oscillation

Figure 81: Estimated offset-angle using triplet information for partially balanced
oscillation

In a partially balanced scenario, the offset-angle falls within the range of 0.4
to 0.5 degrees. These values should be higher than the estimates for balanced
oscillation and lower for an unbalanced case.

115



7.8.3 Almost Unbalanced Oscillation

Figure 82: Estimated offset-angle using triplet information for almost unbalanced
oscillation

As anticipated, the almost unbalanced oscillation exhibits the highest
offset-angle in comparison to the other cases.
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7.9 Estimating the Gyroscope Scaling Factor

Reiterating the observation from Section 7.1.1,

gyro ∝ θ̇

The solution to estimating the gyroscope scaling factor is by solving the
minimzing function. From the triplet data in the previous section, we have the
two angles, (θl, θr) at time instance (tl, tr), where (l, r) represents left and right
dips respectively.

The cumulative angle, derived from the gyroscope data in a scenario where the
sensor precisely monitors antenna rotation, can be expressed as follows:

θr = θl +
tr∫

t=tl

θ̇(t) · dt (17)

In reality, since the sensor is not measuring antenna movements but rather
the radio movements, and the focal point of rotation can be anywhere in space;
the gyroscope movements will not exactly reflect the antenna movements. Given
the context of working with small degrees, the problem can be approximated to
be linear.

Here, the scaling factor that ensures the gyroscope data reflects the antenna
movements is denoted by a variable Kgyro. We define a function that determines
the difference between the accumulated θ from gyroscope measurements and
target angle θr, while multipling the scaling factor with gyroscope data. The
below equation assumes the gyroscope has zero bias and noise.

F (Kgyro) = θr − (θl +
tr∫

t=tl

gyro(t) · Kgyro · dt) (18)

The Kgyro that minimizes the absolute value of the above function will be a
good estimate of the scaling factor.

K̂gyro = arg min
Kgyro∈R

∣∣∣∣∣F (Kgyro)
∣∣∣∣∣ (19)
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In discrete domain and assuming known gyroscope bias, the above equation
can be rewritten as

K̂gyro = arg min
Kgyro∈R

∣∣∣∣∣∣θr −

θl +
tr∑

t=tl

(
gyro(t) − bias

)
KgyroT

 ∣∣∣∣∣∣ (20)

where T is the sampling rate.

7.9.1 Almost Balanced Oscillation

Figure 83: Estimated scaling factor for almost balanced oscillation

The oscillatory nature of the Kgyro estimate as seen on the right subplot for all
three cases is due to the slight deviation of the actual bias error value in comparison
to one derived from the stationary data. The mean value of all the Kgyro estimates
within a 10-second window gives a better estimate of the actual Kgyro value.
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7.9.2 Partially Balanced Oscillation

Figure 84: Estimated scaling factor for partially balanced oscillation

7.9.3 Almost Unbalanced Oscillation

Figure 85: Estimated scaling factor for almost unbalanced oscillation
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In all three scenarios, the mast sway generator system induced similar
oscillation types, with the sole distinction lying in the offset-angle. The mean
value of Kgyro serves as the periodically updated value supplied to the EKF model.

After estimating Kgyro, this parameter is then updated for the model, as
described in Section 7.3. It’s important to highlight that Kgyro is utilized in the
expression where the hidden state variable θ is represented as a function of the
gyroscope values. However, the goal is to find the inverse relationship, specifically
the gyroscope value as a function of θ, which can be derived as follows:

Antenna Angular Velocity = ( Scaling Factor ) × ( Gyroscope value - Bias
error + Gyroscope noise )

Variable substitution...

θ̇ = Kgyro × (gyro − b1 + v1)

The sign of the stochastic noise v1 is immaterial. Rearranging the terms yields
Equation (12), which is restated below:

gyro = 1
Kgyro

(θ̇) + b1 + v1
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7.10 EKF Results
After careful calibration of q1, q2 values to ensure the model is robust in

estimating deviation from optimal alignment, the final selected values are 0.001 and
0.1 respectively. Because of the oscillatory nature of antenna movements, the EKF
model incorporates equations that capture this specific type of motion (as seen in
Equation 9). Consequently, the EKF model predicts angles that encompass both
negative and positive values. However, since our goal is to ascertain the deviation
from optimal alignment in any direction, the ultimate result is obtained by taking
the absolute value of the EKF estimate. For Figures 86, 87, and 88, the subplots
contain results from the EKF along with the absolute value for reference.

7.10.1 Almost Balanced Oscillation

Figure 86: EKF results for almost balanced oscillation
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7.10.2 Partially Balanced Oscillation

Figure 87: EKF results for partially balanced oscillation

7.10.3 Almost Unbalanced Oscillation

Figure 88: EKF results for almost unbalanced oscillation
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Estimated vs Actual:

To obtain ground truth data for verifying the estimation accuracy, high
precision equipment such as laser levels, very high-quality IMUs mounted on the
antenna itself, high-quality digital leveling devices, and others are typically used.
However, for the purposes of the thesis, a simpler method invovled manually
determining the peaks, dips, and identifying the expected orientation of the
antenna was employed. This manual approach (Section 7.8 describes how to
obtain the θ from RSSI deviations) serves as a pragmatic substitute for more
expensive and sophisticated measurement methods not feasible within the scope
of the thesis.

