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Abstract 

In the last decade, the topic of political polarization has become a growing concern within 

academic and public debate. Many highlight the linkage between increased political 

polarization and democratic problems such as political tribalism and uncivil activism. It is 

also argued to be a global phenomenon. Despite this, research on political polarization - and 

its outcome in space (i.e. geographic polarization) - has predominately been conducted in the 

United States where an increased tendency for the partisan vote to spatially cluster at the 

local-most level of neighborhoods has been observed. However, this also means that no 

studies have been conducted in political systems that is not characterized by the binary two-

party-system. 

This study investigates the prevalence of geographic polarization within the Municipality of 

Stockholm, Sweden between 1998 and 2018. As the topic of geographic polarization has been 

largely neglected in Sweden, the aim of this study is to gain insight on the prevalence, 

magnitude and longitudinal development of polarization in the Swedish multi-party system 

context.  

The methodological approach of this study is to measure the degree of geographical 

polarization, at electoral districts, utilizing Global and Local Moran’s I, a common spatial 

regression statistic within geographic information systems (GIS) which has been used in 

several studies to examine the degree in which the partisan vote tends to cluster. This is done 

at [1] the Global level, i.e. the overall tendency for the partisan vote to cluster, and [2] the 

Local level, the tendency for the partisan vote to cluster at different magnitudes across 

neighborhoods within the municipality. 

As results show, within the Municipality of Stockholm there was a decreasing trend of 

clustering of the partisan vote between the elections of 1998 and 2010. Between 2010 and 

2018 there was an increasing trend of the partisan vote to cluster. This is a much more 

ambiguous result compared to similar studies in the United States, where similar studies show 

a much clearer linear trend. At the local level, the magnitude in which the partisan vote tend 

to cluster at different parts of the city is clear. The right-wing vote is mostly clustered at the 

central part of the city, mainly around the neighborhoods of Norrmalm and Östermalm. The 

left-wing vote is mostly clustered in the Sub-urbs of Rinkeby-Kista and Spånga-Tensta. This 

pattern is repeated for all elections. 

In conclusion, between 1998 and 2018, the Municipality of Stockholm showed a varying 

degree of geographic polarization, but no unambiguous evidence of an increase. The 

municipality was just as geographically polarized as 2018 as of 1998. At the local level, the 

tendency for the partisan vote to cluster at different parts of the municipality is repeated at 

each election, indicating a stable electoral geography. Hence, claims of an increased 

geographic polarization within the municipality cannot be supported. 

Keywords: Geography, GIS, Spatial Analysis, Spatial Autocorrelation, MAUP, Electoral 

Geography, Political Polarization, Geographic Polarization, Stockholm Municipality.  
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1. Introduction 

In the light of the political and social turmoil of the recent decade, the public and academic 

debate on political polarization has received increased attention.  Political polarization is 

considered a global phenomenon by some (Carothers & O’Donohue, 2019), and the later U.S. 

elections and the British referendum on Brexit are often held as prime examples. An 

increasing amount of literature seeks to examine the prevalence and magnitude of, and driving 

forces behind, political polarization, often with the U.S. as the main focus (Levendusky, 2009; 

Böttcher & Gersbach, 2020). Societal impacts of political polarization include partisan and 

political bias, uncivil activism and negative affective emotions towards “the others” (Mason, 

2015; Shanto, et al., 2019)  

Evidence of political polarization is often studied by examining the opinions of important 

societal actors such as the electorate (voters), political parties, political representatives and 

media outlets (Oscarsson, et al., 2021). However, an often-neglected aspect of political 

polarization is its manifestation in space through the electoral geography. In the United States, 

the topic of geographic polarization, has received increasing attention by the apparent “blue 

state vs red state” division and the debate around the “Big Sort Hypothesis,” which suggests 

that American residents are increasingly geographically clustered in segregated 

neighborhoods together with people of “like-minded” political beliefs and voting behavior 

(Bishop, 2009).  

Following the debate sparked by Bishop (2009), a growing number of studies in the United 

States conclude a prevalent and increased geographical polarization. Most commonly, this is 

done by utilizing methodologies from spatial analysis and GIS together with thematic map 

visualizations. Evidence has been found at different scales between the rural and urban (Scala 

& Johnson, 2017) census divisions, states and counties (Johnston, et al., 2016) and more 

strikingly, at the local level of electoral districts and neighborhoods (Sussell, 2013; Myers, 

2013; Kinsella,et al., 2015; Ryne Rohlaa, et al., 2018; Kinsella, et al., 2021). These local micro-

level studies conclude that analysis based on aggregated geographical entities, such as states 

and counties, mask the prevalence of local polarization due to the ecological fallacy, meaning 

that conclusions on sub-entities are drawn from aggregate data and may therefore not be valid 

(Li, et al., 2018). Consequently, the “Big Sort Hypothesis” has gained increasing support by 

local-level analysis, further adding to the idea of a politically and geographically polarized 

nation.  
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Compared to the United States, the topic of geographic polarization has gained very little 

scientific attention in Sweden. This is despite the fact that public discourse on political 

polarization has been lively during recent elections (Knutson, 2019; Von Arnold, 2021). A 

recent report on the topic of political polarization in Sweden concludes that a slight increase 

in affective polarization (dislike for those with another political affiliation) amongst the 

electorate has occurred, but not to the extent it has developed in the United Sates (Oscarsson, 

et al., 2021). However, the report does not examine the geographic polarization of the 

electorate. This despite that the partisan vote of the Swedish electorate is not equally 

distributed in space. For instance, at the regional level, municipalities in northern Sweden 

attracts more left-wing votes than southern Sweden (Michaud et.al., 2021). At the local and 

intra-urban level of inner-city Stockholm (the country’s capital), the tendency for the 

neighborhoods to the north to vote right, and to the south to vote left, is a widespread 

assumption to many people. Despite these known voting patterns, the degree to which they 

are clustered in space has never been examined. Hence, historic or present geographic 

polarization in a Swedish context remains unstudied, and questions regarding its prevalence, 

spatial extent, degree, and variation at recent elections are unknown.  

1.2 Aim and research questions. 

The aim of this study is to examine the spatial and temporal variation of geographic 

polarization within the electorate of the municipality of Stockholm, the country’s capital and 

largest urban area. Methodologically, this is done through statistical testing by Global and 

Local Moran’s I at the local scale of electoral districts. Temporally, six election results are 

analyzed over a twenty-year period (between 1998 and 2018). The outcome of this analysis is 

presented in the form of thematic maps, as well as a timeline on the degree of polarization at 

each election. The main research questions are: 

1. How has the degree of geographic polarization varied for each election? 

2. How has the local degree of geographic polarization varied across the 

municipality, for each election? 
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2. Background and Key Topics 

2.1 Electoral Geography 

Electoral geography is the study of the interaction between space, place and the electoral 

process (Pattie & Johnston, 2009; Storey, 2009). As a sub-field of Political Geography, two of 

the main concerns within Electoral Geography are: 1) analysis of demographic and locally 

derived effects on voting behavior, and 2) the spatial structure of election results, i.e. 

geographic voting patterns.  

The topic on the effects on voting behavior is linked to the broader debate within Human 

Geography regarding compositional and contextual effects and their possible complex 

interactions (Pattie & Johnston, 2009). Compositional effects on voting behavior are the result 

of the demographic structure (e.g. class, gender and education) and their different voting 

tendencies. In contrast to this, contextual effects are factors deriving from the direct spatial 

environment in which the electorate encounters, e.g. place-specific campaigning and local 

economic and social circumstances (Johnston et al., 2004; Cutts & Webber, 2010).  

Studies that focus on the voting patterns of election results have historically been an integral 

topic of electoral geography. Despite their lack of ability to explain why voting behavior 

differs across space, it still has a strong following, especially in the United States (Forest, 

2017; Pattie & Johnston, 2009). Studies on voting patterns are predominately conducted on 

aggregated geographical data, mainly because of it’s availability and extensive geographical 

coverage.  

Due to being limited to aggregate geographical data, studies on voting patterns are subject to 

the Modifiable Areal Unit Problem (MAUP) and potentially the ecological fallacy (Pattie & 

Johnston, 2009). MAUP is a term for the statistical bias inflicted by the variability and 

inconsistency that is unavoidably inherited in aggregated geographical data. The problem of 

MAUP consists of two sub-problems related to: (a) scale and (b) zoning (Wong, 2009). The 

problem of scale is due to the fact that different results may occur when representing data at 

different hierarchical scale-levels e.g. counties, states and divisions. As an example, the 

representation of an election result within a state may be presented differently depending on if 

data is presented at the scale of neighborhoods or counties. Also, the problem of scale is 

related to the concept of ecological fallacy which occurs when conclusions on individual sub-

entities are drawn from coarser aggregate data (Li, et al., 2018). The problem of zoning is due 

to the effect that different groupings of smaller areal units, or drawing of their boundaries, 
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have on the apparent result. As an example, the election result of an electoral district could 

radically change just by redrawing its borders. Theoretically, there are endless varying ways 

to group geographical units, but also endless ways in which its borders can be drawn, making 

the analytical result statistically affected by the arbitrary geographic delineation of the data.  

