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Abstract 

Warming in the Arctic occurs at a much higher rate than the global average, which has a considerable 

impact on the Arctic terrestrial carbon cycle. Permafrost thawing can release substantial amounts of 

carbon, whilst tundra shrubification and tree-line advance, on the other hand, may compensate for this. 

To gain a better understanding of the Arctic carbon cycle in the future, global dynamic vegetation mod-

els (DGVMs) can be used to simulate vegetation properties and dynamics. 

The aim of this study was to evaluate the performance of LPJ-GUESS, a DGVM, when it is applied on 

the Arctic to gain a better understanding how well the model is able to capture certain key Arctic-related 

processes and variables. The study focussed primarily on gross primary productivity (GPP), ecosystem 

respiration (Reco), active layer thickness (ALT) and snow depth. A total of 20 (sub-)Arctic FLUXNET 

sites were included. The model was forced with a bias-corrected climate forcing based on meteorolog-

ical observations for each site. Different simulations were evaluated, including an upland, wetland and 

wet forest run. 

This study has shown that LPJ-GUESS tends to underestimate GPP and Reco, especially for high Arctic 

sites (>70ºN). ALT at the end of the season (August/September) is largely overestimated for the upland 

simulation, whereas it is underestimated for wetlands. Running the model as a wet forest (i.e. wetland 

with tree PFTs) resulted in a very good fit for ALT. However, it also led to a large decrease in the 

modelled GPP and Reco. Snow depth was poorly captured by the model, with large underestimations at 

most sites. 

In light of these insights, it is evident that refining the LPJ-GUESS model remains essential for com-

prehending the intricate dynamics of the Arctic carbon cycle. Furthermore, this study accentuates the 

capacity and promise associated with the utilization of DGVMs in emulating vegetation attributes and 

behaviours. 

Keywords: Physical Geography and Ecosystem Analysis; LPJ-GUESS; Arctic; FLUXNET; Gross Pri-

mary Productivity; Ecosystem Respiration; Permafrost; Active Layer Thickness; Snow Depth  
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1 Introduction 

Climate change has a considerable impact on the Arctic, where warming occurs two to three times as 

fast as the global average (Chylek et al. 2022). The largest change in air temperature can be observed 

in the cold season (Box et al. 2019). Generally speaking, the Arctic is experiencing an increase in low-

level clouds, humidity and precipitation. The latter is problematic as, due to the rising temperatures, 

there might be relatively more rain than snow (Box et al. 2019).  

Large areas of the Arctic and sub-Arctic are underlain by permafrost, which is defined as ground that 

stays frozen for two consecutive years or more (Harris et al. 1988). It is estimated that permafrost soils 

contain one third of the carbon stored in the global near-surface soil carbon pool (0-3 meters depth), 

whilst only extending across 15% of this pool’s area globally (Schuur et al. 2015; Meredith et al. 2019). 

Increasing near-surface air temperature and changes in snow regimes is causing permafrost degradation, 

which releases substantial amounts of greenhouse gases such as carbon dioxide (CO2) and methane 

(CH4) (Biskaborn et al. 2019; Bruhwiler et al. 2021). These CO2 and CH4 emissions can in turn further 

enhance climate change (Schuur et al. 2008), which could indicate that the Arctic would shift from 

being a carbon sink to a carbon source. Certain compensating processes which take up carbon, such as 

tree-line advance and shrubification, are expected to intensify (Zhang et al. 2013; Martin et al. 2017). 

On the other hand, increased shrub coverage lowers the albedo which will lead to further warming 

(Miller and Smith 2012). 

To better understand how the Arctic terrestrial carbon cycle may change in the future, and how it will 

influence climate change, it is of great importance that these processes can be accurately simulated by 

climate and vegetation models (Chadburn et al. 2017). This study uses the Lund-Potsdam-Jena General 

Ecosystem Simulator (LPJ-GUESS), which is a dynamic global vegetation model (DGVM) (Smith et 

al. 2014). LPJ-GUESS can simulate vegetation dynamics based on the climate forcing and the soil 

characteristics as input data. Since version 4.1, the model has become more suitable for studies in the 

Arctic as some key Arctic-related components have been introduced, such as permafrost dynamics and 

Arctic plant functional types (PFTs). Some recent studies have made use of these new features, such as 

Gustafson et al. (2021) who looked at tree-line advance and Pongracz et al. (2021) who proposed a new 

dynamic snow scheme. Nevertheless, there is still a need for additional studies that evaluate how well 

LPJ-GUESS performs when applied on Arctic sites. 

 

The aim of this study is to assess the ability of LPJ-GUESS to simulate important Arctic processes that 

can improve our understanding of the ecosystem’s response to the changing climate. More specifically, 

it focusses on vegetation carbon fluxes (gross primary productivity (GPP) and ecosystem respiration 
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(Reco)), active layer thickness (ALT) and snow depth. The current state of the model is evaluated. LPJ-

GUESS output, from a run with default parameter values, is compared to observations for FLUXNET 

sites located in the Arctic. Since many Arctic sites are wetlands, LPJ-GUESS is also run with wetland 

PFTs and peat soils. To improve the model’s performance for wet forests, an additional simulation is 

included where tree PFTs are allowed to grow on wetlands. Two other variables, leaf area index and 

biomass, are studied to better understand the model’s behavior. 

2 Theoretical background 

 

The Arctic can be roughly divided into three zones based on their treeline latitudinal bound (Eugster et 

al. 2000). Tundra can be found north of the treeline, and is covered by low-growing vegetation such as 

grasses, mosses and shrubs (Walker et al. 2005). The boreal zone can be found south of the treeline, 

until roughly 50ºN. This region is dominated by evergreen coniferous trees, although deciduous conifers 

(e.g. larch) and broadleaved trees are widespread as well (Kasurinen et al. 2014). The subarctic zone is 

located in proximity to the treeline and is characterized by open forests where tree growth is highly 

limited by the short growing season (Eugster et al. 2000). 

Climate change is affecting the vegetation in the Arctic in various ways (Mod and Luoto 2016). Differ-

ent climatic conditions can alter the species distributions (Elmendorf et al. 2012). Furthermore, an in-

crease in woody vegetation is being observed, a process which is commonly referred to as shrubification 

(Epstein et al. 2012; Myers-Smith and Hik 2018). This may enhance competition and consequently 

affect biodiversity (Wookey et al. 2009). Shrubficiation, mainly in terms of increased biomass and 

cover, can influence the productivity of an ecosystem (Martin et al. 2017). Yet, warming is also likely 

to intensify soil respiration which would counteract the increase in productivity to a certain extent 

(Bruhwiler et al. 2021). 

 Wetlands 

Approximately 25% of the total of the Arctic’s land area can be classified as wetland (Kåresdotter et al. 

2021). The type of vegetation in these high latitude wetlands is largely dependent on its acidity and soil 

moisture. GPP in these ecosystems is mainly affected by the availability of, or often times lack of, 

nitrogen (N) and phosphorus (P). This implies that (rain-fed) bogs are generally less productive than 

fens, where nutrients are supplied through ground or surface water (Jonasson and Shaver 1999). 
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Vegetation carbon fluxes are important indicators of the response of Arctic ecosystems to the changing 

climate (Kira et al. 2021; Ma et al. 2021). GPP is defined as the rate of carbon fixation by primary 

producers through photosynthesis (Reichle 2020). Reco consists of all respiration within an ecosystem 

and can thus be defined as 𝑅𝑒𝑐𝑜 = 𝑅𝑎 + 𝑅ℎ, where Ra and Rh are autotrophic and heterotrophic respira-

tion, respectively. The sum of GPP and Reco is the net ecosystem exchange (NEE). 

NEE can be measured by eddy-covariance systems and can be partitioned into GPP and Reco. This can 

be done by fitting a function of temperature to nighttime Reco which can then be used to calculate day-

time Reco and thus also GPP (Reichstein et al. 2005). Another approach makes use of the light-response 

curves where daytime NEE is fitted to, and from which respiration can be approximated (Lasslop et al. 