Tabulating the results from plots and rounding the estimated antenna deviation
to two decimal places,

Log Type RSSI
Left Dip

RSSI
Peak

RSSI
Right Dip

Estimated
Angle

Expected
Angle

Almost Balanced -52.9 -47.6 -52.6 2.94 & 2.88 2.96 & 2.90
Partially Balanced -55.5 -47.9 -51.2 3.34 & 2.46 3.36 & 2.49

Almost Unbalanced -59.2 -48.1 -49.9 3.79 & 1.95 3.81 & 1.96

Table 2: Estimation results from EKF with the available gyroscope data

The largest error for the estimated angle in the above table (entry in red )
is for a partially balanced scenario, RSSI Right Dip case (deviation of 0.03 degrees).

Maximum Percentage Error = 2.49−2.46
2.46 × 100 ≈ 1.2%

Model performance results for the missing gyroscope data (Tx oscillation)
is covered in Appendix G. The aforementioned results demonstrate exceptional
accuracy with an error rate of less than 2%. However, both the model parameter
estimation and the EKF were executed using the same log data. While these
results are valuable for analysis purposes, they may not be practical in real-world
scenarios. Parameter estimation typically requires historical data, whereas the
EKF operates in real-time, utilizing live sensor data. The following section will
demonstrate an attempt to mimic a practical scenario.
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8 Model Parameter Estimation Using Historical
Data

As mentioned earlier, it is essential to estimate the optimal model parameters
from historical data. Figure 89 illustrates the sequence of steps involved in this
process. When the EKF estimation is initiated, it lacks the optimal parameters
for the first 11 seconds. Upon reaching the 10th second, the process for estimating
the optimal EKF model parameters commences, with a designated processing
time of 1 second allocated for the estimation and updating of the EKF model.

(a) Estimating EKF model parameter using samples from time = 1 to 10

(b) Updating EKF model before t = 11

(c) New parameter estimate is initiated using samples from time = 2 to 11

Figure 89: Sliding window design
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At the 11th second, the EKF incorporates all the model parameters and
continues the estimation of the deviation from optimal alignment (θ). This periodic
process of updating the EKF, which is currently at time t = 11 seconds repeats
every 1 second based on estimations from t−11 to t−1 second and continues until
the radio is deactivated. This continuous process of updating the EKF parameters
ensures that the following parameters are periodically refined to their optimal
values:

• Best correlated gyroscope selected

• Kgyro for optimal gyroscope scaling

• q3 to update Allan variance for the appropriate gyroscope selected

• q4 to update RSSI random walk variance from immediate past RSSI samples

• r1 to update variance for the appropriate gyroscope selected

• b1 to update bias for the appropriate gyroscope selected

• θ̇ to update hidden state value for the appropriate gyroscope selected

The parameters (q1, q2, r2) are preserved since they remain unaffected by
the gyroscope selection. Additionally, the values of the remaining hidden state
variables (b2, θ) are retained from the previous EKF estimate.

The recommended design suggests allocating one second for estimating
optimal model parameters, but this duration can be shortened depending on the
processing capabilities of the radio. Additionally, there’s the option of processing
the data externally, as historical data samples can be stored externally as well.
This external processing provides the flexibility to utilize higher processing power,
but it’s important to consider the latency involved in transferring the estimated
parameters back to the radio.

Fortunately, the transfer of only 7 model parameters should not incur
significant time delays, especially when there is a dedicated link between the
external processing unit and the radio.
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Evaluating the model’s performance in a scenario that closely resembles
practical implementation provides a more insightful perspective on any potential
limitations. In this context, the antenna-radio system was separated from the
mast sway generator system and mounted on an independent pole, situated at a
height of approximately 12 feet (Figure 90). The pole’s stiffness was notably high,
leading to minimal swaying due to natural wind forces. To induce swaying along
two distinct axes, manual intervention was employed to induce mast swaying.

Figure 90: Mounting antenna-radio system on a pole
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To elucidate the functioning of parameter estimation and EKF results, one
instance of manually induced pole oscillation is examined in this section. In
contrast to the previously discussed 10-second logs, this analysis encompasses
a longer duration log spanning 100 seconds. As a consequence, the figure may
appear compressed due to the increased number of data points presented within
the same figure size.

In Figure 91, points signifying the commencement of manual pole excitation to
induce oscillation have been marked. These excitations were manually initiated,
resulting in a rapid increase in the oscillation amplitude. Subsequently, the
pole was allowed to gradually dissipate energy and reduce oscillation amplitude.
This cyclic process was repeated four times, with new excitations occurring at
approximately 6 seconds, 28 seconds, 47 seconds, and 74 seconds from the start
of logging, as indicated in the RSSI subplot.

Furthermore, the gyroscope plots reveal that the most significant excitation
occurred along the Z-axis, X-axis, X-axis, and Z-axis sequentially, corresponding to
the four excitation events. Intermediate plots including Kgyro estimation, filtering,
synchronization, and other recurring processes have been omitted from this section
since they occur at 1-second intervals. Instead, the final estimation plot (Figure
92), accompanied by its analysis, is presented for clarity and conciseness.

