
Low-power Acceleration of Convolutional Neural

Networks using Near Memory Computing on a

RISC-V SoC

KRISTOFFER WESTRING & LINUS SVENSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

K
R

ISTO
FFER

 W
ESTR

IN
G

 &
 LIN

U
S SV

EN
SSO

N
Low

-pow
er A

cceleration of C
onvolutional N

eural N
etw

orks using N
ear M

em
ory C

om
puting on a R

ISC
-V

 SoC
LU

N
D

 2023

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-955
http://www.eit.lth.se

Low-power Acceleration of Convolutional Neural
Networks using Near Memory Computing on a

RISC-V SoC

Kristoffer Westring, Linus Svensson
kristoffer.westring@eit.lth.se, li8620sv-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Joachim Rodrigues

Examiner: Pietro Andreani

October 19, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Acknowledgement

We would like to express our deepest gratitude to our supervisor, Joachim Ro-
drigues, for his guidance and knowledge. His door was always open whenever we
needed advice on our research. Beyond the academic guidance, Joachim has been
an outstanding supervisor, often providing much-needed and meticulously brewed
espressos — a testament to the care he fosters for his students. These gestures
made this thesis enjoyable. His passion for both academia and coffee has left a
lasting impression on us.

This endeavour would not have been possible without the collaboration with Co-
dasip. Our sincere appreciation goes to Keith Graham and Tadej Murovič. Thank
you for granting us access to essential resources and for providing valuable feed-
back during our research.

We are also thankful for our co-supervisors Masoud Nouripayam and Arturo Pri-
eto and the other colleagues at the department who provided us with insightful
discussions. Special thanks to Sergio Castillo Mohedano, whose prior work laid
the foundation for our research.

We cannot thank Per Andersson enough for his support and expertise. Per was
a beacon of knowledge, and his problem-solving skills were crucial in overcoming
some of the biggest challenges we faced.

Lastly, we would like to mention our families and friends, whose encouragement
and understanding helped us achieve this journey.

i

ii

Abstract

The recent peak in interest for artificial intelligence, partly fueled by language
models such as ChatGPT, is pushing the demand for machine learning and data
processing in everyday applications, such as self-driving cars, where low latency is
crucial and typically achieved through edge computing. The vast amount of data
processing required intensifies the existing performance bottleneck of the data
movement. As a result, reducing data movement and allowing for better data
reuse can significantly improve the efficiency.

Processing the data as closely to the memory as possible, commonly known as
near-memory computing, increases the power efficiency and can significantly re-
duce the bottleneck in the data movement. However, maintaining a low power
consumption while at the same time being able to process large amounts of data
is a challenge. The RISC-V Instruction Set Architecture (ISA) was designed for
efficient and dense instruction encoding, enabling lower power consumption and
quicker execution time [1]. Extending the simple RISC-V ISA with specific instruc-
tions for applications like image recognition can make a processor energy-efficient
but less versatile than a conventional CISC processor [2]. Codasip, a company
specializing in RISC-V processors, offers a toolset for exploring and customizing
processor architectures, through their proprietary C-based hardware description
language, CodAl, which is used to generate SDK, HDL, and UVM within the Co-
dasip Studio Environment. Codasip provides a selection fully configurable RISC-V
cores, tailored for either low-power, and high-performance application.

In this thesis we use a combination of high-level synthesis tools and EDA soft-
ware to simplify design space exploration of accelerators, allowing for the accel-
erators to be integrated as Near Memory Computing (NMC) accelerators on a
customized RISC-V System on chip (SoC), for both Application Specific Inte-
grated Circuits (ASIC) and Field Programmable Gate Arrays (FPGA). The flow
contains implementation of custom instructions as well as a generic flow from
Register Transfer Level (RTL) to GDSII for reuse in future works.

iii

The findings from this research shows that tightly integrated NMC accelerators
in combination with specialized RISC-V instructions can offer a 10× system per-
formance improvement compared to baseline scenario with minor area increase, of
only 38.5%. In this work the performance density was improved to 8.4× that of
the baseline case, for certain applications.

iv

Popular Science Summary

In recent years, development and adaption of Artificial intelligence (AI) have in-
creased rapidly. As the usage and accuracy of these models increases, the com-
putation needed for inference increases. This opens up the need for architectural
innovation, to reduce both power consumption and latency.

As machine learning becomes an increasingly integral part of our daily lives, the
volume of data being processed in our devices is skyrocketing. Through the use
of cloud computing, our devices are able to transmit and offload the data that
requires heavy computation to servers. However, this method is not without its
drawbacks.

In many instances, transferring data over the internet for computation at a remote
server induces a latency. For real-time applications such as self-driving cars this
delay could be problematic. Being able to perform the computation locally, what
is commonly known as edge computing, is essential to many critical applications
but introduces a new set of hurdles to overcome, namely performance and power
efficiency. Computing large volumes of data in a battery powered units poses im-
mense challenges in comparison to a server hall with a virtually limitless supply of
power. Recent AI-models, especially large language models, like ChatGPT, consist
of billions of parameters that should be moved between memory and processing
units. Moving all these data imposes a bottleneck for efficient AI inference.

By shifting towards a more data-centric architecture like NMC, which involves
moving the data-intensive calculations closer to the origin of the data, latency
and power consumption can be reduced. Through strategic optimizations like
these, NMC promises a more efficient and responsive computing architecture for
data-intensive applications. Improving energy efficiency and processing power are
crucial obstacles that must be overcome for the continuous evolution of technology.
Near memory computation is one of the solutions that has been showing promising
results in recent studies. [2, 3, 4]

v

vi

Table of Contents

1 Introduction 1
1.1 Related work . 2
1.2 Thesis outline . 3

2 Background 5
2.1 RISC-V . 5
2.2 Advanced High-performance Bus . 10
2.3 Near Memory Compute . 12
2.4 Memories . 14
2.5 ASIC Design . 18

3 System Design and Implementation 21
3.1 Overall Design and Implementation 21
3.2 RISC-V modifications . 23
3.3 Near Memory Computing . 26
3.4 Memories . 28
3.5 Design flow and methodology . 30
3.6 Synthesis and constraints . 30
3.7 Place and Route . 31

4 Testing and Verification 35

5 Results 41
5.1 Performance Analysis . 41

6 Discussion and Future Work 49

A Interrupt handler 51

vii

viii

List of Abbreviations

AHB Advanced High-performance Bus

AI Artificial intelligence

ASIC Application Specific Integrated Circuits

BRAM Block Random Access Memory

CIM Computation-in-Memory

CNN Convolutional Neural Network

CPU Central Processing Unit

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

FPGA Field Programmable Gate Arrays

FU Functional Unit

GPR General Purpose Register

HDL Hardware Description Language

HMC Hybrid Memory Cubes

IFM Input Feature Map

IP Intellectual property

ISR Interrupt service routine

LLC Last-Level Cache

MAC Multiply And Accumulate

MCU Micro Control Unit

NDP Near-Data Processing

ix

NMC Near Memory Computing

OFM Output Feature Map

PC Program Counter

PIM Processing-in Memory

PnR Place and route

PPA performance, power, and area

RAM Random Access Memory

SoC System on chip

SRAM Static Random Access Memory

EDA Electronic Design Automation

ALU Arithmetic Logic Unit

LSB Least Significant Bit

ISA Instruction Set Architecture

RTL Register Transfer Level

x

List of Figures

1.1 Proposed architecture design based around NMC, by Nouripayam et al. 2

2.1 General work flow and tools in Codasip Studio. 7
2.2 Waveforms for Advanced High-performance Bus (AHB) transactions

without any wait states, i.e., the transactions are completed in two
clock cycles. 11

2.3 AHB block diagram to visualize the address and data bus routing with
the use of an interconnect. 11

2.4 Interface of the Convolutional Neural Network (CNN) accelerator,
showing the input ports on the leftmost side and the output ports
on the right side. 14

2.5 Waveforms of data transactions of the accelerator, with the all signals
but memory controller makes up the native RAM interface. The color
coding indicates which segments belong to which memory, depending
on the state of memory controller. 15

2.6 Example of possible cache configuration in a multi-core system in
which the cores have separate L1 and L2 caches and a shared L3
cache (Last-Level Cache (LLC)). 16

2.7 A digital pad frame with two power domains. The IO power rail are
driven by the VSSIO and VDDIO, while the core power rail is driven
by VDD and VSS, which supplies the two different power domains. . 19

3.1 Initially proposed design of the system. 22
3.2 Block diagram for the final system design, with the caches replaced

by a secondary Static Random Access Memory (SRAM) memory. . . 23
3.3 Buses and signals between the RISC-V core and Direct Memory Access

(DMA) used for instruction level control. 24
3.4 Block diagram of the AHB to accelerator bridge. 26
3.5 Block level functionality of each module in the DMA. 27
3.6 In-depth description of the hardware and logic used to implement the

DMA. 28
3.7 Flowchart illustrating the sequential steps taken in both the ASIC and

FPGA flow, as well as the preliminary step in Codasip. 31
3.8 Overview of the power planning, with pad frame. 33

xi

3.9 Overview of the layout, with each major module highlighted and colored. 34
3.10 Initial IR-drop (voltage) drop on the chip, with a maximum drop of

20 mV. 34

4.1 Ideal timeline for the operations in the baseline system with the NMC
unit connected via the AHB interconnect. 38

4.2 Ideal timeline for computations in the full system. 39

5.1 Comparative performance analysis, showing the relative execution time
for convolutional and fully connected layer, benchmarked against the
baseline system, L31. 42

5.2 Speedup comparison between the three systems, for the different com-
putational parts of the program. 43

5.3 Relative area of the system, showing the size of the individual blocks,
benchmarked against the baseline core, L31. 44

5.4 Performance over area, normalized to the baseline core. 45
5.5 Comparative instruction size of the three system configurations, rela-

tive to the baseline system. 45
5.6 Theoretical area after memory reduction as a consequence of the re-

duction in instruction size. 46

xii

List of Tables

2.1 ISA of the possible extensions of the baseline L31 core, with the high-
lights the extensions used in this thesis. 8

2.2 RISC-V 32-bit instruction types format. 8
2.3 SRAM Configuration . 17

3.1 Customized DMA instruction. 24
3.2 Programming guide for the DMA, to use with the SWC instruction. . 29

4.1 CNN Architecture of the accelerator. 35

5.1 Summary of DMA performance. 47

xiii

xiv

Chapter 1
Introduction

The rise of data-intensive applications in the modern world of computing has
sparked significant advancements and innovations in information technology. Ap-
plications involving real-time sensor data processing and machine learning demand
substantial computational capabilities and memory capacity. Running these ap-
plications poses a challenge due to the performance and energy requirements.