2010). 

In the Arctic, GPP tends to reach its maximum in July, whilst being close to zero during the November 

to March winter months (Ma et al. 2021). Rising temperatures and the lengthening of the growing sea-

son are both factors that are likely to lead to enhanced GPP (Bruhwiler et al. 2021). The increased soil 

temperatures can, on the other hand, counteract this carbon uptake by enhancing respiration (Piao et al. 

2008).  

The leaf area index (LAI) and GPP are closely related to each other, especially during the first half of 

the season. This means that if a model can accurately simulate LAI, it will generally also perform well 

for GPP. When the incoming solar radiation declines during the second half of the season, a reduction 

in GPP can be observed.  

Reco consists of two components: plant respiration and heterotrophic respiration. Plant respiration be-

haves in a similar fashion to GPP being highly sensitive to temperature, LAI and incoming solar radia-

tion (Chadburn et al. 2017). Heterotrophic respiration, on the other hand, is dependent on the conditions 

below-ground. As a consequence, it is mainly driven by air temperature and, more importantly, the soil 

temperature. This is also the reason why GPP and Reco show a very different seasonal cycle (Chadburn 

et al. 2017). 

Both GPP and Reco are dependent on soil moisture (Chadburn et al. 2017). In the Arctic, soil moisture 

is to some extent governed by the amount, and change in, snowfall. This can affect the wetness of the 

soil during summer and consequently affect vegetation carbon fluxes.  

 

Permafrost, commonly defined as ground, at any depth, that remains frozen for two consecutive years 

or more, is widespread in the (sub-)Arctic. It is estimated that permafrost soils cover roughly 25% of 

the land surface in the Northern Hemisphere (Gruber 2012). As a result of the rapid climate change in 
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the Arctic, soil temperatures increase which stimulates permafrost degradation (Schaefer et al. 2014). 

Large quantities of carbon that were stored at temperatures too low for degradation to occur, are now 

at a risk of being decomposed into the greenhouse gases CO2 and CH4. This will in turn further enhance 

global warming and is consequently often called the permafrost carbon feedback (Schuur et al. 2015). 

In addition to permafrost extent, it is of great interest to look at the active layer thickness (ALT). The 

active layer is often defined as the layer closest to the surface that thaws during summer and freezes 

during the winter months (Burn 1998). The depth to which the active layer extents is important for 

vegetation as it constrains the rooting zone (Blume‐Werry et al. 2019). ALT is dependent on various 

factors such as the insulating effect of overlying snow, types of vegetation, air temperature and the 

wetness of the soil (Luo et al. 2016). 

 

Snowfall and the presence of a snow pack have a large impact on Arctic ecosystems. The melting of 

snow provides large quantities of melt water, consequently affecting the hydrology. In the Arctic, snow 

insulates the ground and as a consequence more energy is needed to cause the melting of the snow pack. 

This is different as opposed to temperate regions, where melt is stimulated by the minor heat fluxes 

from the ground (Eugster et al. 2000). 

The drivers behind snow accumulation are not fully understood, but both the canopy and heterogeneity 

in the topography play an important role (Eugster et al. 2000). How snow is distributed in the landscape 

is mainly governed by wind. At open tundra sites, the snow cover distribution can vary a lot whereas 

snow is usually more evenly distributed at forest sites.  

As a result of climate change, a decline in the area covered by snow, the number of snow days and the 

depth of snow packs is being observed (Box et al. 2019). 

 

The DGVM used in this study is the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) 

(Smith et al. 2014). Based on climate forcing and soil input data, the model simulates vegetation dy-

namics and biogeochemical processes at a given land grid cell. As a result of light competition, the 

availability of nutrients and the presence of soil water, different types of vegetation will emerge and 

grow. Each plant individual belongs to a certain plant functional type (PFT), which describes common 

parameters for e.g. bioclimatic limits, phenology and shade (in)tolerance. Since version 4.1, some key 

Arctic-related components, e.g. permafrost dynamics and Arctic PFTs, are incorporated in the model, 

which are explained in more detail in the sections below. 
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 Soil temperature and active layer thickness 

Since LPJ-GUESS version 4.1, the approach to calculate the soil temperatures has been improved. This 

is important when applying the model on the Arctic as ALT simulated by LPJ-GUESS is dependent on 

soil temperature. The active soil column is composed of 15 layers which each are 10 cm thick. This 

implies that the maximum ALT simulated by LPJ-GUESS is 150 cm. The surface layer can be overlain 

by snow, which has an insulating effect (see 2.5.2 Dynamic snow scheme). Below the active soil col-

umn, 5 padding layers extend to a depth of 48 m. 

On a daily basis, the thermal diffusivity of each soil layer is calculated based on its heat capacity and 

thermal conductivity. Upland soils are made up of a certain percentage of mineral components, organic 

components and pore spaces, the latter which are filled by ice, water and air. The thermal conductivity 

and heat capacity differ for each of these components. The temperature of the surface layer is influenced 

by the air temperature. ALT is updated daily with the depth of the soil layers where the soil temperature 

is higher than 0 ºC.  

2.5.1.1 Peat soils 

The soil column of wetlands differs from upland sites, which influences ALT.  Similar to upland soils, 

peatlands consist of 15 active soil layers and 5 padding layers. The 3 uppermost layers are part of the 

acrotelm with a varying water table, whereas the other 12 layers comprise the permanently saturated 

catotelm. The calculation of the soil temperature is done in a similar fashion as described in 2.5.1 Soil 

temperature and active layer depth. However, at wetland sites the soil is composed of fixed fractions 

of peat, rather than mineral and organic soil components and thus different values for the thermal con-

ductivity and heat capacity is used to derive soil temperatures. 

 Dynamic snow scheme 

Up until LPJ-GUESS version 4.0, a static snow scheme was implemented which only considered one 

single layer. Thermodynamic properties were calculated based on a set of constants. However, Pongracz 

et al. (2021) have shown that this snow scheme does not fully capture cold season processes. Since 

version 4.1 the simple multi-layer snow scheme developed by Pongracz (2019) has been incorporated 

in the model. Since then Pongracz et al. (2021) have been working on a more advanced, dynamic snow 

scheme. A short description of the dynamic snow scheme, which was used in this study, is given below. 

The daily amount of snowfall is dependent on the air temperature and precipitation as climate forcing. 

The dynamic snow scheme also requires input on wind speed as this is used to calculate the fresh snow 

density. There can be a maximum of five layers of snow, where a new layer of snow is initialized if a 

certain threshold has been exceeded. For the first layer the threshold lies at 100 mm, after which the 

threshold increases by 50 mm per layer. Fresh snow is added to the top layer. However, if the snow 

depth reaches 250 mm, snow accumulates at the bottom snow layer. Snow density and the ice content 
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of a layer are used to calculate the depth of each layer. The density can change either due to mechanical 

compaction or phase changes.   

Snow melt is dependent on the internal temperature of each layer. The thermal properties (thermal con-

ductivity, heat capacity, diffusivity) differ from layer to layer. The thermal conductivity is dependent 

on the layer’s density, whereas both the density and temperature are required to calculate the heat ca-

pacity. The diffusivity of a layer is given by dividing its thermal conductivity by its heat capacity. These 

thermal properties are then used to calculate the new internal temperature of each snow layer, which is 

used for determining snow melt. Meltwater is allowed to percolate into the soil, if it is not frozen. 

 Plant functional types 

Vegetation simulated by LPJ-GUESS is grouped in so-called plant functional types (PFTs) based on 

similar characteristics and traits. The model provides a list of pre-defined and parameterized Arctic- 

and wetland-specific PFTs, see Table 1.  

Table 1. Arctic and wetland PFTs included in LPJ-GUESS version 4.1. 

