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Abstract

Fully implicit Runge-Kutta methods play an important role in the nu-
merical integration of stiff differential equations. Radau IIA is the most
commonly used fully implicit method due to its good theoretical perfor-
mance. However, Radau IA and Lobatto IIIC might also be suitable for
different problems. These three methods are constructed using simplified
order conditions that ensures specific integration properties. The theo-
retical performance is derived from various stability and order concepts.
Specifically, Lobatto IIIC has a lower order, and Radau IA has a lower
stiff order than Radau IIA.

A new adaptive time-stepping method is proposed and used. The order
of convergence and properties of the adaptive time-stepping are examined
for three distinct problems: The linear test equation (ODE), a combustion
equation (ODE), and an advection-diffusion equation (PDE). The com-
pressible Euler equations (PDE) are also assessed, albeit to a lesser extent
due to computational constraints. Both the advection-diffusion equation
and the Euler equations pertain to fluid dynamics, which is a primary area
of interest for implicit Runge-Kutta methods. For the two last problems
DUNE library [2] is used for spatial discretization. Numerical we see that
Radau IIA best overall performing, Lobatto IIIC being reasonable good
performing and Radau IA being not as good when the problem is stiff.

2



Acknowledgement

I would like to thank my supervisors, Robert Klöfkorn and Viktor Linders, as
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1 Introduction

Fully implicit Runge-Kutta methods form a family of techniques specifically
designed to tackle stiff initial value problems (IVP). Stiff IVPs often pose ana-
lytical challenges, sometimes rendering them intractable or impossible to solve
in a closed form. Furthermore, there are instances where finding an analytic
solution is not even desirable for downstream applications. In such cases, the
objective becomes discretizing the problem in time and computing a discrete
solution. One effective approach for solving these problems is through the uti-
lization of Runge-Kutta methods. They are a family of single-step methods
employed for the solution of IVPs. The underlying principle involves taking
discrete steps along the direction of the ordinary differential equation (ODE)
and, upon landing at each step, initiating another step in the direction of the
ODE at that specific point. The sequence of pints traced by the method is the
numerical solution to the problem.

Notably, the simplest member of this family is the Euler method, which
was first published by Euler himself in 1768. Subsequently, Runge and Kutta
extended the Euler method in their respective papers in 1895 and 1901, resulting
in improved accuracy. Building upon this and further developments in the
field, Kuntzmann and Butcher independently introduced implicit Runge-Kutta
methods in 1961 and 1964, respectively. These implicit methods offered even
higher levels of accuracy. In addition they are particularly valuable when dealing
with stiff IVPs, as they can handle the stiff systems without the use of very small
time steps [6].

In recent times it has been proven that some implicit Runge-Kutta methods
are equivalent to continuous and discontinuous Galerkin methods [20, 3]. This
means that Runge-Kutta theory can be applied to Galerkin methods and vice
versa. The allure of Galerkin methods is the potential of parallelization of the
solver [9], which is of interest in the field of partial differential equation solvers.
Galerkin methods are of particular use in computational fluid dynamics (CFD),
and it is in this context that we wish to investigate the properties of certain
implicit Runge-Kutta methods.

In this thesis, we explore three such Runge-Kutta methods for solving initial
value problems (IVPs): Radau IA, Radau IIA, and Lobatto IIIC. We will delve
into their construction and properties. Additionally, we will introduce a novel
embedded method for adaptive time stepping with a feedback loop. To evaluate
the efficacy of these methods, we will test their performance within the realm of
fluid dynamics problems. According to the foundational theory of Runge-Kutta
methods, Radau IIA is expected to outperform the others in terms of order and
stiff stability. Lobatto IIIC, while stiffly stable, is anticipated to be of a lower
order. On the other hand, Radau IA, despite being of the same order as Radau
IIA, not stiffly stable and may experience order reduction for stiff problems.
The goal of this thesis is to investigate whether these hypotheses hold in the
context of fluid dynamics problems.

Section 2, give some background in Runge-Kutta methods and ODEs, section
3 delves into specifics of Lobatto IIIC, Radau IA and Radau IIA. Stability and
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order concepts are examined in Section 4. Next, Section 5 covers implementation
details with focus on adaptive time stepping. Section 6 showcases experimental
results from various test cases with focus on computational fluid dynamics.
A summary and conclusion is given in Section 7. Finally, we discuss some
additional observations and outlooks in Section 8.

2 Background

In this section we will give some background on stiffness in problems, introduce
the Runge-Kutta method and lightly touch on error and order.

2.1 Ordinary differential equations (ODEs)

In this thesis we will consider systems of first order ordinary differential equa-
tions. While the family of differential equations is much larger they can be
reduced and/or solved with analytical or numerical methods to a system of first
order ODEs such that an IVP solver can also be used. For example, spatially
discretized PDEs, as in problems 6.3 and 6.4.

Definition 1 (First order system of ODEs).

dy

dt
= f(t, y), (1)

where

• y(t) is a vector in Rn (i.e., y = [y1, y2, . . . , yn]
T ),

• f : R× Rn → Rn is a given vector-valued function.

The system is subject to the initial condition

y(t0) = y0, (2)

where y0 is a given vector in Rn.

If the IVP fulfills the conditions stated in the Picard-Lindelöf theorem, it
guarantees the existence and uniqueness of a solution.

Theorem 1 (Picard-Lindelöf ). Let f : [t0−a, t0+a]×Rn → Rn be continuous
and satisfy a Lipschitz condition in y. If (t0, y0) is a point in the domain, then
there exists an interval I = (t0 − δ, t0 + δ) and a unique function y(t) : I → Rn

that solves the initial value problem in definition 1.

