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Abstract 9 

Development in sequencing technologies has made the analyses of genetic material much more 10 

accessible. Processing sequenced data for an accurate analysis comes with its challenges, 11 

especially with the studies in microbial in clinical in vivo samples where difficulties in the 12 

collection of these samples for sequencing could lower the quality and contamination from the 13 

human host which might affect the accuracy of downstream analysis. In this project, we use 14 

RNA-seq and different reference genomes to look at the differential gene expression of 15 

Pseudomonas aeruginosa (PA), one of the most prevalent species of bacterial pathogens in the 16 

progression of chronic pulmonary diseases such as cystic fibrosis, due to its resistance to 17 

antimicrobial treatment. In this project, we created a pangenome from 21 strains of PA and 18 

explored the use of this, its subsets (core and soft-core gene sets) and a commonly used PA 19 

genome (PAO1) as reference genomes. We compared some of the differences and similarities 20 

in the results using the four gene sets, including for mapping transcripts while developing a 21 

feasible pipeline to process raw sample reads from human sputum samples for differential 22 

expression and gene ontology enrichment analysis. From the analyses, we have found 23 

differentially expressed genes upregulated in in vivo samples were related to biofilm, which 24 

plays a role in the difficulties in the treatment of PA infections, across the majority of the 25 

various genome reference-based results. 26 

 27 
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Introduction 28 

Cystic fibrosis (CF) is an example of an autosomal recessive disease, which is inherited from 29 

mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR) 30 

protein. These proteins reside on the surface of airway epithelial cells and the serous cells of 31 

the submucosal glands. Dysfunction or absence of CFTR leads to a complex complication of 32 

chloride absorption and sodium hyperabsorption which can result in obstructions of the airways. 33 

Accumulation of the airway surface liquid layer due to the thick and tenacious nature of the 34 

secretion hamper the ability to clear bacteria from the lower airways and thus, allowing the 35 

colonization of pathogens over time (Boucher, 2007). 36 

The average estimated incidence of CF is between 1/3000 and 1/6000 births in the population 37 

of European descent. There are multiple individual factors which are associated with poor 38 

prognosis of CF, with lung function as the main predictor of survival. Other associated factors 39 

include female sex, higher age of diagnosis and early colonization of Pseudomonas aeruginosa 40 

(PA) (Scotet et al., 2020; Stephenson et al., 2017). Though bacterial infections may vary 41 

between clinics and countries, the pathogens PA and Staphylococcus aureus are most 42 

associated with CF (Uluer & Marty, 2014) .  43 

Pseudomonas aeruginosa is a Gram-negative bacteria species which becomes more prevalent 44 

with the progression of pulmonary disease in adults with CF and remains the most important 45 

contributor to morbidity and mortality (Bhagirath et al., 2016). Once the bacterial colonization 46 

is established at an early age, PA can become complex and difficult to eradicate due to its 47 

genomic diversity and and adaptive resistance, despite high exposure to antibiotics (Rossi et 48 

al., 2020; Tai et al., 2015). The relatively large genome of PA and switching in gene expression 49 

allow the bacterial cells to survive challenges such as competition with other colonizers, 50 

antibiotics, osmotic stress, and host immunity, and adapt to the CF lung environment (Wu et 51 

al., 2014).  52 

High-throughput sequencing technologies have been made much more accessible in recent 53 

years and a few studies have been deploying this to study differentially expressed genes in PA 54 

from in vivo clinical sputum samples and in vitro cultured isolates. Using a bioinformatics 55 

approach, sequences from these samples can be analyzed for gene expression using a pipeline 56 

of steps, resulting in a differential gene expression analysis in which the two environments are 57 

compared to each other. Although obtaining RNA sequences comes with their own 58 
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complication that relates to sample collection, RNA extraction, library preparation and 59 

sequencing, there are still ways to improve the quality and processing time of their analysis. 60 

The pangenome was first introduced by Tettelin et al., 2005 in the studies of multiple microbial 61 

strains, as the complete collective set of genes in the studied strains. Subsets from the 62 

pangenome include a core genome which is defined as the set of genes present in all strains, 63 

soft-core genome which includes genes that are present in most strains and an accessory 64 

genome which contains the collection of genes that are only present in only a few strains. 65 

Differential expression analysis presumes a common reference gene set to which the transcripts 66 

generated during sequencing can be counted. The result of this analysis will be highly 67 

dependent on the selected gene set, as only genes present in the selected reference gene set will 68 

be included in the analysis. Using a gene set that is too limited will cause loss of information 69 

and using an overly generous gene set will cause biases in the analysis as bacteria strains from 70 

the same species can carry very diverse genes in their genome. 71 

To enable further studies in which the transcriptomic response of PA cells growing at two 72 

different environmental or clinical conditions, the bioinformatic analysis methods are 73 

important as they influence the results and biological interpretation. This project aims to 74 

develop a feasible pipeline and provide some insight into some of the different bioinformatic 75 

approaches and tools in RNA-seq analysis for PA from in vivo clinical samples. With the steps 76 

in the pipeline, we aim to pre-process raw read sequences from RNA-seq of clinical airway 77 

samples and deplete them of human reads. We will then create a pan-genome which includes 78 

core and soft-core genomes (Tettelin et al., 2005) using the 21 PA strains on the Kyoto 79 

Encyclopedia of Genes and Genomes (KEGG) database with the tools Prokka (Seemann, 2014) 80 

and Roary (Page et al., n.d.). Along with these 3 genomes, the widely used PAO1 reference 81 

strain of PA will also be included in the analysis. We will then devise and test our approach by 82 

mapping transcripts to the reference pangenomes using the pseudo aligner kallisto (Bray et al., 83 

2016); estimate the differential expression between publicly available transcripts from RNA-84 

seq experiments (Cornforth et al., 2018) using sequences from the SRA Archive in R with the 85 

package DESeq2 (Love et al., 2014); conduct gene ontology analysis using PANTHER 86 

classification system (Thomas et al., 2003). 87 

The established pipeline will be possible to use in further studies of bacterial pathogens in 88 

clinical airway samples compared to other environments, which may be relevant for detecting, 89 

understanding and controlling bacterial infections in the future. 90 
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 91 

Materials and Methods 92 

Datasets 93 

The complete genome assemblies and protein data used in the creation of the pangenome 94 

reference were downloaded from the NCBI genome database (Details in Supp table 1). In vivo 95 

and in vitro clinical sample data were downloaded from the NCBI Sequence Read Archive 96 

(SRA). PA isolates which were exposed to sub-MIC antimicrobials were chosen for the in vitro 97 

samples. The in vivo samples were clinical sputum samples from cystic fibrosis patients who 98 

were under antibiotic treatment. Accession numbers and details for the data used can be found 99 

in Supp table 2. 100 

Pre-processing raw reads 101 

Quality of the reads was assessed using FASTQC/version 0.12.1 (Andrew., 2010) to ensure the 102 

sequenced RNA data are viable to be used in the downstream analysis. Sequences were then 103 

trimmed with TrimGalore/version0.4.4 for adapter contamination. The raw RNA reads were 104 

collected and sequenced from the airways of clinical patients. As expected, there were large 105 

numbers of human reads in the sequence, which were removed before counting the reads. By 106 

removing human reads, we were able to process the files without the necessary security steps 107 

required when working with sensitive human data and reduce the file sizes for faster processing. 108 

The sample reads listed in the table was depleted of human reads using a combination of two 109 

different methods of detecting human reads: taxonomy classification method with the software 110 

Kraken2/version 2.1.1 (Wood et al., 2019) and alignment method software bowtie2/version 111 

2.4.4 (Langmead & Salzberg, 2012). 112 

The two-step method was used to ensure all human reads are removed from the in vivo samples. 113 

