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Abstract

This thesis analyzes bottlenecks in a proposed radar processing chain and at-
tempts to investigate various optimization techniques for such bottlenecks. One
bottleneck, in particular, was deemed bigger than the others and is the focus
of this master thesis. The bottleneck is a clustering algorithm called DBSCAN.
When more input is introduced, the algorithm scales non-linearly, reducing the
time available for other processes.

A known mitigation strategy for this problem is to down-sample the data,
guaranteeing consistent performance. However, this approach has the undesir-
able side effect of reducing the radar’s clustering accuracy. This thesis inves-
tigates alternative solutions that directly address the core problem, aiming for
higher performance. Some different algorithms were tested, and a new algorithm
was found to increase the throughput by over 30 times. Attributes of different
clustering algorithms have also been mapped.

Keywords: Radars, DBSCAN, Clustering, Optimization, Embedded systems, ρ-approximate
DBSCAN
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Chapter 1

Introduction

1.1 Introduction
Historical catastrophes are undeniably tragic due to the loss of life they entail, but they have
occasionally led to advancements in various scientific fields. One field that witnessed signifi-
cant progress due to World War II is technology, particularly in developing computer science
and radar systems. Today, radars serve many purposes, with some of their applications being
object detection in vehicles and security cameras.

This paper delves into the use of radars in security camera systems. It explores various
ways to optimize their performance by potentially improving the time or memory complex-
ity of one of their most resource-intensive algorithms. The radar under investigation is an
FMCW radar supplied to us by the hosting company. In most situations, radar units perform
flawlessly in object detection and data handling. However, the radar units’ mode of opera-
tion relies on detecting moving objects. In real-world scenarios, numerous moving objects,
such as swaying tree leaves or severe weather, can place a considerable strain on the object
detection functionality of the units. This stress can result in reduced performance.

1.2 Background

1.2.1 A brief history of radars
The word radar stands for Radio Detection and Ranging. While the invention of radars was
credited to Christian Hülsmeyer in the early 1900s, his invention did not include a system to
compute distances [4]. The computation of distances in radar was later introduced in World
War II [9]. Since then, radars have continuously been developed and improved in hardware
and software aspects.
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1. Introduction

1.2.2 FMCW radar
This thesis’s type of radar in deployment is Frequency Modulated Continuous Wave (FMCW).
As the name suggests, the transmitted signal changes frequency during its duration, begin-
ning at frequency f0 and increasing linearly to f1. Such a signal is called a chirp. Nearby
objects reflect the transmitted signal and a receiver is used to detect the reflection. A single
chirp can be used to measure the distance to the target, and by transmitting a series of chirps
and measuring the phase difference between the received signals, the target’s radial velocity
can be calculated. Multiple receiver antennas can be used to determine the polar angle of the
target with respect to the radar. The polar angles of the target can be deduced by measuring
the phase difference between the antennas for the signal reflected by a target. More details
on signal processing come in the following sections.

After receiving the signal, the radar uses the transmitted and the received chirps’ fre-
quencies and phase shifts to extract information about the targets, such as distance, velocity,
and position. The following presents further processing done by the radar after the signal is
received.

1.2.3 IF signaling
The chirp signals can be challenging to process directly due to their high frequencies, as it is
difficult and expensive to implement suitable electronic components [40]. The radar system
introduces a frequency mixer to overcome these challenges. The purpose of the frequency
mixer is to use the received chirps and a generated signal with a frequency that is slightly
different and mix them. As a result, two new signals are generated. The first signal is the
sum of the two frequencies and is filtered out, while the other contains the difference of
the frequencies [36]. The latter is called the Intermediate Frequency signal (IF signal). This
process can be seen in Figure 1.1 [46] in which T x Antenna transmits the signal and Rx
Antenna receives the signal. Since the radar is modulated, the transmitted signal changes its
frequency over time, which is why the same sinusoidal signal presented in the diagram would
provide a slightly different frequency signal from the one passed by the Rx Antenna. The
IF signal contains vital information for the object the signal was reflected by. This makes it
worthwhile as it is at a lower frequency and is applicable for further processing in the radar
unit.

1.2.4 Fast Fourier Transform
The "chirp" signal, when reflected by multiple targets, poses a challenge in isolating the Inter-
mediate Frequency (IF) signals in the time domain. The IF signal becomes an amalgamation
of these simultaneously received signals. The signals can be represented in the frequency
domain using the Fourier Transform (FT) to address this issue [40].

The FT is an essential tool in radar signal processing, especially in analyzing and inter-
preting IF signals. This mathematical technique enables the conversion of a time-domain
signal, which depicts how a signal evolves, into a frequency-domain representation [36]. This
new representation highlights the distinct frequency components constituting the original
signal, allowing for easier isolation and analysis.
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1.2 Background

Figure 1.1: Frequency mixer in radar units.

The fastest algorithm to compute a Fourier transformation as of today is the Fast-Fourier
Transform (FFT) [15], first published in 1965 [14]. The Fast Fourier Transform (FFT) algo-
rithm efficiently computes the discrete Fourier Transform. The FFT has become an indis-
pensable tool for working with discrete signals in digital signal processing. It uses the in-
herent symmetries and redundancies in the Fourier Transform computation to significantly
reduce the required arithmetic operations. As a result, the FFT algorithm exhibits a compu-
tational complexity of O(n log n), where n is the number of data points in the signal. This
efficiency makes the FFT particularly well-suited for processing large datasets and real-time
applications [8].

1.2.5 Radar Cross-Section
In practice, the received signals are weaker than the transmitted ones. Many factors cause
this, such as signal power scaling ( 1

r4 scale) but also the Radar Cross-Section (RCS). RCS
measures an object’s ability to reflect radar signals in the direction of the radar receiver. It
is an important parameter that characterizes the detectability of an object by radar systems.
The radar range equation can calculate the power of the received signal (Pr), as presented
below.

Pr =
PtGtσAe

(4π)2r4

Where σ is RCS, r is the distance to the target, Pt is the power of the transmitted signal,
Gt is the gain of the transmitted signal, and Ae is the receiving aperture which is related to the
gain of the receiving antenna and the signal wavelength. Using this equation, we can deduce
the RCS of a target:

Pr =
PtGtσAe

(4π)2r4 =⇒ σ =
(4π)2r4Pr

PtGt Ae

[37]
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1. Introduction

Figure 1.2: Example of a Range-Doppler plot.

1.2.6 Range-Doppler plot
A so-called Range-Doppler plot can be produced using the IF signals processed with FFT.
A Range-Doppler plot represents the relative velocity (to the radar) on the x-axis and the
range (object distance) on the y-axis. An example of a Range-Doppler plot can be seen in
Figure 1.2 [41]. Each point in the Range-Doppler plot represents the received power for an
object with a given distance and relative velocity. The point represents random noise if no
object exists with that combination of range and velocity.

1.2.7 Point clouds
The radar implements a detector to filter out noisy or weak points. The rest are considered
detections that supply the radar with points on the Range-Doppler plot. A point cloud is a
set of points on the Range-Doppler graph containing coordinates for the points and other
radar information, including the RCS and azimuth (angle).

1.2.8 Radar processing chain
Data processing in the radar device is handled in a chain where processing steps run sequen-
tially. This processing chain runs once every frame in the radar unit, so, for instance, if the
processing frequency is 10 Hz, the frame deadline would be 100 ms. Figure 1.3 shows an ex-
ample of an overview of the processing chain that can be used on the radar device used for this
thesis. As can be seen, the raw data is first sent as input to FFT in the hardware, which is then
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1.3 Problem formulation

Figure 1.3: Radar processing chain.

processed by the detector in one software process. Then steps such as clustering, association,
tracking, and classification are run sequentially in another software process.

1.3 Problem formulation
1.3.1 Frame deadline problem
Given the example in Section 1.2.8, there is a deadline for processing each frame within
100 ms. The processing deadline is one of the main topics that must be handled when imple-
menting radar data processing, as it enforces a tight constraint on the embedded system. If
an algorithm or a processing step takes progressively longer than others, it reduces the time
allotted for other steps to finish. Having time taken from other processes is construed as
a bottleneck. Section 2.1 covers the concept of bottlenecks. This problem can partially be
solved by down-sampling the data.

1.3.2 Down-sampling problem
When the radar detects many moving objects, the various processing steps start to take longer
and may exceed the 100 ms frame deadline. A solution that the hosting company actively
investigates is to down-sample the dataset. In this case, down-sampling becomes a shallow
solution because it results in worse clustering precision. Optimizing the algorithm is a better
solution to remove the need to down-sampling the input data potentially. However, even if
the down-sampling factor can be reduced but not entirely removed due to optimization, it
will be an overall software improvement.

1.3.3 Goal
This thesis aims to evaluate the existing algorithms by identifying which ones are a bottleneck
and looking at potential enhancements.