2.2 Stiffness

Stiffness is a property of certain ODEs characterized by the fact that using
explicit time stepping solvers results in instability unless prohibitively small
step sizes are used, making the method computationally expensive. There are
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unfortunately no good definitions for stiffness for a given problem. The main
issue with defining stiffness is that it is dependent on the solver, step size and the
ODE. However, stiffness arises from the fact that the neighboring solution curves
of the IVPs differ significantly from the one being computed, meaning that the
inherent inaccuracy of discrete methods may lead to catastrophic deviation from
the intended solution . In other words, very small step sizes may be needed to
stay on the correct solution curve.

An example of a stiff ODE is an equation modeling combustion:

dy

dt
= y2 − y3. (3)

Here, the solution y represents the radius of a sphere of a combustion reaction
in the range normalized to the range (y(t0), 1) where y(t0) < 1. Physically, the
rate of change of the combustion radius is proportional to the difference between
the surface area and volume of the sphere [7]. The stiffness of the problem arises
from the fact that the combustion acceleration is highly dependent on the initial
radius y0. This can be seen in Figure 1, which shows the vector field of (3) with
five solution curves with different initial values. The solution curves are very
close to each other in the beginning but quickly diverge. Another sources of
stiffness could also be oscillations in the problem [16]. Stiffness can loosely be
characterized as the presence of multiple time scales in the problem [10, 12].

Figure 1: Vector field of the combustion problem (3) with five solution curves
with the initial values y0 ∈ {0.01, 0.0325, 0.055, 0.0775, 0.1}.

2.3 Runge-Kutta methods

Runge-Kutta methods are a family of one step methods for numerically inte-
grating. This is done by sampling the function f(t, y) at multiple time points
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tn + cih, where h > 0 is the time increment. These sampled values ki are called
stage derivatives, and are given by

ki = f(tn + cih, yn + h

s∑
j=1

aijkj). (4)

Here, ci are constants for time nodes and aij weights of the stage derivatives.
The stage derivatives are then combined to form the approximation at the next
time step with the weights bi as follows:

yn+1 = yn + h

s∑
i=1

biki. (5)

The Runge-Kutta method can alternatively be rephrased for ease of equation
manipulation as

gi = yn + h

s∑
j=1

aijf(tn + cih, gi), (6)

yn+1 = yn + h

s∑
i=1

bif(tn + cih, gi). (7)

Here, yn+1 ≈ y(tn + h). In fact, Runge-Kutta methods can be viewed as ap-
proximations to a Taylor series expansion of y(t+ h) around y(t).

A way to represent Runge-Kutta methods is with a Butcher tableau, which
is a compact way to represent the constants ci, bi and aij as vectors and matrix
respectively.

c A
bT

,

where A is a matrix consisting of aij coefficients, b is a vector consisting of bi
coefficients and c is a vector consisting of ci coefficients in (4) and (5). There
are mainly three types of Runge-Kutta methods: explicit, implicit, and semi-
implicit. The explicit methods have the property that the matrix A is lower
triangular, which means that the stage derivatives ki can be computed sequen-
tially. In contrast, the implicit methods have a matrix A with non-zero coeffi-
cients outside the lower triangular part, so the stage derivatives must be solved
for simultaneously. The semi-implicit methods are a hybrid approach where
some stage derivatives are solved sequentially, while others are solved for simul-
taneously.
The simplest Runge-Kutta method is the explicit Euler method,

yn+1 = yn + hf(tn, yn).

Its Butcher tableau is given by
0 0

1
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2.4 Local, global truncation error and order

Numerical methods introduce discretization errors. The local error is the error
introduced in a single time step τn+1

h = ||y(tn+1) − yn+1||. The global error is
the accumulated error at the final time efinalh = ||y(tfinal)− yfinal||. The order of
a method is the rate at which the global error decreases with the step size h,

efinalh ≤ Chp. (8)

Here, p is the order of the method and C is a constant independent of h such
that the inequality holds for sufficiently small h. An alternative expression for
this is efinalh = O(hp).

A method is said to be consistent if limh→0
τn
h

h = 0. It is said to be convergent
if limh→0 e

final
h = 0. For a method to be convergent it is necessary for it to be

consistent and stable, the latter of which will be discussed in Section 3

3 Radau IA, Radau IIA, Lobatto IIIC

The Runge-Kutta methods discussed in this thesis are the three-stage Radau
IA, Radau IIA and Lobatto IIIC methods. They are fully implicit methods,
hence the system of stage equations (4) must be solved in each time step. How-
ever, they offer advantageous stability properties for stiff problems compared to
explicit methods. In this section we will introduce these methods and discuss
their construction.

3.1 Order Conditions

The Runge-Kutta methods can be derived from the simplified order conditions
set out by J.C Butcher in [5] which stems from Butcher group or also know as
Butcher trees. :

B(p) :

s∑
i=1

bic
q−1
i =

1

q
q = 1, 2, . . . , p (9)

C(η) :

s∑
j=1

aijc
q−1
j =

cqi
q

i = 1, 2, . . . , s q = 1, 2, . . . , η (10)

D(r) :

s∑
i=1

bic
q−1
i aij =

bj(1− cqj)

q
j = 1, 2, . . . , s q = 1, 2, . . . , r (11)

The order conditions for a s-stage method B(p) and C(η) are equivalent to
a quadrature rule that integrates a polynomial of order p and η exactly, re-
spectively. The order of a Runge-Kutta method given the order conditions is
satisfying by the following result from [5]:

Theorem 2. If the coefficients bi, ci, and aij of a Runge-Kutta method satisfy
B(p), C(η), D(r) with p ≤ η+ r+1 and p ≤ 2r+2, then the method is of order
p.
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3.2 Construction of the methods

The ci coefficients for the methods discussed are based on the roots of the
right shifted Legendre polynomials with x ∈ [0, 1]. These polynomials Ps are
expressed by Rodrigues’ formula

Ps(x) =
1

s!

ds

dxs
xs(x− 1)s.