2.2 Political Polarization  

Polarization as a concept has been widely used and studied within political science. Within 

these studies the term political polarization is often used to explain the relationship between 

discourses of political opinions, values and behaviors for a political issue (Oscarsson, et al., 

2021). In a democracy, carriers of these discourses include important societal actors such as 

political parties, elected officials, the media and the voting electorate.  

Conceptually, polarization (political or otherwise) can be viewed as both a process and a state 

(DiMaggio, et al., 1998). Polarization as a state refers to the measured level, in relation to a 

theoretical maximum, in which the opinions on a topic are opposed. Polarization as a process 

refers to the measured increase of these opposing opinions through time. As argued by Fiorina 

& Abrams (2008), when measured through the conceptualization of a state, polarization is 

often a matter of judgement as it can be argued to exist at the tail of any distribution, at any 

given time. Therefore, any robust analysis of polarization should be conceptualized as a 

process with measurable levels of polarization across time to uncover any trends on increase, 

decrease or stability.  

The process of polarization is often defined by an increase in extremism, divergence, or 

sorting between actors along the political dimension (Oscarsson, et al., 2021). In a process of 

increased extremism, the distribution of actors is increased at the polar opposites of the 

political spectrum and decreased in the middle. An increase in divergence describes when the 

whole constellation of actors increases their relative distance towards each other. Polarization 

by sorting is where there is no movement along the political dimension but the distinction of 

each position in the political dimension is increased.  

Polarization as a sorting process is often emphasized within the political debate of the United 

States. In the American context, it is argued that the process of increased sorting of elite 

actors within the Democratic and Republican party has also influenced the electorate as 

regards to their party preference (partisan sorting) (Levendusky, 2009: Oscarsson et al., 

2021). Through this sorting process, the partisan preference of the electorate not only 
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becomes more aligned by political ideology but also with other social and cultural divisions 

such as education, ethnicity, religiosity and geographical location of residence. In other 

words, the distinction of what constitute a “true” Republican or Democrat is increased. It is 

argued that this process has societal impacts up to a point where a “tribalization” along more 

and more homogenized groups are evident (Oscarsson, et al., 2021), with increased political 

bias, uncivil activism and dislike towards “the other” as a consequence (Mason, 2015; Shanto 

et al., 2019). 

In comparison with the United States, fewer studies on Political Polarization have been 

conducted in a Swedish political context. In a report by Oscarsson, et al., (2021) the topic of 

political polarization within the Swedish electorate is investigated by analyzing several 

longitudinal data sets on party preference and social, economic and cultural affiliation of the 

electorate such as class, education and urban or rural residence. The report concludes that 

generally, partisan sorting by social group affiliation shows no sign of increase in Sweden, in 

stark contrast to the situation in the United States. 

2.3 Geographic Polarization  

Studies on geographic polarization seek to examine the location, extent, and magnitude of 

political polarization in space (Kinsella C. , McTague, Raleigh, & a, 2015). The public and 

scientific debate on geographical polarization is noted by Bishop (2009) who argues that the 

partisan sorting in the United States also has profound influence on the political geography 

due to the sorting process of migration at regional, state and community levels i.e. geographic 

sorting. As a consequence of this sorting process, it is argued that more and more Americans 

tend to cluster locally in politically segregated neighborhoods with like-minded values and 

voting behaviors. While the initial empirical support for the “Big Sort Hypothesis” (BSH) 

presented by Bishop (2009) has been questioned due to arbitrary temporal election 

comparisons (Abrams & Fiorina, 2012), the hypothesis of an increased geographic 

polarization has sparked a substantial amount of debate and scientific literature on the topic.  

2.3.1 Geographic Context of Previous Studies 

Scientific research on geographic polarization has received  very little notice outside the 

societal and political context of United States  despite the argument that political polarization 

is a global phenomenon (Carothers & O’Donohue, 2019). However, a few studies have been 

conducted in Europe prior to the last decades debate on polarization, such as the case of intra-
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urban polarization in Moscow (O'Loughlin, et al., 1997) and city-suburban voting polarization 

in the United Kingdom (Walks, 2005).  

As recent studies have had a predominant focus on the United States, most studies have been 

conducted at single or multiple scales within the American political geography. These include 

divisions, states, counties and various smaller geographical entities. In single-scale studies, 

counties have traditionally been the most frequent choice, both within studies on geographic 

polarization and electoral geography in general, due to: (1) the high degree of availability and 

accessibility of geographical data, (2) the fact that the local-most scales are where the political 

boundaries are intact through time, and (3) the existence of aggregate economic and social 

data local at these scales which allow for analysis of compositional effects (Kinsella C. et al., 

2021). In fact, initial support for the BSH was underpinned by county-level data (Bishop, 

2009), as was a critical rejection of that hypothesis by Abrams & Fiorina (2012). Further on, 

county-level studies have been conducted to uncover the geography of polarization by 

geographical change in party alignment and regional and intra-regional differences (McKee & 

Teigen, 2009; Morrill & Webster, 2015). Other studies have examined the process of 

polarization through longer time-series and found support of an increased geographical 

polarization (Morrill, Knopp, & Brown, 2011; Lang & Pearson-Merkowitz, 2015; Johnston, et 

al., 2020). In contrast to these findings, long-term historical research highlights the overall 

stability of geographical polarization within the American counties (Darmofal & Strickler, 

2019). As put forward by Darmofal & Strickler (2019), through the time period of 1828-2016, 

counties within the United States have shown a varying degree of geographical polarization. 

The highest degrees of polarization were found around the mid-twentieth century, with recent 

elections more akin to degrees of the nineteenth-century, indicating that the county is not 

more polarized today as of the last century. 

Studies on multiple scales often utilize multi-level-modeling to analyze polarization at several 

scales. Johnston, et al., (2016) examined geographical polarization of the presidential vote 

between 1992 and 2012 which was found to have increased at all scales examined (division, 

state, and county). Similarly, Sussell (2013) found evidence for increased segregation 

amongst Republicans and Democrats in the State of California, between 1992 and 2010, at the 

level of counties, block groups and census tracts (a sub-entity of a county). In a study by Ryne 

Rohlaa et al. (2018) the degree of polarization was measured not only on division, states and 
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county but also at the local-most geographical entity of electoral districts, where the 

polarization was found to be significantly higher than at coarser scales.  

2.3.2  Local Level Analysis 

Compared to county-level studies, fewer studies have been conducted at the local scale such 

as electoral districts. In relation to findings by Ryne Rohlaa et al. (2018) where polarization at 

this scale was found most significant, geographic polarization is surprisingly understudied at 

this level despite that fact that they operate at the local level of  ”neighborhoods” and ”streets” 

in which the geographical sorting as hypothesized by Bishop (2009) is supposed to occur. 

However, the need of local analysis at this level has been addressed in many studies (Sussell, 

2013; Johnston et al., 2016; Ryne Rohlaa et al., 2018; Johnston, et al., 2020), but because a 

lack of availability, accessibility and methodological problems related to their frequent 

boundary-redrawing, only a few studies have been conducted. 

Despite being few in number, local level studies have produced insightful evidence of local 

geographical polarization by utilizing spatial regression-techniques common within GIS to 

localize “hot-spots” and patterns of clustering. In a case study covering the extent of Texas, 

Myers (2013) found evidence that the change in the Republican vote amongst local electoral 

districts became significantly and increasingly clustered between the election years of 1996-

2010. Clusters of the higher-than-average increase of the Republican vote were generally 

located in rural areas, while lower-then-average clusters were found in the metropolitan areas 

of Dallas, Houston and Austin. Examining the greater metropolitan area of Cincinnati, 

findings by Kinsella C. et al., (2015) also indicated that the partisan vote is significantly 

spatially clustered, and the degree of clustering had increased within the area between the 

elections of 1976 and 2008. Similar to Myers (2013), a pattern of an increasingly Republican 

rural, and a Democratic urban geography was proposed. In addition to localizing clusters of 

like-minded voting, the local analysis by Kinsella C. et al., (2015) also detected diverging 

electoral districts where this overall global pattern did not apply (e.g. predominantly 

Republican electoral districts in an otherwise Democratic area). 

Important conclusions from these local-analysis are the evident “unmasking” effect they have 

on macro-geographical units (e.g. counties), uncovering their potential ecological fallacy. 