Kraken2 software was used for the first step in detecting human reads. Using the .kraken file 114 

outputs, the sequence ID for the reads that were not assigned by Kraken2 as ‘Homo sapiens’ 115 

were saved as a list and used with seqtk/version1.2 subseq command to extract non-human 116 

reads from the sample reads files. The subsequent reads were then mapped to the human 117 

genome GRCh37 from NCBI using bowtie2/version2.4.4. SAM flags were interpreted using 118 

the Picard utility in the resulting SAM file output from bowtie2. SAMtools/version1.15.1 (Li 119 
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et al., 2009) was used to find reads that were flagged as unmapped. These were then extracted 120 

into gzip compressed FASTQ files, completing the second step of removing human reads. A 121 

second Kraken2 report was made for the final cleaned product. Once this method was 122 

established, it was also applied in the decontamination of human reads in a parallel project 123 

focusing on the in vivo gene expression of Haemophilus influenzae (Polland et al., 2023).  124 

PA pan-genome creation 125 

The amount of plasticity in bacterial genomes creates a complication in the analysis based on 126 

their genetic material. Considering the different strains and variations, it is often difficult to 127 

find significant data with a reference genome based on one strain. Therefore, using a 128 

pangenome as a reference would potentially provide a more complete set of genes to explore.  129 

Moreover, a core genome can be extracted from the pan-genome. The core genome was here 130 

defined as the set genes which were present in all 21 strains used to create the pangenome, and 131 

the soft-core genome is defined by the set of genes which were only present in 20 strains.  132 

The pan-genome creation was delimited to the 21 strains of PA with complete assemblies of 133 

their genomes on the KEGG database. Genome assemblies were downloaded from NCBI and 134 

created into a reference pan-genome using the tools Prokka/version1.14.16 and 135 

Roary/version3.13.0. In the resulting pangenome, some genes could not be automatically 136 

assigned a locus tag based on the commonly used nomenclature for PA. Instead, these were 137 

labelled “group_????”, which limits the possibility of downstream analyses. A custom Python 138 

script was generated to exchange “group_????” with NCBI locus tags using and the remaining 139 

sequences that were not reannotated were searched with DIAMOND/version2.1.4 (Buchfink 140 

et al., 2021) using the protein data from the 21 strains. From the final reannotated pangenome, 141 

the core and soft-core genomes were extracted and the pangenome was explored using the 142 

script provided with the Roary tool to generate statistics about the gene sets, a gene 143 

presence/absence matrix and phylogenetic trees. 144 

Pseudo-alignment of sample reads 145 

For this project, the pseudoaligner kallisto/version 0.48.0 was used in the pipeline to map the 146 

sample reads to the core, soft-core, pangenome and PAO1 reference with bootstrap value of 147 
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100, and the parameters for single-end sequence mapping were used. The resulting kallisto 148 

count data were used for downstream analysis.  149 

Data normalization and exploration  150 

Tximport/version1.28.0 was used to import kallisto count data into R/version4.3.1 language 151 

for statistical analysis. Counts were prefiltered where the genes with less than 10 counts across 152 

all samples were not included in the downstream analysis. Regularized logarithmic method 153 

rlog was chosen as the normalization method for visualization. The data was also explored with 154 

unsupervised clustering: PCA and hierarchical clustering, which provided a rough overview of 155 

the data before conducting differential expression analysis. This was also done to discover 156 

potential outliers in the samples that may askew any of the downstream analysis. R packages 157 

pheatmaps/version1.0.12 was used to create the heatmaps, using the default Euclidean method 158 

to create the sample-to-sample distance matrix.  159 

Differential expression Analysis 160 

The study design was set to compare the differentially expression genes between in vivo sputum 161 

samples from clinical patients under antibiotic treatment and in vitro lab-grown isolates which 162 

were also treated with antibiotics. The differential expression analysis was done in R with the 163 

use of R package DESeq2/version1.40.2. Significantly differentially expressed genes (DEGs) 164 

were considered as having an absolute log2 fold change > 1 and an adjusted p-value < 0.05. 165 

Locus tags of significant DEGs were searched on the Pseudomonas database 166 

pseudomonas.com. 167 

Gene Ontology 168 

Gene ontology (GO) classification of all genes in the core, soft-core and pan genome were 169 

explored using PANTHER release 17.0. Differentially expressed genes upregulated in the in 170 

vivo sputum samples for core, soft-core, pangenome and PAO1 reference-based results were 171 

analyzed with PANTHER Overrepresentation Test (Released 20230705) using the GO 172 

biological process annotation set, which also tested with Fisher’s Exact and correction for False 173 

Discovery Rate (FDR). Only the results with FDR p-value < 0.05 were included. 174 

 175 
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Results 176 

Pangenome 177 

The pangenome was created by the software tool Roary using the 21 strains of PA listed in the 178 

KEGG database and the annotations from Prokka. The core genome and soft-core genome were 179 

extracted from the pangenome and all three along with a PAO1 reference were used as reference 180 

for the pseudo-alignment of sample reads. The pangenome consisted of a total of 13065 181 

sequences, while the core and soft-core genome subsets from it had 3144 and 1799 sequences 182 

respectively (Fig.1). Roary also defined the shell genome containing genes present between 19 183 

and 3 strains and a cloud genome with genes present in 3 or less strains. The core genome 184 

consisted of the genes that were present across all 21 strains while the soft-core consists of the 185 

set of genes present in 20 strains, which were the number of strains for the different genomes, 186 

as indicated by Roary. A large proportion of the pangenome were genes that were only present 187 

in one or few of the strains used (Supp Fig.1). 188 

 189 

 190 

 191 

Fig.1 Pie chart illustra-ng the subsets of the pangenome generated from the 21 PA 
strains in the KEGG database. Outside the chart the subset is specified (core, soA 
score, shell and cloud genomes) and the number of strains that each the gene set is 
shared by. The number inside the chart denotes the number of genes included in 
each gene set. 
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 192 

The pangenome can also vary depending on the selection of strains used to create it. In the 193 

pangenome created in this project, PA7, a commonly used reference strain was included but 194 

there was also a large portion of genes that were not present in the core or soft-core genes 195 

(Fig.2). The inclusion or exclusion of such strains can have a significant effect on the number 196 

of resulting genes in different pangenome subsets.  197 

 198 

 199 

 200 

 201 

To find out more about the predicted functions of the genes that were included in each gene set, 202 

Gene ontology (GO) classification of the genes present in the different genomes was explored 203 

under the PANTHER GO biological processes based on the locus tag of each gene; however, a 204 

large proportion of the genes were unclassified by PANTHER. The percentage of unclassified 205 

genes in each total number of genes in the 3 different genomes was 59.9% for pangenome, 206 

53.6% for core and 68.2% and for soft-core genomes. Most of the genes that were classified 207 

Fig.2 Matrix of the presence (blue) or absence of a gene (white) in the pangenome and a 
phylogenic tree of the 21 PA strains showing clustering of some strains such as the widely used 
reference strain PAO1_107 with other PAO1 strains, and a dis-nct paKern of gene 
absence/presence with strain PA7 
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by PANTHER have the GO category for cellular process and metabolic process for all 3 208 

genomes while the core genome had a higher percentage of these genes in its genome compared 209 

to the pangenome and the soft-core genome. In contrast, genes under the GO category 210 

biological adhesion were completely absent from the core genome gene set. No genes from the 211 

soft-core genome (set of genes present in 20 strains) were categorized under the terms 212 