Using the roots of these polynomials as ci coefficients result in Gaussian quadra-
ture rules, which have the highest possible order 2s. However, the methods
considered here will specify at least one of c1 and cs to coincide with the bound-
aries of the interval [0, 1]. As we will see, this results in advantageous stability
properties.

3.2.1 Radau IA

For Radau IA, the coefficients ci are given by the roots of

Ps(x) + Ps−1(x) =
ds−1

dxs−1
xs(x− 1)s−1. (12)

This determines the collocation point c1 = 0 resulting in a quadrature of order
2s−1. Additionally, the coefficients bi and aij are uniquely defined by satisfying
B(2s− 1) and D(s). For s = 3, this results in the Butcher tableau:

0 1
9

−1−
√
6

18
−1+

√
6

18
3
5 −

√
6

10
1
9

11
45 + 7

√
6

360
11
45 − 43

√
6

360
3
5 +

√
6

10
1
9

11
45 + 43

√
6

360
11
45 − 7

√
6

360
1
9

4
9 +

√
6

36
4
9 −

√
6

36

3.2.2 Radau IIA

For Radau IIA, the coefficients ci coefficients are given by the roots of

Ps(x)− Ps−1(x) =
ds−1

dxs−1
xs−1(x− 1)s. (13)

This determines the collocation point cs = 1 resulting in a quadrature of
order 2s − 1. Additionally, the coefficients bi and aij are uniquely defined by
satisfying B(2s− 1) and C(s). For s = 3, this results in the Butcher tableau

2
5 −

√
6

10
11
45 − 7

√
6

360
37
225 − 169

√
6

1800 − 2
225 +

√
6

75
2
5 +

√
6

10
37
225 + 169

√
6

1800
11
45 + 7

√
6

360 − 2
225 −

√
6

75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9
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3.2.3 Lobatto IIIC

For Lobatto IIIC, the coefficients ci are given by the roots of

Ps(x)− Ps−2(x) =
ds−2

dxs−2
xs−1(x− 1)s−1. (14)

This determines the collocation points c1 = 0 and cs = 1 giving a quadra-
ture of two orders lower than the Gauss method at 2s − 2. Additionally, the
coefficients bi are derived from B(2s − 2) and aij coefficients are derived from
C(s− 1) and ai1 = b1. For s = 3, this results in the Butcher tableau

0 1/6 −1/3 1/6
1/2 1/6 5/12 −1/12
1 1/6 2/3 1/6

1/6 2/3 1/6

4 Stability

In this section we will introduce different stability concepts. It is important
that the methods are stable so that the solution converges and does not explode
in size. There are a multitude of stability concepts pertaining to Runge-Kutta
methods. Here, we discuss a few of them with particular relevance to the nu-
merical experiments in Section 6

4.1 A-stability

A-stability is based on how the method behaves on the linear test equation

y′ = λy,

y(0) = 1.
(15)

Here λ is complex valued and the analytical solution is

y(t) = eλt.

The linear test equation has the property that if Re(λ) < 0 then the solution will
converge to zero as t → ∞. A-stability captures this property for a numerical
method. If a Runge-Kutta method is applied to the linear test equation, the
solution at consecutive time steps satisfy [10]

yn+1 = R(hλ)yn ≡ (1 + hλbT (I − hλA)−1e⃗)yn.

Here e⃗ is a vector of ones and R(·) is known as the stability function of the
Runge-Kutta method.

Thus, the numerical solution satisfies yn → 0 as n → ∞ if and only if
|R(hλ)| < 1. The method is said to be absolutely stable for those values of hλ
that satisfies this criterion. This leads to the following definition:

11



Definition 2. A method is said to be A-stable if it is absolutely stable for all
Re(hλ) < 0.

Radau IA, Radau IIA and Lobatto IIIC are all A-stable. In fact, they all
are L-stable, which is a stronger stability concept.

4.2 L-stability

For stiff problems, A-stability might not be enough to ensure stability for stiff
problems. Thus, L-stability (or strong A-stability) is introduced [10]:

Definition 3. A Runge-Kutta method is said to be L-stable if it is A-stable and
has the additional property that

lim
h→∞

R(hλ) = 0.

As mentioned, Radau IA, Radau IIA and Lobatto IIIC are all L-stable. This
suggests that these methods may be suitable for stiff problems as it dampens
rapidly decaying transients.

4.3 S-stability, strong S-stability and stiff order

Both A- and L-stability are defined for the linear test problem (15). In an
effort to find a stability concept that more accurately predicts the behaviour
of Runge-Kutta methods for nonlinear problems, a generalization of the test
equation was introduced in [17]:

y′ = g′(t) + λ(y − g(t)). (16)

Here, g(t) is an arbitrary bounded function. The solution is given by y(t) = g(t).
Here a component of stiffness in the problem is introduced by λ. Note that (16)
reduces to the test equation (15) when g = 0.

Generalization of A- and L-stability based on (16) were introduced in [17].
They are respectively known as S- and strong S-stability:

Definition 4. A Runge-Kutta method is S-stable if for all h in an interval
(0, h0) and Re(λ) < 0 it holds that∣∣∣∣yn+1 − g(tn+1)

yn − g(tn)

∣∣∣∣ < 1.

It is strongly S-stable if, additionally,

lim
λ→−∞

yn+1 − g(tn+1)

yn − g(tn)
= 0.

