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Abstract  
Over the years, cartography has undergone a significant transformation, evolving from hand-

drawn maps to sophisticated digital ones. A crucial task in map production is label placement, 

which can be time-consuming when done manually. The definition of label includes the text 

and icons placed on a map. This study focuses on the challenges of automatic icon placement 

on city wayfinding maps. Despite advancements in automated label placement methods, 

challenges persist, especially in the field of icon placement in high-density areas. This research 

aims to optimize icon placement on city Wayfinding maps, addressing challenges of placing 

icons in high-density areas and maintaining a strong association between icons and their actual 

locations. A two-stage method was proposed: initially, a grid search algorithm was developed 

to place the icons in the least disturbing positions on the map. Quality metrics related to 

legibility, disturbance, and association were also defined to evaluate these placements positions. 

Furthermore, constraints set by T-Kartor ware considered during the developing process. Then, 

to optimize the positions, a multi-objective optimization algorithm (NSGA-II) was 

implemented to optimize simultaneously all the quality metrics. The outcome was a Pareto front 

comprising a set of non-dominant solutions where all three objectives were optimized. As the 

primary focus was on the association aspect, the optimal solution chosen among those non-

dominant solutions was the one excelling better in terms of association. However, the user can 

choose the optimal solution that optimizes all the three metrics. In that way, high quality urban 

wayfinding maps were produced and proved to meet at large extent the real-world production 

needs and align with cartographic guidelines set by T-Kartor. As a result of enhanced 

association, both walkability and the overall navigational experience of users were enriched. 

Future work can focus on improving computational efficiency, considering varied icon shapes, 

and integrating a plugin that allows the user to customize the level of optimization according to 

his own preferences. 
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1. Introduction 

1.1 Background 

Cartography, the art and science of map-making, has been an essential tool for centuries, 

helping people to understand and navigate the world around them. Throughout history, the field 

has evolved from simple hand-drawn maps to sophisticated digital maps that are widely 

accessible to the public. Initially, cartographers were primarily focused on employing computer 

technology to automate map production, as noted by Visvalingam in 1990. Today, with the 

advent of technology, cartography has become increasingly digitized, resulting in faster map 

production and greater accessibility for a wider audience.  

Label placement on digital maps is an essential part of map production, with a long history of 

being performed manually. This task can occupy up to 50% of the total time dedicated to 

designing a map (van Dijk et al., 2002). Digital maps can be broadly classified into two 

categories: static and dynamic maps. Static maps are designed as fixed images, while dynamic 

maps are characterized by a higher degree of interactivity, enabling continuous zooming and 

panning (Been et al., 2006). City wayfinding maps are considered as static, large-scale maps 

which provide directional information for pedestrians and cyclists in complex urban 

environments (Harrie et al., 2022). They are usually displayed as posters on pre-existing 

infrastructure such as bus shelters or station poster frames (City Wayfinding, n.d.) and are an 

invaluable tool for improving mobility and accessibility within cities.  

Labels on maps like these serve to identify and describe various map features, aiding both the 

user and producer in understanding and interpreting the map’s information. The term "label" is 

commonly employed to refer to texts and icons on a map. The current state of research suggests 

that there has been limited investigation into the topic of automated icon placement. Thus, the 

present study seeks to address this gap by focusing specifically on icon placement.  

Label placement can be done manually, but it is often time-consuming and error prone. To 

improve the accuracy and efficiency of map design, this process can be automated through the 

use of algorithms. Since the 1970s and 1980s, researchers have proposed several methods to 

address the automatic label placement problem, including combinatorial optimization (van Dijk 

2001; Harrie et al. 2005), sequential placement (Rylov and Reimer 2017; Klute et al. 2019), 

and slider model (van Kreveld et al. 1999; Strijk & van Kreveld 2002). However, the automatic 

placement of labels poses several challenges, which cause much interactive work in the map 

production. To ensure clear and effective communication, icon must address these challenges 



2 

 

by following general rules such as legibility, association, readability, and aesthetics (Imhof 

1975; Wood 2000; van Dijk 2002; Rylov and Reimer 2015). To fulfil these requirements there 

are specific rules for placing labels on different types of features, including points, lines, and 

areas.  

Despite the improvements that have been proposed by researchers for all the methods, there is 

still a knowledge gap in the field of automatic label placement, with significant challenges yet 

to be addressed. Harrie et al. (2022) identified five issues in the placement of labels on City 

wayfinding maps, including label placement in high-density areas (regions on a map with many 

features, within a small area), use of true geometries in automated methods, association between 

icons and text labels, adjustment of text labels to fit within the available space, and road label 

positioning. These remain important research problems that need to be addressed in order to 

further improve the efficiency and effectiveness of label placement, including the icons. 

1.2 Problem statement 

The task of automatically determining the optimal label positions for point features on a map, 

known as the automatic point feature label placement problem (PFLP), is a challenging process 

that has garnered the attention of several research studies. The PFLP problem requires 

placement of labels adjacent to point features in such a way that overlap of labels is minimized 

or equals zero (Rylov & Reimer, 2014). The problem is defined by (Klute et al., 2019) as 

follows: 

 

Given a set P of n points in ℝ2 with a set of label candidates L and a weight function w, find a 

conflict-free set S ⊆ L of label candidates for P such that the weight W(S) = ∑l∈S w(l) is 

maximized. 

 

In simple terms, in the PFLP labels are assigned to a set of points on a 2D plane. Each point has 

a set of label candidates, and each label candidate has an associated weight. The task is to select 

a subset of label candidates, represented as S, such that each point is assigned at most one label 

from S, and there are no conflicts (overlaps) between the labels assigned to the same point. The 

objective is to maximize the total weight of the selected labels in S, to ensure that the most 

important and informative labels are chosen for each point. 

The complexity analysis has shown that the basic PFLP is a non-deterministic polynomial-

time hard (NP-hard) problem (Kato and Imai 1988; Marks and Shieber 1991). According to 
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computational complexity theory, a problem H is considered NP-hard if any problem L that 

belongs to NP can be reduced into H in polynomial time (Knuth, 1974). That means that is very 

difficult to find an optimal solution to the problem in a reasonable amount of time as it requires 

significant computational resources, and is potentially costly (Klute et al., 2019).  

1.3 Aim of the study 

The aim of this study is to find the best placement of icons on a city wayfinding map, address 

the challenges of placing icons in high-density areas while maintaining good association with 

their actual locations. To achieve this goal, a two-stage icon placement method is proposed. 

First, a grid search algorithm places the icons in the least disturbing positions, where they 

obscure background information as little as possible (Harrie et al., 2004). Then, to improve the 

found solution, a multi-objective optimization algorithm is implemented to optimize 

simultaneously all the criteria, namely legibility, disturbance and association. The hypothesis 

suggests that employing a grid algorithm to search approximate icon positions and subsequently 

refining them through multi-objective optimization in accordance with city wayfinding 

guidelines and constraints outlined by T-Kartor1 will lead to the creation of high-quality maps. 

1.3.1 Main objectives 

In order to achieve the goal, the main objectives of the study are as follows: 

▪ Address the lack of walkability and readability in commercial online map services such as 

Google Maps through enhanced icon placement. 

▪ Develop a two-stage algorithm that initially places icons sequentially at the least disturbing 

positions. Subsequently, it employs a multi-objective optimization of the placement to fine-

tune the placement by optimizing various objectives such as disturbance, legibility, 

association, and potentially other user-defined constraints, rendering this stage adaptable to 

customization. 

▪ Create high-quality City Wayfinding maps that are effective at guiding users to their 

destinations and align with the real production needs set by T-Kartor 

1.3.2 Research question 

The research question addressed in this study is: 

 

1 https://www.t-kartor.com/ 

about:blank
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1. How to efficiently automate the icon placement in high-density city wayfinding maps, using 

an optimization method that fulfils the cartographic rules and enhances the association 

between icons and the place that they refer to? 

1.4 Delimitations 

The present study is delimited to the investigation of icons placement, as this is the primary 

focus of the research. It is important to note that all icons are treated as square in shape. 

Regarding the text labels, only their bounding boxes that describe landmark building labels and 

labels of road names are used, rather than the full text of the label. This is due to the fact that 

the text labels are not visually present on the map, but they are utilized only during evaluation. 

Furthermore, it is assumed that the text labels are placed before icons. The alignment of icons 

in relation to text labels is not addressed in this study. 

2. Literature overview 
The process of placing labels on a map is considered as one of the most difficult and complex 

problems in cartography. In order to handle the problem efficiently, it is usually split up into 

smaller independent subtasks such as candidate position generation, position evaluation and 

position selection (Rylov and Reimer, 2017)  

2.1 Candidate positions generation for point features 

This task involves generating a set of label candidates for each map feature by considering its 

type (point, line and polygon), shape, and established cartographic rules. For point features, 

several methods have been proposed to generate potential label positions, including with the 

most important ones to be presented as follows. 

2.1.1 Fixed position models 

Fixed position models, as proposed by Yoeli (1972) and Hirsch (1982), generate a single fixed 

position for labelling point-like objects, such as cities or landmarks. These models are suitable 

when the label should always be placed at the same position, such as on top of the point feature. 

One of the earliest and most widely used models is the 4-Position Model (Freeman, 1988). In 

this model, four potential label positions are generated around the point feature, each aligned 

with one of the cardinal directions (north, south, east, west). A preferred label position 

according to Imhof (1975) is above and to the right of the point. 

  



5 

 

 

Later, the 8-Position Model was proposed (Imhof 1975; Yoeli 1972) as an extension of the 4- 

Position Model. In this model, eight potential label positions are generated, including the four 

positions in the 4-Position Model, as well as positions halfway between the cardinal directions 

(northeast, southeast, southwest, northwest). Robinson et al. (1995) states that a preferred label 

position generated from this model can be directly above or below the point. Label placement 

to the left or right of the point is not ideal, as it can decrease legibility (Slocum et al., 2008) 

since both the point and the label align on a single line. 

2.1.2 Slider models 

In contrast, slider label models (van Kreveld et al. 1999; Strijk and van Kreveld 2002; Klau & 

Mutzel 2003) allow the label to slide along the point feature, enabling the label to be placed at 

any position within defined boxes (Figure 2), as opposed to being restricted to fixed positions. 

This creates a higher number of possible positions for each label. 

 

Figure 2: Examples of sliding models for point feature labelling: a) Horizontal label slide within the box. b) Same as a) within 

an additional box below. c) Both horizontal and vertical label slide. Modified after van Kreveld et al. (1999) 

van Kreveld et al. (1999) used this method for point text labelling and found that it produced 

higher labelling quality compared to methods with a fixed number of positions per label. 

However, when it comes to labels with large font text, the slider model may not always produce 

satisfactory results, as it can be challenging to find a good placement for the label within the 

defined boxes (Strijk & van Kreveld, 2002). To address this issue, Strijk & van Kreveld (2002) 

developed an efficient algorithm that considers background information and handles labels of 

different font sizes by adjusting their width. As a whole, it has been proven that this method 

produces higher labelling quality than methods where labels are not able to slide and there is 

only a fixed number of positions per label. 

Figure 1: An example of a 4-Position Model (a) and an 8-Position Model (b) for a point feature label. Modified after Lu et 

al. (2019) 
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2.1.3 Sequential placement 

Labels can also be automatically placed in a sequence, and this method is known as sequential 

placement. It was used by Rylov and Reimer (2017) to label area features outside of their 

polygonal boundaries. The process involved constructing a bounding box around the original 

polygon, finding intersection points as an imaginary horizontal line moves over the plane, and 

eventually identify potential candidate positions around each intersection point. The goodness 

of each candidate position was then evaluated based on the degree of spatial relationship 

between the label and the feature it tagged.  

However, a primary limitation of this approach is its susceptibility to early misplacements: if a 

label is positioned poorly early in the sequence, it can adversely affect the entire label 

placement. This method can also be time-consuming for large datasets. To improve efficiency, 

several approaches have been proposed, including using optimization algorithms and semi-

automatic labelling. The semi-automatic labelling method overcomes the time-consuming issue 

by initially computing a labelling that has well-placed labels, even though it may not be perfect. 

The user can then modify the labelling interactively and locally as needed based on his own 

criteria. (Klute et al., 2019) 

2.1.4 Grid algorithm 

Harrie et al. (2004) developed an algorithm for placing icons in the least-disturbing position. 

That indicates that the icon is placed in such a position that it obscures as little information as 

possible. Algorithmically is defined as the place that returns the minimum sum of weights for 

the cartographic points, which are points that form the cartographic objects. In general, the 

algorithm operates by moving the icon to each possible position and checking which 

cartographic points are covered by it for each position. The computational complexity of this 

simple algorithm is O (n2 * numPoints), where n2 represents the total number of possible 

positions and numPoints is the number of cartographic points. Such complexity indicates the 

drawback of a lower speed when more cartographic points are involved.  