The primary challenge faced by data-intensive applications is the data movement
problem, also known as the von Neumann bottleneck. This issue stems from the
separation of the processing unit and the memory in the traditional von Neumann
architecture, resulting in a data movement between the memory and the process-
ing unit. The latency and energy cost associated with this data transfer creates
a bottleneck in the performance and power efficiency, which can be relieved by
minimizing data movement and increasing data reuse. [2]

This is not a recently discovered problem and various solutions have been proposed,
for about as long as the architecture has existed. Stone H. contributed to the
foundation of NMC by proposing a logic-in-memory computer, organized around
a cache with the ability to perform arithmetic and logic operations on blocks of
data. [5]

However, it was not until more recently that NMC has emerged as a viable solu-
tion to this problem. NMC, also known as in-memory computing or processing-
in-memory, is differs from the traditional approach to computing. Rather than
constantly transferring data between the processor and the memory, NMC inte-
grates computation inside or near the memory itself.

By moving data processing closer to the storage locations, the requirement of data
transfer is significantly reduced, minimizing the energy and latency costs associated
with it. NMC architecture allows for more efficient data access and manipulation,
making it a promising solution for data-intensive applications in edge computing.

1

2 Introduction

In the following chapters, we will explore the foundation of NMC, and look into its
implementation. We will examine how the architecture can be modified to work
in tandem with the accelerator, and evaluate its potential in overcoming the data
movement problem , enabling the next generation of high-performance computing.

1.1 Related work

There are numerous implementations and interpretations of NMC, ranging from
modifying the actual memory cells to being able to perform computation, to plac-
ing additional computational cores in close proximity of the storage. Developments
in three dimensional memory stacking has sparked new interest in NMC and is seen
as groundbreaking as logic can be inserted between the stacked memory layers. [2]

Nouripayam et al. proposed an NMC architecture based on standard SRAM mem-
ories, as to utilize the area efficiency of existing SRAM, with a Micro Control
Unit (MCU) which functions as a co-processor integrated into the L2 memory, see
Fig. 1.1. The main idea behind the use of a co-processor is to reduce workload of
the main processor which instead is free to perform general purpose tasks, effec-
tively increasing the bandwidth while retaining flexibility. The NMC unit used in
the proposed architecture is an 8-bit fixed point CNN accelerator. [3]

The synthesized result with the specific NMC unit, showed an increase in area of
less than 1% with a 38× increase in performance and 28× increase energy efficiency
when compared to the baseline processor, PULPissimo, during full inference of the
MNIST dataset. [6]

Figure 1.1: Proposed architecture design based around NMC, by
Nouripayam et al.

The proposed architecture provides a scalable system in which multiple co-processors
can be attached to the system, moving the processing units closer to the memory
as a solution to the memory wall problem. [6]

Introduction 3

1.2 Thesis outline

The overarching goal of this thesis is to develop a flow for FPGAs and ASIC,
in which an existing accelerator can be attached as a NMC unit to a RISC-V
core. This integration is designed to enhance data transfer efficiency and enable
parallelization between the core and the accelerator, by customizing the core to
the needs of the accelerator.

The thesis is organized as follows:

Chapter 1: Introduction. Introduces the problem and provides context for the thesis.
It also discusses the motivation behind addressing this problem and the
overall structure of the thesis

Chapter 2: Background. Introduces the reader to components and concept that will
be used in the final design.

Chapter 3: System Design and Implementation. Describes the design methodol-
ogy, constraints and design decisions.

Chapter 4: Testing and Verification. This chapter provide the reader with the base-
line CNN, which is used in functional tests and performance metrics. Limi-
tations to the verification are presented along with the algorithms used.

Chapter 5: Results. The final metrics for the design are shown and a comprehen-
sive comparison between the base model and the design from this work are
presented.

Chapter 6: Discussion & Future Work. Conclusions and future work are discussed.

4 Introduction

Chapter 2
Background

Architectures supporting NMC have become a popular data-centric technique to
address the growing speed gap between the processing unit and its separated mem-
ory [7]. This method decreases the physical distance between memory and compu-
tation, reducing expensive data movement thus increasing energy-efficiency while
simultaneously reducing latency.

The main focus in recent times has been on- and off-chip implementations using
Hybrid Memory Cubes (HMC) with a focus on high memory entropy applications
[2]. Regarding CNN the memory entropy is quite low, which means that the cache
hit rate is quite large. This suggests that due to the high hit rate, implementing
NMC near the cache can further reduce the data transactions. Even though the
compute module will be implemented on chip, some of the problems with NMC
still persists.

Nouripayam et al. implemented an architecture for NMC at the cache hierarchy
on the open-source RISC-V platform PULP, intending for a flexible main CPU
handling general purpose applications while the NMC unit would perform CNN
operations. The suggested architecture employs standard SRAM, thereby preserv-
ing the SRAM’s area efficiency. The NMC architecture showed promising results
with an energy efficiency as well as a performance increase of more than 28× re-
spectively 34×, compared to the baseline of the same MCU, with an area overhead
of 1%. [3]

2.1 RISC-V

RISC-V is an open standard ISA based on Reduced Instruction Set Computer
(RISC) principles. The RISC-V ISA is provided under open-source licenses, mak-
ing it appealing for a wide range of computing devices. The ISAs scalability and
modularity provides opportunities for designers to tailor it to the specific needs

5

6 Background

of their device, selecting the necessary instruction sets for an efficient design, thus
being suitable for everything from embedded systems to high-performance servers.

The scalability of RISC-V is partly due to the availability of multiple baseline
ISAs, offering 32-, 64-, or 128-bit integer bases, as well as a variety of optional
extensions. This flexibility makes RISC-V easier to implement than many alterna-
tives, leading to its growing popularity in the semiconductor industry. This allows
for a clean core design with significant possibilities to expand and adapt as per
the requirements.

2.1.1 Codasip

The specific core provided by Codasip for this thesis is the L31, a 32-bit, low-
powered RISC-V processor with a 3-stage in-order pipeline. This core includes a
hardware multiplier and divider for efficient computation, and offer an optional
floating point unit to further processing capabilities. The L31 core’s built-in sup-
port for AMBA AHB and AXI interfaces provides a straightforward way to in-
tegrate with existing systems such as caches and tightly coupled memories. The
core offers a solid starting point for adapting and optimizing through the use of
the architecture description language, CodAl.

Codasip Studio, a development environment used for designing, optimizing, and
verifying the customized processor core, utilizes the high-level language CodAL to
define both the ISA and the micro-architecture. The CodAL description consists
of an instruction-accurate (IA) model, containing the basic instruction set used
for the compiler and IA simulations. In addition to the IA-model, a cycle-accurate
(CA) model provides actual the micro-architectural implementation, from which
the RTL code is generated. The IA- and CA-model, with their abilities to be
independently debugged, provides an environment for simulation: the IA-model
enables instruction-level simulation, while the CA-model offers a more realistic
clock-cycle level simulation.

Background 7

CodAl

Codasip Studio Cycle
Simulation

Instruction
Simulation

RTLCompiler Verification

Figure 2.1: General work flow and tools in Codasip Studio.

Beyond simulation and debugging, Codasip Studio is capable of generating a com-
piler, a software toolchain, and verification components directly from the CodAL
description. This capability allows for custom instructions to be interpreted di-
rectly by the compiler from the C-code, integrating smoothly into the development
workflow.

2.1.2 Instruction Set Architecture

The RV32IMC ISA in the L31 core represents different types of instructions: RV32I
is the base integer instruction set, with common instructions such as add, and
sub. The ’M’-extension contains integer multiplication and division, and ’C’ refers
to the compressed instruction set, see Tab. 2.1. The compressed instruction set
reduces the code by introducing shortened, 16-bit instructions. Around 50%−60%
of the instructions in a RISC-V program can be can be exchanged for compressed
instruction, which corresponds to a reduction of 25% − 30% of the text size in
a program. However this is an approximation and the actual reduction heavily
depends on the program. The L31 core’s RV32IMC ISA is designed for efficient
and compact instruction encoding while still maintaining strong performance in
integer operations. [8]

8 Background

Table 2.1: ISA of the possible extensions of the baseline L31 core,
with the highlights the extensions used in this thesis.

ISA Instructions Description

RV32I 47 32-bit address space and integer
instructions

Extension Instructions Description
M 8 Integer multiply and divide

A 11 Atomic memory operations,
load-reserve/store conditional

F 26 Single-precision (32 bit) floating point

D 26 Double-precision (64 bit) floating point;
requires F extension

Q 26 Quad-precision (128 bit) floating point;
requires F and D extensions

C 46 Compressed integer instructions;
orangeuces size to 16 bits

The instructions in RISC-V are encoded in several formats. These include R-type,
I-type, S-type, B-type, U-type, and J-type. Each of these types represents different
operations and are used for different functionalities in the system, corresponding
to certain groups of instructions. Each instruction type contains a combination of
the fields register sources (rs1, rs2), the register destination (rd), the opcode, the
functionality (funct7, funct3) and the immediate value (imm). Due to the flexible
of the architecture, besides creating new instructions it is also possible to add new
of instructions types.

Table 2.2: RISC-V 32-bit instruction types format.

31 .. 25 24 .. 20 19 .. 15 14 .. 12 11 .. 7 6 .. 0
R funct7 rs2 rs1 funct3 rd opcode
I imm[11:0] rs1 funct3 rd opcode
S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode
B imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode
U imm[31:12] rd opcode
J imm[20|10:1|11|19:12] rd opcode

For custom instructions, choosing the most suitable instruction type can have a
significant impact on efficiency. For example, for an instruction where no data will
be stored in a register, it is preferable to use an instruction type that allows for the
transmission of as much data as possible. The S-type instruction does not have
a field for register destination, but instead has an extended field for immediate
values, as shown in Tab. 2.2. If needed, the extra immediate bits that were gained
could be used to handle more data, effectively increasing the efficiency.

