
Wind power forecasting
using random forests

by Christoffer Ahrling

Thesis for the degree of Master of Science in Engineering
Thesis advisors: Marcus Thern, Axel Johansson

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism
at the Department of Energy Sciences on Thursday, the 12th of October 2023 at 13:15.



This degree project for the degree of Master of Science in Engineering has been conducted
at the Division of Thermal Power Engineering, Department of Energy Sciences, Faculty
of Engineering, Lund University.

Supervisor at the Division of Thermal Power Engineering was Marcus Thern, and
assisting supervisor was Axel Johansson.

Examiner at Lund University was Jens Klingmann.

The project was carried out in cooperation with the operations department at Energy
Opticon AB in Lund. Work at Energy Opticon was carried out under the supervision of
Ali Moallemi.

© Christoffer Ahrling 2023
Department of Energy Sciences
Faculty of Engineering
Lund University

issn: <0282-1990>
isrn: <LUTMDN/TMHP-23/5552-SE>

Typeset in LATEX
Lund 2023



Contents

List of Figures v

List of Tables vii

Sammanfattning ix

Abstract xi

1 Introduction 1
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 5
2.1 Physics based modelling . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Wind shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Power curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Wake velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Statistical methods - a simple polynomial fit . . . . . . . . . . . . . . . 9
2.3 Machine learning - the random forest algorithm . . . . . . . . . . . . . 10

2.3.1 Decision tree learning . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Bootstrap aggregation . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Evaluation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 RMSE - Root Mean Square Error . . . . . . . . . . . . . . . . 16
2.4.2 MAE - Mean Absolute Error . . . . . . . . . . . . . . . . . . . 16
2.4.3 NMAE - Normalized Mean Absolute Error . . . . . . . . . . . 16
2.4.4 NMBE - Normalized Mean Biased Error . . . . . . . . . . . . 17
2.4.5 SE - Sine Extremis . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Method 19
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Types of input variables . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Quantity of historical data . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Seasonality of data . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Number of decision trees . . . . . . . . . . . . . . . . . . . . . 23

iii



Contents

3.2.5 Forecasts using meteorological prognoses . . . . . . . . . . . . 23

4 Results and discussion 25
4.1 Univariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Bivariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Sequence of multivariate models . . . . . . . . . . . . . . . . . . . . . 27
4.4 Quantity of historical data . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Number of decision trees . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Results for the ’Hans’ weather event . . . . . . . . . . . . . . . . . . . 39
4.8 Normal weeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 All weeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion 51

6 Appendix 55
6.1 Historical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Forecast data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



List of Figures

2.1 How wind speed depends on height above ground for three different
roughness lengths 𝑧0 [4, p. 16]. . . . . . . . . . . . . . . . . . . . . . . 7

2.2 An example of a power curve, showing the relationship between wind
speed and power output for a wind turbine. This particular example was
provided for the turbine north of central site discussed in Chapter 3. . . 8

2.3 A set of generated values as a function of some variable and its corres-
ponding RSS values for every possible breakpoint. . . . . . . . . . . . . 12

3.1 Sketch of key locations in proximity to wind turbine site. The turbine is
north of a city, situated on the coast. . . . . . . . . . . . . . . . . . . . 19

3.2 Workflow for creating a machine learning model. . . . . . . . . . . . . 21

4.1 How NMAE depends on the number of weeks in the input data for
models based on different sets of variables, using beach site data. The
best model, with five variables, is shown as a bold line. . . . . . . . . . 30

4.2 How NMAE depends on the number of weeks in the input data for
models based on different sets of variables, using central site data. The
best model, with five variables, is shown as a bold line. . . . . . . . . . 31

4.3 Wind rose for the relevant area. [17] . . . . . . . . . . . . . . . . . . . 36
4.4 How NMAE depends on the number of decision trees for models based

on different sets of variables, using central site data. The best model,
with five variables, is shown as a bold line. . . . . . . . . . . . . . . . . 37

4.5 How NMAE depends on the number of decision trees for models based
on different sets of variables, using beach site data. The best model, with
five variables, is shown as a bold line. . . . . . . . . . . . . . . . . . . 38

4.6 Forecasts using the polynomial model compared to actual production
during the Hans weather event. . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Forecasts using the bivariate model with gust winds compared to actual
production during the Hans weather event. . . . . . . . . . . . . . . . . 41

4.8 Forecasts using the trivaraite compared to actual production during the
Hans weather event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Forecasts using the quadrivariate model compared to actual production
during the Hans weather event. . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Forecasts using the polynomial model compared to actual production. . 44
4.11 Forecasts using the bivariate model with gust winds compared to actual

production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



List of Figures

4.12 Forecasts using the trivaraite compared to actual production. . . . . . . 45
4.13 Forecasts using the quadrivariate model compared to actual production. 46
4.14 Forecasts using the polynomial model compared to actual production. . 47
4.15 Forecasts using the bivariate model with gust winds compared to actual

production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.16 Forecasts using the trivaraite compared to actual production. . . . . . . 48
4.17 Forecasts using the quadrivariate model compared to actual production. 49

vi



List of Tables

2.1 Approximate values for roughness length and shear index for different
terrain types at around 10-80 m above ground [4, p. 16]. . . . . . . . . 7

2.2 Example of a small sample of observations. . . . . . . . . . . . . . . . 13
2.3 Example of a bootstrapped sample. . . . . . . . . . . . . . . . . . . . . 13

4.1 Univariate models for the beach site. . . . . . . . . . . . . . . . . . . . 25
4.2 Univariate models for the central site. . . . . . . . . . . . . . . . . . . 25
4.3 Bivariate models for the beach site. . . . . . . . . . . . . . . . . . . . . 26
4.4 Bivariate models for central site. . . . . . . . . . . . . . . . . . . . . . 27
4.5 Sequence of multivariate models trained on beach site data. . . . . . . . 28
4.6 Sequence of multivariate models trained on central site data. . . . . . . 28
4.7 Number of days in each seasonal period. . . . . . . . . . . . . . . . . . 32
4.8 Statistical measures of the error for models trained on data for the beach

site using data from March through June. . . . . . . . . . . . . . . . . 32
4.9 Statistical measures of the error for models trained on data for the beach

site using data from July through October. . . . . . . . . . . . . . . . . 32
4.10 Statistical measures of the error for models trained on data for the beach

site using data from September through December. . . . . . . . . . . . 33
4.11 Statistical measures of the error for models trained on data for the beach

site using data from November through February. . . . . . . . . . . . . 33
4.12 Statistical measures of the error for models trained on different datasets

separated by month for the beach site. . . . . . . . . . . . . . . . . . . 34
4.13 Errors for forecasts during Hans using weather forecast from the central

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.14 Errors for forecasts during Hans using weather forecast from the southern

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.15 Errors for forecasts outside Hans using weather forecast from the central

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.16 Errors for forecasts outside Hans using weather forecast from the southern

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.17 Errors for all forecasts using weather forecast from the central site. . . . 50
4.18 Errors for all forecasts using weather forecast from the southern site. . . 50

6.1 Original data for statistical measures of the error for models trained on
data for the beach site. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



6.2 Original data for statistical measures of the error for models trained on
data for the beach site. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Statistical measures of the error for models trained on different datasets
separated by month for the beach site. . . . . . . . . . . . . . . . . . . 58

6.4 Error for forecasts during Hans using forecasts from the central site. . . 59
6.5 Errors for forecasts during Hans using forecasts from the southern site. . 60
6.6 Errors for forecasts outside Hans using weather forecast from the central

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 Errors for forecasts outside Hans using weather forecast from the southern

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.8 Errors for all forecasts using weather forecast from the central site. . . . 61
6.9 Errors for all forecasts using weather forecast from the southern site . . 62



Sammanfattning

I studien undersöktes hur maskininlärningsalgoritmen ’random forests’ kan användas för
vindkraftsprognoser. Meteorologiska prognoser för vindhastighet, vindriktning, byvindar
och luftfuktighet användes. För historisk data testades även vindminimum och temperatur.
Resultaten evaluerades utifrån kvadratiskt medelvärde (RMSE), absolut noggrannhet
(MAE och NMAE), samt systematiskt fel (NMBE). Resultat från stormen ’Hans’ under
2023 redovisas separat. Historisk data täckte ett år och tre månader. Prognoser täckte en
månad. Historisk data användes för att visa att säsong påverkar prognoserna.

De bästa resultaten visade att NMAE minskade (jämfört med en enkel polynomiell
modell) från 8.5 % till 6.6 % för historisk data, från 9.5 % till 8.6 % för prognoser under
normala förhållanden, och ingen meningsfull skillnad för stormförhållanden. Resultaten
indikerar att en random forest-modell kan ge förbättringar av vindkraftsprognoser, samt
att vikten av att grunda modellerna på bra data och meteorologiska prognoser med god
överensstämmelse sinsemellan är hög.
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Abstract

The present thesis investigated using the random forest machine learning algorithm for
wind power forecasting. Meteorological prognoses for wind speed, wind direction, gust
winds, and humidity were used. For historical data, wind minimum and temperature was
also included. The results were evaluated using root means square error (RMSE), mean
absolute error (MAE), normalized mean absolute error (NMAE), and normalized mean
biased error (NMBE). Results from the ’Hans’ storm in 2023 were shown separately.
Historical data covered a year and three months. Meteorological prognoses covered a
month. Historical data was used to show that seasonality impacts forecasting.

The best results showed NMAE decreasing (compared to a simple polynomial model)
from 8.5 % to 6.6 % using historical data, from 9.5 % to 8.6 % using meteorlogical
prognoses, and negligible improvements under storm conditions. The results indicate
that a random forest model can yield improvements in wind power forecasting. It is
simultaneously shown to be important that the models are based on good data and employ
good meteorological prognoses with high levels of agreement between them, and with
the turbine site.
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Chapter 1

Introduction

Wind power is a steadily growing component of the electricity supply in many countries.
For example, in Sweden, wind power grew from 7 % of the electricity supply in 2013
[1, p. 34] to 17 % of the electricity supply in 2020 [2, p. 7].1 In the EU it represented
15.9 % as of 2022 [3]. Naturally, in order to facilitate wind power in a financially sound
manner, companies interested in constructing or currently operating wind turbines rely
on forecasting to plan construction and operations. Such forecasting can be done for
very long timeframes, analyzing long-term wind power output on any given site to
evaluate whether it will be economically feasible to build there, as well as how to site
the turbines for maximum output [4]. It can also be done in the short term, in order to
inform decisions on the sale of electricity on the spot market; as an example, on the
Nord Pool, electricity is traded 24 hours in advance [5]. If supply or demand differs
from what was traded as part of this day-ahead trading, the difference is made up for
in intra-day trading [6]. Since prices on the intra-day market may differ from those
on the day-ahead market, selling more electricity on the day-ahead market than what
actually ends up being produced can be a financial liability for a wind turbine operator,
potentially reducing their income as the difference has to be made up for either by the
operator itself or through an intermediary. This introduces a level of risk, which scales
with the uncertainty of the forecasting. At the same time, it is not desirable to undershoot
sales either, since an unexpected glut in the market could lead to far lower prices on the
intra-day market, thus causing the electricity generated to be sold for much less.

Wind turbine operators therefore have a strong incentive to ensure good short-term
forecasts to minimize intra-day trading. Methods for achieving this vary, as do the
demands on the forecasts themselves. Operators of large-scale wind farms have the
greatest need for robust forecasting, and much work is usually involved in ensuring
that this is achieved. This may include an atmospheric flow model based on the local
topography combined with statistical modelling [7, p. 62]. For smaller operators of one
or a few turbines, however, it may be cost-prohibitive to use such an approach. Instead, a
simpler method may be used, procuring meteorological prognoses2 from a third party

1This refers to total production, not installed capacity.
2For clarity, meteorological prognoses will be referred to as such from here on, while the term forecast

will refer exclusively to wind power forecasting in kW.
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Chapter 1 Introduction

and employing statistical methods to correlate production with said forecasts.