13



1. Introduction

1.3.4 Research questions
The following presents the research questions (RQ) we formulated to achieve the goals of
this thesis.

RQ1. Are there any possibilities to improve the time complexity of the current algorithms?

RQ2. What are the advantages and disadvantages of the various implementations of the al-
gorithms?

1.3.5 Limitations
A vast number of candidate algorithms could be used in the signal processing for the radars
of the type used in this thesis, where going through each one of the algorithms would not be
possible. Therefore, we set some limitations before we searched algorithms. In addition, we
excluded mathematical algorithms and advanced machine-learning techniques as out of the
scope of this thesis.

Difference in hardware
In the embedded system, the radar shares processing power with other software components
on the unit. The system also uses a different CPU architecture compared to a standard com-
puter. These may provide different results compared to a desktop CPU (x86-64).

1.3.6 Iterative improvement process
This section presents a generalized representation of the improvement process for the algo-
rithm optimizations (not only for determining bottlenecks).

1. Identify holdup — localize the processing steps that burden the chain during heavy
loads to avoid exceeding the frame deadline.

2. Profile current implementation — Measure time spent and reason about time com-
plexity.

3. Search publications — If an algorithm has no room for improvement, then publications
with other algorithms will be searched for.

4. Implement an improved algorithm if there is one. Otherwise, make small incremental
improvements to the current algorithm.

5. Measure the new algorithm with the previous one as the base case. Return to the pre-
vious step until achieving satisfactory performance.

14



Chapter 2

Bottlenecks and optimization

2.1 Bottlenecks
The radar unit processing chain contains many steps, such as multiple FFT executions, clus-
tering, and more. As the radar unit runs the processing chain at ten fps, each execution has a
deadline of 100 ms to finish. When the algorithm does not meet the deadline, the burden falls
on some other algorithms, delaying or skipping the consecutive frames. We consider these
algorithms bottlenecks, as they are the ones that take the most time in the radar processing
chain, and the following steps can only start once they have finished.

2.2 Background on optimization
There are many aspects to look at when it comes to optimization. The following points
illustrate aspects of how software can be optimized.

2.2.1 Memory complexity
One of the common ways to optimize algorithms is by reduction of memory usage. One can
do this by reducing the amount or size of stored data. Another possible memory optimization
is by reducing the number of heap allocations.

In this context, memory optimizations may not be the way to go. The radar units contain
500-1000 MB of RAM, with most of that memory not used while running the unit, mean-
ing that the memory optimizations by tightly packing data would barely make a difference.
Nonetheless, it would be possible to alter the code in a way that may reduce cache misses
by taking advantage of spatial or temporal locality. Temporal locality is a memory property
in which the same memory address will most likely be reused. Spatial locality is a memory
property that proposes that the following memory address will be accessed next. This may
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2. Bottlenecks and optimization

be done by reusing the same data structure for all frames (not creating a new one every frame)
or packing all possible variables together in memory. Packing memory reduces the memory
access time as cache memory is used instead of RAM, which improves the throughput of the
software.

2.2.2 Time complexity
Optimizing time complexity will be the focus of this paper. Time complexity is one of the
most generalized representations of algorithm speed, making it independent of hardware
specifications. Improving time complexity can be done in multiple ways. It can be as simple
as using a data structure with improved search time complexity, but it can also be using an
improved variation of the algorithm. Of course, in many cases, using a data structure goes
hand-in-hand with improving the algorithm.

Another aspect to discuss when it comes to improving time complexity may lie in a nu-
merical analysis perspective. This is because one common way to optimize algorithms today
is by estimating the results instead of computing them precisely, and this is considered one
drawback of using such optimizations. In many applications, estimated results are accept-
able. On the other hand, not all optimizations necessarily affect the results. Thus, it is crucial
to monitor accuracy when making algorithm changes.

2.2.3 Other optimizations
When it comes to optimization, it is sometimes the case that a program can be improved
in other ways than just improving the algorithm’s time complexity or memory usage. The
compiler can optimize some programs by adding the ”-O3” flag when compiling with the
GNU compiler. Other programs can be optimized by implementing a multi-core approach.
Also, there may be more mathematical changes that we can do. For instance, the number of
instructions can be optimized by reducing the need for division and square root instructions,
as they use more clock cycles than other simpler arithmetic operations such as addition and
multiplication. If possible, we may use a squared quantity x2 = y in an algorithm to avoid
computing the square root x = √y.

Data layouts

There are generally two ways to store data sequentially when using data structures. AoS
stands for Array of Structures, and as the name suggests, the data is stored by storing the
structures that contain their attributes in an array. The other method, SoA, stands for Struc-
ture of Arrays, which means that one structure contains multiple arrays representing each
attribute. Neither layout can be considered generally more efficient than the other when
it comes to optimization, but depending on how the data is used, the correct data layout
would help reduce cache misses, which will reduce execution time [45]; sometimes, even a
combination of the two may be the best.
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2.3 Determining bottlenecks

2.3 Determining bottlenecks
Now, the question lies in what algorithms are mostly suited for optimization. We can de-
termine this by observing the software processing chain monitoring and comparing the con-
stituent algorithms’ respective executions and call stacks. We can do this introspection for
the algorithms already implemented on the radar system since it is supported by one of the
materials mentioned below. In addition, it is possible to measure different parts of the pro-
cessing chain on a dataset and retrieve statistics for its respective steps, which we then use
for determining the bottlenecks in the radar system.

2.3.1 Material
Perf
Perf is a performance profiler for Linux. It supports hardware counters, tracepoints, and
much more. It is one of the most common profiling tools [44].

Hotspot
A graphical user interface for visualizing perf output. Among the features are flame graphs
that make it easy to see the relative time spent in each level of the call stack and who the
callers and callees for any given function are. Hotspot is an open-source project available on
GitHub [26].

Probe
An internal tool supplied to us by the hosting company makes it possible to measure the exe-
cution time of different parts of the processing chain. In Figure 2.1, we can see the maximum
and average time spent in each part of the code and the amount of times run (triggers).

2.4 Hotspot and probe statistics
Figure 2.1 shows the flame graph for the processing chain of the radar unit. Detailed modules
we blurred for confidentiality reasons. The data in Table 2.1 and the flame graph we retrieved
from the same recording. The recording is called F3 and is the most computationally heavy
dataset we know of. The dataset, along with other ones, will be discussed further on.

2.5 Bottleneck analysis
The flame graph in Figure 2.1 shows that the processing steps that take the most time are
classification and clustering. One can also observe that classification takes longer than clus-
tering. A more detailed overview of this one can view in Table 2.1. When the processing
chain is pushed to its limits, it shows that the significant bottleneck is clustering, with 31%
of the time in the chain and a maximum time of 82.35 ms and an average time of 46.1 ms.
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2. Bottlenecks and optimization

Figure 2.1: Flame graph when running the F3 dataset on the radar.
DBSCAN and classification take the most amount of time.

(Milliseconds) Total time Max Avg time Triggers
Clustering 106823 82.35 46.1 2318
Association 2558.1 3.3 1.1 2317
Tracking Prediction 1069.1 1.1 0 147167
Track Update 7314.5 6 0.05 102792
Classification 223184 32.7 5.9 37841

Table 2.1: Example of probe statistics taken a run of the F3 dataset
on the radar.
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The other measurements have a lower average and maximum time while having more trig-
gers, meaning they take more time because they run more often. That is why total time is
not a complete measurement, as we would also have to compare the number of triggers for
the result to show an even time distribution. On the other hand, the reality is that the algo-
rithms run different amounts of time, and the chain as a whole needs to be optimized. Since
the decision is between classification and clustering, and classification is done using machine
learning, we decided to optimize clustering.

2.6 Determined bottleneck
As a bottleneck, we deduced that clustering possesses the most considerable potential among
the discussed procedures in the radar system. According to internal documents about the
clustering, it is viewed as a bottleneck, and a downsampling method was introduced that
would remove input points if the total number of points in a frame was more than four
hundred. Additionally, a time target for clustering was set to 50 ms, with some measurements
after downsampling reaching over 60 ms. In other words, the frames with the most points in
the recording we probed on would not be run since they would take too long to process.
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Chapter 3

Clustering algorithms

This chapter covers, in detail, how the clustering algorithm is currently optimized and the
prospective improvements.

3.1 Clustering
One of the key differences between humans and computers is that humans can quickly iden-
tify density-based clusters. When using signal-processing units, the points created are dis-
crete, which will create multiple points from the same object with no connection to each
other. For this reason, point clustering is introduced to establish connections among such
points. A point cluster is a group of points in a graph that can be identified as one object, as
seen in Figure 3.1. One can use multiple algorithms to solve the clustering problem, some of
which include k-means and DBSCAN. Such algorithms are selected for usage depending on
application, efficiency, and limitations.