Background 9

2.1.3 Pipeline

The core provided in the thesis is a 3-stage pipelined processor, consisting of the
stages Fetch (FE), Instruction Decode (ID), and Execute (EX). In a pipelined pro-
cessor, these stages run in parallel, thus processing different instructions. During
fetching of one instruction, a second instruction is being decoded, while a third is
being executed. The goal of pipelining a processor is to improve the throughput of
the processor by keeping all parts of the processor busy. The concept of pipelin-
ing works, as a single instruction usually requires more than one clock cycle fully
execute.

Fetch Stage

The first part in the processing of an instruction is to fetch the instruction from the
memory. The Program Counter (PC) keeps track of the following instruction to be
executed, and the value from the PC is used to determine the memory location from
which to fetch. The fetched instruction is placed into a instruction fetch buffer, to
be read from the following stage. The fetch stage in the provided core also contains
a branch predictor, which is a technique that tries to predict whether a branch
will be taken, prior to actually knowing the answer. This improves the system
performance as the instruction following the branch can be predicted instead of
waiting until the branch instruction has been fully executed.

Instruction Decode Stage

From the instruction fetch buffer, the instruction is pushed to the ID stage. The
instruction decoder breaks down the bits of the instruction, based on its instruction
type, see Tab. 2.2, and generates the necessary signals for the upcoming execution
stage. The ID stage also contains the hazard detection, which flag for hazards.

Execute Stage

The execution stage performs the actual operation implied by the performed in-
struction. This stage contains the Arithmetic Logic Unit (ALU) and the Functional
Unit (FU), to perform arithmetic, logical, memory operations, etc. In this stage,
read and write operations are performed on the general purpose register, based on
the instruction type. As some operations such as division and memory operations
can take multiple clock cycle to execute, this stage has to ability to perform stalls,
which freezes the stages until the operation has been performed.

Pipelining a processor introduces architectural complexities such as hazards that
can occur when instructions depend on the result of other instructions. For a lot

10 Background

of instruction combinations, hazards are not an issue. However for instructions
that require multiple clock cycles in the execution stage e.g., division and load
word, a hazard can occur when the multi-cycle instruction is writing to a General
Purpose Register (GPR) that the following instruction is reading from.

Stalling a stage is the act of pausing one or more stages from continuous operation.
A control unit in the ID stage keeps track of any potential hazard, in which case the
ID stage will stall. This is essentially the same as introducing a NOP instruction,
commonly known as a NOP bubble. The control unit keeps track of the hazard
until the result from the EX stage has been completed, after which the stalls are
lifted and the instructions continues as expected.

2.2 Advanced High-performance Bus

For a SoC, effective communication between cores and peripheral units are of
high importance for the overall system performance. Currently there are multiple
communication protocols that realizes effective on-chip communication. One of
these is the AHB, which is available in multiple versions. In this thesis, the term
AHB refers exclusibely to the AHB3:Lite protocol which is a streamlined and
lighter version of the larger AHB3 protocol.
The AHB3:Lite protocol offers a subset of the signals of its parent protocol, in order
to simplify the design and reduce complexity. Depending on the implementation
of the protocol, the signals may vary slightly. However the main signals used for
the basic transactions are as shown in Fig. 2.2. The bus is pipelined, meaning
that the following address phase can begin at the same time as the data phase
from the previous transaction starts. It is also possible, and often the case, that
the transactions require wait states as either the master or the slave may not be
ready to enter the data phase. [9]

2.2.1 Interconnect

An interconnect enables multiple slaves to be connected to each master, as is
shown in Fig. 2.3. Through the use of a decoder, based on the address mapping
of the slaves, a unique select signal, HSEL, is routed to each of the slaves. This
indicates whether the slave is active or inactive. The interconnect in this thesis
was provided by Codasip, and is configurable with multiple masters, slaves, and
decoders. However, it is important to note that the use of an interconnect alone
does not allow single slaves to have multiple masters. Thus, if multiple masters
are present in the interconnect, they must be completely separated.

Background 11

(a) Basic AHB read transaction.

(b) Basic AHB write transaction.

Figure 2.2: Waveforms for AHB transactions without any wait
states, i.e., the transactions are completed in two clock cycles.

Figure 2.3: AHB block diagram to visualize the address and data
bus routing with the use of an interconnect.

2.2.2 Arbiter

As previously discussed in section 2.2, the AHB can support multiple slaves for
each master. However, the bus does not inherently support multiple masters for a
single slave. This limitation can cause conflicts in systems where multiple master

12 Background

units requests access to a single slave unit at the same time.

An arbiter is a digital circuit that helps resolve these conflicts by managing access
to the shared slave. Effectively, it combines multiple master interfaces into a single
master interface. The arbiter implements a policy to determine which master’s
request should be given priority during concurrent requests. Depending on the
system’s requirements, this policy could follow various protocols, such as first-
come, first-served, or be based purely on predefined priorities.

The arbiters provided by Codasip for this thesis use a strictly priority-based pol-
icy. This means that during the configuration, the user sets a priority list, which
determines the priority of the master interfaces. If multiple master units make
requests, the arbiter prioritizes the request from the highest priority master and
transmits it to the slave within the same cycle. Meanwhile, it buffers the remaining
requests, forwards them to the slave in the following clock cycles.

2.3 Near Memory Compute

The traditional Von Neumann architecture contains a Central Processing Unit
(CPU) and memory, where the data and fetch bus are shared. Accordingly, in-
struction and data memory access can not happen in parallel, leading to the von
Neumann bottleneck resulting in wait times on the bus. This problem only gets
worse as more data processing is required, which is a problem especially in data-
intensive applications as AI.

Further increasing strain on the issue is the differing exponential growth rates
of CPU and memory speeds for the past decades. Though both units have had
an exponential growth, the CPU’s speed increase outpaces that of the memory,
leading to a bottleneck where the CPU spends more time waiting for data from
memory, rather than performing computations. As a consequence, no matter the
speed of the CPU, the system will be limited by the transfer rate of the system
bus, as increasing the CPU speed will only lead to the processor sitting idle for
greater amounts of time. [6, 7]

NMC offers to alleviate the strain on the bus by bringing the processing unit
closer to, or even within the memory itself. By doing so, the need to transfer
large amounts of data across the memory bus to the CPU is significantly reduced,
thereby improving overall system performance. Adding the accelerator in close
proximity to the memory fundamentally alters the data transmissions, in compar-
ison to the classic Von Neumann model. This approach creates a more data-centric
architecture for more efficient handling of data-intensive tasks in modern comput-
ing systems.

Since the first proposal of NMC as a method to bridge the gap between compu-
tation and memory performance, a wide range of NMC architectures have been

Background 13

introduced. NMC, often referred to as Processing-in Memory (PIM) or Near-Data
Processing (NDP), is an umbrella term for all types of computations performed in
close proximity to a storage unit in the memory hierarchy. Recent advancements
in 2.5D and 3D stacked memories have lead to improvements in Computation-
in-Memory (CIM) architectures in which processing elements are directly incorpo-
rated into the memory system, further reducing data movement since the memories
themselves possess computational capabilities. [2]

This architecture requires memories specifically designed for this purpose and in-
tegrating an already existing accelerator requires heavy modification of the mem-
ory architecture. Implementation of Multiply And Accumulate (MAC) operations
as CIM can be achieved by utilizing the word-line as a multiplier, subsequently
accumulating the resultant products. However, enabling more sophisticated algo-
rithms with CIM tends to be more complex compared to traditional digital design
methodologies. [10, 3]

In contrast to CIM, the less intrusive NMC architecture can use standard memories
and integrate existing accelerators in a less disruptive manner. This type of NMC
enables for programmable processing units as well as fixed-functional ones. Though
possible to implement NMC on all types of memory systems, the most researched
interpretation is processing near main memory. [3, 4]

2.3.1 Direct Memory Access

Efficient use of processing power in a system is crucial for an optimal performance.
DMA is a technique which improves the system efficiency by allowing subsystems
such as peripheral units to access the system memory independently of the CPU.
In traditional systems any data passed between the memory and any component,
or external interface, has to be passed through the CPU causing the core to spend
a significant portion of time managing data transfers.

In contrast, DMA bypasses the CPU by allowing subsystems to access the system
memory directly. This relieves the CPU from handling low-level data transfers,
freeing it up to perform critical tasks. A DMA is particularly beneficial in sys-
tems dealing with large amount of data and data-intensive tasks as this lead to a
significant improvement in the overall system performance.

2.3.2 Accelerator

The accelerator used in this work is a CNN accelerator developed with NMC in
mind. It was designed to improve energy efficiency by reducing data transmissions
through data reuse. The accelerator performs 2D-convolution, linear rectifying
and pooling. The accelerator was chosen due to its simplicity in combination with
being suitable for the purpose of the thesis [11].

14 Background

The accelerator was validated with the CIFAR-10 dataset, and is able to perform
2D-convolution with channel dimensions of 8 × 8, 16 × 16, 32 × 32 and a 3 ×
3 filter size. The accelerator inherently supports up to 256 filters and equally
many channels, however limitations are imposed on the accelerator as the original
memory size of 176 kB have been strictly reduced to work with the system of the
thesis. [11] contains three memories, one single-port 2 kB memory storing one 8×8
16-bit pixels for the Input Feature Map (IFM). Another separate 2 kB dual-port
memory stores the pixels of the Output Feature Map (OFM). The third memory
is used to store weights and biases, as well as for setting configurations for the
accelerator.

Writing and reading data to the accelerator is performed directly to the Block
Random Access Memory (BRAM)/SRAM native interface, with some additional
control signals to determine which of the three memories should be accessed, see
Fig. 2.4. The native Random Access Memory (RAM) ports consists of an address,
a data input, and a data output bus as well as the controls signals chip enable and
write enable.

CNN start

data

enable

memory controller

write enable

reset

CNN ready

CNN finshed

data out

CNN
accelerator

address

Figure 2.4: Interface of the CNN accelerator, showing the input
ports on the leftmost side and the output ports on the right
side.