At a basic level, this could involve a simple regression correlating power output to wind
speed. However, while taking into account other factors such as wind direction could
improve such forecasting, it is not always entirely clear how production actually depends
on these alternative factors, and conditions may vary between sites. Without taking the
topography into account using an atmospheric flow model, it can become difficult to
account for this to improve forecasting. Machine learning may provide a feasible way
to account for a greater amount of information on meteorological conditions without
needing to know the precise nature of any correlation; this would be an economical
and time-saving approach to producing sufficiently robust prediction of wind power
production, given that suitably accurate meteorological prognoses can be produced.

Thus, for the present thesis, the goal is to investigate how machine learning can be used
to improve short-term forecasting for small-scale wind turbine operators. The random
forest algorithm was deemed suitable for this, as it has been used successfully for the
same purpose in the past [7], and is readily available.

Because this work was undertaken in cooperation with Energy Opticon AB using a
relevant case study from an interested customer, emphasis was placed on practical
concerns which would aid in the establishmen of a suitable implementation in this
specific case, as well as a generalized workflow. Energy Opticon is an IT service provider
focusing primarily on forecasting of district heating and cooling, as well as production
optimization for heat and electricity, including integration with electricity markets. The
relevant case study was for a customer in the Baltic Sea region.

1.1 Goals

To investigate a suitable manner in which the random forest algorithm may be applied to
wind power forecasting, five overarching goals were defined:

1. Determine a set of useful input variables (such as wind speed, wind direction, etc.)
for a machine learning algorithm so that it produces a suitably robust wind power
forecasting model.

It is fairly self-evident that wind power production will depend most heavily on wind
speed; strictly speaking, it will depend only on momentary wind speed directly incident
upon the center of the turbine rotor. However, meteorological prognoses are typically
not provided for the exact location and height of a wind turbine’s rotor. Instead, such
prognoses will be provided for some nearby location; since both that location and the
wind turbine site will be affected by their respective local topographies (such as nearby
buildings, hills, mountains, oceans, etc.), it can be assumed that conditions will differ
somewhat. Not only that, prognoses for wind speed are typically given as an hourly

2



1.1 Goals

average, but variations in wind speed over that time may influence production, and
sudden shifts in wind speed or direction may reduce the wind turbine’s performance.

All of this is difficult to model, but a machine learning algorithm may be able to account
for these variations. Therefore, the goal here is to determine variables besides wind
speed which may be suitable in order to improve production forecasting.

2. Investigate in rough terms how the quantity of historical data influences the model’s
accuracy.

A machine learning model depends on historical data. The question here is what quantity
of historical data is actually required; if a smaller quantity of historical data is needed,
it simplifies the process and, crucially, means that models can be trained much sooner
after installation of a turbine. Conversely, if more data would yield a better model,
then retraining the model once more data is available could improve the accuracy of
production forecasts, while such efforts may be wasted if the amount of data has already
passed a point of diminishing returns.

3. Investigate if sorting by season improves a prediction model’s accuracy.

It is possible that, rather than sheer quantity of data, the season from which historical
data is drawn has a greater impact on forecast accuracy past a certain point. If this is
the case, then building separate models for different seasons, or alternatively retraining
the model every so often on the latest available data only, may improve the accuracy of
the forecasts. Therefore, it is important to establish if seasonality should be considered
when building a wind power forecasting model.

4. Investigate how quickly the error converges depending on parameters in the
machine learning algorithm.

The error of a random forest algorithm will usually converge towards some value as a
function of the number of decision trees used (see section 2.3). For a low number of
decision trees, the model may not perform optimally, while for a high number it will
suffer from longer compute time and higher memory usage. It is not expected that
computational resources will be at a premium for models in question, but it is nonetheless
useful to know how the error behaves when the number of decision trees is increased to
ensure that the model performs optimally.

5. Construct a suitable model and investigate the real-world results using actual
meteorological forecasts.

Evaluating a model using historical measured data can often yield a good approximation
of model performance, but using real-world prognoses will invariably introduce an
additional source of potential error in the prediction. This error may take two different
forms. On one hand, the prognosis itself may be inaccurate; on the other hand, it may be
that the forecast is for a location slightly removed from the place where measured data

3



Chapter 1 Introduction

was gathered, in which case it may not fully agree with the historical data and cause the
model to err. It may therefore occur that the performance of a given model is sufficiently
reduced when prognoses are employed that it provides no additional benefit, or performs
worse. In particular, if the forecasting for different variables that are employed are less
accurate in some cases, it may be less beneficial to use them in a real life scenario. This
may be further complicated by the varying types of weather patterns that may eventuate
such as storms, where the forecasting may become less reliable due to unpredictable
swings in e.g. wind speed.

Therefore, it is essential that the models are tested using real-world meteorological
prognoses; what’s more, since it cannot be assumed that all variables on which the
model is trained will be affected the same, multiple models must be tested in this step
using different sets of variables. Furthermore, the actual availability of meteorological
prognoses for all the variables that were provided as historical data cannot be assumed,
and this must also be accounted for.

4



Chapter 2

Theory

In the broadest possible sense, there are three ways to approach the type of short-term
wind turbine output forecasting which will be of interest to this thesis. First, the physical
properties of the turbine itself may be considered in order to build a predictive model
based on known constants and specifications [4]. Second, one may employ statistical
methods; time series based approaches can be employed, but those usually lose in
predictive power beyond a 3-6 hour timespan [7, p. 61]. Lastly, machine learning may be
applied to create a forecasting model based on any suitable inputs that are available [8].
In the strictest sense, machine learning algorithms are statistical methods by their nature,
but they are usually considered separately from the more ’explicit’ forms of statistical
methods. This is likely because a machine learning algorithm functions as a black box,
as opposed to the less opaque results obtained from a polynomial regression. This has
further implications,

These methods are not mutually exclusive. For example, applying statistical methods to
a foundational physics-based model may improve its accuracy [7, p. 61]. However, a
purely physics based model does have the benefit of being able to operate from day 1 of
a turbine’s operational life cycle [7, p. 63], whereas a statistical model will only be as
accurate as the quantity and quality of the data it is based on.

2.1 Physics based modelling

A physics based approach to modelling wind turbine output generally involves the
following steps [7, pp. 61-63]:

• Obtain the actual wind speed and direction at the wind turbine site, and extrapolate
the wind speed at hub height (i.e. the height above ground to which the rotor
blades are affixed).

• Apply the power curve of the wind turbine to determine its power output (see
section 2.1.2).

• If more than one turbine is used, upscale results to the whole wind farm.

5



Chapter 2 Theory

The exact process will vary greatly. The first step may involve complex numerical
modeling, the second may include statistical modelling, and the third step may not
be necessary at all for single turbine installations or be quite complicated for large
installations. For installations with capacities exceeding 100 MW, there exists strong
financial incentives to improve on the accuracy [9]. However, the focus of the present
thesis is on small, predominantly municipal installations, where conditions for the overall
wind park will usually extrapolate well with at most some correction for wake loss.

2.1.1 Wind shear

Extrapolating the wind speed at hub height typically involves applying boundary layer
theory. At any given point on the map, measured or forecast wind speed is usually given
as a simple numerical value, but in actuality it is a function of the height above ground.
The Swedish Meteorological and Hydrological Institute (SMHI) for example gives its
wind data at a heigh of 10 m above ground [10]. Wind turbines are typically much taller.
There are two common methods to account for this phenomenon, which is known as
wind shear. The first is the Prandtl log law:

𝑈 =
𝑢∗

𝐾
ln

(
𝑧

𝑧0

)
(2.1)

where𝑈 is the wind speed, 𝑢∗ the friction velocity, 𝐾 ≈ 4 the Karman constant, and 𝑧0
the local roughness length [4, p. 15]. If wind speed is given as𝑈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 for a certain
height above ground 𝑧𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and wind speed 𝑈𝑟𝑜𝑡𝑜𝑟 is sought for a different height
𝑧𝑟𝑜𝑡𝑜𝑟 , this may be achieved using the following formula derived from the Prandtl log
law:

𝑈𝑟𝑜𝑡𝑜𝑟 = 𝑈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
ln(𝑧𝑟𝑜𝑡𝑜𝑟/𝑧0)

ln(𝑧𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑/𝑧0)
(2.2)

The second method is the power law:

𝑈 = 𝑘𝑧𝛼 (2.3)

where 𝑘 is a constant, 𝑧 the height above ground, and 𝛼 an empirical constant which
depends on the terrain. The relationship between wind speeds at different heights can
the be derived as [4, p. 17]:

𝑈𝑟𝑜𝑡𝑜𝑟 = 𝑈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(
𝑧𝑟𝑜𝑡𝑜𝑟

𝑧𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

)𝛼
(2.4)
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2.1 Physics based modelling

𝛼 is not constant with height, but is usually sufficiently close to constant over the height
involved for wind turbines that tabulated values can be used, as in Table 2.1 below.

Table 2.1: Approximate values for roughness length and shear index for different terrain types at
around 10-80 m above ground [4, p. 16].

Landscape type Roughness length Shear index

Water surface (smooth) 0.0002 m 0.08
Short grass, flat open terrain, smooth concrete 0.002 m 0.11
Open agricultural land 0.02 m 0.14
Level country, occasional small trees 0.04 m 0.15
Agricultural land, crops, hedges, some trees 0.10 m 0.18
Agricultural land, distributed buildings and trees 0.2 m 0.20
Villages or small towns, wooded countryside 0.4 m 0.24
Larger towns, tall buildings 0.8 m 0.29
Highly urban landscape, skyscrapers 1.6 m 0.36

The manner in which roughness length affects wind speed as a function of height above
ground is demonstrated in Figure 2.1.
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Figure 2.1: How wind speed depends on height above ground for three different roughness
lengths 𝑧0 [4, p. 16].
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Chapter 2 Theory

2.1.2 Power curve

The power output from a wind turbine is a function of its incident wind speed, but the
specific relationship varies between designs. Most of this lies outside the scope of this
thesis, but it is worth pointing out that rotors designed for pitch control have smoother
power curves than those designed for stall control. Simply put, a pitch control design
controls the pitch angle of the rotor blades to maximize performance and avoid reaching
higher speeds than the turbine is designed for; a stall control design cannot do this, but
instead has a rotor blade design that stalls above certain rotational speeds and thereby
limits its own operations at high wind speeds [4, ch. 4.7].

Wind turbines are usually listed with a cut-in and cut-off speed; this indicates the wind
speed at which the turbine begins to produce useful energy, and the wind speed where
no further energy is produced. The behavior between these two points is not linear, nor
even necessarily constant above the cut-off (especially for pitch control designs). An
example of a power curve is shown in Figure 2.2
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Figure 2.2: An example of a power curve, showing the relationship between wind speed and
power output for a wind turbine. This particular example was provided for the turbine
north of central site discussed in Chapter 3.
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2.2 Statistical methods - a simple polynomial fit

2.1.3 Wake velocity

Besides topographical factors, the actual siting of the wind turbines themselves in relation
to each other induces reductions in wind speed and increased turbulence in their wake.
If the wind happens to be roughly parallell to two or more wind turbines in sequence, a
loss in output will be experienced by the downwind turbines [4, ch. 9.3].

The Jensen-Katic model provides a sufficiently accurate description of these effects.
The Jensen-Katic model assumes a conical wake profile. Within the wake cone, the
relationship between wake wind speed 𝑈𝑤𝑎𝑘𝑒 and the overall site wind speed 𝑈𝑠𝑖𝑡𝑒 is
given by the following:

𝑈𝑤𝑎𝑘𝑒

𝑈𝑠𝑖𝑡𝑒
=

(
1 −

√︁
1 − 𝐶𝑇

)
𝐷𝑐 (2.5)

where 𝐷𝑐 is a constant characteristic for the turbine and site, given by:

𝐷𝑐 =

(
𝐷

𝐷 + 2𝑘𝑥

)2
(2.6)

where 𝐷 is the rotor diameter of the turbine that induces the wake, k an empirical constant
that depends on the topography (the same as in ch. 2.1.1 above), and x the distance to
the next turbine.