Figure 91: Sensor data with excitation on two axes
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To initiate the filtering process, a default setting is required as the estimation
of model parameters has not yet been performed. In this case, the default
configuration selects the gyroscope X-axis for setting some of the initial
parameters. The specific details are provided below:

• Kgyro = 1

• b1 = 0.1 (Bias error value for gyroscope X-axis from stationary data)

• b2 = RSSI(1) (First value of RSSI)

• θ = 0

• θ̇ = G(1) − b1 (First value of gyroscope X-axis without bias error)

• q1 = 0.001 (Calibrated value)

• q2 = 0.1 (Calibrated value)

• q3 = 6.76 × 10−6 (Allan variance for gyroscope X-axis)

• q4 = q3 (Setting to same value as q3 due to lack of historical RSSI data)

• r1 = 6.9 × 10−4 (Variance value for gyroscope X-axis from stationary data)

• r2 = 23.5 × 10−4 (Variance value for RSSI from stationary data)

Figure 92: Estimation results from the EKF
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As previously clarified, the initial 11 seconds of the data log lack any model
parameter estimates. At the 11th second, the gyroscope Z-axis was identified
as the best-correlated gyroscope with RSSI, and the relevant model parameters
were updated (a list of these parameters is provided following Figure 89). The
subsequently selected axis for each second is elaborated upon in the subplots of
Figure 92. In this log, the primary focus will be on conducting a comprehensive
analysis of the overall model performance, without delving into a comparison
between the estimated θ and the expected θ.

Upon analyzing Figure 91, it becomes evident that a shift to a different axis
(after the initial shift at 11th second) should have taken place after approximately
29 seconds, but it actually occurs at around 31 seconds when the model shifts
to the X-axis. This can be attributed to the 1 second delay in processing and
updating model parameters.

The subsequent shift was expected around 73 seconds but, surprisingly, occurs
at 62 seconds instead. At approximately 47 seconds, both the X-axis and Z-axis
experienced excitations, with the X-axis exhibiting a higher degree of excitation.
However, the excitations on the X-axis dissipate more rapidly compared to those
on the Z-axis. This discrepancy may be attributed to a possible lower degree
of freedom or higher resistance at the focal point rotation along the X-axis as
compared to the Z-axis.

Around the 40-second and 60-second marks, the excitations recorded from the
gyroscope are notably low, which hinders the model’s accuracy in estimating the
hidden state values. This phenomenon can be attributed to the effects of drifting,
especially when the data lacks significant oscillatory motion.

The analysis presented underscores a noteworthy observation: despite the rapid
and dynamic changes in the direction of oscillation, the feature extraction process
from historical data showcases the model’s remarkable proficiency in selecting
the most suitable axis and consistently updating the model parameters with the
optimal estimates. This holds true as long as the system experiences reasonably
significant excitations.
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9 Predicting Future State Values
The last crucial component in ensuring the practicality of the research

outcomes from this thesis involves the capability to predict θ in advance and
implement proactive measures, such as adaptive control, to alleviate the effects
of antenna misalignment variations. To successfully implement these proposed
methods, it is imperative to transmit state information to the transmitter side.

These adaptive techniques may not completely eliminate the problem but
instead temporarily reduce the required channel capacity for transmitting user
data over that link. This reduction can be accomplished by decreasing the
modulation order and/or introducing redundancy into data traffic. By reducing
the necessary channel capacity, the radio system can prevent the need for
retransmitting data packets that might otherwise fail during periods of lower
received signal power during misalignment.

Lowering the required channel capacity can have an impact on performance
during peak data traffic instances. However, it’s worth considering that data
traffic often exhibits a bursty nature, as highlighted in prior research [36]. With
the application of time-series-based approaches, it may become feasible to schedule
high-traffic periods during moments of near optimal alignment and delay or reduce
the traffic during periods of misalignment, thereby optimizing system performance.

Additional methods encompass increasing transmitter power or rerouting
traffic through alternative links. Due to unsatisfactory results from the thesis
concerning the prediction of future state values, this section remains incomplete
and offers an opportunity for further research and investigation.
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10 Conclusion
The study was initiated by outlining the challenges inherent in backhaul

systems utilizing parabolic antennas, primarily attributed to the narrower beams
at higher frequencies. Notably, Ericsson has ongoing research studies involving
the installation of IMU sensors directly on the antenna, and enabling the steering
of the feed direction based on antenna movements. In contrast, this thesis
delves into alternative and cost-effective approaches for estimating antenna
movements. Instead of placing the IMU on the antenna, it is positioned on the
radio equipment. However, the radio and antenna are intimately connected via
the waveguide. The thesis has further delved into the challenges associated with
this approach and provides insights into the processes involved in simplifying the
problem for analysis and designing the EKF model.

Given the variability in the frame of reference between the antenna and the
IMU mounted on the radio, an innovative approach has been adopted: utilizing
cross-correlation between the RSSI data and the IMU sensor data. This approach
facilitates the selection of the most suitable gyroscope for updating the model
parameters. Section 7 commences by providing an overview of the Extended
Kalman Filter (EKF) model, followed by an elaboration of the approximations
and assumptions necessary to enable the model to estimate antenna movements
accurately. The section then systematically guides through the estimation of
various model parameters from sensor and RSSI data. The final outcomes of this
process are consolidated in Table 2.

While the obtained results instill confidence in the design and implementation
of the EKF model, addressing its practicality is the central focus of Section
8. This section illustrates how historical data can be effectively leveraged to
periodically estimate the model parameters while the EKF operates in real-time
using sensor and RSSI data. The analysis in this context is not centered around
comparing the expected and estimated deviations from the optimal alignment.
Instead, it focuses on the sliding window design and the model behavior when
processing logs with excitations occurring on different gyroscope axes.