Thus, the authors suggested an approach called grid algorithm for improving the computational 

complexity to O (numPoints + n2 * p), where p is the distance between two neighbouring search 

positions. The grid was used to divide the search area for the icon into smaller sections, so the 

algorithm could evaluate each of these sections individually.  



7 

 

 

Figure 3: Grid algorithm process. Illustration of a window transitioning from its initial position (dashed lines) to a new position 

(solid lines)(a). Only the grid values within the shaded grey regions require adjustment to compute the disturbance value for 

the new icon position. The search for the optimal icon position, starting from the original location (indicated by a double circle) 

and progresses in a spiral pattern (b). For positioning icons representing line objectects (c) the algorithm can perform repeated 

spiral searches along the line around the midpoint (box 1).  Created by Harrie et al. (2004) 

Figure 3 shows the workflow of the grid algorithm process, which is described by Harrie et al. 

(2004). The algorithm takes as input the original position and the size of the icon as well as the 

permitted movement of the icon from its original position, the resolution of the search space, 

all the cartographic objects on the map and the importance (weight) of each cartographic object 

type. The weight is given based on how important it is to keep the icon away from that specific 

object type.  

For each feature in the dataset, the algorithm checks if it overlaps with the original point of the 

icon within a certain search distance. If it does, the weight of the feature is retrieved and added 

to a list. The search area is later divided into a grid of cells. For each point in the list of weights, 

its weight is assigned to the cell in the grid that contains it and the total value of the weights in 

each cell is calculated. When the window is moving from one position (dashed lines) to a new 

position (solid lines, Figure 3a), only the grid values in the grey areas need to be adjusted to 

determine the disturbance value for the new icon position. The search for the optimal position 

begins at the original position of the icon (marked with a double circle) and progresses in a 

spiral pattern (Figure 3b). Finally, the icon’s position with the lowest disturbance value is 

returned by integrating the grid values and returning the coordinates of the corresponding cell. 

However, this method appears to have some limitations. Firstly, it is only designed to be used 

for positioning a single icon. While it can be adjusted to place multiple icons, the code must be 

extended to determine their positions sequentially. A subsequent icon is not possible to overlap 

an already positioned icon. Additionally, the algorithm does not consider text and is specifically 

designed for square icons. Nevertheless, it can be adjusted for placing rectangular icons by 

using a search space that is also rectangular.  
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Despite these limitations, the grid algorithm offers several benefits. For normal values of 

numPoints and p, it is faster than the simple algorithm. This makes it particularly useful for 

real-time maps that require fast performance. Furthermore, the algorithm can be used to position 

icons that represent line objects by performing repeated spiral searches along the line around 

the midpoint (box 1) as shown in Figure 3c. Overall, this method has been proven to produce 

good quality visual results and its computational complexity makes it easy to use for real-time 

maps. 

2.2 Position evaluation 

The evaluation of potential label positions is a task that involves measuring the quality of each 

position based on how well the label is positioned with respect to the feature it tags and to the 

rest of the map content (van Dijk et al., 2002; Hong et al., 2005). The quality of labelling is 

quantified by an objective function, which is normally formed by the weighted sum of single 

metrics (quality functions) (Rylov and Reimer 2014; van Dijk et al., 2002; Zhang and Harry 

2006). The total cost of the summed factors with weights defines the objective function value 

of a label placement solution. The choice of maximizing or minimizing an objective function 

depends on the specific labelling problem and the preferences of the map maker. Therefore, the 

final labelling solution would be the one either with the highest or with the lowest objective 

function. 

The construction of the objective function is important since it directly affects which solution 

is finally selected by the algorithm. Each quality function in the objective function serves a 

specific rule or criterion for label placement. There are several ways to define an objective 

function. Lu et al. (2019) in their work gave a simple definition of the objective function as 

presented in equation 1. In their case the quality functions (Sj) where four: (1) label conflict, (2) 

label-feature conflict, (3) label non-ambiguity, and (4) label priority. The weight of each 

function (Wj) is scaled to the interval of 0–1 such that their sum is 1. Generally, the weights are 

set as W1 > W2 > W3 > W4. The label conflict factor to have the greatest weight, meaning that 

it has the greatest influence on the quality of label placement. 

𝑆 = ∑ 𝑆𝑗 ∗𝑊𝑗
4
𝑗=𝑖       (1) 

Rylov et al. (2015) in their objective function (equation 2) defined a quality function for 

measuring the amount of the map information that is hidden by a label. They also quantified 

the degree of visual contrast between a label and other features in the map background, which 

format was raster. Their refined measure created by the substitution of ffeat−visibility(l) and 
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flabel−visibility(l) in the following equation and is based on information obtained from the map 

background after implemented an image segmentation algorithm (Haralick & Shapiro 1985; 

Pal & Pal 1993). 

 

(2) 

 

where L=(l1,…,ln): set of n labels on the map, wi, i=1,2,..,5: weights and f*(l): partial quality 

functions.  

The label placement approach involves several quality metrics, including the importance, 

classification, and hierarchy of a labelled object (fpriority(l)). Additionally, the aesthetic quality 

of a label, such as its position and shape with respect to the feature it annotates, is evaluated 

using  faesthetics(l). The degree of association between a particular feature and its label is measured 

by fassociation(l), while flabel−visibility(l) considers the visibility of a label in relation to other features 

and labels on the map. Lastly, the ffeat−visibility(l) evaluates the visibility of a feature on the map 

with respect to other features and labels. 

Both Lu et al. (2019) and Rylov et al. (2015) employed an objective function to evaluate the 

quality of label placement solutions. Although the specific quality metrics used in each study 

vary, there are some common factors like prioritization and overlapping. However, the second 

function includes a quality metric for evaluating aesthetics aiming to create a visually pleasing 

and informative map. 

2.2.1 General cartographic requirements 

As stated above the quality of map labelling is evaluated using a weighted quality function for 

each one of the established cartographic requirements. In previous research cartographers 

(Imhof 1975; Yoeli 1972) listed a number of rules for a high-quality result. Here are 

summarized the four main categories of general rules (as described by van Dijk et al., 2002) 

that must be obeyed when comes to label placement.  

▪ Legibility: Avoid overlapping between labels 

▪ Readability (Not disturbing the map content): Labels should not cover important 

information of the map background when it is needed to be placed on top of map objects. 
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Ideally, they should overlap only homogenous areas and less important objects. Regarding 

the map objects, they should allow a clear interpretation of labels. 

▪ Association (Unambiguity): Labels should be close to their corresponding objects in order 

to be easy to interpret in which map objects they refer to. 

▪ Aesthetics: The placement of labels on the map should enhance its aesthetic quality as a 

whole  

For the purpose of this study, the primary focus lies on the first three rules—legibility, 

readability, and association. Aesthetics, while important, are not the central concern of this 

research. 

2.2.2 Challenges in city wayfinding maps 

In the production of city wayfinding maps, Harrie et al. (2022) identified, among others, two 

important challenges in icon placement that need to be evaluated and solved before deciding 

about. The first challenge is finding a way to effectively place labels in high-density areas on a 

map. These are regions that have many map features, i.e., points, lines, or polygons, within a 

small area. Because of the limited space for both map features and labels, it is difficult to define 

priorities between the labels. For instance, one label type always should be in priority over 

another label type. Automated labelling tools such as those implemented in QGIS and ArcGIS 

(i.e., Maplex) can provide satisfying results in terms of readability, but they do not follow an 

important requirement of city wayfinding maps, which states that all the labels should be 

present on the map.  

The second challenge involves finding an effective way to create a good relationship between 

text labels and icons on the map. That means that icons are properly associated with the 

corresponding map features they describe. This is particularly important in city wayfinding 

maps, where the labels are often used to provide directional and other important information to 

pedestrians and cyclists (City Wayfinding, n.d). Currently, text labels and icons are treated as 

separate objects, which can lead to problems as it implies that their placement is independent 

of each other. So far there is no automated way to handle this challenge, but a manual solution 

has been proposed by Harrie et al. (2022), which involved combining the text labels and icons 

into a single label (icon), which is later placed interactively.  
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2.2.3 Production needs  

In addition to the general cartographic requirements and challenges in city wayfinding maps, 

there are real production needs, that cartographers in T-Kartor defined, when it comes to icon 

placement. These needs, as summarized below, are crucial in ensuring the accuracy, legibility, 

and overall quality of the map and promote walkability in cities. 

• Location Accuracy: Icons should be placed accurately to represent their real-world 

locations. For example, a TicketStop point should be placed closer to the road or 

pavement where it is actually located (Figure 4). 

• Avoiding Overlap: Icons should be placed in a way that they do not overlap with other 

important elements on the map. For example, a landmark building's icon or text label 

should be placed within the building without crossing the road or text (Figure 5). 

• Icon Rotation: Icons, such as Busstops, can be rotated 90 degrees away from the road 

if there is room. This prevents a text change direction on the icon but still on buildings 

(Figure 6). 

• Flexibility in Symbol Placement: Some flexibility is allowed in symbol placement. 

For example, some overlap is allowed with icons and a road text, and certain symbols 

may need to be moved if there is space. 

• Avoiding Obstruction: If a symbol is still obstructing, it may need to be moved or 

adjusted. 

 

 

Figure 4: Adjust the position of 

TicketStop symbol to the pavement. 

Avoid placing it centered on the point it 

represents, so the user can easily 

interpret on which side of the road it is 

in reality © Copyright Transport for 

London 

 

Figure 5: Placement of label with its largest 

part inside the associated building, without 

obscurring other information © Copyright 

Transport for London 

 

 

Figure 6: Example of 90 

degree icon rotation © 

Copyright Transport for 

London 
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The above needs highlight the complexity and precision required in cartography, especially 

when dealing with icon placement, and also underline the importance of developing automated 

tools to effectively address them. 

2.3 Position selection 

The aim of map labelling is to find a good placement for labels according to a set of 

requirements. Most researchers (e.g., Zoraster 1997; van Dijk 2001) consider point labelling as 

a combinatorial optimization problem (Schrijver, 2003). Combinatorial optimization involves 

finding the best combination of label positions based on specific requirements and an objective 

function that is minimized or maximized using an optimization algorithm. Thus, this kind of a 

problem can be solved using optimization algorithms (Edmondson et al., 1996). These 

algorithms require two components to be defined: a discrete search space consisting of elements 

representing candidate label positions and an objective function. (Rylov et al., 2015).  

Finding an optimal solution to the problem would mean considering every possible combination 

of label placement position and selecting the one that results in the best label placement, based 

on an objective function. The problem of finding the optimal label placement becomes even 

more complex when there are many features to be labelled, as the number of possible 

combinations grows rapidly. Therefore, researchers applied heuristic optimization algorithms 

like simulated annealing (Zoraster 1997; Edmondson et al. 1996), greedy (Yoeli 1972; 

Christensen, Marks, and Shieber 1995), tabu-search (Yamamoto et al., 2002), and genetic 

algorithms (Lu et al, 2019) to solve it. In a general sense, heuristic algorithms as they 

provide quick and practical solutions in a reasonable amount of time that are not guaranteed to 

be optimal, but are often satisfying, without requiring a large memory space to operate (Wang 

& Chen, 2013). 

Addressing the intricacies of point feature labelling, particularly concerning icons and finding 

their best placement on the map, has been a significant area of exploration. Harrie et al. (2005) 

in their study were trying to evaluate methods to select candidate positions for both the icons 

and text labels in real-time maps before the combinatorial optimization step. The method for 

real-time placement of icons and text labels is divided into four main steps: compute search 

space for text label placement, compute search space for icon placement, perform combinatorial 

optimization and remove the conflict labels. The paper emphasized that a good selection of 

candidate positions not only saves computational time during the combinatorial optimization 

but also yields a cartographically satisfactory result.  
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Later, Zhang and Harrie (2006) continued this research following the above method of 

combining the placement of icons and labels on maps in real-time applications, with an aim to 

find an optimal solution by reducing the search space. Two strategies were evaluated: random 

reduction of the search space and reduction based on quadrant selection. The experiments 

conducted to compare the effectiveness of the two strategies involved labelling different 

features on maps, such as named locations and roads, using a simulated annealing algorithm. 

The quality of the labelling was assessed based on factors like label overlap and cartographic 

disturbance. The study found that both search-space-reduction strategies improved label quality 

compared to not reducing the search space at all. However, the strategy of reducing the search 

space randomly yielded better label quality than quadrant-based selection and it was also more 

efficient in terms of computational time. The study also highlighted the potential for integrating 

this method into a system architecture for real-time map services. 