Note that S- and strong S-stability reduces to A- and L-stability respectively
when g(t) = 0.
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Associated with these stability concepts are the notion of stiff order of accu-
racy. The stiff order differs from the classical order of the Runge-Kutta method
in that it is derived from the stiff test equation (16) and that one considers
the limits h → 0 and Re(λ) → −∞ simultaneously [14]. The stiff order can
be interpreted as the rate that the solution converges to g(t) as the step size
is reduced and the stiffness is increased. The local truncation error is in these
limits understood to scale as follows:

τnh = yn,h − g(tn) = O(hq+1(λh)−r).

Here the pair (q, r) is the stiff order of the method. It is desirable for both q
and r to be as large as possible.

Radau IA, Radau IIA and Lobatto IIIC are all S-stable. Radau IIA and
Lobatto IIIC are additionally strongly S-stable, whereas Radau IA is not. As
a consequence of this and the order conditions (9)–(11), it turns out that the
stiff orders of these methods are different. Radau IA, Radau IIA and Lobatto
IIIC have the respective stiff orders (s − 1, 0), (s − 1, 1) and (s − 2, 1) [17].
This suggests that the three methods may potentially perform differently when
applied to stiff problems, with Radau IIA having an advantage due to its higher
stiff accuracy.

4.4 B-stability

A-, L-, S-stability are linear stability concepts. However, for nonlinear problems,
the notion of B-stability can be applied. B-stability is based on the concept of
a dissipative problem where some energy of the problem is lost such that the
solution eventually enters an absorbing set [10]. This means that independently
of the initial value, the solution will converge to a solution set.

Definition 5. A Runge-Kutta method is said to be B-stable if for a nonlinear
problem dy

dt = f(t, y) satisfying the contractive property

⟨f(t, y(t))− f(t, ŷ(t)) , y(t)− ŷ(t)⟩ ≤ 0,

the numerical solution satisfies

∥yn+1 − ŷn+1∥ ≤ ∥yn − ŷn∥.

Here, ⟨·, ·⟩ denotes an inner product and ∥ · ∥ its induced norm.

An algebraic criterion for B-stability was given by Burrage and Butcher [4]
and independently by Crouzeix [8]:

Definition 6. A Runge-Kutta method is said to be algebraically stable if the
matrices

B := diag(b1, . . . , bs)

and
M := BA+ATB − bbT

are positive semi-definite.
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Radau IA, Radau IIA and Lobatto IIIC are all algebraically stable and
consequently B-stable.[4, Thm 2.2]

4.5 Summary

The stability properties of the Radau IA, Radau IIA, and Lobatto IIIC methods
are summarized in the following table:

Table 1: Comparison of s-stage Radau IA, Radau IIA, and Lobatto IIIC meth-
ods.

Radau IA Radau IIA Lobatto IIIC

Order 2s− 1 2s− 1 2s− 2
A-stability Yes Yes Yes
L-stability Yes Yes Yes
S-stability Yes Yes Yes
Strong S-stability No Yes Yes
Stiff order (s− 1, 0) (s− 1, 1) (s− 2, 1)
B-stability Yes Yes Yes

The primary distinction among the methods Lobatto IIIC, Radau IA, and
Radau IIA lies in their respective orders and strong stability properties. The-
oretically, Radau IIA possesses superior properties for stiff problems, closely
followed by Lobatto IIIC, albeit at a reduced order. On the other hand, while
Radau IA demonstrates good order properties, it may be prone to order reduc-
tion due to its lack of strong S-stability and its inferior stiff stability order. In
the realm of computational fluid dynamics, particularly when addressing stiff-
ness, Radau IIA appears to be a promising candidate among these methods.
It is one of the goals of this thesis to investigate how the methods behave in
practice.

5 Implementation

The methods are implemented in to Assimulo [1], a unified framework for ODE
solvers. In this section we will go through the practical aspects of implementing
the implicit Runge-Kutta methods. In addition we introduce a novel adaptive
time step controller.

5.1 Adaptive time step

Numerical integration benefits significantly from the use of adaptive time steps.
Instead of utilizing a fixed step size throughout the computation, adaptive time
stepping dynamically adjust the step size depending on an estimate of the local
error. This approach is essential because it allows for improved utilization of
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computational resources. The aim is to make the step size as large as possible
without compromising the desired accuracy, governed by user defined tolerance.

The dynamic step size adjustment is done with the aid of an embedded
method. The error is approximated as the difference between two numerical
solutions with different orders of accuracy. Based on this error estimate, the
step size is then adjusted accordingly [10]. The local estimated error is

τ∗n+1
h = y∗n+1 − yn+1. (17)

Here, yn+1 denotes the numerical solution at time tn+1 obtained using the
Butcher tableaus in Section 3, and y∗n+1 is the numerical solution computed
with a method of lower order staring from yn. In practice, this method will uti-
lize the same Butcher tableau as the original method, but with the b-coefficients
replaced. To impose the user defined tolerance, the estimated error is scaled by
the tolerance, yielding a relative error instead:

errn+1 =

∥∥∥∥τ∗n+1
h

tol

∥∥∥∥
2

. (18)

This returns the ratio between the estimated error and tolerance which is the
sum of an absolute and a relative tolerance,

tol = Atol+ Rtol ·max(|yn|, |yn+1|).

The relative tolerance scales with the magnitude of the solution The step size
is then adjusted by a proportional controller, defined trough the relation

hn+1 = hn · facn+1 · err−1/p
n+1 . (19)

Here, p is a constant set to one higher than the order of the embedded method,
since that is the order of the local estimated error. and facn+1 is a safety factor
The safety factor is needed since the error is just an estimation and might be
over optimistic, leading to a failure in the numerical method. This controller
tries to ensure that the local truncation τn+1 < Chp

n+1 is constant by varying
h.