Arctic PFT Wetland PFT Description 

BNE  Boreal needleleaved evergreen tree, shade-tolerant 

BINE  Boreal needleleaved evergreen tree, shade-intolerant 

BNS  Boreal needleleaved summergreen tree, shade-intolerant 

IBS  Shade-intolerant broadleaved summergreen tree 

C3G  C3 grass 

HSE  Evergreen tall shrub 

HSS  Summergreen tall shrub 

LSE pLSE Evergreen low shrub 

LSS pLSS Summergreen low shrub 

GRT  Graminoid and forb tundra 

EPDS  Evergreen prostrate dwarf shrub 

SPDS  Summergreen prostrate dwarf shrub 

CLM pCLM Cushion forb, lichen and moss tundra 

 pmoss Moss 

 wetGRS Flood-tolerant C3 grass 

 

 Vegetation carbon fluxes in LPJ-GUESS 

LPJ-GUESS calculates the GPP using a simplified version of the Farquhar and von Caemmerer (1982) 

photosynthesis model. This calculation involves several inputs such as atmospheric CO2 concentration, 

average air temperature, cumulative daily photosynthetically-active radiation (PAR), and the proportion 

of PAR absorbed by foliage (fPAR). 
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A crucial element in these calculations is Vmax, which signifies the upper limit of the Rubisco enzyme's 

carboxylation rate. When daily conditions are not constrained by water stress, LPJ-GUESS determines 

Vmax for each day, considering factors like air temperature, PAR, and the availability of nitrogen. 

Reco comprises two components: soil respiration and autotrophic respiration. Soil respiration is deter-

mined by the dynamics of soil organic matter (SOM) and the release of carbon into the atmosphere 

through decomposition processes. Autotrophic respiration corresponds to the daily energy needed for a 

plant’s maintenance and growth respiration. It's important to note that leaf respiration is not included in 

this context, as it is subtracted from net assimilation as a fraction of Vmax. 

3 Methods 

 

Figure 1 shows an overview of the methodology applied in this study. First, LPJ-GUESS was run using 

global gridded CRUJRA data (University of East Anglia Climatic Research Unit and Harris 2020). 

Using FLUXNET observations on meteorological variables, the CRUJRA data was bias corrected (BC). 

Next, the model was run with the bias corrected climate forcing. This was repeated three times: (1) no 

wetland PFTs were included (“upland”), (2) wetland PFTs were included and the landcover class was 

set to peatland (“wetlands”) and (3) same as (2) but with BNE and BINE trees (“wetlands with trees”).  

 

Figure 1. Schematic overview of the data used in this study, the different LPJ-GUESS simulations that were run and the output 

variables that were evaluated. 
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The model’s performance was evaluated using observational datasets. This study relied mainly on data 

from the FLUXNET2015 dataset (Pastorello et al. 2020) and the FLUXNETCH4 Community Product 

(Delwiche et al. 2021) for daily GPP, Reco, NEE and climate data. The FLUXNETCH4 Community 

Product also contained data on snow depth. The ABCflux dataset (Virkkala et al. 2021; Virkkala et al. 

2022) provided additional data on the vegetation type, ALT, snow depth, biomass and LAI. For a num-

ber of sites ALT observations were acquired from the CALM database (Brown et al. 2000). 

 FLUXNET2015 

The most recent FLUXNET dataset is currently FLUXNET2015. It comprises data on, amongst other 

things, carbon and water fluxes, meteorological variables and energy exchange. A total of 212 sites are 

covered, of which seven were included in this study (see Table B1). The FLUXNET2015 dataset aims 

to apply a consistent processing and quality control methodology. Consequently, different sites can be 

easily compared to each other and the data tends to be of a high quality.  

FLUXNET2015 includes various variables for the carbon fluxes. For this study the variables 

GPP_NT_VUT_REF and RECO_NT_VUT_REF were used. VUT stands for the Variable USTAR (u*) 

Threshold which means that a variable threshold was used for friction velocity. The quality of NEE data 

obtained by eddy covariance techniques depends to a certain extent on the level of turbulence, where 

NEE tends to be underestimated if there is little turbulence. VUT, as opposed to the Constant USTAR 

Threshold (CUT), is commonly used when there is a clear seasonality in carbon fluxes at the site of 

interest. NT stands for the Night-Time partition method and refers to the methodology that has been 

applied by FLUXNET when GPP and Reco were derived from the observed NEE (Wutzler et al. 2018).  

The FLUXNET2015 dataset includes information about the quality of the data. A similar approach for 

data cleaning was applied as described in Ma et al. (2021), where GPP and Reco data points (below 

denoted by “X”) were set to NA if any of the following three conditions were met: 

1. The value for NEE_VUT_REF_NIGHT_QC (i.e. the corresponding quality flag) was lower 

than 0.5. 

2. There was a difference of more than 50% between X_DT_VUT_REF and X_NT_VUT_REF. 

3. The value for X_NT_VUT_REF was negative. 

The FLUXNET2015 dataset does not provide data on relative humidity, but this was instead derived 

from the vapour pressure deficit as described in Jones (2013) (see Appendix A).   

 FLUXNETCH4 Community Product 

The FLUXNETCH4 Community Product Version 1.0 was published in 2021 and is an open-source 

dataset containing data from 79 sites, 13 of which are located in the study area (see Table B2). For the 
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meteorological data and NEE, the gap-filled variables were used. For GPP and Reco, the night-time 

partition method was used. No additional quality control was performed, although a few sites contained 

some clearly incorrect values (e.g. GPP exceeding 1020 µmol CO2 m-2 s-1) which were removed. The 

carbon fluxes were converted from µmol CO2 m-2 s-1 to gC m-2 d-1.  

For five sites, the dataset also included daily snow depth observations, which were aggregated to 

monthly mean values. 

 ABCflux database 

The ABCflux (Arctic-boreal CO2 flux) database provides monthly data for 244 sites in the Arctic-boreal 

zone on meteorological variables and carbon fluxes. Most of the sites in this study were represented in 

the ABCflux database with ancillary data on variables such as ALT, snow depth, vegetation types, LAI, 

above ground biomass (AGB) and soil properties. 

For AGB, the ABCflux database specified for each site which types of above ground vegetation were 

included in the measurement. At some sites, such as US-Prr, only trees were taken in consideration 

whereas at other sites (e.g. US-Uaf) mosses were included as well. 

The LPJ-GUESS output for biomass only provides the sum of above and belowground biomass, rather 

than the individual components. To be able to compare the observations to the simulated, the total bio-

mass was approximated from the observed AGB. This was done based on the findings from a paper by 

Noguchi et al. (2012). They found that for their black spruce forest site in interior Alaska, 47% of the 

biomass in the vascular plants was stored belowground. When also accounting for AGB by mosses, 

53% of the biomass is stored aboveground. 

 CALM database 

The CALM database was set up in the early 1990s and provides data on ALT for more than 100 sites. 

This makes it possible to study the long-term response of ALT to the changing climate. Measurements 

are gathered using set protocols and usually between 20- and 120-point measurements are taken within 

a regular grid of 10x10 m to 1000x1000 m. Data from six of the CALM sites was used as they were at 

roughly the same location as the FLUXNET sites.  

 Study area 

All FLUXNET sites at a latitude of at least 64°N that were available following the CC-BY-4.0 usage 

license were included (see Figure 2, Table B1, Table B2). The CALM sites with ALT data that were 

used, and their corresponding FLUXNET site, are listed in Table B3.  
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Figure 2. Map showing the 20 FLUXNET sites located above 64ºN (red area). 

 

In this study, a version of LPJ-GUESS 4.1 was used which included the dynamic snow scheme that has 

recently been developed by Pongracz et al. (2021). Some changes to the source code were made to 

ensure that daily output for GPP and Reco was supported. 

LPJ-GUESS was run in cohort mode with a spin-up phase of 500 years and 50 replicate patches. The 

fire module was switched off. CO2 data was taken from Tans (2023). CRUJRA v2.1.5d was used as 

climate forcing which contains 6-hourly data for mean air temperature, precipitation, wind speed, in-

coming solar radiation and specific humidity. LPJ-GUESS required a climate forcing on a daily 

timestep, rather than a 6-hourly. For this reason, the 6-hourly data was aggregated to daily means or, in 

the case of precipitation, to the daily sum. 