2.3.1 Optimization algorithm 

For finding optimal for labels on a map, different optimization algorithms can be used as stated 

above. In this study the focus is given to the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), which is a popular multi-objective optimization algorithm that handles complex 

problems effectively (Deb et al., 2002). NSGA-II operates by maintaining a population of 

potential solutions and iteratively improving them through genetic operators (like crossover, 

mutation), as well as a non-dominated sorting and crowding (Manhatten distance in the 

objective space) approach to choose the best solutions (Blank & Deb, 2020). The algorithm 

operates quite fast, having computational complexity of O (MN2), where M is the number of 

objectives and N is the population size (Deb et al., 2002). The algorithm promotes solutions 

that are better in at least one objective without being worse in others (Yusoff et al., 2011), 

preserving diversity in solutions, which is essential for multi-objective problems. 

The general steps of the NSGA-II algorithm as described by Yusoff et al. (2011), include: 

1. Population Initialization: Start by initializing the population based on the problem's 

range and constraints. This involves creating a set of potential solutions (individuals) 

with random or predetermined values for the decision variables.  

2. Non-Dominant Sort: Perform a non-dominated sorting process on the initialized 

population (Figure 7a). This sorting process determines the dominance relationship 

between individuals based on their objective function values. Individuals that are not 

dominated by any other individual are assigned to different fronts or levels of 

dominance. 
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3. Crowding Distance: Once the non-dominated sorting is complete, assign a crowding 

distance value to each individual in the population (Figure 7b). The crowding distance 

measures how crowded an individual is within its front. It helps to maintain diversity 

by favoring individuals that are located in less dense regions of the front. 

4. Selection: Select individuals for the next generation based on their rank and crowding 

distance. This is typically done using a binary tournament selection with a crowded-

comparison operator. The individuals with better ranks or greater crowding distance are 

more likely to be selected. 

5. Genetic Operators: Apply genetic operators to create offspring for the next generation. 

The NSGA-II algorithm uses real-coded genetic operators such as simulated binary 

crossover (SBX) and polynomial mutation. SBX performs crossover by combining the 

genetic material of two parents, while polynomial mutation introduces random 

modifications to diversify the population. 

6. Recombination and Selection: After applying the genetic operators, recombine the 

selected individuals with the offspring to form the new population for the next 

generation. The selection process is then repeated to choose individuals for the 

subsequent iterations, ensuring the preservation of the fitter individuals and diversity. 

7. Iterative Process: Repeat the above steps until a termination condition is met.  

 

  

Figure 7: Non - dominated sorting process on the initialized population (a) and after the non - dominated soring is complete 

a crowding distance value is assigned to each individual in the population (b).  Created by: Deb et al. (2002) 
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2.4  Lack of walkability and readability in commercial online map services 

The primary objective of placing icons on city wayfinding maps is to is to enhance the 

navigational experiences of pedestrians and cyclists. While these maps offer static guidance at 

designated city locations, a significant number of people turn to online map services for real-

time assistance. However, studies have revealed that such online services do not always adhere 

to fundamental cartographic principles, leading to more complex and confusing navigation. 

This section delves into various dimensions of this discourse, exploring walkability in urban 

settings, the concept of legibility in cartography, and the limitations inherent in popular online 

map services in terms of icons placement. 

2.4.1 Walkability definition 

The urban environment significantly affects the experience of walking in terms of comfort, 

safety, and satisfaction. The concept of "walkability" refers to how accommodating and 

conducive the built environment is for pedestrians, allowing them to walk easily and 

comfortably (Habibian & Hosseinzadeh, 2018). This aligns with the definition provided by 

(Transport & Litman, 2009), which describes "walkability" as a measure of how friendly an 

area is to walk.  

The evaluation of walkability commonly involves assessing particular attributes of the built 

environment, such as the variety and concentration of land use, as well as the features of 

pedestrian facilities (Fonseca et al., 2021). To provide a more comprehensive analysis, 

Bartzokas-Tsiompras et al. (2021) have introduced a set of 17 pre-processed and microscale 

walkability indicators in spatial and tabular data files. The dataset covers 26 European countries 

(59 central areas) and aims to bridge the existing gap in European-level indicators and promote 

sustainable communities. Specifically, the indicators cover the seventeen themes related to 

micro-level characteristics of neighbourhood design, such as sidewalks, crosswalks, lights, curb 

cuts, street furniture, parks, transit, aesthetics.  

Using the web-GIS platform developed during the above study, an illustrative example is 

provided in Figure 8, showcasing a performance comparison of five European cities across six 

indicators. The findings reveal that Copenhagen excels in well-maintained sidewalks and an 

abundance of pedestrian walk signals at crossings, while Warsaw demonstrates efficient 

pedestrian crosswalks.  



16 

 

 

2.4.2 Readability definition 

In addition to walkability, another important concept in the realm of cartography is the 

readability of maps. Readability in cartography plays a vital role in facilitating navigation, 

decision-making, and spatial understanding. It is particularly relevant in urban environments 

where maps are often used for wayfinding, urban planning, and transportation purposes. An 

early definition of readability, proposed by Robinson in 1986, refers to the ease with which map 

readers can interpret and understand the information presented on a map, such as readability of 

icons and labels and clarity of patterns. Robinson's work significantly contributed to the field 

of cartography, and his definition of readabiliy remains widely recognized and referenced in 

the study and practice of map design.  

However, in practical terms, many research studies primarily focus on readability as the 

avoidance of labels and icons overlap (Imhof 1975; van Dijk et al., 2002). Consequently, the 

readability of a map heavily relies on the careful selection of symbols. Opting for familiar 

symbols that are appropriately sized enhances their visibility and ease of understanding. For 

instance, geometric symbols are easier to read at smaller sizes, while more complex symbols 

require more space to be legible (Buckley, 2012). Some examples of improved readability on 

maps are given in Figure 9 (a and b).  

Figure 8: Comparison of microscale environmental factors and its indicators for five central urban areas (Athens, Copenhagen, 

London, Sofia, Warsaw. The indicators are Street lights: Plenty, Bike lane:Pointed line, Sidewalk well-maintained: Yes, 

Sidewalk buffers: Yes or pedestrian street, Crossing – Pedestrian walk signal: Yes and Crossing – Pedestrian crosswalk: Yes. 

Created in Walk & the City Center website, n.d. 
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(a) (b) 

Figure 9: Examples of improved readability on maps by adjusting the symbol colour (i.e., hue, lightness, or saturation) to 

ensure legibility of the surrounding features (a) and (b) by adjusting the size of the symbol without changing feature 

dimensionality, so it remains readable when transitioning to a smaller scale. Credit: Adapted from (Roth et al. 2011) 

Cartographic Perspectives, (CC BY-NC-ND 3.0). 

Map design must follow specific rules and be compliant with the principles of design and 

graphic communication (i.e., legibility, visual contrast, hierarchical organization etc.). Online 

map services offer simplified maps known as general reference maps, which depict key natural 

and man-made features (Skopeliti & Stamou, 2019). In terms of geographic coverage, online 

map services can either offer global accessibility, like Google Maps, Wikimapia, Apple Maps, 

HERE, Bing maps, OpenStreetMap (OSM), Yahoo! Maps, and others, or focus on specific 

regions, such as Baidu Maps in China, 2gis.ru in Russia, and Mapy.cz in the Czech Republic. 

According to data from Similarweb, as of May 2023, Google Maps stands out as the most 

widely recognized online map service worldwide.  

Pedestrian navigation has become an essential service for people living in cities. With the rise 

of smartphones and navigation apps, individuals now heavily rely on pedestrian navigation to 

find their way around urban areas. In their study titled "Pedestrian Navigation Aids, Spatial 

Knowledge, and Walkability" (2016), Wang and Worboys conducted a pilot wayfinding 

experiment to examine the effects of two major pedestrian navigation aids, Legible London, 

and Google Maps, on users' acquired spatial knowledge. The study compared the impact of 



18 

 

these aids with the direct experience of navigating routes in London. The Legible London 

system, developed as part of T-Kartor's city wayfinding project, is a comprehensive signage 

system for pedestrian wayfinding throughout the city. Initiated by Transport for London in 

2007, it aims to provide clear and user-friendly navigation guidance for pedestrians across 

various areas of the city.  

Specifically, the project offers legible and user-friendly information to assist people in 

navigating the city, seamlessly connecting public transportation with walking, and cycling 

environments. The project includes innovative features such as "Heads-up" map signs that 

rotate in the direction of travel for quicker and easier map reading. Additionally, a 5-minute 

walking circle around the "You Are Here" position highlights nearby amenities. Illustrations of 

landmark buildings aid in creating a mental map of the surroundings, reinforcing the connection 

between the map and the real world. Maps at two complementary scales provide both detailed 

street and footpath information for precise journey planning, as well as an overview of the 

broader network. By providing improved information, this initiative encourages active mobility 

within the city.  

The results of the study mentioned above showed that the type of navigation aids people 

employed to guide themselves, can significantly affect their ability to understand their 

surroundings and the ease with which they navigate on foot. Specifically, users of both services, 

faced difficulties in gaining a clear understanding of how streets fit together, making it 

challenging for them to navigate and choose the best route to their destination. Legible London's 

"heads up" style made it easy to understand the immediate environment, but mentally aligning 

the signage maps with reality took time when the direction differed from the walking direction. 

Moreover, Legible London users had limited opportunities to learn about their surroundings, 

while Google Maps users showed less attention to their routes and surroundings, leading to 

poorer orientation during navigation (Wang & Worboys, 2016). These findings highlight the 

need for improved pedestrian navigation aids that enhance spatial knowledge and promote 

walkability in cities.  

2.4.3 Limitations of commercial online map services 

Despite their widespread use, commercial online map services have their limitations: 

• Prioritization of vehicular traffic, neglecting pedestrian needs. 

• Lack of detailed information about pedestrian pathways, sidewalk conditions, and 

crossing safety, crucial for walkability. 
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• Excessive details clutter the maps, making it challenging to identify important elements 

in urban areas. 

• Poor icon placement obscures crucial information and causes confusion. 

To address these limitations, it is crucial to employ clear and concise symbology that effectively 

communicates information. Generally, symbolization in on-line map services is in accordance 

with the cartographic practice. Skopeliti and Stamou (2019) in their paper “Online Map 

Services: Contemporary Cartography or a New Cartographic Culture?” reviewed online map 

services from a cartographic point of view and their findings regarding symbology, for Google 

Maps, OSM, HERE and Wikimapia are summarized below: 

• They differ in terms of generalization degree and information density, with OSM 

offering the highest density and diversity compared to Google and HERE. 

• Areal and linear symbols cover most of the map area, while point symbols are rare at 

the examined scale (zoom levels 13-14). 

• Symbol sizes are well selected to support legibility, and at larger scales, Points of 

Interest (POI) are portrayed using pictorial symbols based on shape and colour. 

• Google Maps uses the familiar pin symbol as a background with a pictorial symbol 

on top for point representations. 

• Good visual contrast is observed in Google Maps, OSM, and HERE maps, while 

Wikimapia's vivid contrast is unpleasant. 

• Symbolization of the road network, which is the dominant thematic layer, is crucial 

for the aesthetic quality of the map. Wikimapia's use of a vivid yellow hue creates an 

unbalanced result, while OSM achieves a balanced result through symbolization 

choices (Figure 10). 

• Despite its information density, OSM manages to create a balanced result due to 

effective symbolization choices.  

(Skopeliti & Stamou, 2019)  
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Figure 10: Images showing Athens city in Greece and the sourounding areas, of the home pages of (a) Google Maps, (b) OSM, 

(3) HERE, (4) Wikimapia. Source: Google Maps (https://www.google.com/maps/@37.989609,23.7156318,13z), 

OpenStreetMap (https://www.openstreetmap.org/#map=13/37.9861/23.7160), HERE WeGo 

(https://wego.here.com/?map=37.98775,23.74855,13,normal),  Wikimapia 

(http://wikimapia.org/#lang=el&lat=37.988993&lon=23.715363&z=13&m=w)  

So, it is important for online map services to consider these insights and make appropriate 

symbolization choices that effectively convey information while maintaining readability and 

walkability. 

3. Methods 

3.1 DRM framework 

The design research methodology (DRM) is a problem-solving approach that involves a series 

of steps including problem identification, hypothesis generation, solution design and testing, 

solution evaluation, and communication and dissemination of results (Horváth, 2007). The 

focus is on developing practical solutions that can be implemented in real-world settings. The 

present study adopts the DMR framework to find solution to the problem of icon placement on 

city wayfinding map and to produce a high-quality output for real word applications, by 

evaluating and optimizing the placement based on defined criteria. 