This topic of is explicitly covered by Kinsella C. et al., (2021) by exploring local geographic 

polarization at the 10 most “purple counties” (a term for counties with even turnout for the 

republican and democrat vote). In county-level studies, occurrence of these is often held as 
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valid examples of “non-polarization” and contrasted to “land-slide-counties” due to their even 

turnout (Bishop, 2009; Abrams & Fiorina, 2012; Johnston et al, 2020). However, when 

examined at the local level of electoral districts, these counties show great internal 

polarization due to geographical clustering at different parts within them, showcasing the 

importance of local analysis in examining geographical polarization.   

2.5 The electoral system of Sweden  

The Swedish election system is a multi-party parliamentary democracy based on universal 

suffrage with a proportional representation (Valmyndigheten, 2021a). Elections are held at 

three different assemblies at three different geographical scales that include the 

parliamentary, the county and the municipality. As the election system is proportional, the 

number of seats for each general assembly is to a great extent in direct proportion to the 

percentage share for each party. To gain representation in the parliament, a political party 

must reach 4% of the total vote. The proportional representation can be contrasted to the 

election systems more common in the anglosphere (such as United States and United 

Kingdom) where plurality voting is premiered, meaning that the candidate, or political party, 

who gains the most votes get to represent the district subject to the election process. Also, the 

multi-party system can be contrasted with the Two-Party-system in United States which in 

modern times have been dominated by the Republican and Democrat parties. 

The geographical administration of Swedish elections is governed by The Elections Act (SFS 

2005:837). By this law the country should be divided into constituencies (swe: Valkretsar) 

that ensures geographical representation at each assembly level for each election. To deal with 

the administration of the electoral process, each municipality should be divided into several 

valdistrikt (electoral districts), all providing one polling station. These electoral districts are 

the local-most geographical entity in the electoral geography. As stated in the The Elections 

Act (SFS 2005:837), each electoral district should incorporate between 1 000 and 2 000 

entitled voters, and in exceptional cases where this criterion can’t be met it has to be approved 

by the County Administrative Board governing that municipality. Naturally, as municipalities 

undergo demographic changes at different localities within its area, the geography of the 

electoral districts are redrawn to correspond with the population size for each election. 

  



9 
 
 

3 Study Area  

Stockholm municipality is the capital and largest city in Sweden with a population > 960 000 

inhabitants as of 2021. Due to its size and general cultural influence on Sweden, the 

municipality is a natural choice for a first ever case study on local geographic polarization in 

Sweden. The municipality of Stockholm consists of 21 529 ha of land area (see Table 1) and 

is distributed across both the Swedish Mainland and several smaller islands which constitute 

much of the central city. Because of this, the biophysical environment of the city is heavily 

characterized by water which separates many of the city’s neighborhoods. Population-wise, 

the city is characterized by a generally affluent city center with relatively poorer 

neighborhoods situated at its sub-urban periphery. For maps on population, mean income and 

voting percentage per neighborhood district, see Figure 1, 2 and 3. 

Table 1. Administrative districts with geographical statistics as of election year of 2018. Note that the statistics of Södermalm 

also incorporate Hammarby Sjöstad (Stockholms Stad, 2019; Stockholms Stad, 2020; Stockholms Stad, 2021a).  

 

 

 

Municipal 

District 
Neighborhood District 

Land 

Area (ha) 
Population 

Mean Income 

(SEK/year), age 

20-64) 

Voting 

percentage 

 

Electoral 

Districts 

Innerstan 

Kungsholmen 485 71 191 497 100 85.9 45 

Norrmalm 492 71 800 535 100 85.7 44 

Östermalm 1800 76 587 544 200 84.3 47 

Södermalm 800 130 034 444 600 86.6 71 

Västerort 

Bromma 2460 80 045 496 100 85.4 51 

Hässelby-Vällingby 1960 75 904 354 600 74.7 43 

Rinkeby-Kista 1179 50 404 273 600 56.4 21 

Spånga-Tensta 1285 39 106 345 700 70.1 21 

Söderort 

Enskede-Årsta-Vantör 2114 100 859 366 400 78.4 59 

Farsta 1544 33 742 347 300 78.2 35 

Hägersten-Älvsjö 1308 90 203 366 400 84.6 70 

Hammarby Sjöstad 125 18 902 505 800 89.7 11 

Skärholmen 886 37 349 277 300 63.6 22 

Skarpnäck 1550 46 427 368 500 82.7 27 

 Whole Municipality 21 592 949 671 420 700 83.5 573 
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Figure 1. Voting percentage (2018) per Neighborhood district within Stockholm Municipality.  

 

Figure 2. Mean income (SEK/year), age 20-65, as of 2018 for neighborhood districts in Stockholm Municipality. 
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Figure 3. Population per hectare for municipal districts in Stockholm Municipality. 

The municipality of Stockholm is divided into several geographically defined administrative 

entities at different levels. For this study, two geographical administrative divisions are used 

for aggregating electoral districts to macro-entities. At the coarsest level, the municipality can 

be divided into three larger areas (Stadsområden), namely ‘Innerstan’ (Inner-city), ‘Västerort’ 

(western part) and ‘Söderort’ (southern part). Nested within these areas, at the local level, are 

13 administrative districts (Stadsdelsområden) in which the administration of the local 

welfare is operated (Stockholms Stad, 2021b). Henceforth, the larger areas of Stadsområden 

are referred to as ‘Municipal Districts’ and the local Stadsdelsområden as ‘Neighborhood 

districts’. For administrative districts, see Table 1.  

In this study, the neighborhood districts were subject to some minor geographical adjustments 

in order to keep the definition of Innerstan intact with its historical and popular definition in 

order to be able to incorporate the main islands, and subparts of islands, within the city center. 

In the southeastern part of the district “Södermalm”, the area of “Hammarby-Sjöstad” was 

separated from its official district to constitute its own. Due to this decision, this study uses 14 

neighborhood districts (instead of the 13 official ones) nested within the otherwise intact 3 

Municipal Districts. For location of administrative districts, see Figure 4. 



12 
 
 

 

Figure 4. Electoral districts by Neighborhood district within Stockholm Municipality, election year of 2018. 
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4. Method 

The Methodological approach of this thesis is divided into three steps. These can be 

understood by following the flowchart in Figure 5. The first step consisted of data collection 

(Box 1). The second step consisted of data preprocessing (Box 2). Importantly, at this stage 

the electoral districts were attributed election results and subjected to a retrofitting process in 

which historical electoral districts (and results) were harmonized to the electoral districts of 

2018. Then two variables based on different political groupings were created. The third step 

(Box 3) consisted of data analysis of these variables where the first research question (how 

has the degree of geographic polarization varied for each election?) is addressed by Global 

Moran’s I and the second research question (how has the local degree of geographic 

polarization varied across the municipality, for each election?) is addressed by Local Moran’s 

I.  

 

Figure 5. Flowchart describing the process of  data collection, data preprocessing and data analysis. 
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4.1 - Data Collection 

Spatial and non-spatial data were gathered from various sources. Geographical information on 

electoral districts (polygons) were available as shapefiles from the Swedish Election 

Authority (Valmyndigheten) for the election years of 2018, 2014, 2010 and 2006 

(Valmyndigheten, 2021b). Geographical information for the elections of 2002 and 1998 do 

not exist in a digitalized GIS-format and had to be retrieved from the Election committee of 

Stockholm municipality (Valnämnd) as analog maps (Stockholms Valnämnd, 2002; 

Stockholms Valnämnd, 1998). The analog maps were digitally scanned and stored in tiff-

format. For comparison of the electoral districts of 1998 and 2018, see appendix 8.3. 

Additional GIS-data gathered were Neighborhood Districts of Stockholm Municipality 

provided by the City Planning office of Stockholm Municipality (Stockholms stad, 2021c) 

and water surfaces (Ocean and lakes) from the Property Map (Fastighetskartan) provided by 

the Swedish mapping, cadastral and land registration authority (Lantmäteriet) (Lantmäteriet, 

2021). For a summary of all gathered spatial data, see Table 2. 

Table 2. Summary of gathered spatial and non-spatial data. 