3.2 Original DBSCAN
This section will cover the clustering algorithm called DBSCAN. DBSCAN is widely used
for applications that require no previous knowledge of the number of clusters.

3.2.1 Definition
DBSCAN stands for Density-based spatial clustering of applications with noise. The DB-
SCAN algorithm is a clustering algorithm that finds the nearest neighbors within an ϵ dis-
tance of each other and then identifies clusters among them containing at least minPts neigh-
boring points. This process, one can see in Figure 3.2.
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3. Clustering algorithms

Figure 3.1: An example of a dataset with three clusters.

Figure 3.2: DBSCAN cluster creation.

3.2.2 Misconception about time complexity
It was long believed that the algorithm had a lower time complexity than it had since the
original paper claimed it to be O(n log n) [16]. Unfortunately, this has caused so much con-
fusion that major text books [31, 33, 42] and papers [3, 6, 13, 28, 30, 39, 49] have restated this
claim [17]. The correct time complexity of this algorithm is, in fact, O(n2). This is because
the distances are calculated from every point to every point, as seen in Figure 3.3.

3.2.3 The algorithm
For some conditions, O(n2) is acceptable, but if the algorithm runs with increasingly more
input points, it is preferred to be as efficient as possible. More precisely, what DBSCAN does
is that it first identifies a core point by calculating the number of neighbors it has within a
radius of ϵ , counting them as border points. It then labels them as a cluster and propagates
further using said neighbors until there are no more new neighbors within a distance of ϵ that
were not visited. This process can be viewed in Figure 3.2, where first, a point is selected in
the window to the left, then bordering points are counted in the middle window, and lastly,
propagating throughout the neighbors in the last window to the right. The pseudo-code
in Algorithm 1 shows the DBSCAN algorithm implementation1. Finally, points considered
outliers, i.e., not part of a cluster, are labeled as noise.

1In the algorithm, the ”visited” implementation is open to interpretation.
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3.3 G13 DBSCAN

Figure 3.3: Visualization of distance calculations for every point.

The clustering part of the algorithm in DBSCAN is reasonably quick by itself, as it skips
all visited points. The part of the algorithm with the highest time complexity is in the method
RangeQuery. There have been numerous implementations as a result of the high time com-
plexity. One implementation only uses a distanceTo() function, which is the least effective
way to implement it because it continuously calculates the distances every time it is called. A
more standard way to implement it is by using a distance matrix that stores the pairwise dis-
tances. Nonetheless, both of these implementations for RangeQuery have a time complexity
of O(n2) since distanceTo() calculation is just converted into memory access, which likewise
takes time. This thesis will investigate various ways to improve the RangeQuery.

3.2.4 Optimization of DBSCAN
The hosting company has already optimized the algorithm compared to the algorithms in the
base form. It uses less overhead and avoids doing unnecessary computations. Nonetheless,
these improvements do not improve the time complexity of DBSCAN. The time complexity
means the radar struggles when more points are introduced. This algorithm will be referred
to as Current-DBSCAN from now on.

3.3 G13 DBSCAN
The G13 DBSCAN algorithm is a grid-based algorithm that improves DBSCAN’s time com-
plexity, changing it from O(n2) to O(n log n). Gunawan initially presented it in 2013, hence
the name G13 [20]. Since the algorithm is grid-based, a data structure is required for the grid.
The data structure we chose for this is a hash table because insertion and retrieval are O(1).

3.3.1 The algorithm
This algorithm is divided into four sections; partitioning, core identification, cluster forma-
tion by core merging, and border point identification.
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Algorithm 1 Original DBSCAN algorithm [16].

1: procedure DBSCAN(D, ϵ ,MinPts)
2: C ← 0
3: for each p inD do
4: if p = visited then
5: continue
6: N ← RangeQuery(D, p, ϵ)
7: if |N| < MinPts then
8: label p← NOISE
9: continue

10: C ← C + 1
11: label p← C
12: whileN ≠ ∅ do
13: q ← pop f romN
14: if label q = NOISE then
15: label q ← C
16: if q = visited then
17: continue
18: label q ← C
19: NN ← RangeQuery(D, q, ϵ)
20: if |NN | ≥ MinPts then
21: N ← N ∪NN

22: return labels(D)
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3.3 G13 DBSCAN

Figure 3.4: Eight points in a grid with sixteen cells.

3.3.2 Partitioning

For the first section, we form a gridT , in which each cell in the grid has sides of length ϵ /
√

2.
Given that each cell is a square, and ϵ is the maximum distance in which a neighbor is counted,
that can be used as the square’s diagonal, providing the maximum possible distance within
the square. This would form a right triangle with two equal sides. Using the Pythagorean
theorem, we can calculate2 the sides s; s2 + s2 = ϵ2 ⇐⇒ s2 = (ϵ2)/2 ⇐⇒ s = ±ϵ /

√
2. The

side lengths are taken advantage of when identifying core points.

To create the grid which holds all cells, we used a hash table that maps each point in the
graph G(i, j) to a cell, G : R2 → Z. Each cell c ∈ T may contain points. In Figure 3.4,
we see that most cells are empty; however, the cells in the middle of the grid have three and
five points respectively in them. As mentioned earlier, the hash table stores the cells and the
points pertaining to them.

One assumption we make is that no point in P, the set of all points, falls directly on the
edge of a cell. This would cause the point to be counted twice, which is not intended. In
Figure 3.5, one can see that two adjacent cells would compete over the ownership of the red
point unless this is handled somehow. One way to mitigate this is to check if any point exists
on the edge, and if it does, one could move T infinitesimally to one side or the other, so
the point landed near the edge instead of on it. Since the implementation is a hash table, it
does not cause any issues because the hash function rounds up the coordinates of the points
deterministically.

A point p ∈ P has either the label Core or Non-core. P(c) denotes the set of points the
cell c covers. A cell c is considered non-empty if |P(c)| > 0, and the cell is considered core if
any point in c is labeled as core.

2Negative distances are not used, so we are only interested in the positive results of square root.
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3. Clustering algorithms

Figure 3.5: Scenario where a point (red) is on the edge between two
adjacent cells.

3.3.3 Determining core points
The side lengths secure a certain amount of core points with minimal computation because all
points within cells will have distances less than ϵ , meaning that if the number of points within
one cell reaches or exceeds minPts, such points will immediately be labeled as core points.
However, if this condition is not fulfilled, it is required to iterate through all points in the cell
and manually calculate the distances between those points and points in neighboring cells up
to two steps away from the current cell. As shown in Figure 3.6, the neighbors of the neighbors
are also needed because a single cell has a side length slightly smaller than ϵ . There is a
possibility that points are coordinated near the edges of the cells3. Neighboring cells’ function
is thus defined asN(c) = {cn|(c, cn) ∈ T,∃p ∈ c∃pn ∈ cn : |p − pn| <

3ϵ
2 }. This ensures that

all core points are found and is still more efficient than the original DBSCAN because the
maximum number of neighboring cells is constant (21 cells). The constant time for looking
up neighboring cells and iterating over each point ensures a time complexity of O(n) for this
step, where n is minPts. The algorithm for this step is provided in Algorithm 2 [20].

3.3.4 Merging core points
The third section of this algorithm is merging. All core cells inT are denoted byScore. Given
a core cell c1 ∈ Score and one of its neighboring core cells c2, the merging step is:

• If |p1−p2| < ϵ where p1 ∈ P(c1) and p2 ∈ P(c2) then c1, c2 are part of the same cluster
C(c1) ∪ C(c2) where the C function denotes all points that are part of that cluster.

• Otherwise, C(c1) and C(c2) are two separate clusters.

Fortunately, this step is fast whenever two neighboring core cells have a reasonable amount of
points in them. Unfortunately, performing this step with brute force is still considered O(n2)
in the worst case. However, Gunawan showed an approach that gives a time complexity of
O(n log n) [20]. In Figure 3.7, two core neighboring cells contain all the points in the grid.
A nested loop looking at each p1 ∈ c1 and comparing the distance to each p2 ∈ c2 will
resemble the RangeQuery in Algorithm 1. Gunawan showed that this subproblem could be

3The image is just for demonstration purposes and is not to scale.
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3.3 G13 DBSCAN

Figure 3.6: Neighbor-
ing cells.

The radius r represents the radius from the
center of the current cell. This would be cal-
culated as ϵ added with half the length of a cell
diagonal, which is 3

2ϵ . This radius is chosen to
illustrate why 2-step neighbors are needed for
the calculation.

Algorithm 2 G-13 DBSCAN: Determining Core Points.