3.2 Available datasets 

Data from the London city map project provided by T-Kartor was used for the current study. 

These maps have been produced in an ESRI ArcGIS environment using the Maplex label engine 

and undergone substantial manual label editing in both the ArcGIS environment and in the 

publishing editing tool Adobe Illustrator. Furthermore, the initial code for the grid algorithm as 

developed by Harrie et al. (2004), was provided in Java from the supervisor of this thesis. A 

detailed table with all the data employed in this study is given below. 
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Table 1: Information about the data used in the study. The name, type, geometry and number of features (for SHP files) are 

given. For easier inderpretation the data are divided in categories such as main project, text labels, background, icon layers, 

symbols and code. 

 

Name Type Geometry 

Number of 

features  

(for study area) 

Main Project London20211006  
QGIS 

Project 
  

Text Labels 
clip_LMF_Landmark_Building_T  

clip_L_ LMF_Road_Names_T  
SHP File 

Polygon 

(MultiPolygon) 

265 

564 

Background 

Landmark  

BuiltUp  

Green  

Road  

Railway  

Water  

L_ LMF_CH_Pavement_A  

Pavement  

L_ 

LMF_LONDON_BACKGROUND_A  

SHP File 
Polygon 

(MultiPolygon) 

322 

525 

233 

290 

0 

2 

595 

564 

1 

clip_layer_points  

clip_layer_lines  
SHP File 

Point 

Line 

(MultiLineString) 

51021 

90771 

Icon layers 

L_ LMF_Building_Entrances_P  

L_ LMF_Station_Entrance_P  

L_ LMF_CP_Entrances_P  

L_ LMF_Subways_P  

L_ LMF_Bus_Stops_P  

L_ LMF_CH_Stations_P  

L_ LMF_Car_Parks_P  

L_ LMF_Car_Parks_P  

L_ LMF_Car_Parks_P  

L_ LMF_Police_Stations_P  

L_ LMF_Post_Offices_P  

L_ LMF_Post_Offices_P  

L_ LMF_Post_Offices_P  

L_ LMF_View_Points_P  

SHP File 

 
Point 

24 

22 

3 

4 

100 

55 

18 

0 

54 

0 

8 

8 

0 

0 

Symbols 

Building_entrance  

CHF_Dark_Inner_Station_UG  

Building_entrance  

CHF_Dark_Inner_Station_A_UG  

Bus_Stops  

CH_Stations  

CHF_Dark_Inner_CarPark1  

CHF_Dark_Inner_Retail9  

CHF_Inner_IconTaxi  

CHF_Inner_IconPolice  

CHF_Inner_Dark_IconPost  

CHF_Dark_Inner_Toilet2  

CHF_Dark_Inner_Station_D  

CHF_Dark_Inner_Retail9  

SVG   

Code IconPlacementAlgorithm  
Java 

Source 

File 
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3.3 Methodology Overview 

The general steps that were followed through the current study are presented in Figure 11.  

 

Figure 11: General workflow of the study 

First step was to crop the original vector layers to the extend of the study area. Subsequently 

the original grid algorithm was translated from java to python to understand the logic behind it 

and a new version was developed in Python to position icons sequentially in the least disturbing 

positions, considering factors like background layer importance and icon movability. Next step 

was to define the objective functions for legibility, disturbance, and association to evaluate the 

quality of icon placements. Then the grid algorithm was texting by changing default parameters 

and evaluated based on the defined objective functions, to select the combination of parameters 

that performs better in the association metric. In parallel, T-Kartor's guidelines for city 

wayfinding maps were defined. The study concludes with the implementation of a multi-

objective optimization process, applied after the grid algorithm, in order to optimize the 

positions generated by the grid algorithm by improving association with respect to the other 

two metrics. 

 

3.3.1 Data selection 

The workflow of this study involves several steps to achieve the objectives of the research. 

Firstly, all the original vector layers were cropped using the “Clip multiple layers” plugin in 

QGIS. The reason behind that is that the data cover the whole greater region of London which 

is around 1,600 km2 and contains around 28,000 icons. The crop represents the study area 

(Figure 12), covering an area of 3.4 km2 and containing 243 icons.  
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Figure 12: Map of the study area, Data source: © Copyright Transport for London 

 

3.3.2 Grid algorithm implementation 

In the subsequent stage, the Python script was used to develop the grid algorithm presented in 

section 2.1.4, utilizing pseudocode (see Harrie et al., 2004) and pre-existing script in Java. 

However, the initial grid algorithm did not address the issue of positioning icons sequentially. 

That means when an icon is placed the next one is not permitted to overlap it. The logic behind 

the grid algorithm that was developed in the current study is briefly described as follows:  

In general, the implemented grid algorithm aims to position icons in the least disturbing 

positions by taking into account the existed elements on the map. It considers factors such as 

the importance of background layers, the movability of icons based on layer categories, and 

priority for placing icons. To achieve this a grid-based approach is utilized. A grid is applied to 

the search window to divide it into smaller cells or pixels. The use of a grid allows the algorithm 

to efficiently evaluate multiple possible positions for the icon in a systematic manner. Each cell 

in the grid represents a potential position for the icon. The size of the grid cells is determined 

based on the step size, which depends on the size of the icons and the number of possible 

positions in each direction.  
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Weights are also assigned to the different layers of the background, to reflect the relative 

importance of each layer. The higher the weight the most important it is for the algorithm to 

avoid placing icons close to its features. In the current study weights range from 1 to 3. A weight 

of 1 is given to the Green, Railway, Water and Pavement layers, indicating that icons are 

relatively free to be placed close to these features without much restriction. On the other hand, 

the Landmark layer is assigned a weight of 2, suggesting a moderate level of importance. While 

icons should not be placed close to landmark features, there's a degree of flexibility allowing 

them to be situated within a landmark feature rather than crossing a road feature (See section 

2.2.3). Conversely, the highest weight of 3, emphasizing the utmost importance of keeping 

away from these features, is reserved for the Road and BuiltUp layers.  

Moreover, icons are categorized into different layers based on their movability. The first 

category includes stationary icons such as Building Entrances which should not be moved by 

the algorithm, since it is important that they have an exact location. The second category 

includes icons that point to a location and can be moved around that point. The last category 

consists of icons that can be placed inside a polygon feature or on top of a line feature. Table 2 

provides a categorization of layers and their symbolization.  

Table 2: Divide layers in three categories based on their ability to move 

 

 

The algorithm begins by utilizing a spiral search pattern (Figure 3b). Starting from a central 

position, it systematically explores the available grid cells for icon placement in an outward 

spiral manner. This structured search approach ensures that all potential positions are 

considered and that no other satisfactory positions can be found closer to the original one.  
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To determine the best placement, the algorithm evaluates each cell in the grid, calculating a 

disturbance score. This score quantifies the extent to which placing an icon in a particular cell 

would disrupt the overall layout. Several factors contribute to the disturbance score, including 

the proximity to existing icons and the balance of the entire arrangement.  

In details, the algorithm iterates through the collected background features and their 

corresponding weights. For each feature, it detects the spot on the grid where the feature is 

located. By aligning the grid with the search area, it ensures accurate placement of the icons. 

The weights of the background cartographic features are then added to the corresponding cell 

on the grid. The algorithm proceeds to sum the weights of the cells that the icon would cover 

for each possible icon position. This sum represents the disturbance score for each position. 

The preferred position is the one that has the minimum sum of the weights. 

A priority system has also been incorporated to ensure icons of each category are placed 

strategically. Because icons that belong to the first category are not permitted to change their 

initial positions, they automatically added as background information. So, the algorithm starts 

by placing first the icons that belong to the second category followed by those of the third. The 

implementation is done sequentially for all the icons in the dataset. That practically means that 

when the first icon is placed by the algorithm, it has automatically been added to the background 

layers. Thus, for placing the next icon, the algorithm considers all the features that belong to 

the background and places it to the appropriate position to avoid overlapping. This process 

continues until all icons are positioned.  

Finally, the algorithm evaluates all the spots on the grid and determines the one that fulfils all 

the above steps. This spot is considered the least disturbing position for the new icon since it 

minimizes disruptions to background information. The algorithm returns the x and y coordinates 

of this spot, providing the final solution for the placement of the new icon on the map.  

3.3.3 Quality metrics definition  

The three metrics that were designed were based on the work of Oucheikh and Harrie (2023). 

They were implemented for both the icon and the layers of the background map area. The 

legibility metric also considers the text labels for landmarks and roads objects. Furthermore, 

they were all normalized to have a range of values between 0 and 1. 
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Legibility 

This metric evaluates the legibility of the icon lj in relation to all the other icons and also the 

legibility between the icon and the text labels. The bounding box of road and landmark labels 

are used as text labels. The metric is defined as the degree of overlap between the icons to each 

other and between icons and text labels and it is calculated based on the total intersection area 

and the total area of all the icons. The objective is to ensure that the icons are visible and easy 

to interpret. The quality function is defined as follows (equation 3) and its output ranges from 

0 to 1 with higher value indicating the best result, the one with a lower degree of overlapping.  

  𝐿𝑒𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑙 = 1 −
∑ 𝑎𝑟𝑒𝑎(𝑙𝑖∩𝑙𝑗)𝑙𝑗∈𝐿,𝑙𝑗≠𝑙𝑙

𝑎𝑟𝑒𝑎(𝑙𝑖)
                                        (3) 

Where Legibilityl is the legibility factor between a specific text label and all the icons, L is the 

set of all labels (icons and text labels) geometries, ll is a text label, lj is an icon, li are all the 

rectangles that surround the text labels and area (G) is area of geometry G. When legibility 

between a specific icon and all the other icons needs to be calculated, ll represents that icon (ll 

≠ lj) 

Disturbance 

The disturbance metric is related to readability of the map. As mentioned in section 2.2.1 labels 

should be allowed to be placed in homogeneous areas. The metric takes values from 0 to 1, with 

higher value occurring when the icon hides any relevant information of the background features, 

which are represented by break points and lines. The definition of disturbance is expressed as 

follows: 

 

 Disturbance l = w1 * bp + w2 * tl                (4) 

 

where bp is the number of feature’s break points overlapped by the label l, tl is the total length 

(in map units) of overlapped line segments by the label l and w1, w2: are the weight factors. In 

this study, after experimental testing the weights were set to 0.01 and 0.0037, respectively. 

Association 

To ensure a clear association between icons and background objects on a map, it is important 

for the icons to be located close to their corresponding objects. Two different association 

metrics are defined for the second and third category layers (see Table 2). Layers in the first 
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category are not evaluated as their position is fixed and they are considered as background 

information.  

For the second category icons, the approach involves creating a defined window around each 

point feature. This window acts as a permissible placement area for the four potential icons that 

point to this feature. To account for any potential errors and provide some flexibility, a buffer 

zone of 20 meters around this window is being incorporated. The association is then evaluated 

based on two criteria: proximity to the original icon and containment within the buffered 

bounding box. The metric is calculated using the Formula (5). The values range from 0 to 1 

with 1 meaning that the new icon is inside the buffered bounding box and close to the original 

position. 

 

  Association l =1 – (w * distance + (1 - w) * int (not is_inside))          (5) 

 

where l is the icon to be evaluated, distance is the shortest distance between the new and the 

original placed icon (in map units), is_inside is a Boolean variable that is True if the bounding 

box of the new icon is inside the buffered bounding box. The not is a logical operator that 

inverts the truth value of the operand, so if is_inside is True, not is_inside will be False, and 

vice versa. The int() function converts this to an integer, so True becomes 1 and False becomes 

0. W is a weight factor set to 0.5, giving equally importance to distance and not is_inside 

componets. This balance ensures that both the proximity of the new icon to the original and its 

positioning relative to the buffered bounding box are considered when evaluating the 

association of the icon l. 

For the third category icons, the approach involves two basic steps. First it is checked if the 

icon is inside the background area and if there is overlap between the bounding box of the icon 

feature and the background polygon feature. For icons placed on top or close to line objects the 

degree of overlap with the line is considered. Then the distance between the new placed icon 

feature and the original placed one is calculated. The metric ranges from 0 to 1 with 1 indicating 

that the icon is inside the polygon of the background feature and close to the original icon. The 

function is defined as: 

 

   Association l =1 – (w1 * overlap + w2 * distance)               (6) 

 



28 

 

where overlap is the percentage of bounding box of the icon being covered by the background 

feature object, distance is the shortest distance between the new and the original icon (in map 

units) and w1, w2 are the weight factors, set after experimental testing to 0.1 and 0.9 (w1 < w2 as 

overlap is less important than distance). 