“reproduction and reproductive process”. Higher percentages of genes for GO categories were 213 

seen with the core which was likely due to the lower percentage of unclassified genes in its 214 

genome compared to the other two gene sets (Fig.3A). To account for this, the results for 215 

unclassified genes were filtered out, and the proportion of each GO category in the total 216 

categorized genes was calculated and plotted in Fig3.B to present the differences between 217 

reference genomes more accurately. Without including the unclassified genes, the proportion 218 

of genes under each GO category between all 3 references was quite similar, except for 219 

biological regulation which was lower in the core compared with the soft-core and pangenome 220 

(Fig.3B). 221 
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 223 

 224 

 225 

 226 

Pre-processing PA sample reads 227 

To test the created bioinformatic pipeline, sample sequence reads downloaded from the SRA 228 

archive and were trimmed for adapter contamination before further decontamination 229 

processing. In vivo human sputum sample sequences naturally contained human reads, and 230 

these reads were depleted from the microbial sequences. The sequences were filtered twice, 231 

first with Kraken2 then with bowtie2 to detect human reads, and no human reads were detected 232 

in the resulting sequences by a second kraken report after the two filtering. For some of the 233 

samples, a substantial percentage (approx. 60%) of the total reads remained after the human 234 

reads removal process while most samples only have about 11-38% of their total reads 235 

remaining. (Table 1) 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

Fig.3 Percentage of all genes (A) and genes given a GO-term (B) of the total number of genes in 
each gene set under the GO term for biological processes. Majority of genes can be seen among 
the categories cellular process and metabolic process, as well as localiza-on, biological 
regula-on, response to s-mulus categories for all 3 genomes.  
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Table 1 Number of reads for in vivo sputum samples for human reads decontamination process. 246 

 247 

Differential expression analysis  248 

The count data output files from the kallisto pseudoalignment were imported into R using 249 

tximport. 4 types of reference genomes were used for the alignment: core, soft-core, pan and 250 

PAO1 reference genome, steps in the analyses were repeated for each category and the results 251 

were compared between them.  252 

The raw counts were normalized with variance-stabilizing transformation (VST) and 253 

regularized logarithmic method, then plotted the standard deviation of the transformed data 254 

against the mean. The rlog method was chosen as the normalization method for visualization 255 

over VST since the standard deviation was seen as more constant for all 4 sets of count data 256 

(Supp fig.2). 257 

Sample/ 

SRA 

Accession 

No. of reads 

Before 

human 

reads 

removal 

   

After 

human 

reads 

removal 

 

 

Total 

reads 

Classified 

as human 

- Kraken2 

Total 

remaining 

reads after 

1st 

removal 

Remaining 

reads 

classfied 

as human 

- bowtie2 

Total 

reads 

Total 

(%) that 

remain  

PA reads 

- 

Kraken2 

SRR6833347 89739225 29153461 60585764 7711681 52874083 58,92 37209 

SRR6833344 53273099 42045528 11227571 5277978 5949593 11,17 240249 

SRR6833345 80472332 55501895 24970437 15698029 9272408 11,52 226354 

SRR6833346 40794451 18438229 22356222 13031965 9324257 22,86 30866 

SRR6833349 70634441 26181099 44453342 17182543 27270799 38,61 1134684 

SRR6833350 35200463 8902173 26298290 18731251 7567039 21,50 12325 

SRR6833351 20062069 2550654 17511415 4968907 12542508 62,52 26775 
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For the exploration and visualization of the imported data, principal component analyses (PCA) 258 

were performed for all 4 categories: core, soft-core, pan and PAO1 reference genome pseudo-259 

aligned count data. It can be inferred from the PCA plots that in vitro samples cluster closer 260 

together than the in vivo sputum samples, and this is consistent in all 4 reference genome 261 

categories.  In vivo samples are expected to have high variability since there can be a lot of 262 

contributing factors in differences in patients’ co-morbidities, antibiotic treatment, genetics etc 263 

compared to a controlled laboratory environment. One of the sputum samples was more distant 264 

from the group, possibly due to low sequence quality or coverage.  265 

Hierarchical clustering of samples visualized in heatmaps also shows the two groups, in vivo 266 

and in vitro grouping together and the same in vivo sample clustering further from the in vivo 267 

group, but still relatively closer compared to in vitro sample group. This pattern was also seen 268 

in the data from other genome references. 269 

 270 
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 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

Fig. 4 Principal component analysis (PCA) displaying PC1 and PC2 of samples for core (A), soB-core 
(B), pan (C) genome and PAO1 reference genome (D) showing that in vitro samples group together 
closely, compared to the in vivo sputum samples that were further apart.  

Fig. 5 Sample distance heatmap of in vivo and in vitro counts in using core (A), soB-core (B), 
pan (C) and PAO1 reference genomes. Clearer visualizaNon of one of the sputum samples 
clustered further away but sNll closer with samples in its group.  
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Using the different genomes, the number of significantly differentially expressed genes are 279 

1452 for core, 838 for soft-core, 3860 with pangenome and 2705 with PAO1 reference. 280 

Significantly differentially expressed genes are defined as having an absolute value of log2 281 

fold change (LFC) > 1 and p-adjusted value > 0.05 (table).  282 

 283 

From the core genome reference counts, alginate biosynthesis related genes and other genes 284 

involved in biofilm formation are more prevalent with the highest LFC. These alginate 285 

biosynthesis related genes were not present in the other 3 datasets. Some of the upregulated 286 

soft-core DEGs can be found in the psl cluster (locus PA2231-PA2245) involved in psl 287 

polysaccharide synthesis, which is important in the biofilm structure of PA (Wei & Ma, 2013). 288 

These psl locus tags, such as PA2231, pslA were commonly found in the soft-core and PAO1 289 

reference DEGs. PA4107, a stress response and virulence modulator under high Calcium 290 

concentration, and PA4101 biofilm maturation regulator (Fan et al., 2021; Sarkisova et al., 291 

2014) were the top DEGs in highest LFC for PAO1. Overall, more hypothetical proteins are 292 

found in the soft-core, pangenome and PAO1 reference compared to the core (Supp tables 3.1-293 

3.4).   294 

Table 2 Top 10 significantly differentially expressed genes upregulated with highest LFC in in 295 

vivo sputum samples (with core genome reference) 296 

 297 

Gene Ontology Enrichment analysis 298 

Locus Product LFC padj 

PA3546 alginate biosynthesis protein AlgX 8.73 1.81e-15 

PA3540 GDP-mannose 6-dehydrogenase 8.72 2.42e-28 

PA3557 4-amino-4-deoxy-L-arabinose-

phospho-UDP flippase subunit E 

7.87 2.10e-15 

PA4495 hypothetical protein 7.75 1.54e-34 

PA3551 mannose-1-phosphate 

guanylyltransferase 

7.68 3.06e-25 

PA4883 hypothetical protein 7.64 8.49e-48 

PA3601 50S ribosomal protein L31 7.54 1.49e-123 

PA3541 glycosyl transferase 7.52 1.13e-27 

PA4836 hypothetical protein 7.47 2.33e-41 

PA3544 alginate biosynthesis protein AlgE 7.29 3.75e-20 
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Upregulated DEGS in the in vivo samples for all 4 reference-based results were analyzed for 299 

GO terms in biological processes using PANTHER. Only 3 GO terms were found with the 300 

upregulated DEGs for sputum samples in the core dataset, these terms were overrepresented 301 

and categorized under alginic acid metabolic process and monoatomic ion transport (Table 3). 302 

Interestingly, in both the results for the pan genome and PAO1 reference, GO terms related to 303 

iron transport were overrepresented while much more genes were underrepresented, including 304 

multiple terms related to metabolic processes and cellular biosynthetic processes. The majority 305 

of the GO terms for the soft-core, however, were unclassified by PANTHER and these were 306 

overrepresented, while several terms associated with metabolic and biosynthetic processes 307 

were, similarly with pan and PAO1, underrepresented (Table 4). All significantly 308 

overrepresented and underrepresented terms for each were stored in tables. (For a detailed list 309 

of GO, see Supp table 4.1-4.4.) 310 

Table 3 GO enriched terms for upregulated DEGS in in vivo samples (core) 311 

 312 

Table 4 Top 5 GO terms with lowest raw p-values for upregulated DEGs in in vivo results 313 