5.2 Embeded error estimation

The estimation of errors requires selecting a method that has a lower order
than the method used for the solution. Since function calls can be costly, there
is a preference to reuse the stage derivatives from the primary method. Such
methods are termed embedded methods. In [18], it is suggested that the bi
coefficients for an embedded method can be formulated by ensuring that the
order condition B(p− 1) is satisfied. This is achieved by setting the right-hand
side of the final order condition to be 0 instead of 1

p in (9). In this thesis which
is the noval part of this thesis adaptive time stepping, we alternatively perturb
the last order condition with a small constant value a ̸= 0. This embedded
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method will also satisfy the order condition B(p− 1). This can be expressed in
vector form

b∗ = V −1
s e⃗H =


1 1 . . . 1
c1 c2 . . . cs
c21 c22 . . . c2s
...

...
. . .

...
cs−1
1 cs−1

2 . . . cs−1
s


−1 

1
1
2
...
1

s−1
1

s−a

 , (20)

where b∗ contains the quadrature weights of the embedded method. For the
embedded 3 stage Lobatto IIIC method the b∗ coefficients are,

b∗ =

 − 1
2 + 2

3−a

2− 4
3−a

− 1
2 + 2

3−a

 . (21)

The embedded methods for Radau IA and IIA are computed similarly. An
embedded method constructed in this way will at most have order s − 1 and
consequently so will the error estimator. Note that if a = 0, the b coefficients
for the original Runge-Kutta method are recovered. In other words, b∗ → b as
a → 0. Hence, the local estimated error

τ∗n+1
h = y∗n+1 − yn+1 = h

s∑
i=1

(bi − b∗i )ki,

will tend to zero as a → 0. Therefore, we can make the error estimator more or
less pessimistic depending on the choice of a. This allows us to add a feedback
loop in the error estimator. We base this loop on the previous step size (19),
resulting in a nested radical of previous estimated relative errors:

a = α · h1/p
n = α · (facn · err−1/p

n · hn−1)
1/p = . . . (22)

Here, α is a small constant, which throughout is chosen to be α = 0.01. The
1/p in the exponential in the feedback loop ensures that the feedback is not to
extreme.

5.3 Nonlinear solver

To take a step with implicit Runge-Kutta methods, a nonlinear system of equa-
tions must be solved. Iterative solvers are typically employed for this task.
Among these, Newton’s method is prevalent because of its speed and the avail-
ability of optimization tricks for implicit Runge-Kutta methods. Newton’s
method requires the computation of the Jacobian of the IVP. If computing the
Jacobian is not feasible, one can resort to Jacobian-free methods like Newton-
Krylov methods. However, in this thesis, we adopted the implicit Runge-Kutta
optimized simplified Newton method [10]. Further details on implementation
and theory can be found in [13].

16



The nonlinear Newton solver consists of three components: Firstly, a sim-
plified Newton step is used in which the Jacobian is reused over multiple time
steps. Secondly, leveraging the simplified Newton method allows each itera-
tion’s linear system to be solved with a single LU-decomposition. Thirdly, and
a decomposition of each linear system into two smaller systems utilizing an
eigen-decomposition.

For any given step, if the step size changes or a new Jacobian is needed, a new
LU decomposition is done. The Newton iteration continues until the solution
for the implicit Runge-Kutta method converges within a predefined number of
iterations. If convergence is not achieved, a new Jacobian is called, and the step
restarts. Otherwise, the estimated error is calculated. If the estimated error is
too large, the step size is reduced and the step recalculated; if not, the step is
accepted. When determining the step size for the subsequent step, if the new
step size is nearly identical to the previous one, the older step size is retained
for the next step.

6 Experiments and results

In this section, we test the performance of Lobatto IIIC, Radau IA and Radau
IIA, particularly in the realm of fluid dynamics problems, and examine how the
numerical results align with theoretical predictions. Additionally, we aim to
assess the performance of the new adaptive time-stepping technique.

Four experiments will be performed on:

• The linear test equation,

• The combustion equation,

• The advection diffusion equation,

• The compressible Euler equations.

The purpose of the linear test equation is to verify the classical order of the three
methods. We will also use this equation to verify that the new error estimator
(20)–(22) becomes progressively more optimistic as the value of a is decreased.
We also use this problem to find suitable values for the constant α in (22).
Next, the combustion equation is used to test convergence for a stiff problem
with known solution. We also use this problem to benchmark the adaptive
time stepping. The advection diffusion problem is used as an example of a
partial differential equation with controllable stiffness. It is used to compare the
methods on a first example of a PDE. Finally, the compressible Euler equations
are used to test the solvers on a system of fully non-linear partial differential
equations.

6.1 Linear test equation

To test that the implementation of Lobatto IIIC, Radau IA and Radau IIA have
the correct orders of convergence, we solve the linear test equation (15). To this
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end, the error is measured at the final time t = 1 for a sequence of different step
sizes. Let efinalh = |y(tfinal) − yfinal| denote the error when using step size h.
From (8) it follows that

eh
eh

2

= 2p.

Therefore, the experimental order of convergence (EOC) can be computed as

EOC = log2
eh
eh

2

=

log eh
eh

2

log 2
. (23)

For this problem, the error is computed with respect to the analytic solution,
y(t) = eλt.

In the following experiment, we use λ = 1 and set the final time to tfinal = 1.
The errors of the three Runge-Kutta methods are shown in Fig. 2. All three
methods display the order of convergence expected from Table 1.

Figure 2: Error vs step size for the linear test equation (15) at time tfinal = 1.

Next, we turn our attention to adaptive time stepping. The embedded
method in [18] with a = inf in (20) are pessimistic error estimators, result-
ing in an unnecessary number of steps wasting computational time for a desired
accuracy. This can can be seen for the linear test equation (15) with tfinal = 1
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in Table 2 and 3, where the resulting number of steps, function calls, Jacobin
evaluations, LU decomposition and error at the final time is compiled.