For multiple turbines in sequence, the following relationship can be used to find the wake
velocity𝑈𝑁 for turbine N in the sequence:

𝑈𝑁

𝑈𝑠𝑖𝑡𝑒
= 1 −

√√√
𝑁∑︁
𝑖=1

(
1 − 𝑈𝑖

𝑈𝑠𝑖𝑡𝑒

)2
(2.7)

2.2 Statistical methods - a simple polynomial fit

In principle, statistical methods can be applied on the wind forecast before the power
curve is applied, to the power curve itself, or to the final result [7, p. 78]. This may take
many different forms; a well constructed model should take into account the behavior of
the ouptut as a function of its input in a sensible manner. Fortunately, for the purposes of
this thesis, this is not difficult if we consider the wind turbine to be operating in one of
three regimes:

1. Wind speed below cut-in ⇒ Production is zero

2. Wind speed is between cut-in and cut-out ⇒ Production is given by 𝑃 = 𝑃(𝑈)

9



Chapter 2 Theory

3. Wind speed is above cut-out ⇒ Production is identically the same as installed
capacity

For regime 2, 𝑃 is a function of wind speed 𝑈, and can be approximated using a
polynomial of suitable order:

𝑃(𝑈) =
𝑁∑︁
𝑖=0

𝑝𝑖𝑈
𝑖 (2.8)

2.3 Machine learning - the random forest algorithm

Machine learning generally denotes algorithms that, taking a set of existing historical
data as input, produce a model that can predict outcomes on the basis of similar data.
For wind power forecasting, this means that a machine learning model is ’trained’ on a
set of historical meteorological data paired with production data. If the model is then
provided with meteorological prognoses, it should be able to predict power output.

The random forest algorithm is a popular machine learning algorithm, which is widely
available as part of statistical and machine learning packages for various script languages.
The random forest algorithm is an implementation of decision tree learning which
employs bootstrap aggregation to avoid overfitting. These concepts are briefly outlined
below.1

2.3.1 Decision tree learning

Assume there exists a target parameter 𝑦, which for the purposes of this thesis will always
be power output. Let 𝑥𝑖 be the explanatory variables which 𝑦 is thought to correlate to -
as an example, take 𝑥1 as wind speed and 𝑥2 as wind direction. It is assumed that model
𝑦 can be modelled as 𝑦 = 𝑓 (𝑥1, 𝑥2).

If 𝑦 were to have a simple linear or exponential relation to a single input variable, it
would be fairly simple to use regression to build a model, but this is not always enough.
If 𝑦 depends upon a single variable 𝑥 in a manner that is not easily modelled in such a
fashion, or if there are multiple explanatory variables where it is not obvious how they
might correlate to output 𝑦, decision tree learning may be applied as a general method to
create the function 𝑓 (𝑥𝑖) [11, ch. 9.2].

First, let 𝑍𝑙 denote any sample consisting of 𝑦𝑙 and corresponding measured values for
𝑥𝑖,𝑙 . Then let {Z}𝑁

𝑙=1 be a set of N such samples. Then, consider the cases 𝑦 = 𝑓1(𝑥1),

1For a direct comparison of several common machine learning algorithms for wind power output
forecasting, see Article [8].

10



2.3 Machine learning - the random forest algorithm

𝑦 = 𝑓1(𝑥2), and so on.

Next, for each function 𝑓𝑖, starting at the lowest two values for 𝑥𝑖 and moving to the
highest two, attempt to set a breakpoint between the values. For all values either side,
compute the average or a regression and form the residual sum of squares RSS[11, p.
307] as:

RSS =

𝐵∑︁
𝑑=1

(𝑦𝑑 − 𝑔(𝑥))2 (2.9)

for the lower side, and vice versa for the upper, where 𝐵 is the breakpoint and 𝑔(𝑥)
the average or regression that is fit to the relevant values. Doing this for each possible
breakpoint, find the breakpoint for which the lowest RSS is achieved. Once this is done,
repeat the process for all parameters 𝑥𝑖, and find the lowest RSS overall. Then, using this
breakpoint, form the function:

𝑓 (𝑥1) =
{
𝑔𝑙𝑜𝑤𝑒𝑟 (𝑥1) for: 𝑥1 < 𝐵

𝑔𝑢𝑝𝑝𝑒𝑟 (𝑥1) for: 𝐵 ≤ 𝑥1
(2.10)

This forms the root of the decision tree, with 𝑔𝑙𝑜𝑤𝑒𝑟 and 𝑔𝑢𝑝𝑝𝑒𝑟 forming branches of the
tree. By repeating this process, the functions 𝑔 are broken down into functions depending
on either 𝑥1 or 𝑥2 based on what provides the lowest RSS, with any breakpoint resulting
in a subset of samples lower than some number not being considered so as to lower the
impact of statistical noise on the model. An example of what this might look like is
shown in Figure 2.3.
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Figure 2.3: A set of generated values as a function of some variable and its corresponding RSS
values for every possible breakpoint.

As can be seen, the breakpoint will be placed where the average measured value above
and below the breakpoint yield the lowest RSS. Once this is done, the process is repeated
- looking at the figure, it should not be difficult to guess that the next breakpoint may end
up being somewhere close to 50.

Once this is repeated a suitable number of times (usually until the number of samples is
less than a set number), the end result is a decision tree. By considering in sequence the
values of the parameters 𝑥𝑖, the decision tree finds a target function 𝑔(𝑥1, 𝑥2) by testing
the values against the established breakpoints. Such a target function is called a leaf.
Thus, a decision tree is made up of queries such as ’is the variable 𝑥1 lower than 𝑏?’,
connecting via a branch of the decision tree to either another node or a leaf, in the latter
case terminating the process.

2.3.2 Bootstrapping

Any time a statistical model is built on some data, there can be a risk of overfitting, and
for a decision tree this problem is a major one. Overfitting means that the model fits the
data too well, finding patterns or correlations in the data that do not actually hold in real
life. This can result in a model that appears to perform very well on the sample data, but
performs incredibly poorly on any other future data from which output is to be predicted.
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2.3 Machine learning - the random forest algorithm

Bootstrapping is a means of counteracting this problem. For a set of random samples,
bootstrapping works by taking a random sample of said samples. If the original data
Z consists of N data points, then the bootstrap Z* is constructed by taking a number -
usually N2 - of data points at random from Z [11, ch. 7.11]. This will usually mean that
some data points are left out, and some are duplicated, perhaps multiple times.

If the original data Z by random chance happens to show a correlation that doesn’t exist,
or a stronger or weaker correlation than in reality in some way, this random sampling
means that the new sample is unlikely to display the same faulty correlations.

As an example, consider Table 2.2. Here are six observartions of production, and
corresponding wind speed, wind direction, and gust winds at some location.

Table 2.2: Example of a small sample of observations.

Obs. Production (kW) Wind speed (m/s) Gust winds (m/s) Wind direction (°)

1 703.56 3.9 7.7 265
2 771.48 3.9 7.8 264
3 722.16 4 7.8 258
4 662.88 3.1 5.6 266
5 906.00 2.8 6.8 279
6 1236.00 2.8 6.4 280

Creating a bootstrap from this data can be done easily by rolling a six-sided die six times,
and inserting the corresponding observation. Take the following sequence of die rolls: 6,
4, 4, 4, 1, 5. The result is Table 2.3 below.

Table 2.3: Example of a bootstrapped sample.

Obs. Production (kW) Wind speed (m/s) Gust winds (m/s) Wind direction (°)

6 1236.00 2.8 6.4 280
4 662.88 3.1 5.6 266
4 662.88 3.1 5.6 266
4 662.88 3.1 5.6 266
1 703.56 3.9 7.7 265
5 906.00 2.8 6.8 279

Samples 2 and 3 are now not a part of the bootstrapped sample. Samples that are
2A lower number may be chosen, e.g. if the quantity of data is such that it would become computationally

intensive to use the full amount, particularly if multiple boostraps are to be performed in sequence. If
this is done, a corrective factor of

√︃
𝑀
𝑁

(where M is the smaller sample size) will be introduced. See
[12].
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outside of the bootstrapped sample are referred to as being ’out-of-bag’. Observation 4
meanwhile is represented three times. Note, however, that although the bootstrapped
sample is not genuine, none of the datapoints represented are not. All of the datapoints
in the bootstrapped sample are real, it is simply that - in a random process - they are
either removed, or duplicated.

2.3.3 Bootstrap aggregation

Bootstrap aggregation, also known as ’bagging’ is the process of taking multiple
bootstraps and aggregating them to create a better model, in which the overfitting issue
can be counteracted by the random sampling of data from the multiple bootstraps
employed.

Let as above Z be a set of data Z𝑁
1 such that Z ∈ ℝ𝑚, with 𝑚 − 1 input variables and

one dependent variable. A bootstrapped dataset Z* is constructed from Z by taking at
random elements from Z and placing them in Z* until we obtain a set of data Z*𝑁1 ; thus,
the bootstrap has the same number of elements as the original data. Note that unless the
data set is very small, it is virtually certain that Z* ≠ Z. As a result, some elements in Z
will be excluded from Z*, and some elements of Z will be included more than once [11,
ch. 7.11].

Then let 𝑆(Z) denote a model or prediction formed from Z. Bootstrapping then allows
us to obtain an estimate of various aspects of 𝑆(Z), such as its variance or the prediction
error. [11, p. 250-251] The principal utility of bootstrapping is in assessing the accuracy
of an estimation or prediction in such a manner [11, p. 249]; however, a sequence of
bootstraps can also be used to improve a statistical model by reducing its variance. This
is called bootstrap aggregation, or ’bagging’. [11, p. 282] Let 𝑓 (𝑥) be a predictive
model made to fit Z. Let also 𝑓 ∗𝑏 (𝑥) be predictive models fit to bootstrapped datasets
Z∗𝑏, where 𝑏 = 1, 2, ..𝐵. We can then obtain an estimate using:

𝑓𝑏𝑎𝑔 (𝑥) =
1
𝐵

𝐵∑︁
𝑏=1

𝑓 ∗𝑏 (𝑥) (2.11)

It can be shown that as 𝐵 → ∞, 𝑓𝑏𝑎𝑔 (𝑥) approaches the true bagging estimate. [11, p.
282]

2.3.4 Random forests

The random forest algorithm employs the same procedure as bootstrap aggregation, but
adds an additional layer by choosing at random one or several explanatory variables at
each step.
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2.3 Machine learning - the random forest algorithm

Random forests are an application of decision tree learning, and are a foundational tool for
machine learning. The goal being to create a reasonable prediction of a target value using
a set of input values, a random forest is created by making a series of decision trees by
employing the bootstrap aggregation procedure but with the additional step of choosing
at random one or several explanatory variables at each step. The accuracy of the decision
trees are evaluated, and the most accurate examples are continued. The convergence
of random forests is shown in, for instance, article [13]. The details are not included
here, but it is noted that this means that the problem of overfitting is circumvented when
random forests are applied correctly. 3

The process is as follows (taken from [11, p. 588]):

1. For b = 1 to B:

(a) Draw a bootstrap sample Z* of size 𝑁 from the training data

(b) Grow a decision tree 𝑇𝑏 to the bootstrapped data by recursively repeating
the following steps until the minimum node size 𝑛𝑚𝑖𝑛 is reached.

i. Select 𝑚 variables at random from the 𝑝 variables
ii. Pick the best variable/split-point among the 𝑚.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees 𝑇𝑏𝐵1

Here, B is the number of times a bootstrap sample is drawn from the training data, and 𝑁
is the size of each bootstrap sample. 𝑝 the total number of variables in the training data,
meaning if we have wind speed, wind direction, and temperature, 𝑝 = 3. 𝑚 determines
how many variables, chosen at random, should be used at each node (in the previous
example, if 𝑚 = 2, then two of those variables would be chosen at random at each node).
Different values for 𝑚 may be tested for.