 

3.3.4 Grid algorithm evaluation 

Initially the grid algorithm is tested by changing two important parameters 

(searchDistanceGround and p.orgX, p.orgY. See section 4.1.1). The results produced after each 

combination of the parameters are stored and evaluated based on the three metrics of legibility, 

disturbance, and association (see Appendix 2). The goal is to evaluate the placement based on 

the most interesting cartographic requirements, rather than only considering the number of 

placed icons. The combination that performs better on the evaluation of the association metric 

are chosen as the definitive one. The positions of icons generated using this combination are 

optimized later using multi-objective optimization.  

 

3.3.5 Cartographers’ needs 

The placement and evaluation of icons should comply with T-Kartor's guidelines for 

positioning icons on city wayfinding maps as defined in the project Transport for London2. The 

following are the general guidelines divided into rules [R] and constraints [C] adapted to the 

purposes of this study. Rules act as soft constraints, providing guidelines that ideally should be 

adhered to for optimal results. However, there is some flexibility, and under certain conditions, 

deviations from these rules might be acceptable if they lead to better overall solutions. 

Constraints, on the other hand, are non-negotiable and must be strictly followed. 

[R1] Upper limit for the number of icons attached to a single point: No more than four icons 

for each location 

[R2] Icons should be placed off the streets and are permitted to overlap buildings 

[R3] Cycle hire, bus stops and taxi symbols should be preferably placed in a 90-degree angle 

to their corresponding road. Other angles are permitted if needed. Can not be placed over roads 

(only in certain situations) 

 

2 Transport for London (2011) Street map design standard - Issue 2 
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[R4] Bike and traffic roundel symbols, e.g., the roundel of the bus stop symbol, must always 

be horizontally placed, but the circle that encloses them may be rotated as needed. 

  

[C1] No texts symbols or icons may be removed or suppressed 

[C2] Icons may sometimes be allowed to cover text labels if it is the best solution 

[C3] Icons must not overlap or being placed closed with each other. A balanced distribution 

across the map should be kept. 

[C4] Icons should not overlap other significant background features, or if overlap is necessary, 

should be kept to minimum 

3.3.6 Multi-objective optimization 

The grid algorithm includes explicitly the disturbance quality function through the inherent 

disturbance metric used in the search. However, it does not consider the other quality functions 

or the specific cartographic rules. To achieve the best solution, the algorithm is iteratively 

optimized. For a problem to be considered as multi-objective optimization problem, needs at 

least two objective functions to be simultaneously optimized (Salian, 2022). In this study, multi-

objective optimization is used to find the best trade-off between the three different objectives 

(metrics). This involves optimizing the quality functions simultaneously to find a set of 

solutions that represent the best compromise between the different objectives, along with 

different constraints to satisfy. To address a multi-objective problem, a reasonable solution is 

to explore a set of solutions that meet the objectives adequately without being outperformed by 

any other solution (Konak et al., 2006). The selected multi-objective optimization algorithm 

tries to find icon placements that minimize the values of disturbance, while maximizing 

legibility and association. In that way a high-quality output is produced.  

 

In the context of this problem, NSGA-II algorithm used as optimization algorithm, is expected 

to work by gradually adjusting the coordinates of the features in the given space to improve the 

objectives while satisfying the constraints. Each solution in the population is an arrangement of 

all the icon features on the map. The algorithm generates new solutions in each iteration by 

combining and modifying existing solutions, aiming to improve the objective values. To 

execute the algorithm, an instance of NSGA-II was created with a population size of 40 and the 

customized sampling method. This method was created to force the algorithm start the 

exploration from the already good solution, obtained by the grid algorithm. Each generation of 
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NSGA-II was processed using the parameters set in the 'MyProblem' class (see section 3.4.3). 

After running the optimization for 10 generations, the best solution was found in terms of x and 

y coordinates for the features and their corresponding objective function values. The total 

elapsed time was 5 hours for a given number of 243 icons.  

 

3.4 Code implementation 

The implementation of the study was completed using Python as the programming language 

and PyQGIS as the library. Several scripts were used for developing the grid algorithm, the 

objective functions, and the multi-objective optimization process. The code developed in this 

study is distributed on GitHub3 MIT licence. The amount of python files created are presented 

in Appendix 1, Figure 28, Appendix 1. Below is presented briefly the main structure of each 

script and the important details.  

3.4.1 Grid algorithm 

This code was designed to work with QGIS, and it was executed in the QGIS Python console.  It 

is an implementation of the grid algorithm to place icons sequentially on the map in a way that 

minimizes disturbance with background map features. It uses a disturbance matrix to determine 

the best position for each icon and then updates the map with the new icon positions. Below is 

given the main structure of the script developed.  

1. Initialization: 

▪ Import necessary QGIS modules. 

▪ Initialize a QGIS application. 

▪ Load a specific QGIS project. 

2. Utility Functions: 

▪ getLayer(group_name): Returns all layers within a specified group in the QGIS project. 

▪ getFeatures(group_name): Returns all features within layers of a specified group. 

▪ getSize(theFeature, defWidth, defHeight): Determines the size of a feature's symbol. 

▪ getBoundingBox(icon_feature, theFeature): Calculates the bounding box of an icon. 

3. Parameters Class: 

A class that holds various variables used in the algorithm, such as the original 

coordinates, width, height, number of steps and others. 

4. Matrix Update Functions: 

 

3 https://github.com/SPHAPST/Master-Thesis 

https://github.com/SPHAPST/Master-Thesis
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The functions (addToNumMatrixPoint, addToNumMatrixLineString, 

addToNumMatrixPolygon, addSymbolToMatrixPolygon) update a matrix that represents 

the disturbance of icons on the map. The matrix helps in determining the best position. 

5. Distance and Coordinate Functions: 

▪ distance(c1, c2): Computes the Euclidean distance between two points. 

▪ computeNewCoordinate(c1, c2, distLimit): Calculates a new coordinate based on a 

distance limit. 

6. Icon Placement Value Class: 

A class that represents potential icon placements and their associated disturbance values. 

7. Window Localization Functions: 

▪ localiseWindow(p): Determines the best position for an icon based on the disturbance 

matrix. 

▪ addTextWindow(p): Calculates the position for the search window. 

8. Main Icon Placement Function: 

▪ placeIcon(layers, icon_feature, iconlayer_name, searchDistanceGround): The main 

function that places an icon on the map. It calculates the best position for an icon based 

on the disturbance matrix and other parameters. 

9. Execution: 

▪ Retrieve all original layers, iterates through each icon in the original group, and places 

them on the map using the placeIcon function.  

▪ Each icon placed is added to the background group of layers (as new layer seq_layer) 

before placing the next one, to avoid overlapping.  

▪ The new positions of the icons are then added to a new layer. 

10. Visualization 

For each icon layer: 

▪ Retrieve its symbology. 

▪ Create a new in-memory layer (output_labels) for storing newly placed icons. 

▪ Add layers to the project. 

3.4.2 Objective functions 

Disturbance 

The code is designed to compute the disturbance metric for a group of layers in a QGIS project.  

It is based on the overlap of the icon with the lines and points that describe the background 

features. The more overlap there is, the higher the disturbance. The final output is an average 
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disturbance factor for the entire group of layers. The following steps describe the main structure 

of the code for implementing this metric. 

1. Initialization: 

▪ Import necessary QGIS modules. 

▪ Initialize a QGIS application. 

▪ Load a specific QGIS project. 

2. Utility Functions: 

▪ getLayer(group_name): Returns all layers within a specified group in the QGIS project. 

▪ getSize(theFeature): Determines the size of a feature's symbol. 

▪ getBoundingBox(point, theFeature): Calculates the bounding box of an icon. 

▪ load_lines(): Loads all line segments from a specific layer. 

▪ load_points(): Loads all point features from a specific layer. 

▪ getpositions(layergroup): Returns the x and y positions of icons in a group of layers. 

3. Disturbance Calculation Functions: 

▪ disturbance_factor(bp, tl, w1=0.01, w2=0.0037): Computes the disturbance factor based 

on overlapping points and total length of overlapping lines. 

▪ readability_lines(x_coords, y_coords, i_layer): Calculates the total length of lines that 

intersect with a feature's bounding box. 

▪ readability_points(x_coords, y_coords, i_layer): Counts the number of points that 

intersect with a feature's bounding box. 

4. Result Aggregation Functions: 

▪ f1_single(x_coords, y_coords, i_layer): For a single layer, calculates the average 

disturbance factor by combining results from readability_lines and readability_points. 

▪ f1(group_name, x_coords, y_coords): For a group of layers, calculates the average 

disturbance factor by invoking f1_single for each layer in the group. 

5. Execution 

▪ Compute the average disturbance factor for a group of layers. 

 

Legibility 

The code is designed to compute the legibility metric for a group of layers in a QGIS project. 

It is based on the overlap of icons with text labels and with other icons. The more overlap there 

is, the lower the legibility. The final output is an average legibility factor for the entire group 

of layers. The main steps of the code are: 
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1. Initialization: 

Same as above 

2. Utility Functions: 

▪ getLayer(group_name): Returns all layers within a specified group in the QGIS project.  

▪ getSize(theFeature): Determines the size of a feature's symbol. 

▪ getBoundingBox(point, theFeature): & getBoundingBox2(geometry, theFeature): 

Calculates the bounding box of a feature based on its size. The second version handles 

different types of geometry. 

▪ getpositions(layergroup): Returns the x and y positions of icons in a group of layers. 

3. Legibility between icons and text labels: 

legibility_text(x, y, i_layer, t_layer): For each icon in a layer (i_layer), this function 

calculates the legibility metric based on the overlap with text features from another layer 

(t_layer). The legibility metric is based on the area of overlap between the bounding box 

of the icon and the text features. The function returns the average legibility factor for 

the i_layer. 

4. Legibility between icons: 

legibility_icons(x, y, i_layer, i_layer2): For each icon in a layer (i_layer), this function 

calculates the legibility metric based on the overlap with icons from another layer 

(i_layer2). The legibility metric is based on the area of overlap between the bounding 

boxes of the two icons. The function returns the average legibility factor for the i_layer. 

5. Main Legibility Functions: 

▪ f2t(x_coords, y_coords, group_name, t_layers): Calculates the average legibility factor 

for a group of icon layers (group_name) with respect to a list of text layers (t_layers). It 

calls the legibility_text function for each combination of icon layer and text layer and 

then averages the results. 

▪ f2i(x_coords, y_coords, group_name): Ccalculates the average legibility factor for a 

group of icon layers (group_name) with respect to other icon layers in the same group. 

It calls the legibility_icons function for each combination of icon layers and then 

averages the results. 

6. Execution 

▪ Compute the average legibility factor for a group of layers. 
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Association 

The code is designed to compute the association metric for a group of layers in a QGIS project. 

The association metric is calculated differently for the different categories of layers (see section 

3.3.3). The final output is the average association factor for the entire group of layers. 

7. Initialization: 

Same as above 

8. Utility Functions: 

▪ getpositions(layergroup): Returns the x and y positions of icons in a group of layers. 

9. Association for 2nd category: 

▪ f3_2_G (x_coords, y_coords, g_layers, o_layers, n_features): Calculates the average 

association factor for the 2nd category of layers. It calls the f3_2 function (from the 

imported Association_2ndC_xy module) for each combination of the current icon layer 

and other icon layer and then averages the results. 

10. Total association: 

▪ f3(x_coords, y_coords, g_layers, o_layers, b_layers): Calculates the average association 

factor for the entire group of layers. It separates the layers into the 2nd and 3rd 

categories. For the 2nd category, it calls the f3_2_G. For the 3rd category, it calls the 

f3_3 function (from the imported Association_3rdC_xy module) for each layer and 

averages the results. Finally, it averages the results from the 2nd and 3rd categories to 

get the overall average association factor for the group. 

11. Execution: 

▪ Compute the average association factor for a group of layers. 

 

3.4.3 Multi-objective optimization 

The optimization step is carried out in Python utilizing the Pymoo framework (Blank & Deb, 

2020) which is available on the Python Package Index (PyPI). This is a central repository to 

make Python software package easily accessible (PyPI - the Python Package Index, n.d). It 

provides algorithms for single- and multi-objective optimization, complemented by additional 

features like visual tools and decision-making capabilities for multi-objective optimization 

(Blank & Deb, 2020). The steps when using Pymoo are simple. Firstly, the problem and the 

quality functions are specified together with the constraints. Then an appropriate algorithm 

available in Pymoo is applied to find a set of optimal solutions to the problem. An overview of 

the general structure of the script developed for this process is given as follows: 
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1. Problem initialization and constraints 

To initialize the problem, existing geographic coordinates, generated using the grid algorithm, 

were retrieved from the project layers, and set as the initial positions of features. This was done 

using the 'MySampling' class, which starts the optimization from the point of the pre-existing 

solution by reusing these coordinates.  

