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Abstract

The recent advent of 3DSG in the computer vision domain has brought powerful high-level
representations of 3D environments. These representations strive to mimic human percep-
tion and facilitate the extraction of meaningful insight from visual data. This research has
led to framework like Hydra, which creates a real-time, persistent spatial perception sys-
tem that creates a complete 3D map of their surroundings. Furthermore, smart cities are
at the forefront of integrating information technology into urban life, with smart building
playing an essential role. Smart buildings are equipped with IoT devices that promote their
interaction to achieve a more intelligent environment. The integration of spatial perception
systems like Hydra into the smart building domain can improve decision-making, auton-
omy, and responsiveness. However, this integration introduces a new dimension of privacy
concerns among users. This arises due to Hydra’s capacity to capture sensitive information,
raising valid concerns regarding the potential misuse by third parties or attackers. This
necessitates a comprehensive approach that helps practitioners to systematically identify
and assess potential threats and vulnerabilities to a system, application, or network. This
thesis places a primary focus on addressing privacy concerns within the integration of Hydra
into the smart building domain. To achieve this, this study applies the LINDDUN privacy
threat methodology, which is designed to focus on privacy concerns, guiding practitioners
in identifying and mitigating privacy threats. Thus, the main the goal of this thesis is
to thoroughly examine and address these threats, all with the ultimate goal of protecting
personal information.

Keywords: 3DSG, DFD, Hydra, IoT, LINDDUN, PETs, Privacy, Threat modeling.
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1. Introduction, objectives and thesis out-
line

1.1 Introduction

The recent advent of 3D Scene Graphs (3DSG) has brought powerful high-level represen-
tations of 3D environments. 3DSG serve as an objective semantic representation of the
scene that effectively captures the underlying structure, relationships and context allowing
us to obtain valuable insights from visual data. These representations aim to resemble
how humans naturally perceive and interpret visual information. Humans perceive the
three-dimensional structure of objects and scenes with ease, while computer vision relies
on mathematical techniques and algorithms to reconstruct 3D shape and appearance from
images. Acquiring these representations stands as a central focus on researchers’ inves-
tigations, leading to frameworks like Hydra [1]. This innovative framework describes a
real-time and persistent Spatial Perception System that allows building a 3D map of the
surroundings, representing objects, their semantic labels and the relationship among these
entities. Hydra addresses both the perception and planning aspects of map representations
in the robotics field. They involve the creation of high-quality 3D reconstructions of natural
environments from sensor data and the creation of maps to navigate through the environ-
ment in a safe and collision-free manner. For these purposes, Hydra enables the extraction
of relevant information from the 3D map and to query the location of objects, rooms, or
moving people.

Furthermore, smart cities strive to integrate information technology into every aspect of
city life, aiming to improve their citizens quality of life and to create economic growth.
One of the key areas of smart cities is smart buildings, which seek to create a more effi-
cient environment to work or live. Smart buildings are becoming equipped with devices
that can communicate and interact with each other, often referred to as the Internet of
Things (IoT). The integration of frameworks like Hydra into the smart building scenario
holds significant potential for enhancing the capabilities of connected devices. By lever-
aging Hydra’s advanced perception and planning functionalities, IoT devices can achieve
more robust and efficient interactions with their surroundings. This can lead to improved
decision-making, autonomous navigation and intelligent responses. 3DSG opens the way
for smarter and more context aware IoT devices that can better understand, interpret and
interact with the physical world. Moreover, the incorporation of frameworks like Hydra
into the smart building domain introduces a new dimension, giving rise to privacy concerns
among users. Perceptual applications such as Hydra pose an inherent risk of capturing sen-
sitive information and potentially misused by third parties or attackers and require careful
consideration.

Privacy has continually been shaped by the rapid advancements in technology and it is
seen as the right to have control over how personal information is collected, processed
and stored. The growing importance of data privacy in the digital age has led to the im-
plementation of regulatory measures aimed at protecting individuals’ personal data. For
this purpose, the European Parliament approved the General Data Protection Regulation
(GDPR) in 2018 [2]. This comprehensive privacy and security data protection law require

1
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organizations to follow its principles and helps them during the design phase. Moreover,
organization like the International Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC) have developed several international standards
addressing privacy concerns [3]. These laws and standards require organizations to incor-
porate data protection of personal identifiable information (PII) as a fundamental principle
during the design of their activities, ensuring a transparent data usage and implementing
data protection techniques.

Additionally, protecting PII requires a comprehensive approach that help practitioners to
systematically identify and assess potential threats and vulnerabilities to a system, appli-
cation, or network. Threat modeling is a proactive process that aids in recognizing and
evaluating potential threats that can negatively impact a particular entity. The LINDDUN
privacy threat modeling framework was defined by KU Leuven in 2010 and a recent study
in 2022 has acknowledged this approach as one of the two most recognized methodologies
and among the ten most frequently used methodologies in academic literature [4]. Stan-
dards like the ISO TR 27550 on Privacy engineering for system life cycle processes [5],
and organizations such as the National Institute of Standards and Technology (NIST) [6],
among others, have acknowledged this methodology for conducting privacy threat anal-
ysis. This methodology is centered around seven privacy threat categories: Linkability,
Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness and
Non-compliance. It follows a structured sequence of steps that guide practitioners in iden-
tifying and mitigating potential threats by following the distinct threat categories and
proposing privacy-enhancing technologies (PETs). Ultimately, the outcome of this process
is a comprehensive privacy risk assessment that provides insights into the potential pri-
vacy threats and recommendations for implementing PETs to protect PII, while upholding
privacy standards and regulations [7].

1.2 Research question and objectives

The main research question of this thesis explores the implementation of the LINDDUN
privacy threat model to 3DSG in smart building scenarios. Specifically, this research fo-
cusses on a spatial perception system known as Hydra. This research aims to highlight the
critical but often neglected necessity to conduct a comprehensive privacy threat analysis
within this domain. The protection of individuals’ privacy is of the utmost concern in this
context, as it involves the potential collection and possible misuse of sensitive and personal
information. Therefore, this study places a strong emphasis on addressing these privacy
concerns as a key research focus.

Following the stated research question, this project is guided by two main objectives. The
first objective is to conduct a privacy threat identification. This involves systematically
cataloging potential threats and vulnerabilities that could compromise individuals’ privacy
when integrating a framework like Hydra into the smart building scenario. This step
includes an examination of how sensitive and personal information might be captured,
accessed, or potentially misused. It also includes identifying vulnerabilities during data
transmission, storage and processing. The goal is to create a comprehensive inventory of
these threats, ensuring a thorough examination and documentation of all privacy-related
threats. To achieve this objective, I will present two different scenarios in which Hydra
assumes distinct roles. The first scenario involves examining Hydra as a subcomponent
integrated into the context of a smart building. In this scenario, Hydra interact with other
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technologies and entities within the smart building ecosystem. The second scenario focuses
on Hydra as a unique process. In this case, I will thoroughly explore the subprocesses that
form Hydra to understand its working in more detail. The second objective is centered
on proposing mitigation strategies aimed at ensuring the protection of individuals’ privacy.
This task involves proposing PETs and countermeasures to mitigate the identified threats,
with its main goal being the protection of sensitive information at any stage of the process.

1.3 Thesis outline

The outline of the report is structured as follows: Chapter 2 includes a literature review,
focusing on the key aspects pertinent to this thesis. The primary subjects under consid-
eration include Hydra’s as a real-time 3DSG generation within the computer vision field,
the significance of privacy regulations and standards mandating privacy assessment during
the design phase and the role of smart buildings in the broader context of smart cities
and IoT technology. Chapter 3 offers a thorough overview of the LINDDUN privacy threat
methodology. It begins by describing the various privacy threat categories and outlining the
necessary steps for a comprehensive privacy assessment. These steps, which serve as a guide
in the following chapters, are organized into two main categories; the problem space, aimed
at achieving a detailed documentation of the potential privacy threat scenarios and the so-
lution space, which centers on offering a systematic proposal of PETs. Chapter 4 focuses on
the problem space of the LINDDUN methodology, with the goal of documenting potential
privacy threats. This aligns with the first main objective of this thesis. The problem space
involves three steps: defining the data flow diagram (DFD), mapping the elements of the
DFD to the privacy threat categories and identifying potential privacy threats. Chapter 5
focuses on the solution space of the LINDDUN methodology, with the goal of proposing
suitable PETs for the identified threats. This aligns with the second main objective of the
thesis. The solution space involves three steps: prioritizing threats, eliciting mitigations
strategies and selecting corresponding PETs. Chapter 6 serves as the concluding section
of this thesis, providing a summary of the key insights generated throughout the study.
Within this chapter, the primary emphasis is placed upon deriving conclusive findings from
the research and addressing the research question. Furthermore, this chapter introduces
potential directions for future research within this field of study.



2. Literature Review
In this chapter, a comprehensive literature review is conducted to present the main theo-
retical foundations related to privacy, computer vision and smart buildings.

2.1 Privacy

Throughout the ages, individuals have highly regarded privacy and the protection of per-
sonal information. The debate on privacy in the western world dates to the introduction
of the newspaper printing press and photography, which prompted Samuel D. Warren and
Louis Brandeis to write their influential article on privacy in the Harvard Law Review in
1890. They argued for a “right to be left alone” and emphasized the principle of “inviolate
personality” as the response to intrusive journalistic practices. Since then, the conversation
surrounding privacy has evolved, emphasizing the individual’s right to control the extent
of access to their personal information by others, while also acknowledging society’s right
to access information about individuals [8].

The right to privacy was established in the 1950 European Convention on Human Rights,
which affirms the importance of respecting one’s private and family life, home and corre-
spondence. Since then, the European Union (EU) has regarded the right to privacy as a
fundamental starting point and has ratified laws and regulations to protect and guarantee
this right. The EU’s first step in this direction was the establishment of the European
Data Protection Directive in 1995, which laid down the minimum data privacy and secu-
rity standards. The rapid advancement of technologies and the increasing prevalence of the
Internet created a need for an updated and data-centered approach to privacy standards.
Consequently, in 2018, the General Data Protection Regulation (GDPR) was enacted after
approval from the European Parliament [2]. Additionally, institutions like the Interna-
tional Organization for Standardization (ISO) that develop international standards for a
wide range of activities have focused on privacy concerns. In these standards, experts
provide optimal guidelines to approach tasks in a manner that upholds privacy principles
[3].

Moreover, privacy debates have continually been shaped by the rapid advancements in tech-
nology and this association between privacy and access to information has deepened with
the progress of information technology. The ever-expanding capabilities of digital systems
and the pervasive nature of data-driven technologies add new dimension to discussions
surrounding privacy, exploring the delicate balance between safeguarding personal infor-
mation and harnessing the power of data. Technology’s continuous advancement leads to
additional risks to individuals’ privacy, prompting an increasing demand for robust privacy
frameworks and stronger data protection laws [8].

2.1.1 Personal data and moral reasons for protecting it

PII refers to any data that attackers can use to potentially identify a specific individual,
whether directly or indirectly. It includes data such as names, social security numbers,

4
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birthdates and even details like medical records, education, finances and employment infor-
mation that can be linked to an individual [9]. Moreover, the GPDR defines personal data
as “any information that relates to an individual who can be directly or indirectly identi-
fied”. The notion of this definition encourages a comprehensive understanding of personal
data, encompassing various types of information that can be used to identify individuals.
This includes explicitly provided details like a person’s name, identification number, date
of birth, location data or address as well as indirect information that can reveal their phys-
ical, physiological, genetic, mental, commercial, cultural, or social identity. Furthermore,
the scope of personal information extends to less explicit information, including work time
recordings that indicate an employee’s start and end times, breaks and non-work hours, or
subjective information like opinions or judgements [10].

The protection of personal data and the control over access to such data are driven by
several moral reasons. First, unrestricted access to personal data, such as bank accounts
or social media accounts, can lead to potential harm for the data subject in diverse ways.
Second, personal data have become commodities, placing individuals in an unfavorable po-
sition to negotiate contracts regarding their data usage and lacking the means to verify if
partners uphold the contract terms. Data protection laws aim to establish fair conditions
for personal data transmission and exchange, mitigating the issues related to asymmetri-
cal information. Third, discrimination and disadvantages for individuals may arise when
personal information from one field, like health care, undergoes a shift in meaning when
used in another field or context, like commercial transactions. Fourth, mass surveillance
and the lack of privacy can limit the independence and personal autonomy, undermining
individuals’ sense of freedom to act independently and their dignity. Reducing individuals
to mere data points neglects their unique qualities and moral agency [8].

Data protection applies solely to information about a natural individual, starting from their
legal capacity at birth until their death. Article 6 of the GDPR outlines the legal grounds
for processing personal data. Without a valid justification, any collection, storage, or sale
of personal data is prohibited. Acceptable reasons for processing include obtaining specific
consent from the data subject, executing or preparing a contract involving the data subject,
complying with a legal obligation, saving someone’s life, performing a task in the public
interest or an official function, or having a legitimate interest in processing personal data.
However, even with a legitimate interest the rights and freedoms of the data subject always
take precedence, particularly when it concerns children’s data. Once you determine the
lawful basis, it becomes essential to document it and notify the data subject transparently.
Any changes in the justification must be well-founded, documented and communicated to
the data subject for transparency [11].

2.1.2 Privacy by design and by default

Organizations must consider the data protection principles of privacy by design and privacy
by default as fundamental pillars of their operations to ensure that privacy is integrated
into every aspect of their products, services and systems. In a general sense, Privacy by
Design (PbD) is a comprehensive concept that involves various practical elements. PbD
states that practitioners must proactively address privacy concerns by addressing mitiga-
tion of privacy concerns early into the development cycle and involving qualified expertise
to guide the process. Moreover, experts need to adopt and integrate Privacy-Enhancing
Technologies (PETs) with the main purpose of respecting and protecting users’ privacy.
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This approach has been endorsed by Data Protection Authorities, legally mandated by
GDPR and supported by the European Commission to foster the data economy [12].

Article 25 of the GDPR emphasizes the importance of data protection by design and by
default. It states that controllers must implement suitable technical and organizational
measures to protect data subjects’ rights and comply with the regulation’s requirements.
With this intention, controllers must consider various factors, including the latest advance-
ments in technology, implementation costs and the nature, scope, context and purposes of
data processing, along with the potential risks to individuals’ rights and freedoms resulting
from the processing. Additionally, the controller must ensure that, by default, only nec-
essary personal data are processed for each specific purpose, limiting the amount, extent,
storage period and accessibility of the data. An approved certification mechanism can be
used to demonstrate compliance with these requirements, in accordance with Article 42.
This article of the GDPR promotes the establishment of data protection certification mech-
anisms, seals and marks to demonstrate compliance with the regulation for data processing
by controllers and processors [13].

2.1.3 General Data Protection Regulation

The General Data Protection Regulation (GDPR) is a comprehensive and strict privacy and
security data protection law that was introduced by the EU on May 25, 2018, replacing the
Data Protection Directive 95/46/EC. The main purpose of the GDPR is to strengthen and
unify data protection for individuals, ensuring a robust and unified approach to safeguard
personal data. It applies to any organization that targets and processes personal data of
EU residents, regardless of whether the organization is based in the EU or not. The GDPR
protects all EU individuals and grants them more control over their personal data when
shared with organizations [2].

This regulation defines various participants involved in the data processing, encompassing
any action performed on data, whether automated or manual. Firstly, the term data subject
refers to the individual whose data is being processed, usually visitors or customers and can
be considered as the owner of the data. The data controller, typically an owner or employee
within an organization, holds the responsibility for determining why and how personal data
will be processed. Lastly, data processors are third parties that handle personal data on
behalf of a data controller. In line with the GDPR’s mandate to protect individuals’ data
and privacy, data subjects gain several privacy rights. These rights are interlinked with
diverse articles within the GDPR, which serve as a legal framework to enforce and protect
these rights. The relation between the privacy right and the GPDR articles is outlined
below [2].

1. The right to be informed: This encompasses Article 12, which stipulates the need
for transparent information, communication and clear methods for exercising data
subject rights. Additionally, Article 13 mandates the provision of information when
personal data is collected from data subjects and Article 14 covers information dis-
semination when data is sourced from entities other than the data subject.

2. The right of access: Article 15 grants individuals the right to access their personal
data, providing transparency and control over their information.

3. The right to rectification: Under Article 16, individuals possess the right to rectify
inaccurate or incomplete personal data.
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4. The right to erasure: Commonly known as the ”right to be forgotten,” Article 17
empowers individuals to request the removal of their personal data under specific
circumstances.

5. The right to restrict processing: Article 18 outlines the right to request the restriction
of data processing in certain situations.

6. The right to data portability: Article 20 grants individuals the ability to receive
their personal data in a structured, commonly used and machine-readable format,
enhancing data mobility.

7. The right to object: Article 21 provides individuals the right to object to certain
types of data processing.

8. Rights in relation to automated decision making and profiling: Article 22 delves into
provisions concerning automated decision-making and profiling, safeguarding individ-
uals from potential adverse effects.

Furthermore, the GDPR requires data subjects to explicitly consent to the processing of
their personal data. Article 7 of the GDPR outlines the strict rules that controllers must
follow to obtain consent and demonstrate that consent has been given by the data subjects
[14]. These rules state that consent must meet specific criteria, including being “freely
given, specific, informed and unambiguous” and data subjects have the right to withdraw
consent at any time. For organizations, consent requests should be easily distinguishable
from other matters and presented in a clear and straightforward manner. Once consent
is obtained, organizations are prohibited from changing the legal basis of processing to
another justification. During this process, it is indispensable to keep documentary evidence
for compliance purposes. On another note, the GDPR outlines seven essential regulatory
aspects, described in the Article 5.1-2, that must be adhered to when dealing with consent
and data processing [15].

• Lawfulness, fairness and transparency
• Purpose limitation
• Data minimization
• Accuracy
• Storage limitation
• Integrity and confidentiality
• Accountability

These guidelines aim to ensure that organizations process data in a lawful, fair and trans-
parent manner while respecting individuals’ privacy rights. These principles include pro-
cessing data only for specified legitimate purposes, collecting and processing the minimum
data, maintaining data accuracy, storing data for the required duration and implement-
ing appropriate measures to ensure data integrity and confidentiality. By adhering to these
principles, data controllers have to be able to demonstrate accountability and responsibility
in their data processing practices. For this purpose, organizations designate a data protec-
tion responsible and, in some cases, appoint a Data Protection Officer (DPO) to maintain
detailed documentation of the data that is being collected, processed and stored [15].



Literature Review 8

2.1.4 ISO Standards

ISO/IEC 27000 family

The ISO/IEC 27000 family of standards [16] offers an overview of Information Security
Management Systems (ISMS) that organizations can integrate into its regular practices.
An ISMS encompasses policies, procedures, guidelines and resources with the main objec-
tive of securing information aligning with business goals. Organizations, regardless of their
size and type, engage in the collection, processing, storage and transmission of informa-
tion. Organizations must understand the significance of information and related elements
as important assets for achieving their objective, while also acknowledging the potential
risks that could impact these assets. Thus, information is an important asset in today’s
organizational operations that must be adequately protected. These standards address the
importance of organization implementing measures to address these risks and taking steps
to address these risks though information security controls. They must regularly oversee
the current procedures to identify emerging risks and select, implement and update controls
as necessary. Thus, the aggrupation of standards under the USI/IEC family recommends
methods for effectively managing information risks through the implementation of security
controls. The relations between these standards are shown in Figure 2.1 [16][17] .
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Figure 1 — ISMS family of standards relationships

Each of the ISMS family standards is described below by its type (or role) within the ISMS family of 
standards and its reference number.

5.2 Standard describing an overview and terminology: ISO/IEC 27000 (this document)

Information technology — Security techniques — Information security management systems — Overview 
and vocabulary

Scope: This document provides to organizations and individuals:

a) an overview of the ISMS family of standards;

b) an introduction to information security management systems; and

c) terms and definitions used throughout the ISMS family of standards.

Purpose: This document describes the fundamentals of information security management systems, 
which form the subject of the ISMS family of standards and defines related terms.

5.3 Standards specifying requirements

5.3.1 ISO/IEC 27001

Information technology — Security techniques — Information security management systems — 
Requirements

Scope: This document specifies the requirements for establishing, implementing, operating, monitoring, 
reviewing, maintaining and improving formalized information security management systems (ISMS) 
within the context of the organization’s overall business risks. It specifies requirements for the 
implementation of information security controls customized to the needs of individual organizations 
or parts thereof. This document can be used by all organizations, regardless of type, size and nature.
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Figure 2.1: ISMS family of standards relationships [16].

These inter-related standards focus on several structural elements, such as standards out-
lining ISMS requirements (ISO/IEC 27001), certification body requirements (ISO/IEC
27006) for certifying conformity with ISO/IEC 27001 and a requirement framework for
sector-specific ISMS implementations (ISO/IEC 27009). Additionally, there are guidance
documents that cover different aspects of ISMS implementation, encompassing both a gen-
eral process and specific guidance for different sectors. By implementing these standards,
organizations can reduce information security risks, decreasing the likelihood and impact
of security incidents [16].

ISO 29100

The ISO 29100 [18] is an international standard that establishes a comprehensive framework
for safeguarding PII in Information and Communication Technology systems (ICT). This
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privacy framework addresses the ever-growing challenges posed by the commercial utiliza-
tion and significance of PII, the cross-border sharing of PII and the escalating complexity
of ICT systems. It provides organizations with a set of guidelines and principles to manage
and mitigate risks associated with PII. This standard was last amended in 2018 and the
second edition is now being under development.

Similar to the GDPR, this standard defines several participants involved in the data pro-
cessing and the interactions between these actors. The PII principals are the PII owners
and they share it with the PII controllers and the PII processors for processing, requiring
their consent. PII controllers determines the purpose and means of why and how the PII is
processed. This actor is responsible for upholding to the privacy principles during process-
ing. The PII processors are the actors responsible for conducting the processing on behalf of
the PII controllers, following the instruction provided by the PII controller. Furthermore,
either a PII controller or a PII processor can transfer PII to a third party. Third parties
do not handle PII on behalf of the PII controller and, once they have received the specific
PII, this actor assumes the role of the PII controller in its own capacity. All of the actors
possess the potential to engage in diverse interactions with one another, encompassing a
range of possibilities for potential pathways of exchange of information.

This standard defines privacy requirements that organizations must follow in order to pro-
tect PII during its processing. These requirements are part of the risk management pro-
cess, which is shaped by legal and regulatory mandates, contractual considerations, specific
business needs among other factors. Additionally, this standard emphasizes the need for
organizations to adopt a suitable privacy policy and privacy controls for the handling of
PII. Privacy policies should align with the organization’s purpose, outline objectives, com-
mit to privacy requirements and ensure continuous improvement and to be communicated
internally and externally. On the other hand, organization should adopt privacy controls
based on the requirements from the risk assessment. It highlights the integration of privacy
controls into the design phase as part of the “privacy by design” approach and tailoring
information security controls based on specific PII processing risks. Furthermore, this stan-
dard outlines several privacy principles, which are listed below and act as guiding directives
in structuring the design, development and implementation of privacy policies [18].