The values on the input port memory controller determines which memory is
accessed. The write transaction is done in a single clock cycle with input data,
data, and address, sent in parallel. See Fig. 2.5a. In contrast, the read transac-
tions require two clock cycles with the input address preceding and output data
sampled at the next rising clock edge, see Fig. 2.5b.

2.4 Memories

Understanding the unique characteristics and constraints of memory types is cru-
cial in system design, as the choices here significantly impact not only overall
performance and efficiency but also the system’s area and power consumption.

Background 15

(a) Write transaction.

(b) Read transaction.

Figure 2.5: Waveforms of data transactions of the accelerator, with
the all signals but memory controller makes up the native RAM
interface. The color coding indicates which segments belong to
which memory, depending on the state of memory controller.

This section focuses on two key memory types used in this project: Cache memo-
ries and SRAM. The discussion will delve into their specific roles within a system,
their features, and how they influence the system’s design considerations.

2.4.1 Caches

Caches are a type of temporary storage placed between the memory and the CPU,
which can help mitigate the von Neumann bottleneck. Caches can improve overall
efficiency as they generally have faster access times compared to RAM. This speed
advantage is partly due to the fact that caches are typically implemented using
SRAM, whereas RAM is usually implemented using Dynamic Random Access
Memory (DRAM). The proximity of the cache to the CPU compared to the RAM
also contributes to the shorter access time.

Cache configurations vary, often divided into levels: L1, L2, and L3, with L1
closest to the CPU. Cache levels and sizes depend on system requirements, but
conventionally, L1 is the smallest and often on the processor chip. L1 caches
are sometimes split into separate data (L1-D) and instruction (L1-I) caches. L2

16 Background

caches, larger but slower than L1, can be on the processor chip or a separate chip.
In multi-core systems, there may exist shared caches, see Fig. 2.6.

Caches are smaller than main memory and can only hold a subset of memory
locations. They are transparent to cores, meaning cores are unaware of the caches
and address only the main memory locations. During a memory access, the L1
cache controller checks if the required memory location is in the cache. If present,
the core reads or writes directly to the cache, resulting in a reduced access time.
This is known as a cache hit. If the data is not in the cache, a cache miss occurs,
and the data is fetched from higher-level caches or main memory. Caches are
organized into cache lines, which are blocks of multiple words. During a cache
miss, an entire cache line is fetched and stored in the cache.

Figure 2.6: Example of possible cache configuration in a multi-core
system in which the cores have separate L1 and L2 caches and
a shared L3 cache (LLC).

Cache coherence is critical when using cache memories, especially in multi-core
systems with shared data resources. When multiple caches store copies of the
same memory location, updates to one copy can lead to inconsistent data across
caches. Various protocols have been developed to address this issue and maintain
cache coherence. These protocols impact the system performance in different ways
and are tailored for specific system configurations.

The cache memories provided to this thesis is a set-associative cache memory. A
single bit is used as a status bit, dirty, to indicate that a cache line has been
modified. This may not be sufficient for all system configurations but additional
measures can be taken in software. However this puts a burden on the programmer
and might not be as effective. Cache coherency can be maintained by using the
supported D-cache operations "invalidate line" and "flush line" in conjunction
with handshakes between the multiple hosts, such as a core and an accelerator.
Invalidating a cache line removes the cache line from the cache, forcing the data
to be read again from main memory, thus the most recent version of the data can

Background 17

Table 2.3: Minimum and maximum configuration of SRAM provided
for the ASIC design.1

(a) Single-port SRAM.

Feature Range
High-Performance High-Density

Size 2 kb - 1 Mb 32 kb - 2 Mb
Data width 8 - 256 bits 8 - 256 bits
Word Depth 64 - 16384 1088 - 32768

(b) Dual-port SRAM.

Feature Range
High-Performance High-Density

Size 1 kb - 160 kb 8448 b - 320 Mb
Data width 4 - 80 bits 4 - 80 bits
Word Depth 64 - 8192 528 - 16384

be obtained. Flushing a cache line writes the data to memory regardless of the
replacement policy.

2.4.2 Static Random Access Memory

The SRAM memories used for the ASIC design in the thesis, were provided by
Invecas for GlobalFoundries®(GF) 22FDX™22 nm technology. Numerous memo-
ries are provided, with both single and dual port. Both memory types are available
in multiple families, with their own respective frequency performance range and
power/area.

The memories can be compiled, for different word depths and data widths, with
some limitations as shown in Tab. 2.3. Each memory type can be configured into
either a high-density or high-performance mode. Though the high-performance is
limited to significantly smaller memory sizes.

Depending on the word depth and data width, some memories may be compiled
into physically inconvenient layouts which can significantly affect the layout pro-
cess. Hence, structuring memories through a process known as banking can ef-
fectively streamline the place and route procedure, minimizing potential layout
issues.

Restrictions in the block placement of the memories can pose additional challanges

1Please note that the table presents the absolute minimum and maximum ranges.
However, not all of these configurations may be compatible with each other.

18 Background

during layout, as no rotations are allowed. However it is possible to mirror the
block in y-axis.

A native RAM interface is used to read and write transactions. meaning that write
requests are executed in a single clock cycle while read requests require two clock
cycles.

2.5 ASIC Design

In ASIC design, the three major design goals are performance, power, and area
(PPA). Each of these design goals may negatively impact the other two, so a
balance between them must be carefully considered at each design step, and the
PPA should be optimized based on the application. During this thesis, the target
application is edge inference, therefore the main emphasis is on power efficiency
and performance, but the area should still be kept as small as possible to increase
yield and lower cost. Trade-offs with regards to PPA will be discussed in the
System Design and Implementation section, see section 3.

2.5.1 Low-power design

In low-power design it is common to use multiple power domains to reduce the
overall power consumption. This can be achieved by enabling logic to turn of
specific power domains or to use physical power domains, i.e., domains that are
physically separated and can use different voltage supplies. When creating physical
power domains there are two major aspects that must be considered: Physically
separate power and core rings, and power routing between different power domains
on the die area. Additionally, partition the pad frame into power domain-specific
parts using breaker pads.

To physically separate the power routing, it is important to leave a sufficient
gap between the power-rings of different power domains and carefully define the
power domains properly in the Electronic Design Automation (EDA)-tool, the
distance between different power lines is a process dependent variable and should
be accessible among the process’ design rule.

To partition the pad frame for the different power domains, breaker pads are used
to break the supply rails in the pad frame, though the ground rail may be shorted
if desired. For digital pads it is common practice to drive the pads with a higher
voltage. An example of a digital pad-frame with two physical power domains can
be seen in figure 2.7. Where the powerlines of different power domains are cut by
the blue breakers.

After power routing and placing of standard cells and hard macros, the IR-drop

Background 19

(voltage drop) for all power domains must be verified. If the IR-drop is significantly
high somewhere on the die, the power planning needs to be revisited to avoid any
performance loss.

VSS

VDDIO

VDD

VSSIO

VSSIO

VDD

VDDIO

VSS

VSSIO

VDD

VDDIO

VSS

VSS

VDDIO

VDD

VSSIO

GPIOGPIO

GPIOGPIO

Power
Domain 1

Power
Domain 2

Break

Figure 2.7: A digital pad frame with two power domains. The IO
power rail are driven by the VSSIO and VDDIO, while the core
power rail is driven by VDD and VSS, which supplies the two
different power domains.

20 Background

Chapter 3
System Design and Implementation

This chapter serves to provide a deeper understanding of the system design and
how it was implemented. The key components that form the architecture of the
system will be explained as well as challenges encountered during the implemen-
tation process, and how they were addressed. This comprehensive presentation of
the design and implementation process should provide a clear picture of how the
system was built and how it operates.

3.1 Overall Design and Implementation

The original design was a single RISC-V core system with one level of cache mem-
ories and one larger on-chip memory connected via an interconnect. In order to
connect the AHB from the I- & D-cache, to the interconnect, arbitration is re-
quired. Besides the NMC accelerator, the system also contained a DMA attached
to the core via instruction level control. The DMA needs to be able to read and
store data from the memories, thus requiring an AHB master interface connected
to the arbiter, as well as another master interface connected to the accelerator. As
an option to the instruction level control, the DMA may also be controlled via a
slave interface attached on the interconnect. See Fig. 3.1.

21

22 System Design and Implementation

L1-
data

L1-
instruction

A
R
B
I
T
E
R

I
N
T
E
R
C
O
N
N
E
C
T

On-chip
Memory

IRQ

DMA

NMC
ACCELERATOR

Figure 3.1: Initially proposed design of the system.

As explained in section 2.4.1, the caches provided in the project does not support
a protocol that can handle the intended system configuration. To handle this, a
the built in functions flush and invalidate which can be called from the RISC-V
core can resolve the coherency. Prior to the core providing an address to DMA,
from which data will be obtained, the core has to trigger a cache flush. Equally,
when the DMA has written to the main memory and transmits an IRQ to the
core, the core will respond by triggering a cache invalidation, before reading that
recently updated data.

3.1.1 System Redesign

During the late development phase of the thesis, it became apparent that the
proposed system was incompatible with the cache system provided for the project.
This constraint hindered the thesis and as a consequence it was deemed necessary
to revisit the system design and consider alternative approaches while retaining as
much of the original idea as possible.

The alternative system design, can be seen in Fig. 3.2, which replaces the cache
memories in favor of an additional SRAM. With this setup it is still possible
to maintain parallelism between the calculations in the NMC the RISC-V core.
Both memories are accessible to both hosts, though the larger of the two memories
(Memory 1, in the figure) is the primary memory for the RISC-V core while the
other memory is primarily intended to the NMC unit. The bus from both the
DMA and the RISC-V core is attached to the interconnect in which two decoders
are used to connect them to the appropriate memories via another arbiter.

System Design and Implementation 23

I
N
T
E
R
C
O
N
N
E
C
T

On-chip
Memory 1

IRQ

DMA

NMC
ACCELERATOR

A
R
B
I
T
E
R

A
R
B
I
T
E
R

On-chip
Memory 2

A
R
B
I
T
E
R

Figure 3.2: Block diagram for the final system design, with the
caches replaced by a secondary SRAM memory.