 

Type Data Format Source Scale Uncertainty 

S
p

at
ia

l 
D

at
a
 

Electoral districts, 2018 
ESRI 

Shape 

Swedish Election 

Authority 
n/a n/a 

Electoral districts, 2014 
ESRI 

Shape 

Swedish Election 

Authority 
n/a n/a 

Electoral districts, 2010 
ESRI 

Shape 

Swedish Election 

Authority 
n/a n/a 

Electoral districts, 2006 
ESRI 

Shape 

Swedish Election 

Authority 
n/a n/a 

Electoral districts, 2002 
Analog 

Map 

Election committee of 

Stockholm municipality 
n/a n/a 

Electoral districts, 1998 
Analog 

Map 

Election committee of 

Stockholm municipality 
n/a n/a 

Neighborhood districts 
ESRI 

Shape 

City planning office, 

Stockholm municipality 
1:4 000 - 1:8 000 10 meter 

Water surfaces 
ESRI 

Shape 

Swedish mapping, 

cadastral and land 

registration authority 

1:5 000 - 1:20 000 10 meter  

N
o

n
 S

p
at

ia
l 

D
at

a 

Election results, 1998- 2018 Csv Statistics Sweden n/a n/a 

Ideological positioning of 

political parties 
Csv 

The Swedish National 

Election Studies  
n/a n/a 
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Non-spatial data consisted of ideological positioning of political parties and election results 

from 1998 to 2018 (see Table 2). Ideological positioning of political parties was gathered 

from reports by the Swedish National Election Studies (Valforskningsprogrammet) who have 

conducted longitudinal surveys on the ideological positions of political parties, according to 

the Swedish electorate, for every general election since 1979. As of 2018, the survey 

questionnaire was formulated as:  

"In politics, people sometimes talk about left and right. Where would you place the parties on 

a scale between 0 and 10 where 0 stands for left and 10 stands for right" (Oscarsson & 

Svensson, 2020 p. 3) 

Data from these surveys, for the main political parties (elected to parliament), were gathered 

from the report by Oscarsson & Svensson (2020). The ideological positioning of Feministiskt 

initiativ (FI), which is not represented in the parliament but has a substantial local following, 

were gathered from separate reports by Statistics Sweden (SCB; swe: Statistiska 

centralbyrån) (2011), Oscarsson (2016) and Oscarsson (2020). Data on election results per 

electoral district and political party were gathered from SCB (2021)(SCB, 2021). 

4.2 – Data Preprocessing 

As a first step in the data preprocessing, the tiff-files for election year 2002 and 1998 were 

georeferenced (see Figure 5). The geoprocessing was facilitated by documents and maps from 

the Election committee which contained information on new, adjusted, and intact electoral 

districts, in relation to the previous election. Because of this, geographically intact electoral 

districts between two elections could be used as safe reference points. 

Shapefiles for the electoral districts of 2002 and 1998 were created with the help of the 

georeferenced tiff-files (see figure 5). This was done by rendering the tiff-file “beneath” the 

shapefile (of the succeeding election) and manually changing the borders of the shapefile to 

align with the borders of the tiff-file. The ID of the electoral districts were updated according 

to the documents from the Election committee. This was done in a stepwise order (the GIS-

layer of 2002 was created from a modified version of the GIS-layer of 2006 while 1998 was 

created from 2002). After this process, six separate GIS-layers with electoral districts for each 

election year of 2018 (n = 573), 2014 (n = 537), 2010 (n = 503), 2006 (n = 461), 2002 (n = 

450) and 1998 (n = 441) were produced.  
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Areas within electoral districts that overlapped with oceans and lakes were subtracted from 

the layers using a vector overlay ‘Substract (see Figure 5). This because the areas of the 

election districts that overlaps with water is arbitrarily drawn for each election. This arbitrary 

redrawing would therefor affect the accuracy of retrofitting process. Lastly, the electoral 

districts for each year were attributed data on election results (absolute votes per party) by a 

common unique ID using ‘Join attributes by ID’ (see figure 5). 

4.2.1 – Retrofitting historic electoral districts 

To harmonize the electoral geography of elections prior to 2018, both the geography and 

election results were retrofitted to the electoral geography of 2018 (see figure 5). This is the 

same methodological approach  used by Kinsella C. et al. (2015) for harmonizing electoral 

districts at different elections. Through this method, the 2018 electoral districts were used as a 

standardized dataset, in which the election result of the previous electoral districts was 

attributed into depending on the percentage of spatial intersection.  

The process of retrofitting a previous election to the 2018 electoral districts consisted of 

several steps. Firstly, a relationship dataset with a “one-too-many” logic between the 2018 

layer and the layer of the previous election was created using ‘Join attributes by location’. 

Here a duplicate feature of a 2018 electoral district is created for every instance that it 

intersects with an electoral district of a previous election, inheriting the unique district IDs 

from both layers in two separate columns. As an example, if one electoral district of 2018 

intersects with three districts from a previous election, three features will be created. The 

column with the ID of 2018 will consist of the same ID while the column with the ID of the 

previous election consists of the three different IDs.  

The percentage intersection between the total area of each 2018 electoral district, to the 

intersecting ones of the prior election was calculated. This was done by utilizing spatial 

queries (see appendix 8.1) which stored the percentage overlap (as decimal value) for each 

feature in the relationship dataset. This decimal value was then multiplied by the total number 

of votes for each political party for the electoral district prior to 2018. The table is then 

summed up by the column with the IDs of 2018 and joined to the original GIS-layer with the 

electoral districts of 2018, ultimately redistributing the values for the prior election result to 

the geography of 2018. This process was iterated for all historic elections back to 1998. The 

absolute number of votes per party where then recalculated to the percentage of total votes 
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and stored in a separate column. Lastly, the neighborhood district for each electoral districts 

was derived by ‘Join attributes by location’(see Figure 5) where they intersected the most.  

4.2.2 – Creating variables 

Due to Sweden having a multi-party system, the political parties have to be grouped or 

summed into a single variable before data analysis. Two variables were calculated from the 

election results of the retrofitted electoral districts (see Table 3). The two variables are: 1) 

Percentage left/right margin and 2) Ideological voting index.  

The percentage left/right margin variable is calculated as the difference in percentage between 

the political parties to the left and to the right for each electoral district and year. This creates 

a theoretical range from +100 (100% margin in votes for left-wing parties) to -100 (100% 

margin in votes for right-wing parties) at each electoral district. Likewise, if an electoral 

district has a 50/50 turnout between left- and right-wing parties, the value is 0. As seen in 

Table 3, for the elections of 1998 to 2018 parties that constitute the left comprise of 

‘Vänsterpartiet’ (V), ‘Feministiskt Initiativ’ (FI), ‘Socialdemokraterna’ (S) and ‘Miljöpartiet’ 

(MP). Parties that constitute the right comprise of ‘Centerpartiet’ (C), ‘Liberalerna’ (L), 

‘Moderaterna’ (M), ‘Kristdemokraterna’ (KD) and ‘Sverigedemokraterna’ (SD). Neither 

parties have ever crossed the “centre-point” of 5 at the ideological dimension, making these 

party groupings intact for all elections. Percentage left/right margin is formulated as: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 𝑚𝑎𝑟𝑔𝑖𝑛𝑖𝑡

= %(𝑉 + 𝐹𝐼 + 𝑆 + 𝑀𝑃) − %(𝐶 + 𝐿 + 𝑀 + 𝐾𝐷 + 𝑆𝐷) 
(1) 

Where it is electoral district i at election year t. 

Table 3. Ideological positioning of political parties. Values where 0 = Left, 5 = Centre and 10 = Right. The values of SD for 

year 1998 and 2002 is based on the value of 2006 due to lack of data for these years. Values for FI do not exist for the year 

of 1998 and 2002 as the party was created in 2005. Data source: SCB (2011), Oscarsson (2016), Oscarsson (2020) and 

Oscarsson & Svensson (2020). 

Year V FI S MP C L M KD SD 

1998 1.41 - 3.57 3.75 5.36 6.35 8.85 6.78 7.74* 

2002 1.39 - 3.63 3.83 5.71 6.43 8.79 7.08 7.74* 

2006 1.34 2.5 3.61 3.55 6.18 6.7 8.4 6.85 7.74 

2010 1.25 2.7 3.31 3.86 6.28 6.63 8.31 6.81 7.36 

2014 1.4 2.4 3.66 3.87 6.16 6.59 8.22 6.88 7.26 

2018 0.83 2.1 3.15 3.02 6 6.5 8.36 7.54 8.29 
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The Ideological voting index was created by incorporating the ideological position of each 

party at each specific year (see table 3). This takes into consideration the notion that the 

partisan vote does not bear the same ideological position at every election as political parties 

move along the political “left-to-right” dimension (Abrams & Fiorina, 2012). As such, the 

Ideological voting index sums the ideological position of all votes as by proxy of the party 

vote of that year. This creates an index ranging from 0 to10 at each election year, for each 

electoral district. The Ideological voting index was inverted so that high values (close to 10) 

are considered “left” and low values (close to 0) are considered “right” (i.e. an inversion of 

Table 3) so that it implies the same logic as percentage left/right margin. The ideological 

voting index is formulated as: 

𝐼𝑑𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑉𝑜𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥𝑖𝑡 =  
∑ 𝑛𝑝𝑡𝑖𝑆𝑝𝑡𝑝

∑ 𝑛𝑝𝑡𝑖𝑝
∗ −1 

 

(2) 

Where it is electoral district i at election year t, p is the political party, 𝑛𝑝𝑡𝑖 is the total number 

of votes (n) per p at t at i and 𝑆𝑝𝑡 is the ideological position (S) for p at t.  