• Consent and choice
• Purpose legitimacy and specification
• Collection limitation
• Data minimization
• Use, retention and disclosure limitation
• Accuracy and quality
• Openness, transparency and notice
• Individual participation and access
• Accountability
• Information security
• Privacy compliance
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2.2 Computer vision

Computer vision is an Artificial Intelligence (AI) field that enables machines to observe and
understand visual information from their surroundings, extracting meaningful insights from
digital images and videos. This process aims to resemble how humans perceive visual infor-
mation. However, unlike the effortless way in which humans interpret their environment,
computer vision algorithms face significant challenges and are prone to errors. Humans
naturally perceive the three-dimensional structure of objects and scenes with ease, while
computer vision relies on mathematical techniques and algorithms to reconstruct 3D shape
and appearance from images. Researchers have made significant progress in computer vi-
sion, including accurate 3D modeling, object tracking and facial recognition. However,
achieving image interpretation at the level of a human remains challenging due to the com-
plexity of modeling the visual world. Computer vision trains machines to identify objects,
distances and movements, while also recognizing patterns, shapes, colors and textures. Ad-
ditionally, it can identify and track objects, detect and classify human faces and extract
useful information from visual data. The industries leveraging from computer vision range
from the energy and utilities to manufacturing and automotive and it is a rapidly evolving
field that is expected to continue expanding [19][20].

Furthermore, any discussion of map representations in robotics generally has two sides: the
perception side, which often focuses on creating high-quality 3D reconstructions of natural
environments from sensor data and the planning side, which uses pre-built maps to navigate
through the environment in a safe and collision-free manner. Mapping and planning often
have very different requirements from an environmental representation. From the percep-
tion standpoint, it is often most important to be able to output a high-quality coloured
surface model, such as a mesh for mapping. On the other hand, for navigation and planning,
it is often most essential to have fast collision checking and be able to compute clearance
and direction toward nearest obstacles. Therefore, high-level representations are needed
to comprehend and carry out human instructions, while also facilitating fast planning or
mapping processes [21].

2.2.1 Levels of perception

The cognitive process relies heavily on the close relation between perception and cognition.
On one side, perception is the process of recognizing, organizing and interpreting sensory
information from the environment through our senses, which helps us understand and make
sense of the world around us. On the other hand, cognitive science investigates the nature
of the mind, how it works and the way in which humas perceive the world. This field
of study brings together different areas like psychology, neuroscience, computer science,
linguistics and philosophy. The main focus of this field is trying to understand how human
minds consistently process raw amounts of data from their environments, adeptly discerning
patterns, extracting meaning and identifying significance within the intricate complexity of
information. Decision making and problem solving are two concepts that cognitive science
tries to replicate by creating models or systems that simulate the way human minds navigate
choices and find solutions. In summary, perception enables a conscious engagement with
the surrounding environment, while cognition empowers to develop beliefs, reach decision
and more [22][23].
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The notion of cognition has evolved since Kant’s statement “Concepts without percepts
are empty; Percepts without concepts are blind” [23]. This highlights the interdepen-
dency of perception and cognition. Kant divided the perceptual work of the mind into
the faculty of sensitivity and the faculty of understanding. Sensibility is responsible for
gathering raw sensor information, while understanding structures this information into a
coherent and meaningful perception of the world. Although this statement is long due, the
concept of perception remains relevant. In line with Kant’s sensibility faculty, low-level
perception covers the initial sensory data reception, while higher-level perception involves
a broader perspective. It grasps the overall significance and coherence of a situation in a
more profound and conceptual manner. Thus, high-level perception begins when thinking
and understanding becomes important in how we make sense of things we see or experi-
ence, involving more complex cognitive elements. One key feature is that individuals can
understand the same information in many different ways, which makes high-level percep-
tion very flexible. This difference in understanding depends on the context and the state of
the individual, which can be influenced by beliefs, goals, or external context. This results
in a variety of understanding of the same environment, which indicates the importance of
semantics in representation. Furthermore, high-level perception is closely related to the
problem of mental representation. Representations result from the process of shaping raw
data into organized and coherent structures, which the mind utilizes for various purposes.
Research in the field of AI have extensively been exploring the process of representations,
including challenges of determining relevance and organizing data for effective and mean-
ingful representation [23].

2.2.2 Scene Graphs and 3D Scene Graphs

The primary objective of computer vision is to achieve a comprehensive understanding of
visual scenes, extracting valuable insights from the input visuals. Researchers strive for
visual scene understanding that seek to emulate the process of how humans interpret vi-
sual information. These objectives represent significant and challenging tasks within the
field of computer vision. Visual scene understanding goes beyond the tasks of recognition
and localization of objects and aim to address higher-level challenges that involve semantic
relationships between objects and their interactions with the environment. For this pur-
pose, researchers seek to build efficient structured representations that capture semantic
understanding of the visual scenes [24].

A scene graph is a structural representation that captures visual information from a partic-
ular scene along with detailed semantics. These representations aim to provide a clear and
unbiased representation of the elements, attributes and interconnections within a scene
by accurately capturing the content and relationships present. In scene graphs, nodes
correspond to object instances accompanied by their attributes, while edge symbolize the
relationships that exist between these instances. Object attributes range from physical
features such as color or material to dynamic aspects like their state. Relations can include
a variety of different actions, spatial position, descriptive verbs, prepositions, or compara-
tives. Therefore, a scene graph consists of a set of visual relationships triplets as <subject,
relation, object>as shown in Figure 2.2 [24].

This graph serves as an objective and unbiased representation that connects visual and
semantic understanding, leading to a comprehensive understanding of the scene. Scene
Graph Generation (SGG) involves the automatic mapping of images or videos into semantic
structural scene graphs. To extend this concept to 3D space, researchers are working on
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Fig. 1: A visual illustration of a scene graph structure and some applications. Scene graph generation models take an
image as an input and generate a visually-grounded scene graph. Image caption can be generated from a scene graph
directly. In contrast, Image generation inverts the process by generating realistic images from a given sentence or scene
graph. The Referring Expression (REF) marks a region of the input image corresponding to the given expression, while
the region and expression map the same subgraph of the scene graph. Scene graph-based image retrieval takes a query as
an input, and regards the retrieval as a scene graph matching problem. For the Visual Question Answering (VQA) task,
the answer can sometimes be found directly on the scene graph, even for the more complex visual reasoning, the scene
graph is also helpful.

ing (NLP) and proposed a number of advanced research
directions, such as image captioning, visual question an-
swering (VQA), visual dialog and so on. These vision-and-
language topics require a rich understanding of our visual
world and offer various application scenarios of intelligent
systems.

Although rapid advances have been achieved in the
scene understanding at all levels, there is still a long way
to go. Overall perception and effective representation of
information are still bottlenecks. As indicated by a series
of previous works [1], [44], [191], building an efficient struc-

tured representation that captures comprehensive semantic
knowledge is a crucial step towards a deeper understanding
of visual scenes. Such representation can not only offer
contextual cues for fundamental recognition challenges, but
also provide a promising alternative to high-level intelli-
gence vision tasks. Scene graph, proposed by Johnson et al.
[1], is a visually-grounded graph over the object instances
in a specific scene, where the nodes correspond to object
bounding boxes with their object categories, and the edges
represent their pair-wise relationships.

Because of the structured abstraction and greater se-

Figure 2.2: Visual illustration of a scene graph structure and some applications [24].

creating a structured format that can effectively capture and represent 3D information.
In the 3D domain, there are various approaches for three-dimensional representations like
multiple views, point clouds, polygonal meshes, wireframe meshes and voxels. Multiple
views involve capturing the scene from different angles or viewpoints to create a sense of
depth and dimensionality. Point clouds involve collecting a set of 3D points that collectively
define the shape and structure of an object, where each point represents a specific coordinate
in space. Polygonal meshes collectively create a surface that represents the object’s shape by
connecting vertices with edges to form polygons. Wireframe meshes represent objects using
lines and edges to outline their form. Voxels, which stands for “volumetric pixels”, divide the
space into small cubic-cells that represent objects as a grid of 3D pixels, analogous to how
2D images consists of pixels. Thus, 3D scene graphs (3DSG) are high-level representation
that enable the rendering of three-dimensional spaces as a layered graph [24].

2.2.3 Hydra

Hydra is an innovative 3DSG that generates a real-time and persistent representation of the
environment, facilitating just in time decision making and ensuring long-term autonomy.
This framework captures the metric and semantic aspects of the scene and is adaptable
to expansive environments. It is built from sensor data, which is incrementally integrated
into the 3DSG while the sensor is actively exploring its surroundings. To achieve this,
it relies on odometry to estimate the robots’ trajectory and relative position. Odometry
continually estimates the change in position by using visual-inertial odometry (VIO), which
is the process of estimating the pose and velocity of an agent. Hydra gradually depicts the
scene as a layered graph at different levels of abstraction, where nodes describe object
instances and edges relations between these instances, as shown in Figure 2.3 [1].
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Abstract—3D scene graphs have recently emerged as a pow-
erful high-level representation of 3D environments. A 3D scene
graph describes the environment as a layered graph where nodes
represent spatial concepts at multiple levels of abstraction (from
low-level geometry to high-level semantics including objects,
places, rooms, buildings, etc.) and edges represent relations
between concepts. While 3D scene graphs can serve as an
advanced “mental model” for robots, how to build such a rich
representation in real-time is still uncharted territory.

This paper describes a real-time Spatial Perception System,
a suite of algorithms to build a 3D scene graph from sensor
data in real-time. Our first contribution is to develop real-
time algorithms to incrementally construct the layers of a scene
graph as the robot explores the environment; these algorithms
build a local Euclidean Signed Distance Function (ESDF) around
the current robot location, extract a topological map of places
from the ESDF, and then segment the places into rooms using
an approach inspired by community-detection techniques. Our
second contribution is to investigate loop closure detection and
optimization in 3D scene graphs. We show that 3D scene graphs
allow defining hierarchical descriptors for loop closure detection;
our descriptors capture statistics across layers in the scene
graph, ranging from low-level visual appearance to summary
statistics about objects and places. We then propose the first
algorithm to optimize a 3D scene graph in response to loop
closures; our approach relies on embedded deformation graphs
to simultaneously correct all layers of the scene graph. We
implement the proposed Spatial Perception System into a highly
parallelized architecture, named Hydra1, that combines fast early
and mid-level perception processes (e.g., local mapping) with
slower high-level perception (e.g., global optimization of the scene
graph). We evaluate Hydra on simulated and real data and
show it is able to reconstruct 3D scene graphs with an accuracy
comparable with batch offline methods despite running online.

Index Terms—Robot perception, 3D scene graphs, localization
and mapping, real-time scene understanding.

I. INTRODUCTION

The next generation of robots and autonomous systems will
be required to build persistent high-level representations of
unknown environments in real-time. High-level representations
are required for a robot to understand and execute instructions
from humans (e.g., “bring me the cup of tea I left on the
dining room table”); high-level representations also enable fast
planning (e.g., by allowing planning over compact abstractions
rather than dense low-level geometry). Such representations

1Hydra is available at https://github.com/MIT-SPARK/Hydra
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Fig. 1. We present Hydra, a highly parallelized architecture to build 3D scene
graphs from sensor data in real-time. The figure shows sample input data and
the 3D scene graph created by Hydra in a large-scale real environment.

must be built in real-time to support just-in-time decision-
making. Moreover, these representations must be persistent to
support long-term autonomy: (i) they need to scale to large
environments, (ii) they should allow for corrections as new
evidence is collected by the robot, and (iii) their size should
only grow with the size of the environment they model.

3D Scene Graphs [4, 26, 49, 50, 63, 67] have recently
emerged as powerful high-level representations of 3D envi-
ronments. A 3D scene graph (Fig. 1 and Fig. 6) is a layered
graph where nodes represent spatial concepts at multiple levels
of abstraction (from low-level geometry to objects, places,
rooms, buildings, etc.) and edges represent relations between
concepts. Armeni et al. [4] pioneered the use of 3D scene
graphs in computer vision and proposed the first algorithms
to parse a metric-semantic 3D mesh into a 3D scene graph.
Kim et al. [26] reconstruct a 3D scene graph of objects
and their relations. Rosinol et al. [49, 50] propose a novel
3D scene graph model that (i) is built directly from sensor
data, (ii) includes a subgraph of places (useful for robot
navigation), (iii) models objects, rooms, and buildings, and
(iv) captures moving entities in the environment. More recent
work [22, 25, 63, 67] infers objects and relations from point
clouds, RGB-D sequences, or object detections.

While 3D scene graphs can serve as an advanced “mental

Figure 2.3: Generation of Hydra as a layered graph [1].

This example depicts an indoor environment with five different layers, in which nodes
can go from low-level geometry to high-level semantics, including objects, agents, places,
rooms and buildings. Firstly, the metric-semantic mesh layer contains all the nodes of
static and dynamic elements. These nodes are linked to the object nodes they belong
to in the following layer. Secondly, the objects and agents layer contain the object nodes,
disregarding the structural elements and the nodes that belong to the time-varying entities.
The objects and agents from the second layer are linked to the nearest place node. Thirdly,
the places layer describes the free space paths. Fourthly, the rooms layer groups the places
that belong to the same room. Lastly, a single building node groups all of rooms’ nodes.
Moreover, the construction of these layers is directed by the following approaches.

Metric-Semantic Mesh

This layer forms a real-time a metric-semantic 3D mesh by extending the work of Kimera
[25]. Hydra modifies the module Kimera-Semantics principally based on Voxblox [26] and
the marching cubes algorithm to form a volumetric model of the surroundings in a prede-
fined radius.

Voxblox is a system designed for 3D modeling and mapping of the environment, enabling
robots or other devices to navigate and interact with the environment in real-time. It can
also be used for tasks such as object recognition, tracking and localization using sensors like
RGB-D cameras. This tool uses a voxel-based approach to represent the environment, where
the space is divided into voxels and its grouping is called voxel grids. Each voxel stores
information about the occupancy, color and other properties of the environment at that
location. These voxels are grouped into voxel grids and according to the information they
contain, they are classified into Euclidean Signed Distance Fields (ESDFs) or Truncated
Signed Distance Fields (TSDFs). While both of them are signed distance fields (SDFs),
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they differ in the way that the distance of a voxel is computed. ESDFs are voxel grids
containing the Euclidean distance to the nearest occupied voxel and are usually used for
collision checking, inferring distances and gradients to objects. On the other hand, TSDFs
are voxel grids representing the distance to the nearest surface along the ray direction from
the center of the sensor and are commonly used for fast, flexible map representation. TSDF
use a projective distance to produce surface meshes using zero-crossings, which means that
TSDF representation is truncated at a certain distance reducing the computation of the
process. These values can be positive if the voxel is inside the object, negative if it’s outside
the object and zero if it’s on the object’s surface [21].

The approach in Voxblox is to incrementally build ESDFs from TSDFs making it applicable
for both mapping and surface reconstruction and also for planning while overcoming the
shortcomings of occupancy maps. Occupancy maps compute the distance to obstacles at all
points in a map but can’t be dynamically changed and needed to know a priori the maximum
size of the map. The proposed method in Voxblox is able to build ESDFs directly out of
TSDFs and exploits the pre-existing distance information within the truncation radius.
Additionally, the voxel hashing method allows the map to grow dynamically by allocating
blocks of fixed size. On the other hand, the marching cubes algorithm generates a 3D
surface mesh from volumetric data. This algorithm uses a collection of 3D data points
and divides them into small cubes that contain values representing the data. These values
define the shape of the surface that is represented [25].

Hydra leverages the algorithms developed in Voxblox and makes some improvements. The
metric-semantic mesh is generated within a radius of eight meters, known as active window,
that bounds the amount of memory. Additionally, Hydra assigns labels to the TSDF
voxels representing zero-crossings, which indicates surfaces and are referred to as “parents”.
Furthermore, the ESDF holds the distance to the nearest obstacle and the parents that
are closest to them. Then, the metric-semantic mesh is formed within this radius and as it
moves out of this bound it is then passed to the Scene Graph Frontend [1].

Objects and Agents

The second layer constitutes a subset of objects and agents, where each object is described
with a semantic label, a centroid and a bounding box, while agents are represented through a
pose graph detailing its trajectory. Hydra performs object segmentation through individual
Euclidean clustering of 3D metric-semantic mesh vertices, with each semantic class being
grouped separately. Similar to Kimera, the Euclidean clustering is used to estimate the
centroid and the bounding box for each potential object. When a potential object overlaps
with an existing object node of the same semantic class they merge and they incorporate
new mesh vertices into the previous object node. However, if the new object does not align
with an existing object node, it is included as a new node [1].

Places

The third layer groups the places of a scene, in which each place represents the open spaces
and the edges symbolize traversal paths. This layer firstly builds a skeleton diagram and
then forms a sparse 3D graph of the environment by leveraging the work for micro-aerial
vehicle planning [27]. Hydra incrementally builds a skeleton diagram that represents the
topological structure using a Generalized Voronoi Diagram (GVD). GVD emerges as a
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result of the ESDF integration process and represent a collection of voxels equidistant to
a minimum of two obstacles. This representation is gradually built through iterations that
simplify the GVD into a subgraph of places that reduces the nodes and edges of the GVD.
The result is a subgraph of places which represent the essential nodes that correspond to
places and the edges that connect these locations. This graph preserves the key structural
and spatial relationships among significant points of the environment within the active
window. Then, it is passed to the Scene Graph Frontend, along with the metric-semantic
mesh, as they exit the active window.

Rooms

The fourth layer builds upon the subgraph of places to define rooms. Each room is rep-
resented by a centroid and the edges establish links between contiguous rooms. Hydra
innovates in the room segmentation process, which is guided by two main insights. Firstly,
it utilizes dilation operation on the obstacles to gradually uncover rooms by closing aper-
tures like doors. Secondly, this process will modify the sparse graph by erasing some places
of the sparse graph. Therefore, Hydra performs the dilation operation in δ distances, pro-
gressively revealing distinct rooms and removing the nodes with distance smaller than δ as
well as their corresponding edges.

Buildings

Lastly, the building node represents the entire building to which all the room are linked
to. As mentioned in the different layers, edges establish relationships between entities of
the same layer or even across different layers. Edges within the same layer represent the
ability to move or traverse between different places or rooms. On the other hand, edges
across layers can indicate a more complex relationship. For instance, an edge could show
that mesh points are part of a specific object, that an object is located at a specific place
or that a room is part of a larger building. Ultimately, edges are connections that model
how different pieces of information or entities are related to each other, either within the
same layer or across different layers of the system.

Architecture

This framework is designed with an architecture that combines low-level, mid-level and
high-level perception processes to ensure an efficient operation in real-time, as shown in
Figure 2.4.

This architecture aims to prevent slower and less frequent computations from hindering the
execution of faster tasks. Hydra initiates its process by engaging in faster perception pro-
cesses like 2D semantic segmentation and stereo-depth reconstruction that run at keyframe
rate and tasks like feature detection and tracking that run at keyframe rate. Following
the low-level section, the results are passed to the mid-level perception processes. These
processes involve the gradual construction of different layers, the mesh and places layer
and the object layer. Thus, the outputs of these modules are the latest mesh, places sub-
graph, objects and pose graph of the agent that the scene graph frontend receive as inputs.
The frontend is the main output of this mid-level section and it continually updates the
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Figure 2.4: Hydra’s architecture integrating low-level, mid-level and high-level processes
for 3DSG construction [1].

3D scene graph. It creates an initial 3D scene graph that has not yet been optimized by
combining the outputs from previous modules that progressively contribute to the scene
graph upon exiting the active window. Lastly, the high-level perception processes like the
loop closure detection, the scene graph backend optimization and the room detection run
at slower rates. These tasks collectively construct a 3D scene graph that is coherent and
persistent [1].

2.3 Smart buildings

The concept of smart buildings has evolved since the introduction of the term intelligent
buildings in the 1980s. Initially, experts defined intelligent buildings as any building that
could control its environment systems, such as heating, lighting and more, often managed
by a computer system. This definition focused on achieving automation independently
with minimal user interaction. Building on this concept, the term smart buildings intents
to integrate and harmonize various aspects aiming to create a more holistic building sys-
tem. In essence, smart buildings are comprehensive systems that combine intelligence,
integration, control and innovative materials to promote adaptability, driven by energy ef-
ficiency, longevity and occupant satisfaction. These infrastructures aspire to create a more
intelligent and efficient urban landscape within the broader context of smart cities. The
future envisions smart cities as a response to growing urban population, demanding greater
functionality from limited resources and stricter regulations [28].

2.3.1 Smart city taxonomies

The widely accepted concept of smart city revolves around the idea of introducing innovative
technologies and applications across various aspects of city life. At the same time, smart
cities aim to improve existing processes. To achieve this, they rely on the dynamic and
ongoing process that work towards achieving additional improvements in urban areas. The
term of smart city emphasizes the need to invest in different infrastructures for purposes like
economic growth, improved quality of life, better resource management and participatory
governance. In this context, smart cities are a comprehensive ecosystem that integrate a
wide range of application domains and technologies, as represented in Figure 2.5.
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Figure 2.5: Smart city taxonomies [29].

Applications

Smart cities relies on the interconnection of different applications and technologies that aim
to improve urban areas. The applications are classified into nine different areas: Mobility,
Utilities, Buildings, Environment, Public Services, Governance, Economy, Health Care and
Citizens, as shown at the top of Figure 2.5. These key applications work jointly in a
collaboratively manner to enhance city efficiency and effectiveness. In this context, smart
buildings focus on making residential and commercial constructions more energy-efficient
and convenient by incorporating features such as structural health monitoring, lighting and
heating regulation based on occupancy and the use of intelligent appliances for automation.
Moreover, home automation systems enhance energy efficiency and comfort in buildings
[29].

Enabling technologies

The technologies that enable these applications are classified into nine categories: Ubiqui-
tous Connectivity, Smart Cards, (Participatory) Sensor Networks, Wearable Devices, the
Internet of Things (IoT), Intelligent Vehicles, Autonomous Systems, Cloud Computing and
Open Data, as shown at the bottom of the Figure 2.5. These enabling technologies fre-
quently collaborate to drive a wide range of smart city applications and they provide the
mechanisms, resources and support that applications need to operate. In this context, IoT
involves connecting everyday objects, like household appliances and vehicles, to the Inter-
net. These objects, equipped with sensors and actuators, can exchange data and enhance
their functionality. Similarly, cloud computing involves outsourcing computational tasks to
third party providers, offering scalability and efficient data analysis [29].
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2.3.2 IoT Technology

IoT is a technology that enables the operation of diverse applications in the smart city
domain. This technology denotes the technological advancements of the internet, enabling
billions of devices to communicate and interact. It aims for Machine-to-Machine (M2M)
communication, allowing devices to interact without human intervention. Smart devices
play a pivotal role by constantly collecting and sharing data. The term ”smart” refers
to their ability to make real-time decisions based on continuous data monitoring. These
devices can range from sensors, actuators and cameras to household items and wearable
devices, such as smartwatches, generating significant volume of data. The scope of smart
devices extends beyond physical devices or objects to human behavior and information as
well. This extensive network of interconnected smart devices requires for a robust infras-
tructure that overcomes the implementation challenges of this technology. Some of these
challenges include network latency, where critical applications demand minimal network la-
tency; the absence of a standardized platform and common architecture, as standardization
is essential for growth and security; and scalability issues, as the system must expand with
the increasing number of implemented application and devices while ensuring availability
and efficient bandwidth management [30].