Initially the latest version of CRUJRA (v2.3.5d) was used (University of East Anglia Climatic Research 

Unit and Harris 2022), but it became apparent that there were large differences in shortwave radiation 

when comparing it to both CRUNCEP (Viovy 2018) and CRUJRA v2.1.5d data.   

Table 2 shows the meteorological variables and their units that were required by LPJ-GUESS and that 

were available in the CRUJRA and FLUXNET data. Zonal and meridional wind speeds were used to 

derive the directionless wind speed. Relative humidity was calculated from specific humidity, see Ap-

pendix A. 
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Table 2. Meteorological variables and their units as supported by LPJ-GUESS and provided by CRUJRA and FLUXNET. 

 

The CRUJRA data was bias corrected on a monthly basis using the ISIMIP3BASD v1.0 method (Lange 

2022). This approach is based on parametric quantile mapping and ensures that trends are preserved. 

This variant of quantile mapping entails fitting a probability distribution, such as the normal or gamma 

distribution, to the data prior to mapping the quantiles (Lange 2019). The aim was to align the distribu-

tion of the FLUXNET and CRUJRA data such that biases in both the mean and variance of each variable 

in the CRUJRA data were reduced. 

There are various settings that can be modified so that the bias adjustment approach fits the variable. 

For this study similar specifications were used as in Lange (2019), see Table 3. Temperature was the 

only variable that was detrended. Upper bound scaling was applied on shortwave radiation. This implies 

that the data was initially constrained to an interval of [0, 1] and scaled back to values within the actual 

range after the bias correction. 

If there were no observations for a certain variable available, CRUJRA data was used instead. This was 

necessary for shortwave radiation for US-Atq and US-NGC. The FLUXNET observations for precipi-

tation at FI-Lom were unlikely high and were as a consequence also replaced by CRUJRA data.  

After the bias correction was completed, the observations were copied back into the file. In this way, 

the bias corrected climate forcing was only used for those years where no observations were available. 

Table 3. Parameter settings for the bias correction as described in Lange (2022). 

Variable Lower 

bound 

Lower 

threshold 

Upper 

bound 

Upper 

threshold 

Distribution Trend 

preservation 

Detrending Half- 

window 

temp - - - - Normal Additive Yes - 

prec 0 0.1/86400 - - Gamma Mixed No - 

insol 0 0.0001 1 0.9999 Beta Bounded No 15 

wind 0 0.01 - - Weibull Mixed No - 

relhum  0 0.0001 1 0.9999 Beta Bounded No - 

 LPJ-GUESS  CRUJRA  FLUXNET 

Variable Name Unit  Name Unit  Name Unit 

Mean temperature temp  K  tmp K  TA degC 

Precipitation prec  mm d-1  pre mm 6h-1  P mm d-1 

Incoming solar radiation insol  W m-2  dswrf J m-2 6h-1  SW_IN W m-2 

Wind speed wind  m s-1  vgrd, ugrd m s-1  WS m s-1 

Pressure pres  Pa  pres Pa  PA kPa 

Specific humidity specifichum  kg kg-1  spfh kg kg-1    

Relative humidity relhum      RH % 

Vapour pressure deficit       VPD hPa 



12 

 

 

The boreal US-Uaf, “University of Alaska, Fairbanks”, site is part of the Ameriflux network. Evergreen 

needleleaved trees, primarily black spruce (Picea mariana), grow in this bog and cover more than 60% 

of the land area (see Figure 3). It is a relatively sparse forest with around 4500 trees per hectare (Ueyama 

et al. 2014).  

To improve the model fit for ALT, LPJ-GUESS was run with wetland PFTs and peat soils enabled. 

However, for sites such as US-Uaf this implied that no trees were simulated which consequently af-

fected the GPP. For this reason, LPJ-GUESS was also run with the wetland scenario but including BNE 

and BINE as tree PFTs. To allow for these trees to grow in wet conditions, parameters related to the 

withstanding of inundation were added and the corresponding land cover class was set to peatland. By 

default, daily GPP is reduced in case of inundation, but this setting was disabled. 

 

Figure 3. Photograph of the US-Uaf site taken by Ueyama (2018). 

 

A statistical metric that was used in the analysis of the results of this study was the root mean square 

error (RMSE) (Chicco et al. 2021). The RMSE for a sample of n observations Y and their corresponding 

model predictions 𝑋 is defined as in equation (1) below. The RMSE has the same units as y and its 

values range between 0 and +∞, where 0 indicates the best value. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑋𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

 (1) 

Another metric used in this study was the coefficient of determination, or R2. The unitless R2 is defined 

as in equation (2) below. Values close to 1 are considered to indicate a better goodness-of-fit. 



13 

 

 𝑅2 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)𝑛

𝑖=1
2

∑ (𝑌̅ − 𝑌𝑖)𝑛
𝑖=1

2  (2) 

4 Results 

 

The bias correction altered the number of growing degree days (GDD), see Figure 4. The vertical lines 

indicate the thresholds for the establishment of the different shrub and tree PFTs. 

The GDD5 at six high Arctic sites (US-NGB, US-Bes, GL-ZaH, GL-ZaF, SJ-Adv) was too low for 

shrubs to establish. For another high Arctic site, US-A10, the bias correction resulted in a distinct in-

crease in GDD5, where the mean changed from 54 to 287. This implied that both low and tall shrubs 

were able to establish when forcing the model with the bias corrected data. 

 

The RMSE for GPP was lower for almost all sites when running the model with the bias corrected 

climate forcing instead of using the CRUJRA data (see Table C1 in Appendix C). The only exception 

being RU-Cok where the RMSE increased from 2.25 to 3.59 gC m-2 d-1. For most wetland sites, 

Figure 4. GDD5 for the years 1990-2010 for each site obtained from CRUJRA data (blue boxes) and the bias 

corrected (BC) data (red boxes). Box plots show the median, 25th percentile and 75th percentile. The whiskers 

indicate the minimum and maximum. The vertical lines represent the lowest GDD5 required for the PFT to 

establish. 
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simulating wetland PFTs on peat soils resulted in a lower RMSE. The modelled GPP for US-BZB and 

US-Prr had the lowest RMSE when including tree PFTs (BNE and BINE) in the wetland simulations. 

This was especially true for US-Prr where the RMSE decreased from 3.37 to 1.01 gC m-2 d-1.  

LPJ-GUESS simulated values of GPP close to 0 gC m-2 d-1 for the majority of above 70ºN latitude sites. 

Some of these sites, such as SJ-Adv and US-Bes had a low observed daily GPP with values that rarely 

exceeded 2.5 gC m-2 d-1. Replacing the nitrogen deposition to a constant value of 2 kg m-2, which is 

high for Arctic conditions, did not result in a distinct increase in GPP.  

The observations indicate that some sites at high latitudes were very productive. US-A10 was, for ex-

ample, one of the sites with the highest maximum daily GPP. The highest mean daily GPP (3.18 gC m-

2 d-1) was observed at RU-Cok, which is a site dominated by shrubs at 70.8ºN.  

Figure 5 shows the daily GPP, taken as a mean during a period of five days, for the four different 

simulations at US-Uaf. The upland run was closest to the 1:1 identity line, whereas the CRUJRA run 

Figure 5. Daily GPP taken as a five-daily mean at US-Uaf for the four different simulations and 

the observations. 
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resulted in a slight overestimation. The wetlands run had the lowest GPP, whilst adding trees to the 

wetland simulation increased the GPP slightly.  

Figure 6 shows the daily GPP taken as a five-daily mean for each month at US-Uaf covering all the 

years included in the observations (2011-2018). The upland run captured both the seasonal pattern and 

magnitude of GPP at this site very well. However, LPJ-GUESS failed to capture the, albeit low, GPP 

observed during the winter months (October-March). The simulated GPP was higher in both May and 

June, which indicates that the growing season started earlier than for the observations. 