1: procedure determineCorePoints(T , ϵ ,minPts)
2: for each non − empty cell c in T do
3: if P(c) ≥ minPts then
4: for each point p in c do
5: label p← CORE
6: else
7: for each point p in c do
8: nPts← 0
9: for each cell cN inN(c) do

10: for each point q in cN do
11: if dist(p, q) ≤ ϵ then
12: nPts← nPts + 1
13: if nPts ≥ minPts then
14: label p← CORE
15: break
16: if nPts ≥ minPts then
17: break
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3. Clustering algorithms

Figure 3.7: Scenario where all points are in two cells c1 and c2.

G13 Algorithm Merge Time Complexity Merge Data Structure
Brute-force O(n2) No data structure

Voronoi Diagram O(n log n) Voronoi diagram (V-Diagram)
Delaunay triangulation O(n log n) Dual-graph of V-Diagram→Minimal Spanning Tree

R-tree query O(n2) Rectangle Tree
Radix sort O(nd) Divide and Conquer [7, 18]

Table 3.1: G13 algorithms with their respective time complexities
and data structures for merging core points.

regarded as a bichromatic closest pair (BCP) problem, where each p1 will find the closest p2
in the set P(c2). Going through every point p1 in P(c1) gives O(n) and for example, using a
Voronoi diagram to query the closest point takes O(log n) giving a running time complexity
of O(n log n).

Using a Voronoi diagram is one of many ways to solve a BCP problem. We have investi-
gated the alternatives shown in Table 3.1.

Voronoi diagram
A Voronoi diagram can be constructed in O(n log n) time. After the diagram is constructed,
we query the diagram for each point in the opposite cell.

Delaunay triangulation
A Delaunay graph can be constructed using a Voronoi diagram corresponding to its dual
graph. For this graph, there exists a Minimum Spanning Tree (MST). The MST has the shortest
edge crossing between the two cells. A search algorithm like Depth First Search can be used [5].

R-tree query
Much like some implementations of the original DBSCAN implementing a Rectangle tree to
reduce the average run time to Θ(n log(n)), the idea is the same for G13. For each cell duo, we
construct an R-tree, costing some overhead but decreasing average query time potentially. An
implementation of this was programmed and tested. However, the results could have been
better. We reasoned that constructing one big R-tree for all the points, instead of for each
pair of neighboring points, was preferable, and we abandoned further investigation.
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Figure 3.8: The left cell is the current cell, and the right cell is the
neighbor and merging candidate.

Radix sort
Sorting with radix requires O(nd) where n is the size of the dataset, and d is the number of
digits for the largest number. When this sort is done on the x-axis, we can create strips for
each y-axis element that satisfy dist(p1y, p2y) < ϵ . This assumes that the points are integers.
If they are not, a transformation to an integer could be made. A point like (32.123, 5, 8530)
with ϵ = 0.5 could be transformed to the integer point (32123, 5853) where ϵ = 500.
Kirkpatrick and Reisch showed in 1983 that integers in any range can be sorted in O(n)
time using radix sort (with a few assumptions) [27]. Now, solving a unit-spherical emptiness
checking problem, Gan and Tao managed to achieve linear time for merging [18].

Brute-force
Our contribution to improving the G13 algorithm is introducing a brute-force implemen-
tation with less overhead to better work for embedded systems. In contrast to the origi-
nal DBSCAN that does a RangeQuery for each point globally, our implementation does this
RangeQuery locally. In Figure 3.8, the neighboring cell only has a few points. Going through
each point and deciding whether to merge the clusters would go quickly for our current cell.
However, in Figure 3.9, we see a busy cell with many points in both our current cell and
the neighbor. Here, even if we have localized the brute force, the worst case is having to go
through all the points on the left and compare it to all the points to the right, and much time
for the whole algorithm is going to be spent doing these O(n2) computations. Nonetheless,
we reason that the worst case will not be a problem for most average grids.

3.3.5 Determining border points
The final step in this algorithm is shown in the pseudo-code in Algorithm 3. This step de-
cides how to handle the non-core points. Given a non-core point p1 ∈ Pnon−core, if ∃p2 ∈

Pcore(dist(p1, p2) < ϵ ) then the point is considered a border point and is assigned to the
closest cluster. Else, the point is noise.

Remark. Whenever we label a point as a border point, this means that there is at least one
cluster that this point could be part of. We decide to take the cluster closest to the point
if there is more than one cluster. However, this is not specified in the original algorithm
and could therefore give different results depending on the order of the input data. One
example is in Figure 3.10, where the difference between DBSCAN and G13 implementation
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Figure 3.9: Example of a busy merge between the current cell to the
left and the neighboring candidate cell on the right.

is straightforward. Here, every point is the same except one in the middle. G13 includes this
point in the right cluster because the closest core point is to the right side, while regular
DBSCAN, given the input order, chose the left-sided core point because it came first in the
queue.

Algorithm 3 G-13 DBSCAN: Determining Border Points.

1: procedure determineBorderPoints(T , ϵ )
2: for each non − empty cell c in T do
3: for each point p in c do
4: if label p ̸= CORE then
5: q ← NULL
6: for each cell cN inN(c) do
7: ptmp ← NearestCorePoint(p, cN )
8: if dist(p, ptmp) ≤ dist(p, q) then
9: q ← ptmp

10: if q ̸= NULL then
11: label p← label q
12: else
13: label p← NOISE

3.3.6 Shortcomings
The G13 algorithm manages to satisfy a lower worst-case time complexity than the other
algorithms that came before. However, this algorithm only works in two dimensions, which
limits its use cases. The radix implementation of G13 even delivers a linear time complexity.
Nevertheless, it comes with the requirement that all points be integers. Next, we will look at
an algorithm that builds upon G13 to achieve a lower time complexity and works in higher
dimensions.
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Figure 3.10: Scenario where regular DBSCAN and G13 differ.

3.4 ρ-approximate DBSCAN
Gan and Tao first introduced ρ-approximate DBSCAN in 2015 [17]. The idea is to introduce
an approximation parameter ρ besides minPts and ϵ . By introducing this variable, Gan and
Tao reduce the time complexity for lower dimensions (d ≤ 7) to O(n). For the proof and
derivation of the time complexity, we refer to Gan and Tao’s newer, more comprehensive
paper [18].

3.4.1 Changes from G13 implementation
Instead of a point q ∈ P needing a minimal number of points within a distance of ϵ to be
considered core, it now requires a distance of ϵ (1 + ρ). With this change, the connectivity
inside a cluster also changes, where there is no longer any guarantee that all the points inside
a cluster are density-reachable from any given q ∈ C(G(q)). For a cluster K to have connec-
tivity, it is required that any two points p1, p2 ∈ K has a point p ∈ K such that p1 and p2 are
density-reachable from p. For two points to be density-reachable from each other, there must
be a sequence of core points where each new point is within ϵ from the previous one. This
definition is no longer valid as it was in G13. In Figure 3.11, there is a clear cluster between
four points. However, the fifth point is not within the ϵ range but within the ϵ (1+ ρ) range.
This new definition means points may or may not be counted in the cluster. The fifth point
is now ρ-approximate density-reachable.

This change is helpful because it allows for an effective RangeQuery method in the merging
step. Aside from this, there are no changes to G13 in the 2D case.
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Figure 3.11: Picture borrowed from [18] that shows that all points
inside ϵ are counted, and points between ϵ (1 + ρ) and ϵ might be
counted in the RangeQuery.

Sandwich theorem
From Figure 3.11 and the explanation, we can see that points inside ϵ (1+ρ) could be counted
or not, while all points inside ϵ will be in the cluster. The sandwich quality guarantee assures
that if the clusters change because of the approximation, then it will, in the worst case, result
in the same clusters as running regular DBSCAN with ϵ as ϵ (1 + ρ).

Theorem 3.4.1 (Sandwich Quality Guarantee). Proved and defined in [18].

1. For any cluster K1 ∈ C1, there is a cluster K ∈ C such that C1 ⊆ K.

2. For any cluster K ∈ C, there is a cluster K2 ∈ C2 such that C ⊆ K2.

Where C1 as the set of clusters of DBSCAN with parameters(ϵ , minPts), C2 as the set of clusters of
DBSCAN with parameters(ϵ (1 + ρ), minPts), and C as an arbitrary set of clusters that is a legal
result of (ϵ , minPts, ρ)-approx-DBSCAN.

Remark. The sandwich theorem makes no guarantees that all points will be in the same clus-
ters as running regular DBSCAN with ϵnew = ϵ (1 + ρ), only that if a cluster is merged, it
would be the same merged cluster as ϵnew. An example of this can be viewed in Figure 3.12,
where we can see a different result between the two algorithms when ϵ = 1; however, this
difference disappears when a slightly higher ϵ value is selected for DBSCAN. In other words,
the value of ϵ was not ideal in the first place. In this case, the two clusters on the left were
merged by ρ-approximate DBSCAN, but that does not need to happen; it could also be clus-
ters that would differ between ϵ = 1.01 and ϵ = 1 for regular DBSCAN but remain as the
same as DBSCAN with ϵ = 1.