The volume of data that a system of smart devices is capable of generating and exchanging
is immense. This large volume of data is also known as Big Data, which is an abstract
concept that refers to the vast amount of data that needs to be processed rapidly. Big
Data is necessary to gather, process and derive value from the data. Generally, the data
collected in IoT scenarios lacks structure and requires a comprehensive analysis to derive
meaningful insights. Big data complements IoT due to its ability to handle the substantial
volumes of data from various sources. The integration of IoT and Big Data will impact
the way data is stored, processed and analyzed. Additionally, cloud platforms can assist in
the offloading of large amounts of data. They offer resources for processing and storing the
massive volume of data produced by IoT devices. These platforms provide the necessary
infrastructure and computing capabilities to handle the influx of data efficiently. Moreover,
the real-time requirement in IoT scenarios make cloud computing less suitable. Fog/edge
computing brings computation closer to the data sources, reducing processing time and
enabling quicker responses [30].

IoT Architecture

The implementation of a standardized network infrastructure in the IoT scenario aims
to integrate different networks. The necessity for this integration arises due to the fact
that multiple heterogeneous networks must coexist and interact with each other. Within
this infrastructure, all IoT applications would be capable of sharing network resources and
information to maximize the potential of every interconnected element within the network.
As a result, all applications would have the ability to easily communicate and efficiently
share resources. Furthermore, the implementation of a generalized network infrastructure
holds the potential to reduce the cost of network deployment.

In the research literature, numerous IoT architectures have been proposed, ranging from the
fundamental three-layer model to more intricate multi-layered designs. The foundational
architecture employed in IoT is structured into three layers, including the perception layer,
the network layer and the application layers as shown in Figure 2.6 [31].



Literature Review 19

Application Layer

Network Layer

Perception Layer

Figure 2.6: IoT basic three layer architecture [31].

Positioned at the bottom layer of the IoT architecture, the perception layer is responsible
for the interactions with the physical world. It is also known as the sensor layer and it man-
ages the measurements, collection and processing of the state information of the physical
devices through the smart devices. Positioned within the middle layer, the network layer is
responsible for the transmission and integration of the data. This layer is also known as the
transmission layer and it receives the information from the perception layer to redirect it.
It selects the appropriate route for the information to reach the intended destination, en-
suring seamless communication between different components of the IoT system. Moreover,
this layer integrates diverse devices, communication technologies and performs data trans-
mission among various entities using different technologies and protocols within networks.
Positioned as the top layer, the application layer is in control of the data received from the
network layer and uses it to deliver the necessary services or functionalities. This layer is
also known as the business layer and can provide services such as storage or analytical tasks.
Each layer communicates through gateways, which are middleware that provide a bridge
between layers that may use different communication protocols and ensures bidirectional
communication, allowing the flow of information between layers.

2.3.3 Cloud and fog/edge computing

Fog/edge computing is a distributed architecture that offers computing services between
central servers and end-users, enabling real-time processing of substantial IoT generated
data at the network edge. The integration of fog/edge computing with IoT is envisioned
as the forthcoming infrastructure for IoT development. This integration improves the
bandwidth and energy consumption issues related with cloud computing, while delivering
faster responses.

The term cloud computing refers to the process of computing in the cloud, while edge com-
puting refers to computing at the network’s edges. The main distinction between these two
concepts lies in where data analysis takes place. In edge computing, data storage, analysis
and processing occur in real-time near the device collecting the data. This reduces latency,
conserves bandwidth and facilitates rapid and effective processing of data. A limitation of
this approach is that it processes only locally collected data, making it challenging to apply
extensive Big Data analytics. On the other hand, cloud computing allows the utilization of
various services, such as storage and servers, through internet connectivity. The cloud en-
ables gathering massive amounts of data from various sources and analyzing them in diverse
ways to make intelligent decisions. In this scenario, data travels from the source device to
the cloud, where it undergoes processing and analysis. Processed data, if needed, is then
returned to the devices. This data transmission process introduces a significant challenge
known as network latency, which causes delays in the communication. Although this delay
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might be minimal, it can be critical for certain applications. Cloud computing compensates
this drawback with power and capacity, relying on a scalable data centre infrastructure to
expand storage and processing capabilities as required.

These two technologies are not mutually exclusive, as each brings benefits to specific ap-
plications and can effectively complement one another. Edge computing is optimal for
applications where slight delays are critical, processing and analyzing data closer to the
source device. Conversely, cloud computing enables large-scale data analysis that is not
feasible at the network edge. By incorporating both computing approaches into a single
network infrastructure, it is possible to maximize the potential of both approaches while
minimizing their limitations. A representation of this configuration sis shown in Figure 2.7.

  servers 

Core

Edge

Cloud

Fog

End-users

Figure 2.7: Cloud and fog/edge computing [30].

Fog/edge nodes can be any device that is equipped with storage, computing capabilities and
network connectivity and they can be deployed at any location to gather data for different
IoT applications. The structure shown in figure 2.7 shows how devices are interconnected.
Based on the priority of the data, the different types of IoT data can either be analyzed
directly at the edge or transmitted to the cloud for processing. Data that requires quick
responses have a higher priority and is processed closer to the IoT devices. Alternatively,
less time-sensitive data has less priority and can be rerouted to aggregation nodes for
processing. However, there are some challenges to integrate fog/edge computing with IoT
due to the limited computing and storage capability of each fog/edge node. These challenges
include the efficient management of fog/edge computing resources between end devices
and fog/edge nodes and among fog/edge nodes. Firstly, each end user is defined with a
satisfaction function to optimally allocate the resources between end devices and fog/edge
nodes. This function aims to maximize the overall satisfaction of users and is calculated
based on the available resources that the nodes have, the resources that are allocated for
each user and their priority. Secondly, managing resources among end nodes is mitigated
by sharing of computational resources among the neighbor nodes. The interconnection of
all end-nodes and fog/edge nodes facilitates the utilization of available resources from other
nodes that have available capacity [30].



3. Privacy Threat Modelling
In this chapter, I undertake a comprehensive exploration of threat modeling with a specific
focus on privacy concerns. The primary goals of this project are to understand and address
potential threats to privacy within the context of 3DSG and to propose effective Privacy-
Enhancing Technologies (PETs). To achieve these objectives, the LINDDUN methodology
is selected due to its focus on privacy concerns. Within this chapter, detailed overviews of
the privacy threats and the methodology of this approach are provided.

3.1 Introduction to threat modeling

Threat modelling is the process of systematically identifying and assessing potential threats
that could negatively impact a particular system, application or network. Any undesirable
event that has the potential to compromise the security or integrity of a system is consid-
ered a threat. Threat modeling focuses on understanding the nature of the threats and
the impact they may have while considering potential vulnerabilities. The aim is to ensure
data privacy by proposing specific PETs to address threats and protect the confidentiality
of sensitive information. This process can be applied in various scenarios, including sys-
tems, networks, or business processes and it enables informed decision-making continuously
through the development process. Applying threat modeling during the initial stages of
the development process can help achieve cost savings. However, it is also beneficial for
practitioners to implement threat modeling continuously as they add more complexity and
acquire a greater understanding of the system [32][33].

3.1.1 Threat modeling frameworks

Threat modeling is a versatile practice applicable to a wide range of systems, each poten-
tially exposed to unique risks and threats. Typically, threat modeling methods involve the
creation of a system abstraction, profiling potential attackers considering their goals and
methods and a catalog of possible threats. There exist a variety of approaches to apply
threat modeling, each tailored to address specific aspects of security or privacy. The dif-
ferent methodologies range from technical, diving into the intricate details of a system’s
architecture, to more people-centric, considering the human actions or behaviors that can
influence security vulnerabilities. Some of these methodologies are listed and briefly ex-
plained below [34]:

STRIDE

STRIDE is a security-oriented threat modeling framework that focuses on identifying and
grouping threats based on six categories: Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service and Elevation of Privilege. This framework follows an iterative
process that classifies system assets into the security categories to formulate distinct threat
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scenarios and suggest appropriate mitigation strategies. This mature approach is straight-
forward to apply but can be very time consuming as the quantity of potential threats
escalates rapidly with the growth of complex systems [34][35].

PASTA

The Process for Attack Simulation and Threat Analysis (PASTA) is a risk-focused threat
methodology that is divided into seven stages. This framework tries to connect the business
objectives with the technical requirements of a system, while promoting the cooperation of
stakeholders. This methodology adopts an attacker’s perspective to identify and analyze
the threats, assigning ratings to prioritize the mitigation of the most critical threats early
in the process [34].

LINDDUN

LINDDUN is a privacy focused threat modeling methodology that stands for seven privacy
threat categories: Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of
Information and Unawareness. Similarly to STRIDE, this framework systematically an-
alyzes the system assets from the viewpoint of the threat categories to formulate threat
scenarios and finally propose suitable PETs. This systematic approach is mainly used in
the context of web applications and comprises six steps, which fall into two categories, the
problem space and the solution space [34].

Trike

Trike is a comprehensive threat modeling methodology that emphasizes security concerns
from a risk management perspective. This framework systematically assesses and mitigates
security threats within a system by first defining its components and creating interaction
matrices. In this approach, threats are categorized as either elevation of privilege or denial
of service and it examines CRUD actions (Create, Read, Update, Delete) to assess the risk
of potential attacks [34].

VAST

The Visual, Agile and Simple Threat (VAST) is threat modeling approach that focuses on
cybersecurity for large organization systems. This method relies on automation, integration
and collaboration to offer scalability for organizations. VAST recognizes two types of
models, the application threat models and the operational threat models. The former
focuses on creating a representation of the system and the latter consider the attackers
point of view based on the representation [34][36].

OCTAVE

The Operational Critical Threat, Asset and Vulnerability Evaluation (OCTAVE) is a risk-
based assessment methodology that focuses on assessing organizational risks through system
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reviews. It is primarily focused on operational risks while excluding technological risks. The
three phases of this approach involve creating threat profiles, evaluating information infras-
tructure vulnerabilities and formulating security strategies and plans to protect critical
assets [34].

The choice of which method to employ depends on the unique characteristics and objectives
of the system under analysis. There is not a framework that can perfectly fit to a particular
use case. It is essential to select one that aligns most closely with the needs and goals.
Moreover, different methods can be combined to provide a comprehensive assessment of
potential threats. In this particular study, the LIDDUN framework stands out as the
unique approach mainly centered on addressing privacy rather than security concerns.

3.2 LINDDUN Privacy Threat Modelling

As introduced before, LINDDUN is a methodology for privacy threat modeling that sup-
ports systematic elicitation and mitigation in software systems. This model-based approach
focuses on privacy concerns and it is an acronym for the privacy threat categories it sup-
ports: Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of information,
Unawareness and Non-compliance, which are described in 3.2.1. This methodology is de-
signed to provide structured guidance for the privacy threat modeling process through a
step-by-step method described in 3.2.2.

LINDDUN provides a systematic and practical approach for evaluating a software system’s
privacy posture, identifying privacy flaws and recommending PETs through the use of its
proposed threat types, mapping tables, threat trees, mitigation strategies and privacy-
enhancing solutions. Thus, this privacy focused framework guarantees an extensive privacy
knowledge support, which ensures that the entire privacy assessment process is thorough,
covering all aspects and well-documented. Additionally, this methodology is compatible
with STRIDE since both STRIDE and LINDDUN share similar principles. Both frame-
works start from the system model, allowing for concurrent security and privacy assessment.
This alignment simplifies the integration of the LINDDUN framework into the risk assess-
ment phase of the design process for practitioners. It’s specific emphasis on privacy issues
makes it an effective choice for understanding and mitigating potential privacy threats
within the context of 3DSG. It also ensures a smooth incorporation into existing security
assessment practices [7][37][38].

3.2.1 Threat categories

As mentioned before, LINDDUN is an acronym for the privacy threat categories it supports.
The seven threat categories are described in detail below [37][39].

Linkability

Linkability refers to the process of connecting different data elements in a manner that can
reveal additional information about an unknown individual or group. This threat involves
matching distinct items of interest (IOI) that are related to the same user, which can lead
to identifiability, which is described later on. In addition, linking can be extended to data



Privacy Threat Modelling 24

belonging to multiple individuals by identifying common attributes or properties. This can
result in revealing information about the group as a whole and can lead to group profiling
and inference. Inference is a technique applied to linkable data that can generalize relations
based on properties and can be used to social discrimination.

The concept of linkability derives from the definition of unlinkability [40], which denotes
the inability from the attacker’s perspective to relate two IOI. Therefore, linkability is the
negation on unlinkability and can be described as the ability to differentiate whether two
IOIs are related or not, without requiring knowledge of the subject associated with the
linked IOI.

Identifiability

Identifiability refers to the capability of identifying a subject within a larger group of
subjects that share similar attributes or properties through an IOI. The concept of identifi-
ability is closely related to anonymity and pseudonymity [40]. In the context of an attacker
that attempts to identify a subject, anonymity refers to the inability of the attacker to
distinguish the subject within a set of subjects called the anonymity set. Beyond that, in
order to capture the possibility to quantify anonymity, this term refers to the extent to
which the attacker cannot sufficiently identify the subject within the anonymity set. The
purpose of anonymity is to hide the link between the identity of a subject and a piece
of information. In the same context, pseudonymity refers to the use of pseudonyms as
identifiers of a subject other than the subject real names.

Data can be considered de-identifiers when it does not contain identifiable information,
such as social security number or birth date. However, the use of pseudo-identifiers such
as birth year instead of birthdate, or city instead of full address, can potentially result
in identification. As mentioned previously, linkability poses a risk of identifiability by
associating multiple pseudo-identifiers together which are not able to individually identify
a subject. However, by linking them together, the anonymity set decreases, which increases
the likelihood of identifiability.

Non-repudiation

Non-repudiation involves having irrefutable evidence regarding a certain action or fact
that whether confirms or denies its occurrence and attributing it to a specific individual.
This threat holds an individual not able to deny their involvement in a specific claim as a
consequence of the data that has been collected or shared or actions taken by the individual.
Non-repudiation is closely related to plausible deniability, a term used when a subject can
deny any involvement in an action or decision [37]. Therefore, non-repudiation leads to
the loss of plausible deniability, being these two terms mutually exclusive. Additionally,
non-repudiation threats will be increased with identifying and linking threats, since the
more information that is associated with a individual, the more difficult it becomes to deny
their involvement.
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Detectability

Detectability refers to the ability to determine the involvement of an individual through
observation of the exitance of relevant information, without its disclosure. Detecting is
built upon the observed communication, observed application side-effects, or evoked sys-
tem responses that may leak the existence of certain elements. Through observation, the
attacker deduces additional information and this threat does not require direct access to
the data.

Detectability is closely related to undetectability and unobservability [40]. From an at-
tacker’s perspective, undetectability refers to the inability to accurately determine the
existence of an IOI. On the other hand, unobservability pertains to the undetectability
and anonymity of the subjects involved in the IOI, even among each other. Additionally,
detectability is related to linkability and identifiability since the deduced information about
an individual can extract more information.

Disclosure of information

Disclosure of information refers to exposing sensitive information to someone not autho-
rized to see it. Known or unknown third parties may use the information for unauthorized
purposes. This threat can arise from collecting, storing, processing, or sharing excessive
personal data. Data disclosure threats represent cases where attackers disclose personal
data either explicitly or implicitly. Attackers intentionally and by design engage in ex-
plicit disclosure, while they indirectly and unintentionally cause implicit disclosure. This
threat closely relates to confidentiality, which involves hiding information or managing
data content release. Although confidentiality is a security property, it is also important
for preserving privacy properties, such as anonymity and unlinkability.

Disclosure threats center around four primary characteristics: unnecessary data types that
increase data susceptibility to misuse; excessive data volume, gathering higher amounts of
data can increase the risk; unnecessary processing, which involves further data treatment
that can increase the risk; and excessive exposure, that widens access to information by
exposing it to more parties.

Unawareness

Unawareness occurs when organizations inadequately inform individuals about the handling
of their personal data. This threat includes a lack of transparency, where organizations
fail to properly inform the data subjects about the collection and/or processing of their
personal data or that of others; a lack of feedback, where data subjects remain unaware
of the potential privacy implications of sharing their personal information; and a lack of
control, where data subjects cannot access or control their data.

Non-compliance

Non-compliance refers to deviating from legislation, regulation, standards and/or policy,
which leads to insufficient risk management. This threat assessment determines whether the
system’s policies and the user’s consent are being properly implemented and enforced. It is
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important to consider non-compliance in the broader context of risk management, including
legal and cybersecurity risks and to evaluate its relation to other privacy threats, such as
linking, identifying, non-repudiation, data disclosure and unawareness. In LINDDUN, non-
compliance threats mainly focus on threats that derive from other privacy threat categories.

In summary, these categories can be described as follows.

Table 3.1: LINDDUN threat categories [39].

Threat categories Description

Linkability Associating data items or user actions to learn more about an indi-
vidual or group of individuals.

Identifiability Learning the identity of an individual.
Non-repudiation Being able to attribute a claim to an individual.
Detectability Deducing the involvement of an individual through observation.
Data disclosure Excessively collecting, storing, processing, or sharing personal data.

Unawareness Insufficiently informing, involving, or empowering individuals in the
processing of personal data.

Non-compliance Deviating from security and data management best practices, stan-
dards and legislation.

3.2.2 Methodology step-by-step

LINDDUN provides a systematic approach to privacy assessment and can be divided into
three main steps. Firstly, it produces a system model by decomposing the processes, en-
tities, data stores and data flows to gain a deeper understanding of the systems’ working.
This is achieved by designing a Data Flow Diagram (DFD) that serves as a graphic repre-
sentation of the system under analysis. Once the system is modeled, the next step involves
systematically iterating over each DFD element to elicit potential privacy threats. Finally,
suitable solutions are proposed to manage and mitigate the identified threats. The solution
must address each specific threat in a manner that minimizes its impact while ensuring the
continued protection of the data subject’s privacy. In greater detail, LINDDUN involve six
steps which are categorized into two categories as shown in Figure 3.1.

1. Define 
DFD

2. Map 
privacy 

threats to 
DFD 

elements

3. Idenitify 
threat 

scenarios

4. Prioritize 
threats

5. Elicit 
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PROBLEM SPACE SOLUTION SPACE

Figure 3.1: LINDDUN methodology steps[37].
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The first category is centered on the problem space and aids in identifying privacy threats.
The second category focuses on the solution space and aims to address the threats identified
in the previous category while providing privacy solutions for them [37].

Define data flow diagram

The first step is to create a DFD that models the system under observation. A DFD
is a conceptual, structured and graphical representation that decomposes an Information
System into its main components. This representation sets the basis for the future analysis
and any inaccuracies in the diagram could lead to inconsistent results in the analysis of
the actual system. The components of this representation can be classified into four major
building blocks: Entities (E), which can either be a source or a destination of data; Data
Stores (DS), which is a logical repository of data; Data Flows (DF), which represent the
movement of data across the system; and Processes (P), which represent a unit that operates
on the data. These blocks aim to represent how the data moves within the system, the
user-interaction points and the trust boundary, which describes the limits of the system.
The trust boundary separates the internal system from the external parties and can be
interpreted as the point of interaction between parties with different privileges [41][42].

DFDs can represent systems at different levels of abstraction, which can go from a high-
level representation to a more in detail representation by partitioning the system functions.
The level of detail of the elicited threats will be influenced by the granularity of the DFD.
The distinct levels for the DFDs are numbered as level-0, level-1 and level-2 DFD. At
the requirements level, developers create the level 0 DFD, which corresponds to a context
diagram that represents the system as a single main process. This process is connected to
the external entities such as users of the system and third parties. In the subsequent levels,
the main process is gradually decomposed into multiple processes that represent the main
function of the system. The level 1 DFD aims to give a more detailed representation of the
internal processes, while the level 2 DFD dives deeper into the subprocesses identified in
the level 1 DFD. This level of detail can be helpful in planning or documenting the system’s
specific operational aspects [43].

Map privacy threats to DFD elements

The second step consists of mapping privacy threats to the DFD elements. As presented
in Table 3.1 the LINDDUN methodology considers seven types of threats, which helps
categorize the threats. The outcome of this step is a table that associates every DFD
element to each privacy threat category. Every ‘X’ in this table displays the susceptibility
of the DFD element to the corresponding threat category. In general terms, Table 3.2 shows
a template that specifies the threat categories that are relevant to each element type in a
DFD.
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Table 3.2: Mapping template for privacy threats to DFD element types [37].

Threat categories Entity Data Flow Data Store Process
Linkability X X X X
Identifiability X X X X
Non-repudiation X X X
Detectability X X X
Data disclosure X X X
Unawareness X
Non-compliance X X X

When implementing this template, practitioners need to tailor it to the specific system
being analyzed. This template acts as a guide, ensuring the consideration of all privacy
threat categories for each DFD element. As a result, practitioners must document every
‘X’ individually, considering it as a potential threat directed to a specific DFD element.
However, experts can combine multiple ‘X’ that that are related to the same type of DFD
element and that pose comparable repercussions with equivalent priority level as a unique
threat. As en exception, non-compliance threats can be considered to the entire system
since they are more generic, allowing practitioners to handle them together.

Identify threat scenarios

The third step is eliciting privacy threats, which can be considered the core execution step
of the LINDDUN methodology and that will result in the documentation of the misuse
cases. This step starts with refining threats via threat tree patterns inspired by the Secure
Development Lifecycle (SDL) [44]. LINDDUN threat trees break down each threat category
into more specific characteristics for a more detailed and comprehensive view of the threats.
Overall, they are a structured guide to help designers in considering privacy conditions
within the system and are regularly updated. They provide a corresponding threat tree
that illustrates the specific vulnerabilities that can be targeted and exploited to carry out
a privacy attack scenario and that must be considered for every ‘X’ marked in the mapping
template.

Additionally, practitioners should document when they trust an element of a system to
behave as expected in accordance with assumptions. These assumptions are decisions that
help evaluating the relevance of a threat or category within the system during the elicitation
phase. It is essential to keep documentation and provide a link to the corresponding misuse
case for traceability. Moreover, assumptions can serve as domain restrictions, constraining
the scope of the LINDDUN analysis and potentially reducing the number of threats to
examine through the use of broader assumptions. Finally, the outcome of this step is a
collection of threat scenarios documented as misuse cases. A misuse case can be understood
as a use case from the attacker point of view. For the documentation, LINDDUN provides
a threat description template that I have adapted for this work as presented in Table 3.3.
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Table 3.3: Description of threat scenarios template.

Summary Brief description of the scenario.
DFD elements involved Relevant components of the DFD.
LINDDUN properties Categories that apply to the threat.
Assets involved and
consequences

Brief overview of the assets involved in the threats and the conse-
quences related to them.

Priority Indicate how important you consider the threat, based on the im-
pact and likelihood of the threat, as described in 3.2.2.