 

GO biological processes 

Over(+)/ 

Under (-) 

represented 

Core  alginic acid metabolic process (GO:0042120) + 

 
monoatomic ion transport (GO:0006811) + 

 
monoatomic cation transport (GO:0006812) + 

 
- 

 

 
- 

 
   

GO biological process 

complete 

PA- 

REFLIST 

(5564) 

Count 

(882) 
Expected 

Over/Under 

represented 

(+/-) 

Fold 

Enrich

ment 

Raw P-

value 
FDR 

alginic acid metabolic 

process (GO:0042120) 
16 13 2.54 + 5.13 4.39E-05 9.76E-02 

monoatomic cation 

transport (GO:0006812) 
67 28 10.62 + 2.64 5.48E-05 4.07E-02 

monoatomic ion 

transport (GO:0006811) 
71 29 11.25 + 2.58 4.95E-05 5.51E-02 
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Soft-core cellular process (GO:0009987) - 

 
macromolecule metabolic process (GO:0043170) - 

 
Unclassified (UNCLASSIFIED) + 

 
biological_process (GO:0008150) - 

 
primary metabolic process (GO:0044238) - 

   
Pan cellular nitrogen compound metabolic process (GO:0034641) - 

 
nucleobase-containing compound metabolic process (GO:0006139) - 

 
nitrogen compound metabolic process (GO:0006807) - 

 
organonitrogen compound biosynthetic process (GO:1901566) - 

 
translation (GO:0006412) - 

   
PAO1 cellular nitrogen compound metabolic process (GO:0034641) - 

 
nucleobase-containing compound metabolic process (GO:0006139) - 

 
nucleic acid metabolic process (GO:0090304) - 

 
nitrogen compound metabolic process (GO:0006807) - 

 
gene expression (GO:0010467) - 

 314 

Discussion 315 

To have a better insight into the difference in gene expression of bacteria between in vivo 316 

sputum samples of cystic fibrosis patients and cultured bacteria under controlled environments 317 

when treated with antibiotics, we used an RNA-seq pipeline using different reference genomes 318 

for transcript mapping, to analyze Pseudomonas aeruginosa, one of the prevalent bacterial 319 

species in progressive pulmonary disease patients which show antimicrobial resistance towards 320 

treatment.  321 

A pangenome of 21 different PA strains was created for use as reference in the pseudoalignment 322 

of the RNAs-seq samples. The PA pangenome is an open pangenome where the number of 323 

genes continuously grow exponentially with new strains added. Therefore, to create a 324 

pangenome that was feasible for the resources available for this project, only 21 strains with 325 

complete genomes and annotations on the KEGG database were used, which include the most 326 

well-studied strains. The choice of using a pangenome was considered because of the nature of 327 

bacterial genetic material and with the aim to include genes shared by some of the different 328 
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strains that might not be present in a reference strain like PAO1. Genes in the core genome are 329 

most likely to be comprised of more well annotated conservative genes for maintaining their 330 

biological processes, therefore the soft-core genes were included in this project since 331 

antimicrobial resistance and virulence genes might vary from strain to strain.  332 

Obtaining RNA-seq data from in vivo samples can be challenging with the high standards 333 

required for the extraction process of the genetic material in question, and the variation between 334 

the samples can prove difficult for any downstream analysis that depends highly on the quality 335 

of the sequences. The initial plan for this project involved using our own RNA sequences, 336 

however, due to the low quality of these sequences in the samples, RNA sequences from the 337 

SRA database were used instead. To improve the quality of the analysis, various bioinformatic 338 

approaches have been developed and employed to process the data, including trimming and 339 

human reads removal. Aggressive trimming of sequences can have a significant effect on gene 340 

expression analysis especially on short reads sequences (Williams et al., 2016). The in vivo 341 

sample sequences also had human reads naturally since the samples were sputum samples 342 

collected from clinical patients. To decontaminate human reads from microbial reads for 343 

downstream analysis and faster processing, the in vivo sample sequences were filtered. A 344 

previous study showed that using two-step methods to remove human reads, produced some of 345 

the better results in decontaminating microbial samples and different methods of detecting 346 

human reads in microbial sequencing datasets have been tested by (Bush et al., 2020). 347 

Detecting and removing human reads also has potential consequences. If certain genes in the 348 

bacteria have high similarity with genes that are classified as human, in such a case this could 349 

potentially cause a loss of data in the differential expression analysis between in vivo and in 350 

vitro samples. Kraken2 was used to detect the final decontaminated sequences, in future studies, 351 

the use of a third software tool or database may be recommended to confirm instead. 352 

The tool kallisto pseudo-aligns transcripts to an annotated reference and includes the 353 

quantification step of the counts, producing a raw count matrix which can then be imported 354 

into DEG tools for analysis. The pseudo-alignment by kallisto does not require high computing 355 

power, is much faster and the memory usage is low enough to be used on a personal laptop. 356 

Some traditional aligners provide more data on the mapping, such as a splice junction aware 357 

STAR and a quantification step would be required to produce count data. Since these details 358 

are not required in the downstream analysis, a more lightweight tool like kallisto was used. A 359 

previous comparison study of different alignment tools also showed that another pseudo-360 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478626/
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alignment tool, salmon, would provide similar results (Schaarschmidt et al., 2020). 361 

Normalization of raw counts is a staple for differential expression analysis and various methods 362 

or approaches to normalization exists and their use depends on the nature of the data at hand. 363 

In this project pipeline, the R package DESeq2 was used. The data was tested using different 364 

transforms and regularized logarithmic method showed the most constant standard deviation 365 

across all 4 sets of count data and has been shown to be generally performed well against other 366 

methods (Love et al., 2014).  367 

Among the top upregulated DEGs in vivo sputum samples, many were involved in biofilm. 368 

Although, using different reference genomes found DEGs related to alginate synthesis biofilm 369 

formation was prevalent in core, likewise for biofilm structure related in soft-core and PAO1 370 

reference, and maturation related genes in PAO1. These genes that are involved in the biofilm 371 

can be found in mucoid-type PA strains of cystic fibrosis patients and poses a difficulty in their 372 

treatment due to antimicrobial resistance. Gene ontology enrichment analysis also showed 373 

different results with different genome references. GO terms in metabolic and cellular 374 

processes were underrepresented in pan and PAO1 genomes, alginic acid metabolism was 375 

overrepresented in core and an overrepresentation of unclassified in soft-core. It makes sense 376 

that vital functions for cell replication and metabolism are shared between all strains and are 377 

part of the core genome. In future studies using a pangenome, the soft-core genome would 378 

desirably include the core genome as well to provide more insight, since the definition for a 379 

soft-core can be more flexible than only having a set of genes that were shared between 20 380 

strains in this current project. Although only upregulated DEGs in in vivo samples were 381 

analysed in this project,  it would be important and recommended to also include 382 

downregulated DEGs that potentially show the contrast between the cultured PA and in vivo 383 

samples. 384 

In conclusion, the choice of reference genomes to which the transcripts were pseudo-aligned 385 

resulted in different DEGs upregulated in in vivo samples and with GO terms in biological 386 

processes. There were distinct DEGs found in the core and soft-core datasets that may prove 387 

insightful into reasons for antibiotic resistance due to biofilm or virulence. Results from the 388 

pangenome and PAO1 reference showed similar GO terms in this project, it may be inferred 389 

that using PAO1 reference would suffice if using a pangenome is not feasible. In future 390 

pangenome studies, a core genome or an expanded soft-core genome may be used to discover 391 

a more specific set of genes. 392 
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Transcriptomic analysis of PA in in vivo clinical samples can be a challenge, however there are 393 

bioinformatic approaches where the quality of the analysis can be improved. Exploring the 394 

options in using a pangenome compared to a single reference genome provided more insight 395 

into the classfications of genes that may be expressed with using each different genome as a 396 

reference for the mapping sample sequences. Quality control should be implemented but 397 

aggressive trimming or filtering of sample sequences should only be used with caution of their 398 

consequences. Pseudoalignment can be a feasible choice if computational power is limited to 399 

smaller scales. The choice of tools can vary between different studies or research groups 400 

depending on accessibility to computing resources and or familiarity with certain tools or 401 

programming languages. Further studies comparing in vivo and in vitro samples using different 402 

references would be worth exploring, since there are differences between DEGs found using 403 

different genomes, and this would contribute insight to patterns in their expression and 404 

treatment of PA in clinical settings.  405 
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Supplementary Material 