The proposed model demonstrates remarkable proficiency in accurately
estimating antenna deviations from optimal alignment across a spectrum of
frequencies and oscillation patterns, underscoring its inherent robustness. It’s
worth noting that compared to the utilization of an IMU sensor directly attached
to the antenna, the primary tradeoff lies in the model’s inability to precisely
ascertain the specific orientation of antenna misalignment, be it horizontal or
vertical.
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While exercising caution, it is imperative to subject the model to rigorous
testing employing authentic datasets, as opposed to relying solely on a mast sway
generator or manually induced mast swaying. In the pursuit of transforming
this concept into a production-ready solution, a logical progression entails
incorporating IMU sensors into a greater number of radios, thereby amassing
data from networks most susceptible to the effects of mast swaying. Through the
utilization of the proposed methodologies for estimating anticipated deviations
from peak and, potentially, through iterative refinement of the model, the
prospect of a universally applicable solution becomes increasingly feasible.

Within the scope of this thesis, several areas were deliberately omitted,
nevertheless, they remain ripe for prospective exploration. Chief among these is
the imperative to validate the model under authentic real-world mast swaying
circumstances, encompassing a diverse array of antenna types distinguished
by varying frequencies and dimensions. Expanding this ambit further, there
is potential to tackle scenarios where swaying impacts both ends of the
communication link, occurring asynchronously. Such scenarios might necessitate
additional model states to effectively accommodate heightened complexity.
Additionally, the extension of the model to encompass XPIC-type antenna-radio
systems would eventually become a requisite step, ensuring comprehensive
coverage across all plausible antenna-radio configurations.

Ultimately, as the model’s predictive capabilities continue to advance,
it becomes conceivable to contemplate the expansion of research into the
development of intelligent adaptive power control mechanisms or baseband
coding strategies. These innovations could proactively address RSSI degradation
resulting from the dynamic movement of antennas, thereby enhancing the
efficiency of the communication link in the face of highly dynamic scenarios.
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Appendix A The Impact of the Antenna Feed
Shift on the Radiation Pattern

For narrow beam radiation pattern, antenna orientation change will have much
larger impact on the radiation pattern as compared to antenna feed positional
shift. It is important to keep in mind the limits of this assumption and two cases
with numerical calculations are covered below. As shown in Figure 93, a rotation
around a focal point located away from the antenna center will result in antenna
feed positional change along with the orientation change.

Figure 93: Antenna feed positional change due to rotational movements

Figure 93 can be simplified to Figure 94, where

HM : Mast Height
ΘM : Mast Rotation Angle
DM : Distance between Tx and Rx Feed
a : Feed Height change due to rotation
b : Distance between Tx and Rx change due to rotation
Φ : Deviation from optimal LoS path due to feed positional change
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Figure 94: A simplified representation of Figure 93

Applying simple geometry,

a = HM − HM cos(ΘM )

b = HM sin(ΘM )

Φ = arctan( a
DM −b )

Case 1: Short mast with large distance between Tx-Rx

HM = 5m, DM = 2000m, ΘM = 5◦

Φ ≈ 0.0005◦

Most cases including the current antenna-radio configuration will observe the
similar outcome, and hence the impact due to antenna feed positional change can
be ignored.

Case 2: Tall mast with short distance between Tx-Rx

HM = 20m, DM = 100m, ΘM = 5◦

Φ ≈ 0.044◦
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A 60cm antenna operating at 80 GHz spectrum has very short range and a
narrower beam. As per the antenna specifications for this antenna type, there is
-6.35 dB relative gain for 0.25◦ angle. Approximate intrapolation gives us about
-1 dB relative gain for 0.044◦ which is not negligible. The impact of this to the
estimation accuracy of the proposed model is beyond the scope of the thesis, and
will require a new antenna-radio system to perform the necessary data collection
and model verification.
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Appendix B Register Values and Settings

Register Name Register Number
(in Hex) Read/Write Register Value

(in Binary)
WHO AM I 0x0F Read NA
CTRL1 XL 0x10 Write 0b01011000
OUTX L A 0x28 Read NA
OUTY L A 0x2A Read NA
OUTZ L A 0x2C Read NA
CTRL2 G 0x11 Write 0b01010000

OUTX L G 0x28 Read NA
OUTY L G 0x2A Read NA
OUTZ L G 0x2C Read NA
CTRL10 C 0x19 Write 0b00100000

OUT TEMP L 0x20 Read NA
TIMESTAMP0 0x40 Read NA

Table 3: IMU sensor register details

Note1 : The SAD[0]/SA0 pin was grounded for provided Ericsson radio.

Note2 : In the context of simulated mast sway at approximately 5 Hz, the
accelerometer readings exhibit a variation within the range of ±1.5 G. Given
that gravity itself contributes 1 G, the accelerometer can potentially register a
maximum of 2.5 G. Consequently, it is essential to adjust the accelerometer’s
full-scale selection value to ±4 G, deviating from the default setting of ±2 G, to
accommodate the expected range of motion.

Note3 : Gyroscope full-scale selection value is set to ± 250 dps (degrees
per second) as opposed to the default value of ± 125 dps. Given a maximum
frequency of sway at 5 Hz, the gyroscope measurements consistently stay below 70
dps. However, it’s advisable to incorporate some additional margins for enhanced
reliability and robustness.

Note4 : The process of collecting sensor data and consolidating it into a
unified structure for transmission over USB occurs at a regular interval of 10
ms, corresponding to a frequency of 100 Hz. This process has been assigned the
lowest priority, making it readily interruptible by any higher-priority scheduled
processes with the radio. To ensure that a unique sensor reading is available
every 10 ms while accounting for timing buffers, a sensor update rate of 208 Hz
was chosen instead of 104 Hz.