4.3 – Data Analysis 

To measure the degree of geographical polarization at each election, the dataset was tested for 

spatial autocorrelation by Global and Local Moran’s I. Global and Local Moran’s I are two of 

the most widely used statistical tools for measuring spatial autocorrelation in areal data 

(Rogerson, 2001). It has been used to measure geographical polarization by partisan voting on 

both county (Darmofal & Strickler, 2019) and electoral district-level (Myers, 2013; Kinsella 

C. et al., ; Kinsella C. et al., 2021). Statistical measurements for both Global and Local 

Moran’s I was calculated in ArcMap 10.5.1.  

In the following section, Global Moran’s I (Section 4.3.1) corresponds with research question 

1 and Local Moran’s I (Section 4.3.2) corresponds to research question 2. Lastly, Section 

4.3.3 explains the parameters used to conceptualize geographic polarization for both Moran’s 

I computations.  

4.3.1 Global degree of Geographic Polarization  

To assess the degree of global geographic polarization at an election, Global Moran’s I was 

used. Global Moran’s I measures the overall spatial autocorrelation of a variable in a dataset, 

and to which degree it’s spatial structure displays dispersion, randomness or clustering 

(Rogerson, 2001; ESRI, 2018). For the Global Moran’s I computation, see Equation 3. 
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𝑰 =
∑ ∑ 𝒘𝒊𝒋(𝒚𝒊 − �̅�)(𝒚𝒋 − �̅�𝒏

𝒋 )𝒏
𝒊

(∑ ∑ 𝒘𝒊𝒋
𝒏
𝒋 )𝒏

𝒊 ∑ (𝒚𝒊 − �̅�)𝒏
𝒋

𝟐  

 

(3) 

where n is the number of electoral districts, y is the variable of interest and ȳ representing it’s 

mean. The values yi and yj represents the variable of interest at electoral district i and j with 

Wij representing the Euclidean distance between electoral district i and j. 

The output of global Moran’s I is a single value ranging between a theoretical minimum of     

-1.0 to a theoretical maximum of +1.0. A Moran’s I value near +1.0 indicate a strong 

clustered spatial pattern (positive spatial autocorrelation) where high values tend to be located 

near high values and low values tend to be located near low values. A Moran’s I value near -

1.0 indicates a strong dispersed spatial pattern (negative spatial autocorrelation) where high 

values tend to be located near low values, and vice versa. Although theoretically possible, a 

significantly dispersed spatial pattern is very rare and seldom observed. A Moran’s I near 0 

indicates an that there is an absence of spatial pattern, or that the pattern is random. However, 

the exact value for no spatial autocorrelation is not 0 but an expected value (see Equation 4) 

that is based upon number of observations (in this case electoral districts).  

𝐸[𝐼] =  
−1

𝑛 − 1
 

(4) 

 

Where E is the expected value of I and n represents the number of electoral districts. 

In ArcMap 10.5.1 Global Moran’s I computation incorporates a significance test (ESRI, 

2018). In this test, the Moran’s I is recalculated into a Z-value and compared to p-value in 

order to examine if the null hypothesis of spatial randomness can be rejected by either a 

significant dispersion or clustering. In this study, the null hypothesis of spatial randomness is 

rejected if the confidence level reaches 99% (p<0.01).  

The Global Moran’s I computations were conducted for each election and for both variables. 

The resulting Moran’s I value is interpreted as an indicator of geographic polarization, with its 

degree depending on its deviation from the expected value. As the computation is done for 

each election, the degree of geographic polarization can be examined longitudinally for each 

election between 1998 and 2018.  
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4.3.2 Local Analysis of Clustering and Outliers 

To assess the local degree of geographic polarization for an election, the variables were tested 

for Local Moran’s I. Local Moran’s I tests the spatial autocorrelation of a variable and 

produces a local value for each observation in the dataset (Rogerson, 2001). For the Local 

Moran’s I computation, see Equation 5. 

 

𝐼𝑖 = 𝑛(𝑦𝑖 − �̅�) ∑ 𝑤𝑖𝑗(𝑦𝑗 − �̅�)

𝑗≠𝑖

 

 

(5) 

Where n is the number of electoral districts, y is the variable of interest and ȳ representing it’s 

mean. The values yi  and yj  represents the variable of interest at electoral district i and j with 

Wij representing the Euclidean distance between electoral district i and j. Ii is the Morans I at 

location i.   

The output of Local Moran’s I is a decomposed global Moran’s I, indicating the local 

contribution for each observation to the global value (Rogerson, 2001). As global Moran’s I 

indicates the spatial structure at the global level, local Moran’s I is essential for examining the 

heterogeneity and local variations of the dataset. As each observation has its own local 

statistic, the local Moran’s I can be mapped to uncover the location, extent and degree of local 

clustering hotspots and diverging outliers. As with global Moran’s it calculates a value 

ranging between a theoretical minimum of -1.0 to a theoretical maximum of +1.0 where the 

absence of spatial pattern is found at its expected value. For the expected value of Local 

Moran’s I, see Equation 6. 

 

𝐸[𝐼𝑖] =  
− ∑ 𝑊𝑖𝑗𝑗≠𝑖 (𝑦𝑗 − ȳ)

𝑛 − 1
 

 

(6) 

Where E is the expected value of Ii at location i, y is the variable of interest and ȳ representing 

it’s mean. The value yj represents the variable of interest at electoral district j with Wij 

representing the Euclidean distance between electoral district i and j. 

In ArcMap 10.5.1 Local Moran’s I computation incorporates a significance test which is 

conducted at every observation (ESRI, 2020a). In this test, the local Moran’s I is recalculated 

to a Z-value and compared to p-value to examine to which certainty the null hypothesis of 
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spatial randomness can be rejected. Importantly, the significance test also determines the 

spatial association of each observation i.e. if it is a part of a clustered, dispersed or random 

pattern. Significantly clustered observations are denoted as either “High-High” (HH) or 

“Low-Low” (LL), i.e. an observation with a high value amongst other high values, or a low 

value amongst other low values. Significantly dispersed observations are denoted as either 

“High-Low” (HL) or “Low-High” (LH) i.e. an observation with a high value amongst low 

values, or low value amongst high values. Observations with a random spatial association are 

denoted as “Non-significant” (NS). For each observation by local Moran’s I, the null 

hypothesis of spatial randomness is rejected when the confidence level is above 95% 

(p<0.05). Given the the variables created in section 4.2.2, a high value denotes left-wing 

voting and a low value correspond with right wing voting. 

The Local Moran’s I computation was conducted on the Percentage left/right margin variable. 

The local Moran’s I Score for each statistically significant electoral district was mapped with 

the incrementation of +/-0.1 on the Moran’s I theoretical scale. The average Moran’s I score 

for statistically significant electoral districts per municipal district and year was calculated. 

After that, an average Moran’s I score for the whole time period was calculated for each 

municipal district. 

4.3.3 – Conceptualizing Geographic Polarization  

When testing for spatial autocorrelation by both Global and Local Moran’s I, a prerequisite is 

the conceptualization of spatial relationships for the geographical features and the variable 

that is tested. A component of Moran’s I is it’s spatial weight (𝑤𝑖𝑗) where the spatial 

relationship between observation i and j is conceptualized by a value of spatial proximity (see 

Equation 3 and Equation 5). An example of a common spatial relationship is the “binary 

connectivity” in which the value of i is only influenced by the value of j if they are contiguous 

(Rogerson, 2001). This spatial conceptualization of political polarization has been used for 

regional studies on county-level in the (Darmofal & Strickler, 2019) and parliament 

constituencies in UK (Cutts & Webber, 2010) where the distance between the areal center of 

the observations are large but also relatively varying. However, when analyzing at a fine-scale 

district-level this is not suitable as districts in the same neighborhood that are not contiguous, 

but only a few hundred meters apart, would be modeled to have no influence on each other. 