Supp table.1 PA strains used in the creation of the pangenome. 
KEGG 
entry 

Name and 
strain 

RefSeq GenBank Pseudomonas.com AA file name 

T00035 Pseudomonas 
aeruginosa 
PAO1 

GCF_000006765.1 GCA_000006765.1 Pseudomonas_aeruginosa_PAO1_107.faa 

T00401 Pseudomonas 
aeruginosa 
UCBPP-
PA14 

GCF_000014625.1 GCA_000014625.1 Pseudomonas_aeruginosa_UCBPP-
PA14_109.faa 

T00569 Pseudomonas 
aeruginosa 
PA7 

GCF_000017205.1 GCA_000017205.1 Pseudomonas_aeruginosa_PA7_119.faa 

T00818 Pseudomonas 
aeruginosa 
LESB58 

GCF_000026645.1 GCA_000026645.1 Pseudomonas_aeruginosa_LESB58_125.faa 

T01973 Pseudomonas 
aeruginosa 
M18 

GCF_000226155.1 GCA_000226155.1 Pseudomonas_aeruginosa_M18_172.faa 

T02161 Pseudomonas 
aeruginosa 
DK2 

GCF_000271365.1 GCA_000271365.1 Pseudomonas_aeruginosa_DK2_174.faa 

T01974 Pseudomonas 
aeruginosa 
NCGM2.S1 

GCF_000284555.1 GCA_000284555.1 Pseudomonas_aeruginosa_NCGM2S1_173.faa 

T02627 Pseudomonas 
aeruginosa 
B136-33 

GCF_000359505.1 GCA_000359505.1 Pseudomonas_aeruginosa_B136-33_191.faa 

T02711 Pseudomonas 
aeruginosa 
RP73 

GCF_000414035.1 GCA_000414035.1 Pseudomonas_aeruginosa_RP73_192.faa 

T03171 Pseudomonas 
aeruginosa 
PAO581 

GCF_000468555.2 GCA_000468555.1 Pseudomonas_aeruginosa_PAO581_495.faa 

T03098 Pseudomonas 
aeruginosa 
c7447m 

GCF_000468935.2 GCA_000468935.1 Pseudomonas_aeruginosa_C7447m_494.faa 

T03170 Pseudomonas 
aeruginosa 
PAO1-VE2 

GCF_000484495.2 GCA_000484495.1 Pseudomonas_aeruginosa_PAO1-VE2_493.faa 

T03097 Pseudomonas 
aeruginosa 
PAO1-VE13 

GCF_000484545.2 GCA_000484545.1 Pseudomonas_aeruginosa_PAO1-VE13_492.faa 

T02928 Pseudomonas 
aeruginosa 
PA1 

GCF_000496605.2 GCA_000496605.2 Pseudomonas_aeruginosa_PA1_497.faa 

T02929 Pseudomonas 
aeruginosa 
PA1R 

GCF_000496645.1 GCA_000496645.1 Pseudomonas_aeruginosa_PA1R_496.faa 

http://pseudomonas.com/


T02951 Pseudomonas 
aeruginosa 
MTB-1 

GCF_000504045.1 GCA_000504045.1 Pseudomonas_aeruginosa_MTB-1_210.faa 

T02970 Pseudomonas 
aeruginosa 
LES431 

GCF_000508765.1 GCA_000508765.1 Pseudomonas_aeruginosa_LES431_489.faa 

T02971 Pseudomonas 
aeruginosa 
SCV20265 

GCF_000510305.1 GCA_000510305.1 Pseudomonas_aeruginosa_SCV20265_215.faa 

T03035 Pseudomonas 
aeruginosa 
YL84 

GCF_000524595.1 GCA_000524595.1 Pseudomonas_aeruginosa_YL84_2501.faa 

T03031 Pseudomonas 
aeruginosa 
PA38182 

GCF_000531435.1 GCA_000531435.1 Pseudomonas_aeruginosa_PA38182_7613.faa 

T03789 Pseudomonas 
aeruginosa 
NCGM 1900 

GCF_000829275.1 GCA_000829275.1 Pseudomonas_aeruginosa_NCGM1900_2620.faa 

 

Supp table 2 Data on the sample raw reads  

SRA accession Description Sample name 
SRR6833347 Human sputum SP01 
SRR6833344 Human sputum SP02 
SRR6833345 Human sputum SP03 
SRR6833346 Human sputum SP04 
SRR6833349 Human sputum SP05 
SRR6833350 Human sputum SP06 
SRR6833351 Human sputum SP07 
SRR6833320 In vitro INV01 
SRR6833321 In vitro INV02 
SRR6833334 In vitro INV03 
SRR6833333 In vitro INV04 
SRR6833339 In vitro INV05 
SRR6833337 In vitro INV06 

 

 

 

 



Supp fig,1 Number of genes with each added genome in the pangenome 

 

Supp fig.2. Standard deviation against mean plots for rlog (top) and vst (bottom) transformed 

data with core (A), soft-core (B), pangenome (C) and PAO1 (D) reference. 

 



 

 

Supp table 3.1 Top 30 DEGs with highest LFC upregulated in in vivo samples (core) 

Locus Product LFC padj 
PA3546 alginate biosynthesis protein AlgX 8.72735067459732 1.809181210769e-15 
PA3540 GDP-mannose 6-dehydrogenase 8.72085014980398 2.41954663957224e-28 



PA3557 4-amino-4-deoxy-L-arabinose-phospho-UDP 
flippase subunit E 

7.86884925493475 2.09635079184614e-15 

PA4495 hypothetical protein 7.74726583503276 1.54314164931535e-34 
PA3551 mannose-1-phosphate guanylyltransferase 7.68192210917389 3.05514898658392e-25 
PA4883 hypothetical protein 7.64312745859506 8.49102329151025e-48 
PA3601 50S ribosomal protein L31 7.54142572063107 1.49302011578525e-