Table 2: Method comparison for the linear test equation (15) with a = inf. All
tolerances are set to 10−6.

Method Lobatto IIIC Radau IA Radau IIA
Steps 53 53 52
Function Calls 213 198 213
Jacobian Calls 1 1 1
LU Decompositions 5 5 4
Error 7.82× 10−10 1.00× 10−12 1.05× 10−12

The embedded method with the feedback loop used in this thesis with α =
0.01 in (22) results in errors closer in magnitude to the tolerance (10−6), thereby
using fewer steps, keeping computational cost down; see Table 3.

Table 3: Method comparison for the linear test equation (15) with α = 0.01 and
feedback loop. All tolerances are set to 10−6.

Method Lobatto IIIC Radau IA Radau IIA
Steps 8 8 8
Function Calls 42 30 36
Jacobian Calls 1 1 1
LU Decompositions 5 4 4
Error 3.61× 10−5 4.14× 10−8 4.14× 10−8

To see the effects of different a coefficients on the error estimation without
the feedback loop on the linear test equation we measure the difference of the
local error compared with the error estimation after a single step. To this end,
we introduce a discrepancy, dh, between the estimated error and the true local
error:

dh = τ∗h − τh = ||y∗1 − y1| − |y(h)− y1||.

In Fig. 3 we see dh at different step sizes for different a values. We expect to see
that the error estimation in this experiment have order 3 since the order of the
embedded method is 2 and we are measuring the local error, which typically is
one order higher than than global error.
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Figure 3: Discrepancy between the error estimate and the local error for the
embedded Lobatto IIIC with different a vs step size for (15) after one time step.

We see in Fig. 3 that the error estimation becomes less pessimistic for
smaller a as error estimation becomes better for the linear test equation (15)
with smaller a. It is worth noting that in the Fig. 3 the discrepancy scales with
the local error order of Lobatto IIIC for large h and the expected local error
order of the embedded method asymptotically.

With the linear test equation we have observed that implemented Runge-
Kutta methods have the expected order compared to the Table 1. We have also
shown that the pessimism of the error estimation can be controlled with the
novel error estimator described in Section 5.

6.2 Combustion equation

Next, we want to see how the three methods behave and how the adaptive
time stepping works in the context of stiff nonlinear problems. The combustion
equation is a simple example of such a problem and has controllable stiffness by
the initial value. The equation is given by

dy

dt
= y2 − y3, y(0) = 0.01.

Here, y denotes the radius of a combustion ball. The differential equation reflects
the relationship between the ball’s surface area and its volume. A noteworthy

20



feature of this equation is that it possesses a closed-form solution [7]:

y(t) =
1

1 +W (ueu−t)
, u =

1

y(0)
− 1.

It is thus straightforward to compute the error. Here, W represents the Lambert
W function. The solution y(t) is shown in Fig. 4. Note that the solution
converges to limt→∞ y(t) = 1 regardless of the initial value.

Figure 4: Plot of the combustion equation (3), y(0) = 0.01.

In this experiment, the the error is computed at tfinal/2 as this is a transition
point and a particular stiff point in the problem however the solver is run until
tfinal. Fig. 5 shows the convergence of the three Runge-Kutta methods for fixed
h using two different initial values. In Fig. 5b, the stiffness is more pronounced
than in Fig. 5a. For both cases, Lobatto IIIC and Radau IIA has the classical
order of convergence seen in Table 1. Radau IA, while having the smallest error,
displays a slight order reduction in the non-stiff case. This suggests that the
behaviour of Radau IA may be less predictable for stiff problems than for the
other methods. A plausible explanation for this observation is that Radau IA
is not stiffly accurate.

Next, we solve the combustion equation with adaptive time stepping. We
compare the feedback loop dynamic step size control with the standard control
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(a) t = 100, y(0) = 0.01.

(b) t = 200, y(0) = 0.005.

Figure 5: Error vs step size for the combustion equation (3).
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with a = inf. Here, all tolerances are set to 10−6 and α = 0.01; see (22). We
consider the case y(0) = 0.01, i.e. the less stiff case and solve using Radau IIA.

Figure 6: Scatter plot of Combustion equation (3), y(0) = 0.01 with adaptive
time stepping.

In Fig. 6 we see that the adaptive time stepping have smaller step sizes
when the combustion equation undergoes rapid change, and eases afterwards.
Note that considerably fewer steps are taken with the feedback loop dynamic
step size control than the standard control (FL) compared to the case where
a = inf. This is further observed in Tables 4 and 5, which shows run statistics
for all three Runge-Kutta methods with the two error control strategies. As for
the linear test equation, the errors with the feedback loop control shows errors
closer in magnitude to the chosen tolerance.

With this experiment we have seen that the lower order of Lobatto IIIC is
penalising its accuracy compared with the other methods. We have also seen
that Radau IA displays an unpredictable behaviour for stiff problems, possibly
due to its lower stiff order. It is experiencing order reduction. Radau IIA
Lobatto IIIC meets the theoretical expectations from Table 1.
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Table 4: Method comparison for the combustion equation y0 = 0.01 with adap-
tive time stepping with feedback loop.

Method Lobatto IIIC Radau IA Radau IIA
Steps 53 51 52
Function Calls 1641 1398 1476
Jacobian Calls 2 3 2
LU Decompositions 45 46 42
Error 4.85× 10−6 1.94× 10−7 1.31× 10−7

Table 5: Method comparison for the combustion equation y0 = 0.01 with adap-
tive time stepping, a = inf.