The conceptualization of spatial relationships chosen for this study is Inverse distance with a 

Euclidean distance method. The Inverse distance concept is defined such as every observation 
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j, within a specified threshold distance from i is a neighbor of i, but nearby observations of j 

have a stronger influence on i then far away observations of j (ESRI, 2020b). Regarding the 

analysis on electoral districts, this conceptualization was proposed by Kinsella C. , McTague, 

Raleigh (2015) with a threshold distance that ensured every electoral district to have at least 

three neighbors for its Moran’s I computation. In this study area, the minimum distance to 

ensure at least three neighborhoods was 2840.807 meters, hence the chosen threshold distance 

in this study. Further justifications for this threshold distance were found by an Incremental 

Spatial Autocorrelation analysis which measures the intensity of spatial autocorrelation of a 

variable at different Euclidean distances (pro.arcgis.com, 2021). As the peak of  Incremental 

Spatial Autocorrelation suggest the threshold distance where the spatial processes tend to be 

most clustered, or dispersed, it is often considered an appropriate parameter value as input to 

the inverse threshold distance. The result from the Incremental spatial Autocorrelation 

analysis concluded that the spatial autocorrelation by inverse distance was the most 

pronounced between 2615 to 2972 meters depending on year and variable, hence close to the 

chosen Euclidean distance of 2840.807 meters in this study. 
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5. Results and Discussion 

In the following section, descriptive results from the retrofitting process on general voting 

patterns are presented prior to the research questions. Results on the general voting pattern are 

addressed in section 5.1. Results and discussion regarding the first research question on global 

degree of polarization is presented in section 5.2. Section 5.3 presents results and discussion 

on the second research question on local degree of polarization. Lastly, section 5.4 constitute 

a methodological discussion.  

5.1 General voting pattern 

 Descriptive results from the retrofitting preprocessing show that the voting outcome in 

Stockholm Municipality is historically right-leaning. Table 4 shows the mean, minimum and 

maximum values of each variable per year in the dataset comprised of 578 electoral districts. 

As indicated by the percentage left/right variable, the municipality has voted consistently in 

favor for right-wing parties, with the only exception being the election year of 2002 where the 

variable reaches a positive value. The right-wing tendency is also reflected in the ideological 

voting index as the mean ideological positioning of the vote is slightly below the ‘Centre-

point’ of 5 for each election. As these statistics serve as inputs for the computation of Global 

and Local Moran’s I, the yearly result from both methods is to be understood in relation to 

these descriptive statistics (e.g. an electoral district which is to the left, or right, is so in 

relation to the mean of that specific election year).  

Table 4. Descriptive statistics the 578 electoral districts used as input for Global and Local Moran’s I within Stockholm 

Municipality. 

Variable Year Mean Min Max 

P
er

ce
n

ta
g

e 
le

ft
/r

ig
h

t 

m
ar

g
in

  

1998 -1.5 -79.62 75.8 

2002 3.42 -77.19 73.41 

2006 -11.68 -82.46 72.83 

2010 -12.53 -88.37 79.37 

2014 -0.18 -84.57 86.2 

2018 -4.93 -83.51 83.8 

Id
eo

lo
g

ic
al

 V
o

ti
n
g

  

In
d

ex
 

1998 4.48 2.27 6.48 

2002 4.75 2.67 6.39 

2006 4.29 2.47 6.23 

2010 4.35 2.59 6.48 

2014 4.65 2.67 6.35 

2018 4.85 2.53 6.92 
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5.2 Global degree of Geographic Polarization  

The result from Global Moran’s I show that the partisan vote is significantly clustered. This is 

the case for each election and for both examined variables. As table 5 shows, all election 

years have a p-value lower than 0.01 (1*10E-07) and z-scores higher than 2.58 resulting in 

less than 1% probability that the pattern could be produced by a random spatial process. At all 

elections, the Moran’s I reaches above the expected Index value of -1.75*10E-3. Due to the 

similar results for both variables, the shifting of ideological positions by political parties at 

each election (as highlighted by Abrams & Fiorina (2012)) does not have a substantial impact 

on the degree of geographic polarization. 

Table 5. Global Moran’s I for Stockholm Municipality (1998-2018). 

Variable Year Moran's Index: 
Expected 

Index*10E-3: 
z-score: p-value*10E-07 

P
er

ce
n

ta
g

e 
le

ft
/r

ig
h

t 

m
ar

g
in

  

1998 0.64 -1.75 78.8 1 

2002 0.61 -1.75 75.2 1 

2006 0.60 -1.75 73.2 1 

2010 0.58 -1.75 71.7 1 

2014 0.63 -1.75 77.5 1 

2018 0.64 -1.75 78.7 1 

Id
eo

lo
g

ic
al

 V
o

ti
n
g

  

In
d

ex
 

1998 0.64 -1.75 78.4 1 

2002 0.62 -1.75 76.2 1 

2006 0.60 -1.75 74.0 1 

2010 0.58 -1.75 71.1 1 

2014 0.63 -1.75 77.7 1 

2018 0.65 -1.75 79.3 1 

 

The degree of clustering varies at each election year. As shown in table 5, the level of 

Moran’s I fluctuates throughout the period showing both an increase and decrease between 

elections. For both variables this pattern is similar. For percentage left/right margin, the first 

election of the timeline (1998) has an index-score of 0.64. It then decreases for the subsequent 

election years of 2002 (i = 0.61), 2006 (i = 0.60) and 2010 (i = 0.58). For the election year of 

2014 this pattern is broken, and the Moran’s I index score rises to 0.63. For the election year 

of 2018, the Moran’s index-score rose again to 0.64 reaching the same degree of clustering as 

the peak of 1998. This shows that although the recent election of 2018 did have a relatively 

high degree of geographic polarization, it is not exceptional from a historic perspective, as it 

is at a similar degree as at the beginning of the timeline (1998). The result differs from similar 

local-level analysis in the United States (see e.g., Myers, 2013; Kinsella C. et al., 2015) as it 
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does not indicate a generally increasing polarization process through time, i.e. from relatively 

low to high values of Global Moran’s index score. To make precise comparisons, in the study 

by Kinsella C. et al., (2015), Global Moran’s index score increased from roughly 0.45 (1976) 

to a near theoretical maximum of 0.95 (2008). Similarly, Myers (2013) show an almost 

continuous increase of the Global Moran’s I index score, for the change in the Republican 

vote (compared to the election for 1996) in the state of Texas, rising from 0.30 in 1998 to 0.76 

in 2010. The difference in the results between this study and the studies in the United States, 

may be explained due to differences in urban/rural voting patterns and the spatial extent to 

which the studies are conducted.  It is important to note that the American studies on local-

level geographical polarization are all conducted on larger study areas, covering the 

geographical extent of wider metropolitan areas (Kinsella C. et al., 2015) and entire states 

(Myers, 2013; Sussell, 2013). Hence these studies comprise of both rural and urban areas, 

compared to this study, which solely covers the extent of high density urban and sub-urban 

areas of Stockholm Municipality. As the American party vote (and other social and cultural 

aspects of life) according to some is increasingly sorted along the urban and the rural (Scala & 

Johnson, 2017; Johnson & Scala, 2021) a geographic polarization along these lines will show 

an increase in clustering as shown by Myers, (2013) and Kinsella C. et al., (2015), provided 

that the study area covers the extent of this spatial process. In this study, with a geographical 

focus on the urban core rather than a wider metropolitan region, or state, the process of a 

potential geographic polarization along the urban and rural is not examined. This could 

perhaps explain the difference in results between this and the American studies, and one can 

speculate that a study covering the wider metropolitan area of Stockholm would reveal an 

increasing urban/rural geographic polarization similar to the United States. Obviously, this 

can only be the case if the suggested urban-rural division of the United States in regard to 

voting (Scala & Johnson, 2017) is also applicable to Sweden. However, observations on 

decreasing partisan sorting in relation to the urban and rural divide in Sweden contests this 

notion (Oscarsson, et al., 2021), as well as the descriptive results from this study that show 

that the voting outcome in the municipality of Stockholm is fairly even (Although it is 

historically slightly right-leaning). This is in stark contrasts to the United States where similar 

sized cities are strongly dominated by the Democratic Party, and the Republican party is 

relegated to rural areas (Myers, 2013; Kinsella C., et al., 2015; Kinsella C., et al, 2021). 

Putting the potential sources that may explain the difference in results aside, it is clear that 
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geographic polarization, as a process that is increasing in time, is not as pronounced in 

Stockholm Municipality as in the Study areas in the United States. 

5.3 Local degree of Geographical Polarization 

The local degree of clustering varies within the municipality. Figure 6 shows the Local 

Moran’s I index score between election years of 1998-2018 grouped by spatial association. 