123 
PA3541 glycosyl transferase 7.51741477269646 1.12593717702441e-27 
PA4836 hypothetical protein 7.46525470523055 2.33471862604233e-41 
PA3544 alginate biosynthesis protein AlgE 7.29250654926474 3.74612471652051e-20 
PA3549 alginate o-acetyltransferase AlgJ 7.2802003730797 1.23235414416003e-22 
PA1318 cytochrome o ubiquinol oxidase subunit I 7.23693665274876 1.03956669065418e-20 
PA3555 4-deoxy-4-formamido-L-arabinose-phospho-UDP 

deformylase 
7.05915959932706 1.809181210769e-15 

PA3284 hypothetical protein 6.97906306584287 1.25012508633195e-35 
PA4837 TonB-dependent siderophore receptor family protein 6.93046874672158 9.78853986514742e-79 
PA4884 hypothetical protein 6.90609029810302 3.26440349387906e-47 
PA1924 hypothetical protein 6.89300156232974 2.0012452255878e-32 
PA1922 TonB-dependent receptor 6.66089497707904 8.08382127754272e-51 
PA3382 phosphonate ABC transporter permease 6.65498531053994 5.36133225841156e-19 
PA3550 alginate o-acetyltransferase AlgF 6.62235211227699 1.21511985165431e-20 
PA3556 4-amino-4-deoxy-L-arabinose transferase 6.545473863777 7.68436495597257e-25 
PA3553 glycosyl transferase 2 family protein 6.52857865641282 2.08282670440422e-27 
PA3887 Na+/H+ antiporter NhaP 6.45159551315514 4.19892948769198e-18 
PA5536 RNA polymerase-binding protein DksA 6.3855404402549 4.15170903471729e-60 
PA3547 poly(beta-D-mannuronate) lyase 6.3669538184574 8.0805474507767e-18 
PA5535 hypothetical protein 6.34043728925861 8.49763328290303e-81 
PA3552 UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate 

aminotransferase 
6.32404544006009 5.69006569666764e-36 

PA0672 heme oxygenase 6.285688453289 4.90261952307695e-39 
PA2504 hypothetical protein 6.2561013688627 1.2060526918772e-29 
PA3542 Mannuronan synthase 6.24411553612907 1.91617775975478e-15 

 

Supp table 3.2 Top 30 DEGs with highest LFC upregulated in in vivo samples (soft-core) 

Locus Product LFC padj 
PA2231 undecaprenyl-phosphate glucose 

phosphotransferase 
12.0661852257856 4.08467260041555e-

39 
PA2232 mannose-1-phosphate 

guanylyltransferase 
10.350806429335 4.36752212980518e-

25 
PA2233 glycosyl transferase 10.2146877174039 3.96061406189783e-

20 
PA2230 hypothetical protein 9.71690029090534 1.70782640855982e-

25 



PA0737 hypothetical protein 9.65577758324045 1.52342097182293e-
27 

PA2234 sugar ABC transporter substrate-binding 
protein 

9.21889250014078 4.89820147987707e-
18 

PA1343 hypothetical protein 8.42160254109762 4.36752212980518e-
25 

PA4110 beta-lactamase 7.60415608498913 8.18148009086465e-
63 

PA2382 L-lactate dehydrogenase 7.42594116748843 1.21474306507635e-
17 

PA2901 hypothetical protein 7.24097604269108 3.48294069201552e-
18 

PA4896 RNA polymerase sigma factor 7.00944432069077 3.83966369252187e-
38 

PA1921 hypothetical protein 6.77297804084437 2.56035823856146e-
22 

PA3281 hypothetical protein 6.59760119067687 8.36141725189782e-
36 

PA4773 S-adenosylmethionine decarboxylase 
proenzyme 

6.55378981356946 6.0753422456519e-
15 

PA2426 extracytoplasmic-function sigma-70 
factor 

6.54339862039224 7.75902848380523e-
66 

PA3283 hypothetical protein 6.53304186693394 2.27193773510739e-
37 

PA2137 hypothetical protein 6.46731189057167 4.59396897507776e-
09 

PA3558 4-amino-4-deoxy-L-arabinose-
phosphoundecaprenol flippase subunit 
ArnF 

6.44580224579697 7.04127111068815e-
08 

PA4471 hypothetical protein 6.34265979503045 2.63877637837442e-
49 

PA2412 hypothetical protein 6.20613361559376 8.28955213357481e-
55 

PA2114 MFS transporter 6.08296292857876 1.22370519413049e-
37 

PA3282 hypothetical protein 6.00675970784409 6.01092390260704e-
40 

PA0806 hypothetical protein 5.90028023826561 1.65169578912543e-
14 

PA2562 hypothetical protein 5.69252134596141 6.1521600619956e-
24 

PA4206 efflux transporter 5.55291263699767 1.79008951082523e-
08 

PA0675 RNA polymerase sigma factor 5.50224707575977 9.53821983061741e-
10 

PA4122 hypothetical protein 5.49384151624025 1.05307831216081e-
07 

PA2413 diaminobutyrate--2-oxoglutarate 
aminotransferase 

5.49253729425439 3.3474494394307e-
32 

PA3237 hypothetical protein 5.42481770860905 2.00569478991252e-
24 

PA2468 ECF sigma factor FoxI 5.32259016136384 3.3474494394307e-
32 



 

Supp table 3.3 Top 30 DEGs with highest LFC upregulated in in vivo samples (pangenome) 

Locus Product LFC padj 
PALES_27001 MerR family transcriptional 

regulator 
29.3658884342683 3.52906826988121e-28 

PADK2_24120 hypothetical protein 25.5144437993583 3.42026532465315e-16 
PADK2_24115 hypothetical protein 25.2408917642357 7.17103277254137e-16 
PADK2_24105 hypothetical protein 25.2124373821647 7.76117644926574e-16 
PADK2_14405 hypothetical protein 24.267345251804 9.67268936046437e-15 
PADK2_10875 hypothetical protein 24.1878054936276 1.19391041575833e-14 
PADK2_14450 phage integrase family protein 23.9270234233675 2.38800890540655e-14 
PADK2_23935 hypothetical protein 23.5890974871985 5.72659984830355e-14 
PADK2_14420 outer membrane efflux protein 23.440554037947 7.95951120674698e-14 
PAM18_2643 TonB-denpendent receptor 15.950825639483 2.68566574283341e-18 
PADK2_08555 hypothetical protein 14.5508431064661 1.88253184530192e-11 
PA4358 ferrous iron transport protein B 14.5182886912035 1.70834151895188e-35 
SCV20265_1905 aminotransferase 14.2505581565393 4.4147977105467e-22 
ILKJLEMH_02189 hypothetical protein 14.1696450375007 1.1346071648682e-12 
PADK2_15970 hypothetical protein 13.9607091460233 1.36963872597201e-21 
PALES_46081 hypothetical protein 13.7642275749314 4.4807381247146e-43 
PADK2_08595 Glycosyltransferase 13.7533992601712 8.48508039970196e-21 
PADK2_14190 DNA polymerase 13.6788193638487 1.15448902572632e-07 
PALES_26991 ATPase P 13.5389641568962 1.30768051097447e-07 
PADK2_11845 Copper-sensing two-component 

system response regulator CusR 
13.4352397304597 1.87044039109347e-07 

PADK2_10990 phage integrase 13.2807460243366 1.08549694073891e-31 
PADK2_08550 UDP-N-acetyl-D-

mannosaminuronate dehydrogenase 
13.2614112006063 2.56718461655992e-18 

PADK2_08570 hypothetical protein 13.1205150503612 5.73533372902833e-23 
PA1S_RS25940 DNA-binding response regulator 13.1168250348165 4.31854991991221e-21 
PSPA7_2862 cyclic peptide transporter 13.0746453235439 4.81714886460588e-18 
PA4107 hypothetical protein 13.0294485476057 1.08870402771977e-18 
PA4775 hypothetical protein 12.8452072138944 5.29637789118482e-21 
PSPA7_4784 hypothetical protein 12.7790598333776 3.82108253107376e-25 
PAM18_2607 acetyltransferase 12.7458987232445 2.30448742370938e-17 
P62593 Beta-lactamase TEM 12.7261041793172 3.68725907844921e-34 

 

Supp table 3.4 Top 30 DEGs with highest LFC upregulated in in vivo samples (PAO1 ref) 