Note5 : Register readings follow little endian format.
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Appendix C Methodology to Verify Low
Multipath Impact on the Antenna
Radiation Pattern

(a) Obstruction in antenna view (b) No obstruction in antenna view

Figure 95: Antenna view for different positions

(a) Perspective view (b) Digital leveling device

Figure 96: Verifying radiation pattern accuracy
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As depicted in Figure 96a, it’s evident that the obstruction is not within the
antenna’s line of sight. To ensure the alignment of the antenna specification with
the observed radiation pattern, measurements can be conducted using a digital
leveling device, as illustrated in Figure 96b. This device has a margin of error
of ±0.2◦. Furthermore, Figure 97 highlights the potential impact of diffraction
on the radiation pattern, as the signal strength increases or decreases when the
antenna rotates toward a solid object that lies outside the line of sight path.

Figure 97: Diffraction of Tx signal around object

To fine-tune the antenna for a nearly balanced oscillation, RSSI variations
are monitored over a 10-second window of logs. Necessary adjustments were
then applied to achieve the desired balanced oscillation pattern, resembling what
is depicted in Figure 19. It may require a few iterations to reach the optimal
configuration for achieving this balanced oscillation. Once this configuration is
established, key orientation points of interest are identified, such as the antenna’s
orientation during each dip and peak while subjecting the antenna to motor
induced oscillation. To achieve this, real-time measurements must be meticulously
observed, and the motor operation should be halted when nearing these critical
points for accurate documentation.

These interruptions occurred at both the extremes of the oscillations, where
the RSSI exhibited dips (as illustrated in Figure 66), corresponding to “Low
Angle” and “High Angle”. These orientations represent the local minima in the
RSSI variation. Additionally, the motor was paused at the peaks of oscillation,
corresponding to the “Mid Angle”. An example of such an almost balanced
oscillation case is provided in Table 4, which demonstrates approximately equal
angle intervals from the peak to the dips. All measurements and calculations
have been rounded to two decimal places, and all measurements are expressed in
degrees.
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Sr.No. 1 2 3 4 5 6 7 8 9 10
Low Angle 56.8 56.8 56.8 56.9 56.8 56.8 56.8 56.9 56.7 56.9
Mid Angle 59.2 58.8 58.6 59.3 58.8 58.8 59.0 59.0 58.7 59.0
High Angle 61.4 61.3 61.4 61.4 61.4 61.4 61.4 61.4 61.4 61.5

Sr.No. 11 12 13 14 15 16 17 18 19 20
Low Angle 56.9 56.8 56.8 56.9 56.9 56.8 56.8 56.7 56.8 56.8
Mid Angle 58.9 58.6 59.4 58.8 59.1 58.8 59.0 58.9 59.2 58.8
High Angle 61.4 61.4 61.3 61.3 61.4 61.3 61.2 61.4 61.3 61.4

Table 4: Table of manual angle measurements for almost balanced oscillation

Average Low Angle ≈ 56.82
Average Mid Angle ≈ 58.94
Average High Angle ≈ 61.37

Mid Angle to Low Angle = 58.94 − 56.82 = 2.12
High Angle to Mid Angle = 61.37 − 58.94 = 2.43

Peak Angle Deviation Error = (2.43−2.12)
2 = 0.16

Estimated Peak Angle ≈ 58.94 + 0.16 = 59.1. To further test the results, the
antenna oritentation was adjust by 1.08 degrees, to achieve a partially balanced
oscillation.

Sr.No. 1 2 3 4 5 6 7 8 9 10
Low Angle 55.9 55.8 55.8 55.8 55.9 55.8 55.9 55.8 55.8 55.9
Mid Angle 60.4 60.4 60.5 60.5 60.4 60.4 60.4 60.5 60.5 60.5

Table 5: Table of manual angle measurements for partially unbalanced oscillation

Average Low Angle ≈ 55.84
Average High Angle ≈ 60.45

Est. Mid Angle to Low Angle = 59.10 − 55.84 = 3.26
High Angle to Est. Mid Angle = 60.45 − 59.10 = 1.35

offset-angle ≈ 0.96 (actual value 1.08)

The results indicate that the antenna is following the radiation pattern within
the limits of human error and the measuring device margin of error.
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Appendix D Frame of Reference Between the
IMU and the Antenna

The thesis operates on the premise that the frame of reference between the
IMU and the antenna is not initially known. However, if there is a requirement
to precisely ascertain this relationship, particularly for the implementation of a
specific corrective solution tailored to a particular antenna-radio configuration,
this section offers a description of how to establish the relationship for that specific
configuration. Given that the IMU sensor is not physically situated on the antenna
itself, a transformation matrix that defines the relationship between the IMU
sensor’s frame and the orientation of the antenna needs to be determined. In
the context of the provided radio and antenna setup, the directional axes are
clearly illustrated in Figure 98.