3One example of an overfitting error might be when a higher order polynomial better fits a set of data
points, but ends up being a poor predictor of randomly sampled data because it fits the gathered data
too well.
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2.4 Evaluation of results

A robust set of statistical measures are needed to evaluate the results. Four metrics have
been identified as suitable for the present thesis.

2.4.1 RMSE - Root Mean Square Error

RMSE is a commonly used metric for the error. [8, p. 303] It is given by: [14, p. 23]

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

𝑒2
𝑖

(2.12)

where 𝑛 is the number of data points, and 𝑒𝑖 the difference between each observation
and its prediction. RMSE had the simultaneous benefit and drawback of weighting large
errors more heavily because the error is squared; this yields a metric more beneficial for
determining the behavior of the largest errors when comparing methods.

2.4.2 MAE - Mean Absolute Error

Mean absolute error is given by: [14, p. 24]

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑒𝑖 | (2.13)

and yields an intuitive measure of the typical size of the error. MAE contrasts with
RMSE in that it weighs all errors equally. In this manner, the two metrics complement
each other, yielding a fuller understanding of the performance of a model.

2.4.3 NMAE - Normalized Mean Absolute Error

The normalized mean absolute error, NMAE, is the same as the MAE above, but
normalized as a percentage of installed capacity. This enables comparison of different
installations, and is commonly used in the literature. [8, p.303] The NMAE is given by:

NMAE =
100 (%)

IP
1
𝑛

𝑛∑︁
𝑖=1

|𝑒𝑖 | (2.14)
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where IP is the installed power.

2.4.4 NMBE - Normalized Mean Biased Error

The normalized mean biased error yields an indication of whether a model typically
over- or underestimates production. The normalization is usually done using the average
production, [14, p. 24] but in this case the normalization will be done using installed
power IP for the sake of consistency between datasets.4

NMBE =
100 (%)

IP

∑𝑛
𝑖=1 𝑒𝑖

𝑛
(2.15)

2.4.5 SE - Sine Extremis

It is plausible that the evaluation of a prediction model using each of the above metrics
may be affected by the proportion of time that maximum or zero load is predicted.5
Consider the case where wind speed is much higher or lower than the cut-off or cut-in
respectively; the model might then be 100 % accurate for that data point. There is
nothing wrong with this inherently, but there are cases where this might become a
problem. For instance, in comparing results for two wind turbines, if one of them reaches
maximum capacity far more often than the other then the metrics may indicate a much
better predictive model simply as a result of the physical conditions at that turbine. The
same may occur for different time spans for the same turbine, if wind conditions are
substantially different.

As a solution, a ’sine extremis’ value will be computed for each metric, whereby all data
points where the actual production and forecast are both within a 1 % of the installed
capacity from zero or the maximum are removed. In most cases this is not expected
to affect results much, but if it were to have a very large impact on the error it would
indicate a need to investigate further, while if it does not it corroborates the findings.

4This is functionally equivalent to range normalization, whereby the normalization is done using the
difference between maximum and minimum output, since for a wind turbine the minimum value will
always be zero for suitably long time spans.

5This didn’t turn out to be the case to any major extent for sufficiently large sets of data, and these values
are only shown in the appendix.
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Chapter 3

Method

The study was carried out using data collected from a wind turbine in the Baltic Sea
region, owned and operated by a utilities company. The company is itself involved in
the trading of electricity using the Energy Optima software, and involving other sources
of electricity from e.g. combined heat and power plants. The location of the turbine in
relation to a central city area and the coastline is shown in figure 3.1. Other key locations
relating to where data was gathered from or forecast for are also shown. The turbine has
a maximum installed capacity of 1.8 MW.

Figure 3.1: Sketch of key locations in proximity to wind turbine site. The turbine is north of a
city, situated on the coast.
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3.1 Data

For this turbine, production data from 2021-03-01 01:00 through 2022-03-15 00:00, as
well as March, May, and June of 2023 was provided. From this, the continuous year
running from 2021-03-02 00:00 through 2022-03-01 23:00 was designated as training
data, and the data from 2022-03-02 00:00 through 2022-03-14 23:00 was designated av
evaluation data together with the data from 2023.

Data was not provided on when the turbines were offline, rather than simply producing no
power due to low winds. To account for this, when production was zero for an extended
period of time (at minimum ten hours) while wind speeds were such that at least some
production would be expected, that data was excluded. 550 hours of data (roughly 23
days) was excluded in this manner from the training data, and 139 hours (roughly 6 days)
worth of data was excluded from the evaluation data. Thus, 342 days worth of data was
used as training data, and 99 days worth for the evaluation.

Historical meteorological data was procured from LVGMC [15]. The relevant variables
were wind speed, wind direction, wind gusts (meaning highest wind speed measured
during that hour), wind minimum (meaning lowest wind speed measured in that hour),
air temperature, and humidity.

There were two available measurement stations in proximity to the turbine. One was for
the city itself, and one for the beach area - see Figure 3.1 above. Both were used. In the
case of data from the city proper, there were intermittent gaps in the data for a two week
period in May 2023. This data was removed, thus reducing the quantity of data used for
the evaluation by a total of about a week.

Forecasts were also drawn from the city itself, as well as for a southern site close to the
beach site. Note that no forecasts were available for the beach site, and no measurement
station was present precisely at the southern site.

Drawing measurements and forecasts from more than one site was considered important
because it was not a given that the closest, central site was the site that would most
closely correspond with conditions on the turbine site. The beach and southern sites are
both closer to the coast and in areas with comparatively fewer high-rise buildings. Since
it has been established that roughness length has a significant impact on wind speed as a
function of height above ground (see section 2.1.1), this could plausibly impact how well
data from these sites predict conditions at the turbine site.

3.2 Procedure

The process, as outlined in Figure 3.2, begins by obtaining historical wind power
production data, and then procuring corresponding historical meteorological observations.
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This collection of data is then split into training data and evaluation data. This is because
there is always a risk that the model will identify patterns in the training data that do not
hold generally, so it is safer to evaluate using data that the model was not trained on.

Models produced in this way are then tested using actual meteorological prognoses,
which can then be compared to production data once the time period being forecast
is over. Because of the aforementioned factors relating to the day-ahead electricity
trading, 48 hours was selected as the cut-off. It is logical to assume the forecasts will
be less accurate the further ahead they are, but because the goal is to create forecasts
for day-ahead trading in the Nord Pool spot market, forecasts beyond 48 hours are not
important.

Train a model
Create production 

forecasts
Evaluate forecasts

Historical 
meteorological data

Training data (~70%)
Evaluation 

data (~30%)
Meteorological 

Prognoses

Historical 
production data

Start with historical 
production data

Implement

Running 
production 

data

Evaluate the 
model

Repeat

Figure 3.2: Workflow for creating a machine learning model.

The goals of the thesis were, as stated in section 1.1:

1. Determine a set of useful input variables (such as wind speed, wind direction, etc.)
for a machine learning algorithm so that it produces a suitably robust wind power
forecasting model.

2. Investigate in rough terms how the quantity of historical data influences the model’s
accuracy.

3. Investigate if sorting by season improves a prediction model’s accuracy.
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4. Investigate how quickly the error converges depending on parameters in the
machine learning algorithm.

5. Construct a suitable model and investigate the real-world results using actual
meteorological prognoses.

Recalling that, as discussed in section 2.3 above, a model produced by a machine learning
model is typically evaluated using some portion of the historical data, goals 1-4 could be
largely addressed as part of this process, with the final step, 5, being an evaluation using
actual prognoses. The step by step procedure is described below.

3.2.1 Types of input variables

To determine what types of weather data which improve a machine learning model for
predicting wind power output, it was first necessary to create a baseline of performance.
Three different models served this purpose. First, a basic physical model, as described in
section 2.1 - involving only the extrapolation of wind speed at hub height, and application
of the power curve. Second, a basic statistical model using a polynomial fit between
cut-in and cut-off values, as discussed in section 2.2. Third, a machine learning model
based solely on wind speed.

An attempt was then made to use the output of the two steps involved in the physical
model (adjusting wind speed to hub height using the Prandtl log law and applying the
power curve), and then training a model on those in order to see if this intermediate step
improves forecasting.

After this, the random forest algorithm was used to train a model using each of the
additional variables thought to be of use. The full set of variables for which historical
data was obtained were:

1. Wind speed (meaning the average wind speed recorded)

2. Gust winds (meaning the maximum wind speed recorded)

3. Wind minimum (meaning the minimum wind speed recorded)

4. Wind direction (in degrees)

5. Relative humidity (as a percentage)

6. Air temperature

All of these were given as hourly values, as was the historical production data.

Once this had been done, models were trained on wind speed as well as the additional
variable out of the ones tested that performed the best, then also the second best, and so
on until all variables were accounted for.
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3.2.2 Quantity of historical data

Since a full calendar year’s worth of historical data (offline periods for the turbine
notwithstanding) was available to train models on, this data was further subdivided into
blocks of 7 days, and models were thus trained on 7 days, 14 days, 21 days, and so on
until all data was used. This was repeated for models using only one input variable (wind
speed), two, three, and so on in the event that the error would behave differently in each
case.

3.2.3 Seasonality of data

Roughly one year and three months’ worth of historical production data was provided.
Using this quantity of data, it was possible to investigate seasonality since all the data
used for evaluation fell into the same 4-month period (March-June). Four groups of data
were used: the same 4 months, the 4 months furthest away, and the two 4 month periods
immediately preceding and succeeding the March-June period.

3.2.4 Number of decision trees

This step simply involved training models with different numbers of decision trees and
seeing how this affected the error. The error was then plotted as a function of the number
of trees until a point of diminishing return had eventuated for different sets of variables.
This was to establish a minimum number so that the models would not differ from each
other by random chance, as might happen if too low a number is chosen, as well as to
avoid the unnecessarily long compute-times or high memory usage an excessive number
of decision trees might result in.

3.2.5 Forecasts using meteorological prognoses

For the meteorological prognoses, wind direction was only available in an 8-directional
format (e.g. N for north, NW for north west, etc.) To circumvent this issue, wind
direction was converted to degrees in 45° increments. Wind minimum was not available,
and so was not included. Temperature was available, but was nonetheless excluded after
consideration of results up to that point. A total of 27 forecast periods of 48 hours each
were used, running from August 7th through September 10th. Prognoses were taken
from the central site and from the southern site.

August 7th to 12th 2023 marked a period of unusually inclement and unpredictable
weather in the Baltic Sea region [16]. This presented an uncommonly good opportunity
to investigate how forecasting models perform under such conditions. Therefore, data
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which was gathered for the duration of the event is shown both separately from the
remaining data, and together.
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Chapter 4

Results and discussion

4.1 Univariate models

The error metrics for the univariate models based on meteorological data from the beach
site and the central site are shown in Tables 4.1-4.2 below. The physical models simply
show what results from applying the Prandtl log law and the power curve, as discussed in
section 2.1. The polynomial model is a fourth order polynomial with cut-in and cut-out
considered, as discussed in section 2.2. The Wind speed only model is a random forest
model trained on wind speed. The last two models are also random forest models, trained
on wind speed adjusted using the Prandtl log law and the output of the physical model
respectively.

Table 4.1: Univariate models for the beach site.

Variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Physical model 343 227 12.5 -12.1
n/a - Polynomial 220 154 8.5 0.2
1 - Wind speed only 221 156 8.6 0.9
1 - Wind speed, adjusted 221 157 8.7 0.9
1 - Physical model output 221 158 8.8 1.0

Table 4.2: Univariate models for the central site.

Variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Physical model 556 359 19.9 -19.9
n/a - Polynomial 284 205 11.3 0.6
1 - Wind speed only 277 203 11.2 2.2
1 - Wind speed, adjusted 277 203 11.3 2.3
1 - Physical model output 278 208 11.5 2.5
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The physical model does not, on its own, perform well. This is expected, since it is a
very primitive model, and no account is taken of the fact that wind speed will differ on
the turbine site compared to where measurements are made.