Locus Product LFC padj 
PA4107 EfhP 13.0510721578467 1.84511681741116e-15 



PA4101 BfmR 12.5885038639685 8.25541655303288e-26 
PA4106 conserved hypothetical protein 12.4546711175849 6.37242328847335e-12 
PA2231 PslA 12.3623034402852 9.05474925716813e-42 
PA4102 BfmS 12.2429604481771 4.52507527915493e-25 
PA4104 conserved hypothetical protein 11.8259389904727 1.77545278611128e-13 
PA3066 hypothetical protein 11.6397747498086 2.15953771097562e-32 
PA0689 low-molecular-weight alkaline phosphatase 

B, LapB 
11.5117816427607 2.75743801315848e-36 

PA2220 probable transcriptional regulator 11.2847652625294 8.22857718616684e-23 
PA5264 hypothetical protein 11.2485312767428 3.23684746793968e-27 
PA5265 hypothetical protein 11.1703191860384 2.08657710034424e-34 
PA4103 hypothetical protein 11.1333857787015 3.32163591230443e-10 
PA4280.5 16S ribosomal RNA 11.1233426972329 0.000631846717268802 
PA1471 hypothetical protein 11.006408809446 2.50529124908327e-24 
PA2119 alcohol dehydrogenase (Zn-dependent) 10.8178956339079 1.93355213079538e-06 
PA2232 PslB 10.6889133003309 2.75286921382355e-26 
PA0100 hypothetical protein 10.6302615655605 1.65314275926554e-11 
PA0498 hypothetical protein 10.621997847585 3.098864012077e-31 
PA2233 PslC 10.6131772956741 7.07951192024871e-21 
PA0497 hypothetical protein 10.3253697662804 6.85658606697171e-26 
PA2456 hypothetical protein 10.3203107253949 1.84762790209762e-09 
PA2771 diguanylate cyclase with a self-blocked I-site, 

Dcsbis 
10.1676775779985 6.6346185760475e-29 

PA0257 hypothetical protein 10.0955242130532 4.97563254032472e-28 
PA3065 hypothetical protein 10.0867328714128 4.18517235428844e-23 
PA2230 hypothetical protein 10.0662948986042 2.2525576145905e-27 
PA4105 hypothetical protein 10.0374397971351 3.34156281218806e-10 
PA3067 probable transcriptional regulator 9.98113228054582 3.47226998020911e-22 
PA0737 hypothetical protein 9.86960275608147 2.9783305999352e-30 
PA4195 putative amino acid ABC transporter 

substrate-binding protein 
9.84591153196641 1.1579845470094e-25 

PA2772 hypothetical protein 9.83938002348575 4.24397335618275e-18 
 
 
Supp table 4.1 GO enrichment of upregulated DEGS in in vivo samples (core) 

GO biological process 

complete 

PA - 

REFLIST 

(5564) 

Count 

(882) 

Expe

cted 

Over/Under 

represented 

(+/-) 

Fold 

Enrichm

ent 

Raw 

P-

value 

FD

R 

alginic acid metabolic 

process (GO:0042120) 16 13 2.54 + 5.13 

4.39E-

05 

9.76

E-02 

monoatomic ion 

transport (GO:0006811) 71 29 

11.2

5 + 2.58 

4.95E-

05 

5.51

E-02 

monoatomic cation 

transport (GO:0006812) 67 28 

10.6

2 + 2.64 

5.48E-

05 

4.07

E-02 



 
 
 
Supp table 4.2 GO enrichment of upregulated DEGS in in vivo samples (softcore) 
 

GO biological process 

complete 

PA - 

REFLIST 

(5564) 

Count 

(882) 

Exp

ecte

d 

Over/Under 

represented 

(+/-) 

Fold 

Enrich

ment 

Raw 

P-

value 

FD

R 

Unclassified 

(UNCLASSIFIED) 3254 330 

278.

96 + 1.18 

4.67E-

06 

3.46

E-

03 

biological_process 

(GO:0008150) 2310 147 

198.

04 - .74 

4.67E-

06 

2.60

E-

03 

metabolic process 

(GO:0008152) 1293 77 

110.

85 - .69 

3.20E-

04 

3.23

E-

02 

organic substance metabolic 

process (GO:0071704) 1217 71 

104.

33 - .68 

2.37E-

04 

3.11

E-

02 

cellular process (GO:0009987) 1657 95 

142.

05 - .67 

3.42E-

06 

7.60

E-

03 

nitrogen compound metabolic 

process (GO:0006807) 908 49 

77.8

4 - .63 

3.18E-

04 

3.37

E-

02 

primary metabolic process 

(GO:0044238) 971 48 

83.2

4 - .58 

1.79E-

05 

7.96

E-

03 

organic substance biosynthetic 

process (GO:1901576) 672 31 

57.6

1 - .54 

1.37E-

04 

2.77

E-

02 

biosynthetic process 

(GO:0009058) 681 31 

58.3

8 - .53 

8.25E-

05 

2.04

E-

02 

cellular biosynthetic process 

(GO:0044249) 573 25 

49.1

2 - .51 

2.17E-

04 

3.22

E-

02 

organonitrogen compound 

biosynthetic process 

(GO:1901566) 407 15 

34.8

9 - .43 

2.40E-

04 

2.96

E-

02 



macromolecule metabolic 

process (GO:0043170) 518 17 

44.4

1 - .38 

4.60E-

06 

5.12

E-

03 

nitrogen compound transport 

(GO:0071705) 256 7 

21.9

5 - .32 

4.12E-

04 

3.99

E-

02 

small molecule biosynthetic 

process (GO:0044283) 232 4 

19.8

9 - .20 

3.87E-

05 

1.43

E-

02 

gene expression (GO:0010467) 158 2 

13.5

5 - .15 

2.97E-

04 

3.31

E-

02 

protein transport 

(GO:0015031) 130 1 

11.1

4 - .09 

4.31E-

04 

4.00

E-

02 

establishment of protein 

localization (GO:0045184) 135 1 

11.5

7 - .09 

2.92E-

04 

3.42

E-

02 

cellular macromolecule 

localization (GO:0070727) 142 1 

12.1

7 - .08 

2.06E-

04 

3.52

E-

02 

protein localization 

(GO:0008104) 142 1 

12.1

7 - .08 

2.06E-

04 

3.27

E-

02 

cellular localization 

(GO:0051641) 156 1 

13.3

7 - .07 

6.15E-

05 

1.71

E-

02 

cellular component 

organization or biogenesis 

(GO:0071840) 161 1 

13.8

0 - .07 

4.14E-

05 

1.31

E-

02 

amino acid biosynthetic 

process (GO:0008652) 111 0 9.52 -  < 0.01 

2.27E-

04 

3.15

E-

02 

protein transmembrane 

transport (GO:0071806) 112 0 9.60 -  < 0.01 

1.40E-

04 

2.60

E-

02 

alpha-amino acid biosynthetic 

process (GO:1901607) 99 0 8.49 -  < 0.01 

4.89E-

04 

4.36

E-

02 



cellular component biogenesis 

(GO:0044085) 119 0 

10.2

0 -  < 0.01 

9.39E-

05 

2.09

E-

02 

 
 
 
 
Supp table 4.3 GO enrichment of upregulated DEGS in in vivo samples (pan) 
 

GO biological process complete 

PA - 

REFLIST 

(5564) 

Coun

t 

(882) Expected 

Over/U

nder 

represe

nted 

(+/-) 