3.2 RISC-V modifications

This section is dedicated to the modifications of the RISC-V core, required for the
proposed system design to work as intended.

3.2.1 NMC specific instructions

Communicating with the accelerator, in particular the DMA, through use of cus-
tomized instruction requires the instruction to be able to transmit data in a single
clock cycle containing information about memory locations, DMA specific con-
figuration, as well as as information about which DMA is to be addressed. In
this system configuration, there is only one DMA present, but for scalability it is
possible to add more DMAs without making any changes to the ISA.

The S-type instruction was a suitable instruction type as this can provide two
register sources in combination with 12 immediate bits, see Tab. 3.1. As only one
DMA was attached in the current configuration, the first seven bits are redundant,
but are otherwise used to address a specific DMA. The five bits composed of Opt1
and Opt2 were added for the same reason, to introduce later customization to
improve and maximize the total number of bits possible to transmit in a single
clock cycle.

Instructions of a mathematically simple nature, can easily be described in the
CodAl semantics in such a way that the compiler automatically can identify when
the C-code should be compiled to that specific instruction. However, an instruction
of this nature which is more abstract can not be easily identified by a compiler as
it is not an operation like addition, multiplication, bit shift, etc.

24 System Design and Implementation

Table 3.1: Customized DMA instruction.

Bit 31 .. 25 24 .. 20 19 .. 15 11.. 9 8 .. 7
S imm[11:5] rs2 rs1 imm[4:0]

Desc DMA Mem Control Opt1 Opt2

For this reason the compiler is not able to automatically identify which parts of
the C-code should be compiled to this custom instruction. The use of the specific
instruction (hence referred to as SWC) requires inline assembly, as follows. This
poses some restrictions on the software programmer as the immediate bits for
DMA address (dma_addr) and the optional (opt1, opt2) has to be determined at
compile time and can’t be changed during runtime.

Listing 3.1 Definition for inline assembly use of the custom DMA instruction, SWC

1: #define SWC(mem_addr , ctrl , dma_addr , opt1 , opt2) asm
volatile ("swc %0, %1, %2, %3, %4" : : "r" (

mem_addr), "r" (ctrl), "i" (dma_addr), "i" (opt1),
"i" (opt2))

In order for the DMA units to determine when to sample the data, an additional
signal (Write Enable) is used to trigger the data on the input buses on the DMA,
see Fig. 3.3.

Figure 3.3: Buses and signals between the RISC-V core and DMA
used for instruction level control.

The instruction was completely implemented through the use of CodAl as both
an instruction and cycle accurate model. Handling the hazards that can arise in

System Design and Implementation 25

cycle accurate model, is crucial for a functioning instruction as there are numerous
multi-cycle instructions that are likely to be used prior to the use of the SWC,
e.g., LW, see section 2.1.3.

To resolve this issue, in the ID stage the core keeps track of the FU being decoded at
the current time. If the decoded FU is the one used to handle the SWC instruction,
there is a potential for a instruction hazard. However, it is likely that no hazard
will occur, hence the core needs to compare the destination register in the EX
stage to source register in the ID stage. If there’s a match, the ID stage will stall,
inducing a stall on the FE stage as well.

3.2.2 Multiply and Accumulate

The MAC instruction is a simple instructions often used used in convolution, which
calculates the product of two integers and accumulating the result with a third, in
a single clock cycle. The instructions takes three parameters of which one is both
input and output while the others are inputs. The R-type is a suitable instruction
type for the MAC, see Tab. 2.2. Due to the mathematical simplicity of the MAC
instruction, this can be explained through the CodAl Semantics language in such
a way that the compiler easily detects C-code that should be compiled into MAC,
as shown below.

Listing 3.2 MAC instruction

1: int a = 5;
2: int b = 10;
3: int c = 20;
4: c+=a*b; // Compiled to mac instruction
5: c = c+(a*b) // Compiled to mac instruction

The MAC instruction was realized through a combination of CodAl and VHDL
as to provide the flow with the possibility to implement an instruction fully, or
partly, using Hardware Description Language (HDL), which in some instances
may be more appropriate than using CodAl. The actual calculations were imple-
mented using VHDL, while CodAl was utilized to handle hazards and incorporate
necessary architectural modifications in the design.

As the baseline processor only supports two values to be read from the GPR at
single time, a third reading port was implemented. Hazards were handled in a
similar way as explained in section 2.1.3 and 3.2.1.

26 System Design and Implementation

3.3 Near Memory Computing

In this thesis, the NMC design involves the realization of a DMA and an accelera-
tor. The following sections provide a in-depth explanation of the design exploration
choices and the implementations of the respective components.

3.3.1 Accelerator

The accelerator used in this design is a smaller implementation of the design
proposed and implemented by S. Castello in his previous work [11]. To be able
to tightly couple the accelerator with the RISC-V core, new memories in 22nm
technology was compiled and integrated. Additionally an AHB interface between
the accelerator and the interconnect was designed. Since AHB is a multi-clock
cycle protocol, as seen in Fig. 2.2, the interface from AHB needed to be designed
to align address and the data. This can be seen in Fig. 3.4, where delays are
introduced to address this alignment issue.

Figure 3.4: Block diagram of the AHB to accelerator bridge.

3.3.2 Direct Memory Access

In applications that demands high data movement, it is important that the pro-
cessor offloads data transfers to improve system performance. A common method-
ology to achieve this is to use a DMA unit. A DMA is configured with a start
address, destination address and number of transfers and issues read and write
request until all the data are transferred between the two memory locations.

System Design and Implementation 27

DMAs can be optimized for different types of applications, in this work a low area,
high throughput and modular DMA to move data from memory into different
accelerators. The design consist of a front-end, mid-end and a back-end as seen
in Fig. 3.5, the modularity of the designs enables reusability and the option for
improvement or extensions to the design. The front-end offers a programming
interface between the system and the DMA, the mid-end consist of the DMA-
controller and the back-end act as a converter between the interface of the DMA
to the specific on-chip protocol.

By decoupling the front and back-end from the control-logic of the DMA, different
on-chip protocols can be used to configure the DMA and for the DMA to interface
with the memory system.

DMA
Controller

Recieve
transfer-
requests

Front-end Mid-end Back-end

Issue
read/write
request

Interrupt

Figure 3.5: Block level functionality of each module in the DMA.

Architecture

The front-end is implemented to either be configured by custom RISC-V instruc-
tions or a register-based configuration. Both methods configures the same regis-
ters in the DMA, but the instruction-based method is able to configure a transfer
request with only one instruction. When a transfer request have reached the front-
end it gets polled by the mid-end controller to be handled further. The control,
and address FIFO in the front-end module, as seen in Fig. 3.6 act as a sched-
uler/buffer when the controller are occupied with a transfer. This enables the
user to schedule multiple transfers on the DMA, and while utilizing the RISC-V
core for other task. When the DMA have transferred data back to the memory, it
interrupts the RISC-V core to notify that the data have been transferred. In Fig.
3.6 one AHB master interface is connected directly to the accelerator, multiple
accelerators can be connected and targeted by changing target accelerator in the
control data register. The controller is made to be able to issue read request and
write request to the back-end every clock cycle. The DMA is currently limited
by the AHB master back-end which only can read data every third clock cycle
and write every second. But due to the modularity of the design this could be
improved later on.

28 System Design and Implementation

Front-end

Control data

Start address
control
FIFO

addr
FIFO

optional
transport
layer, e.g.

AHB3

Configurable
FIFO depth

DMA
controller

Back-end

AHB-master interfaceing
with memory subsystem

AHB-master

FIFO

FIFO to enable
outstanding
transactions

Polling

Reading from

main memory

Trigger accelerator

Interrupt

Reading from

accelerator

Directly connected to
accelerator.

FSM:

Figure 3.6: In-depth description of the hardware and logic used to
implement the DMA.

Programmable configuration

To schedule a transfer request the start address and the control data must
be set correctly. The start address is a pointer to the memory address that from
which the DMA read. The control data register contains the number of transac-
tions, bit shift, accelerator address, target accelerator and mode. These parameters
configures how the data shall be moved between accelerator and memory and the
bit assignment for the control data register is shown in Tab. 3.2. The current
version supports up to 4 accelerators per DMA, where each accelerator have a
private memory space.

Hardware configuration for the interrupt

To connect the interrupt to the RISC-V core the interrupt-signal needed to be
coupled to the right register in the RISC-V core. The DMA-interrupt was con-
nected to the Least Significant Bit (LSB) of p_int which is the interrupt vector
that internally drives the machine interrupt pending (MIP) register and especially
the MIP.MEIP where E stands for external. It also trigger the MPICFLAG register,
which will store the interrupt. During run time the MIP triggers the core to start
executing the trap handler. From the MPICFLAG register the source of the interrupt
can be resolved and linked to the accelerator. [12]

3.4 Memories

In order to minimize the die area, the memories should preferably be compiled
in the high-density mode. However due to limitations in the provided memory

System Design and Implementation 29

Table 3.2: Programming guide for the DMA, to use with the SWC
instruction.

31 29 28 27 26 15 14 12 11 1 0
MODE ACC ACC ADDR BITSH NRTX START

(a) DMA control data register bit assignment.

Abbreviation Meaning Clarification

MODE Mode
000: Read from memory,

010: Read from accelerator,
001: Trigger accelerator.

ACC Accelerator Accelerator selection.

ACC ADDR
Accelerator Start address

Address for accelerator

BITSH Bit Shift
3 bits represent an unsigned int, which

will cause a stride when reading/
writing from memory by 2BITSH.

NRTX
Number of

Transactions.
START Start Bit Must be set to 1.

(b) Abbreviations and clarifications.

compiler, the combination of data widths and word depths are only possible in the
high-performance mode, see section 2.4.2.

The accelerator requires two 2 kB single-port memories and one 2 kB dual-port
memory, as explained in section 2.3.2. The dual-port memory, with its more strict
limitations (see Tab. 2.3b), required the use of a high-performance memory. The
two single-port memories were also compiled in the preferred high-density mode.