Prioritize threats

The LINDDUN methodology may generate many documented threats that need to be
addressed. To move forward and find appropriate mitigation strategies, it is necessary to
prioritize the identified threats. LINDDUN does not offer direct assistance with conducting
risk analysis. Instead, it refers to established techniques such as OWASP’s Risk Rating
Methodology, described in 3.3 [45], Microsoft’s DREAD [46], NIST’s Special Publication
800-30 [47], or SEI’s OCTAVE [48]. These techniques use the information from the misuse
cases, including the assets involved for impact and the attacker profile and basic/alternative
flows for likelihood.

Alternatively, practitioners prioritize threats by selectively focusing on specific threats dur-
ing the identification phase and only the most critical ones are usually considered for inclu-
sion in the solution design. Typically, you can calculate risk as a product of the likelihood
of the attack scenario and its impact, as shown in Equation 3.1. Then, experts use this
product to rank the risks according to their priority, with higher priority indicating higher
risks.

Risk = likelihood × impact (3.1)

Focusing on the documented threats with higher likelihood and impact can save time and
effort, while not considering threats that are more unlikely.

Elicit mitigation strategies

After identifying and prioritizing the threats, LINDDUN proceeds to find suitable solutions
to prevent or resolve these threats. This methodology aids this process by providing cor-
responding mitigation strategies, which will then be connected into a technical solution,
enabling the transformation of privacy threats into effective and tailored PETs.

The mitigation strategies helps thinking about the general approach, instead of the specific
solution for each threat and can be seen as an intermediate step to finding appropriate
PETs. They offer a structured categorization of commonly used methods to address privacy
threats, providing a systematic approach for identifying and resolving those. The mitigation
taxonomy focuses on two major strategies, as shown in Figure 3.2.
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MITIGATION STRATEGIES
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Figure 3.2: LINDDUN mitigation strategies [37].

The first strategy is a proactive approach that involves concealing the associations between
users and their transactions and personal information. This strategy focus on ensuring that
only necessary information is shared with the system. The second strategy is a reactive
approach, which aims to limit the damage by controlling the associations after disclosure
and minimizing their exposure. As a result, it is necessary to determine if applying the
solution can be made proactively before collecting the data, or reactively at storage time.
Once that it done, it is necessary to find a suitable strategy at that stage.

The selection of mitigation strategies can vary depending on the type of DFD element. For
instance, threats related to entities and data flows correspond to concealment of data, while
threats related to data stores correspond to guarding the exposure of association. Mitigation
strategies related to entities aim to protect the identity and conceal the data and data flow
threats can be resolved by protecting data before and during the communication. On the
other hand, threats related to data stores, that is data that has already been collected and
stored, can be mitigated by ensuring confidentiality or minimizing the data. Additionally,
a data subject has the ability to modify the data that has been collected about them,
which involved the non-repudiation threat category. Furthermore, both branches of the
taxonomy can be associated with unawareness threats. Users need to be aware of the
potential implications of sharing information and must remain informed throughout the
entire process of the data life cycle.

Select corresponding PETs

The last step involves identifying appropriate PETs to provide a more precise selection of
solutions. Building upon the mitigation strategies from the previous step, LINDDUN then
narrows down the range of possible solutions. This methodology provides an initial table
categorizing PETs according to the mitigation strategies [37]. These categorizations aid in
the process of identifying the most suitable PET to effectively address an individual threat,
considering the complexity of this task due to the amount of possible PETs.

3.3 Risk assessment

Risk assessment is a structured process to identify potential threats and analyze their causes
and consequences. The aim of this process is to describe and prioritize the risks, while
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evaluating their likelihood of occurrence and their severity. In the assessment, multiple
scenarios with various failures are considered, providing a comprehensive understanding
and knowledge of the system’s failure modes. Primarily, there are two main categories of
risk assessment, quantitative and qualitative [49].

3.3.1 Qualitative assessment

Qualitative risk assessment involves evaluating assets for vulnerabilities and assessing the
probability of a threat using non-numerical values. It uses a relative scale with values like
Low, Moderate and High to measure the impact and likelihood of a threat. This approach
does not require complex calculations, but may lead to ambiguous classifications, making
later reassessment challenging. It simplifies risk evaluation but lacks detailed information
for precise categorization.

3.3.2 Quantitative assessment

Quantitative risk assessment is a thorough method that involves numerical assessment
of likelihood and impact, typically measured in frequency, like incidents per year. This
approach aims to quantify the damage by assigning economic cost to vulnerabilities and
threat events. It identifies the organizations risk based on the financial impact and it is
commonly used in financial institutions and insurance companies. This method requires a
more complex, expensive and more time to achieve.

3.3.3 OWASP Risk Rating Methodology

The Open Web Application Security Project (OWASP) is a multinational non-profit orga-
nization that aims to improve software security and promote awareness in the field. The
OWASP Risk Rating Methodology (ORRM) helps to evaluate the severity of the risks and
make informed decisions on how to manage them by adopting a six steps approach. This
framework can be adapted for each organization needs, while balancing simplicity and suf-
ficient detail. However, it is not necessary to be overly precise in this estimate, instead a
general classification of low, medium, or high is sufficient [50].

The first step is to identify a security risk and rate it by gathering information about a
threat agent, the attack, the vulnerability and the impact considering the worst-case that
will result in the highest overall risk.

The second step is to evaluate the likelihood of the identified risk considering two sets of
factors. The first set of factors is related to the attacker involved from a group of possible
attackers. These factors include skill level, motive, opportunity and size. The second set
of factors is related to the vulnerability involved. These factors include ease of discovery,
ease of exploit, awareness and intrusion detection and they assume the attacker from the
previous step. Each factor has a likelihood rating from 0 to 9, which are used to estimate
the overall likelihood later.

The third step is to estimate the impact of a successful attack, which can be categorized
into two types, technical impact and business impact. Technical impact factors are used to
estimate the magnitude of the impact on a system. The factors to consider for technical
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impact include the loss of confidentiality, loss of integrity, loss of availability and loss of
accountability. On the other hand, business impact factors are used to determine the po-
tential impact on the business and they require a deep understanding of what’s important
to the company running the application. Common areas to consider include financial dam-
age, reputation damage, non-compliance and privacy violation. However, business impact
is more significant, but it may be challenging to obtain all the information needed to assess
the business consequences. Therefore, providing detailed information about the technical
risk can aid the appropriate business representative in making an informed decision. Each
factor in impact assessment has a list of options with a corresponding impact rating from
0 to 9, which will be needed later to estimate the overall impact.

The fourth step is to determine the severity of the risk by combining the likelihood and the
impact levels from the previous steps. The severity of the risk is then categorized as low,
medium, or high, dividing the scale from 0 to 9 into three parts as shown in Figure 3.3.

Likelihood and Impact Levels 
 

0 to < 3 LOW  
 

 

3 to < 6  MEDIUM  
 

 

6 to 9  HIGH 
 

 
 

Figure 3.3: Scale for the severity of the threats. [50]

The fifth step involves deciding which risks to prioritize for fixing, with the most severe
risks taking priority. The outcome of this step will be a prioritized list. Lastly, the sixth
step is to customize the risk rating model to ensure its effectiveness. There are several
ways to customize the model such as adding factors, customizing options and weighting
factors. This step helps to better represent what is important to a specific business and
to emphasize the factors that are more significant. By customizing the risk rating model,
businesses can create a framework that produces results that match people’s perceptions
about what is a serious risk, thereby promoting its adoption.



4. Problem Space
The following two chapters present the results obtained from applying the LINDDUN pri-
vacy threat modeling to Hydra’s pipeline in the context of a smart building. For this
purpose, the steps presented in Section 3.2.2 are followed.

This chapter is organized in three sections. The first section provides a comprehensive
overview of the different components and different data types that have been considered
for the modeling of the system. The second and third sections follow the problem-oriented
steps to identify the possible privacy threats in the system for the level-0 and the level-1
DFD, respectively. The initial three steps of the LINDDUN methodology are focused on
the problem space. Firstly, the system is modeled using a DFD. Following that, a threat
mapping is carried out based on the model. Lastly, several threat scenarios are identified
for both the level-0 and level-1 DFD.

4.1 Modelling

Before initiating the LINDDUN process, it is necessary to identify and specify the compo-
nents and types of data that will be used in the smart building context. This information
will play a vital role in defining the DFD, which will add the data flows and trust boundaries
within the system. The successful integration of Hydra into a smart building context re-
lies on the combination of diverse hardware and software components, which are necessary
dependencies to enable real-time experiences [51][52].

• IoT sensors and actuators: IoT sensors are devices that detect and collect information
from the surrounding environment within a specific range. IoT actuators are devices
that produce some type of stimulus or action based on the received information from
the sensors. Together, sensors and actuators form a network of connected devices
that can interact with the physical world and each other, providing valuable data and
automation capabilities. Hereafter, the IoT sensors and actuators will be referred to
as IoT devices.

• RGB-D camera and robot’s sensor: Hydra’s process require real-time information
from the environment, which is gathered by an RGB-D camera capturing images of
the surroundings along with an integrated sensor in a robot or a wearable device,
which provides IMU data that describes the orientation, velocity, and position of the
robot within its surroundings.

• Edge and cloud servers: As the amount of data collected from IoT applications grows
and spans over large geographical areas, efficient storage, processing, and analysis
become increasingly important. While cloud computing provides computing and data
storage services over the internet, fog/edge computing can extend it to be closer to
the devices it supports. Fog/edge computing can provide computing and storage
services to devices at the edge of the network to assist in processing tasks with higher
computational requirements, instead of doing all the computation in the IoT devices.

33
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• User devices: Users or building operators can interact with the building system and
control certain features of their environment through their personal devices, as well
as viewing information such as the operational status, current energy consumption,
current emission, historical trends, etc. Supplied with this knowledge, users can make
informed decisions that enable the building system to adjust the conditions accord-
ingly while optimizing efficiency and with a focus on reducing energy consumption
for sustainability due to rising energy costs.

Additionally, other stakeholders present in the context of a smart building are the service
providers. This external party provides the smart building with different services that
ensure the proper operation of the buildings systems and resolving any issues that may arise.
All these components are interconnected and are constantly exchanging information. Given
the vast amount of information being collected, transmitted, aggregated, and processed,
both intentionally and unintentionally, it is crucial to clearly define the types of data used
in the system and which vendors are utilizing it [51][53].

• Sensor data: It refers to the information collected and transmitted from the IoT
devices. This data contains information of the surroundings and the metadata that
characterizes a particular device.

− Environmental data: Data related to the building’s physical surroundings such
as temperature, humidity, air quality, lighting, and energy consumption. This
type of data is essential for optimizing building performance, enhancing occu-
pant comfort and productivity, and minimizing energy usage for saving costs.
Additionally, this information includes timestamps of when it was recollected.

− Sensor metadata: Metadata regarding an IoT device can be differentiated be-
tween the observed/dynamic metadata, which describes the behavior of the sen-
sor data, and device/static metadata, which describes the device and its param-
eters.

• User data: It refers to the PII collected and processed by the IoT sensors. PII is
any data that could potentially identify a specific individual by containing sensitive
information of the subject or bystanders.

− Location data: Data related to the location of the data subject or bystanders
and their environment.

− Biometric data: Data related to measurable physical or behavioral characteristics
of the data subject or bystanders in their environment. Examples of biometric
data include facial features, iris or retinal patterns, voiceprints, and gait [54].

− Identity data: Data containing unique references to the identity of the data
subject or data that include revealing attributes which support the identification
of the data subject.

• Service provider data: It refers to information from external sources that are not
related to the building itself but can enrich the data available for smart building
operations. For example, by incorporating weather forecast data into the building’s
control system, the system can anticipate changes in temperature or humidity and
adjust heating and cooling accordingly, reducing energy consumption and costs.
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In addition, sensitive information related to a smart building, that can be either a household
or a workspace, should also be considered. This information may include sensitive details
such as floor plans, occupancy patterns or personal information of individuals associated
with the building. This data should be handled carefully to preserve the privacy and
security of individuals and assets involved.

4.2 Level 0 DFD

Firstly, I present the level-0 DFD design. This representation illustrates the integration
of Hydra as a subprocess within the context of a smart building. It corresponds to a
context diagram that aims to analyze potential threats resulting from this novel technology’s
incorporation in this environment.

The goal of this section is to gain a comprehensive understanding of the privacy challenges
posed by Hydra’s integration into smart buildings, while also considering the inherent
threats that smart buildings present. Examining the privacy implications arising from novel
technologies and their potential usage in real scenarios serve as an early risk mitigation effort
and provides guidance for responsible and secure advancements.

4.2.1 Define Data Flow Diagram

Initially, a level-0 DFD is presented in Figure 4.1, using the DeMarco notation. This
representation relates all the components involved in a smart building operation, as well as
the integration of Hydra. These interactions will be included in the threat model, but it
will not include the architectural and logical design of these dependencies.

SMART BUILDING TRUST BOUNDARY

E1. 
IoT devices

P2. Edge/Cloud 
computing

DS3. Edge/Cloud
data storage

P1. Hydra

DS1. Hydra 
data storage

DS2. IoT devices 
data storage

E2. User 
devices

DF7. Data / process offloading

DF5. Sensor data

DF6. Processed sensor data

Sensor data storage 

DF8. Data onloading

Hydra data storage

DF9. Cloud data storage

DF1. Sensor data

DF2. Data sharing

E3. Service 
providers

DF3. Sensor data

DF4. Data sharing LEYEND DFD ELEMENTS 

ENTITY

PROCESS

DATA 
FLOW

DATA 
STORAGE

Figure 4.1: Level 0 Data Flow Diagram.

In the context of a smart building, the primary entities are the IoT devices, including both
sensors and actuators, which engage in various forms of communications with external
entities beyond the trust boundary. The external entities may include user devices, service
providers and edge/cloud domain, and they are involved in various types of communication
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using several types of data. Additionally, Hydra’s process is also integrated as a part of
the smart building domain. The exchange of information is illustrated in Figure 4.1 and
explained in Table 4.1.

Table 4.1: Description of data flows between entities in the level-0 DFD.

Source Data Flow Description Destination

E1. IoT devices
DF1. Sensor data containing environmental
data from the user surroundings is sent as re-
quested by the user.

E2. User devices

E2. User devices
DF2. User devices share data in the form of
requests and information to modify environ-
mental conditions.

E1. IoT devices

E1. IoT devices
DF3. Sensor data containing environmental
data from the user surroundings is sent peri-
odically to the external providers.

E3. Service providers

E3. Service providers DF4. The smart building domain receives pe-
riodically shared data from external sources. E1. IoT devices

E1. IoT devices

DF5. Unstructured sensor data collected from
the IoT sensors containing environmental data
from their surroundings is periodically sent to
the edge/cloud domain for its processing.

P2. Edge/cloud computing

P2. Edge/cloud computing

DF6. Processed sensor data is returned to the
smart building domain to give insights about
the raw data collected from the IoT sensors
when requested by the users.

E1. IoT devices

P1. Hydra
DF7. Offloading of Hydria’s data and pro-
cesses to the edge/cloud for processing tasks
with higher computational requirements.

P2. Edge/cloud computing

P2. Edge/cloud computing DF8. Data onloading after the processing of
more complex task in the edge/cloud. P1. Hydra

P2. Edge/cloud computing DF9. Cloud data storage. DS3. Edge/cloud data
storage

4.2.2 Mapping DFD elements to LINDDUN threat categories

This step aims to identify all the potential privacy threats that may arise based on the
scenario presented in the DFD in Figure 4.1 and the detailed data flows presented in Table
4.1. As explained in 3.2.2 each element of the DFD is vulnerable to specific risks, and
the type of privacy risk it faces depend on their category. In this step, I consider general
assumptions regarding how the seven privacy threat categories impact each DFD element
type at the level 0. This helps us understand the interactions and relationships between
these elements and whether they pose privacy risks.

First, linkability refers to the inference of a connection between a pair of elements, where E,
DF, DS, P represent the potential IOI that can be linked. This category applies similarly to
all DFD elements, indicating that it involves the potential for two elements to be linked in
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some way. Potential linkability in this scenario arises from interactions between entities or
the interaction between an entity with a process. This involves the exchange of data flows
that may share similar attributes or be involved in the same process. For instance, user
devices interact with the IoT devices to control the various functions of the smart building,
such as lighting or heating. Here the exchange of data flows involves information like
environmental sensor data and user preferences that can be correlated revealing patterns
or relationships. In another scenario, linkability may arise with the processing that occurs
in the cloud. Occupants control the setting of their environment, and that interaction
generates data that is offloaded for processing, storage, analysis and long-term monitoring.
Similarly to the previous case, this information can be correlated revealing patterns or
relationships.

Second, identifiability refers to the establishment of a pair between a specific data subject
and an attribute associated with them. This category involves distinguishing a data subject,
typically represented as an entity. Thus, identifiability of an E indicates discerning a
particular entity within a set of entities. In the case of DS, DF and P, identifiability
means identifying the sender, receiver, data holder or accessing subject. Building upon the
previous examples and considering the scenario where users interact with IoT devices and
cloud computing process, identifiability can potentially arise from the correlation between
user references and their work schedule. For instance, if a user consistently adjusts the
smart lighting and heating systems based on their work hours, this correlation could reveal
consistent and identifiable pattens in occupants’ preferences and behaviours.

Third, non-repudiation involves establishing a pair, similarly to linkability and identifi-
ability, between a subject that cannot deny its actions and the attribute or action it is
associated with. This category is predominantly associated with entities. However, the
non-repudiation threat category arises from DF, DS and P. Building upon the same ex-
ample as before, records of exchanges of information and the completion of processes like
Hydra by petition of a user may hold a subject unable to deny their involvement in these
interactions. For instance, the system can save records of a user requesting a change in
room temperature settings, associating actions with a specific user. While these records can
enhance energy efficiency and personalization through automation in the smart building,
achieving such personalized and automated processes for individual users may also result
in tracking and profiling, potentially compromising user privacy.

Fourth, detectability refers to the ability to identify the presence of an IOI. This threat
relates to DF, DS and P and may associate them to specific users, providing insights into
the user activities, preferences, or behaviours without accessing the actual information
they contain. For instance, merely detecting the existence of DF, DS or P, even without
accessing their contents, can unveil relevant information about a user. Expanding on the
same example, identifying a particular user’s interaction within the IoT scenario and cloud
computing can reveal patterns and user behaviour. Similarly, the potential detection of
Hydra’s process may reveal the presence of a data subject and potential changes in the
environment.

Fifth, disclosure of information expands on detectability and refers to unauthorized access
to the information contained in DF, DS and P. For instance, if an attacker gains access to
the data flows associated with a specific user’s energy consumption patterns, they could
use this information to deduce the user’s daily routine and behaviours.

Sixth, unawareness is specific to E and indicates the lack of user awareness, which can
restrain their ability to provide informed consent regarding the use of their personal data.
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While this category is primarily related to E, other components may be involved since its
occurrence arise the threat of user unawareness. For instance, in the smart building context,
users may not be fully aware of the constant monitoring of the IoT devices and Hydra,
collecting and transmitting data due to the lack of transparency about data collection
practices. This unawareness hinders the user’s ability to provide informed consent or make
choices regarding the use of their data.

Seventh, non-compliance affects to the whole scenario since each element bears the re-
sponsibility of ensuring that actions align with privacy policies and the consent of data
subjects.

The outcome of this step is a table that associates every DFD element to each privacy
category, as presented in Table 4.2 for the level-0 DFD.

Table 4.2: Mapping privacy threats to DFD element types for level-0 DFD.

DFD Element types L I N D D U N
Entity
E1. IoT devices X X X X X
E2. User devices X X
E3. Service Providers X X
Process
P1. Hydra X X X
P2. Edge/Cloud computing X X X X X X X
Data store
DS1. Hydra data storage X X X
DS2. IoT devices data storage X X X
DS3. Edge/cloud data storage X X X X
Data flow
DF1. Sensor data to user devices X X X X X
DF2. Data sharing user devices X X X X X
DF3. Sensor data service provider X X X X
DF4. Data sharing service provider
DF5. Sensor data to edge/cloud X X
DF6. Processed sensor data X X X X X
DF7. Data/process offloading X X X X X X
DF8. Data onloading X X X X X X
DF9. Cloud data storage X

Several assumptions were considered during this step and are listed below.

• Data flows between inside processes and their data storage are considered secure.
• Data transmissions from the IoT device to the edge/cloud occurs periodically and is

considered non-threating in terms of inferring user behaviour.
• Non-compliance threats are combined as they are not specific to one part of the

system but pose a risk to the system as a whole. Therefore, no distinction between
the different DFD elements will be applied to this threat.
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4.2.3 Identify threat scenarios

The identification and further documentation of threats is based on the threat trees provided
by LINDDUN. These trees serve as a guide to conduct an in-depth analysis of privacy
threats within a realistic system. Each potential threat considered in the previous step
corresponds to a specific threat category that has a corresponding threat tree pattern. These
trees outline the preconditions for each threat’s vulnerabilities and that can be exploited in
potential privacy attack scenarios. Thus, these threat trees are reviewed to fit the system
under study and, as a result, a set of tables outlining all ‘X’s identified in the previous step
are obtained and presented in Annex A. These tables serve as a source for understanding
the details of each threat category.

Ultimately, by analyzing all the branches of the threat trees and documenting the potential
threats the outcome of this step comprises a collection of threat scenarios presented in the
form of tables. This outcome provides a comprehensive overview of the different potential
privacy threats and detailed information on the threat scenarios, including the involved
DFD elements, the associated LINDDUN properties, and the assets and consequences re-
lated to the threat.
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Table 4.3: Threat Identification Level-0 DFD.

Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

1

Profiling an individual
by observing the com-
munications between
the IoT devices and the
user devices outside
the smart building
trust boundary.

E1 E2
DF1
DF2

Linkability

Linking through a set of attributes that can serve as a quasiidentifier like
a set of locations or time can uniquely link an activity to a single user to
infer user behavior. These activities can be different requests made by the
users to adapt the environment conditions to their preference. In the same
manner, linking the use of a service to the same user through unique time
patterns based on the request from the users can lead to infer user behavior.
Request from the users made at the same time every day can reveal their
daily routine.

Non-
repudiation

A subject may be unable to deny having interacted with an IoT device or
being associated with a location or time, as transmissions are logged as evi-
dence of communication.

Detectability
Detecting the existence of an item of interest can be possible by observing a
communication between the IoT devices and the user devices, as well as to
infer the presence of an individual and their behavior based on time patterns.

Medium

2

Profiling and identify-
ing a user by observ-
ing data or characteris-
tics in the communica-
tion to the IoT devices
from the user devices.

E1 E2
DF2

Identifiability
Linking through identifiers like user IDs, which are unique within the sys-
tem, can be used to associate different requests of the same user and can
potentially identify the individual posing the request.

Disclosure
of informa-
tion

Sensitive information can be accessed during the communication between
the user devices and the IoT devices.

High
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Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

3

Profiling a group of
individuals by gaining
access to the informa-
tion transmitted in the
communications from
the IoT devices to the
service providers out-
side the smart building
trust boundary.