An instance of the 'MyProblem' class was then created, which encapsulates the problem 

definition. Within the 'MyProblem' class, various attributes and methods are defined to 

represent the characteristics and behaviour of the problem. The attributes include the initial x 

and y coordinates of the features, the group name of the group that includes all the layers, and 

the layers representing the background information, the original positioned icons, and the text 

labels in the project. These attributes are essential for evaluating the objective functions (used 

as arguments) and constraints during the optimization process (Appendix 1, Figure 28).  

 

Additionally, the 'MyProblem' class defines: 

• Number of Decision Variables: The decision variables in this problem are the x and y 

coordinates of the features. Since there are 'len(x_coords)' features, there are '2 * 

len(x_coords)' decision variables, where '2' accounts for the x and y coordinates for each 

feature.  

• Number of Objective Functions:  As mentioned in section 3.3.3 the quality functions 

are 4 (1 for legibility, 1 for disturbance and 2 for association). However, in the current 

code the functions of association were merged into one that used a different function to 

calculate the association metric for each category of layers. On the other hand, the 

legibility as coded in two distinct manners: one for determining the legibility factor 

between icons and text labels (roads and landmarks) and another for assessing the 

legibility between the icons themselves (section 3.4.2). But the last one was not 

reasonable to be optimized as it relays on calculating distances between the new placed 

icons. Given the algorithm's sequential nature, many of the new icons may not yet be 

placed. So, the objectives being optimized are, f1 stand for disturbance, f2t for legibility 

between icons and text labels, and f3 for association. Therefore, the number of objective 

functions is set to 3.  

• Lower and Upper Bounds for Decision Variables: To define the search space for the 

optimization process, lower and upper bounds are specified for each decision variable 
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(x and y coordinates). The lower bound for both x and y is set as the corresponding initial 

coordinate minus 40 (map units), allowing for a range of movement. Similarly, the upper 

bound is set as the initial coordinate plus 40, defining an acceptable range of exploration 

around the initial position during the optimization.  

• Number of constraints: Constraints were built into the problem definition to account 

for certain limitations. To avoid confusion, it is worth mentioning that they are not 

related to constraints mention in section 3.3.5. These constraints included upper bounds 

for all the function values to account for acceptable error margins (0.05). The goal is to 

improve what obtained so far from the grid algorithm, but if this is not possible, code 

should at least keep the original values and ensure that they do not exceed the initial 

values by more than 0.05.  

 

The '_evaluate' method within the 'MyProblem' class is responsible for evaluating the objective 

functions and constraints based on the given decision variables (Appendix 1, Figure 30). It 

calculates the values of the objective functions by calling the relevant functions (f1, f2t, and f3) 

with the current x and y coordinates. Similarly, it evaluates the constraints for functions by 

comparing the calculated values with the upper limits defined for each constraint.  

 

2. Algorithm Initialization 

Set up the NSGA2 algorithm for optimization with a population size of 30 and the custom 

sampling method. 

3. Execution 

▪ Run the optimization for 10 generations, using the ‘MyCallback’ class to print 

information after each generation. 

▪ Print the best solution found, check if the solutions are within bounds, and save the 

results to text files. 

4. Visualization 

▪ Plot the Pareto front in both 3D and 2D to visualize the trade-offs between the 

objectives. 

▪ Visualize the solutions on the QGIS map project 
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4. Results 
This section begins by showing the results from testing different parameter combinations, in 

order to check how the developed grid algorithm performed in each metric (disturbance, 

legibility and association) for all the icons in the project (Table 3). Then it is discussed why the 

specific parameters have been chosen as the ones to proceed with in this study and the produced 

new locations of the icons are presented on a map (Figure 14). A comparison between the 

original positions of the icons and the new ones is shown on a map to underline the differences 

(Figure 15). Instances where the algorithm successfully adhered to the rules and constraints set 

by T-Kartor are also showcased in Figure 16. Later is presented the performance of metrics 

before the optimization process and finally, the results of the multi-objective optimization 

method are examined. 

4.1 Grid algorithm evaluation  

4.1.1 Parameters 

During the first test of the developed grid algorithm, it had been noticed that there are two 

important parameters which influence its performance. The first one is the 

searchDistanceGround variable which is the size of the grid cell in the ground space (step size) 

and controls the movement of the icon from its original position. The actual grid cell size (in 

ground space) is influenced by the combination of the icon's width and the value of 

searchDistanceGround. When a low value to searchDistanceGround is assigned, it results to 

a denser grid with smaller grid cells, reducing the search area and making it more likely for the 

algorithm to choose the same placement for multiple icon features. On the other hand, a larger 

value results in a coarser grid providing more potential positions for icon placement. As a result, 

the algorithm can find different positions for each icon, based on the weights and disturbances 

in the area. 

p.orgx and p.orgY are the next variables that influence the position of icons when placed on the 

map. They serve as the coordinates of the reference point (bottom left, center, top right) of the 

bounding box that surrounds the icon feature. This bounding box is the search window. Using 

p.orgX and p.orgY, the code further defines a bigger window (or a matrix) to evaluate where 

the icon can be placed with the least disturbance to other features. These bigger boundaries of 

the window are later centred on p.orgX and p.orgY. This is then used to determine the optimal 

position for the icon. Adjusting these values affects where the function starts its evaluation and 

can bias the result towards certain directions. For instance, if the p.orgX and p.orgY are 

redefined to represent the bottom left of the bounding box, the center of the evaluation window 
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will be shifted to the top right of the bounding box of the icon. In general, centring on the 

bounding box provides a balanced, neutral evaluation.  

4.1.2 Experiments 

Below are presented the statistics derived from the objective functions for the metrics of 

disturbance, legibility, and association, prior to optimization. These results were achieved by 

executing the grid algorithm using varied parameters. In total, eighteen experiments were 

conducted, with each representing a unique parameter combination. The 

searchDistanceGround variable was set at values of 90, 80, 70, 60, 50, and 40 (map units). 

Meanwhile, the p.orgX and p.orgY variables were tested in three positions: centred, top-right, 

and bottom-left within the bounding box. Result values span from 0 to 1, where 1 represents 

the optimal solution for legibility and association metrics. On the other hand, for disturbance 

metric 0 indicates the best result (less degree of overlapping). A summary of the statistics is 

given in Table 3 for a quick interpretation. However, in Appendix 2 the detailed table of 

experiments is presented, where the average of each metric is calculated for each layer and each 

category of layers. Additionally, calculations for the legibility metric are detailed separately for 

road, landmark labels, and icons, offering a deeper analysis. The following table presents the 

legibility metric as average between icons - text labels and icons themselves. 

Table 3: Summary statistics of the average value (of all icons) for each metric across the eighteen experiments. ”Old” indicates 

the values for metrics for the manually placed icons, while ”new” the values for metrics after the placement using the grid 

algorithm. 
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The table presents the total average value for each metric for all the icons in the project. 

Originally, the legibility, disturbance, and association metrics for the pre-placed icons were 

0.90, 0.46, and 0.94, respectively. The experiments aimed to discern the most effective 

parameter combination across all metrics, intending to identify a strong (albeit not optimal) 

result for further study application.  

Regarding the metric of disturbance, all the experiments produced better results (lower to zero 

values), which proves that the grid algorithm really improves the readability of the map. The 

combinations of 90 center and 90bottom-left notably outperformed others in this domain, 

registering a value of 0.28.  On the other hand, the legibility does not seem to be improved, 

which means that the overlapping with text labels and other icons remains almost the same or 

in some cases (80 center and 90 top-right) is getting worst. Only the value of the third 

experiment (70, center) is close to the original one, but not better.  

With a deeper look into the calculations for legibility metric for the road text labels, the 

landmark text labels and the icons (see Appendix 2) the grid algorithm improves slightly the 

legibility of road labels for the experiments 60 center, 50 center and 40 center. Also, it shows 

improvement in the legibility of icons, with many combinations (70 center, 60 center, 80 top-

right, 70 top-right, 80 bottom-left) to have better outcome than the original result. 

For the association metric a value close to 1 indicates that the newly placed icon is very close 

to its original position and inside the background feature (or the defined bounding box for 2nd 

category icons). As seen in Figure 13, there is a noticeable trend: as the value of 

searchDistanceGround increases, the metric gets lower values, suggesting poorer performance 

due to the deviation of the icon from its initial placement. The 60 center combination emerges 

as the most optimal in this scenario, with a value of 0.53.  

 

Figure 13: Trends in the experiments for the association metric when the position (p.orgX, p.orgY) remains the same and the 

searchDistanceGround values change 



40 

 

Overall, experiments with searchDistanceGround lower than 50 produce same results for the 

same p.orgX and p.orgY. Hence, combinations with these particular values are deemed 

unreliable and have been excluded from further exploration. Given the consistent improvement 

in the disturbance metric across all experiments, the 60 center combination is preferred to 

continue with mainly due to its notable performance in the association metric. 

 

4.1.3 Visualization of icon placement  

An example of how icons are placed in the area after running the adjusted grid algorithm with 

the defined parameters is presented in Figure 14. However, to understand their relative positions 

to the original placed ones, Figure 15 gives a deeper insight.  

Figure 14: Zoom in to the bottom right quarter of the study area. Icons are placed using the adjusted grid algorithm 
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The algorithm produced a good result, concerning the metrics of legibility and association, as 

depicted in Figure 14. Nonetheless, some overlaps are present, possibly due to the existence of 

overlapping in the original data. Moreover, Figure 15 demonstrates that the icons are positioned 

in close proximity to their original locations, reflecting a high degree of location accuracy. This 

aligns with the primary production requirement stipulated by T-Kartor (refer to section 2.2.3). 

As illustrated in Figure 16, the grid algorithm effectively adheres to numerous of the rules and 

constraints established by T-Kartor for icon positioning on city wayfinding maps. The displayed 

examples highlight instances where the performance of the algorithm excels. Specifically 

compared to the manually placed icons, the first example aligns with the third rule, which states 

icons should be set away from streets. This is evident as the new placed taxi icon is distinctly 

placed away from streets. Also, the ability of the algorithm to place icons in the least disturbing 

position is verified by the second example where the icon is situated in a location that has the 

least overlap with the segments of the background polygon. Rule number four is also met in the 

third example where Cycle hire symbol is placed away of the road. Regarding the constraints it 

is obvious that the last example complies with C2 as it shows the case where an icon is allowed 

to be placed on top of a text label when the position is better than the prior one (less 

overlapping). 

Figure 15: Comparison between the original manually placed icons and the new placed icons positioned by the grid algorithm. 

The new icons are enclosed within a red dashed square. The area is located in the south-east part of Figure 14. 



42 

 

 

4.1.4 Metrics values before optimization 

The legibility metric was calculated based on a total of 243 icons, 265 text labels for landmarks 

and 564 for roads that were included in the test area. The analysis revealed that 43 icons 

overlapped by landmark labels and 61 by road labels. Furthermore, the total number of overlaps 

between icons was 46. Table 4 displays some examples of the legibility results between the new 

placed icons and the text labels as well as between the new placed icons themselves. Values 

range from 0 to 1 with low values indicating high degree of overlapping and thus poorer 

legibility.  

 

Figure 17: The grey bounding boxes (a, b) represent road labels and the pink (c, d) landmark text labels. For visualization 

purposes the icons are presented to overlap the text labels. 

 

Table 4: Legibility values  for the samples depicted on Figure 17 (a, b, c, d). Values close to 1 indicate a more legible 

placement, while those to 0 a less legible positioning where icons obscure text labels and other icons. 

Figure 17 a b c d e 

Legibility 1 0.2 0.4 0.8 0.02 

Figure 16: Examples of successful icon placement (using the grid algorithm), that comply with cartographers’ guidelines as 

described in section 3.3.5 
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For the calculations of the disturbance metric 51,021 break points and 90,771 line segments 

were utilized. The results showed that 1,200 break points and 3,652 line segments were 

overlapped by the icons. Figure 18a illustrates examples of icons with low disturbance value 

(0.1) and Figure 18b with high (0.6). In the first example the icon covers 9 line segments and 

no break points, while in the second it overlaps with 294 line segments and 21 break points. 

    

(a) (b) 

Figure 18: Examples of icons overlapping line segments and break points of background features. 