Method Lobatto IIIC Radau IA Radau IIA
Steps 299 297 298
Function Calls 4890 4536 4623
Jacobian Calls 2 2 2
LU Decompositions 100 101 100
Error 4.31× 10−9 7.30× 10−11 3.33× 10−12

6.3 Advection diffusion equation

We move to a fluid dynamic problem where space is also discretized. We want
to see how the methods behave and how the adaptive time stepping performs
with a fluid dynamics problem. As an introductory case, we consider a rotating
pulse subject to the advection diffusion equation. A noteworthy feature of this
case is that it is linear. The rotating pulse advection diffusion equation is given
by [20]

∂c

∂t
= ∇ · (D∇c)−∇ · (vc). (24)

Here, c is the concentration function, D is the diffusion coefficient and v is the
velocity vector field. For v = (−4y, 4x), an analytic solution is given by the
Gaussian pulse

c(x, y, t) =
2σ2

2σ2 + 4Dt
e
− (x̂−xc)

2+(ŷ−yc)
2

2σ2+4Dt ,

where x̂ = x cos(4t) + y sin(4t) and ŷ = −x sin(4t) + y cos(4t). Here, (xc, yc)
determines the offset from the center of the pulse and σ controls its width.
Throughout, we use the values xc = 0.25, xy = 0 and 2σ2 = 0.004. This
solution can be used to extract boundary and initial conditions.

The space discretization utilizes Dune [2], an open-source software frame-
work for solving partial differential equations (PDE). Here, we use the DUNE-
FEM module [2], employing a third-order discontinuous Galerkin method. For
details about the problem and the implementation, see [15]. Fig. 7 shows the
solution on a uniform 20x20 spatial grid at different times.
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(a) t = 0 (b) t = 0.4 (c) t = 0.8

(d) t = 1.2 (e) t = 1.6 (f) t = 2

Figure 7: A counterclockwise rotating pulse solution to the advection diffusion
equation at different times with grid size 20x20 and end time at 2 with D = 1.

The existence of an analytical solution enables direct error computation.
This is accomplished by taking the 2-norm of the difference between the numer-
ical and analytical solutions at the final time step. The rotating pulse advection
diffusion problem is run with three distinct diffusion factors, D ∈ {1, 0.1, 0.01}.
The error relative to the step size is depicted in Fig. 8, and the corresponding
EOC, given by (23), is listed in Table 6.

Notably, the methods achieve a lower EOC compared to the theoretical
classical order presented in Table 1. This deviation is likely due to the interplay
of spatial discretization-induced errors and order reductions from the Runge-
Kutta methods. Radau IA underperforms relative to the other methods, and
its order is even lower than what the stiff order predicts. For all three values of
D, the observed order is asymptotically one. Both Lobatto IIIC and Radau IIA
do not meet their theoretical classical orders. With D = 1 and D = 0.1, Lobatto
IIIC appears to converge with an order close to three. For Radau IIA, the case is
less clear. Notably, under certain conditions involving a high diffusion coefficient
and step size, Radau IIA achieves higher EOC than its classical order, however
not in the asymptotic regime. While Lobatto IIIC theoretically should have
been significantly inferior to Radau IIA due to its lower order, its performance
is only marginally worse in EOC terms. This implies that Lobatto IIIC as well
might be well-suited for fluid dynamics challenges.
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(a) D = 1

(b) D = 0.1.

(c) D = 0.01

Figure 8: Error vs step size for the advection diffusion equation (24) with grid
size 20x20 at tfinal = 2.
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Table 6: Experimental order of convergence.

Method / h D 0.5 0.25 0.125 0.0625 0.03125

Lobatto IIIC 1 2.7610 2.7701 2.8792 3.0442 2.9822
0.1 2.8952 3.1293 2.9473 3.0051 0.9962
0.01 1.0138 1.4591 2.5371 3.3319 1.8741

Radau IA 1 1.3510 0.9887 1.0103 1.0064 1.0033
0.1 1.6883 1.1518 1.0324 1.0097 1.0038
0.01 0.9817 0.9466 0.9080 0.9914 1.0013

Radau IIA 1 7.7704 6.3376 3.9453 2.7652 0.0700
0.1 5.0859 3.2338 3.6096 1.7527 -0.4375
0.01 0.9471 2.4442 3.8383 2.5454 0.1290

Next, we solve the rotating pulse advection diffusion equation with dynamic
step size control, with all tolerances set to 10−6. Based on the two previous
experiments, the problem is assessed using α = 0.01; see (22). The results are
shown in Table 7.

We observe that the dynamic step size control increases the number of steps
as the problem (24) as the error grows for smaller diffusion coefficients seen
in Fig 6. Radau IA performed the poorest among the methods, achieving the
lowest accuracy. Lobatto IIIC attaines lower accuracy than Radau IIA, but it
also takes fewer steps. However, the error per step is higher than for Radau
IIA. Radau IIA achieves the highest accuracy of all the methods.
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Table 7: Method Comparison for the Advection-Diffusion equation with feed
back loop adaptive time step method

Diffusion Factor
Method 1 0.1 0.01

Lobatto IIIC
Steps 16 17 33
Function Calls 111 108 174
Jacobian Calls 1 1 15
LU Decompositions 23 23 22
L2-error 4.52× 10−8 1.14× 10−5 7.16× 10−5

Radau IA
Steps 17 19 35
Function Calls 117 126 195
Jacobian Calls 1 1 21
LU Decompositions 25 26 20
L2-error 3.02× 10−5 6.83× 10−5 2.41× 10−4

Radau IIA
Steps 18 19 35
Function Calls 123 126 195
Jacobian Calls 1 1 21
LU Decompositions 26 25 20
L2-error 2.95× 10−8 1.32× 10−6 1.177× 10−5

28



6.4 Euler equation

The final problem in this thesis is the isentropic vortex problem with an analyti-
cal solution. [19] . It is a non linear fluid dynamic problem closer related to real
world scenarios. The isentropic vortex problem is governed by the compress-
ible Euler equations, a system of nonlinear PDEs describing the conservation of
mass, momentum and energy of a gas in the absence of internal friction. In 2D,
it is given by 

ρ
ρu
ρv
ρE


t

+


ρu

ρu2 + p
ρuv

(ρE + p)u


x

+


ρv
ρuv

ρv2 + p
(ρE + p)v


y

= 0.