DF3

Linkability

Linking through readings obtained from the structured sensor data transmit-
ted, which apply to a household or workplace, can be used to profile a group
of individuals. The correlation of these readings can derive user patterns
and characterize collective behavior. For example readings from an energy
consumption meter can infer the energy usage patterns of individuals within
a household or workplace and it may be possible to discern daily routines.
Similarly, data from occupancy sensors or access control systems can infer
the movement of employees within the building.

Disclosure
of informa-
tion

Third parties tracking and analyzing involves transferring data about the
household or workplace which can lead to disclosure of sensitive information.

High

4

Profiling an individ-
ual by observing the
communication be-
tween the IoT devices
and the edge/cloud
domain outside the
smart building trust
boundary.

DF6

Linkability

Linking a request to an external service like the edge/cloud computing pro-
cess may infer the existence of an ongoing session with a user. In the same
manner, linking the use of a service to the same user through unique time
patterns based on the request from the users can lead to infer user behavior.
Request from the users made at the same time every day can reveal their
daily routine.

Non-
repudiation

A subject may be unable to deny having interacted with the process or being
associated with a location or time, as transmissions are logged as evidence
of communication.

Detectability Detecting the existence of an item of interest can be possible by observing
a communication between the IoT devices and the edge/cloud domain.

Medium



Problem
Space.

42

Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

5

Profiling an individ-
ual by observing the
communication be-
tween Hydra’s process
and the edge/cloud
domain outside the
smart building trust
boundary.

DF7
DF8

Linkability

Linking to a particular external service like an edge/cloud can be inferred by
observing the communication to the edge/cloud computing process. Addi-
tionally, linking the use of the edge/cloud process to the same user through
unique time patterns based on the request from the users can lead to infer
user behavior.

Non-
repudiation

A subject may be unable to deny having interacted with the process or being
associated with a location or time, as transmissions are logged as evidence
of communication.

Detectability Detecting the existence of an item of interest can be possible by observing
a communication between Hydra’s process and the edge/cloud domain.

Disclosure
of informa-
tion

Sensitive data can be accessed during the communication between Hydra’s
process and the edge/cloud processing.

Medium

6

Profiling a group of in-
dividuals by observing
the process and stor-
age in the edge/cloud
domain derived from a
user request.

P2
DS3 Linkability

Linking an activity at the edge/cloud domain with a time of day, identifier
associated by the user request, or processing time to infer user behavior.
Additionally, linking particular entries in the data storage to a particular
household or workspace can lead to profiling a group of individuals.

Low
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Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

7

Identifying an individ-
ual by gaining access
to the data collected in
the IoT devices, shared
with the edge/cloud,
used for its processing
and their correspond-
ing storage.

E1
DS2
DF5
P2

DS3

Linkability

Identifying a user may be possible through gaining access to revealing at-
tributes such as location and personal data gathered in the IoT devices,
shared in the communication, and processed in the edge/cloud as well as
metadata from the communication.

Disclosure
of informa-
tion

Disclosure of real-time measurements rather than the aggregated consump-
tion with sensitive information such as location data and time.

High

8
The completion of Hy-
dra’s process at the
edge/cloud can be ob-
served.

P1 P2

Non-
repudiation

A subject may be unable to deny having engaged in the process because of
the registered completion of the process, as action side-effects can cause an
action to be attributable to an individual.

Detectability
Detecting through side-effects of an action in the system like the processing
of Hydra in the edge/cloud domain can infer the existence of an item of
interest or infer user behavior.

Low

9

A data subject may
be insufficiently aware
and may be unable to
set appropriate prefer-
ences on which data is
collected, shared, and
stored.

E1
DF1
DF5
DF6
DS2

Unawareness

The lack of awareness among data subjects regarding the collection, trans-
mission, and storage of sensitive information about their surroundings leaves
them unable to set preferences on how the data is managed or provide con-
sent for its processing.

Medium
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Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

10

A data subject may be
insufficiently aware and
may be unable to set
appropriate preferences
on which data is shared
with third parties.

DF3
E3 Unawareness Data subjects may be insufficiently aware of the sharing of sensitive infor-

mation about their surroundings with third parties.
High

11

A data subject may be
unaware of the obser-
vation, processing, and
storage of sensitive in-
formation by Hydra’s
process.

P1
DF7
DF8
DS1

Unawareness

The lack of awareness among data subjects regarding the observation, pro-
cessing, and storage of sensitive information about their surroundings and
personal images or features leaves them unable to set preferences on how the
data is managed or provide consent for its processing.

High

12

A data subject may
be unaware of the ob-
servation, processing,
and storage of sensitive
information by edge/-
cloud assets.

P2
DF9
DS3

Unawareness

The lack of awareness among data subjects regarding the observation, pro-
cessing, and storage of sensitive information about their surroundings leaves
them unable to set preferences on how the data is managed or provide con-
sent for its processing.

Medium

13
Data management may
not be compliant with
legislation.

E1 E3
P1 P2

DS1 DF1
DF3 DF5
DF6 DF7

DF8

Non-
compliance

The collection, storage, processing, transmission of PII is not compliant with
legislation, regulation, and/or policy.

Medium
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4.3 Level 1 DFD

Secondly, I present the level-1 DFD design. This representation illustrates the process of
Hydra as its decomposition into multiple subprocesses that represent the main functions of
the system. It corresponds to a detailed representation of the internal processes of Hydra,
helping in the understanding of its working.

The goal of this section is to provide a clearer vision of the privacy challenges that arise from
the process of Hydra when integrating it into the context of a smart building. As stated for
the level-0 DFD, examining privacy implications from emerging technologies informs early
risk mitigation and responsible progress.

4.3.1 Define Data Flow Diagram

Extending on the process of Hydra presented in the level-0 DFD, a level-1 DFD is presented
to offer a more comprehensive understanding of its internal processes in Figure 4.2. This
representation includes detailed information based on Hydra’s architecture 2.2.3.
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Figure 4.2: Level 1 Data Flow Diagram.

Hydra is implemented as a highly parallelized architecture that combines low-level, mid-
level and high-level perception processes to build a real-time 3D scene graph as described
in Section 2.2.3. The system includes algorithms for constructing the different layers of
a scene graph, metric-semantic 3D mesh, objects and agents, places, and rooms all of
them gradually converging into a single node belonging to a building. The exchange of
information between these distinct processes is illustrated in Figure 4.2 and explained in
Table 4.4.

4.3.2 Mapping DFD elements to LINDDUN threat categories

This step aims to identify all the potential privacy threats that may arise based on the
scenario presented in the DFD in Figure 4.2 and the detailed data flows presented in Table
4.4. As explained in 3.2.2 each element of the DFD is vulnerable to specific risks, and
the type of privacy risk it faces depend on their category. In this step, I consider general
assumptions regarding how the seven privacy threat categories impact each DFD element
type at the level 1. This helps us understand the interactions and relationships between
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Table 4.4: Description of data flows between entities in the level-0 DFD.

Source Data Flow Description Destination

E1. RGB-D camera DF1. Real-time images capturing the
environment.

P1. Depth construction
P2. 2D semantic segmentation
P6. Visual-Inertial Odometry

E2. Robot’s sensor DF2. IMU data describing the robot’s
orientation, velocity, and position. P6. Visual-Inertial Odometry

P1. Depth reconstruction DF3. 3D point clouds representing the
surfaces in the environment. DS1. 3D point clouds

DS1. 3D point clouds
DF4. Depth maps, in which each pixel
represents the distance from the camera
to the nearest surface.

P3. Construction metric-
semantic 3D mesh

P2. 2D semantic segmentation.
DF5. 2D semantically labeled images,
in which each pixel is labeled with a
specific class to distinguish surfaces.

P3. Construction metric-
semantic 3D mesh

P3. Construction metric-
semantic 3D mesh

DF6. Voxels are three-dimensional
pixels that represent the smallest units
of a volume and they are combined to
represent different elements in the en-
vironment.

DS2. Metric-semantic
3D mesh

DS2. Metric-semantic 3D mesh

DF7. Mesh vertices belonging to each
semantic class are transmitted as a set
based on their semantic label. The
mesh is partitioned and used to clas-
sify the objects present in the scene.

P4. 3D object detection

P4. 3D object detection

DF8. Object nodes refer to objects
present in the environment and contain
information about their position and
characteristics.

DS3. Objects
P7. 3D scene graph frontend

DS2. Metric-semantic 3D mesh
DF9. Latest 3D mesh that represents
the environment combining geometric
and semantic information.

P7. 3D scene graph frontend

DS2. Metric-semantic 3D mesh DF10. ESDF voxels storing the Eu-
clidean distance to the nearest surface.

P5. Places subgraph
construction

P5. Places subgraph
construction

DF11. Places subgraph as a collection
of nodes representing the layout of
the environment.

DS5. Sparse graph
P7. 3D scene graph frontend

P6. Visual-Inertial Odometry

DF12. Pose graph of the agents that
contain both odometry and loop clo-
sures edges, allowing for efficient loop
closure detection.

P7. 3D scene graph frontend

P7. 3D scene graph frontend

DF13. Subsampled version of the
mesh that represent an initial estimate
of the 3D scene graph uncorrected for
drift.

DS6. Global mesh in current
time
P8. 3D scene graph backend

P8. 3D scene graph backend D14. Optimized graph after the loop
closure. DS7. Optimized 3D scene graph
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these elements and whether they pose privacy risks. Similarly to the level-0 DFD, each
threat category explores the potential threats arising in each DFD element.

First, linkability arises from the connection between a pair of elements. In this context,
I have applied this category to the potential linkage of different elements involved in the
construction of the 3DSG at different levels. Initially, the incoming images from the RGB-D
cameras are necessary to extract the necessary information required to construct the 3DSG.
For instance, associating images or frames from cameras with specific objects or locations in
the visual scene can be done by analysing visual features extracted from images, including
keypoints or descriptors. Keypoints represent distinctive points or locations in an image
that signify unique features like corners or edges. Descriptors are specific characteristics of
these points that allow the recognition of similar points and their proper alignment. Then,
associating 3D point clouds can be performed by point cloud segmentation. In Hydra, 3D
point clouds may be stored both locally to provide real-time responses and in the cloud to a
persistent representation. For example, by analysing the spatial distribution and properties
of 3D points, like coordinates or colour, the system can infer that a cluster of points likely
represent a specific objects, structures or even specific locations. Escalating the level of
abstraction to higher levels, linking can be performed directly to object or places instances
that share common attributes represented in the global mesh. For instance, objects that
belong to the same semantic class can be grouped and counted, revealing for example
how many employees work in a particular office. Similarly, agents can be linked based on
objects and spaces they interact with. By analysing the interactions between agents and
the various objects within a visual scene, patterns of behaviour can be established. For
instance, if multiple individuals are consistently observed interacting with the same set of
objects or spaces, it may suggest a shared workspace or collaborative activity.

Second, identifiability arises when there is a connection between a specific data subject
and an attribute associated with them. This category can result from various ways. One
way is through the direct capture of an IOI that can directly identify an individual, like a
personal ID. Another way is by linking multiple IOIs that belong to the same individual,
which can reduce the anonymity set. For example, in an office environment, a worker may
leave behind personal items such as a phone, laptop, and even clothing in a specific area.
When these objects are linked together, it becomes possible to identify that specific user.
Furthermore, the correlation of valuable information collected from the environment with
data from other sources like social media can also contribute to the identifiability process.

Third, non-repudiation establishes a link between an action and a subject who is unable to
deny their involvement. In the context of Hydra, this category arises when a data subject
can be located in different areas of the environment and a link could be established between
them and different locations or objects. For example, this can be illustrated through a
scenario in an office space where an important document has disappeared. If the system is
capable of locating a specific user within its surroundings, that employee cannot later deny
their involvement.

Fourth, detectability that refers to the ability to identify the presence of an IOI. In this
context, updating the 3DSG involves updating Hydra’s processes and as a consequence the
final graph is renewed with the new information. For instance, when the final graph is
updated, it means that changes in the environment have been detected and incorporated to
the graph. These changes can include the movement or presence of objects or individuals,
as well as alterations in the environment itself. Even without knowing the specific details
of the changes, the act of updating the graph implies that something has occurred, which
could include the presence of individuals in the scene.
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Fifth, disclosure of information refers to accessing confidential data. In the context of
Hydra, this category can be examined in relation to both its inputs and outputs. For
instance, if an attacker gains access to the final graph representation, they have the ability
to access potentially sensitive information or tamper with the graph’s data. For example,
an authorized individual with malicious intentions who gains access to the final graph can
potentially disclose sensitive information, such as the real-time location of other individuals
or their work patterns.

Lastly, the categories of unawareness and non-compliance are essentially the same as pre-
sented for the level 0 DFD. In this context, the category of unawareness states that users
may not be fully aware of the constant monitoring by Hydra, which involves the constant
collection and transmission of data. This lack of transparency about data collection prac-
tices hinders the user’s ability to provide informed consent or make choices regarding the
use of their data. Similarly, the category of non-compliance affects the entire scenario since
each element bears the responsibility of ensuring that actions align with privacy policies
and the consent of data subjects.

The outcome of this step is presented in Table 4.5, where every DFD element to each
privacy category for the level-1 DFD.

Several assumptions were considered during this step and are listed below.

• Process threats are combined and examined as one as internal process are only sus-
ceptible to insider threat and the threats apply to all of them.

• Data flows and data stores are not considered secure since data exchange with the
edge/cloud domain may occur as presented in the level 0 DFD.

• Non-repudiation and detectability threats of the processes are considered in the level
0 DFD since they pose the same threat. This threat is documented as Threat 8 in
Table 4.2.3.

• Unawareness threats of the processes, data flows and data stores are considered in the
level 0 DFD since they pose the same threat. This threat is documented as Threat
11 in Table 4.2.3.

• Non-compliance threats are combined as they are not specific to one part of the
system but pose a risk to the system as a whole. Therefore, no distinction between
the different DFD elements will be applied to this threat.

4.3.3 Identify threat scenarios

By following the same procedure as with the level-0 DFD, threats were identified by ref-
erencing the threat trees provided by LINDDUN. This process results in a set of tables
that outline all the ‘X’s identified in the previous step and that are presented in Annex
A. Analogously to the level-0 DFD, the outcome of this step consists of a collection of
threat scenarios presented in the form of tables, providing a comprehensive overview of the
different potential privacy threats.

Additionally, in this section the prioritization of the identified threats has been included.
The prioritization has been carried out following a qualitative risk assessment, where the
values used for the prioritization are non-numerical values. This straightforward approach
measures the likelihood and the impact of a threat scenario with values low, medium, and
high.
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Table 4.5: Mapping privacy threats to DFD element types for levle-1 DFD.

DFD Element types L I N N D U N
Entity
E1. RGB-D camera X X
E2. Robot’s sensor X X
Process
P1. Depth reconstruction X X X X
P2. 2D semantic segmentation X X X X
P3. Metric-semantic 3D mesh construction X X X X
P4. 3D object detection X X X X
P5. Places subgraph construction X X X X
P6. Visual-Inertial Odometry X X X X
P7. 3D scene graph frontend X X X X
P8. Room detection X X X X
Data store
DS1. 3D point clouds X X X X X
DS2. Metric-semantic 3D mesh X X
DS3. Objects X X X
DS4. Agent nodes X X
DS5. Sparse Graph X X X
DS6. Global mesh in current time X X X X X
DS7. Optimized 3D Scene Graph X X X X X
Data flow
DF1. Images X X X X X X X
DF2. IMU data X X X X X
DF3. 3D point clouds X X X X X
DF4. Depth maps X X
DF5. 2D semantically labelled images X X
DF6. New voxels X X
DF7. Mesh vertices from each semantic class X X
DF8. Object nodes X X X
DF9. Latest mesh X X
DF10. ESDF voxels X X
DF11. Places subgraph X X X
DF12. Pose graph of the agents X X
DF13. Subsampled version of the mesh X X X X X
DF14. Optimized 3D scene graph X X X X X X X
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Table 4.6: Threat Identification Level-1 DFD.

Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

1

Images and features of
the environment can
be obtained and linked
through combination
or analysis of data.

DF1
DF3
DS1

Linkability

Disclosure of
information

A link between similar images and features of the environment can be inferred
even without knowing the source or context of the images. This information
could be used to recognize patterns in the environment and to identify the
location where the images were taken.

Additionally, reconstruction of detailed comprehensive images of the scene
can be obtained from 3D point clouds and their associated attributes even if
the source images are discarded. The reconstructed images can be used as
source images and pose the same threats. [55].

High

2

Metadata from real-
time images and IMU
data, such as coordi-
nates and time stamps,
can reveal the exact lo-
cation and time where
the image was taken.

DF1
DF2
DF3
DS1

Linkability

A link between a set of locations or timestamps can be used to uniquely link
activity to a single user and infer user behaviour.

Additionally, reconstruction of detailed comprehensive images of the scene
can be obtained from 3D point clouds and their associated attributes even
if the source images are discarded. The reconstructed images can be used as
source images and pose the same threats [55].

Non-
repudiation

A data subject may be unable to deny their presence or being associated
with a location at a certain time from the metadata contained in the images
and IMU data.

Medium
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Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

3
Objects represented in
the scene graph can
be observed and linked
based on properties.

DS3
DF8 Linkability

A link between different objects present in the scene can infer the quantity
of objects of a same semantic class which can be used to profile a group of
individuals.

Medium

4

The topology of the
graph can be inferred
from the sparse graph,
which preserves the un-
derlying structure of
the scene.

DS5
DF11 Linkability A link between the vertex of the graph can infer its topology by obtaining

the free-space paths and therefore the layout of the scene.
Medium

5

The 3D mesh in real-
time can be observed
and a data subject can
be linked to a cer-
tain object or loca-
tion, inferring subject
behaviour.

DS6
DF13
DS7

DF14

Linkability

Non-
repudiation

A link between vertex from the sparse scene graph or rooms from the opti-
mized scene graph can be inferred based on locations that an agent node has
visited. Linking rooms may infer user behaviour based on their movements
within the building and may hold a data subject unable to deny having been
associated with a certain location.

A link between agent nodes can be inferred from agent nodes that have
visited the same location simultaneously or over a period of time. Linking
agents may infer user behaviour and may render subjects unable to deny
having engaged in a conversation or in a certain activity.

A link between objects and agent nodes can be inferred based on the inter-
actions of agent nodes with those objects. A subject may be unable to deny
having interacted with those objects.

Medium
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Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

6

Captured images of the
environment can be
used for purposes such
as face recognition that
can be used to identify
a data subject [56].

DF1
DF3
DS1

Identifiability

Face recognition processing can be applied to the images deriving certain
attributes that can be combined to identify an individual. Additionally,
images containing PII, such as credit card number or social security number
can lead to uniquely identifying a data subject.

Additionally, reconstruction of detailed comprehensive images of the scene
can be obtained from 3D point clouds and their associated attributes even
if the source images are discarded. The reconstructed images can be used as
source images and pose the same threats.

Non-
repudiation

A subject may be unable to deny their presence or being associated with a
location from the captured images.

High

7

Objects that belong
to the same individual
are represented in the
scene graph and can be
observed and linked to
reveal their identity.

DS6
DS7

Linkability A link between different objects present in the scene can infer the presence
of a data subject, even without revealing their identity.

Identifiability Furthermore, the combination of objects that contain unique references to
the identity of the data subject can reveal their identity.

Non-
repudiation

A subject may be unable to deny having been associated with a specific
location.

High

8

Observed communica-
tions to or from exter-
nal entities may infer
the exitance of relevant
information.

DF1
DF2
DF14

Detectability

The existence of an item of interest may be inferred from observing the
communciation to or from an external entity, even without disclosing the
transmitted data. New images and the generation of the 3DSG in real-time
may disclose the presence of a subject in the scene.

Medium
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Threat Summary
DFD

elements
involved

LINDDUN
properties

Assets involved and consequences Priority

9

Gaining access to the
communications to or
from external entities
may cause the disclo-
sure of sensitive infor-
mation.

DF1
DF14

Disclosure of
information

Sensitive information such real-time images and the 3DSG containing the
real-time representation of the environment may be disclosed.

Medium

10

A data subject may be
insufficiently aware and
may be unable to set
appropriate preferences
on which data is col-
lected from the exter-
nal devices.

E1
DF1
DF5
DF6
DS2

Unawareness

The lack of awareness among data subjects regarding the collection of sen-
sitive information about their surroundings and features leaves them unable
to set preferences on how the data is managed or provide consent of its pro-
cessing.

Medium

11
Data management may
not be compliant with
legislation.

Com-
plete

system

Non-
compliance

The collection, storage, processing, transmission, of PII is not compliant
with legislation, regulation, and/or policy.

Medium



5. Solution Space
Following the previous chapter, the last three steps presented in Section 3.2.2 are followed to
obtain the results from applying the LINDDUN privacy threat modeling to Hydra’s pipeline.
This chapter is organized in four sections. The first section provides a comprehensive
overview of the different stages that the data go through to obtain visual representation of
the environment. The following three chapters correspond to these stages, which are input
protection, data protection, and output protection. At each stage, the last three steps of the
LINDDUN methodology are followed. Firstly, the prioritization of the identified threats
that was presented Sections 4.2 and 4.3, along with the threat identification. Following
that, mitigation strategies are proposed based on the nature of the protection approaches.
Finally, building upon the mitigation strategies from the previous step, appropriate PETs
will be proposed for each category, and they will be associated to the respective threats for
which they provide a solution.

The research of this work has been primarily dedicated to the critical analysis of existing
solutions and the selection of PETs to address and mitigate the different privacy threats
associated with the level-1 DFD.

5.1 Solution Design

The solution space aims to tackle the challenges at the level-1 DFD, safeguarding sensitive
information and ensuring privacy protection in the context of detection, transformation
and rendering of visual information for environmental mapping. For this purpose, the same
approach that was made for mix reality in [57] has been followed and Hydra’s pipeline can
be simplified as represented in Figure 5.1. Firstly, the RGB-D camera that provides the
images and the robot’s sensor that provides the IMU data are responsible for sensing the
real environment and gathering the information for its detection. Then, the collected data
is processed, and different transformations will be applied based on the desired output.
Lastly, the modelled environment is rendered and the 3DSG is shared with third parties
and applications for its use.

Detection Transformation Rendering

Environ
m

en
tEn

vi
ro

n
m
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t

OUTPUT 
PROTECTION

DATA 
PROTECTION

INPUT
PROTECTION

Figure 5.1: Generic data life cycle in perceptual application [57].

In the following sections, the three categories of protection will be discussed and mitigation
strategies and PETs are proposed.

54
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5.2 Input protection

The first category encompasses the raw visual data collected from the environment, which
is then integrated into Hydra for further processing. Hydra’s main purpose is to provide
a visual representation of a scene, which requires gathering information about the envi-
ronment, including construction elements such as walls and doors, and objects such as
desks and chairs, necessary for an accurate depiction of the scene. However, other items
present in the scene, such as personal belonging like wallets or mobile phones, which do
not contribute to modeling, may unintentionally be captured. Hence, the gathered infor-
mation may include user sensitive data as well as sensitive data related to other entities,
such as bystanders. Targeted physical elements that assist in building the model can be
considered active inputs, while untargeted objects that are not necessary for representing
the environment can be interpreted as passive inputs [57][58].