The polynomial model and the random forest model trained on wind speed only perform
similarly in both cases. This is also expected; a random forest model trained on a
single variable should logically result in a similar outcome to a manually constructed
polynomial fit. The only difference of note is that the polynomial model outperforms the
univariate RF model in the NMBE metric. This means that it is less likely to overestimate
production. Other differences are minor, although RMSE does improve slightly for the
random forest model for the central site data specifically.

This indicates that when only one variable is available, a manually constructed polynomial
fit that takes cut-in and cut-out into account will perform similarly to a random forest
model, and may even outperform it slightly.

It was hoped that using components of the physical model as intermediate steps may
improve performance, but this was not the case. The possibility cannot be completely
disregarded that, had nacelle wind speed measurements been available, that may have
improved results as an intermediate step, by using RF to predict wind speed and then
applying the power curve, instead of using RF to predict production directly. It is
nonetheless deemed unlikely, since the primary benefit of such an intermediate step
would be that the power curve is taken into account separately and with a higher level of
accuracy; this is still done in the above case, and yet the error is not reduced.

4.2 Bivariate models

Tables 4.3-4.4 below show the error metrics for bivariate RF models, where models are
trained using wind speed as well as one other variable. The polynomial and univariate
RF model using wind speed only are shown for comparison.

Table 4.3: Bivariate models for the beach site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 220 154 8.5 0.2
1 - Wind speed only 221 156 8.6 0.9
2 - Gust winds 204 138 7.7 0.0
2 - Wind direction 221 143 8.0 -0.1
2 - Wind minimum 221 144 8.0 -0.0
2 - Humidity 221 159 8.8 1.0
2 - Air temperature 222 158 8.8 1.3
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Table 4.4: Bivariate models for central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 284 205 11.3 0.6
1 - Wind speed only 277 203 11.2 2.2
2 - Gust winds 247 180 10.0 2.0
2 - Wind direction 244 174 9.6 1.9
2 - Wind minimum 245 174 9.6 1.9
2 - Humidity 279 201 11.2 1.9
2 - Air temperature 280 203 11.3 2.4

Of the variables tested, gust winds, wind direction, and wind minimum were effective in
reducing the error. Humidity and air temperature were not.

In this case, the behavior differed between the two data sets. For the beach site, the
bivariate models with gust winds, wind direction, and wind minimum all had very low
NMBE, indicating that they neither over- nor underestimated production. This was not
the case for the data from the central site, where the NMBE values did not improve as
much. Additionally, only the bivariate model using gust winds achieved an improvement
in RMSE for the beach site, but all three did for the central site, and by a much wider
margin.

Since RMSE is weighted towards outliers, this indicates that using these input variables
can reduce outliers for models based on weather data which differs more from turbine
site conditions, but that this improvement may be less if the underlying data is already
close to site conditions.

4.3 Sequence of multivariate models

Tables 4.5-4.6 show the error when the input variables discussed above are added in
sequence. Thus, the first model is wind speed only, then gust winds is added as a second
variable, then wind direction as a third, and so on. This is done roughly in the order of
efficacy the variables showed for the bivariate models. Air temperature and humidity are
both added as a fifth variable, and then together as fifth and sixth, in case they provide an
improvement.
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Table 4.5: Sequence of multivariate models trained on beach site data.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 220 154 8.5 0.2
1 - Wind speed only 221 156 8.6 0.9
2 - Gust winds added 203 138 7.6 0.0
3 - Wind direction added 202 130 7.2 0.0
4 - Wind minimum added 194 126 7.0 -0.3
5 - Air temperature added 184 124 6.9 -0.2
5 - Humidity added 183 119 6.6 -0.5
6 - All variables 180 121 6.7 -0.3

Table 4.6: Sequence of multivariate models trained on central site data.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 284 205 11.3 0.6
1 - Wind speed only 277 203 11.2 2.2
2 - Gust winds added 245 179 9.9 2.1
3 - Wind direction added 210 151 8.3 1.6
4 - Wind minimum added 208 147 8.1 1.5
5 - Air temperature added 204 146 8.0 1.5
5 - Humidity added 197 139 7.7 1.2
6 - All variables 197 141 7.8 1.5

In most metrics, it is fairly clear that the error is reduced for each variable up to and
including wind minimum. The exception is NMBE, which for the beach site is lowest
in the bivariate model. This may simply be an artefact of the specific conditions in the
dataset used, since the NMBE is already very low for these models relative to NMAE.

Both sets of data show very similar results, with the beach site seemingly the better
set of data overall, likely indicating that this data is from a measurement station that
more closely correlates with conditions for the turbine. This does not mean that the
beach site data is the most useful, as that depends also on which set of data most closely
corresponds with the meteorological prognoses.

All models outperform the basic physical model by a wide margin. Even the worst
models never ended up with an NMAE of more than 11.5 %, compared to 19.9 % for the
physical model. The best results were obtained using all variables except temperature
from the beach site data, yielding an NMAE of 6.55 % and an NMAE of 119 kW.

Of the variables investigated, wind speed, wind direction, gust winds, and wind minimum
consistently improved results. For air temperature and humidity, results were very
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inconsistent. When added as a second variable, neither improved results. Yet, added as a
fifth and sixth variable, results were improved. It is difficult to say if this is an artefact of
the dataset.

It is particularly interesting that MAE and RMSE are not always reduced by the same
rate, implying that the behavior of the larger errors differs from the overall average.
Consider that a model trained on wind speed and wind direction for the beach site data
will yield an improved MAE value compared to wind speed alone (going from 156 yo
143), but the RMSE stays the same at 221. This implies that the behavior of outliers
does not change much, and may even be worsened somewhat.

It appears plausible that this results from the much stronger correlation that production
will have with wind speed than with any other variable. Wind direction, then, improves
overall accuracy, but does not meaningfully affect the outliers that are primarily the result
of the wind speed variable.

Notably, gust winds does appear to reduce RMSE; applying gust winds and wind speed
moves RMSE from 221 to 204.

It is in general difficult to determine why the results for each of these models behaved in
the way that they did. Machine learning algorithms are by their nature not explicit in the
way that a typical statistical model is, functioning effectively as a black box, and thus it
is not clear why the results differ here. What is very clear is that care must be taken in
producing a predictive model. The interactions between results and the input variables
is not necessarily straightforward, as a result of which active user input is required as
part of an iterative process. It cannot simply be automated as a ’fire-and-forget’ process
using any data that seems like it might be helpful. The clearest example of this is the
inconsistent behavior from adding the humidity variable.

At the same time it seems clear that more data is usually better, with the caveat that this
will of course only apply if the historical weather data is closely matched to the actual
meteorological prognoses. It also appears that using RF models has a greater overall
impact on results for less accurate meteorological data; improvements from using an
RF model on data from the central site were much greater, particularly on RMSE, in
absolute terms; improvements were also more consistent. Still, this was only barely able
to compensate for the inferiority of the central site data in predicting conditions on the
turbine site. The worst case for the beach site, after all, showed an NMAE of 8.6 %,
while the best case for the central site showed 7.7 %. Thus, it appears that procuring
more reliable sources of data is more important than improving the modelling.

Regardless of the efficacy of humidity and temperature as explanatory variables, it does
seem that wind speed, wind direction, gust winds, and wind minimum are desirable for
creating a viable wind forecast prediction model using machine learning.

It is also notable that excluding the values close to maximum and minimum did not
impact the results to any major extent. There was a tendency to overestimate production
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for the single variable models for the beach site data, as well as the two variable models
using air temperature or humidity, with the NMBE being above 1 % in all those cases.
For the central site data, there was a much stronger tendency to overestimate production,
with the NMBE never below 1.1, and as high as 2.3 for the single variable model. This
tendency towards overestimation is a slight concern, since over longer time spans it could
lead to an overestimation of how much power can be delivered to the grid; however, a
typical overestimation in the order of the lower tens of kW is acceptable.

4.4 Quantity of historical data

Figures 4.4-4.5 show how the NMAE depends on the number of weeks the RF models
are trained on.
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Figure 4.1: How NMAE depends on the number of weeks in the input data for models based on
different sets of variables, using beach site data. The best model, with five variables,
is shown as a bold line.
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Figure 4.2: How NMAE depends on the number of weeks in the input data for models based on
different sets of variables, using central site data. The best model, with five variables,
is shown as a bold line.

The results seem to indicate that the additional benefit of more data tapers off somewhat
by around 15 weeks. Interestingly, results seem to worsen slightly with more weeks.
This may be a result of the nature of the data. If models had been trained on a full year’s
worth of data and then evaluated on another full year, one would certainly expect that
using the full amount of data would be better. That this isn’t the case, coupled with the
fact that the evaluation data is from a relatively small timespan in spring and summer,
may indicate that there is at least some dependency on seasonality. This appears to be
most pronounced for the beach site data (which is in general the strongest predictor of
production output), and more so the fewer variables are used. A tentative suggestion may
be that using more input variables might account for the difference in seasonality, and in
lieu of this accounting for seasonality could account for having fewer input variables.

4.5 Seasonality

To investigate if seasonality has an impact on results, models were trained on different
sets of data blocked by time of year. Because all of the evaluation data was contained
within the months of March, May, and June, the base models were based on data from
the four months of March through June. This was compared to models trained using
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data from September through December (the four month period furthest away from the
evaluation data), as well as data from November through February and July through
October (the period immediately before and after.) It was hoped that the quantities of
data would be similar, but when offline periods were accounted for, the total number of
days for each were:

Table 4.7: Number of days in each seasonal period.

Four month period No. of days in data Approx. No. of weeks in data

March-June 117 days 17 weeks
July-October 117 days 17 weeks
September-December 155 days 22 weeks
November-February 107 days 15 weeks

This is not considered likely to be a major influence on results. Figures 4.4-4.5 seem to
indicate that the additional benefit of more data tapers off somewhat by around 15 weeks,
and all the periods above have at least that much data in them.

Tables 4.8-4.11 show results for the different models when grouping data in the manner
described above.

Table 4.8: Statistical measures of the error for models trained on data for the beach site using
data from March through June.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

1 - Wind speed only 220 151 8.3 -0.1
2 - Gust winds added 204 134 7.4 -0.4
3 - Wind direction added 198 128 7.0 -0.4
4 - Wind minimum added 195 125 6.9 -0.4
5 - Humidity added 184 119 6.6 -0.5
6 - All variables 184 122 6.7 -0.5

Table 4.9: Statistical measures of the error for models trained on data for the beach site using
data from July through October.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

1 - Wind speed only 229 156 8.6 -0.8
2 - Gust winds added 209 138 7.6 -1.8
3 - Wind direction added 219 136 7.5 -2.5
4 - Wind minimum added 217 135 7.4 -2.3
5 - Humidity added 209 131 7.2 -2.3
6 - All variables 204 138 7.6 -0.4
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Table 4.10: Statistical measures of the error for models trained on data for the beach site using
data from September through December.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

1 - Wind speed only 227 163 9.0 1.4
2 - Gust winds added 208 142 7.8 -0.4
3 - Wind direction added 223 140 7.8 -1.5
4 - Wind minimum added 215 137 7.6 -1.4
5 - Humidity added 200 132 7.3 -0.9
6 - All variables 196 137 7.6 0.1

Table 4.11: Statistical measures of the error for models trained on data for the beach site using
data from November through February.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

1 - Wind speed only 243 181 10.0 4.3
2 - Gust winds added 222 159 8.8 3.0
3 - Wind direction added 223 160 8.8 2.8
4 - Wind minimum added 213 151 8.3 2.5
5 - Humidity added 199 143 7.9 2.4
6 - All variables 191 143 7.9 3.1

Results are consistently superior for the data that best corresponds to the evaluation data.
A reasonable point of comparison seems to be the NMAE for the 5 variable models; for
March-June, it is qty6.6%. For July-October, it is 7.2 %. For September-December, it is
7.3 %. The worst results are obtained for November-February, being 7.9 %. Of particular
note is that the performance of models with fewer variables using the March-June dataset
sometimes outperform models with more variables using other datasets. As an example,
the NMAE for a single variable model based on data from March-June was 8.3 %, while
for two variables in November-February it was 8.8 %. It is also interesting to note
that the NMBE tends to worsen substantially for datasets based different months than
the evaluation data. In particular, the November-December dataset yields models that
overestimate production by between 2.4 % and 4.3 %, while the March-June dataset at
worst underestimates production by 0.5 %.