As detailed in section 3.3.3, the association metric was computed differently for icons in the 

second category compared to those in the third category. Figure 19 provides an illustration of 

an icon in second category with a good association value of 0.9. This icon is situated closely to 

its original position and is encompassed partly within its bounding box, designed to contain any 

of the four potential icons (four positions of the icon while it is rotated around the point it 

describes) representing that point.  
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Figure 19: Example of icon highly associated to its original one. With red dushed line is described the outline of the bounding 

box that surrounds the point of interest and in a white rectangle is the original icon (the one in the right). 

 

4.2 Multi-objective optimization  

After running the optimization algorithm (NSGA-II) for 10 generations the results obtained for 

the quality functions are given in Table 5. The results prove the efforts of algorithm to improve 

the metrics after each generation. Overall, the algorithm seems to be improving or maintaining 

performance for the three metrics over time. There is not a consistent trend of worsening for 

any metric, which is an encouraging observation. In detail, for the disturbance metric, the 

algorithm has significantly improved (minimize) the values from the first generation to the last. 

For association metric, there is a noticeable increase, though there are fluctuations in the values, 

while the legibility metric remains constant. 

Table 5: Results from the multi-objective optimization across 10 generations on the three objectives: Disturbance, legibility 

(text labels), and association. The value represents the total average for all the icons in the dataset. 
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The complete table detailing each generation, as provided by the algorithm, can be found in 

Appendix 3, Table 10. 

The definition of the optimal solution in multi-objective optimization, as done by the NSGA-II 

algorithm, is different from single-objective optimization. There is usually not one single best 

solution that optimizes all objectives, but rather a set of solutions that represent the trade-offs 

between the objectives (Petchrompo et al., 2022). These solutions are called Pareto-optimal 

solutions and form a Pareto front. As seen in Table 6, six Pareto optimal solutions were 

identified for the multi-objective optimization problem of this study. However, solutions 1 and 

2, as well as solutions 3 and 6, are identical, leading to their overlap in the Figure 20 and 

resulting in visualizing only four distinct dots. Each blue dot on the graph represents a solution 

that is not dominated by any other solution in the population with respect to the three objectives. 

These solutions represent trade-offs among the objectives, and no solution on the Pareto front 

is universally better than the others; the best solution depends on the specific preferences or 

priorities regarding the objectives. For the specific study, the solution that improves the 

association metric was chosen as the best one.  

 
Figure 20: Pareto front of the multi-objective optimization problem in a 3D space, where each axis corresponds to one of the 

objectives: f1: Disturbance, f2t: Legibility (text labels), and f3: Association. Each blue dot on this graph represents a solution 

from the Pareto front. Specifically: The x-coordinate of the blue dot represents the value of the objective f1 for that solution, 

the y-coordinate represents the value of the objective f2t for that solution and the z-coordinate represents the value of the 

objective f3 for that solution.  
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For a more straightforward interpretation, the Pareto front is presented as a 2D scatterplot, 

comparing each metric against the others. In Figure 21a and Figure 21c, it becomes evident that 

the chosen optimal solution, which maximizes association between the labels and their 

corresponding location on the map, is the one with a value of 0.63. 

  

  

(a) (b) 

 

(c) 

Figure 21: Pareto front non dominant solutions between objectives f1 and f3, f1 and f2, as well as f2 and f3, visuallized in a 

2d scatterplot. 

 

Given the fact that the legibility value is not further optimized, selecting the value that 

maximizes association inadvertently leads to a value that maximizes disturbance (0.27) rather 

than minimizing it, as highlighted in Table 6 below. However, compared to the original data 

(Table 7) it is still considered a better performance. 
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Table 6: Pareto non-dominant solutions for each metric across 10 generation of the multi-objective optimization algorithm 

 

 

Overall, the algorithm worked as expected with respect to constraints initially set. The initial 

results from the grid algorithm indicated good icon placement. Hence, the constraints were 

designed to either enhance the quality metrics or, if improvements were not feasible, to maintain 

the existing values. In case of maximization of values compared to the ones obtained by the 

grid algorithm, the constraints also ensure that the values do not exceed the initial ones by more 

than 0.05. As illustrated in the Table 7 below, the optimization process improved the 

disturbance and association metrics, while the legibility metric remained unchanged. 

Table 7: Metrics values before (using grid algorithm) and after optimization 

Metrics Value before optimization Value after optimization 

Disturbance 0.40 0.27 

Legibility (text labels) 0.96 0.96 

Association 0.53 0.63 
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The new positions of the icons are depicted in Figure 22, where a comparison is made on a 

scatterplot, between the optimized points and the ones generated by the grid algorithm 

(original).  

 

Figure 22: Scatterplot of icons’ positions generated by the grid algorithm(in blue color) and new positions (in red color) after 

the optimization process. The points represent the center of each icon. 

  



49 

 

4.2.1 Visualization of optimization 

For further investigation of the results a visualization of the chosen optimized positions of icons 

on the map (Figure 23) was created. Compared to Figure 16 it is notable that the distribution of 

icons in the space changed and that the overlapping with some icons was avoided. That shows 

how the optimization process managed to solve previous overlapping issues that the grid 

algorithm did not address successfully (Figure 24). 

 

Figure 23: Bottom right quarter of the test area. Icons are placed after optimization. 
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(a) (b) 

Figure 24: Example of icon placement after the grid algorithm (a) and after the optimization process (b). 

 

Specifically, as illustrated in the Table 8 below, when compared to manually placed icons, the 

chosen optimized result demonstrated a 7.2% reduction in overlaps between icons and text 

labels, resulting in 103 overlaps instead of the 111 observed with manual placement. 

Furthermore, the optimization outperformed the grid algorithm by marginally reducing the 

overlaps between both icons and text labels (from 104 to 103). Additionally, there was a notable 

21.4% decrease in overlaps among the icons themselves, dropping from 28 to 22. 

Table 8: Number of overlaps between icons and text labels and icons themselves across different placement methods. 

 
Original  Grid Algorithm Optimization  

 
Number of overlaps 

Icons and Text labels 111 104 103 

Icons themselves 22 28 22 

 

Cases where the overlapping could not be avoided, were primarily observed in areas with high 

density, having approximately 10 points within 20 square meters (Figure 25). In that case the 

algorithm could not eliminate the original overlaps but succeeded in distributing the icons such 

that both the disturbance and association metrics showed improvement. 
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(a) (b) 

Figure 25: Comparison of icon placement in a high-density 20 sq. meters area – using grid algorithm (a) and after (b) 

optimization. 

 

Moreover, Figure 26 below demonstrates that the icons were positioned near their original 

locations and any disturbance with the background line segments of cartographic features was 

minimized to enhance the disturbance metric. 

  



52 

 

Manually placed icons  

  

 

 

 

 

 

Optimized placed icons 

  

  

Figure 26: Examples of placement of icons using a manual process and using an optimization process. 
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4.2.2 Optimized solutions comparison 

It is evident from the Pareto front (Figure 21a) that the decision for the best solution relies 

completely on the map producer (or user) and is based on the needs of the specific problem. In 

this study the solution emphasizing maximum association was selected. Below is presented a 

visual comparison between the original placement, the solution that was chosen, the one that 

minimizes disturbance (by sacrificing association) and the one that balances between the two 

metrics. 

 

Figure 27: Example of icon placement compared to the original one (a) using different solutions from the pareto front: Solution 

6 (b), solution 1 (c) and solution 4 (d). 

Figure 27b displays the sixth solution of Table 6 with association value of 0.63 and disturbance 

0.27. It is obvious as explained above that the icons are highly associated with the original ones 

and that the disturbance with background features is improved (compared to 0.46 manually). 

For instance, the bicycle icon was placed away from the road in a position that did not overlap 

line segments of the background features.  

Figure 27c represents the first solution in Table 6 and indicates an overall improved disturbance 

(0.20) of the icons in the neighbourhood. Specifically, while the bicycle icon's placement still 

obscures some background details, the relocation of the top right taxi icon to a spot with fewer 

background line segment overlaps contributes to the overall reduction in disturbance. However, 

it is obvious that the icons are placed away from their actual locations, as reflected by the lower 

association value of 0.59. 

Adopting a more balanced approach and choosing a solution (solution 4, Table 6) that 

maximizes association while at the same time minimizes disturbance leads to a placement as 

shown in Figure 27d. In this case the disturbance value (0.23) is better than the one from 

manually placement, which is also obvious from the position of the bottom parking icon (placed 

in a way that overlaps less line segments of the background polygon), but the icons appear low 

associated with their real locations.  
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5. Discussion 

5.1 Positions generation 
From the methods to generate potential label positions as described in section 2.1 the grid search 

algorithm was chosen to be used in this study. The 4 position model as or 8 position model as 

described by researchers could have been used for the icons of second category, whose positions 

are fixed around the point that they describe. Specifically, on city wayfinding maps produced 

by T-Kartor, these icons can be placed in four possible positions around the reference point: 

top, bottom, left, or right. However, this study used the positions generated manually and thus 

the rotation of the icon around its descriptive point was not explored.  

Meanwhile, Slocum et al. (2008) stated that when the label is placed to the left or right of the 

point it describes can decrease legibility since both the point and the label align on a single line. 

While this observation holds for text labels, in this study legibility was defined in a different 

way and the alignment between icons and text labels was not considered. While the above 

method could be ideal for icons in the second category, the current study involved different 

kind of icons, as categorized in Table 2. Consequently, a more refined approach was necessary 

to be adopted. 

5.2 Challenges in icon placement 
The process of icon placement proved quite different challenges compared to the work of Zhang 

and Harrie (2006) which provided a different approach by considering both text and icon 

placement simultaneously. The challenge in the current study was that the icons were already 

placed and thus there were limitations in the space and more constraints for their placement. 

Overall, the new grid search algorithm managed to successfully address a key limitation 

inherent in the original grid algorithm. Instead of positioning a singular icon, the code was 

reconfigured to sequentially place all icons in the dataset. Once an icon was positioned, it was 

instantaneously added to the background features. The aim was to reduce overlapping with the 

previously positioned icons. As evidenced in Appendix 2, the legibility metric between icons 

across all layers improved in 6 out of 18 experiments (70 center, 60 center, 80 top right, 70 top 

right, 80 top left, 70 top left).  Notably, this includes the experiment that was selected for further 

exploration, showcasing the efficacy of the refined approach. 

An additional challenge that this study successfully addressed was the one highlighted in the 

research of Harrie et al (2022), which involved placing labels in high-density areas. The main 

problem was that it was difficult to define priorities between the labels. This study managed to 
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solve this problem by assigning priority levels to icons based on their categories and then 

utilizing the grid algorithm to position them sequentially.This was accomplished by dividing 

the icons into three distinct categories and forcing the algorithm to place them in order. Icons 

from the second category were placed first, followed by those from the third category. The 

second category icons were positioned before third category icons because their accurate 

position was limited as they can only be placed around the point they describe, while the others 

can be positioned in a larger search space. Notably, icons from the first category maintained 

fixed positions as detailed in section 3.3.2, with the algorithm leaving their placements 

unchanged. The results of the metrics were improved compared to the manually placed 

labelling, by also following the important requirement of city wayfinding maps, which states 

that all the labels should be present on the map.   

Another pivotal challenge was ensuring that icons on the map accurately corresponded to the 

features they represented. To achieve this, the association metric was given precedence in the 

multi-objective optimization process, aiming for optimal alignment between newly placed icons 

and their corresponded features. As Figure 26 and Figure 27b show the mission was 

successfully addressed and the icons were positioned close to their original ones with respect 

also to the overall disturbance and legibility metrics. That is particularly important why as the 

findings of Wang and Worboys (2016) indicated accurate icon positioning fosters trust and 

reliability in the map's information, empowering users to make informed decisions confidently. 

This practice enhances spatial awareness, reducing disorientation and facilitating efficient route 

planning. Accurate icons enable users to align their mental maps with the physical environment, 

aiding quick decision-making and minimizing search times for destinations. Overall, the 

practice ensures that users can seamlessly bridge the gap between map representation and 

reality, resulting in smoother navigation, enhanced user satisfaction, and a heightened sense of 

familiarity with the city's layout.  

5.3 Positions evaluation and selection 
For the evaluation of the positions produced by the grid algorithm 4 different functions (metrics) 

were utilized as defined in section 3.3.3. Instead of relying on a singular objective function, a 

multi-objective optimization approach was opted to quantify labeling quality. The reason was 

that the nature of the problem addressed in the current study involved multiple objectives that 

need to be satisfied simultaneously. Understanding of the trade-offs between the conflicting 

objectives was necessary in order to decide which solution satisfies better the problem. In the 
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context of this study the aim was to minimize the objective function of disturbance while 

maximizing the ones for legibility and association of the icons.   