Approximate range counting
The big difference between G13 and ρ-approximate is how the RangeQuery is done. Instead of
dividing up the gridG into static cells with the same size, a quad-tree-like structure is created
where each layer has cells with decreasing width until the side length is at most ϵρ/

√
d, where
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Figure 3.12: A fictional example of how the approximate RangeQuery
could change the clusters if a poor ϵ is selected.

d is the number of dimensions. This will create a hierarchy H where the amount of levels
is max{1, 1 + ⌈log2( 1

ρ
)⌉}, which is O(1) in the number of input points [18]. The tree takes

linear time to construct, and a query will be, at most, a traversal of the tree from the root to
a leaf, which takes constant time. This is done for each point, giving a total time complexity
of O(n) in the end.

Remark. The tree is quad tree-like because, depending on the number of dimensions, it can
be viewed as the quadrants in a coordinate system, giving at most 2d number of non-empty
cells per level of the tree structure. This creates four squares for two dimensions, eight cubes
for three dimensions, and sixteen tesseracts for four dimensions, etc. Here we can also see the
inherent problem with increasing the number of dimensions, which exponentially increases
the overhead if we decide actually to build all the parts of the tree.

For each point, the query will look like this:

• If the current cell is outside the range, ignore it.

• If the cell is fully covered by the radius ϵ (1 + ρ), add |P(C)| to the answer.

• Otherwise, check if the cell is a leaf cell in H , then add |P(C)| to the answer, else
recursively go through each child node.

The number of points will be returned. If there are points, it means that a point exists in a
neighboring cell that is part of the same cluster, so then merge; else, if no points are found,
they are separate clusters.
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Figure 3.13: Visualization of building a k-d tree.

3.5 KDT-DBSCAN
Another DBSCAN technique that claims minimal time complexity and works well in larger
dimensions is presented below. A k-d tree (k-dimensional tree) is a multidimensional bi-
nary tree structure that not only provides an O(n log n) time complexity but also creates the
possibility of clustering over data in more than two dimensions. This solution creates the
potential for improving radars by increasing the number of parameters that can be used in
clustering. The k-d tree data structure is used to find the nearest neighbor. However, this
makes it close enough to the purpose of DBSCAN’s RangeQuery that it is possible to adapt
k-d tree to it [32].

3.5.1 Building the tree
The idea behind k-d tree is to perform partitions using the median point in each dimension.
There are multiple ways to build a tree, and each method has drawbacks. The most standard
way to build the tree is as follows. First, the data is partitioned at the median in the first
dimension while assigning the median point as the root, then partition each sub-partition
in the second dimension (separately) while assigning the median points there as the two
children nodes and then continue performing the same partitions for each dimension until
there are no more points to partition (leaf nodes)4. This concept will build the binary search
tree (BST), which will be utilized later [32]. The BST can be illustrated in Figure 3.13. In
addition, the tree equivalent of this can be seen in Figure 3.14.

It is not easy to efficiently build the tree because the median continuously needs to be
calculated for each partitioning. The mentioned method usually uses an efficient sorting
technique to find the median, such as merge-sort or quick-sort, and then picks the median.
These two techniques are optimized list sorting algorithms with O(n log(n)) time complexity.
Afterward, it splits the list at the median (excluding the median) and re-sorts the sub-lists
based on the other dimensions for the sub-partitions.

Balancing the tree
Another method is to use the input data directly and balance the tree at the end. This method
is also considered inefficient as it is challenging to balance a k-d tree after building it because
the depth depends on multidimensional values.

4After the last dimension is reached, it starts over from the first one again.
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Figure 3.14: BST visualization of k-d tree.

Figure 3.15: List visualization when tree is being built for 3D points.

Building with samples

One method that may be used to build the tree efficiently is by taking a fixed number of
samples from the data and finding the median of these points. The advantage of this method
is that the performance is independent of input size, meaning it will almost always take the
same amount of time. However, variation of execution time may increase when there is a
higher number of points5. Unfortunately, this method also has drawbacks, as it does not
guarantee a balanced tree.

Additionally, this process still requires sorting or traversing the lists when split. This may
be better visualized in Figure 3.15. In this figure, given that the median is selected, the list
should be correctly sorted and split up to be able to go further down the stack (taking O(n)
time complexity instead of O(1)).

5Variation in execution time may be improved by taking k log10 n amount of samples instead where n is
the number of points, and k is a constant that is chosen in advance. We have decided not to do this accuracy
improvement as the radars do not use an extremely high number of points.
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3. Clustering algorithms

Figure 3.16: RangeQuery for k-d tree.

3.5.2 RangeQuery
After building the tree, a RangeQuery is performed recursively. However, before that, two
points called minKey and maxKey are used to make two decisions by using their split coor-
dinates6; if the subtree should be traversed and a node should be used for calculation. These
points are derived from the node coordinates for which we want to find neighbors. To calcu-
late minKey, we subtract ϵ from all dimensions, and for maxKey, we add ϵ to all dimensions.

Once we have the minKey and maxKey values, the code traverses the tree and checks if a
subtree should be explored based on these points. Only points within minKey and maxKey
split coordinates have their distances calculated [32]. The KDT-DBSCAN RangeQuery can
be seen in Algorithm 4 and can be visualized in Figure 3.16 (derived from Figure 3.14). As
demonstrated, distance in this context was calculated four times, whereas the original DB-
SCAN would perform the calculation twelve times.

6Split coordinate is defined as the coordinate value of the current dimension of the tree.
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3.5 KDT-DBSCAN

Algorithm 4 k-d tree.

1: procedure rec_kdt(minKey,maxKey, current, control,N , ϵ , depth)
2: dim_cnt ← number o f dimensions
3: dim← depth mod dim_cnt
4: greq ← current value in dim ≥ minKey value in dim
5: leeq ← current value in dim ≤ maxKet value in dim
6: if greq and leeq then
7: if dist(current, control) < ϵ then
8: N ← N ∪ current
9: if greq and curr.has_le f t then

10: REC_KDT (minKey,maxKey, current.le f t, control,N , ϵ , depth + 1)
11: if leeq and curr.has_right then
12: REC_KDT (minKey,maxKey, current.right, control,N , ϵ , depth + 1)
13: procedure kdT(root, control, ϵ )
14: maxKey ← control coordinates + {ϵ , ..., ϵ }
15: minKey ← control coordinates − {ϵ , ..., ϵ }
16: N ← ∅

17: REC_KDT (minKey,maxKey, root, control,N , ϵ , 0)
18: returnN
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Chapter 4

Methodology

This chapter covers the materials used, the kinds of datasets we examined, and how we con-
ducted the tests.

4.1 Material
Most of the material used for this paper is software. However, there is still physical material
used. Firstly, we needed to test the algorithms on the radar units; therefore, the hosting
company provided us with two radar units. In addition, the hosting company provided two
computers, one of which we ran the tests on. The specifications are as follows; its CPU is
AMD Ryzen 9 3900X clocked at 3.9GHz with 32 GB RAM. An ARM Cortex-A53 CPU
powers the radar — this CPU is a dual-issue in-order superscalar computer that implements
the ARMv8-A instruction set.

4.2 Testing
One of the limitations of the various algorithms is testing. Profiling on the actual units takes
a long time, is difficult to automate, and can be tedious when implementing and debugging
the algorithms. For this reason, the tests are divided into two sections; synthetic tests and
benchmarks on real data. The DBSCAN algorithms that were used are shown in Table 4.1.

Gan and Tao 1 have permitted us to use their latest binary file containing the differ-
ent algorithms they have developed to be used in comparison with the algorithms we have
developed, and the DBSCAN variant provided to us by the hosting company. The binary
was compiled by ”GCC: (Ubuntu 4.8.4-2ubuntu1 14.04.3) 4.8.4”, and the flag used was ”-O3”.
This binary includes a plethora of DBSCAN algorithms. The ones we have used for our com-
parisons are marked as G&T in Table 4.1. Our programs have been compiled with ”GCC:

1The original authors of ”DBSCAN revisited: Mis-claim, un-fixability, and approximation".
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Algorithm Description Compiled by
1996 DBSCAN The original DBSCAN algorithm. J&J

Current-DBSCAN Proprietary implementation of DBSCAN, based on the original algorithm. J&J
Brute-G13 DBSCAN Our G13 implementation utilizes brute force when merging cores. J&J

Voronoi-G13 DBSCAN G13 that utilizes Voronoi diagram. G&T
Delaunay-G13 DBSCAN G13 with Delaunay merging. G&T

R-Tree DBSCAN R-Tree RangeQuery. G&T
ρ-approximate DBSCAN Approximation with ρ = 0.01. G&T and J&J

Exact DBSCAN Radix sort. G&T
KDT-DBSCAN 1996 DBSCAN with k-d tree RangeQuery implementation J&J

Table 4.1: Algorithms used with summary.