A comparison of MAE, NMAE, and NMBE for all the datasets (including the models
trained on a full year’s worth of data) is given in Table 6.3 below.
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Table 4.12: Statistical measures of the error for models trained on different datasets separated by
month for the beach site.

No. variables - Description Data grouping NMAE (%) NMBE (%)

Full year 8.6 0.9
March-June 8.3 -0.1

1 - Wind speed only July-October 8.6 -0.8
September-December 9.0 1.3
November-February 10.0 4.3
Full year 7.6 -0.0
March-June 7.4 -0.4

2 - Gust winds added July-October 7.6 -1.8
September-December 7.8 -0.4
November-February 8.8 3.0
Full year 7.2 -0.4
March-June 7.0 -0.4

3 - Wind direction added July-October 7.5 -2.5
September-December 7.8 -1.5
November-February 8.8 2.8
Full year 7.0 -0.3
March-June 6.9 -0.4

4 - Wind minimum added July-October 7.4 -2.3
September-December 7.6 -1.4
November-February 8.3 2.5
Full year 6.6 -0.5
March-June 6.6 -0.5

5 - Humidity added July-October 7.2 -2.3
September-December 7.3 -0.9
November-February 7.9 2.4
Full year 6.7 -0.3
March-June 6.7 -0.5

6 - All variables July-October 7.6 -0.4
September-December 7.6 0.1
November-February 7.9 3.1

It seems apparent that using seasonally appropriate data can have an impact on results.
However, it also appears that training a model on a full year’s worth of data is not much
worse than training on only seasonally appropriate data. What is very clear is that training
a model on data from only part of the year will yield unreliable results when used for
data from other times of the year.

What this analysis does not make clear is whether a model trained on the same four-month
period from multiple years would yield improved performance. Nor does it make clear
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what the exact separation should be. The quantity of data available was insufficient for
doing so. Nonetheless, it indicates that grouping data by season may be an option for
improving performance of such models.

It is, however, reasonable to suggest from the available information that the otherwise
more convenient option of automatically updating the model using the latest 3-4 months
on an ongoing basis may not work well. This is because, out of the four-month groupings,
it was not the one immediately preceding the four month grouping the evaluation data
belonged to that was the second best. Indeed, it was actually the one which performed
the worst. This suggests that if seasonality should be accounted for, this should be done
with a more fixed blocking of the year into seasonal categories. The specifics of how this
would be done is not possible to determine using the available data, but it is plausible
that this may vary depending on the site.

Regardless, the improvement provided by using seasonally appropriate data over a full
year is not sufficiently substantive to indicate that it is worthwhile. While never worse,
the March-June models are at best only 0.3 points better in NMAE, and it is difficult to
determine if the differences in NMBE are actually significant.

One interesting thing to note is that there does appear to be a tendency for the July-October
models to underestimate production in March-June, and for November-February models
to overestimate production. Particularly for the latter case, where the NMBE is in the
range 2.4 % to 4.3 %.

While it is not clear exactly what these seasonal differences may be, wind speed and
direction may be considered plausible culprits. A wind rose published by LVGMC, shown
in Figure 4.3 below, indicates certain seasonal differences in wind direction and intensity
(in the Beaufort scale, higher numbers correspond to higher winds.) These differences
appear to be both in regards to wind speed and direction - note the higher proportion of
lower wind speeds spring and summer compared to winter, and the dofferences in how
wind direction is distributed.
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Figure 4.3: Wind rose for the relevant area. [17]

4.6 Number of decision trees

For a random forest algorithm, the main parameter that can be adjusted is the number of
decision trees. The impact on the overall error of the model of adjusting this is shown in
figures 4.4-4.5.
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Figure 4.4: How NMAE depends on the number of decision trees for models based on different
sets of variables, using central site data. The best model, with five variables, is
shown as a bold line.
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Figure 4.5: How NMAE depends on the number of decision trees for models based on different
sets of variables, using beach site data. The best model, with five variables, is shown
as a bold line.

As can be seen, when using only one explanatory variable, no improvement is obtained
when using more decision trees. This is entirely expected, since using only one variable
will result in little more than a basic regressive model for which a random forest algorithm
is unnecessary. As more variables are added, the effect of increasing the number of
decision trees is magnified up to a point.

It is also not surprising that improvements are most stark while increasing the number of
trees up to the amount of variables used, with more incremental improvements past that
point.

Using additional decision trees can become computationally intensive, but the number
of trees used in this model is still sufficiently low that very little is to be gained from
reducing the number.1 The assumption is that 64 decision trees should be more than
sufficient to ensure consistent results without resulting in unacceptably long compute
times.

1Compute time for a single model typically did not exceed 1 minute on a mid-range PC from around 2015
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4.7 Results for the ’Hans’ weather event

Error measured for forecasts during the Hans weather event are shown in Tables 4.13-4.14.
Models were all trained on beach site data; although it was thought that models trained
on data from the central site may perform better for prognoses from the central site, this
did not turn out to be the case.

Table 4.13: Errors for forecasts during Hans using weather forecast from the central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 388 276 15.3 -2.1
1 - Wind Speed 398 279 15.5 -2.0
2 - Wind Gust 399 284 15.8 -0.7
2 - Wind direction 395 285 15.8 -2.0
2 - Humidity 400 282 15.7 -2.9
3 - Wind gust and direction 375 262 14.5 -2.3
4 - Humidity added 369 258 14.3 -3.0

Table 4.14: Errors for forecasts during Hans using weather forecast from the southern site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 324 234 13.0 -0.8
1 - Wind Speed 335 238 13.2 -1.6
2 - Wind Gust 338 246 13.7 -0.1
2 - Wind direction 341 244 13.6 -2.1
2 - Humidity 324 232 12.9 -2.1
3 - Wind gust and direction 318 228 12.7 -1.7
4 - Humidity added 328 236 13.0 -3.2

There is obviously a lot of uncertainty in these results due to the very small sample
size. Nonetheless, it is observed that machine learning based models cannot be stated to
have consistently outperform the simple polynomial model. Any differences observed
between models may be due to random chance. In particular, very little can be said
of NMBE with the very small quantity of samples. The difference between the two
locations for which meteorological prognoses were obtained, however, was large.

This is a very important result. the southern site is further away from the turbine site,
but because weather conditions in the southern site presumably match more closely to
conditions on the turbine site (and/or perhaps to conditions for the measurement station
from which historical weather data was obtained), the resultant production forecasts
were better. This indicates that much care must be taken in choosing a location from
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which forecasts are sourced. It is not sufficient to simply choose the option closest to the
turbine site.

One caveat to these results is the format in which wind direction was provided. Because
the format was 8-directional, forecasts using wind direction may have suffered.

The southern site forecasts for the polynomial, bivariate (with gust winds), trivariate,
and quadrivariate models are shown in figures 4.6-4.9. Because of the manner in which
the data was gathered, the forecasts overlap.
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Figure 4.6: Forecasts using the polynomial model compared to actual production during the
Hans weather event.
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Figure 4.7: Forecasts using the bivariate model with gust winds compared to actual production
during the Hans weather event.
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Figure 4.8: Forecasts using the trivaraite compared to actual production during the Hans weather
event.
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Figure 4.9: Forecasts using the quadrivariate model compared to actual production during the
Hans weather event.

Certain features of these plots may be considered noteworthy. For example, at 14:00 on
August 9th, while actual production was only 270 kW (although it would quickly rise
to 1’200 kW), the polynomial model predicted 1278 kW, the bivariate model predicted
1556 kW, the trivariate model predicted 1110 kW, and the quadrivariate model predicted
1102 kW. This is just one of many potentially noteworthy features, more of which will be
discussed below, but it is noteworthy for the large increase in the error by the bivariate
model, while the trivariate and quadrivariate models showed an improvement.

It is also visually apparent that the multivariate models performed worse on August 9th.
Where production showed a trough of around 300 kW, the trivariate and quadrivariate
models in particular predicted higher production. This is made clear by simply looking at
the lower of the forecasted values in Figures 4.8 and 4.9 for August 9th2. Notice how the
trough is wider in the forecasts than actual production would indicate. Now compare this
to Figures 4.6 and 4.6. These plots are much closer to the actual production in this case.

There are also a few other interesting observations, such as the sudden and inexplicable
underestimate of production in the tri- and quadrivariate models on August 8th (where
actual production was consistently around 1’800 kW). This could indicate a difficulty

2Again, the reader is reminded that forecasts may overlap, since meteorological prognoses for 48 hours
periods were collected roughly once every 24 hours. It is the lowermost values that are of interest in
this case.
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for the machine learning algorithm to handle values in the vicinity of the maximum
production.

4.8 Normal weeks

Results for all weeks considered outside of the Hans storm are shown in Tables 4.15 and
4.16 below. These values are for 20 forecasts, each covering a 48 hours period, running
from August 15th through September 10th.

Table 4.15: Errors for forecasts outside Hans using weather forecast from the central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 253 184 10.2 5.4
1 - Wind Speed 248 182 10.1 5.4
2 - Wind Gust 238 165 9.2 4.0
2 - Wind direction 259 180 10.0 4.0
2 - Humidity 243 174 9.7 4.0
3 - Wind gust and direction 242 168 9.3 3.7
4 - Humidity added 237 162 9.0 2.8

Table 4.16: Errors for forecasts outside Hans using weather forecast from the southern site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 245 171 9.5 4.0
1 - Wind Speed 243 171 9.5 3.9
2 - Wind Gust 234 157 8.7 2.6
2 - Wind direction 253 176 9.5 2.4
2 - Humidity 239 164 9.1 2.5
3 - Wind gust and direction 238 160 8.9 2.3
4 - Humidity added 235 155 8.6 1.5

It is notable how much lower the error was in all cases compared to the Hans storm. This
is indicative of the underlying uncertainty of the meteorological prognoses which are
input into the models, and shows how much larger the influence of this uncertainty is
compared to any improvements offered by models constructed with the random forest
algorithm. For example, the lowest NMAE during Hans was 12.7 %, while the highest
under more clement conditions was 10.2 %. Nonetheless, there does emerge a pattern
of improvement that, while small, mostly matches the expectations set by the historical
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data. The exception being wind direction, which likely on account of the forecast being
eight-directional did not perform well.

In comparing the outcomes for the Hans even and the normal weeks above, it is clear
that there exists a systemic error from the meteorological prognoses. At the same time, it
would be reasonable to expect the random forest model to improve outcomes in relative
terms - something that is observed for the regular weeks - yet this does not seem to
be occuring with any level of reliability in the case of the Hans storm. It is therefore
plausible that the model itself is performing worse. However, a larger sample size
covering more such events would aid in drawing that conclusion.

Figures 4.10-4.13 show the forecasts for the same models as in the previous section,
i.e. polynomial, bivariate, trivariate, and quadrivariate for all forecasts collected from
August 15th through August 28th.

Aug 15 Aug 18 Aug 21 Aug 24 Aug 27 Aug 30
2023   

0

200

400

600

800

1000

1200

1400

1600

Po
w

er
 o

ut
pu

t [
kW

]

Actual production
Forecasts

Figure 4.10: Forecasts using the polynomial model compared to actual production.
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Figure 4.11: Forecasts using the bivariate model with gust winds compared to actual production.
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Figure 4.12: Forecasts using the trivaraite compared to actual production.
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Figure 4.13: Forecasts using the quadrivariate model compared to actual production.

Comparing the above plots does not show an immediately apparent improvement. It
is only when the error is calculated over a large timeframe that improvements can be
seen. Some interesting observations can be made in relation to the largest errors. For
example, consider the very large peak in production on August 28th. Here, the forecasts
consistently underestimated production. However, the error is reduced by the multivariate
models. For the polynomial model, the highest value was 633 kW. This increased to
755 kW for the bivariate model, 1078 kW for the trivariate model, and 1033 kW for the
quadrivariate model. Given that peak production at this time was close to 1600 kW, it is
notable that the models taking more variables into account were able to reduce the error.