The multi-objective optimization process, executed using the NSGA-II algorithm, clearly 

improved the icons placement by simultaneously balancing the three key metrics. The process 

was trying to minimize disturbance while maximizing legibility and association. As Table 7 

presents, there is a notable reduction in the disturbance metric from an initial value of 0.40 to 

0.20 after optimization. This reduction underscores the efficacy of the algorithm in 

repositioning icons to mitigate disruptions to background cartographic elements. By 

strategically selecting placements that minimize overlaps and conflicts, the algorithm 

succeeded in achieving a more harmonious integration of icons within the map's spatial context.  

While the disturbance metric demonstrated substantial improvement, the legibility metric 

remained constant at 0.96 from the first generation. This unchanging value suggests that the 

algorithm converged to a solution that effectively maximized legibility early in the optimization 

process. It is worth noting that this metric is improved compared to the value obtained by the 

grid algorithm (0.88), which was considered as relatively good. Furthermore, when comparing 

it to manually placed icons, which had a legibility of 0.90, the optimized result is even more 

impressive. 

The association metric also displayed noteworthy progress, with its value increasing from 0.53 

before optimization to 0.59 after optimization. This indicates that the algorithm succeeded in 

creating more coherent spatial relationships between icons and their original positions on the 

map. Given the higher importance of association, the selection of this value was based on the 

Pareto front (Figure 21a), and it was primarily based on the superior performance of the solution 

in this specific metric. 

5.4 Production needs  
The general production needs as described in section 2.2.3 were met by the optimized placement 

of icons on the map. Only icon rotation was not addressed, as it was not the main focus of this 

study. The original rotation of icons was retained, and rotations were not altered or optimized 

as part of this research. Addressing the other needs:   

1. Location Accuracy: The optimized icon placement algorithm succeeded in maintaining 

location accuracy (Figure 26). The association metric played a pivotal role in achieving this 

accuracy, ensuring that icons were situated in proximity to their initial positions.   
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2. Avoiding Overlap: The algorithm's emphasis on disturbance minimization directly 

contributed to this aspect. Even if eventually as optimal solution was chosen the one that 

optimized association, the disturbance value was remarkably improved compared to the original 

data (Table 7).   

4. Flexibility in Symbol Placement: Allowing some flexibility in symbol placement related to 

the metrics and the general rules, was a practical requirement. The algorithm's multi-objective 

optimization approach balanced the competing objectives of disturbance reduction, association 

improvement, and legibility enhancement.  

5. Avoiding Obstruction: The algorithm's focus on minimizing disturbances and enhancing 

associations effectively contributed to this need. Icons that obstructed other features were 

adjusted during the optimization process, allowing for improved clarity while adhering to 

cartographic guidelines. 

5.6 Cartographers’ needs 
Regarding the specific rules and constraints established by T-Kartor for icon positioning on city 

wayfinding maps, the grid algorithm effectively adhered to numerous of them (Figure 16). As 

a result, also the optimized placement of icons on the maps complied with T-Kartor's guidelines. 

The definition of quality metrics aimed to accommodate the general constraints outlined in 

section 3.3.5. It is important to note that the first constraint (C1), dictating the presence of all 

icons on the map, was maintained consistently throughout the study. Specifically, a total of 243 

icon features were placed both before and after optimization. Constraints C2 and C3 were 

implemented and addresed through the legibility metric's efforts to minimize overlap between 

icons and text labels, as well as between icons themselves. While the third constraint strictly 

prohibited icon overlap, in certain scenarios, such as high-density areas or initial overlapping, 

complete avoidance was challenging (Figure 25). The disturbance metric effectively handled 

C4 by striving to reduce overlap with significant background elements.   

In terms of rules, the first (R1) that described the maximum number of icons attached to a point. 

In the initial data, this rule was naturally satisfied because there was never more than one icon 

associated with any given point. This makes logical sense because a single location on a map 

can represent only one specific feature. For instance, a spot marked as a parking area cannot 

simultaneously be labeled as a bus stop at the exact same location. Moreover, to keep icons off 

the streets (as the second rule indicated) a higher weight was assigned to layers associated with 

roads, ensuring the grid algorithm refrained from placing icons on top of road features (as 
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elaborated in section 3.3.2). Rules R3 and R4 were inherently satisfied since, as previously 

mentioned, icon rotations remained unchanged throughout the various processes. 

5.7 Hypothesis validation 
The results presented in previous sections provide a comprehensive evaluation of how well the 

aim of the study was achieved and whether the hypothesis was validated. The experiments 

conducted, showcased ability of the adopted approach to improve map readability, disturbance, 

and association while adhering to cartographic rules and aligning with production needs 

outlined by T-Kartor. The subsequent multi-objective optimization process further enhanced 

these qualities, albeit with trade-offs that are inherent in multi-objective optimization and 

resulted in high quality maps that effectively communicate the information. Overall, the 

findings support the hypothesis that optimizing the grid algorithm based on T-Kartor's 

constraints and with respect to disturbance, legibility and association can indeed yield maps of 

higher quality. 

5.8 Improvements  
Despite the successful accomplishment of the primary research objective, it is important to 

recognize various aspects that should be taken into account for the purpose of achieving even 

more refined results in the future.  

Computational efficiency  

More specifically, it is essential to improve the computational time of optimization algorithm 

as with the formulation presented in section 3.4.3, it took 30 minutes to complete one 

generation. The optimization algorithm was executed for a strategically chosen number of 

generations (10), determined through performance monitoring and empirical experimentation 

with various values. The computational duration was closely linked to the number of icons 

within the study area. In this study, 243 icons were used throughout the processes, employing 

an AMD Ryzen 7 3700U processor.  For a more comprehensive approach it would be ideal if 

all the icons of the whole area were used, a total of 28000 icons.    

However, the quality of map labelling cannot solely be based on the number of labels. 

Consideration must also be given to placement conforming to cartographic requirements such 

as legibility, association and disturbance. The computational efficiency could potentially be 

improved through refinement of the objective functions. Furthermore, spatial Indexing was 

used, which is a data structure designed for quicker searches, to speed up the process, by 

organizing the data into a search tree which can be quickly traversed to find a particular record 
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(source). In pursuit of efficiency, parallel processing was also adopted, distributing evaluations 

across eight multi-core processors, which slightly reduced computational time. Nevertheless, 

there is room for improvement if more efficient coding practices are applied.   

Klute et al. (2019) also proposed a semi-automatic labelling method which was proved to 

overcome the time-consuming issue by initially computing a labelling that has well-placed 

labels, even though it may not be perfect. Users could then make localized, interactive 

adjustments based on their criteria. However, as technology advanced and the demands of 

companies working on map production increased, there is a growing need for this process to be 

fully automated.  

Icon shape  

Furthermore, it has been noted that the shape of icons plays a pivotal role in the performance 

and accuracy of metrics. Throughout this study, a uniform square icon size was employed. It is 

noticeable, however, that certain icons, such as cycle hire stations or police offices, are not 

inherently square but are treated as such. This discrepancy can lead to variations in the degree 

of overlap observed. For instance, a cycle icon, even if it visually appears not to intersect with 

or overlap background features, may experience increased overlap due to the encompassing 

square bounding. This scenario can particularly impact the reliability and interpretation of the 

overlap metric, especially when dealing with a substantial number of icons of this specific shape 

within a layer. The potential for misinterpretation underscores the importance of understanding 

and addressing such nuances in metric evaluation.  

A potential avenue for improvement is the use of rectangular icons, as suggested by Harrie et 

al. (2004), which can address the limitations of square shapes. However, it is imperative to align 

the search space proportionately with the geometry of the icon for optimal results. For instance, 

square symbols should be aligned within a square space, whereas rectangular symbols should 

be fitted within a rectangular space.  Thus, tailoring the search space to match the icon's 

geometry becomes essential for high quality outcomes.   

For those icons with less defined or irregular shapes, an enclosing bounding box could serve as 

an effective approach to delineate their spatial constraints. Also, instead of SVG symbols, the 

(multipolygon) polygon geometry that describe these symbols can be used to accurate shape 

them. However, implementing such varied geometries introduces a degree of complexity to the 

coding process. Adjusting the algorithm to accommodate multiple icon shapes necessitates 

meticulous modifications, elevating the complexity of the procedure. Nonetheless, despite these 
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challenges, adopting a more customized approach to icon placement, tailored to their inherent 

shapes, holds the potential to yield map outputs that are not only more precise but also visually 

captivating.  

Plugin development  

Moreover, the current research provides the foundation for developing a user-centric plugin that 

can interact with users’ preferences can significantly advance this work. Such a plugin would 

offer a more personalized and dynamic user experience, enabling individuals to adjust the level 

of optimization based on their unique navigation needs (Figure 27). This not only enhances the 

user's navigation experience but also provides a level of adaptability and customization that 

caters to diverse user requirements. Future research and development can focus on the design 

and usability of this plugin, ensuring it is intuitive and user-friendly, further bridging the gap 

between advanced optimization techniques and everyday map users.   

In conclusion all the aforementioned considerations not only pinpoint the challenges of this 

study but also open avenues for future exploration in the field of icon placement on city 

wayfinding maps. 

6. Conclusion 
This study delved into the intricate challenge of automating icon placement on city wayfinding 

maps, a task that has historically consumed significant portions of map design time. Through a 

two-pronged approach involving a grid search algorithm followed by multi-objective 

optimization, the research aimed to enhance the placement of icons, especially in high-density 

urban areas. 

The results were promising. The grid algorithm demonstrated its capability to sequentially place 

icons, reducing overlaps and enhancing disturbance. The subsequent multi-objective 

optimization further refined icon placement, emphasising in association improvement. This 

optimized placement not only adhered to the cartographic guidelines set by T-Kartor but also 

significantly improved the overall quality and readability of the maps. 

However, like all research, this study had its limitations. The computational efficiency of the 

optimization algorithm and the uniform square icon size employed present areas for potential 

improvement. Future endeavours could explore varied icon shapes, more efficient coding 

practices, and the integration of a plugin more customized to the needs of users. 
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In essence, this research has paved the way for more refined and user-friendly city wayfinding 

maps that improve walkability in urban environments. By addressing the challenges of 

automated icon placement and aligning with cartographic rules, the study has made a significant 

contribution to the field. As cities continue to grow and urban navigation becomes more 

complex, the importance of such optimized maps will only increase, making this research both 

timely and impactful. 
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8. Appendices 
 

Appendix 1. Supplementary figures for section 3.4 
This appendix showcases the evolution of scripts from the initial phase of this research to the 

final versions in the GitHub repository. Additionally, it provides code snippets from the 

implementation of the multi-objective optimization, with main focus on problem initialization. 

 

  

(a) (b) 

Figure 28: Initial batch of 34 Python files and the final scripts (10 files) developed in this research (GitHub repository). The 

final scripts are based on the initial attempts made. Especially for the objective functions where the functions were developed 

to return first the value of the metric for each icon feature until they were adjusted to get the same arguments and return the 

average value for the group of icon layers (all icons in the dataset). Several attempts were also made to improve the 

computation time by implementing different strategies (I.e.: parallel processing, poolmap) 
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Figure 29: Code snippet from the first function of the MyProblem class 

 

 

Figure 30: Code snippet from the evaluation function of the MyProblem class 
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Appendix 2. Grid algorithm evaluation 
Below is given a table with all the eighteen experiments conducted using default parameters 

and the objective functions for evaluating the performance of the grid algorithm. The aim was 

to choose the best combination of parameters that performs better in the association. Moreover, 

the visual representation of the experiments’ results is given in a figure. 

 

 

Table 9: Experiments conducted using different combinations of searchDistanceGround variable and p.orgX, p.orgY. The values 
for disturbance, legibility and association metrics are given for each layer. The layers are also split into categories and the 
subaverage value of each experiment in each category is calculated. Additionally, the overall average metric value is calculated 
across all layers in each experiment. The legibility metric was calculated in three ways: between the new icons and road text 
labels, between the new icons and landmarks text labels, and among the new icons themselves. Parts of the maps created for 
each experiment are presented in Figure 31. 
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Figure 31: Maps of icons placed by the grid algorithm across the different experiments 
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Appendix 3. Printouts during NSGA2 execution 
 

In this appendix is presented the table as generated from Python after running the multi-objective 

optimization process for ten generations. It works as a detailed snapshot of the optimization process at 

each generation, tracking key metrics such as constraint violations, diversity in the Pareto front, and the 

performance of the algorithm in terms of objective values. 

 

 
Table 10: Results of the multi-objective optimization indicating the number of generation (n_gen), number of 
evaluations(n_eval), number of non-dominant solutions (n_nds), minimum, maximum and average constraint violation 
(cv_min, cv_max, cv_avg respectively), epsilon-dominance (eps) and performance indicator (indicator). 

 

 

 