(Debian 10.2.1-6) 10.2.1 20210110” with the flag ”-O3”. These are referred to as J&J in the
table.

4.2.1 Synthetic testing
In the first section of the testing, synthetic tests are performed without using the radar units,
and then one chosen implementation is used on the radar. Performance-wise, these tests
are expected to differ slightly compared to the actual benchmarks on real data, but this will
provide a more comprehensive visualization of the algorithms’ differences and their execution
times. Another reason for implementing such tests is to contain tests that are both simple
and quick to run. One example of a test is in Figure 3.10 where the twodiamond test was used.

With the assumption that speed improvements from small changes can carry over to the
radar unit, we can iteratively go through changes from our computers and see if the improve-
ment carries across to the radar unit. During the development of the algorithms, these tests
also greatly aided the debugging of our DBSCAN implementations.

The following introduces a step-by-step walk-through of how the synthetic tests are car-
ried out. In these steps, the n variable represents the number of times the tests are to be
repeated.

1. Test Original DBSCAN on datasets.

2. Test Current-DBSCAN on datasets.

3. Test Gan and Tao’s algorithms on datasets.

4. Record execution times and save the results to the database.

5. Repeat from Step 1 n times.

6. Implement and debug proposed algorithm.

7. Test new DBSCAN algorithm on datasets.

8. Record execution times and save the results to the database.

9. Repeat from Step 7 n times.

10. Repeat from Step 6 for other algorithms until done.
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4.2 Testing

4.2.2 Benchmarks of real datasets
The latter tests that will be performed are benchmarks for the real datasets mentioned in
Section 4.3.1. These benchmarks are done on the desktop computer and the radar. This
is because profiling the algorithms on only the radar would take too long. We would have
to run them many times to get stable measurements, and that would be for each algorithm
and dataset. Performing these runs on the computer saves time and would make it possible
to automatize the whole process easily. Ultimately, one algorithm is used on the radar to
compare with the Current-DBSCAN. The following presents the step-to-step workflow of
how the benchmarks are carried out on the desktop computer.

1. Test Original DBSCAN on datasets.

2. Test Current-DBSCAN on datasets.

3. Test Gan and Tao’s algorithms on datasets.

4. Benchmark execution times and save the results to the database.

5. Repeat from Step 1 n times.

6. Test new DBSCAN algorithm on datasets.

7. Benchmark execution times and save the results to the database.

8. Repeat from Step 6 n times.

9. Repeat from Step 6 for other algorithms until done.

Even when automated, this process requires time before we get results, which is the pri-
mary reason we try to improve the desktop computers before we move and test the imple-
mentation on the radar unit.

4.2.3 Multidimensional synthetic data
To test the scalability of the various implementations of DBSCAN, a selection of datasets
with Gaussian clusters [24] were used to guarantee proper trends in performance. As can be
seen in Table4.2, these datasets increase in number of points and ϵ when there is an increase
in dimensions, but it is guaranteed that there are k = 9 clusters for all of them (minPts = 2
for all of them). Even though they have different dimensions, these datasets have similar
clusters; one example can be seen in Figure 4.1 for the dim3 dataset.

4.2.4 Avoiding cache misses
An aspect to consider is avoiding cache misses when we measure the results. When we run
the algorithms, we want to have the data hot in the cache when measuring. We do this by
running the algorithm one time extra in the beginning before we start to measure. This way,
variance from initial cache misses and page faults are less likely to affect our measurements.
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Name Dim. |Points| ϵ

dim2 2 2025 30000
dim3 3 2701 30000
dim4 4 3376 30000
dim5 5 4051 30000
dim6 6 4725 30000
dim7 7 5400 30000
dim8 8 6075 30000
dim9 9 6751 40000
dim10 10 7425 40000
dim11 11 8100 40000
dim12 12 8774 40000
dim13 13 9450 50000
dim14 14 10125 50000

Table 4.2: Gaussian Cluster datasets with increasing dimensions.

Figure 4.1: KDT-DBSCAN clustering on dim3.
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4.3 Data

dataset Frame Count Max Point Count
H2 1145 1674

Crowd 3085 5159
F3 2952 7149

Knutpunkten 969 1098
Roundabout 1852 4011
Vattenhallen 2504 3596

Table 4.3: Real-world Data chosen from Recording Database.

4.3 Data
For the development and validation of the new versions of DBSCAN that we implemented,
we decided to use some real-world data and some synthetic datasets that other papers have
created for measuring their clustering algorithms.

4.3.1 Real-world dataset
Our hosting company has a database of radar recordings. These recordings vary in size,
length, and point intensity. See Appendix B.1 for more details. For this thesis, the required
datasets need a high number of points. Table2 4.3 shows the recording datasets used, includ-
ing their frame counts and maximum number of points within that recording.

4.3.2 Synthetic dataset
A selection of datasets have been chosen as inputs for the algorithms. These datasets vary
in size, cluster sizes, point concentration, and amount of noise. The datasets include the
ones shown in Table 4.4. Essentially, these datasets are text files where every new line is
a 2D point that is passed to the DBSCAN algorithms in the same way as the real-world
datasets. Another aspect to consider is that these datasets correctly cluster using different ϵ
and minPts values, as they scatter differently. The respective DBSCAN parameters are given
in Table 4.4, including their respective file sizes. These parameters are estimated from our
end through trial and error. Hence, finding other suitable parameter values that may give
different results is possible. In addition, Figure 4.2 shows some listed datasets to visualize
better what they represent.

2For description, see Appendix B.1 and Figure B.1.
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Dataset Description |Points| ϵ minPts
spiral Spiral-shaped clusters [12] 312 3 3

compound Cluster of Zahn’s Compound [47] 399 1.5 8
aggregation Clustering aggregation problem example [19] 788 1 5

twodiamonds Two diamonds with a connected middle point [43] 800 0.15 8
wingnut Two closely-connected clusters [11] 1016 0.25 7

chameleon dataset from chameleon clustering [25] 1971 25 15
a2 Synthetic 2d data from [23] 7500 1000 10

birch Random sized clusters in random locations [48] 100000 1000 3
GanTaoGen1 Generated datasets using Gan and Tao’s seed spreader in the binary [18] 4000 1000 100
GanTaoGen2 Generated datasets using Gan and Tao’s seed spreader in the binary [18] 10000 1000 100
GanTaoGen3 Generated datasets using Gan and Tao’s seed spreader in the binary [18] 15000 1000 100
GanTaoGen4 Generated datasets using Gan and Tao’s seed spreader in the binary [18] 20000 2000 100

Table 4.4: The datasets used for direct testing.

Figure 4.2: Shows spiral, twodiamonds, wingnut and compound
datasets, in that order.
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Chapter 5

Implementation

5.1 G13
G13 was implemented following the steps in the original paper. Merging was not specified
and, therefore, developed by us. No optimizations were made — an R-tree when merging cells
was tested without satisfactory results. Lastly, creating a Voronoi diagram was attempted but
not finished.

5.2 ρ-approximate DBSCAN
Several performance improvements have been made to the algorithm. The focus has been
on optimizing the two-dimensional case with a smaller embedded system processor in mind.
The general observation was that processing takes longer time than fetching data. So, the goal
was to calculate data once and then store it. One example is the lookups done when getting
the neighbors. The lookups were done only 21 times for every cell, but the time increased
and became a bottleneck. Because of this, getting the neighbors of each cell was calculated
first when needed and, after that, stored so that it could easily be fetched when needed.

The same reasoning was applied to the quad tree-like structure. If the number of points
is lower than a constant, we brute force the result instead of building the tree. If we must
build the tree, we build it once; then we store it for reuse.

When building the tree, we stop dividing into smaller cells whenever only one point is
left. In the RangeQuery later, we look for if a leaf node has one point in it and then calculate
the distance between the two points. Otherwise, there is a risk that more computations
are spent on dividing up this point into smaller and smaller cells instead of calculating the
distance between two points.

When RangeQuery is run, we do not wait for the exact number it returns. If it is the case
that the result is non-zero, then we know the two cells should be merged and go right ahead.
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5. Implementation

Figure 5.1: Illustration showing the three different choices when de-
ciding if a point is disjoint, intersects, or fully covered.

Even though we have eliminated most lookups in the hash table, it is the main bottle-
neck for the current implementation. We have experimented with using different hash ta-
bles where we have chosen Boost’s ”unordered_map” as we found it to be, on average, faster
compared to the standard library one [38].

The assignment of cluster IDs was changed compared to the implementation from G13
to be done after all clusters are done, so only one iteration through all points is needed.