 

While the bias-corrected upland simulation exhibited the lowest RMSE for GPP at the US-Uaf site, it 

failed to accurately replicate biomass patterns as evidenced by Figure 7. In contrast, the wetlands sim-

ulation yielded a biomass estimate that was consistent with the observed value of 0.28 kgC m-2. This 

congruence between simulated and observed biomass was similarly observed at the US-Prr forest site. 

When comparing Figure 5 to Figure 7, it is evident that for the simulations a high GPP corresponds to 

a high biomass. However, the observations seemed to indicate an ecosystem with low biomass whilst 

maintaining a high productivity. This was not captured by the model. 

Figure 6. Daily GPP taken as a five-daily mean for the years 2011-2018 at US-Uaf. Left: FLUXNET observations. Center: 

LPJ-GUESS output for the bias corrected upland run. Right: LPJ-GUESS output for the bias corrected wetlands with trees 

run. 
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Figure 7. Biomass for US-Uaf (2003-2018) and US-Prr (2010-2016). US-Uaf includes both tree and moss PFTs, 

whereas US-Prr only considers the tree PFTs. 

 

LAI observations from the ABCflux dataset were available for US-Uaf. As can be seen in Figure 8, 

LPJ-GUESS overestimated the LAI, primarily during the winter months. The mean observed LAI in 

January was, for instance, 0.19 m2 m-2 whereas LPJ-GUESS simulated 1.49 m2 m-2 for this same month 

in the upland run. The wetlands with trees run showed a much larger range of simulated LAI, but low-

ered the mean LAI for the winter months which was in accordance with the observations. 

 

Figure 8. Mean monthly LAI for the years 2003-2018 at US-Uaf. Left: ABCflux observations. Center: LPJ-GUESS output for 

the bias corrected upland run. Right: LPJ-GUESS output for the bias corrected wetlands with trees run. 
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For most sites, the run with the lowest RMSE for GPP also resulted in the lowest RMSE for Reco (see 

Table D1 in Appendix D), although there were a few exceptions. At GL-NuF, for example, the model 

performed slightly better for Reco with the BC wetland run (RMSE: 0.56 gC m-2 d-1) than the BC upland 

run (RMSE: 0.58 gC m-2 d-1). Yet, for GPP the opposite was true where the upland run had an RMSE 

of 1.27 gC m-2 d-1 instead of 1.39 gC m-2 d-1. 

For Reco there were two sites where the model performed considerably better when using CRUJRA 

forcing as opposed to the bias corrected data. For RU-Cok the CRUJRA run had an RMSE of 1.08 gC 

m-2 d-1 whereas the bias corrected run had an RMSE of 2.01 gC m-2 d-1. For the other Russian site, the 

RMSE was 0.54 gC m-2 d-1 and 0.75 gC m-2 d-1, respectively. 

One of the sites where the model seemed to capture Reco very well was FI-Sod, with an RMSE of 0.80 

gC m-2 d-1 and R2 of 0.87 for the bias corrected upland simulation. Figure 9 shows the modelled Reco 

per month. This plot shows that the largest differences in the simulated Reco occurred during May. Un-

fortunately, this month was poorly represented in the observations and had to be excluded. 

 

Figure 9. Daily Reco taken as a five-daily mean for the years 2001-2014 at FI-Sod. Left: FLUXNET observations. Right: LPJ-

GUESS output for the bias corrected upland run. 
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Figure 10 shows the ALT at the six CALM sites observed during the end of the season (August or 

September). US-A10 is classified as a site with little vegetation, whilst US-BZS is dominated by ever-

green needleleaved trees. The other four sites are wetlands. From Figure 10 it is evident that LPJ-

GUESS failed to accurately simulate end-of-season ALT at wetlands. When running the model as up-

land sites, the ALT tended to be overestimated whereas switching on the wetland PFTs resulted in a too 

shallow active layer.  

For the forest site, US-BZS, the upland ALT reached the maximum of 150 cm for every year. However, 

when including the wetland PFTs and running the model with peat soils, the modelled ALT was in 

between one standard deviation of the mean for almost all years.  

Data on the monthly thaw depth throughout the year was available from the ABCflux dataset for US-

Uaf, see Figure 11. This plot illustrates the improvement in modelled ALT when assuming wetland 

conditions at this forest site. The RMSE dropped from 52 cm to 7 cm. It also shows observations for 

the soil temperature at a depth of 50 cm. The RMSE decreased from 3.72 ºC to 2.00 ºC. Instead of 

overestimating temperatures above 0 ºC, LPJ-GUESS simulated values close to the freezing point for 

the wetlands with trees run. 

Figure 10. End-of-season (August or September) ALT. Mean, range and standard deviation are taken from the ABCflux 

dataset. Orange points show the LPJ-GUESS value of the bias-corrected upland simulation and the red dots represent the 

bias-corrected wetlands run. The exception being the forest site US-BZS, where the red dots indicate the wetlands with trees 

run. 
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LPJ-GUESS simulated a too low monthly snow depth for all nine sites as shown in Figure 12. LPJ-

GUESS performed best for US-Atq and US-Prr. The modelled snow depth was especially poorly cap-

tured for US-BZB, US-ICs and RU-Che, where all data points had a value close to 0 cm. 

Figure 13 shows how the monthly snow depth differed per month for the years 2010 to 2016 at US-Uaf 

and US-Prr. At US-Uaf the observed snow depth greatly exceeded the simulated output during the win-

ter months. During summer the snow depth reached 0 cm both for the observations and simulations. At 

US-Prr, the observed snow depth never reached 0 cm. The monthly variability was captured quite well, 

but the simulated snow depth was distinctly lower than the observations. 

Figure 11. Simulated and observed ALT for US-Uaf (left). Simulated and observed soil temperature at 50 cm depth for the 

bias-corrected upland run (center) and the bias-corrected wetlands with trees run (right). 
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Figure 12. Monthly snow depth. Simulated values are taken from the bias corrected upland run. Observations are from the 

FLUXNETCH4 dataset for US-Atq, US-BZB, UC-Ics and RU-Che. The observations for the other sites are taken from the 

ABCflux dataset. 
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Figure 13. Mean monthly snow depth for the years 2010-2016 for US-Uaf (left) and US-Prr (right). Observations are taken 

from the ABCflux dataset. 

For one site, observations for the snow depth during May were available from the CALM database (see 

Figure 14). The red points show the simulated snow depth when running the model with the bias cor-

rected climate forcing. This plot shows that LPJ-GUESS captured the snow depth during May very 

well. For almost all years, the simulated value was within one standard deviation from the mean. 

 

  

Figure 14. Snow depth during May for US-A10. Mean, range and standard deviation repre-

sent the CALM observations. Red points show the simulated output for the upland run. 
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5 Discussion 

 

The simulated snow depth was for almost all months lower than the observations from the FLUXNET 

CH4 and ABCflux datasets. Yet, the CALM observations at US-A10 showed that LPJ-GUESS simu-

lated the snow depth in May accurately.  

For some sites, the amount of precipitation during the cold season is likely to be the cause of the low 

amount of snow simulated by LPJ-GUESS. These Arctic sites have a relatively low mean annual pre-

cipitation, commonly between 150 to 300 mm. There are usually large uncertainties in precipitation 

observations and performing an accurate bias correction is complex. This might have resulted in an 

incorrect representation of the amount of snow during the winter, which in turn resulted in a too small 

snowpack. 

The reliability of the FLUXNET CH4 and ABCflux observations for snow depth can be questioned. At 

US-Atq and US-Prr, for example, the daily snow depth never reaches 0 cm. For certain days in the 

FLUXNET CH4 dataset the snow depth turns negative. It is likely that the gap-filling methodology has 

not been applied correctly. As there is limited metadata available for these two datasets, it is not known 

whether the snow depth observations are obtained by single-point measurements or whether they rep-

resent a mean of several measurements. As snow depth is largely dependent on microtopography, sin-

gle-point measurements may not provide a correct representation of the snow depth across the entire 

site (Chadburn et al. 2017). 