Most statistically significant clustered electoral districts (HH and LL) show a local Moran’s I 

score between 0 to +0.1. However, the electoral districts with higher degrees of Moran’s I 

score are clustered in two areas. For HH-districts it is the neighborhood districts of Spånga-

Tensta and Rinkeby-Kista and for LL-districts it is in Norrmalm, Östermalm and 

Kungsholmen. The spatial pattern of pronounced clustering in these areas is repeated, at 

various magnitudes, throughout the whole time-period. While no electoral districts within 

Spånga-Tensta and Rinkeby-Kista reaches an index-score above 0.2, the neighborhood 

districts of Norrmalm and Östermalm have electoral districts reaching between 0.2-0.3, and 

for some elections such as 1998, 2002, 2014 and 2018 above >0.3. 
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Figure 6. Local Moran’s I per electoral district, Stockholm Municipality 1998-2018. 
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The average degree of clustering varies between the neighborhood districts. Figure 7 show the 

average Local Moran’s I value for statistically significant electoral districts, per year and 

neighborhood districts, together with an average for the whole time period. The neighborhood 

districts with the highest degree of clustering is Östermalm with a period average of i = 0.15 

followed by Norrmalm with a period average of i = 0.11. After these, in descending order of 

clustering, is Rinkeby-Kista (period average of i = 0.07), Kungsholmen (period average of i = 

0.05), Spånga-Tensta (period average of i = 0.04), Skärholmen (period average of i = 0.03), 

Skarpnäck (period average of i = 0.02), Bromma (period average of i = 0.02), Enskede-Årsta-

Vantör (period average of i = 0.01), Farsta (period average of i = 0.01), Södermalm (period 

average of i = 0.01) Hägersten Älvsjö (period average of i = 0.01) and Hässelby-Vällingby 

(period average of i = 0.0). Hammarby-Sjöstad is the only municipal district where the 

average degree of Local Moran’s I, for significant electoral districts, indicate dispersion 

(period average of i = -0.01).  

 

Figure 7. Average Local Moran’s I per Neighborhood District and year. The Black bar shows the average Moran’s I for 

1998-2018. 

The right-wing vote is mostly clustered in the central part of the municipality, while the left-

wing vote is clustered in the suburbs. This is the case for every election year. As shown in 

Figure 6, LL-districts dominate the Municipality district of Innerstan with the exception of 

Södermalm which has a high amount of non-significant and HH-districts. In the municipality 

districts of Söderort and Västerort, HH-districts is the most frequent except for the 

neighborhood district of Bromma (For number of electoral districts per Municipal and 
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Neighborhood District, see Appendix 8.2). This central and peripheral pattern is a similar, but 

also mirrored, result to studies in the United States. In local-level studies in the United States, 

the voting pattern is that the Democratic party tends to cluster at densely populated centers 

while the Republican vote is clustered around it in the periphery of rural or sub-urban areas 

(Myers, 2013, Kinsella C., et al., 2015,. Johnson & Scala, 2021). In Stockholm municpality 

this patern is reversed, as it is the right-wing vote that is clustered at the urban core, and the 

left-wing vote that is clustered in the periphery. However, this notion is only true given the 

assumption that the Republican party constitute “the right” and the Democrati party constitute 

“the left”, which may be problematic due to the large local and ideological variation of party 

representatives, within the two parties (Oscarsson, et al., 2021). 

Electoral districts with a dispersed spatial pattern are scattered across the municipality. As 

Figure 6 shows, a handful of HL-districts are to be found in central part of the municipality 

(Innerstan) and occasionally to the west (Västerort). A relatively large cluster of HL-districts 

are located in the northwestern part of Kungsholmen at the election year of 1998 and 2002 

which as of the election year 2018 have switched to HH. Compared to HL-districts, the 

number of LH-districts are larger in number for every election. There are two main areas with 

LH-districts. To the northwest in Spånga-Tensta, a large uniform cluster of LH-districts is 

located at each election. The other area is to the south in Söderort where several clusters, or 

individual electoral districts, are present at each election in various numbers. While these 

dispersed electoral districts contribute negatively to the Global Moran’s value, making the 

Global Moran’s I ”less” clustered and geographically polarized, they could still be interpreted 

to be local examples of geographic polarization. As such, noticeable clusters of dispersed 

electoral districts such as the one in Spånga-Tensta, should not be interpreted as ”non-

polarized” due to being neighbor to the clustered HH-districts of Rinkeby-Kista. Instead, they 

show polarization towards its own immediate spatial surroundings rather than the global mean 

as the case for clustered electoral districts. 

5.4 Methodological Discussion 

5.4.1 MAUP and Retrofitting Electoral Districts. 

As with any analysis on aggregate geographical data, the methodological approach in this 

study is affected by MAUP.  With regard to scale, it is best practice to analyze the process 

being studied at the scale at which it operates (Li, et al., 2018). Theoretically, Bishop (2009) 

proposed this to be at the local scale of neighborhoods. At the same time, studies show that 
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geographic polarization exists at varying scales, both at micro (e.g. electoral districts) and 

meso-level (e.g. counties and states). However, the problem surrounding MAUP and scale can 

be argued as mitigated by analyzing electoral districts compared to e.g. the more aggregated 

districts such as neighborhood districts. It is clear from the result that despite the fact that 

some neighborhood districts are homogenous in their voting outcomes (e.g. Norrmalm and 

Rinkeby-Kista) some areas show variation (e.g. Spånga-Tensta and Enskede-Årsta-Vantör). 

Hence, aggregate analysis on these neighborhood districts would lead to misleading 

conclusions, and potential ecological fallacies, as sub-entities within them may deviate 

radically from the aggregate result.  

The impacts of MAUP in regard to zoning are hard to assess. The delineation of geographical 

data can severely impact the statistics (Wong, 2009) and it cannot be excluded that alternative 

demarcations of the electoral districts would present different results. The fact that electoral 

districts change between election years adds further complexity to the zoning-problem. This 

problem was addressed using the retrofitting-method as previously done by Kinsella C. et al., 

(2015) which approach was deemed most pragmatic and straight-forward. However, it is built 

the assumption that different party votes (or groupings of parties) are equally distributed 

amongst the polygon-features. When half of one electoral district is distributed to another 

electoral district, half of its votes, regardless of party, gets attributed to that area. Of course, 

this assumption is false as 1) the voters are not equally distributed amongst the polygon and 2) 

even the voters where, the specific party vote is most likely not. Even at the local level of 

electoral districts, spatial variance in regard to voting most likely exists between 

neighborhood blocks, streets and apartment buildings. Hence, the retrofitting process is akin 

to the ecological fallacy, as the election result of sub-part of an electoral district is concluded 

from its aggregate macro-geographical unit. 

5.4.2 Moran’s I and geographic polarization. 

Potential sources of error exist due to the chosen parameters for Moran’s I. As geographic 

polarization of the partisan vote is not a concept of the physical geography (such as trees, 

rocks etc.) but rather a theoretical concept, to conceptualize it and apply it to the physical 

world is a challenge. In this study the spatial relationship between electoral districts was 

conceptualized by Inverse distance with a Euclidean distance method but this can be 

problematic when the study area is relatively small, such as the case in this study. Due to the 

chosen threshold distance of 2840.807 meters, the electoral district at the outer fringe has a 
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relatively large portion of their surroundings consisting of “nodata”. The no-data values do 

not directly affect the Moran’s I computation, but it must be acknowledged that data 

observations (electoral districts) do exist in these areas but is ignored by the spatial 

conceptualization, and that their inclusion could have noticeable impact if they would e.g. 

deviate from its local surroundings.  

5.5 Further Research 

Studies on geographic polarization of the partisan vote has largely been neglected in Sweden. 

Hence knowledge of its prevalence and to which degree it manifests at different scales and 

geographies is unknown. In the United States, a handful of case studies have found evidence 

of increased geographic polarization at the scale of electoral districts. In this study, no such 

signs of increased geographic polarization were found. However, compared to the studies in 

the United States, this study examines the urban-core and suburbs of Stockholm municipality 

rather than larger metropolitan areas which incorporate both urban and rural areas. Hence, this 

study does not capture polarization along an urban-rural division as found in the United 

States. Consequently, the research about geographic polarization within Sweden further 

studies should emphasize a more regional approach incorporating both urban and rural areas.  

Similar research outside Sweden and the United States is emphasized. A limitation of this 

study is the fact that most similar studies have been conducted in the United States. This is a 

problem due to the difference in political party system between the countries, making direct 

result comparisons between them having to be made with caution. Hence, studies on countries 

with a similar multi-party system to Sweden are very few. An increased number of studies 

within countries with similar electoral geography and political party system would increase 

the value of this study as the degree of geographic polarization (which is by some considered 

a global phenomenon) could be compared across areas, societies and different countries. 

The applicability of Moran’s I for measuring geographical polarization have further 

implications depending on the study area of choice. Intra-municipal analysis, such as this, 

have challenges related to number of observations (electoral districts) and the problem related 

to the outer fringe of the study area when using Euclidean distance as a method. Firstly, a 

general rule for Moran’s I is that the number of observations must exceed 30 to produce any 

reliable results (ESRI, 2018). This directly limits the applicability to smaller municipalities 

both within Sweden and abroad as many municipalities have to few electoral districts. 