Optimizing for two dimensions is covered in 5.2.1.

5.2.1 Intersect and fully covered functions
This section covers how we implemented the ”outside range” and ”fully covered” functions,
mentioned in Section 3.4.1.

In Figure 5.1, we can see the three different placements of a point in relation to one of
the cells. The first are the points closest to the corners, the second are the points closest to
the lines, and the third are points inside the cell.

Whenever a point is closest to the corner of a cell, also seen in Figure 5.1, the first case,
then we only need to calculate if the closest corner is within ϵ the distance to determine if
the radius intersects the cell. To see if the point’s radius fully covers the cell, the opposite
corner must be within the distance.

If a point is closest to a line, which would be the second case in Figure 5.1, then a vector
that is orthogonal to the line in relation to the point can be created, as seen in Figure 5.2, and
its magnitude will be the closest distance. The closest line is used for the intersect function,
and the opposite side’s line is used for the fully covered function, similar to the corner case
method.

Lastly, whenever a point is inside a cell, as is the third case in Figure 5.1, it is guaranteed
to be fully covered. Since the diagonal of the widest square is ϵ , and the point’s radius is at
the least ϵ .

The disjoint function is the converse of the intersect function.
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Figure 5.2: A red point, and the corresponding vector in blue that is
orthogonal to the black line.

5.3 KDT-DBSCAN
For implementing KDT-DBSCAN, there are two main components; building the tree and
performing RangeQuery. RangeQuery is straightforward as follows Algorithm 4. On the other
hand, efficiently building the tree remains tricky. As seen in the article [32], the method for
building the tree is not explicitly described.

5.3.1 Implementing BuildTree
Each method of implementing BuildTree has a disadvantage. For now, attempting to enhance
the mechanism for determining the median has the unintended consequence of altering the
process of splitting the list on each level. As a result, the sorting mechanism needs to be
more balanced. In this case, std::sort in the C++ standard library utilizes introsort.
Introsort is a hybrid sorting algorithm that guarantees a time complexity of O(n log(n)).
This algorithm starts with quicksort and uses heapsort when the recursion depth is too
high [29].

Data layout
As Section 2.2.3 mentions, choosing the proper data layout is vital to achieving the best ex-
ecution time possible. In this context, SoA would be more efficient because it packs similar
data tighter together, decreasing the number of cache misses and avoiding passing unrelated
data.

Index arrays
There are challenges when implementing the SoA approach. One of the main challenges is
the one faced when attempting to sort the coordinates according to dimension, and solving
this challenge may introduce a new kind of overhead. Fortunately, this can be solved by using
index arrays. In this context, two main index arrays can be used. Given that the indices will
be unchanged, they can represent a node in the tree. Therefore, when implementing the lefts
and rights lists, they can be index arrays instead of arrays of pointers that point to the node,
and they may have a value of −1 to represent the absence of the left/right child. In addition,
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index arrays are taken advantage of when passing indices through function calls. In other
words, vector<Int>& vec is passed instead of vector<shared_ptr<Node»& vec.
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Chapter 6

Results

This chapter will cover the results from the different benchmarks created. The algorithms
we implemented were created iteratively. First ”1996 DBSCAN” and ”Brute-G13” were im-
plemented, and after that, we created ”KD-Tree” and ”Rho”. Therefore, it is important to
remember that these benchmarks have been used iteratively to improve performance fur-
ther, one algorithm after another, first the former and then the latter algorithms.

When presenting the ARM processor results, we will also present a red dotted line that
is the max amount of time that DBSCAN is allowed to spend clustering, namely 50 ms as
determined in Section 2.6.

In the following results, if any given algorithm is not mentioned for some data point, the
algorithm crashes during testing for that data point.

6.1 Synthetic tests
This section shows the data statistics and visualized results for the synthetic tests. We ran the
tests eleven times, but the first test was discarded (for cache-misses, see 4.2.4). We discard the
first result to provide a more accurate result. The time presented in the figures is the average
time from these tests.

6.1.1 Execution time statistics
Figure 6.1 shows a bar graph representing the average execution time values for each imple-
mentation for each dataset. The point coordinates were rescaled to have a constant ϵ = 1000
over all datasets because some algorithms require integer values, and some use precise coordi-
nates. Normalizing the point coordinates should not affect execution times for the clustering
algorithms. However, the datasets still scatter differently, with different minPts and differ-
ent amounts of noise. This is discussed further in Chapter 7.
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Figure 6.1: Synthetic Data-Execution Time Bar Graph.

Results depending on ϵ values
In Figure 6.2, we see the dataset a2 and how different ϵ affect the execution times for the
algorithms. The minimum number of points used is ten. The ϵ test and minPts test below
in Section 6.1.1 has the a2 dataset chosen because it has the highest amount of points where
all the algorithms still run.

Results depending on minPts values
Figure 6.3 presents how execution time is affected by varying minPts. The test is carried out
the same way as in the ϵ test, where ϵ = 1000 and the dataset is a2.

Synthetic results on radar
Figure 6.4 present synthetic results for Current-DBSCAN and our ρ-approximate imple-
mentations on the radar system for different kinds of dataset sizes, where the deadline for
the dataset of 50 ms is shown.

6.2 Benchmark
In this section, the real-world datasets (mentioned in Section 4.3.1) are used to benchmark
the algorithms, and the results from each algorithm are plotted.

6.2.1 Number of points vs execution Time
The raw benchmark results are not discussed but can be found in Appendix B. Since there
are too many points measured to make a straightforward plot using execution time on the y-
axis, and the number of frames on the x-axis, an aggregate of a close number of points is used
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Figure 6.2: The average run time for the algorithms of the dataset a2
with increasing ϵ .

Figure 6.3: The average run time for the algorithms of the dataset a2
with different minPts.
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6. Results

(a) Results for the
small datasets on
radar.

(b) Results for the
medium datasets on
radar.

(c) Results for the big
datasets on radar.

(d) Results for the
huge datasets on
radar.

Figure 6.4: Radar synthetic results.
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Figure 6.5: H2 dataset.

instead. The average is calculated for each algorithm. It is also noteworthy that log10(µs) is
used for the execution time to improve the scale on the graph.

Results on PC

In Figure 6.5 the H2 dataset is shown. The results are more varying from data point to data
point compared to Figure 6.6. Figure 6.7 also has more even results but with clear distinc-
tions in time between the algorithms. It is also the biggest dataset compared to Figure 6.8,
the smallest dataset, viewed from the number of points per frame, with slightly more than
1000 points on the busiest frames. Lastly, both Vattenhallen, in Figure 6.9, and Roundabout
in Figure 6.10 has the line for ”Current” not drawing throughout the plots. The reason is
that some frames may have, for example, 4000 points and others 3000 points, but no frames
contain 3500 points. When this happens, some data points are missing, meaning the line is
cut between these data points. In other words, this is to be expected.

Results on radar

The first result is from the H2 recording site in Figure 6.11. Here we can see that at around
500 points, our algorithm becomes more viable. Next, Figure 6.12 shows the F3 recording
where the number of points starts at around 2800 points and still is within budget at around
7000 points. Figure 6.13 shows Crowd where we see a similar trend. Knutpunkten in Figure 6.14
is similar to H2, not having many frames with a high number of points, and with the same
intersection at around 500 points. Roundabout in Figure 6.15 and Vattenhallen in Figure 6.16
both have some lines from the interpolation not showing up but with the same general trends
as the previous datasets.
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Figure 6.6: Crowd dataset.

Figure 6.7: F3 dataset.
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Figure 6.8: Knutpunkten dataset.

Figure 6.9: Vattenhallen dataset.
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Figure 6.10: Roundabout dataset.

Figure 6.11: H2 radar result.
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Figure 6.12: F3 radar result.

Figure 6.13: Crowd radar result.
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Figure 6.14: Knutpunkten radar result.

Figure 6.15: Roundabout radar result.
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Figure 6.16: Vattenhallen radar result.

ρ-approximate DBSCAN Original DBSCAN
Total time Max Avg time Triggers (Milliseconds) Total time Max Avg time Triggers
23311.9 29.75 10.55 2210 Clustering 106823 82.35 46.1 2318
1737.8 2.85 1 1710 Association 2558.1 3.3 1.1 2317
757.8 8 0 102299 Tracking Prediction 1069.1 1.1 0 147167
5097.6 4.15 0.05 71500 Track Update 7314.5 6 0.05 102792
159279 44.85 6.25 25571 Classification 223184 32.7 5.9 37841

Table 6.1: Comparison between the radar probe results of ρ-
approximate DBSCAN (left) and standard DBSCAN (right).

6.3 Multidimensional scaling
According to Figure 6.17, it can be seen the KDT-DBSCAN is not as fast as the other algo-
rithms.