Prior to finding out the limitations of the provided caches, as explained in section
3.1.1, the a combination of the limitations of the cache sizes and memory sizes
caused issues. The minimum data width of the cache memories for the data banks,
as generated by Codasip, was 256 bits. The total data bank size of the caches were
2 kB, i.e., word depth 64. Due to the phenomenally large ratio between the width
and depth, this results in an elongated shaped memory which significantly limits
the layout process. However, due to system redesign this issue was naturally
avoided.

Two separate memories of different sizes, was compiled to fit the the RAM was
split into two memories, See Fig. 3.2. The two memories of 96 respectively 32 kB
were both compiled in high-density mode, both of which use 32 bits data width.

30 System Design and Implementation

3.5 Design flow and methodology

When designing an ASIC it is important to have a functional methodology for the
project to progress as expected. During this thesis, that consisted of integrating
accelerator, designing hardware, and extending the existing architecture of a RISC-
V, the use of Codasip studio as the main IDE for both hardware and software,
acted as a foundation for the FPGA and ASIC flow. In figure 3.7 each of the
major step in both flows are shown, where Codasip Studio act as a starting point
for both flows.

For the FPGA-flow it was possible to first generate the VHDL with Xilinx-primitives
and simulate the whole system running code using a RTL-simulator. When bugs
were resolved, the synthesis, implementation, bit-stream generation, and program-
ming the FPGA (loading bitstream) was performed from Vivado. The same code
used during RTL-simulation was then executed on the FPGA, by comparing the
behaviour post implementation with the simulation-results, it was possible to early
detect bugs and avoid any bad RTL propagating into the ASIC-flow.

During the ASIC-flow, the RTL-generation from Codasip was changed to target
a generic ASIC-flow, the memories were changed from FPGA to the pre-compiled
memories mentioned in section 2.4.2. Then the same procedure of first running the
behavioral simulation followed by a post synthesis simulation was done. Note that
all simulations were started from inside the Codasip studio, with different script
supporting each simulation. When the design have passed all these simulations,
the post Place and route (PnR) simulation was initiated.

Some valuable lessons for all ASIC-simulations except for the behavioral simula-
tion, was to initialize memories and register without a reset, with a random values.
This makes the simulation more similar to a fabricated chip and avoids incorrect
X propagation during the simulation.

3.6 Synthesis and constraints

The technology utilized in this thesis is the GlobalFoundries®(GF) 22FDX™22
nm Fully-Depleted Silicon-on-Insulator process, with standard cells, memories,
and pads sourced from a third-party vendor. Due to the absence of an on-chip
clock generator and the input frequency limitation of 300 MHz imposed by the
pads, the design is constrained to operate at a maximum of 300 MHz. Additionally,
the pads have a depth of 150 µm, which is notably large for small designs. Both
high-performance and area-optimized standard cells and memories were available
for use. However, since the area-optimized standard cells and memories were
capable of handling frequencies above 300 MHz, the area-optimized Intellectual
property (IP)s were chosen for this project."

System Design and Implementation 31

System Integration of
accelerators using codasip

studio.

Write code, generate SDK

Add core customization, to
improve performance and

reduce energy consumption.

Behavioral RTL Simulation
with deployable code

Behavioral RTL simulation
with vendor specific

primitives (Xilinx)

FPGA implementation of
current system

FPGA -
flow

Behavioral RTL Simulation
with deployable code

Change paramter to switch to
ASIC flow

RTL simulation with ASIC-
memories

ASIC
simulation

Synthesize towards 22FDX

Extract timing information

Use same testing
environment as before

ASIC
synthetization

Script based PNR

Extract timing information

Use same testing
environment as before

ASIC PnR

Figure 3.7: Flowchart illustrating the sequential steps taken in both
the ASIC and FPGA flow, as well as the preliminary step in
Codasip.

3.7 Place and Route

Place and route is one of the more time consuming steps during ASIC-design,
therefore automation is key to create a manageable workflow, where it is easy to
go back some design steps to test new implementations without needing to redo
all the work.

3.7.1 Pad frame

At the beginning of the layout process, a pad frame must be designed. This frame
should include all power pads and IO pads, and they must be properly spaced
with the correct pitch – the distance between the centers of two pads intended for
bonding after fabrication. As various area sizes and pad counts were explored in
this project, a script was created to automatically generate the correct pad spacing

32 System Design and Implementation

based on the die’s geometry, the number of pads on each side, and the specified
pad geometry. This script was then used to create the pad frame in the layout
suite. Designers only need to specify the order of the pads and the breaks between
each iteration. The script automatically rotates and places each cell correctly, and
fills in with filler cells as needed. The resulting pad frame is shown in Figure 3.8a.

3.7.2 Power-planning and placement

As mentioned in section 2.5.1, using multiple physical power domains is a common
strategy for low-power design. In the final implementation, three physical power
domains were employed. Although all three had the same supply voltage of 0.8V,
the purpose was to enable measurement of the power consumption of different
sections of the chip after fabrication. The three power domains were grouped into:
the main memories (referred to as PD-MEM), the accelerator and its memories
(referred to as PD-ACC), and the rest, which included the RISC-V, DMA, and
interconnect (referred to as PD-CORE). In the final design, only PD-MEM and
PD-CORE had their own core rings, while PD-ACC only had a dedicated power
ring around the area allocated for the accelerator and its memories. The partition
of the pad frame for PD-ACC was located only in the top right corner, so it was
not necessary to create a core ring for that domain. The core ring for PD-CORE
excluded the main memories to avoid unnecessary routing but still included PD-
ACC to simplify layout.

During placement, the main memories were positioned along the core edges in
accordance with good placement practice. Unfortunately, the memories did not
permit rotations or mirroring across the x-axis, so placing them to the left of the
core seemed the most optimal solution. The accelerator memories were placed
inside the PD-ACC domain. As rotation around the y-axis was acceptable, the
memories were placed back to back to simplify power routing during power striping.

For all memories, a specific width between vertical power stripes, as well as the
width of each stripe, was specified in the documentation and had to be considered
when creating the stripes. End caps were placed at the end of each power domain,
and well-taps were positioned closely enough to satisfy the distance rule between
well taps. The power rings, power stripes, and end caps are shown in figure 3.8b.

System Design and Implementation 33

(a) Generated pad frame with macro place-
ment and power routing.

(b) Detailed view of power routing including power rails of the upper right
corner.

Figure 3.8: Overview of the power planning, with pad frame.

34 System Design and Implementation

96 kB
Memory

32 kB
Memory

RISC-V
core

DMA

NMC
ACCELERATOR

Accelerator
Memories

Figure 3.9: Overview of the layout, with each major module high-
lighted and colored.

3.7.3 IR-drop analysis

After routing, it is essential to conduct an early voltage drop analysis to identify
potential voltage drops within the design. As seen in Figure 3.10, the initial voltage
drop was notably significant. To mitigate this, the width of the core and power
rings was increased. To expedite the development flow, an iterative approach can
be adopted to assess the voltage drop after each routing iteration, enabling the
entire design flow to be executed only after achieving the desired voltage drop
target. The more accurate IR-drop analysis performed after sign-off is termed
"late-stage" analysis.

20mV

0mV

10mV

Figure 3.10: Initial IR-drop (voltage) drop on the chip, with a max-
imum drop of 20 mV.

Chapter 4
Testing and Verification

To test the system, a simple convolutional neural network (CNN) was used, which
was trained on the MNIST dataset. The original MNIST dataset consists of
monochromatic images of classified handwritten digits with a pixel resolution of
32x32. For this baseline example, the images used for classification were pre-
processed to a size of 8x8, resulting in a smaller CNN that uses only one convo-
lutional layer. The architecture of the CNN is presented in Tab. 4.1. To evaluate
the system’s performance, two different baseline scenarios were tested. In the
first scenario, referred to as the baseline system, inference was performed on
the RISC-V core without any modification. In the second scenario, only the ac-
celerator was added to the interconnect, and this configuration is referred to as
the baseline accelerator. These baseline scenarios were then compared to the
full system configuration, referred to as this work, which is depicted in Fig. 3.2,
incorporating the MAC and SWC custom instructions.

For a fair and transparent comparison, it was decided that measurements would
be taken for different parts of the program, such as the convolution. The metrics
used for comparison are based on the number of clock cycles.

Table 4.1: CNN Architecture of the accelerator.

Layer Output Size
Input (8x8 image) 8x8

Convolutional Layer (8 filters, 3x3) 8x8x8
Maxpool Layer (2x2 stride 2) 4x4x8

Flatten 128
Fully Connected Layer 10

Maximum Activation Classifier 1 (one-hot encoding)

35

36 Testing and Verification

4.0.1 Baseline System

The baseline system utilized the L31 core, provided by Codasip. The only modifi-
cation made to the system was the introduction of an arbiter and a single 128 kB
SRAM memory, which was connected to the arbiter via a 32-bit AHB bus. This
baseline system does not include any custom instructions or an accelerator.

For the baseline system, the CNN with the settings presented in Tab. 4.1 was
implemented in C for inference. The algorithms used for the realization of the
convolution, max-pool, and fully connected layer are shown in Algorithm 1, 2,
and 3, respectively. These specified algorithms were employed to replicate the
calculations performed by the CNN accelerator, as explained in Section 2.3.2.

Algorithm 1 Convolution with Bias
Require: Input tensor I, Filter tensor F , Bias vector B, Pooling size P ,

Output tensor O
function ConvolutionWithBias(I, F,B, P,O)

for i← 0 to O.size1 do
for j ← 0 to O.size2 do

sum← 0
for k ← 0 to F.size1 do

for l← 0 to F.size2 do
sum← sum + I[i+ k][j + l]× F [k][l]

end for
end for
sum← sum +B
O[i][j]← sum

end for
end for

end function

Measurements of execution time were taken at different parts of the code. One of
the segments measured was from the start to the end of the convolution, including
the max-pooling step, i.e., the combination of Alg. 1, 2. Additional measurements
were taken on the fully connected layer as represented by Alg. 3, as well as for the
total runtime of the program. The system performance was evaluated at varying
optimization levels.