This is not always the case however. All models overestimated production on August
29th. While actual production was under 200 kW, the polynomial model showed 633 kW,
the bivariate a much worse prediction of 743 kW, the trivariate the much better 582 kW,
and the quadrivariate 656 kW. At the same time, the multivariate models reached their
peaks much later. The polynomial model plateaued at 20:00, yielding its highest value
of 655 kW from then on. Yet, at 20:00, the multivariate models yielded a forecast of 569
kW (bivariate), 381 kW (trivariate), and 397 kW (quadrivariate). Thus, the total error
over the duration will be reduced somewhat by the multivariate models even though a
substantial peak remains.

Similar behavior is exhibited during August 23rd, where all models show sizable peaks
in relation to actual production, but the sum of the errors over several hours around 15:00
is reduced, as should be made apparent by the presence of a plateau in the polynomial
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model that is not present in the other models. Here, the peaks were 633 kW, 743 kW,
657 kW, and 580 kW.

These are a few of the more notable features, and while not much can be said from
this alone, it shows why and in what manner the error was reduced in Tables 4.15 and
4.16 above. In particular, it shows that for any given instance in time, forecasts may
be either improved or worsened, and it is only over large timeframes that meaningful
improvements materialize.

Figures 4.14-4.17 below show the same as above for forecasts collected on August 29th
through September 10th.
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Figure 4.14: Forecasts using the polynomial model compared to actual production.
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Figure 4.15: Forecasts using the bivariate model with gust winds compared to actual production.
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Figure 4.16: Forecasts using the trivaraite compared to actual production.
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Figure 4.17: Forecasts using the quadrivariate model compared to actual production.

There is a substantial peak over the actual production shown by all four forecasts during
September 4th. This peak sits at 848 kW for the polynomial model, 743 kW for the
bivariate, 719 kW for the trivariate model, and 646 kW for the quadrivariate model.
In this particular case, although the models consistently overestimate production for
September 4th, the multivariate models show a decrease in error.

4.9 All weeks

Summing up all the forecasts for all the weeks considered, amounting to a total of 27
forecasts covering a period of time running from August 6th through September 10th
in 2023, yields the errors shown in Tables 6.8 and 6.9 below. Overall, wind direction
did not provide much of an improvement either as a second variable or as a third, likely
on account of the forecasts providing this as an eight-directional value rather than in
degrees.
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Table 4.17: Errors for all forecasts using weather forecast from the central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 294 208 11.5 3.5
1 - Wind Speed 295 207 11.5 3.4
2 - Wind Gust 291 197 10.9 2.8
2 - Wind direction 300 207 11.5 2.4
2 - Humidity 291 201 11.2 2.2
3 - Wind gust and direction 284 193 10.8 2.1
4 - Humidity added 278 187 10.4 1.3

Table 4.18: Errors for all forecasts using weather forecast from the southern site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 268 188 10.4 2.8
1 - Wind Speed 270 188 10.5 2.5
2 - Wind Gust 265 180 10.0 1.9
2 - Wind direction 277 190 10.5 1.4
2 - Humidity 265 182 10.1 1.3
3 - Wind gust and direction 262 177 9.9 1.2
4 - Humidity added 262 175 9.7 0.3

Although any improvement seen here is very small, a relatively consistent pattern of
small improvements does seem to materialize when considering the various sets of data
presented both for historical values and forecasting.
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Chapter 5

Conclusion

Considering the outcomes reported above, the random forest algorithm can be concluded
to be capable of providing improved predictions for a given dataset for the variables
investigated. It is also apparent that the most important factor in producing good wind
power forecasts is the dataitself. In this regard, the results show that choosing good data
is important. In particular, it appears crucial that much attention is placed on ensuring
the highest levels of agreement in meteorological conditions as possible between the
following:

1. The turbine site

2. The site from which meteorological data is sourced

3. The site from which meteorological prognoses are sourced

If agreement is poor for any two of these these, it is likely that results will suffer. It
is tempting to assume that as long as the latter two agree closely, if it can be assumed
that conditions on the turbine site are well correlated (e.g. wind speed has a relatively
fixed proportionality given a specific wind direction), a machine learning algorithm can
compensate by incorporating the proportionality into itself. In other words, that even
if turbine site conditions are different, conditions may still differ in predictable ways.
While this may hold to some extent, it does not seem to be enough to overcome the
detrimental effects of lack of agreement with site conditions. The influence of different
sets of data was greater by far than any impact of using different algorithms, be they a
polynomial fit or a machine learning of any number of variables.

This does not mean that machine learning models lack utility in improving wind power
forecasting. It simply means that improving the underlying forecasts should take
precedence. Finding the data that is the best possible fit for the site should make up most
of the work in building a wind power forecasting model, while constructing the model
itself is a relatively simple matter.

Unfortunately, the present thesis did not include any data from an array of multiple wind
turbines. It can be assumed that such an array would have a much stronger dependence on
wind direction, due to wake wind reduction. Accounting for this dependence accurately
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would likely require a wind direction forecast in degrees, rather than an eight-directional
forecast, which is often provided.

Indeed, the results for the present thesis were not very good when it came to forecasting
using wind direction, likely in part as a result of the aforementioned eight-directional
forecasting.

An additional point of interest is the apparent difficulty for the multivariate machine
learning algorithms in accurately predicting maximum output. This is exemplified in
Figures 4.6-4.9 in section 6.3 above, and could also be seen more broadly in predictions
based on the historical data that are not included in the report. A possible countermeasure
could be to construct a predictive algorithm that relies on machine learning most of the
time, but includes an override under certain conditions (such as very high wind speed).
More work is required to ascertain whether this would further improve results.

In sum, the present thesis has shown that under certain conditions, the random forest
algorithm used on a suitable quantity of historical data - at minimum roughly 15 weeks -
is capable of producing predictive models that are capable of outperforming a polynomial
regression with cut-offs using the same historical data. These findings are corroborated
with actual meteorological prognoses as well, although performance decreased on
account of the additional uncertainty introduced. There are indications that further
developments taking into account the seasonality of historical data as well as overrides
that force the maximum or minimum production values under certain conditions may
improve performance further, but more work is needed to verify this. In particular, for
seasonality, two full years worth of historical data would be useful, as it would allow
for splitting the full year into multiple overlapping sections and test each in sequence to
determine the optimal seasonal divides. However, overall, it is the quality of historical
data and forecasts that are the most important factor for producing reliable wind power
forecasting.

52



Bibliography

[1] Energimyndigheten, Energiläget 2015, https : / /www.energimyndigheten . se /
contentassets/50a0c7046ce54aa88e0151796950ba0a/energilaget-2015_webb.
pdf, [Online; accessed 2023-08-23], 2015.

[2] Energimyndigheten, Energiläget 2022 – en översikt, https://energimyndigheten.a-
w2m.se/Home.mvc?ResourceId=208636, [Online; accessed 2023-08-11], 2022.

[3] European Council, Infographic - how is eu electricity produced and sold?, [Online;
accessed 2023-08-11]. [Online]. Available: https://www.consilium.europa.eu/en/
infographics/how-is-eu-electricity-produced-and-sold/.

[4] C. Anderson, Wind Turbines - Theory and Practice. Cambridge University Press,
2020, isbn: 978-1-108-47832-8.

[5] Vattenfall, Så fungerar handeln på elbörsen, https://energyplaza.vattenfall.se/
blogg/sa-fungerar-handeln-pa-elborsen, [Online; accessed 2023-08-11].

[6] Energimarknadsinspektionen, Så här fungerar elmarknaden, https : / / ei . se /
konsument/el/sa-har-fungerar-elmarknaden, [Online; accessed 2023-08-11].

[7] G. Giebel and G. Kariniotakis, “Wind power forecasting - a review of the state of
the art”, 2017.

[8] M. Dione and E. Matzner-Löber, “Short-term forecast of wind turbine production
with machine learning methods: Direct and indirect approach”, 2021.

[9] J. Collins, J. Parkes and A. Tindal, “Forecasting for utility-scale wind farms —
the power model challenge”, 2009.

[10] SMHI, Vindhastighet under året och dygnet, https://www.smhi.se/kunskapsbanken/
meteorologi/vind/vindhastighet- under- aret- och- dygnet- 1.170858, [Online;
accessed 2023-06-30], 2022.

[11] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning
Data Mining, Inference, and Prediction, Second Edition. University of California,
2009.

[12] P. Bickel, F. Goetze and W. Zwet, “Resampling fewer than n observations:
Gains, losses, and remedies for losses”, Statistica Sinica, vol. 7, May 1999. doi:
10.1007/978-1-4614-1314-1_17.

[13] L. Breiman, “Random forests”, 2001.
[14] H. Hansson, “On the evaluation of district heating load predictions”, 2023.

53

https://www.energimyndigheten.se/contentassets/50a0c7046ce54aa88e0151796950ba0a/energilaget-2015_webb.pdf
https://www.energimyndigheten.se/contentassets/50a0c7046ce54aa88e0151796950ba0a/energilaget-2015_webb.pdf
https://www.energimyndigheten.se/contentassets/50a0c7046ce54aa88e0151796950ba0a/energilaget-2015_webb.pdf
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=208636
https://energimyndigheten.a-w2m.se/Home.mvc?ResourceId=208636
https://www.consilium.europa.eu/en/infographics/how-is-eu-electricity-produced-and-sold/
https://www.consilium.europa.eu/en/infographics/how-is-eu-electricity-produced-and-sold/
https://energyplaza.vattenfall.se/blogg/sa-fungerar-handeln-pa-elborsen
https://energyplaza.vattenfall.se/blogg/sa-fungerar-handeln-pa-elborsen
https://ei.se/konsument/el/sa-har-fungerar-elmarknaden
https://ei.se/konsument/el/sa-har-fungerar-elmarknaden
https://www.smhi.se/kunskapsbanken/meteorologi/vind/vindhastighet-under-aret-och-dygnet-1.170858
https://www.smhi.se/kunskapsbanken/meteorologi/vind/vindhastighet-under-aret-och-dygnet-1.170858
https://doi.org/10.1007/978-1-4614-1314-1_17


Bibliography

[15] LVGMC, Data search, https://www.meteo.lv/en/meteorologĳa-datu-meklesana/
?nid=924, [Online; accessed 2023-06-30 through 2023-07-20].

[16] SVT, Ovädret hans framfart över landet, https://www.svt.se/nyheter/inrikes/
ovadret-hans-framfart-over-landet, [Online; accessed 2023-08-17], 2023.
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Chapter 6

Appendix

What follows is the raw output from the script used to calculate the various measures for
the error that were given in the results. This includes the ’sine extremis’ values that were
excluded from the results.