Here ρ is the density, u and v are the velocity components in the horizontal and
vertical directions, E is the total energy per unit mass and p is the pressure.
The pressure is connected to the remaining variables through the equation of
state,

p = (γ − 1)(ρE − ρ

2
(u2 + v2)),

where γ = 1.4 is a constant.
The isentropic vortex problem describes a vortex, initially centered at (x, y) =

(−1, 0), moving horizontally with a background flow of unit speed. The initial
conditions are given by [20]

ρ =

(
1− S2(γ − 1)M2 ef

8π2

) 1
γ−1

,

u = 1− S
y

2π
e

(
f2

2

)
,

v = S
x

2π
e

(
f2

2

)
,

p =
ργ

γM2
,

where S = 5 is the vortex strength, M = 0.5 is the Mach number and f =
1− (x+ 1)2 − y2.

The space discretization uses the DUNE-FEM [2] module with a Lobatto
Legrande spatial discretization on a 10x10 grid as larger grid size does not
finish within a day on weaker hardware. In time, the adaptive time stepping
is used with all tolerances set to 10−6. This discretization is computationally
heavy so no experimental order of convergence will be computed. Instead, a
qualitative comparison is made among the three methods.

In Fig. 9 the numerical solution for the density at time t = 1 is shown. To
the eye, they look indistinguishable. It should be noted that this test case is
not particularly stiff, hence all three methods may be expected to perform well.
Additionally, since the spatial grid is very coarse, this may account for the dom-
inant contribution to the numerical errors resulting from spatial discretisation
error.
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(a) Lobatto IIIC (b) Radau IA (c) Radau IIA

Figure 9: Numerical solution for the density of the isentropic vortex problem at
time t = 1.

The error of the density component is computed at the final time step.
The results are shown in Table 8. All methods require the same number of
steps. Lobatto IIIC attains the lowest error but requires the most function and
Jacobian calls. Radau IIA displays a comparable error with fewer function and
Jacobian calls. Meanwhile, Radau IA has the highest error but also the fewest
function calls.

Table 8: Method comparison for the isentropic vortex problem

Method Lobatto IIIC Radau IA Radau IIA
Steps 22 22 22
Function Calls 723 645 663
Jacobian Calls 2 1 1
LU Decomposition 13 10 10
L2-error in density 0.03808 0.038223 0.03809

7 Summary and conclusion

In this thesis, we introduced fully implicit Runge-Kutta methods: Lobatto IIIC,
Radau IA, and Radau IA. We chose to describe their construction in terms of
simplified order conditions. Various stability and order concepts are explored,
forming the basis for our expected performance of the methods. A novel adaptive
time-stepping approach has also been introduced. The Runge-Kutta methods
were comparesd on four test cases, two IVPs and two fluid dynamics PDE
problems.

It is for good reason that Radau IIA is the go to method for fully implicit
Runge-Kutta applications. It has good order and stability properties for stiff
problems. Lobatto IIIC also work well in the context of fluid dynamics problems
and has robust performance, however the lower order is penalizing. The order
reduction of Radau IA for stiff problems makes it undesirable in some situations.

The stability and order concepts established in Section 4 seem to be valid for
initial value problems. However, when the methods are working in conjunction
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with spatial discretizations, the concepts become more of a guideline. Lobatto
IIIC, in the context of fluid dynamic problems, can not easily be written off,
and might be a good candidate for particular problems. The novel approach
to adaptive time stepping shows good performance for an embedded method,
however many aspects of it has been left untouched in this thesis.

8 Further observations and outlook

The bachelor’s project has touched on parts that this thesis does not cover.
However, these might be of interest to the reader:

The construction of the Runge-Kutta methods in the thesis originated from
the simplified order conditions. However, they can equivalently be derived from
collocation and discontinuous collocation of polynomials, as is detailed in [11].
The equivalency between collocation Runge-Kutta methods and Galerkin meth-
ods [20], while an interesting topic, is not instrumental to the thesis and therefore
not elaborated upon.

We have considered the use of Newton-Krylov methods as a replacement for
the simplified Newton methods. However, for the problems chosen it was not
necessary and proved to be more computationally intensive. Additionally, we
also implemented the methods using a full Newton method without various op-
timizations to determine if the results concurred with the main implementation.
This was observed to be the case, modulo larger round-off errors.

Other test problems, such as the Brusselator or the Van der Pol oscillator,
were also examined. However, they lacked analytical solutions, making error
analysis difficult. In this thesis we tested the methods on one stiff linear PDE
and one non-stiff nonlinear PDE. The testing of the methods could also be
extended to non linear stiff fluid dynamics problems, which is the intended
application of these methods.

The properties and behaviours of the new adaptive time stepping methods
needs to be further studied if to be used beyond the few test cases considered
herein. While the experiments conducted in the thesis suggests that the method
is robust, there is currently no supporting theory.

In this thesis we used an equidistant grid for spatial discretization. The
methods could have a different behaviour on an irregular or adaptive spatial
discretization. This is relevant in 3D applications as adaptivity can considerably
reduce the computational cost of numerically solving PDEs.
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