Fold 

Enrichme

nt 

Raw 

P-

value FDR 

cellular nitrogen compound 

metabolic process (GO:0034641) 557 93 157.57 - .59 

2.23E-

07 

4.95

E-04 

nucleobase-containing compound 

metabolic process (GO:0006139) 327 44 92.51 - .48 

3.10E-

07 

3.45

E-04 

nitrogen compound metabolic 

process (GO:0006807) 908 178 256.86 - .69 

6.39E-

07 

4.74

E-04 

organonitrogen compound 

biosynthetic process 

(GO:1901566) 407 64 115.14 - .56 

2.15E-

06 

1.20

E-03 

translation (GO:0006412) 80 3 22.63 - .13 

3.47E-

06 

1.54

E-03 

nucleic acid metabolic process 

(GO:0090304) 207 24 58.56 - .41 

3.57E-

06 

1.32

E-03 

macromolecule metabolic process 

(GO:0043170) 518 91 146.54 - .62 

5.08E-

06 

1.61

E-03 

heterocycle metabolic process 

(GO:0046483) 463 79 130.98 - .60 

7.12E-

06 

1.98

E-03 

primary metabolic process 

(GO:0044238) 971 203 274.69 - .74 

1.31E-

05 

3.25

E-03 

biosynthetic process 

(GO:0009058) 681 132 192.65 - .69 

1.54E-

05 

3.42

E-03 

organic substance biosynthetic 

process (GO:1901576) 672 131 190.10 - .69 

2.10E-

05 

4.24

E-03 

gene expression (GO:0010467) 158 17 44.70 - .38 

2.66E-

05 

4.92

E-03 

carbohydrate derivative metabolic 

process (GO:1901135) 202 26 57.14 - .45 

3.13E-

05 

5.36

E-03 



organic cyclic compound 

metabolic process (GO:1901360) 501 95 141.73 - .67 

1.29E-

04 

2.06

E-02 

cellular biosynthetic process 

(GO:0044249) 573 113 162.10 - .70 

1.55E-

04 

2.30

E-02 

cellular component organization or 

biogenesis (GO:0071840) 161 20 45.55 - .44 

1.73E-

04 

2.41

E-02 

cellular nitrogen compound 

biosynthetic process 

(GO:0044271) 363 64 102.69 - .62 

1.84E-

04 

2.41

E-02 

transition metal ion transport 

(GO:0000041) 36 27 10.18 + 2.65 

1.94E-

04 

2.39

E-02 

ncRNA metabolic process 

(GO:0034660) 75 5 21.22 - .24 

1.98E-

04 

2.32

E-02 

iron ion transport (GO:0006826) 30 24 8.49 + 2.83 

2.18E-

04 

2.42

E-02 

O antigen metabolic process 

(GO:0046402) 35 0 9.90 -  < 0.01 

2.87E-

04 

3.04

E-02 

O antigen biosynthetic process 

(GO:0009243) 35 0 9.90 -  < 0.01 

2.87E-

04 

2.90

E-02 

cellular component biogenesis 

(GO:0044085) 119 13 33.66 - .39 

2.88E-

04 

2.78

E-02 

cellular aromatic compound 

metabolic process (GO:0006725) 469 90 132.68 - .68 

2.97E-

04 

2.75

E-02 

iron coordination entity transport 

(GO:1901678) 23 20 6.51 + 3.07 

3.36E-

04 

2.99

E-02 

organonitrogen compound 

metabolic process (GO:1901564) 682 143 192.93 - .74 

4.15E-

04 

3.55

E-02 

 
 
 
 
Supp table 4.4 GO enrichment of upregulated DEGS in in vivo samples (PAO1 ref) 
 
 

GO biological process complete PA - 

REFLIST 

(5564) 

Count 

(882) 

Exp

ecte

d 

Over/ 

Under 

represented 

(+/-) 

Fold 

Enrichm

ent 

Raw 

P-

value 

FD

R 

cellular nitrogen compound 

metabolic process (GO:0034641) 

557 93 161.

67 

- .58 5.30E-

08 

1.18

E-04 



nucleobase-containing compound 

metabolic process (GO:0006139) 

327 43 94.9

1 

- .45 6.13E-

08 

6.82

E-05 

nucleic acid metabolic process 

(GO:0090304) 

207 22 60.0

8 

- .37 3.10E-

07 

2.30

E-04 

nitrogen compound metabolic 

process (GO:0006807) 

908 187 263.

55 

- .71 1.90E-

06 

1.06

E-03 

gene expression (GO:0010467) 158 15 45.8

6 

- .33 1.93E-

06 

8.58

E-04 

translation (GO:0006412) 80 3 23.2

2 

- .13 2.16E-

06 

8.03

E-04 

organonitrogen compound 

biosynthetic process 

(GO:1901566) 

407 68 118.

14 

- .58 4.92E-

06 

1.56

E-03 

heterocycle metabolic process 

(GO:0046483) 

463 81 134.

39 

- .60 5.22E-

06 

1.45

E-03 

cellular component organization or 

biogenesis (GO:0071840) 

161 17 46.7

3 

- .36 6.91E-

06 

1.71

E-03 

cellular component biogenesis 

(GO:0044085) 

119 10 34.5

4 

- .29 1.01E-

05 

2.26

E-03 

macromolecule metabolic process 

(GO:0043170) 

518 96 150.

35 

- .64 1.31E-

05 

2.64

E-03 

biosynthetic process 

(GO:0009058) 

681 136 197.

67 

- .69 1.52E-

05 

2.81

E-03 

organic substance biosynthetic 

process (GO:1901576) 

672 135 195.

05 

- .69 2.07E-

05 

3.54

E-03 

primary metabolic process 

(GO:0044238) 

971 214 281.

84 

- .76 5.33E-

05 

8.48

E-03 

carbohydrate derivative metabolic 

process (GO:1901135) 

202 28 58.6

3 

- .48 7.47E-

05 

1.11

E-02 

cellular nitrogen compound 

biosynthetic process 

(GO:0044271) 

363 64 105.

36 

- .61 7.68E-

05 

1.07

E-02 

cellular biosynthetic process 

(GO:0044249) 

573 115 166.

32 

- .69 9.79E-

05 

1.28

E-02 

organic cyclic compound 

metabolic process (GO:1901360) 

501 98 145.

42 

- .67 1.23E-

04 

1.52

E-02 

ncRNA metabolic process 

(GO:0034660) 

75 5 21.7

7 

- .23 1.30E-

04 

1.53

E-02 

transition metal ion transport 

(GO:0000041) 

36 28 10.4

5 

+ 2.68 1.34E-

04 

1.50

E-02 



iron ion transport (GO:0006826) 30 25 8.71 + 2.87 1.44E-

04 

1.52

E-02 

RNA processing (GO:0006396) 55 2 15.9

6 

- .13 1.61E-

04 

1.62

E-02 

iron coordination entity transport 

(GO:1901678) 

23 21 6.68 + 3.15 2.05E-

04 

1.98

E-02 

cellular aromatic compound 

metabolic process (GO:0006725) 

469 92 136.

13 

- .68 2.24E-

04 

2.07

E-02 

ncRNA processing (GO:0034470) 53 2 15.3

8 

- .13 2.42E-

04 

2.15

E-02 

O antigen metabolic process 

(GO:0046402) 

35 0 10.1

6 

-  < 0.01 2.97E-

04 

2.54

E-02 

O antigen biosynthetic process 

(GO:0009243) 

35 0 10.1

6 

-  < 0.01 2.97E-

04 

2.45

E-02 

cellular component organization 

(GO:0016043) 

121 14 35.1

2 

- .40 3.56E-

04 

2.83

E-02 

RNA metabolic process 

(GO:0016070) 

144 19 41.8

0 

- .45 4.24E-

04 

3.25

E-02 

organelle organization 

(GO:0006996) 

40 1 11.6

1 

- .09 5.51E-

04 

4.09

E-02 

cellular process (GO:0009987) 1657 411 480.

96 

- .85 6.69E-

04 

4.80

E-02 
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