5.2.1 Elicit mitigation strategies

This category can be associated with the branch of concealment of data from the mitigation
techniques discussed in Section 3.2.2. This branch focuses on guarding the exposure of
sensitive data, ensuring that only necessary information is shared with the system. For
perceptual applications, protection approaches in the input side typically involve the use
of input sanitization techniques. These measurements can be employed as an intermediate
layer, situated between the sensor interfaces and the application layer, with the aim to
remove latent and sensitive information from the input data stream. They can be further
classified based on the type of policy enforcement they employ, whether it is intrinsic or
extrinsic. Intrinsic input sanitization policies are typically user-defined, allowing users to
specify the degree of sanitization that will be applied. However, intrinsic policies may
potentially have a myopic view of the privacy preferences since they are user-defined. On
the other hand, extrinsic input sanitization policies receive privacy preferences from the
environment and can prevent the capture of sensitive objects that may not be considered
by the intrinsic policies. This limitation exists because intrinsic policies can solely provide
protection for inputs that are explicitly mentioned within the policies [57][58].

5.2.2 Selection of PETs

This section analyses existing solutions that could potentially mitigate the identified threats,
exploring both their potential and the challenges of integrating them into Hydra’s pipeline.
The variety of available options highlights the difficulty of finding customized solutions.
Within this field of research, the majority of works are focus on Augmented Reality (AR)
and Mixed Reality (MR), resulting in the proposal of several approaches. These approaches
can be mainly categorized as follows [57][58]:

• Visual Information Sanitization: Early approaches mainly revolved around sanitiz-
ing visual media to remove sensitive content. Various methods have been employed
within this category. Some apply intrinsic policies, like Darkly [59], that restricts the
access to complete information, or the context-based intrinsic sanitization framework
[60]. Others apply extrinsic policy enforcement, enabling objects and bystanders to
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communicate privacy preferences like MarkIt [61] or Cardea [62] that build in fine-
grained visual protection based on the user’s preferences. More recent work like
Virtual Curtains [63], focus on providing real-time policy enforcement.

• Visual Information Abstraction: Abstraction seeks to minimize direct access to raw
visual feeds by providing only essential information to applications. This approach
follows the concept of least privilege and has been applied to secure gesture detec-
tion and spatial information in MR environments like Recognizers [64], Prepose [65],
or SafeMR [66] that introduces an object-level abstraction system designed for MR
applications.

Each of these approaches addresses the challenge of protecting visual information in MR
contexts from a different angle. Their respective strengths and limitations call for further
exploration and evaluation to determine their suitability and effectiveness in different sce-
narios. In this study, I have selected several of these technologies to evaluate their potential
applicability in the Hydra scenario.

DARKLY

The Darkly system [59] proposes a multi-level feature sanitization to address some of the key
challenges faced by perceptual applications in the input stream. These challenges include
the recognition and isolation of objects, the discerning of which inputs should be revealed
and the appropriate form to disclose these inputs. Darkly employs mechanism such as access
control to manage the access to visual inputs, algorithm transformations to obfuscate the
visual data and user audit to enable transparent tracking of actions carried out on the visual
inputs. For these purposes, it relies on OpenCV [67], an open-source library including
computer vision algorithms for image processing, video analysis, 3D reconstruction and
object detection among other functionalities.

Darkly mainly focusses on two approaches, opaque references and declassifier functions. The
first approach is based on replacing the raw visual inputs with opaque references before its
transmission. Opaque references are identifiers that allow interactions with the referenced
entity without exposing its content. The aim is to limit the access to the raw input stream
and to only share the necessary information with untrusted third parties and applications.
Pointers to image data are replaced with opaque references, which allow applications to
operate on these inputs without directly accessing them. Thus, applications cannot deref-
erence opaque references, but they can be passed to and from OpenCV functions, which
then operate on true perceptual data. To differentiate between opaque references and real
pointers, a threshold is set, stablishing that all valid pointers must be greater than a value
and the opaque references are below that value [59].

The second approach involves applying privacy transforms to features or object in the input
stream before releasing the data to third parties or applications. It is mainly intended for
applications that require access to specific features of the data while ensuring that sensitive
information is not exposed. For this purpose, declassifier functions are used to reduce or
eliminate sensitive data from the input stream while still preserving the desired features.
In this approach, users are able to determine the different levels of transformation, defining
the amount of detail that is provided. This is done in the Darkly console window that
displays a visual representation of the features, which enables the adjustment of the degree
of transformation to be applied. These transformations are specific to the declassifier and
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application independent. Higher values of transformation entail more abstract and generic
representations, while lower values of transformation remove fewer details as shown in
Figure 5.2. Transformation techniques involve sketching and generalization.

Figure 2. Output of the sketching transform on a female face image at different privacy levels.

Figure 3. Output of the sketching transform on a credit card image at different privacy levels.

&(*( data.eigenVectVec.begin())),
0, 0, data.pAvgTrainImg,
projectedTestFace);

snprintf(bc_dist_code, MAX_SIZE, bc_invert_tmpl,
data.nTrainFaces, data.nEigens);

bc_bytecode = bcCompile(bc_dist_code);
int iNearest = cvExecuteUntrustedCode(bc_bytecode,

projectedTestFace, data.projectedTrainFaceMat
, data.eigenValMat);

Listing 6. Modified face-recognition application code using ibc for
calculating the closest match to the input image.

VII. PRIVACY TRANSFORMS

In Section IX, we show that many OpenCV applications
can work, without any modifications, on opaque refer-
ences. Some applications, however, call OpenCV functions
like cvMoments, cvFindContours, or cvGoodFeaturesTo-
Track which return information about certain features of the
image. We call these functions declassifiers (Section VI-D).

To protect privacy, declassifiers transform the features
before releasing them to the application. The results of the
transformation are shown to the user in the DARKLY console
window (Section VIII). The user can control the level of
transformation by adjusting the privacy dial on this screen.

The transformations are specific to the declassifier but
application-independent. For example, the declassifier for
cvGetImageContent replaces the actual image with a thresh-
olded binary representation (see Fig. 7). The declassifier
for cvGoodFeaturesToTrack, which returns a set of corner
points, applies a higher qualitylevel threshold as the dial

setting increases, thus only the strongest candidates for
corner points are released to the application.

The declassifiers for cvFindContours, cvMoments, and cv-
CalcHist apply the sketching transform from Section VII-A
to the image before performing their main operation (e.g.,
finding contours) on the transformed image. The application
thus obtains only the features such as contours or moments
and not any other information about the image.

Applying a privacy transform does not affect the accuracy
of OpenCV functions other than the declassifiers because
these functions operate on true, unmodified data.

A. Sketching
The sketch of an image is intended to convey its high-level

features while hiding more specific, privacy-sensitive details.
A loose analogy is publicly releasing statistical aggregates
of a dataset while withholding individual records.

The key to creating sketches is to find the contours of the
image, i.e., the points whose greyscale color value is equal to
a fixed number. In our prototype we use a hardcoded value of
50% (e.g., 127 for 8-bit color). Contours by themselves don’t
always ensure the privacy properties we want. For example,
in Fig. 3, contours reveal a credit card number. Therefore,
the sketching transform uses contours in combination with
two types of low-pass filters.

First, the image is blurred5 before contour detection.
Blurring removes small-scale details while preserving large-
scale features. The privacy dial controls the size of the filter

5We use a box filter because it is fast: it averages the pixels in a box
surrounding the target pixel. We could also use a Gaussian or another filter.
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Figure 5.2: Example of the possible outputs of applying sketching transform on a credit
card image [59].

Sketching is founded on identifying the contours of the image and the use of two different low
pass filters. Initially, a low pass filter is used to blur the image and remove the small-scale
details that may contain contextual information like credit card details. This step preserves
the large-scale features to continue with the contour detection. Contours represent the
transitions between different regions or objects within an image and they refer to the points
with fixed greyscale color values. In a grayscale image, each pixel has a specific intensity
value that corresponds to the brightness level, ranging from black that is represents the
lowest intensity, to white representing the highest intensity. Thus, contours are pixels
that remain constant in their brightness and that match a specific threshold. The last
step involves applying another low pass filter to the counted image in order to remove
contours that contain excessive entropy. Entropy in this context refers to the level of
complexity of a given image, being more diverse and unpredictable with higher entropy
and more uniform and repetitive with lower entropy. The combination of these three
steps guarantee that details of the image remain undisclosed after the transformation and
prevents countermeasures such as image deblurring [59].

On the other hand, generalization aims to provide a generic representation from a predefined
collection of samples. It involves capturing the essential characteristics or common features
of objects, faces or other entities and derive a more generalized representation. Darkly
proposes a generalization-based privacy transform referred to as cluster-morph, which is
a complex approach to generalization. Using face generalization as an example, this ap-
proach substitutes the original face with a generic face image by employing an algorithm
to generalize the facial features and selects an image from a predefined collection of pro-
grammatically generated face images, resembling the way avatars are made. As contrary to
other approaches, Darkly’s intention is not achieving k-anonymity, but it aims to identify
a canonical representation based on a globally predefined dataset [59].

Context-based intrinsic sanitization framework

Furthermore, Darkly is improved by a context-based intrinsic sanitization framework [60]
that builds upon its non-contextual policies. The key advancement in this framework is the
ability to determine the presence of sensitive entities like subjects, objects, and locations in
the captured images and automatically apply sanitization. Thus, sensitive features undergo
a process of sanitization by being blurred out, ensuring that information is concealed, and
sensitive locations are entirely deleted. This approach is implemented by five main modules
that rely on the contextual information obtained from the sensors as shown in Figure 5.3.
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The first modules, Human activity recognition (HAR) and ambient environment detection
(AED), are used to evaluate the context and identify potential sensitive subjects. HAR aims
to detect and classify different user activities by analyzing accelerometer data. AED, on
the other hand, focuses on determining the environmental context, distinguishing between
indoor and outdoor settings. Then, the image classifier module (ICM) leverages on the
labels received from the HAR and AED modules and determines the appropriate sensitive
subject’s detections module (SSDs) that needs to be applied. SSDs are responsible for
identifying sensitive subjects relevant to each specific context, which includes the user
activity and the environment. This allows further processing by the policy enforcement
module (PEM), either blurring or deleting the sensitive subjects, according to the specific
requirements and policies. The policies applied by this framework are user-defined, reason
for which this approach is considered as intrinsic policies in spite of the context-based
nature of the sanitization [60].

HAR 
(Human activity 

recognizer)

AED 
(Ambient environment 

detector) 

ICM 
(Image classifier 

module)

PEM 
(Policy enforcement 

module) 

SSD1

SSD2

SSDN

SSD 
(Sensitive subject 

detector)

Figure 5.3: General architecture and modules of context-based intrinsic framework [60].

Virtual curtain

Recent work in input sanitization focuses on developing a novel privacy control framework
for Augmented Reality (AR) systems. The virtual curtains approach [63] addresses the
privacy concerns that arise from continuous-sensing cameras and aims to support two func-
tions. Firstly, users should be properly informed regarding the specific directions from
which privacy-sensitive objects should be blocked. Secondly, users should be able to imple-
ment fine-grained control over the input policies, allowing them to define their preferences
and requirements for privacy control. This framework is implemented in three modules that
unitedly transform users input into control policies and act in real-time on those policies,
ensuring that sensitive information is removed before applications gain access the input
stream [63].

The first module, policy configuration, enables users to accurately adjust the size and
position of the virtual curtains around the desired objects, granting them intuitive control
over the blockage of the targeted physical objects, as shown in Figure 5.4. This figure
represents three possibilities to apply virtual curtains to different objects. The first shows
a one-sided virtual curtains, which can be used for flat objects or surfaces, while the other
two show a three and four-sided virtual curtain for volumetric objects. Users can define the
size and position of the virtual curtains via the buttons in the application interface, which
are located in the lower right part of the figure. Additionally, users can perform actions
such as selecting, translating, scaling and rotation through a gesture recognition function
to operate on the virtual curtains. This intuitive process allows users to adapt the virtual
curtains to the desired objects [63].
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Fig. 1: The overall framework of the system design.

environment that combines objects in the real world with
computer-generated virtual objects.

Fig. 2 shows different 3D models we designed to act as
virtual curtains that users can load and interact with. Each
virtual curtain is instantiated as a Node [8] instance via
ARCore. Each Node instance represents a virtual curtain’s
properties and coordinates in the Augmented World. The
Node instance provides a method getWorldPosition()
which returns a 3D coordinate (x, y, z) for a virtual curtain in
the Vector3 data type.
Fine-grained Control: We enable user to control the shape
of their virtual curtains using the Transformable Node
[6], inherited from Node to enable virtual object movements
such as selection, translation, scaling and rotation. This is done
by using a gesture recognition function enabled by ARCore,
which recognizes gestures such as pinch, drag, twist, etc. This
function module enables the user to intuitively and precisely
control the blockage of the target object. Users can drag a
curtain to their desired position and control its size to properly

(a) One-side (b) Three-side (c) Four-side

Fig. 2: Different 3D objects with multiple sides used as virtual
curtains. The Find Object button (highlighted in red rectangle)
in the above figures is used to invoke the Policy Capture
functionality when the user confirms the spatial relationship
between the virtual curtain and the target object.

(a) World to Camera (b) Camera to Screen

Fig. 3: 3D to 2D coordinate conversion. (c00, c01, c02), (c10,
c11, c12) and (c20, c21, c22) correspond to the coordinates of
the coordinate system x-axis, y-axis and z-axis respectively
and (c30, c31, c32) corresponds to the translation value
from Augmented Space W to the 3SD Camera Space S.
(a) Transformation of 3D coordinate from Augmented World
space W to Camera Space C. (b) Projecting 3D coordinate
from Camera Space C to the 2D Screen Space S.

deploy the curtain around the objects for precise blockage of
their target objects. Meanwhile, the shape of the curtain will
effectively communicate its effective range. For example, In
Fig. 2(c), the user could only visually access the credit card
from the top direction, while all the side directions are blocked
by the 4-side virtual curtain.

B. Policy Capture and Registration

The primary function of this module is to capture users’
privacy needs based on their spatial relationship with virtual
curtains and target objects and convert such needs into input-
control policies.

1) Policy Capture: The policy capture process is to asso-
ciate the virtual curtain generated from the policy configura-
tion module with the target object. We realize it by identifying
the target object that is overlapped with the virtual curtains’
projections within the 2D frames.
Coordinate Mapping: We extract the 3D coordinate Pw of the
virtual curtains by calling the API getWorldPosition().
Then to associate the virtual curtain in the 3D space with the
pixels in the 2D screen, we call worldToScreenPoint()
[8] to convert 3D coordinate Pw in the Augmented World
space W to 2D screen coordinate Ps. Fig. 3 shows an example
of this coordinate conversion. Here we briefly introduce the
conversion process.

The coordinate Pw is first transformed into camera co-
ordinate Pc by translation, rotation, and scaling using the
WorldToCamera transformation matrix. This step is neces-
sary because each camera device has its own coordinate space.
The ARCore API provides the getProjectionMatrix()
approach, by which the system can obtain the transformation
matrix in real-time, with the orientations of the virtual curtain
and camera taken into consideration. After converting to Cam-
era Space C, the ARCore performs a projection to transform
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Figure 5.4: Examples of one-side, three-side and four-side virtual curtains applied to 3D
objects [63].

The second module, policy capture and registration, transforms users’ needs into input
control policies. Firstly, the policy capture process associated the target object with the
virtual curtain configured in the previous module. This association is achieved by identi-
fying the target object that overlaps with the 2D frame projections of the virtual curtains.
It uses a CNN model that detects the objects present in a frame and returns their object
class, bounding box, and a confidence score for each detection. This model then finds
the object whose bounding box’s center is closest to the center of the virtual curtains and
determine the Binary Robust Invariant Scalable Keypoints (BRISK). Secondly, the policy
registration module defines the policies to be implemented on each object, which are then
stored to make them accessible for the next module. This policy level of detail allow to
uniquely identify objects. The definition of the policy is based on the type of object, the
BRISK features, and operation to be performed on each object. These operations such as
blurring, pixelating, adding filters or replacing with photos, allow access to the features of
the blocked objects, while protecting sensitive information, as shown in Figure 5.5. This
figure shows an example of applying the virtual curtains to a computer screen. In this case,
the virtual curtain placed in front of the screen effectively blurs it from the front view, as
illustrated in the second picture from the left. However, this configuration is not effective
when viewed from the side, as shown in the other two images. In such cases, the virtual
curtain is not positioned to block the laptop from a side view due to a misalignment between
the bounding box center and the object’s center, which result in a leakage of information
[63].

(a) Front View (b) Blocked (c) Side View (d) Leaked

Fig. 6: Deploying virtual curtains in front of a laptop with the
user visually accessing it from front and left side.

and the user is either static or dynamic. We test the dynamic’s
influence to privacy control precision and system performance.

We first use experiments to examine the policy capturing
precision. We use three scenarios where the user has visual
access to a laptop from the front, the left, and the top. The
experiment is repeated for each scenario in static and dynamic
cases, where we let the user rotate and side-shift the AR device
for dynamic cases. By rotating, the approximate angular speed
is 45 degrees per second. By side-wise shifting, the speed is
0.5 meters per second. Then, we calculate the precision of the
policy capturing process by comparing each scenario’s policy
capturing output to the desired output. For effective cases,
i.e., curtain blocking object, output is a correctly registered
policy; For ineffective cases, i.e., curtain not blocking object,
the output is void. The experiment results are shown in Fig. 7a.
From the figure, we can see that the system could accurately
capture the policy in static cases. However, we have a slightly
lower precision for the dynamic cases. The reasons are two-
fold: there is a slight drift in the virtual curtain when the
user moves. While our capturing module functions correctly,
drifting can result in a wrongly configured policy; In addition,
a CNN-based object detector must determine the object’s
position and then match it with the coordinate of the virtual
curtain. However, the detector might fail due to blurred frames
caused by fast device movement. Due to either the curtain
drifting or the failure of the object detection, we observe a
lower precision in dynamic cases.

We further use experiments to test the system performance
when using the techniques of object detection, object detection
with threading, and object detection with tracking in our
policy configuring and enforcement modules. We choose the
supported FPS as the metric. From the result shown in Fig. 7b,
we can see in the static scenario the average FPS supported
is 4-5 FPS when only object detection is employed, with a
range of 4-7 FPS. With multi-threading, we can support an
average FPS of 19 with a range of 17-22. This improvement
is done by processing the object detection in parallel enabled
by TensorFlow. Based on the multi-threading enhanced ob-
ject detection approach, we further employ object tracking
technique, which yields an average of 24 FPS with a range
of 22-27. We also run the experiment with the user moving

(a) Policy Registration Pre-
cision

(b) FPS under various algo-
rithm approaches

Fig. 7: Measurement for Precision under various scenarios and
FPS

the device by rotating and side-wise shifting. We can see a
lower FPS for those cases due to the extra overhead of object
detection. However, multi-threading and object tracking could
compensate for both cases by processing frames in parallel and
replacing the computation-intensive object detection instances
with the cheaper object tracing ones.

VII. DISCUSSION AND FUTURE WORK

It is discovered from our experiments that the object de-
tection tends to fail if the frame only contains part of the
target object. For example, when we rotate the AR device, the
monitor is not detected by our CNN model if less than 30
percent of it is captured in the frame. We use object tracking
to increase the detection rate for the object exiting case.
However, we still could not detect it from partial exposure
when the object gradually enters into the frame. In addition,
in highly dynamic scenarios, such as when we turn the AR
device in high angular velocity, the object detection could also
fail even if the entire object appears in the frame. This is
because the objects present in blurred condition due to the
camera movement. Moreover, object detection in every camera
frame is highly computation-intensive, resulting in low frame
rates. Though we demonstrate the effectiveness of several
compensating approaches such as multi-threading and object
tracking, the performance is still bounded by the resource-
constrained AR device. Limited by the scope of this work,
we will search for algorithm- or system-level approaches to
address the identified challenges in future work.

VIII. CONCLUSION

We developed a privacy control framework for AR systems
in this work. Our work novelly leveraged the DNNs to create a
policy capturing pipeline that translates users’ privacy control
needs into standardized policies. The policy is loaded in the
online stage to remove privacy-sensitive visual information
from the input stream outsourced to untrusted applications. By
using our design of virtual curtains, users could informatively
communicate the influence range of their enacted privacy
policies. We implemented a prototype system based on the
state-of-art ARCore platform. Our experiments demonstrated
the effectiveness of our framework design for enabling user
to control the visual information exposure of each target
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Figure 5.5: Example where successful blocking from the front side with virtual curtains
effectively secures the laptop, while an unsuccessful blockage, due to misplaced virtual

curtains, results in a leak from the side view applied to the laptop [63].
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The third module, the policy enforcement, protects in real-time the input stream by ap-
plying the previously defined policies. This module detects the object the user intends to
block by making use of a trained machine learning-based model that is loaded into the
application during its initialization. The policies are loaded and the camera frames are
accessed to be sent to the machine learning model. This model is able to detect objects and
then, by using an object tracking technique, the objects are recognized in all the frames.
Then, the identified objects are altered across all frames accordingly to the policies and
subsequently shared [63].

5.2.3 Input protection applied to Hydra

During the input stage, the primary threats that arise from perceptual applications like
Hydra result from the overcollection and aggregation of raw visual data in time and space,
which may contain sensitive information. To recapitulate, the threats presented in Section
4.3 and listed in Table 4.3.3 as Threat 1, Threat 3, Threat 6, Threat 7 and Threat 9 originate
from the collection of multiple images over time and space from a scene. The overcollection
of these images, which may contain sensitive information like personal objects (e.g., as
credit cards) or biometric data (e.g., facial features that uniquely identify an individual),
as well as sensitive locations like bathrooms, poses a severe risk of privacy. Additionally,
the privacy threat of unawareness included in Table 4.3.3 as Threat 10 originate from the
lack of consciousness about a particular situation. These risks can be mitigated by the
previously discussed frameworks, which although primarily focused on addressing risks in
AR, can also be applied to spatial perceptual applications like Hydra. In general terms the
most common solution is the least-privilege principle that conceals sensitive information.