Figure 98: IMU accelerometer and gyroscope axis in relation to antenna axis

As evident from the figure, it’s notable that the gyroscope’s Z-axis aligns
with the antenna’s oscillation along the vertical axis, while the gyroscope’s Y-axis
corresponds to the antenna’s oscillation along the horizontal axis. However, it’s
worth mentioning that the gyroscope’s X-axis corresponds to polarization shift, a
factor that will not be addressed within the scope of this thesis, as the radio can
only measure a single RSSI value along the most prominent polarization angle.
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Appendix E Bias and Variance From Stationary
Data

Log Gx Bias Gy Bias Gz Bias Gx Var Gy Var Gz Var RSSI Var
Log1 0.1047 -1.069 0.3124 8.42E-04 8.23E-04 0.0012 0.0025
Log2 0.1144 -1.0416 0.3444 7.32E-04 9.97E-04 7.46E-04 4.77E-04
Log3 0.1106 -1.0306 0.3342 0.0016 0.0014 6.18E-04 0.0022
Log4 0.0974 -1.1221 0.3319 7.55E-04 0.0031 0.0021 NA
Log5 0.1055 -1.0919 0.3572 6.73E-04 9.05E-04 6.14E-04 NA
Log6 0.1122 -1.0549 0.3564 6.75E-04 9.51E-04 6.25E-04 NA
Log7 0.0953 -1.2153 0.3013 6.77E-04 0.001 6.32E-04 NA
Log8 0.1027 -1.1298 0.3425 6.76E-04 0.0011 6.14E-04 NA
Log9 0.1011 -1.1635 0.3155 6.71E-04 8.97E-04 6.11E-04 NA

Table 6: Summary of stationary logs

Log information:
Log1 - Time Stamp : 05 17 13 20 57, Duration : 3000 seconds
Log2 - Time Stamp : 05 17 16 26 25, Duration : 3000 seconds
Log3 - Time Stamp : 05 17 15 24 43, Duration : 3000 seconds
Log4 - Time Stamp : 05 18 23 20 06, Duration : 15000 seconds
Log5 - Time Stamp : 05 19 15 40 45, Duration : 15000 seconds
Log6 - Time Stamp : 05 19 09 58 44, Duration : 15000 seconds
Log7 - Time Stamp : 05 20 19 52 54, Duration : 30000 seconds
Log8 - Time Stamp : 05 19 21 32 37, Duration : 30000 seconds
Log9 - Time Stamp : 05 20 10 02 46, Duration : 30000 seconds

Correcting bias in accelerometer data poses a challenge, primarily due to the
influence of gravity and potential misalignment issues. Similarly, mitigating bias
in RSSI data is a complex task, even when utilizing a direct signal feed from a
signal generator, as it can be affected by cable and connector losses.

Since the accelerometer data is not utilized in the final model, it has been
omitted from our analysis. The primary focus lies on the gyroscope data and
the variance in RSSI. Our data was sampled at a rate of 100 Hz, and instances
marked as “NA” for RSSI values indicate the absence of RSSI data in a particular
stationary log. A log duration of 30000 seconds, sampled at 100 Hz, corresponds
to a total of 3000000 data points.
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After excluding outliers (indicated in red within Table 6), a final set of
averaged values is calculated. For these values, the bias is rounded to two decimal
places and the variance is represented using a negative fourth power.

• Gyroscope X-axis bias : 0.10

• Gyroscope Y-axis bias : −1.14

• Gyroscope Z-axis bias : 0.33

• Gyroscope X-axis variance : 6.9 × 10−4

• Gyroscope Y-axis variance : 9.8 × 10−4

• Gyroscope Z-axis variance : 6.2 × 10−4

• RSSI variance : 23.5 × 10−4

While it’s important to note that RSSI variance can be influenced by the
quality of the signal generator and might not always precisely reflect the receiver’s
inherent characteristics, these values will still be incorporated into the final EKF
model.

Additionally, for the model’s gyroscope bias random walk variance estimation,
Allan variance [37] can be utilized and can be computed from the stationary data.
The Allan deviation, extracted from the logs with the greatest number of samples
and longest duration, is visually presented in Figure 99.

In the plots, the line denoted by σN represents a line passing through τ = 1
and with a slope of 0.5, signifying the angle random walk. Across all three
logs (05 20 10 02 46/05 19 21 32 37/05 20 19 52 54), the deviation values for the
three gyroscopes are identical. The EKF model utilizes the Allan variance,
calculated as the square of the Allan deviation. The numerical values extracted
from the plots are as follows:

• Gyroscope X-axis Allan variance with angle random walk : 6.76 × 10−6

• Gyroscope Y-axis Allan variance with angle random walk : 7.84 × 10−6

• Gyroscope Z-axis Allan variance with angle random walk : 5.76 × 10−6
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Figure 99: Allan deviation with angle random walk for multiple stationary logs
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Appendix F Understanding 2nd Order
Differential Equation

Numerous pieces of literature, such as [38] and [39], delve into the study of
mechanical oscillations, offering various equations to capture their behaviors.
Below is a selection of representations (as seen in Table 2-3 from [39]):

Rectilinear system

mẍ + cẋ + kx = T (t)

Rotational system

Jθ̈ + cθ̇ + kθ = F (t)

Equation (9), is similar to above equations except for the normalized mass
(m = 1) or moment of inertial (J = 1)

Equation in terms of damping factor ζ and natural frequency ω, with external
force or torque set to 0 (Equation (2-28) from [39]) :

ẍ + 2ζωẋ + ω2x = 0 (21)

where ω = 2πf ; f is the frequency of oscillation, and ζ is the damping ratio.

Upon direct comparison of Equation (9) with Equation (21), the following
equalities can be established:

α = 2ζω (22)
β = ω2 (23)

w2 can be ascribed to an external force that will cause oscillations that are not
balanced.