A sensitivity analysis could improve our understanding of which parameters influence the simulated 

snow depth and thus could be used for tuning the model. The multi-layer snow scheme adopted in the 

Joint UK Land Environment Simulator (JULES), which is a land surface model (LSM), shows certain 

similarities to the dynamic snow scheme applied in LPJ-GUESS. The same methodology, based on Best 

et al. (2011), is used to derive the thermal conductivity and the snow density through compaction in 

both models. Parameters that are known to affect the snow density in JULES could therefore be included 

in a sensitivity analysis. 

A study by Vikhamar-Schuler et al. (2012) has shown that lowering the fresh snow density from 250 

kg m-3 to 100 kg m-3 improved the snow depth simulated by the multi-layer snow scheme of JULES. 

For LPJ-GUESS the snow depth is calculated dynamically and is dependent on various constants and 

the wind speed at 10 m above the surface. The minimum snow density is set to 150 kg m-3. 

Snow density of each layer increases as a result of compaction calculated as described in Best et al. 

(2011). Experiments conducted by Kojima (1967) were used to define this approach. In these experi-

ments the fresh snow densities where in the range of 50 to 70 kg m-3 and the snow temperatures within 
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268 to 273 K. These characteristics differ from what is applied in LPJ-GUESS and could affect the 

simulated snow depth. 

A study by Yang et al. (2020) showed that JULES is highly sensitive to the compactive viscosity factor 

(𝜂𝑘) used to calculate the snow density. 

Certain dynamics which affect snow depth are not captured by LPJ-GUESS. Shrubs are, for example, 

known to trap snow (Liston et al. 2002) but this process is not included in the model. This affects in 

turn the soil temperature and thus also ALT. 

 

The end-of-season ALT is largely overestimated by LPJ-GUESS in upland soils. This is also a problem 

for other DGVMs, such as ORCHIDEE and JSBACH, which simulate too high soil temperatures during 

the summer months (Chadburn et al. 2017). 

The wetness of the active layer is affected by the underlying permafrost. As permafrost is largely im-

permeable, little water can infiltrate. For this reason, the active layer is often (close to) being fully 

saturated (Sturm et al. 2005). In LPJ-GUESS, wetlands consist of three acrotelm layers with a varying 

water table and twelve permanently saturated catotelm layers. Therefore, the true conditions of the ac-

tive layer may be captured more accurately by the wetlands run. 

Running the model with peat soils lowered the ALT. This may be explained by the amount of soil 

organic matter (SOM). The amount of SOM is higher for peatlands, which affects phase changes and 

thus lowers the soil temperature. Furthermore, the thermal conductivity of peat is substantially lower 

(0.58 ∙ 106 J m-3 K-1) than for minerals (2.38 ∙ 106 J m-3 K-1). Peat soils are highly porous due to the high 

content of SOM, which affects the thermal conductivity as well (Dyukarev et al. 2020). The shallower 

ALT resulted in a very good fit for the wet forest sites. At wetland sites the reduction in ALT was too 

high and consequently led to an underestimation. 

An additional factor contributing to the contrasting ALT between the wetlands and upland runs can be 

attributed to the sensitivity of thermal diffusivity to soil water content. The calculation of thermal dif-

fusivity occurs on a monthly basis, utilizing the average soil water content from the preceding month. 

The relationship between thermal diffusivity and water content is not linear; it demonstrates a rapid 

incline with increasing water content until it culminates at a water volume fraction of 0.15, followed by 

a gradual decline (van Duin 1963). 

For the upland run, a lower soil water content can be observed, leading to an elevated thermal diffusiv-

ity. Consequently, the heightened thermal diffusivity facilitates a swifter release of heat. The accelerated 

heat release potentially accounts for the higher soil temperatures, with an amplification in ALT as result. 
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This intricate interplay of thermal diffusivity and water content contributes to the observed disparities 

in ALT between the wetlands and upland runs. 

ALT is greatly influenced by soil properties, such as the ice content (Smith et al. 2010). To further 

evaluate the reasons behind the incorrect representation of ALT at wetlands additional data on these 

properties would be necessary. The ALT for US-Uaf (Figure 11) is better captured by the wetlands than 

upland run. The soil temperature behaviour for the wetlands run might initially appear unusual, with 

the plateau observed at 0 ºC. This consistent temperature of 0 ºC is attributed to the implementation of 

phase changes in the LPJ-GUESS model. The method for incorporating phase changes follows a 

straightforward approach as detailed in Wania et al. (2009). Whenever water transitions between its 

liquid and solid phases or vice versa, the soil temperature is set to 0 ºC. This thermal condition persists 

until the entirety of the water present has undergone the phase transition.  

 

For the wet forest sites, it was possible to model the ALT correctly on peat soils. However, as by default 

no trees are able to grow in these conditions, the GPP was largely reduced. To improve the model’s 

performance by increasing the simulated GPP, two needleleaved evergreen tree PFTs (BNE and BINE) 

were added. These two new PFTs were not parameterized. To get a better fit, it would be required to 

further look at the parameters affecting GPP to ensure that the traits of the tree PFTs are properly cap-

tured. For instance, the duration of inundation that they can withstand and their specific leaf area (SLA) 

could be adjusted. 

Introducing other tree PFTs could also improve the model’s performance. All the wet forest sites in-

cluded in this study were dominated by evergreen needleleaved tress. For this reason, only BNE and 

BINE were included in the wetlands with trees simulation. However, at some wetland sites, such as 

RU-Che, larch trees are highly abundant. Including BNS might therefore improve the model fit for this 

particular site. 

For the sites located furthest up north, roughly exceeding 70ºN, the simulated GPP was close to 0 gC 

m-2 d-1. This can be explained by the low temperatures that limits growth and net photosynthetic rates. 

The establishment of shrubs and trees in LPJ-GUESS is constrained by a GDD5 threshold, which is not 

met for these high Arctic sites. Other DGVMs show similar problems with simulating shrubs at high 

latitude sites caused by this GDD5 establishment constraint (Zhu et al. 2018). 

It is relevant to represent mosses correctly in the model for accurately simulating the ecosystem’s 

productivity. This is especially true for wetlands where mosses are widely abundant (Turetsky et al. 

2010).  
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Errors in simulated GPP are propagated to related model output, such as biomass and other carbon 

fluxes (Schaefer et al. 2012). Parameter tuning of the Arctic PFTs could improve the performance of 

LPJ-GUESS. Various studies have shown that SLA can greatly affect GPP (Pappas et al. 2013; Renwick 

et al. 2019; Zheng et al. 2023). In this study SLA was calculated from the PFT’s leaf longevity. The 

leaf longevity of black spruce, the dominant tree species at most forest sites in this study, is 50-60 

months (Reich et al. 1998) which can be used to parameterize the corresponding PFT (BNE). 

The difference in the observed and simulated Reco was very similar as for GPP. However, in general the 

slope of the linear fit for Reco was smaller than for GPP which resulted in an underestimation of Reco at 

most sites. For the wetlands (with trees) run the ALT was too shallow, as compared to the observations, 

which meant that the soil temperatures were too low. This would in turn have slowed down the rate of 

decomposition and thus reduced Reco.  

 

More ancillary data would have allowed for a more in-depth model evaluation and analysis of the main 

limitations of LPJ-GUESS. LAI and GPP are, for example, closely related (Chadburn et al. 2017). It 

would therefore have been of interest to verify whether LPJ-GUESS can simulate LAI accurately, but 

US-Uaf was the only site with available observations.  

 Leaf area index 

At US-Uaf the LAI was largely overestimated by LPJ-GUESS for the upland run. The overestimation 

of LAI by DGVMs is a known problem (Murray-Tortarolo et al. 2013; Renwick et al. 2019). Moreover, 

LPJ-GUESS failed to capture the seasonal patterns with little variation in the simulated LAI during 

winter and summer. The large range in LAI for the wetlands with trees run may be due to the abundance 

of peatland moss. LPJ-GUESS only allows for this PFT to establish during the growing season and 

contributes substantially to the total LAI during those months. 