Darkly presents two main approaches: opaque references and privacy transforms. The use
of opaque references ensures that no sensitive information is shared with external enti-
ties, limiting the access to the raw input stream while still allowing interaction with these
entities. On the other hand, some cases require access to specific features and applying
privacy transforms allows to share the required information without disclosing further de-
tails. These techniques enable the identification and interaction with elements without
disclosing all of their features. Despite Darkly being a mature approach, its principles
set the basis for protecting sensitive information, which still maintains its relevance. The
main drawback of this framework is that it has not been applied in real-time scenarios
and lack immediacy, which presents challenges when attempting to apply it to frameworks
like Hydra. Furthermore, the later improvement allows to automatically apply sanitization
after detecting the presence of sensitive entities, allowing to blur sensitive features and to
completely erase sensitive locations. This improved framework was tested in both outdoor
and indoor environments. In indoor scenarios, this approach effectively blurred faces and
screens in most of the cases. On the contrary, it was not able to detect smaller objects like
credit cards. When dealing with entire sensitive images, such as bathrooms or toilets, this
approach blurred the entire frame. Overall, the results presented in this approach achieved
a success rate of approximately 62% in indoor scenarios. This result represents an average
that takes into account static situations, with a success rate of 71.5% when individuals are
sitting and 57% when they are standing, as well as moving situations, which had a success
rate of 58%. This framework solves the main issue found in Darkly and has been tested in
real-time scenarios. However, the immediacy that frameworks like Hydra require will still
pose a challenge with the success rates achieved by this framework.
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Virtual curtains focus on covering the targeted physical objects in real-time while assuring
the users’ awareness of how their personal data is being handled. This recent work addresses
some of the limitations of the previous approaches by providing users with the ability to
define their privacy preferences in finer detail. This level of control empowers users to
apply virtual curtains for privacy protection and translate those settings into actionable
privacy policies. It allows users to make more precise adjustments, effectively overcoming
the restrictions in Darkly that limit the customization of privacy policies. This approach
has been tested in real-time to determine its effectiveness in concealing objects from the
input stream while ensuring alignment with the user expectations. For these purposes, they
evaluate static and dynamic scenarios where the user has visual access to a laptop from
various angles: front, left and top and the freedom of movement with the capturing device.
The results show that the system effectively captures policies in static scenarios but exhibits
slightly reduced precision in dynamic situations. This lower precision can be attributed to
two factors: user movement causing a subtle shift in the virtual curtain, resulting in mis-
configured policies, and the rapid device movement leading to blurred frames and failures
in object detection. Additionally, frames that only contain portions of an object also pose
issues when less than 30% of the object is captured in the frame. This work also highlights
the computational demands of real-time object detection, where compensatory measures
like multi-threading and object tracking exhibit limited performance due to resource con-
straints on the devices, prompting the exploration for future works. Advancements like
virtual curtains, which aim to enhance the user experience within frameworks like Hydra,
offer a promising solution for improving privacy. The level of control provided by this
approach aligns with the evolving landscape of privacy concerns in scenarios that require
immediacy and real-time responses.

5.3 Data protection

After the data has been collected, it undergoes processing to generate an output. However,
once the data has been gathered, user have no control over how their data is being handled
and shared with third-party agents, which can access personal information. The aim is to
leverage this information without disclosing any user sensitive information through the data
life cycle. Consequently, data protection measures can be categorized at different stages,
during aggregation, during processing and during storage. Although data aggregation can
be considered part of input data protection, a different approach can be taken as how data
is managed after it has been sensed [57][58].

5.3.1 Elicit mitigation strategies

This category can be associated with the branch of guarding association from the mitigation
techniques discussed in Section 3.2.2. This branch focuses on controlling the associations
after disclosure and minimizing their exposure. Perceptual applications rely on the overcol-
lection and aggregation of extensive volumes of data for its processing and deliver real-time
outputs, which can be mitigated by data minimization. Other protection approaches in
this stage typically involve the use of k-anonymity and differential privacy. K-anonymity
focus on guarding the individual identities from a bigger group that share the same quasi-
identifiers, belonging to the same anonymity set. This technique involves data perturbation
or manipulation to ensure that each record remains indistinguishable from at least k-1 other
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records. The drawback of this approach is that is suffers from scaling problems when hav-
ing high number of sensors or input data sources, making it difficult in be implemented in
this kind of scenarios. Differential privacy relies on adding noise or inserting randomness to
data to provide plausible deniability and unlinkability. Additionally, protected data storage
solutions like personal data stores (PDS) provide a secure way for storing user data. PDS
allows users to manage access to their information, determining which applications can use
it, as well as monitoring the data flows in and out. This can be achieved by implementing
a sand-box mechanism that monitors the data that is provided to the applications [57][58].

5.3.2 Selection of PETs

Similarly to the input protection, there is a multitude of possible approaches under con-
sideration to mitigate the challenges of protecting data during processing. Each of these
approaches tackles the issue from a distinct perspective, and it is essential to examine their
individual strengths and limitations. Some of the techniques that can be employed in this
stage can be categorized as follows [57][58]:

• Encryption-based techniques such as homomorphic encryption, allow computations
on encrypted data. For instance, HE-SIFT [68] performs bit-reversing and local en-
cryption on raw images before feature description and leveled-HE [69] that aims to
improve the computation time of the precious approach.

• Secret sharing methods involve splitting data among untrusted parties, allowing com-
putations without revealing individual data. For instance, secure multi-party com-
putation enables data processing from multiple sources without disclosing sensitive
information. SECSIFT [70] splits the SIFT features among a set of cloud servers that
also improves computation time of HE-SIFT.

• Virtual reconstruction approaches leverage the inherent artificial nature of MR to
provide sanitized virtual reconstructions of physical spaces instead of sharing complete
3D data. This approach balances sanitization and utility. For instance, one approach
involves the use of 3D line clouds instead of the traditional 3D point clouds [71], which
obfuscates detailed 3D structural information. Another technique that represents
surfaces as a set of planes [72], focuses on mitigating spatial inference attacks.

Each of these approaches addresses the challenge of protecting visual information in MR
contexts from a different angle. Further exploration and evaluation are needed to determine
their suitability and effectiveness in different scenarios, including their potential applicabil-
ity in the Hydra scenario, as explored in this study.

Privacy Preserving Image-Based Localization

This framework addresses the privacy concerns associated with image-based localization
that arise from the constant storage of 3D point clouds of a 3DSG. The generation of 3D
maps of the environment and the determination of the camera pose estimation require the
constant storage of information of the scene. Generally, the source images are eliminated
once the mapping process is complete. However, the 3D point clouds obtained from these
images are continuously stored. These can be used to accurately reconstruct replicas of
the original images of the scene, as well as inferring the layout of the scene including the
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presence of any confidential objects. This approach addresses the threat of disclosure of
sensitive information by replacing the traditional 3D point cloud representation with 3D
line cloud representation. This innovative representation conceals the underlying geometry
of the scene, as shown in Figure 5.6, while still providing enough geometric constraints
to support reliable and precise estimation of the camera’s positions and orientation in six
degrees of freedom (6-DOF) [71].
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Figure 5: Dataset Visualization. The original 3D point cloud with the corresponding 3D line cloud is shown.

Now we need at least four correspondences to estimate the
7-DOF 3D similarity. Note that Eq. (10) has a compara-
tively simple and efficient solution [73] that we refer to as
m-PnP+λ+s. In the privacy preserving setting, the problem
of computing a 3D rigid transformation is exactly minimal,
i.e., we now need a fourth correspondence to estimate the
additional scale parameter using the constraints in Eq. (11).
This is equivalent to the generalized absolute pose and scale
problem [70], where the role of cameras and map is again
reversed. We refer to the reversed problem as m-PnL+λ+s
in the general and as m-P4L+λ+s in the minimal case.

3.2.4 Specialization with Known Vertical

Oftentimes, an estimate of the gravity direction in both the
reference frame of the camera and the 3D map may be avail-
able, e.g., from inertial measurements or vanishing point
detection. By pre-aligning the two reference frames to the
vertical direction, we can reduce the number of rotational
pose parameters from three to one such that R ∈ SO(2).
This parameterization of the rotation simplifies the geomet-
ric constraints, and leads to more efficient and numerically
stable solutions for these problems. In addition, the mini-
mal cases require fewer points, leading to a better runtime
of RANSAC. We implement the known gravity setting for
all described problems and indicate this with the suffix +u.
An overview of all the problems is given in Table 1.

4. Experimental Evaluation

To demonstrate the high practical relevance of our ap-
proach, we conduct an extensive list of experiments on real-
world data with ground-truth. We evaluate the pose estima-
tion performance in terms of accuracy/recall and robustness
to the input by comparing our privacy preserving approach
using 3D line clouds to the traditional approach of using 3D

point clouds. In the following, we first describe the experi-
mental setup before presenting the results.

4.1. Setup

Datasets. We collect 15 real-world datasets of complex
indoor and outdoor scenes (see Fig. 5) using a mix of
mobile phones and the research mode of the Microsoft
HoloLens [31]. To realistically simulate an image-based lo-
calization scenario, we captured map images used to recon-
struct a 3D point cloud of the scene and query images from
significantly different viewpoints used for evaluating local-
ization. For sparse scene reconstruction and camera cali-
bration, we feed all the recorded (map and query) images
into the COLMAP SfM pipeline [60, 63] to obtain high-
quality camera calibrations. The obtained camera poses of
the query images serve as ground-truth R̂ and T̂ for our
evaluations. All query images alongside their correspond-
ing 3D points are then carefully removed from the obtained
reconstructions to prepare the 3D map for localization. Af-
terwards, we perform another bundle adjustment with fixed
camera poses to optimize the remaining 3D points given
only the map images. These steps are to reconstruct ac-
curate ground-truth poses for the query images, and to also
ensure a realistic 3D map for localization, in which we are
only given the map images. Across the datasets, we cap-
tured 375 single-image and 402 multi-image queries.

Protocol. To establish 2D–3D correspondences, we use in-
direct matching of SIFT features at the default settings of
the SfM pipeline [60, 63]. In the single-image scenario, we
treat each query image separately, while for the multi-image
scenario, we group several consecutive images in the cam-
era stream as one generalized camera. When evaluating the
multi-image case and pose estimation with known structure,
we reconstruct the 3D points X̃ and camera poses P c using
SfM [60,63] from only the query images. For a fair compar-

Figure 5.6: Original representations with 3D point clouds with the corresponding 3D line
cloud representation [71].

To obtain this representation, known as 3D line clouds, the 3D lines and their associated
features descriptors are stored, while discarding the original 3D point locations. This study
begins by considering the localization of a single image as the sole input and it is extended
to the more complex scenario of jointly localizing multiple images. The process of localizing
an image involves determining the precise position and orientation of the camera relative
to the surrounding environment using visual information from the images [71].

The traditional camera pose estimation method relies on having information about the
scene’s structure in the form of 3D point clouds, which discloses the scene’s underlying
geometry as a necessary part of its operation. In practice, these 3D point clouds are often
obtained by reconstructing 3D structures from images using a technique known as structure
from motion (SfM). This conventional approach involves matching features in 2D images to
corresponding features in 3D point clouds. The absolute pose of a camera is described by its
rotation and its translation, denoted as P = [R T], which allows to describe its movement
and orientation in 3D space. In this approach, every matching between the features of 2D
images and 3D points introduces a pair of geometric constraints: the depth of the observed
image point and the lifted representation of these points in projective space. To estimate
the 6DOF, a minimum of three 2D-3D correspondences are required. This problem is
commonly referred to as the pnP problem. Following this initial estimation, it is refined
through a process that seeks the most probable estimate based on the Gaussian error model
for image observations [71].

Alternatively, the proposed privacy-preserving method is based on the key idea of obfus-
cating the scene’s geometry in order to conceal its underlying geometry. This approach
suggests converting each 3D point into a 3D line, which involves creating a line that has a
random direction in the three-dimensional space and passes through the original 3D point,
as depicted in the previous figure. This transformation changes the representation mak-
ing it impossible to recover the 3D point’s location due to the randomness of the line’s
direction. In this case, the correspondence to the projected 2D lines and 2D points reduces
the geometric constraint to one making it now necessary to have at least six 2D point to
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3D line correspondences to obtain the 6DOF. Furthermore, this approach is extended to
jointly localize multiple cameras, which differs from the single-camera case in its parame-
terization. Instead of determining a separate pose for each camera, a single transformation
is calculated to adjust to the entire set of cameras at once [71].

Broadly, this framework considers three different scenarios in which user privacy can be
compromised. The first scenario pertains to situations where the scene itself is confidential,
resulting in potential unauthorized access even when employing secure servers for cloud-
based storage and processing. The second scenario includes situations where the scene is
not confidential, yet it contains sensitive objects or information. The objective in such
scenarios is to enable the persistent generation of 3D maps while preserving the confiden-
tiality of sensitive information and ensuring user awareness of the capturing process. The
third scenario involves sharing 3D maps among authorized users, requiring the confiden-
tial encoding of the map to protect privacy. Furthermore, the privacy-preserving approach
has been tested with 15 real-world datasets of both outdoor and indoor environments, as
represented in Figure 5.6. These tests aim to analyze the accuracy and robustness of this
approach in estimating the absolute camera pose, while comparing it to the traditional
approach. The results indicate that, in terms of accuracy and reliability, the traditional ap-
proach slightly outperforms the privacy-preserving approach, as it relies on two constraints
for pose estimation compared to the one constraint that the proposed method uses. In
terms of runtime, the privacy-preserving approach is slower than the traditional approach.
However, it demonstrates its suitability for real-time scenarios. Additionally, these tests
show that the proposed approach is robust when handling different situations. In sum-
mary, the 3D line cloud approach offers a permanent and memory-efficient transformation,
resilient against privacy attacks in real-world scenarios [71].

Conservative Plane Releasing for Spatial Privacy Protection in Mixed Reality

This framework focuses on the threat of spatial inference, in which adversaries may attempt
to infer the user’s location or even extract information about user poses, their movements,
or changes in their surroundings based on historical 3D data of their environment. 3D
data offers an accurate representation of the user’s environment and are constructed using
a set of point clouds. A point cloud consists of a collection of oriented point and mesh
information, which indicates the connections between these points to form surfaces. Each
point is formed by their spatial coordinates in space {x,y,z} and a normal vector {nx, ny,
nz} that indicates the orientation of the surface to which the point is associated. This
works addresses two levels of inference: inter-space inference, where the adversary aims to
identify the general location of the user, and intra-space inference, where the adversary
seeks to determine the specific location of the user within a given space. Additionally, this
approach assumes that the attacker has prior knowledge about the space and can only infer
spaces that the user has previously visited [72].

The threat of inference involves two main steps, given that the adversary possesses prior
knowledge about the spaces. Firstly, a reference model is created by using 3D description
algorithms on the known spaces to capture their unique features. Then, this model is used
to test and infer the characteristics of unknown spaces by matching their 3D descriptors
to those stored in the reference model. This way, the attacker can produce a hypothesis to
reveal the inter-space location and the intra-space location. This approach proposes two
protection strategies to mitigate the spatial inference threat, partial releasing and planar
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spatial generalization. These strategies are used jointly because it has been proved that
spatial generalization alone is an ineffective approach for spatial privacy [72][73].

Partial spaces are intended to minimize the amount of information shared by limiting the
data released through point clouds. This approach reveals only a portion of the raw spaces,
which involves selectively sharing segments of the space with varying radius, as depicted
in Figure 5.7a. On the other hand, spatial generalizations involve representing any 3D
surface within a space as a set of planes, as shown in Figure 5.7b. This approach can be
considered a form of sanitization as surface-to-plane generalizations may unintentionally
remove finer details below the desired level of abstraction. Moreover, an attacker can
replicate the generalizations applied on the released point cloud data and is able to adapt
their strategies accordingly. Therefore, a conservative plane releasing approach is proposed,
building upon plane generalizations by restricting the number of planes generated during
generalization, as shown in Figure 5.7.

(a) Sample partial spaces of a bigger space (b) Generalizing the partial spaces (c) Conservative release of planes

Figure 3: Sample (a) partial releases with (b) generalization, and (c) conservative plane releasing.

for any space i . Then, for the inference step, we match the ref-
erence set with the key point-descriptor set of the unknown
query space.

For inter-space inference, we utilize a deterministicmatching-
based approach using nearest-neighbor matching in the de-
scriptor space, i.e. { fS∗ } 7→ { fSc ∈{Sr }}. Then, a voting mech-
anism determines the best candidate match among the ref-
erence spaces (Sc ∈ {Sr }) which has the most matched de-
scriptors with the query space (S∗). A similar voting-based
mechanism was utilised in place recognition over 3D lidar
data [5, 6].
We improve upon the mechanism used in [7] by extend-

ing the inference to intra-space location. We collect the key
points of the corresponding features matched from inter-
space inference, and trim the collection by only getting the
pair of reference and query descriptors whose nearest neigh-
bor distance ratio (or NNDR) < 0.9. Then, using their cor-
responding key points, as in {kS∗ } 7→ {kSr },we perform a
geometric structure consistency check which produces the best
pairs of key points with consistent structural relationships;
that is, the graph (or sub-graph) of the reference key points
is similar to the graph (or sub-graph) of the corresponding
set of query key points. This can be generalized to the NP-
complete sub-graph isomorphism problem but we instead
use a heuristic-based approach using the product of the an-
gular (using cosine similarity) and distance similarities of the
two key point graphs. Then, we pick the resulting sub-graph
with the most number of structurally consistent matched key
points as the best intra-space match. We then compute the
resulting intra-space distance d(cS∗ , cS ) of the true centroid
cS of the query space to that of the centroid of the matched
reference space cS∗ = cSr within the query space as described
by Eq. 4.

4.2 Inference using DNN: pointnetvlad
To produce a large-scale place recognizer with 3D point
cloud as input, pointnetvlad combines the deep network
3D point cloud shape classifier PointNet [23] with NetVLAD
[3], which is a deep network image-based place recognizer.
To train pointnetvlad, we split the reference point clouds
to disjoint training and validation sets. The point cloud

sets are further subdivided to similarly-sized overlapping
submaps with a radius of 2m and are re-sampled to contain
1024 points. The submap intervals are 0.5m and covers all 3
axes (while the original pointnetvlad only covers the two
ground axes). The PointNet layer produces local feature de-
scriptors for each point in a submap, and, then, feed those to
the NetVLAD layer to learn a global descriptor vector for the
given submap. We direct the reader to [36] for more details
on pointnetvlad.2

For inference, pointnetvlad creates a reference database
of the global descriptors of the combined raw and general-
ized spaces available. The point cloud of the query space
will also be divided into submaps and be directly fed to the
pointnetvladmodel which likewise produces the two-level
spatial inference hypothesis.

5 PRIVACY MEASURES OVER 3D DATA
Directly releasing raw point clouds exposes all spatial infor-
mation as well as structural information of sensitive objects
within the space. A mechanism can be inserted, as shown in
Fig. 1, along the MR processing pipeline to provide privacy
protection. We present two baseline protection measures:
partial releasing, and planar spatial generalizations. How-
ever, it has been shown that planar spatial generalizations
are inadequate forms of protection [7]; thus, we augment the
protection further with conservative releasing of the plane
generalizations.

5.1 Partial spaces
To limit the amount of information released with the point
clouds, partial releasing can be utilised to provide MR appli-
cations the least information necessary to deliver the desired
functionality. With partial spaces, we only release segments
of the space with varying radius. Fig. 3a shows an example
space with 2 partial releases. Partial releasing can either be
performed once or up to a predefined number of releases if
more of the space is necessary for the MR application to pro-
vide its service. Then, succeeding revelations of the space are

2Original pointnetvlad code can be accessed at github.com/mikacuy/
pointnetvlad.

6

Figure 5.7: a) Partial spaces b) Spatial generalization c) Conservative plane releasing [72]

To prove it, this approach designs an adversary, aiming to infer the location of a user as
they move around by using the gathered data and serve as a tool to test and evaluate
the effectiveness of the proposed spatial privacy approach. The results obtained from this
approach show that by sharing 11 generalized planes of the user’s space using a radius less
than 1.0 m, the attacker is not able to identify the user’s exact location at least half of the
time. Furthermore, up to 17 generalized planes can be revealed if the radius is minimized
down to 0.5 m, while ensuring data utility and privacy preserving [72].

5.3.3 Data protection applied to Hydra

During the data processing stage, the main threats arise from the handling of vast amounts
of data. Hydra relies on the overprocessing and the persistent storage of 3D point clouds
for a more realistic representation of the environment, but this data can potentially reveal
sensitive information. The threats outlined in Table 4.3.3 as Threat 1 and Threat 6, apart
from being considered within the scope of input protection, also pose risks during the data
processing stage. These threats arise due to the constant processing and storage of 3D
point clouds of these images, which could be used to reconstruct replicas of the original
images. Furthermore, the threat mentioned in Table 4.3.3 as Threat 4 refers to the in-
ference of the scene’s layout and the exposure of captured objects and Threat 5 compiles
various potential threats associated with user activity within the scene. By tracking agent
movement around the scene, a user can be linked to different spaces/rooms, objects, and
other agents. These privacy threats can be mitigated by the previous discussed frameworks,
which can be applied as an intermediate layer to the input point cloud before proceeding
further down the pipeline. As previously mentioned, some data protection approaches in-
tersect with input protection and most of the data sanitization and abstraction methods
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focus on blocking parts of the input stream and that can potentially limit the data util-
ity. By proposing other approaches that focus on the manipulation and transformation of
sensitive information there is a trade-off between data utility and privacy preserving [73].

The privacy preserving image-based localization approach aims to conceal the underlying
geometry of the scene and also protect sensitive objects by proposing a representation
based on 3D lines generated from the 3D point clouds. As mentioned, the continuous
storage of sensitive information like 3D point clouds inherently poses a privacy risk. The
act of retaining this data can potentially expose sensitive information, making it vulnerable
to unauthorized access, data breaches, or misuse. This representation aims to generate a
representation where no information can be inferred from looking at the 3D line clouds.
It uses a simplified code to store the 3D lines, encoding their direction in just 1 byte and
representing their position with 2 floats. This reduces the memory required to store 3D line
information compared to the original 3D point clouds, making it more efficient. However, to
obtain the 3D line cloud representation, the data must undergo a one-time permanent lifting
transformation. This transformation is performed only once since performing it multiple
times could potentially reveal the 3D points by intersecting them with the corresponding 3D
lines. Additionally, while the recovery of a single 3D point from the 3D line representation
presents a challenging inversion problem, there is a possibility to infer information about the
scene structure through an analysis of the 3D line cloud’s density. These results show that
these specific challenges must be addressed to ensure its effectiveness in privacy protection.
It needs to improve its accuracy and robustness to ensure that no traces of sensitive data
can be reconstructed from the 3D line cloud representation. Despite its challenges, the main
advantage of this approach is its scalability and computational benefits. As scenes become
more complex or involve multiple cameras, 3D line cloud representations offer scalability and
computational efficiency due to their reduced memory and processing, making it beneficial
for frameworks like Hydra.

The conservative plane releasing for spatial privacy protection approach addresses the spa-
tial inference threat. This framework combines spatial generalizations with conservative
releasing to conceal the general location and the exact location of an agent by limiting
the information that is shared and providing only sufficient spatial information to offer a
generic representation of the spaces. To test this approach, developers designed an attacker
that has previous knowledge of the environment and that aims to infer the inter-space and
intra-space location of a user. For this purpose, they define privacy metrics to measure the
accuracy of the estimations. The inter-space location is measured using misclassification
error rates, and the intra-space location is measured with distance errors, which evaluate
the accuracy in estimating a user’s position within a space in meters. The results show
that adversaries in scenarios with a radius of 0.5 and a maximum release of 17 planes will
misidentify the inter-space location at least half of the time. Additionally, the estimation
of the intra-space location will have a distance error of 3.0 meters. Similarly, they obtain
similar results for scenarios with a radius of 1.0 and a maximum release of 11. These results
show that the Quality-of-Service (QoS) varies with different factors. The increasing size of
the radius has a small positive effect on the overall QoS, but it is more influenced by the
number of planes. Smaller radius and fewer successive releases result in better QoS. Thus,
in this approach there is a trade-off between prioritizing privacy and utility. This trade-off
involves deciding how much information is shared while considering the QoS. Prioritizing
privacy suggest limiting the information that is released, which reduces the chances of
privacy breaches but may result in lower utility. On the other hand, prioritizing utility sug-
gests revealing more information, enhancing data quality. To enhance privacy, one can use a
larger radius, limiting the number of planes released and to improve utility, a smaller radius
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can be used, allowing more freedom in releasing a higher number of planes. Furthermore,
this works suggests that plane generalizations that closely match the actual surfaces might
maintain the user’s experiences in AR applications. In summary, this approach effectively
reduces the risk of revealing details of the environment; however, it comes with drawbacks
such as a loss in accuracy and a trade-off in utility. The application of this approach into
the Hydra framework could be studied while carefully considering the loss of accuracy in
the representation.