To elucidate each term within the proposed 2nd order differential equation,
simulation results obtained using Julia [40] will be leveraged. In the forthcoming
pages, three distinct cases, each characterized by a unique set of parameters
(α, β, w2) will be elaborated upon.
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Julia Source Code:

using OrdinaryDiffEq, Plots

#Parameters
α = 0
β = 10
w2 = 0

#Initial Conditions
u0 = [0,π]
tspan = [0.0,10.0]

#Define the problem
function harmonicoscillator(du,u,p,t)

θ = u[1]
dθ = u[2]
du[1] = dθ
du[2] = - α*dθ - β*θ + w2

end

#Pass to solvers
prob = ODEProblem(harmonicoscillator, u0, tspan)
sol = solve(prob, Tsit5(),saveat=0.01)

Summary of the above code:
The function harmonicoscillator defines the 2nd order differential problem, by
defining two states namely θ̇ and θ represented as u[1] and u[2] respectively. du[2],
the derivative of θ̇ is same as the 2nd derivative of θ termed as θ̈. Equation (9) is
coded in the last line of the function (move all terms except θ̈ to the right of =).

The initial value of the two states are specified as u0 in the code, and are
required as the starting values for the problem solver. The total duration of the
simulation is 10 seconds (tspan) with a sampling period of 0.01 second (saveat).
The kind of solver selected is not particularly important as the simulation is to
understand the behaviors of 2nd order differential equations. To complete the
description of the code, the type of problem solver selected is the Tsitouras 5/4
Runge-Kutta method [41] (Tsit5()).
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Case1: Undamped balanced oscillation

Figure 100: Simulation plot for balanced oscillation

If the frequency of oscillation is known, β can be determined (using Equation
(23) and substituting ω).

β = (2πf)2 (24)
To validate the above relationship, two cases are simulated. As shown in Figure

100, the frequency of oscillation is a little higher than 0.5 which matches the
theoretical value ( 1

2π

√
10 ≈ 0.5033 ) given β = 10. Another example (Figure

101), where β = 20, the frequency of oscillation a little over 0.7 and matches the
threoretical value of ≈ 0.7118.

Figure 101: Simulation plot for balanced oscillation (doubling β)
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Case2: Undamped unbalanced oscillation

By introducing a non-zero value for w2, the center of oscillation is shifted away
from zero. As depicted in Figure 103, the difference between the absolute values of
the minimum and maximum points is approximately -2. This oscillation pattern
resembles what is commonly referred to as a partially unbalanced oscillation, where
the antenna’s oscillations are not evenly distributed on both sides of the optimal
orientation. This behavior can be mathematically expressed as follows:

MinMaxDiff = 2 × w2

β
(25)

Figure 102: Simulation plot for balanced oscillation and non-zero mean

Since the mid-point or the difference between extremes for an unbalanced
oscillation (Section 7.8) can be estimated, the value of w2 can be determined
from Equation (25), and expressed in degree scale. The MinMaxDiff is same as
twice the offset-angle (ϕ).

w2 = β × ϕ (26)
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Case3: Damped balanced oscillation

For a damped oscillation, α will be non-zero.

Figure 103: Simulation plot for balanced oscillation with decay

The local maximas or minimas can be used to determine the damping ratio
(ζ) which in turn will give α. The equation for logarithmic decrement δ can be
expressed in multiple ways, some listed below:

δ = loge

x1

x3
= ln x3

x5
= ln x5

x7︸ ︷︷ ︸
log ratio of adjacent maximas

(27)

= ln x2

x4
= ln x4

x6
= ln x6

x8︸ ︷︷ ︸
log ratio of adjacent minimas

(28)

= ln x1 − x2

x3 − x4
= ln x3 − x4

x5 − x6
= ln x5 − x6

x7 − x8︸ ︷︷ ︸
log ratio of adjacent max-min differentials

(29)

The maximas/minimas can be determined by observing the RSSI oscillation
data and selecting the maximum/minimum dip respectively. Having estimated δ,
the damping factor ζ can be calculated (Equation (3-12) from [39]).

ζ = δ√
δ2 + (2π)2

(30)

Having determined ζ, α can be determined using Equation (22)
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Appendix G Model Performance When Tx
Antenna Oscillates Instead of Rx

This section follows from understanding the model described in Section 7.3.
Due to the unavailability of gyroscope data to represent Tx antenna movements
and correlate with RSSI data, several steps in the model parameter estimation
cannot be performed.

• Selecting the most suitable gyroscope
In instances where gyroscope data is unavailable, the option to identify the
gyroscope signal with the strongest correlation to the RSSI data is not viable.
Consequently, parameter q3 is configured to 0, while b1 is assigned a non-zero
small random value. Choosing a value of zero for b1 results in a collapse
in matrix multiplication, leading to a constant hidden state estimate of 0,
irrespective of the RSSI value.

• Feature extraction
The unavailability of gyroscope data renders it impossible to discern the
extremes of the oscillation. The absence of the means to detect dips hampers
the identification of triplets required for the feature extraction.

• Estimating the offset-angle
In the absence of triplets, the determination of the offset-angle becomes
unattainable. Fortunately, this aspect is not essential for the EKF model;
it solely serves the purpose of validating estimation outcomes. Manual
observation will be employed to verify the accuracy of the estimations.

• Estimating gyroscope scaling factor
In the absence of zero-cross information from the gyroscope data, the
calculation of the scaling factor becomes unfeasible. As a result, the
parameter Kgyro is set to 1.