4.0.2 Baseline core with Accelerator

The baseline core with the accelerator is similar to the design presented in Fig. 3.2,
except that the DMA is excluded and the accelerator is connected directly via an

Testing and Verification 37

Algorithm 2 Maxpool
Require: Input tensor I, Pooling size P , Output tensor O

function Maxpool(I, P,O)
for i← 0 to O.size1 do

for j ← 0 to O.size2 do
max_val← −∞
for k ← 0 to P do

for l← 0 to P do
val← I[i× P + k][j × P + l]
if val > max_val then

max_val← val
end if

end for
end for
O[i][j]← max_val

end for
end for

end function

Algorithm 3 Fully Connected
Require: Input vector I, Weight matrix W , Output vector O

function FullyConnected(I,W,O)
for i← 0 to O.size do

sum← 0
for j ← 0 to I.size do

sum← sum + I[j]×W [j][i]
end for
O[i]← sum

end for
end function

AHB to the interconnect. In this system, without the DMA, the core is required
to perform all the data transfers between the memory and the accelerator, which
hinders its ability to perform more meaningful computations.

The accelerator performs the convolution computations, while the core is respon-
sible for the computations of the fully connected layer, using Algorithm 3. During
inference, the NMC does not allow data to be read from the unit. As a result, for
the fully connected layer to execute in parallel with the accelerator, the output
from the NMC must be stored in the main memory. This introduces an overhead,
as the output is transferred from the NMC to the core and then from the core to
the main memory. From there, it can be accessed as needed for the fully connected

38 Testing and Verification

computations. However, to achieve good throughput, it is crucial that the core
begins transmitting the next input to the accelerator before initiating the fully
connected layer. See Fig. 4.1 for a visual representation.

The measurements for the execution time of the convolution computation are
defined as starting when the core first reads the input data from the memory and
ending when the last output has been written back to the memory.

Time

CoreData transfer Core Core Core

AcceleratorConvolution Accelerator

CoreFully connected

Data transfer from NMC → core → memory
Data transfer from memory → core → NMC

Figure 4.1: Ideal timeline for the operations in the baseline system
with the NMC unit connected via the AHB interconnect.

4.0.3 Full System

The system configuration shown in Fig. 3.2, which includes the custom instruc-
tions, is referred to as the full system. As in the two base scenarios, the system
core performs the operations for the fully connected layer, using Algorithm 3, but
in this case, the MAC instruction reduces the number of instructions needed to
complete that computation.

When the accelerator has finished the calculations, the DMA will write the result
to the memory address previously specified by the core, after which the core is
notified through an interrupt transmitted from the DMA. For the Interrupt service
routine (ISR) to work, the appropriate registers need to be set in the core. See
Appendix A for more details.

The system was measured for both a single convolution in the accelerator and for
the fully connected layer. The convolution execution time is defined as starting
from the first transaction from the core to the DMA, and ending when the interrupt
signal is triggered by the DMA. The setup functions for the IRQ, which are
executed once at the startup of the program, are excluded from the measurement.
This means that the measurement includes the time it takes for the input data
to be transferred to the NMC, as well as the time for the result to be written to
memory. The fully connected layer is measured using the same definitions as in
the previous setups.

Running the inference and fully connected layer multiple times will yield different
results, as both the DMA and the core will be able to access the memories simul-
taneously, thanks to the dual memory setup. This scenario results in maximum

Testing and Verification 39

theoretical performance

Time

DMAData transfer DMA DMA DMA DMA

AcceleratorConvolution Accelerator Accelerator

CoreFully connected

IRQ IRQ (queued)

Figure 4.2: Ideal timeline for computations in the full system.

40 Testing and Verification

Chapter 5
Results

This chapter presents the results obtained from the various testing scenarios dis-
cussed in Chapter 4. The results are based on the previously outlined metrics,
which primarily focus on the number of clock cycles required to perform different
segments of the program, including computations done in the accelerator, such as
convolution and max-pooling, and the fully connected layer. All measurements
have been normalized against the baseline system.

5.1 Performance Analysis

As illustrated in Fig. 5.1, the performance of each configuration is measured in
terms of execution time relative to the baseline system (L31), with lower values
indicating better performance. The staple diagram displays the relative execution
time of both the convolution and the fully connected layer, the latter of which is
always executed in the core.

The results indicate that the addition of the accelerator to the baseline core (L31
+ Accelerator in Fig. 5.1) considerably reduces the execution time for convolu-
tional computations. As anticipated, the performance of the fully connected layer
remains unaffected, as its computations are not handled by the accelerator. This
results in an overall performance improvement of 10× for the computations as
described in section 4.0.2.

With the additional inclusion of the DMA, and the custom instructions (This work
in Fig. 5.1), the execution time is further reduced, illustrating the effectiveness
of the setup due to parallelism and optimization of computations, as outlined in
4.0.3. In the system equipped with the DMA, a decrease in the execution time for
both the NMC and the fully connected layer is observed. This is clearly illustrated
in Fig. 5.2, where the performance of the individual computations, in terms of
speedup, for the three systems are presented.

41

42 Results

L31 L31 + Accelerator This work

10.0%

25.0%

50.0%

100.0%
Total: 100.0%

Total: 10.0% Total: 8.6%

8.6% 8.6% 7.3%

R
el

at
iv

e
E

xe
cu

ti
on

T
im

e

Performance

Fully Connected Layer
Convolution

Figure 5.1: Comparative performance analysis, showing the rela-
tive execution time for convolutional and fully connected layer,
benchmarked against the baseline system, L31.

The gain in performance comes at the cost of area, as shown in Fig. 5.3. In
comparison to the baseline core, the NMC (including the memories inside the
NMC-unit) is 2.94× larger. In comparison to the baseline system (which includes
on-chip SRAM), the NMC is 36.7% of the size. In total, the area of the system
developed in this thesis is 138.5% that of of the baseline system.

Fig. 5.4 displays the performance relative to the area, normalized to the baseline
system. The normalized performance density was determined by dividing the
performance of the entire program by the area of the system, and normalizing it
against the baseline core. Despite the increase in area, the performance gain was
greater, leading to a normalized performance density at 8.4× baseline system.

By using the NMC, only a few instructions are required in order to set up the
entire inference, the introduction of the DMA reduces the number of instructions
further as the data transfers are not handled by the core. The program size relative

Results 43

L31 L31+Accelerator This work
0

2

4

6

8

10

12

1.0×

10.0×
11.7×

System Configuration

R
el

at
iv

e
Sp

ee
du

p
Net Performance

(a) Total speedup of the program, relative to the baseline processor.

L31 L31+Accelerator This work10−1

100

101

102

1.0 ×

65.2 × 74.7 ×

System Configuration

R
el

at
iv

e
Sp

ee
du

p
(L

og
Sc

al
e)

Convolution

(b) Performance of the convolution computations for the systems, measured as speedup
relative to the baseline core.

L31 L31+Accelerator This work
0

0.2

0.4

0.6

0.8

1

1.2

1.00 × 1.00 ×

1.17 ×

System Configuration

R
el

at
iv

e
Sp

ee
du

p

Fully Connected

(c) Performance of the fully connected computations of the systems, in terms of speedup,
relative to the baseline core.

Figure 5.2: Speedup comparison between the three systems, for the
different computational parts of the program.

44 Results

L31 This work
50%

86.8%

100.8%

138.5%

Total: 138.5%

Total: 100.0%

R
el

at
iv

e
A

re
a

System Area

Memory
Core

Other
Accelerator

DMA

Figure 5.3: Relative area of the system, showing the size of the
individual blocks, benchmarked against the baseline core, L31.

to the baseline system is shown in Fig. 5.5. Note that this only accounts for the
text of the program (i.e., instructions, not data). As the instruction size for the
system with both custom instructions, DMA, and NMC, is only a fraction the size
that of the baseline system, it would be possible to reduce the memory on the chip
allocated for instructions by approximately 94%.

Due to the large reduction in instruction size, its possible to get a large area
reduction by reducing the memory size accordingly. Taking this into account, we
get the following relative system size as seen in Fig. 5.6.

Results 45

Baseline This work
0

2

4

6

8

10

1.0×

8.4×

System Configuration

R
el

at
iv

e
P
er

fo
rm

an
ce

/A
re

a

Performance Density

Figure 5.4: Performance over area, normalized to the baseline core.

L31 L31 + Accelerator This work
0%

10%

25%

50%

100% 100.0%

6.5% 6.2%R
el

at
iv

e
In

st
ru

ct
io

n
Si

ze

Program Size

Figure 5.5: Comparative instruction size of the three system config-
urations, relative to the baseline system.

46 Results

L31 This work
50%

86.8%

100%

138.5%
Original size: 138.5%

Total: 112.2%

Total: 100.0%

R
el

at
iv

e
A

re
a

Theoretical System Area after Memory Reduction

Memory
Core

Other
Accelerator

DMA
Reduction

Figure 5.6: Theoretical area after memory reduction as a conse-
quence of the reduction in instruction size.

5.1.1 DMA performance

The DMA designed in this work, was designed to have a small area overhead but
still be able accelerate data movement. A short summary of the performance of
the DMA is shown in Tab. 5.1. Compared to the scenario without the DMA the
read/ writes from the accelerator took 8 and 4 clock cycles, where the writes was
faster due to unrolling of loops. It is worth mentioning that unrolling still have an
impact on the code size. The DMA also enables more parallelism as discussed in
chapter 4.

Results 47

Table 5.1: Summary of DMA performance.

Read/ Write request (4 bytes) 2/3 clock cycles
Area overhead compared to baseline system <1%

Front-end (on-chip protocols) AHB3-Lite or
configuration via RISC-V instructions

Back-end (on-chip protocols) AHB3-Lite

48 Results

Chapter 6
Discussion and Future Work

This thesis presents a RISC-V based system designed to accelerate convolutional
neural networks by offloading convolutions to an NMC-accelerator through the
use of a custom-designed DMA. The DMA is precisely controlled by a specialized
RISC-V instruction that was added to the core. The fully connected layer was
enhanced with the use of a custom MAC instruction. As compared to the baseline
scenario, the resulting system exhibits a significant performance increase of 11.7×,
with a relatively minor area impact, as discussed in chapter 5.