5.4 Output protection

Lastly, after the processing stage, an output is generated to be rendered and exploited by
applications. At this stage, users have no control over how their data is being used and
for what purposes by these applications. Hydra dynamically reconstructs a comprehensive
3D representation of real-time environments, which can be leveraged in smart building
scenarios. In line with the input stage, sensitive information may be captured in the
process of building the model of the environment and may be present in the rendered
output, which results in an intersection between input and output protection. In addition,
untrusted third parties may gain access to the rendered outputs, which poses a risk of
potential unauthorized modifications that could compromise the reliability of the outputs
and give raise to privacy concerns [57][58].

5.4.1 Elicit mitigation strategies

This category can be associated with both branches from the mitigation techniques dis-
cussed in Section 3.2.2. Aligned with the input protection approaches, protection ap-
proaches in the output data stream can involve the removal of sensitive information. This
approach focusses on guarding the exposure of sensitive data after it has been captured and
rendered, ensuring that only necessary information is shared with the applications, which
can be categorized as rendering approaches. These measurements can be employed as an
intermediate layer, situated between the rendering and the applications interfaces. Other
protection approaches focus on minimizing the exposure after the potential disclosure of
sensitive information, which are categorized as output reliability and are also implemented
as an intermediate layer [57][58].

5.4.2 Selection of PETs

Following the same methodology as for input and data protection, various approaches can
be employed to ensure that data remains protected when it is presented to the users. These
different approaches to output protection come with their own advantages and mainly focus
on ensuring output reliability. Some of these approaches control output access with an
object-level granularity [74] that manages the output rendering. Arya [75] is a following
approach that establishes an output policy specification and enforcement, which was later
improved by an approach that integrated reinforcement learning for dynamic environments
[76].
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ARYA

The Arya framework is one of the first approaches that explores the integration of an
output policy module, aiming to solve some of the risks arising from malicious actors
tampering with the output stream. Potential risks include the manipulation of the visual
representation, such as the intentional obscuring of real-world content or the inclusion of
visual content and misleading information. The main contribution of this approach is to
address these risks that can potentially result in undesirable outputs, posing a security
risk that can further lead to privacy implications. For this purpose, it aims to propose
a policy specification framework to define output policies. These policies specify what
actions applications are allowed to perform, dictating how they can access and interact
with real-world objects or elements in a user’s environment [75].
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Figure 5.8: Arya’s architecture [75].

This framework leverages on previous work of the system recognizers [64] and an input
policy module [77] as shown in Figure 5.8. The recognizers module is used for gathering
and interpreting raw sensor data from the real world and it exposes only the higher-level
objects. Originally designed for input protection, Recognizers is able to identify specific
elements within the raw sensor data like people, faces or flat surfaces. It promotes a least-
privilege approach, ensuring that application access only the required information. In the
context of Arya, it now offers valuable information about the user’s physical environment
to the output control policies [64].

In the first branch of the architecture, the Recognizers module is followed by an input
module that is used to determine the selection of data to be passed to applications. This
module automatically detects and enforce policies without requiring user involvement. In
this approach, they define policies through “passports” that are presented by the objects,
places, and individuals. These passports specify its concrete policies, being the system
itself the one deciding which level of permission they are granting applications. Thus,
this method simplifies the process of protecting information for users by initially defining
policies for them based on context, yet it also grants them the flexibility to modify these
policies as required. In some examples scenarios, like a workplace, it may be specified that
whiteboards need protection, while locker rooms enforce a “no recording” policy [77].

In the second branch of the architecture, Arya integrates an output policy module before
the output display that controls the visual output by aligning it with the specified policies.
This design involves defining the desired output policies, implementing them effectively,
managing situations where policies may clash and formulating countermeasures to address
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violations of those policies. Firstly, Arya aims to transform abstract guidelines into concrete
polices by describing specific conditional predicate or Boolean expressions and mechanisms
or actions. Each conditional predicate describes an undesired condition in the output dis-
play that determines when a policy should be implemented and then, a mechanism can
be implemented to resolve it. Thus, policies are formed as a combination of one condition
and one mechanism from the set of options provided by Arya instead of arbitrary policies.
These policies can include avoiding the obscuring of real elements, abrupt movements of
objects or objects that hide another object. Secondly, these policies are applied at different
points in the Arya pipeline, during the creation or modification of objects or by monitoring
policy conditions on every frame. Lastly, instances where policy violations are detected, are
identified and partially shared with applications to address those violations. Additionally,
Arya showcases its ability to effectively support policies from diverse sources while also
considering the existence of malicious policies. In the case of conflicting policies, the less
intrusive policy will prevail. This can result in applications displaying less content, po-
tentially impacting in their functionality. However, they cannot result in a more intrusive
output [75].

Adaptive Fog-Based Output Security for Augmented Reality

The adaptative fog-based output security framework builds upon Arya and enhances it by
generating adaptative policies instead of them being bounded to a set of policies. The
main contribution of this framework lies in its ability to automatically generate policies
that adjust to changing conditions, making it suitable to dynamic environments. For this
purpose, this framework leverages on deep reinforcement learning (RL) and fog computing,
as shown in Figure 5.9 [76].
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Figure 5.9: Pipeline for generating and deploying an output security policy for AR systems
using deep reinforcement learning.[76].

In a general sense, deep reinforcement learning (RL) facilitates task automation. In this
approach, deep RL is used for automating decision-making through interactions with a
dynamic environment. As shown in Figure 5.9, the agent observes and interacts with the
simulated environment. Based on its observations, the agent selects a policy to implement
and in response it receives a reward function from the environment, which represents the
effectiveness of the chosen policy. This measure is represented through an obstruction
metric, which indicates the percentage of the user’s display that is obstructed. Through this
iterative process, the agent optimizes its decision-making and adjusts the neural network
for implementing the optimal policy. Thus, this framework develops a “smart middlebox”
system designed to filter out potentially harmful or unintended elements from the output
stream before displaying them. This is achieved by performing offline training simulations
through simulated environments to obtain a neural network model. Then, this model can
be applied to real objects by making use of the system Recognizers. Some of the key benefits



Solution Space. 70

of RL is that it relies on environmental data and does not require generating new training
sets, making it adaptable to different scenarios. Policies can be adjusted by modifying
the reward function, allowing the agent to adapt its decisions. Additionally, because of its
closed-loop nature, the model can consider long-term consequences of an agent’s actions
and can predict interference due to their movements [76].

Complementary to deep RL, fog computing brings computation closer to the end devices
to optimize data processing. This localized processing reduces network latency, improves
response times, and reduces dependency on centralized cloud servers. As shown in the
architecture, fog computing is used for the training of the deep neural network. This
design allows gathering more contextual information about the environment, enhancing
accuracy and the realism of training simulations [76].

This framework has been tested through some experiments that show its effectiveness.
Firstly, this system trains the agent in regulating the placing of holograms in AR scenarios,
which significantly reduce obstruction of real-world objects in real-time scenarios. The ob-
struction metric was tested, showing that the average obstruction initially higher at around
34%, without policies. That value is significantly reduced to around 7% by applying policies
that combine the displacement of objects and the incorporation of transparency policies.
However, this metric alone cannot fully assess the effectiveness of AR content preserva-
tion, as policies can achieve an obstruction value of 0% by making objects transparent or
deleting them. Thus, there is a need to develop alternative metrics. The reward function
and the agent’s value estimate are both tested to illustrate the improvement in the agent’s
performance over time. As the agent undergoes training, it becomes more skilled at pre-
dicting and anticipating future reward functions, reflecting its increasing skill level. Also,
these experiments show that the RL generated policies had a minimal impact on frame
rates. It shows that while activating the policy, there is a slight decrease in the frame
rate compared to the non-policy case, while both performances converge as the number
of holograms increases. This suggest that RL policies can be integrated into AR systems
without compromising performance [76].

5.4.3 Output protection applied to Hydra

During the output stage, most of the potential threats from perceptual applications are cen-
tered around security concerns, which have the potential to compromise individual privacy.
External parties that gain access to the output stream can manipulate the scene graphs
by adding or removing visual content, thereby altering, or removing necessary information
and introducing distraction for individuals. The threat identified in Table 4.3.3 as Threat
9 refer to external entities gaining access to the output stream. Ensuring the protection
of this information is necessary to prevent additional threats and it can be achieved by
implementing the previously discussed frameworks.

Arya proposes an approach that addresses both input protection, achieved by integrating
Recognizers and the input policy module, and output protection, achieved by integrating
Recognizers with the output policy module. In this section, I will focus on the branch
dedicated to output protection. Here, Recognizers identifies real-world objects and their
positions, enabling the output policy module to enforce policies based on this information.
Arya mitigates the risks associated with obscuring real-world content or introducing un-
intended visual content into the output stream. It facilitates the process of defining and
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enforcing output policies, as well as resolving conflicts among these policies. For exam-
ple, if Recognizers detect a person nearby, the module can ensure that AR objects do not
occlude or obstructs that person’s view. Thus, Arya focuses on enforcing policies at a
level of individual objects, without affecting the entire output and supporting operations
like movement and resizing. One of the drawbacks of this approach is that it relies on a
set of predefined policies, which poses a significant challenge for frameworks like Hydra
that operate in dynamic and unpredicted environments. Hydra requires dynamic, real-time
generation of visual content and generic policies may fall short in addressing the finer,
context-specific requirements, potentially limiting its adaptability and flexibility. Further-
more, the defined policies in this approach focus on AR applications and are customized to
handle scenarios specific to the AR context. To successfully integrate them into the Hydra
pipeline, they will have be to be adapted. Some of these policies, such as “Avoid abrupt
movement of AR objects” or “Don’t display text messages or social media while driving”
are centered around AR scenarios. Other policies, like “Don’t obscure pedestrians or road
signs” focus on outdoor scenarios that cannot be directly applied to Hydra. However, some
policies like “Don’t obscure exit signs” could potentially be adapted to Hydra’s scenarios.
Moreover, more suitable policies should be defined to adapt to Hydra’s specific context
and requirements, ensuring that they align with the unique challenges and objectives of the
framework. This involves tailoring policies to address dynamic indoor environments, diverse
sensor inputs, and the need for real-time content generation and adaptation. Additionally,
this approach depends on Recognizers for accurate detection. Failures or inaccuracies in
detection can result in incorrect policy implementation. These inaccuracies may occur due
to various factors, including noisy sensor input or challenging real-world conditions.

Attempting to create a comprehensive set of rule-based policies that anticipates and covers
every possible situation in the complexity of dynamic scenarios is extremely challenging.
For this reason, the adaptative fog-based output security builds upon Arya and proposes
the automatic generation of complex policies. This framework allows policies to adapt and
respond to dynamic environments with the purpose of protecting the output stream. De-
velopers conducted tests on this framework to show that the agent’s performance improves
over time, enabling it to effectively regulate hologram placement and significantly reduce
the obstruction of real objects. However, this approach primarily measures the correct
placement of holograms by using an obstruction metric. This metric represents the per-
centage of obstruction on the user’s display, but it can be misleading since a low percentage
may result from either directly removing information or making it transparent. Therefore,
relying solely on this metric may not fully assess its effectiveness in AR scenarios that aim
to integrate external information in the users view. On the contrary, Hydra aims to serve
as a true representation of the environment, shifting its focus to detecting virtual content
and removing what is not real and accurate within the environment. In this scenario, the
requirements are simplified, focusing in removing all content external to reality. Conse-
quently, the obstruction metric for Hydra’s functionality may quantify the percentage of
elements that are external to reality and need to be removed, serving as a metric for assess-
ing the realism of the representation. Additionally, tests show that enabling these policies
reduces the frame rate by only 10-12 frames per second (fps), resulting in an operational
frame rate of nearly 80 fps. This reduction does not have a great impact on real-time rep-
resentations, especially when compared to the standard frame rate of 24 fps in media. In
summary, these advancements work towards achieving a possible integration into real-time
scenario, given its adaptability to dynamic environments, flexibility in policy adjustment
and long-term planning capabilities. This suitably extends to scenarios where Hydra may
be integrated.



6. Conclusions and future directions
6.1 Conclusions

In this work, I have delved into the privacy implications of integrating Hydra’s novel frame-
work into smart building domains. The exploration began with a literature review encom-
passing key subjects: privacy, computer vision, and smart buildings. Subsequently, the
main focus shifted towards privacy threat modeling, where I chose the LINDDUN method-
ology due to its primary focus on privacy concerns, aligning with the main focus in this
thesis. While this method was initially designed for web applications, I have explored its
applicability in newer technologies like 3DSG. Following the two main sets of steps in this
approach, I have analyzed potential threats that may arise and identified potential PETs
that could mitigate them. During the course of this study, I have achieved significant out-
comes. Firstly, I have developed two DFDs that provide insights into Hydra’s functionality
at various levels of abstraction, represented by the level 0 DFD and the level 1 DFD. Sec-
ondly, I have compiled a comprehensive set of potential privacy threats. These threats are
organized into a table, aligning each threat with the corresponding LINDDUN properties
and the DFD elements that may be susceptible to these threats. Lastly, I have proposed
several PETs as mitigation technologies to address these threats. The analysis explores the
opportunities and challenges associated with the potential integration of these PETs into
the Hydra framework. Collectively, these outcomes contribute to a deeper understanding
of the potential privacy risks and mitigation strategies within the integration of Hydra’s
framework into the context of smart buildings. In summary, throughout this study, I have
emphasized the significance of conducting privacy threat analysis for emerging technologies
prior to their implementation. Furthermore, I have highlighted the necessity to adapt and
develop PETs tailored to address potential threats in these scenarios.

6.2 Future directions

The ultimate goal of Hydra is to construct an accurate representation of the environment,
aiming to emulate human perception for extracting valuable information. However, this
framework is still under development and requires testing in practical scenarios. Through-
out this project, I have emphasized the importance of privacy, particularly within the field
of 3DSG. In this field, the predominant focus has been centered on advancing the capabil-
ities and potential of 3DSG technology. It is important to highlight that there has been
limited research addressing the associated privacy implications.

This line of research can be further extended, as these novel representations could benefit
from the data collected by various sensors integrated into a smart building. Information
from temperature, air quality, and more can potentially contribute to these representations
to enrich its functionality and to improve the automation of processes. However, with this
expansion of capabilities privacy concerns naturally escalate. Consider, for instance, the
integration of room temperature data to enhance the representation and automation within
these environments. A rise in temperature could be indicative of human presence in a room.
Such privacy related aspects could be further explored in future research to protect user
privacy.
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A. Annex A: References to the LINDDUN
threat trees.

A.1 LINDDUN threat trees level-0 DFD.
Table A.1: Linkability threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1 E2 DF1 L.2.1.1 Quasi-identifier combining data of a
single individual. Location trace. 1

E2 DF2 E1 DF2 L.1.1 Unique identifier. User IDs. 2

E2 DF2 E1 DF2 L.2.2.1 Profiling an individual. Analyzing tim-
ing patterns. 1

E1 DF3 E3 DF3 L.2.2.2 Profiling a group of individuals. Energy
consumption meter. 3

P2 DF6 E1 DF6 L.2.2.1
Profiling an individual. Requests to
external services and analysing timing
patterns.

4

P1 DF7 P2 DF7 L.2.2.1
Profiling an individual. Requests to
external services and analysing timing
patterns.

5

P2 DF8 P1 DF8 L.2.2.1
Profiling an individual. Requests to
external services and analysing timing
patterns.

5

P2 DF9 DS3 P2, DS3 L.2.2.2 Profiling a group of individuals. Pro-
cess and storage. 6

Table A.2: Identifiability threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat
E1 DF1 E2 E1, DS2 I.2.2 Revealing attributes. 7
E2 DF2 E1 DF2 I.2.1.1 Unique identifier. User IDs. 2
E1 DF5 P2 E1, DF5 I.1.2 Identified information in metadata. 7
P2 DF9 DS3 P2, DS3 I.2.2 Revealing attributes 7
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Table A.3: Non-repudiation threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1 E2 DF1 Nr. 1.1 Attributable data evidence. Logged
transmissions. 1

E2 DF2 E1 DF2 Nr.1.1 Attributable data evidence. Logged
transmissions. 1

P2 DF6 E1 DF6 Nr.1.1 Attributable data evidence. Logged
transmissions. 4

P1 DF7 P2 DF7 Nr.1.1 Attributable data evidence. Logged
transmissions. 5

P2 DF8 P1 DF8 Nr.1.1 Attributable data evidence. Logged
transmissions. 5

P2 DF9 DS3 P1, P2 Nr.2 Attributable action side-effect evidence.
Action logging. 8

Table A.4: Detectability threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat
E1 DF1 E2 DF1 D.1 Observed communications. 1
E2 DF2 E1 DF2 D.1 Observed communications. 1
P2 DF6 E1 DF6 D.1 Observed communications. 4
P1 DF7 P2 DF7 D.1 Observed communications. 5
P2 DF8 P1 DF8 D.1 Observed communications. 5
P1 DF7 P2 P1, P2 D.2 Application side-effect. 8

Table A.5: Disclosure of information threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1 E2 E1, DS2 DD.1.2 Disclosed personal data is fine-grained
level of granularity. 7

E1 DF3 E3 DF3 DD.4.1.1
Predetermined set of parties. Use of
third-party tracking and analytics ser-
vices.

3

P1 DF7 P2 DF7 DD.3.2 Propagation of sensitive information. 5
P2 DF8 P1 DF8 DD.3.2 Propagation of sensitive information. 5

P2 DF9 DS3 P2, DS3 DD.1.2 Disclosed personal data is fine-grained
level of granularity. 7
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Table A.6: Unawareness threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1 E2 E1, DF1 U.2.1 Lack of data subject control. Prefer-
ences. 9

E1 DF3 E3 DF3, E3 U.1.1 Unawareness as data subject. Third
parties. 10

P1 DF5 P2 DF5 U.2.1 Lack of data subject control. Prefer-
ences. 9

P2 DF6 E1 DF6 U.2.1 Lack of data subject control. Prefer-
ences. 9

P1 DF7 P2 P1, DS1, DF7 U.2.1 Lack of data subject control. Prefer-
ences. 11

P2 DF8 P1 DF8 U.2.1 Lack of data subject control. Prefer-
ences. 11

P2 DF9 DS3 P2, DF9, DS3 U.2.1 Lack of data subject control. Prefer-
ences. 12

Table A.7: Non.compliance threat tree level-0 DFD.

S DF D Location Characteristics Impact Threat
E1 DF1 E2 E1, DF1 Nc.2 Improper personal data management. 13
E1 DF3 E3 DF3, E3 Nc.2 Improper personal data management. 13
P1 DF5 P2 DF5, P2 Nc.2 Improper personal data management. 13
P2 DF6 E1 DF6 Nc.2 Improper personal data management. 13
P1 DF7 P2 P1, DS1, DF7 Nc.2 Improper personal data management. 13
P2 DF8 P1 DF8 Nc.2 Improper personal data management. 13
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A.2 LINDDUN threat trees level-1 DFD.
Table A.8: Linkability threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1
P1
P2
P6

DF1 L.2 Linkable data. 1

E1 DF1
P1
P2
P6

DF1 L.2.1.1
Quasi-identifier combining data of a
single individual. Location trace.

2

E2 DF2 P6 DF2 L.2.1.1
Quasi-identifier combining data of a
single individual. Location trace.

2

P1 DF3 DS1 DS1, DF3 L.2 Linkable data. 1

P1 DF3 DS1 DS1 L.2.1.1
Quasi-identifier combining data of a
single individual. Location trace.

2

P4 DF8
DS3
P7

DS3, DF8 L.2.2.2 Profiling a group of individuals. 3

P5 DF11
DS5
P7

DS5, DF11 L.2.1 Linking through combination. 4

P7 DF13
DS6
P8

DS6, DF13 L.2.1 Linking through combination. 5

P8 D14 DS7 DS7, DF14 L.2.1 Linking through combination. 5

Table A.9: Identifiability threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1
P1
P2
P6

DF1 I.2.3 Data subject is distinguishable from
others. Face recognition. 6

P1 DF3 DS1 DS1, DF3 I.2.3 Data subject is distinguishable from
others. Face recognition. 6

P7 DF13
DS6
P8

DS6, DF13 I.2.1.2 Identifiable information. Quasi-
identifier. 7

P8 D14 DS7 DS7, DF14 I.2.1.2 Identifiable information. Quasi-
identifier. 7
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Table A.10: Non-repudiation threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1
P1
P2
P6

DF1 Nr. 1.1 Attributable data evidence. Images. 6

E1 DF1
P1
P2
P6

DF1 Nr. 1.3 Attributable data evidence. Metadata. 2

E2 DF2 P6 DF2 Nr. 1.3 Attributable data evidence. Metadata. 2
P1 DF3 DS1 DS1, DF3 Nr. 1.1 Attributable data evidence. Images. 6
P1 DF3 DS1 DS1, DS3 Nr. 1.3 Attributable data evidence. Metadata. 2

P7 DF13
DS6
P8

DS6, DF13 Nr. 1.1 Attributable data evidence. Scene
Graph. 5, 7

P8 DF14 DS7 DS7, DF14 Nr. 1.1 Attributable data evidence. Scene
Graph. 5, 7

Table A.11: Detectability threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1
P1
P2
P6

DF1 D.1 Observed communications from exter-
nal entities 8

E2 DF2 P6 DF2 D.1 Observed communications from exter-
nal entities 8

E1 DF1 DS7 DF14 D.1 Observed communications from exter-
nal entities 8

Table A.12: Disclosure of information threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1
P1
P2
P6

DF1 DD.2.1 Excessive amount of information col-
lected 1

E1 DF1
P1
P2
P6

DF1 DD.3.2 Propagation of sensitive information 9

P8 DF14 DS7 DF14 DD.3.2 Propagation of sensitive information 9
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Table A.13: Unawareness threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat

E1 DF1
P1
P2
P6

E1 U.2.1 Lack of subject control. Preferences. 10

E1 DF1
P1
P2
P6

E1 U.2.1 Lack of subject control. Preferences. 10

Table A.14: Non-compliance threat tree level-1 DFD.

S DF D Location Characteristics Impact Threat
Whole system Nc.2 Improper personal data management 11