6.1 Historical data

Tables 6.1 and 6.2 show the raw output for the random forest models trained on historical
data for the central site and the beach site. Table 6.1 correspond to Tables 4.1, 4.3, and
4.5. Table 6.2 corresponds to Tables 4.2, 4.4, and 4.6.
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Table 6.1: Original data for statistical measures of the error for models trained on data for the
beach site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Physical model 343.0440 226.5231 12.5151 -12.1229
SE 370.2350 263.1405 14.5382 -14.0884
n/a - Polynomial 219.5316 153.7648 8.4953 0.2492
SE 231.4563 170.5014 9.4200 0.3011
1 - Wind speed only 220.6267 156.3438 8.6378 0.9264
SE 222.7372 159.1844 8.7947 0.9377
1 - Wind speed, adjusted 220.6933 156.5130 8.6952 0.9223
SE 223.0420 159.6707 8.8706 0.9385
1 - Physical model output 221.2700 158.1518 8.7862 1.0221
SE 221.5482 158.5189 8.8066 1.0265
2 - Wind direction 220.6919 143.0347 7.9464 -0.0711
SE 225.7119 149.1651 8.2869 -0.0864
2 - Humidity 221.4486 159.0526 8.8363 1.0419
SE 221.5414 159.1799 8.8433 1.0431
2 - Wind gusts 203.6037 138.2922 7.6829 -0.0291
SE 209.1479 145.3252 8.0736 -0.0566
2 - Wind minimum 220.6592 143.6087 7.9783 -0.0319
SE 224.7930 148.6591 8.2588 -0.0443
2 - Air temperature 221.8981 158.2314 8.7906 1.2618
SE 224.0195 161.0821 8.9490 1.2800
1 - Wind speed only 220.6267 156.3438 8.6378 0.9264
SE 222.7372 159.1844 8.7947 0.9377
2 - Wind gusts added 203.3097 138.0109 7.6249 -0.0342
SE 208.1135 144.1126 7.9620 -0.0621
3 - Wind direction added 202.0939 129.8085 7.1717 -0.4366
SE 208.3863 137.4282 7.5927 -0.4923
4 - Wind minimum added 194.3716 125.9390 6.9580 -0.3235
SE 201.4612 134.6881 7.4413 -0.3704
5 - Air temperature added 184.3851 124.4963 6.8782 -0.1959
SE 190.4676 132.3123 7.3101 -0.2346
5 - Humidity added 183.2951 118.6338 6.5544 -0.4666
SE 189.4218 126.0853 6.9660 -0.5281
6 - All variables 179.1002 120.6841 6.6676 -0.2862
SE 183.8964 126.7399 7.0022 -0.3275
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Table 6.2: Original data for statistical measures of the error for models trained on data for the
beach site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Physical model 555.6498 358.8827 19.9379 -19.9263
SE 601.6790 419.9837 23.3324 -23.3223
n/a - Polynomial 283.6042 204.8191 11.3160 0.5657
SE 302.8629 232.9541 12.8704 0.6805
1 - Wind speed only 276.7796 203.1059 11.2213 2.2373
SE 278.5848 205.6140 11.3599 2.2593
1 - Wind speed, adjusted 276.8859 203.3167 11.2954 2.2779
SE 278.6917 205.8267 11.4348 2.3007
1 - Physical model output 278.0646 207.6735 11.5374 2.5257
SE 278.3979 208.1504 11.5639 2.5329
2 - Wind direction 243.5336 173.6099 9.6450 1.9001
SE 244.5877 175.0059 9.7225 1.9168
2 - Humidity 279.1713 200.7065 11.1504 1.8761
SE 279.1713 200.7065 11.1504 1.8761
2 - Wind gusts 246.7132 179.3496 9.9639 2.0368
SE 249.1674 182.7065 10.1504 2.0664
2 - Wind minimum 244.7202 173.6784 9.6488 1.8889
SE 246.1948 175.6199 9.7567 1.9090
2 - Air temperature 279.8602 203.3965 11.2998 2.4308
SE 280.5323 204.3277 11.3515 2.4398
1 - Wind speed only 276.7796 203.1059 11.2213 2.2373
SE 278.5848 205.6140 11.3599 2.2593
2 - Wind gusts added 245.0717 178.6878 9.8723 2.0850
SE 247.9336 182.6276 10.0899 2.1197
3 - Wind direction added 210.4754 150.8475 8.3341 1.6200
SE 212.1532 153.0675 8.4568 1.6375
4 - Wind minimum added 207.5199 146.9809 8.1205 1.4634
SE 209.8896 150.1094 8.2933 1.4839
5 - Air temperature added 204.4421 145.7013 8.0498 1.5377
SE 205.8717 147.5770 8.1534 1.5505
5 - Humidity added 197.2306 139.1848 7.6898 1.1573
SE 198.9945 141.4549 7.8152 1.1648
6 - All variables 196.8749 141.4950 7.8174 1.5342
SE 197.8691 142.8109 7.8901 1.5430
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6.2 Seasonality

Table 6.3 shows the full set of data obtained for error measures when seasonality was
investigated. It corresponds to Tables 4.8-4.11.

Table 6.3: Statistical measures of the error for models trained on different datasets separated by
month for the beach site.

No. variables - Description Data grouping MAE (kW) NMAE (%) NMBE (%)

Full year 156.3438 8.6378 0.9264
March-June 150.7169 8.3269 -0.0611

1 - Wind speed only July-October 156.1351 8.6263 -0.8323
September-December 163.1486 9.0137 1.3584
November-February 181.4685 10.0259 4.3303
Full year 138.0109 7.6249 -0.0342
March-June 134.4377 7.4275 -0.4273

2 - Wind gusts added July-October 137.5541 7.5997 -1.8419
September-December 141.5954 7.8230 -0.3590
November-February 158.5975 8.7623 2.9865
Full year 129.8085 7.1717 -0.4366
March-June 127.5083 7.0447 -0.3865

3 - Wind direction added July-October 135.7369 7.4993 -2.5266
September-December 140.3729 7.7554 -1.5343
November-February 159.9376 8.8363 2.7845
Full year 125.9390 6.9580 -0.3235
March-June 125.0928 6.9112 -0.3839

4 - Wind minimum added July-October 134.5663 7.4346 -2.3000
September-December 136.8359 7.5600 -1.4436
November-February 150.6665 8.3241 2.5314
Full year 118.6338 6.5544 -0.4666
March-June 118.9481 6.5717 -0.4868

5 - Humidity added July-October 131.0246 7.2389 -2.3385
September-December 132.1882 7.3032 -0.9409
November-February 143.0595 7.9038 2.3990
Full year 120.6841 6.6676 -0.2862
March-June 121.8405 6.7315 -0.4845

6 - All variables July-October 138.1296 7.6315 -0.3518
September-December 137.0151 7.5699 0.0639
November-February 142.7670 7.8877 3.0991
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6.3 Forecast data

Figures 6.4-6.5 show the calculated values for the error during the ’Hans’ storm without
rounding. They correspond to Tables 4.13 and 4.14 in section . Figures 6.6 and 6.7 are
the same but for the set of data outside the Hans storm, corresponding to Tables 4.15
and 4.16 respectively. Lastly, Tables 6.8 and 6.9 are for the full month, corresponding to
Tables 4.17 and 4.18

Table 6.4: Error for forecasts during Hans using forecasts from the central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 388.3246 276.2848 15.3492 -2.0539
SE 397.8715 288.8178 16.0454 -2.0854
1 - Wind Speed 397.9510 279.4614 15.5256 -2.0461
SE 400.3195 282.3747 15.6875 -2.0455
2 - Wind Gust 399.0310 283.7269 15.7626 -0.7015
SE 399.6192 284.4445 15.8025 -0.6964
2 - Wind direction 394.6399 285.1968 15.8443 -2.0143
SE 406.2254 300.5168 16.6954 -2.0381
2 - Humidity 400.4981 281.7084 15.6505 -2.9175
SE 400.4981 281.7084 15.6505 -2.9175
3 - Wind gust and direction 374.6470 261.8607 14.5478 -2.2838
SE 377.4446 265.3667 14.7426 -2.2943
4 - Humidity added 369.1235 257.5839 14.3102 -3.0489
SE 374.1147 263.6860 14.6492 -3.0779
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Table 6.5: Errors for forecasts during Hans using forecasts from the southern site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 324.2615 233.9520 12.9973 -0.7826
SE 332.2343 244.7746 13.5986 -0.7731
1 - Wind Speed 334.6406 237.5056 13.1948 -1.5838
SE 334.6406 237.5056 13.1948 -1.5838
2 - Wind Gust 337.9035 246.0820 13.6712 -0.1290
SE 340.4339 249.5067 13.8615 -0.1318
2 - Wind direction 341.0451 244.0059 13.5559 -2.0689
SE 348.3299 253.4968 14.0832 -2.0968
2 - Humidity 324.0375 231.6099 12.8672 -2.0767
SE 324.0375 231.6099 12.8672 -2.0767
3 - Wind gust and direction 317.6552 228.0896 12.6716 -1.7130
SE 321.9614 233.6802 12.9822 -1.7356
4 - Humidity added 327.7182 235.5275 13.0849 -3.1748
SE 332.1784 241.5275 13.4182 -3.2521

Table 6.6: Errors for forecasts outside Hans using weather forecast from the central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 252.9271 183.9426 10.2190 5.4446
SE 255.4676 187.6460 10.4248 5.5551
1 - Wind Speed 248.3055 181.9938 10.1108 5.3553
SE 248.3055 181.9938 10.1108 5.3553
2 - Wind Gust 238.4700 165.4436 9.1913 3.9482
SE 240.2210 167.6668 9.3148 3.9941
2 - Wind direction 258.5279 179.8822 9.9935 3.9920
SE 261.3938 183.5993 10.2000 4.0642
2 - Humidity 242.8224 174.1816 9.6768 3.9731
SE 242.8224 174.1816 9.6768 3.9731
3 - Wind gust and direction 242.1690 167.9583 9.3310 3.7307
SE 245.1167 171.8100 9.5450 3.8072
4 - Humidity added 236.7631 161.6951 8.9831 2.8232
SE 240.2854 166.2402 9.2356 2.8909
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6.3 Forecast data

Table 6.7: Errors for forecasts outside Hans using weather forecast from the southern site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 244.6710 171.4479 9.5249 4.0353
SE 248.0524 176.1884 9.7882 4.1494
1 - Wind Speed 242.9783 171.3447 9.5191 3.9188
SE 242.9783 171.3447 9.5191 3.9188
2 - Wind Gust 234.1936 156.7199 8.7067 2.6142
SE 237.6729 161.0164 8.9454 2.6698
2 - Wind direction 253.0258 171.6041 9.5336 2.3782
SE 255.5611 174.8309 9.7128 2.4130
2 - Humidity 239.4808 164.2499 9.1250 2.5485
SE 239.4808 164.2499 9.1250 2.5485
3 - Wind gust and direction 238.4364 159.7178 8.8732 2.2573
SE 242.5038 164.8674 9.1593 2.3153
4 - Humidity added 234.6228 154.8339 8.6019 1.4725
SE 238.6283 159.9127 8.8840 1.5096

Table 6.8: Errors for all forecasts using weather forecast from the central site.

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 294.0782 207.8832 11.5491 3.5005
SE 298.1168 213.3201 11.8511 3.6162
1 - Wind Speed 294.5183 207.1427 11.5079 3.4153
SE 294.9687 207.6878 11.5382 3.4312
2 - Wind Gust 290.5230 196.5121 10.9173 2.7588
SE 292.3261 198.7572 11.0421 2.7852
2 - Wind direction 300.0099 207.1478 11.5082 2.4211
SE 304.7132 213.0037 11.8335 2.5140
2 - Humidity 291.0608 201.1780 11.1766 2.1508
SE 291.2830 201.4408 11.1912 2.1568
3 - Wind gust and direction 283.9468 192.9018 10.7168 2.1366
SE 286.9425 196.7195 10.9289 2.1753
4 - Humidity added 278.4526 187.1235 10.3957 1.3370
SE 282.9372 192.6711 10.7040 1.3861
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Chapter 6 Appendix

Table 6.9: Errors for all forecasts using weather forecast from the southern site

No. variables - Description RMSE (kW) MAE (kW) NMAE (%) NMBE (%)

n/a - Polynomial 267.5884 187.6527 10.4251 2.7862
SE 272.0214 193.6905 10.7606 2.8933
1 - Wind Speed 269.7810 188.4780 10.4710 2.4704
SE 269.7810 188.4780 10.4710 2.4704
2 - Wind Gust 265.1310 179.5490 9.9749 1.8636
SE 268.5603 183.8562 10.2142 1.8946
2 - Wind direction 277.3372 189.7652 10.5425 1.3543
SE 280.6886 193.9007 10.7723 1.3964
2 - Humidity 264.6803 181.7101 10.0950 1.2769
SE 264.6803 181.7101 10.0950 1.2769
3 - Wind gust and direction 261.5550 177.4679 9.8593 1.2363
SE 265.4656 182.4797 10.1378 1.2607
4 - Humidity added 261.8843 175.2074 9.7337 0.3159
SE 266.2185 180.6972 10.0387 0.3235
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