An incorrect representation of LAI in the model may lead to discrepancies in the vegetation carbon 

fluxes. An overestimation in LAI, and thus GPP, may sometimes be explained by how gap dynamics 

and competition are incorporated in the model (Murray-Tortarolo et al. 2013). It can therefore also be 

an indicator for an incorrect representation of the PFT distribution. 

During the winter months, LPJ-GUESS simulates a constant value for LAI. This is due to the presence 

of evergreen vegetation and the climate not allowing for any growth. Once the amount of incoming 

solar radiation and the air temperature increase, summergreen shrubs and grasses can emerge. As a 

consequence, the LAI increases and shows some variation on a daily scale. When the climatic condi-

tions become less favourable, the LAI returns to a constant value based on the evergreen shrubs and 

trees. The observations show, however, a bigger interannual variation that LPJ-GUESS does not capture 

which can affect the model’s performance for the carbon fluxes as well. 
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 Biomass 

Many DGVMs are not able to properly simulate AGB (Crisp et al. 2022). This study has shown that the 

AGB at wet forest sites is best represented by the wetlands (with trees) run. At the two forest sites (US-

Uaf and US-Prr) the GPP was underestimated for the wetlands with trees run. This means that when 

aiming to improve the model fit for GPP, the increase in productivity should not lead to an increase in 

AGB. Black spruce is dominant at these two sites, which is known to allocate a large amount of biomass 

belowground (Noguchi et al. 2012). A parameter that could be tuned is Ltor_MAX as this governs the 

partition of biomass to the leaves and root system (Pappas et al. 2013). It should be noted, however, 

that the study by Noguchi et al. (2012) reported considerably higher values for AGB than the ABCflux 

dataset which implies that the quality of the data may be questioned. 

 

The aim of this study was to evaluate the performance of LPJ-GUESS when applied on high latitude 

sites. FLUXNET is a well-established network based on properly defined protocols to ensure the quality 

and consistency of the data. The data is reliable and freely available. Add that it might be slightly less 

reliable in the cold season due to missing observations and thus more gap-filling being required. As a 

result, it provides a great opportunity for benchmarking on site level. Nevertheless, there are various 

limitations related to the evaluation data. 

One of the main problems is the limited amount of data and its spatial distribution. The AMERIFLUX 

sites in the United States are well-represented, whereas none of the sites are located in Canada. Russia, 

which comprises a large part of the Arctic, is only represented by two sites. It should be noted, however, 

that there are a few more sites available under the FLUXNET Tier 2 license. 

The FLUXNET2015 dataset has several advantages as opposed to the FLUXNETCH4 Community 

Product. The FLUXNET2015 dataset includes meteorological data from 1989 to 2014, whereas the 

FLUXNETCH4 dataset extends over a period of 2 to 7 years. Limited meteorological data may affect 

the bias correction. The data processing pipeline for FLUXNET2015 allows the user to choose between 

the various different derived carbon fluxes based on the partition method and u* threshold. It also in-

cludes quality flags which can be easily used for checking the data quality. The lack of quality flags for 

the FLUXNETCH4 dataset may have affected the results of this study. Based on the observations US-

A10 is, for example, presumably a rather productive site. However, the GDD5 is low and less than 10% 

of the area at this site is covered by vegetation. This seems to be inconsistent with the relatively high 

observed GPP. 

The ALT data that was available from the CALM database provides valuable information on the end-

of-season ALT. CALM data extends over a long period of time and measurements are taken at 20-121 

points within a grid at each site. However, it was not possible to evaluate LPJ-GUESS for the other 



27 

 

parts of the season. The ABCflux dataset included monthly thaw depth observations for US-Uaf, which 

provided information on the site’s behaviour with the different soil types. 

6 Conclusions 

LPJ-GUESS was run and evaluated for 20 FLUXNET sites. Performing a bias correction of the climate 

forcing based on meteorological FLUXNET data improved the model’s performance in terms of GPP 

and Reco for almost all sites. The model was not able to capture GPP and Reco at high latitude (>70ºN) 

sites as it simulated values close to 0 gC m-2 d-1 which is not in correspondence with the observations. 

Most of the sites that were included in this study were wetlands. For this reason, one of the runs that 

was evaluated included wetland PFTs and peatland soils. Many wetlands showed an underestimation in 

both GPP and Reco. ALT at these sites was either too high (upland run) or too low (wetlands run) when 

comparing it to CALM observations. 

To improve the model’s representation of wet forests, LPJ-GUESS was run using the same set-up as 

for the wetlands run, but this time boreal evergreen needleleaved tree PFTs were included as well. This 

resulted in a good simulation of end-of-season ALT. However, it also implied an underestimation of 

both GPP and Reco. 

Snow depth is poorly modelled at all sites for which there was data available. It should be noted that 

the quality of some of the observed data can be questioned. Nevertheless, LPJ-GUESS seems to simu-

late a low snow depth which is unlikely to correspond to the real situation at these high latitude sites. 

As climate change continues to exert profound impacts on the Arctic region, there is an escalating ur-

gency to comprehend its consequences. Significant advancements in refining the LPJ-GUESS model 

have been undertaken to enhance its applicability in the Arctic context. However, despite these efforts, 

this research underscores the presence of substantial disparities between model projections and actual 

observations of relevant Arctic parameters. 

These divergences may originate from the inherent uncertainties in climate forcing data or stem from 

inadequacies in the representation of specific processes within the model. Addressing these challenges 

remains pivotal to refining the model's accuracy. By doing so, we can deepen our comprehension of 

carbon fluxes within Arctic ecosystems and gain a better perspective on how these ecosystems are likely 

to evolve in the face of future change. 
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A-1 

 

 Relative humidity conversion 

One of the drivers of LPJ-GUESS is relative humidity. However, for some of the FLUXNET sites only 

data on vapour pressure deficit was available. The CRUJRA dataset provided specific humidity rather 

than relative humidity. These quantities were therefore converted to relative humidity by applying the 

equations given below.  

Vapour pressure deficit to relative humidity 

First the saturated vapour pressure in Pa is calculated according to 

 𝑒𝑠(𝑇) = 𝑓 ∙ (611.21 ∙ exp (𝑏 ∙
𝑇

257.14 + 𝑇
)) (A1) 

where T is the air temperature in °C, b is an empirical coefficient given by 

 𝑏 = 18.678 − (𝑇 / 234.5) (A2) 

and f is an empirical coefficient given by  

 𝑓 ≅ 1.0007 + 3.46 ∙ 10−8 ∙ 𝑃 (A3) 

where P is the atmospheric pressure in Pa. 

Next, the water vapour pressure (e in Pa) is derived from the vapour pressure deficit (VPD in Pa) 

 𝑒 = 𝑒𝑠(𝑇) − 𝑉𝑃𝐷 (A4) 

Relative humidity (rh) can then be calculated according to 

 𝑟ℎ = 𝑒/𝑒𝑠(𝑇) (A5) 

Specific humidity to relative humidity 

The water vapour pressure (e in Pa) is derived from the specific humidity (q) 

 𝑒 =
𝑞 ∙ 𝑃

0.378 ∙ 𝑞 + 0.622
 (A6) 

Relative humidity can then be calculated by using the equations A1, A5 and A6. 
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 List of sites 

Table B1. FLUXNET2015 sites with the number of observations included in this study for each variable. 

Site ID Site name Longitude Latitude IGBP GPP Reco Meteo 

GL-NuF Nuuk Fen -51.386 64.131 WET 696 782 9496 

US-Prr Poker Flat Research Range Black Spruce Forest -147.488 65.124 ENF 459 590 9496 

FI-Sod Sodankyla 26.639 67.362 ENF 1938 3189 9496 

RU-Cok Chokurdakh 147.494 70.829 OSH 696 579 9496 

GL-ZaH Zackenberg Heath -20.550 74.473 GRA 769 1024 9496 

GL-ZaF Zackenberg Fen -20.555 74.481 WET 185 193 9496 

SJ-Adv Adventdalen 15.293 78.186 WET 52 140 9496 

 

Table B2. FLUXNET CH4 Community Product sites with the number of observations included in this study for each variable. 