Secondly, the usage of Euclidean distance as the spatial conceptualization for measuring 
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polarization inevitably makes data on electoral districts outside the municipality (or other 

study area of interest) necessary if one wants to retrieve fully reliable results in the outer 

fringe of the study area. This poses further complications when analyzing historical electoral 

districts before 2002 as Valmyndigheten do not coordinate electoral districts from 

municipalities prior to this election. Hence there is a lack of electoral districts prior to 2002 as 

easily accessible digitized GIS-format. Rather than this, electoral districts before 2002 is 

provided by the Municipalities themselves in analogue format, with different accessibility and 

availability depending on municipality. Accessing this historic data that is required to obtain a 

longitudinal dataset is a time-consuming process. Therefore, national coordination of pre-

2002 electoral districts is emphasized as it would facilitate longitudinal time series between 

historical and future elections. 

There is room for methodological improvement in regard to measuring the degree of 

polarization longitudinally. A key topic and methodological problem is the frequent 

redrawing of electoral districts at each election. A different methodological approach than the 

one applied in this study would be to use a high-resolution grid, that is intact for each election, 

and attribute the absolute number of votes to them from spatially overlapping electoral 

districts. This would create a spatial dataset, longitudinally intact at each election, but with the 

absolute number of votes per party inherited from the electoral districts. This could perhaps be 

a better spatial representation of the vote than using the latest election (in this case the 

election of 2018).  

The methodology of this study also has applicability in research outside the topic of 

geographic and political polarization. As an example, another political and social problem is 

the absence of voting and it is clear that low-income neighborhoods also have low voter-

turnout (see, table 1). Consequently, this methodology can be further used as an identification 

tool for geographically clustered societal problems, not only by examining the geographic 

polarization of the vote in an area, but also high degrees of non-voting. Once areas are 

identified, further analysis involving additional socio-demographic variables can be 

conducted, yielding insightful situational awareness for Municipalities in regard to societal 

issues such as segregation, inequality and marginalization. This may be further used in 

strategical planning for municipalities to proactively prevent these issues from escalating, 

hence this methodology can function as an important tool in the work increasing the general 

welfare of society.   
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6. Conclusion 

Between the election years of 1998 to 2018, Stockholm municipality has had a persistent 

degree of geographic polarization, with small variations between elections. For all election 

years the tendency for the left- or rightwing vote to cluster amongst electoral districts is 

evident. But the degree in which this spatial pattern manifests itself show no unambiguous 

increase or decrease through time. The degree of geographic polarization was at its lowest at 

the election year of 2010 and at its highest in 1998 and 2018. This contrast both views within 

the political debate on increased polarization as well as empirical evidence from the United 

States that supports it. Hence, the debate surrounding the “Big Sort Hypothesis” and claims of 

the recent decades elections as increasingly polarized are not strongly manifest within 

Stockholm Municipality.  

 

Regarding the local degree of polarization across the municipality, the tendency for the right- 

or leftwing vote to cluster varies. Geographically, the strongest clustering of left-wing votes is 

located in the suburbs of Spånga-Tensta and Rinkeby-Kista while the strongest clustering of 

right-wing vote (which is also at a stronger degree) is located in the inner-city of Norrmalm, 

Östermalm and Kungsholmen. It is clear that these areas constitute the main “poles” in the 

geographically polarized municipality, and from a temporal perspective this patterns has 

repeated itself for all elections since 1998. Outlier electoral districts with a dispersed pattern 

have been identified. Right-wing electoral districts, amongst otherwise left-wing electoral 

districts, are located in Spånga-Tensta and scattered around Söderort. Historically, the 

northwestern part of Kungsholmen had several left-wing electoral districts, amongst otherwise 

ring-wing electoral districts, but as of 2018 these have disappeared.  

 

Evidence of increased geographic polarization was not found at the scale of electoral districts 

within this study area. The notion that the municipality is more geographically polarized 

today than in previous elections cannot be supported. However, due to the importance that 

scale and spatial extent plays in studies on geographic polarization, justification for further 

studies do exist both in the case of Stockholm and nationwide. In Stockholm, a similar local-

level analysis but with a wider regional emphasis (e.g. greater Stockholm metropolitan area) 

to encompass potential geographical polarization along the urban and rural is emphasized. 

Nationwide, knowledge to which degree geographic polarization manifests at different scales 

(e.g. regional, municipal and at electoral district) is unknown. Hence a nationwide 
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examination covering multiple scales (e.g. by multi-level-modeling) would give insightful 

knowledge on to which degree geographic polarization manifests itself at different scales in 

Sweden as a whole. Also, it can be concluded that the methodological approach of this study 

can be used as an identification tool for municipalities when localizing areas that show a high 

degree of geographic polarization. This in turn, might give insightful knowledge on potential 

segregation within the municipality. However, the method is not solely limited to localizing 

geographic polarization of the vote but may also have other fruitful applications, suggestively 

the localization of  areas with a high degree of non-voting. 
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8. Appendix 

8.1 Queries 

 

round(area(intersection($geometry, geometry(get_feature('stockholm_2018', '2018_district_id', 

"2018_district_id"))))/ area($geometry),2)  
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8.2 Tables 

  
 

Bromma Enskede-Årsta-Vantör Farsta  
 HH LL HL LH NS HH LL HL LH NS HH LL HL LH NS 

1998 0 35 2 0 14 50 0 0 9 0 31 0 0 4 0 

2002 0 37 1 0 13 51 0 0 8 0 32 0 0 3 0 

2006 0 38 1 0 12 46 0 0 13 0 30 0 0 5 0 

2010 0 43 0 0 8 48 0 0 11 0 28 0 0 7 0 

2014 0 41 1 0 9 51 0 0 8 0 30 0 0 5 0 

2018 0 43 0 0 8 51 0 0 8 0 29 0 0 6 0 
 

Hägersten-Älvsjö Hammarby-Sjöstad Hässelby-Vällingby  
 HH LL HL LH NS HH LL HL LH NS HH LL HL LH NS 

1998 45 0 0 11 14 0 0 0 2 9 7 2 0 1 33 

2002 37 0 0 12 21 0 0 0 2 9 5 2 1 1 34 

2006 34 0 0 8 28 0 0 0 1 10 2 2 1 1 37 

2010 27 0 0 8 35 0 0 0 1 10 3 3 1 1 35 

2014 37 0 0 12 21 0 0 0 2 9 1 3 1 1 37 

2018 41 0 0 12 17 0 0 0 2 9 2 3 0 1 37 
 

Kungsholmen Norrmalm Östermalm  
 HH LL HL LH NS HH LL HL LH NS HH LL HL LH NS 

1998 0 40 5 0 0 0 44 0 0 0 0 46 1 0 0 

2002 0 40 5 0 0 0 44 0 0 0 0 45 2 0 0 

2006 0 42 3 0 0 0 44 0 0 0 0 45 2 0 0 

2010 0 44 1 0 0 0 44 0 0 0 0 45 2 0 0 

2014 0 42 1 0 2 0 44 0 0 0 0 45 2 0 0 

2018 0 44 0 0 1 0 44 0 0 0 0 45 2 0 0 
 

Rinkeby-Kista Skärholmen Skarpnäck  
 HH LL HL LH NS HH LL HL LH NS HH LL HL LH NS 

1998 27 0 0 0 0 21 0 0 1 0 26 0 0 0 1 

2002 27 0 0 0 0 21 0 0 1 0 26 0 0 0 1 

2006 27 0 0 0 0 21 0 0 1 0 24 0 0 1 2 

2010 27 0 0 0 0 21 0 0 1 0 24 0 0 2 1 

2014 27 0 0 0 0 21 0 0 1 0 25 0 0 1 1 

2018 27 0 0 0 0 22 0 0 0 0 25 0 0 1 1 
 

Södermalm Spånga-Tensta Stockholm Municipality  
 HH LL HL LH NS HH LL HL LH NS HH LL HL LH NS 

1998 13 6 2 0 50 10 0 0 8 3 230 173 10 36 124 

2002 22 2 5 0 42 10 0 0 7 4 231 170 14 34 124 

2006 10 2 6 0 53 10 0 0 8 3 204 173 13 38 145 

2010 16 3 4 0 48 10 0 0 8 3 204 182 8 39 140 

2014 27 2 2 0 40 11 0 0 7 3 230 177 7 37 122 

2018 30 2 1 1 37 12 0 0 6 3 239 181 3 37 113 
 

Innerstan Västerort Söderort  
 HH LL HL LH NS HH LL HL LH NS HH LL HL LH NS 

1998 13 136 8 0 50 44 37 2 9 50 173 0 0 27 24 

2002 22 131 12 0 42 42 39 2 8 51 167 0 0 26 31 

2006 10 133 11 0 53 39 40 2 9 52 155 0 0 29 40 

2010 16 136 7 0 48 40 46 1 9 46 148 0 0 30 46 

2014 27 133 5 0 42 39 44 2 8 49 164 0 0 29 31 

2018 30 135 3 1 38 41 46 0 7 48 168 0 0 29 27 
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