• β value
In the absence of gyroscope data to guide the antenna deviations in
a consistent cyclic pattern, adjusting the β value to correspond to a
potential gyroscope frequency can enhance the model’s resilience to the
missing gyroscope data. To reiterate, the RSSI data encompasses two
frequency components for all oscillations that aren’t perfectly balanced.
One possible component matches the gyroscope frequency, while the other,
usually stronger component is twice the gyroscope frequency. In the case
of a balanced oscillation, only the frequency component that is twice
the gyroscope frequency exists. Through the utilization of DFT and
selecting prominent peaks via outlier detection using a threshold based on
percentiles, it’s feasible to identify the RSSI frequency component without
prior knowledge of the gyroscope frequency component. Leveraging this
information, β can be computed.
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In conjunction with the prescribed model parameter configurations outlined
above, it’s necessary to adjust r1 to a high value (e.g. 10). This modification
ensures that the model prioritizes adjusting the hidden state variables to coverge
the model output variable values more closely to the RSSI values instead of the
gyroscope values.

In summary, to simulate this scenario, all gyroscope sensor data can be set to
zero, and the model parameter values should be adjusted as follows:

q3 = 0
b1 = 1 (any small random value will work)

Kgyro = 1
r1 = 10
β = (2πf)2 where f = Half the RSSI frequency for balanced oscillation

All three scenarios, covered in Section 7.10 are repeated here with the exact
same model parameter configuration except for β as it is a function of the RSSI
frequency.

Figure 104: Kalman filtering results for almost balanced oscillation with no
gyroscope data
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Figure 105: Kalman filtering results for partially balanced oscillation with no
gyroscope data

Figure 106: Kalman filtering results for almost unbalanced oscillation with no
gyroscope data
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Log Type RSSI
Left Dip

RSSI
Peak

RSSI
Right Dip

Estimated
Angle

Expected
Angle

Almost Balanced -52.9 -47.6 -52.6 2.87 & 2.82 2.96 & 2.90
Partially Balanced -55.5 -47.9 -51.2 3.25 & 2.19 3.36 & 2.49

Almost Unbalanced -59.2 -48.1 -49.9 3.70 & 1.94 3.81 & 1.96

Table 7: Estimation results from EKF with no gyroscope data

Compared to the results shown in Table 2, the error is higher without the
gyroscope data. The largest error in estimated angle from the above table (entry
in red ) is for the partially balanced scenario with the RSSI Right Dip case
(deviation of 0.3 degrees).

Maximum Percentage Error = 2.49−2.19
2.19 × 100 ≈ 13.7%

The higher percentage error can be attributed to the lack of gyroscope data (no
Kgyro). Also, as shown in Figure 24 and 22, the energy is distributed between two
fairly strong frequency component making it difficult to model the spring equation
correctly (uncertainty in value of β). For almost balanced and almost unbalanced,
the error is significantly lower as there is one strong frequency component as
opposed to two in a partially balanced case.
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Appendix H Identifying Window Size for a
Moving Average Filter

To determine the ideal window size, it is valuable to consider its relationship
with the cutoff frequency of a moving average filter. The continuous-time frequency
response of a moving average filter [42] is expressed as:

H(f) = sin(πfM)
M sin(πf)

M : window size
f : frequency of signal

The cutoff frequency [42] is defined as the frequency of the half-power point
where the power gain is half (also called -3 dB-point).

|H(f)|2 = 1
2 ⇒ sin2(πfM)

M2 sin2(πf) = 1
2

⇒ sin2(πfM) − M2

2 sin2(πf) = 0

To transition from the continuous-time frequency domain to the discrete-time
domain, the scaling f → f/fs can be employed17. In the context of the sensor
data, the highest frequency of interest is 10 Hz, while the sampling rate (fs) is
100 Hz. To ensure sufficient margin between the cut-off frequency and highest
frequency of interest, the cut-off frequency (f) can be set to 15 Hz. Applying this
equation, we obtain f = 0.15.

sin2(π 0.15 M) − M2

2 sin2(π 0.15) = 0 (31)

Equation (31) presented earlier lacks an analytical solution for calculating M .
To address this, numerical methods, specifically the Newton–Raphson method
[43] can be employed. Considering the methodology employed and the subsequent
results (detailed on the following page), it can be concluded that a window size of
3 samples aligns well with the specified requirements.

17A common textual description is “scaling by sample time”, which is the same as dividing by
sampling rate
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The methodology can be summarized as follows:

• Identify the function g(x) for which a solution is required
(
g(x) = 0

)
.

Referring to Equation (31) and replacing M with x, the following equation
is obtained:

g(x) = sin2(π0.1x) − x2

2 sin2(π0.1)

• Identify the iterative equation using Newton–Raphson method to solve the
equation.

x1 = x0 − g(x0)
g′(x0)

x2 = x1 − g(x1)
g′(x1)

...

xn+1 = xn − g(xn)
g′(xn)

where g′(xi) = ∂g(x)
∂x

∣∣∣∣∣
x=xi

• While setting x = 0 is an apparent solution, the objective here is to identify a
non-zero solution. This can be accomplished by experimenting with different
initial values of x until a non-zero solution is reached. The outcomes obtained
through the MATLAB code are presented below:

x0 = 1 ⇒ xn = 0
x0 = 2 ⇒ xn = 3.0955

• Because the Equation (31) contains even powers and a sin function of x, both
positive and negative values of x will yield the same result. To account for
this property, the absolute value is taken and rounded down18 to the nearest
integer value.

xn = 3.0955 ⇒ M = 3

18By rounding down, the cut-off frequency either stays same or increases, which still aligns
with the requirement of not impacting the frequency of interest.
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