In hindsight some architectural decisions were less than optimal, particularly re-
garding the accessibility of the NMC memories and the core. Since the core still
needs to fetch the results to compute the fully connected layer, direct access to
the memory within the NMC would have been advantageous. This would have
reduced the write-back operation performed by the DMA from the NMC to the
main memories. Similarly, performance could be enhanced if it were possible to
write a new image to the NMC as quickly as the NMC has buffered the previous
one. These two improvements would effectively reduce data transfer time to zero
when conducting inference for multiple images. This is because, once the NMC-
accelerator completes a convolutional layer, it could immediately proceed with the
next image, allowing the core to concurrently compute the fully connected layer
without waiting for the DMA to transfer data back to memory.

Despite the NMC accelerator achieving a 74.7× performance improvement for the
convolutional layer when compared to the baseline scenario, the execution time
for the fully connected layer for the final design resulted in a 17% increase as
compared to the baseline. Consequently, the overall system performance increase
was limited to 11.7×. In order to capitalize on the substantial performance boost
provided by the NMC accelerator, it would be worthwhile to explore acceleration
options for the fully connected layer. Potential solutions could include modifying
the accelerator or incorporating vector multiplication support.

A 10× system performance increase means that the system can be clocked ten

49

50 Discussion and Future Work

times slower and still perform inference at equal performance as the baseline sce-
nario. This implies that with some dynamic frequency and voltage scaling the
system can be optimised for low-power applications. In future work, it could be
worthwhile to investigate eventual power consumption reductions from dynamic
frequency and power scaling.

With the introduction of the DMA and NMC, the text of the program were drasti-
cally reduced to 6.2% of the baseline scenario, as presented in section 5.1. Reducing
the instruction size by 90% would yield a significant decrease in the area memory.
In total, the full system would require only 60% the size of the memory required
by the baseline system. This only holds true for optimized compiling compiling,
as the computations result in large amounts of unrolling of loops.

In this work, custom RISC-V instructions were added to simplify the programming
model of the NMC and increase performance. To further enhance the programming
model, multi-level intermediate representation techniques, as discussed in [13],
could be applied to machine learning workloads. This would enable the compilation
of high-level model representations in a machine learning framework to executable
code. This process would involve the high-level extraction of operations, such as
convolution, followed by code generation that configures the DMA and NMC to
perform these operations.

In this thesis, considerable emphasis has been placed on automating the FPGA
and ASIC flow to enable fast integration of new accelerators and hardware designs.
The ability to quickly change architectures and target different platforms facilitates
exploration of more design alternatives and their respective performances.

In conclusion, this thesis has demonstrated the possibilities of using attaching
NMC units to a customized RISC-V cores. Through the integration of a custom
DMA and specialized RISC-V instructions, the system achieved a performance
increase of 11.7×, compared to the baseline scenario, with a reasonable impact on
area. Additionally, the text size of the program was drastically reduced to 6.2% of
the baseline scenario, indicating a potential for reduced memory area requirements.
While the system shows impressive gains in performance, architectural decisions
relating to the accessibility of NMC memories and the core need to be carefully
studied, suggesting possibilities for future work. The work presented in this thesis
serves as a foundation for further exploration of hardware acceleration in the field
of machine learning, and being able to benchmark accelerators in a real system.

Appendix A
Interrupt handler

Listing A.1 Setup IRQ

1: void setup_irq (){
2: asm volatile (
3: "li t0 , 0x888\n\t"
4: "csrs mie , t0\n\t"
5: "csrs mpicmask , 0x1F\n\t"
6: "la t0 , _C_trap_handler \n\t"
7: "csrw mtvec , t0 \n\t"
8: // Disable interrupts
9: "csrci mstatus , 8\n\t"

10: // Enable interrupts
11: "csrsi mstatus , 8\n\t"
12:);
13: }

Listing A.2 Trap Handler

1: void __attribute__ ((interrupt("machine")))
_C_trap_handler () //

2: {
3: // Disable interrupts
4: __asm__ volatile ("csrci mstatus , 0x8");
5:

6: // get trap source
7: int code;
8: __asm__("csrr %0, mcause" : "=r"(code));
9:

10: // call Interrupt service routine
11: ISR (((unsigned) code << 1) >> 1));
12:

13: // Set mstatus.mie bit to enable interrupts

51

52 Interrupt handler

14: __asm__ volatile ("csrsi mstatus , 0x8");
15:

16: }

Listing A.3 Interrupt Service Routine (ISR)

1: #define MCAUSE_MTIP_SHIFTED 0x7
2: #define MCAUSE_MEIP_SHIFTED 0xb
3:

4: void ISR(unsigned int code)
5: {
6: switch (code)
7: {
8: case MCAUSE_MTIP_SHIFTED:
9: // do something

10: break;
11: case MCAUSE_MEIP_SHIFTED:
12: // Change control signal.
13: wait_for_interrupt = 0;
14:

15: // read mpicflag into variable
16: int mpicflag;
17: __asm__("csrr %0, mpicflag":"=r"(mpicflag));
18:

19: // clear LSB to 0
20: mpicflag &= ~1;
21:

22: // write modified value back to mpicflag
23: __asm__("csrw mpicflag , %0"::"r"(mpicflag));
24: break;
25: default:
26: // do something
27: break;
28: }
29: }

Bibliography

[1] Andrew Waterman et al. “The risc-v instruction set manual, volume i:
Base user-level isa”. In: EECS Department, UC Berkeley, Tech. Rep.
UCB/EECS-2011-62 116 (2011).

[2] Gagandeep Singh et al. “Near-memory computing: Past, present, and
future”. In: Microprocessors and Microsystems 71 (2019), p. 102868.
issn: 0141-9331. doi: https://doi.org/10.1016/j.micpro.2019.
102868. url: https://www.sciencedirect.com/science/article/
pii/S0141933119300389.

[3] Masoud Nouripayam et al. “An Energy-Efficient Near-Memory Com-
puting Architecture for CNN Inference at Cache Level”. In: 2021 28th
IEEE International Conference on Electronics, Circuits, and Systems
(ICECS). 2021, pp. 1–4. doi: 10.1109/ICECS53924.2021.9665530.

[4] Gagandeep Singh et al. “A Review of Near-Memory Computing Ar-
chitectures: Opportunities and Challenges”. In: 2018 21st Euromicro
Conference on Digital System Design (DSD). 2018, pp. 608–617. doi:
10.1109/DSD.2018.00106.

[5] Harold S. Stone. “A Logic-in-Memory Computer”. In: IEEE Trans-
actions on Computers C-19.1 (1970), pp. 73–78. doi: 10.1109/TC.
1970.5008902.

[6] Sally A. McKee. “Reflections on the Memory Wall”. In: Proceedings of
the 1st Conference on Computing Frontiers. CF ’04. Ischia, Italy: As-
sociation for Computing Machinery, 2004, p. 162. isbn: 1581137419.
doi: 10.1145/977091.977115. url: https://doi.org/10.1145/
977091.977115.

53

https://doi.org/https://doi.org/10.1016/j.micpro.2019.102868
https://doi.org/https://doi.org/10.1016/j.micpro.2019.102868
https://www.sciencedirect.com/science/article/pii/S0141933119300389
https://www.sciencedirect.com/science/article/pii/S0141933119300389
https://doi.org/10.1109/ICECS53924.2021.9665530
https://doi.org/10.1109/DSD.2018.00106
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1145/977091.977115
https://doi.org/10.1145/977091.977115
https://doi.org/10.1145/977091.977115

54 BIBLIOGRAPHY

[7] C.C. Liu et al. “Bridging the processor-memory performance gap with
3D IC technology”. In: IEEE Design Test of Computers 22.6 (2005),
pp. 556–564. doi: 10.1109/MDT.2005.134.

[8] May 2017. url: https://riscv.org/wp-content/uploads/2017/
05/riscv-spec-v2.2.pdf.

[9] ARM Limited. AMBA® AHB Protocol Specification. PDF. 2001–
2021. url: https://developer.arm.com/documentation/ihi0033/
latest/.

[10] Kea-Tiong Tang et al. “Considerations Of Integrating Computing-In-
Memory And Processing-In-Sensor Into Convolutional Neural Net-
work Accelerators For Low-Power Edge Devices”. In: 2019 Sympo-
sium on VLSI Circuits. 2019, T166–T167. doi: 10.23919/VLSIC.
2019.8778074.

[11] S. Castillo Mohedano. “Memory Efficient Hardware Accelerator for
CNN Inference”. MA thesis. Lund University, Department of Electrical
and Information Technology, 2023.

[12] Five EmbedDev. Interrupt Quick Reference. Blog post. 2023. url:
https://five-embeddev.com/quickref/interrupts.html.

[13] Mingzhen Li et al. “The Deep Learning Compiler: A Comprehensive
Survey”. In: IEEE Transactions on Parallel and Distributed Systems
32.3 (Mar. 2021), pp. 708–727. doi: 10.1109/tpds.2020.3030548.
url: https://doi.org/10.1109%2Ftpds.2020.3030548.

https://doi.org/10.1109/MDT.2005.134
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://developer.arm.com/documentation/ihi0033/latest/
https://developer.arm.com/documentation/ihi0033/latest/
https://doi.org/10.23919/VLSIC.2019.8778074
https://doi.org/10.23919/VLSIC.2019.8778074
https://five-embeddev.com/quickref/interrupts.html
https://doi.org/10.1109/tpds.2020.3030548
https://doi.org/10.1109%2Ftpds.2020.3030548

Low-power Acceleration of Convolutional Neural

Networks using Near Memory Computing on a

RISC-V SoC

KRISTOFFER WESTRING & LINUS SVENSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

K
R

ISTO
FFER

 W
ESTR

IN
G

 &
 LIN

U
S SV

EN
SSO

N
Low

-pow
er A

cceleration of C
onvolutional N

eural N
etw

orks using N
ear M

em
ory C

om
puting on a R

ISC
-V

 SoC
LU

N
D

 2023

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-955
http://www.eit.lth.se

	Exj_WestringSvensson.pdf
	Introduction
	Related work
	Thesis outline

	Background
	RISC-V
	Advanced High-performance Bus
	Near Memory Compute
	Memories
	ASIC Design

	System Design and Implementation
	Overall Design and Implementation
	RISC-V modifications
	Near Memory Computing
	Memories
	Design flow and methodology
	Synthesis and constraints
	Place and Route

	Testing and Verification
	Results
	Performance Analysis

	Discussion and Future Work
	Interrupt handler