Site ID Site name Longitude Latitude IGBP Snow GPP Reco Meteo 

SE-Deg Degerö 19.557 64.182 GRA - 1826 1826 1826 

US-BZB Bonanza Creek Thermokarst Bog -148.321 64.696 WET 1096 1096 1096 1096 

US-BZS Bonanza Creek Black Spruce -148.324 64.696 ENF 647 731 731 731 

US-NGC NGEE Arctic Council -163.700 64.862 GRA - 221 457 457 

US-Uaf University of Alaska, Fairbanks -147.856 64.866 ENF - 2860 2922 2922 

Fi-Lom Lompolojankka 24.209 67.997 WET - 1826 1826 1826 

US-Ivo Ivotuk -155.750 68.487 WET - 1235 1461 1461 

US-ICs Imnavait Creek Watershed Wet Sedge  -149.311 68.606 WET 1095 1095 1095 1095 

RU-Che Cherski 161.341 68.613 WET 599 980 1083 1096 

US-Atq Atqasuk -157.409 70.470 WET 817 783 1100 1100 

US-NGB NGEE Arctic Barrow -156.609 71.280 SNO - 1112 2554 2557 

US-Bes Barrow-Bes -156.597 71.281 WET - 796 1095 1095 

US-A10 ARM-NSA-Barrow -155.615 71.324 BSV - 2215 2540 2557 

 

Table B3. CALM sites used in this study with the number of data points per grid and the temporal extent. 

Site ID Site code  Site name Longitude Latitude Nr. Points 

US-BZS U18  Bonanza Creek -148.133 64.7 20 

US-Ivo U26  Ivotuk 1km Grid -155.733 68.483 121 

US-ICs U11B  Imnavait Creek Wet -149.315 68.611 71 

US-Atq U3  Atqasuk -157.400 70.450 121 

US-A10 U1  Barrow -156.6 71.317 121 

GL-ZaH G1  Zackenberg ZEROCALM 1 -20.553 74.473 121 
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 Gross primary productivity 

Table C1. RMSE and R2 for GPP for each site and run, where BC stands for “bias corrected”. For each site, the RMSE 

belonging to a certain simulation is indicated by an asterisk (*), which depends on the type of ecosystem. The BC wetlands 

run is marked for wetlands and grasslands. The BC wetlands with trees run is marked for wet forests. Other sites (e.g. domi-

nated by shrubs, or forests on dry soils) are represented by the BC upland run. The table is sorted on latitude, where SJ-Adv 

is furthest north. 

 RMSE (gC m-2 d-1)  R2 

Site 

CRUJRA 

upland 

BC up-

land 

BC wet-

lands 

BC wetlands 

with trees 

 CRUJRA 

upland 

BC up-

land 

BC wet-

lands 

BC wetlands 

with trees 

GL-NuF 2.18 1.27 1.39* 1.40   0.13 0.37 0.21 0.21 

SE-Deg 5.70 4.81 2.86* 5.40   0.74 0.68 0.70 0.66 

US-BZB 2.63 2.17 1.60* 1.51   0.73 0.72 0.68 0.68 

US-BZS 1.83 1.70 1.95 1.96*   0.83 0.83 0.81 0.77 

US-NGC 2.60 5.01 1.58* 1.91   0.81 0.86 0.82 0.77 

US-Uaf 4.20 3.96 4.89 4.16*   0.17 0.19 0.06 0.19 

US-Prr 3.72 3.37 1.91 1.01*   0.59 0.44 0.32 0.46 

FI-Sod 2.58 1.26* 1.43 1.41   0.66 0.67 0.55 0.65 

FI-Lom 5.48 3.37 1.78* 2.51   0.44 0.47 0.45 0.11 

US-Ivo 2.22 1.60 1.87* 1.87   0.72 0.78 0.75 0.75 

US-ICs 1.87 0.88 1.56* 1.56   0.66 0.78 0.65 0.65 

RU-Che 1.70 1.34 2.37* 2.37   0.75 0.57 0.51 0.51 

US-Atq 1.15 1.03 0.96* 0.96   0.79 0.85 0.80 0.80 

RU-Cok 2.25 3.59* 3.68 3.68   0.59 0.49 0.26 0.26 

US-NGB 1.67 1.68* 1.68 1.68   0.37 0.24 0.50 0.50 

US-Bes 2.85 2.85 2.85* 2.85   0.00 0.00 0.00 0.00 

US-A10 3.71 3.65* 3.60 3.62   0.05 0.08 0.08 0.09 

GL-ZaH 1.34 1.31 1.05* 1.05   0.01 0.34 0.41 0.41 

GL-ZaF 4.30 4.27 4.07* 4.07   0.01 0.68 0.88 0.88 

SJ-Adv 1.11 1.11 1.12* 1.12   0.99 0.94 0.67 0.67 
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Figure C1. Daily GPP taken as a mean over a period of five days. The simulated values are taken from the run marked with 

an asterisk in Table C1. The plots are sorted on latitude, where SJ-Adv is furthest north. 
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 Ecosystem respiration 

Table D1. RMSE and R2 for Reco for each site and run, where BC stands for “bias corrected”. For each site, the RMSE 

belonging to a certain simulation is indicated by an asterisk (*), which depends on the type of ecosystem. The BC wetlands 

run is marked for wetlands and grasslands. The BC wetlands with trees run is marked for wet forests. Other sites (e.g. domi-

nated by shrubs, or forests on dry soils) are represented by the BC upland run. The table is sorted on latitude, where SJ-Adv 

is furthest north. 

 RMSE (gC m-2 d-1)  R2 

Site 

CRUJRA 

upland 

BC up-

land 

BC wet-

lands 

BC wetlands 

with trees 

 CRUJRA 

upland 

BC up-

land 

BC wet-

lands 

BC wetlands 

with trees 

GL-NuF 1.53 0.58 0.56* 0.56  0.29 0.54 0.50 0.50 

SE-Deg 3.23 3.02 1.29* 2.35  0.81 0.82 0.80 0.80 

US-BZB 1.75 1.51 1.28* 1.31  0.76 0.74 0.69 0.65 

US-BZS 1.14 1.09 2.26 2.28*  0.85 0.85 0.82 0.77 

US-NGC 1.61 3.29 0.55* 0.71  0.73 0.76 0.84 0.82 

US-Uaf 3.37 3.28 3.82 3.59*  0.21 0.20 0.14 0.21 

US-Prr 2.91 2.66 0.95 0.70*  0.80 0.76 0.71 0.7 

FI-Sod 1.33 0.80* 1.58 1.67  0.84 0.87 0.81 0.82 

FI-Lom 2.44 1.28 0.76* 0.93  0.93 0.88 0.87 0.40 

US-Ivo 1.07 0.78 0.94* 0.94  0.79 0.74 0.77 0.77 

US-ICs 1.15 0.82 1.06* 1.06  0.56 0.58 0.57 0.57 

RU-Che 0.54 0.75 0.99* 0.99  0.84 0.87 0.80 0.80 

US-Atq 0.61 0.55 0.52* 0.52  0.64 0.66 0.67 0.67 

RU-Cok 1.08 2.01* 2.04 2.04  0.67 0.70 0.39 0.39 

US-NGB 0.65 0.65* 0.65 0.65  0.23 0.16 0.29 0.29 

US-Bes 2.67 2.67 2.67* 2.67  0.01 0.01 0.01 0.01 

US-A10 2.39 2.37* 2.35 2.35  0.01 0.03 0.02 0.02 

GL-ZaH 0.80 0.78 0.67* 0.67  0.10 0.38 0.39 0.39 

GL-ZaF 1.25 1.24 1.19* 1.19  0.88 0.89 0.82 0.82 

SJ-Adv 0.56 0.55 0.56* 0.56  0.81 0.78 0.41 0.41 
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Figure D1. Daily Reco taken as a mean over a period of five days. The simulated values are taken from the run marked with an 

asterisk in Table D1. The plots are sorted on latitude, where SJ-Adv is furthest north. 