6.4 Probe measurements and flame graph
on radar

The flame graph and probe report show the same instance of the F3 dataset being run on
the radar with two different firmware images. The first image uses the so-called "Current-
DBSCAN". The second uses the ρ-approximate DBSCAN. No downsampling or other data
reduction strategies were used to produce these measurements.

In Table 6.1, we see the ρ-approximate results to the left, the middle is the signal process-
ing chain steps, and on the right are the results of the regular DBSCAN. Figure 6.18 shows
the time spent in the call stack for each implementation.
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Figure 6.17: The average run time for algorithms for the increasing
dimensions and number of points.

Figure 6.18: Hotspot comparison between the current implementa-
tion of DBSCAN (left) and ρ-approximate DBSCAN (right) on the
radar.
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Chapter 7

Discussion

This chapter covers the discussion of the results provided in the previous chapter.

7.1 Synthetic Data

7.1.1 Direct
According to the synthetic data in Figure 6.1, we can see that Current-DBSCAN outperforms
most of the algorithms for datasets from spiral to compound. What is essential to observe in
this graph is that the performance depends heavily on the data clustering properties, such as
scattering and noise, not just the number of points. Brute-G13 is an example of this generally
performing better than G13 Voronoi counterpart; however, in birch, it performs much worse
because there are a lot more local points, leading to the O(n2) merge taking much longer than
with Voronoi or Delaunay.

Since our ρ-approximate utilizes brute force calculations when deemed faster and lazily
builds the subcells and neighbor lists, it performs much faster than even the original authors’
version of ρ-approximate. In order to be sure, however, we would need to use the same
compiler version.

The current optimizations of the 1996 DBSCAN have improved it significantly, The
Current-DBSCAN implementation works well once the number of points increases too much,
causing it to fall behind other lower-time complexity versions. Figure 6.1 shows that it is still
the most viable DBSCAN version for datasets with fewer than 800 points on the PC.

7.1.2 The radar system
According to Figures 6.4a, 6.4b, 6.4c and 6.4d, it can be observed that our ρ-approximate
DBSCAN already outperforms Current-DBSCAN at aggregation which contains 788 points
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and after that the Current-DBSCAN processing time increases dramatically while our im-
plementation passes the threshold at 15000 points. The last dataset birch finished within a
second using our ρ-approximate, while it did not finish with Current-DBSCAN.

An observation is that the threshold number of points where ρ-approximate became
faster is lower on the radar. This will be discussed further in 7.3.

7.2 Real-world data

7.2.1 Direct
Looking at the benchmark Figures 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10, it is evident that even with
different recordings in different context, the ”Current” line intersects with our ρ-approximate
implementation at around 500-550 points, then the other ρ-approximate and Delaunay at
around 800 to 850 points. After 800-850 points, it can be seen in the Vattenhallen dataset
that Current-DBSCAN gets outperformed by all ρ-approximate (both ours and Gan-Tao)
and Delaunay. In addition, around 1800 points is the intersection point where the Brute-
G13 and exact implementations outperform Current-DBSCAN, and gradually the rest get
closer to Current-DBSCAN’s execution time. Furthermore, according to the F3 and Round-
about datasets, KDT surpassed Current-DBSCAN between 3000 and 4000 points, but that
does not always seem to be the case as it did not surpass Crowd at these points. This can be
because the points are focused in one area, so KDT-DBSCAN skips too few (if any) subtrees.

In Figure 6.5 and 6.10, our version of ρ-approximate did not perform as fast on average
as the other version. There are many explanations as to why this is. That version might have
optimizations that work well for this kind of data. The tests were only run eleven times
and might have a bit of variance. Lastly, depending on other tasks run or interrupts on
the computer, that might have impacted our ρ-approximate unfavorably in this particular
test. This is discussed in Section 7.8. Nonetheless, the most likely scenario is that their ρ-
approximate is written differently and more appropriate to specific scenarios that were found
in Roundabout and H2.

Another observation is between Delaunay and G13. Even though both are using Voronoi
for RangeQuery, Delaunay seems to be doing this much faster, so much in fact that it is often
getting similar results to the O(n) algorithms.

Brute-G13 results depended mainly on which recording we ran. It did very well in the
Knutpunkten dataset in Figure 6.8, performing better than all other G13 variants. The results
were, on the contrary, in F3, Figure 6.7 where it performed the worst along with the other
O(n2) algorithms.

7.2.2 Performance depending on ϵ
As seen in Figure 6.2, for the majority of data points, ϵ does not appear to have a significant
impact; however, we suggest two findings:

Brute-G13 performs much faster when ϵ is low enough. The performance for Brute-G13
gets evened out with the other algorithms at ϵ ≈ 200 and after. As the cell sizes depend on ϵ ,
it is theorized that the Brute-G13 performance depends significantly on the size of ϵ . If ϵ is
too small, the chance of directly identifying cores by only counting the number of points of
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one cell decreases; this would enforce counting the points in the 21 neighboring cells almost
every time. This would essentially increase the need for core merging. When the ϵ value
is at least big enough, all of its points will be counted as core points. As a result, the time
complexity will be O(n2).

We do not know why our Brute-G13 performs so much better than the other G13 and
ρ-approximate variants when ϵ is low, except that brute-forcing is favorable for that dataset.

7.2.3 Performance depending on minPts

For algorithms in Figure 6.3, most have a varied execution time except Current-DBSCAN and
1996 DBSCAN, which both are more stable. For our implementation of G13, we can also see
an apparent increase in performance the higher the variable minPts is. This is because fewer
points are considered core, and more are considered border points. Since determining border
points is an O(n) operation, a higher proportion of time being spent in that section increases
performance. We have no explanation why our ρ-approximate performs better than the other
algorithms with low amount of minPts besides that we have less overhead.

7.2.4 The radar system
All the results from the radar showed the same trends. Current-DBSCAN is faster for a few
points, but at around 500 points, ρ-approximate performs better. After that, the time for ρ-
approximate increases linearly while Current-DBSCAN’s time increases quadratically, even
with the biggest dataset that could be found, F3, ρ-approximate still kept under budget.

Since the bottleneck occurs whenever more data is introduced, we can keep to the frame
budget during small data loads, changing from the Current-DBSCAN to our implementation
of ρ-approximate DBSCAN. We might lose some minimal time instead of using Current-
DBSCAN for small data loads, but this lowers the complexity and maintenance of the code
compared to having an algorithm-switching mechanism.

7.3 Difference between radar and PC
One reflection was that the algorithms performed differently between ARM and x86. Gen-
erally, x86 favored Current-DBSCAN, and ARM favored our ρ-approximate. We are still
unsure why this is the case. One theory is that a bigger cache favors the quadratic algorithms
for longer. Another theory is that x86 has out-of-order execution, while the ARM proces-
sor has dual in-order execution. Both theories mean more time gets spent computing than
fetching data on x86, while ARM avoids doing needless computations that take more time
on that architecture.

However, this slight difference could come from other factors, such as how we measured
the results.

63



7. Discussion

7.4 KDT
The KDT-DBSCAN performance steadily increases execution time compared to increased ϵ
values. This increase in execution time is due to the dependency of ϵ . KDT-DBSCAN uses
ϵ to resolve minKey and maxKey, and these two keys are used to decide if sub-trees should
be skipped. When ϵ increases, the area between the two keys increases, which increases the
chance of points landing within them, resulting in a lower probability of skipping subtrees.
Ultimately, this would continuously increase until ϵ is large enough to reach all the points
and the time complexity becomes O(n2).

7.5 Increasing number of dimensions
Scaling clustering algorithms into higher dimensions is likely more costly because it adds one
or more parameter(s) to the computationally expensive (when run on every point) distance
calculation.

Instead of calculating
√

(x2 − x1)2 + (y2 − y1)2 ≤ ϵ , it becomes more generalized;√∑
dim
i=1 (qi − pi)2 ≤ ϵ

where p and q are the two points, dim is the number of dimensions and pi and qi represent
the two points’ coordinates in dimension i.

In the 1996 DBSCAN with constant dim = 2 dimensions, the algorithm runs in O(2n2)
(normalized to O(n2)). However, given an unknown number of dimensions (not constant),
the distance calculation becomes more computationally expensive. The clustering is O(n).
At the same time, the nested RangeQuery is O(n), and now the distance calculation within
RangeQuery becomes O(d) resulting in a total of O(dn2) time complexity.

Fortunately, as seen in Figure 6.17, the G13, ρ-approximate, and KDT implementations of
DBSCAN are more applicable for scaling. Notably, the number of points increases in higher
dimensions to keep a constant k = 9 clusters with similar clustering, but this also means that
ϵ gradually increases.

KDT, Grid and R-Tree
It is clear that these three implementations have similar trends when the number of di-
mensions is increased, and the reason why is that they all have the same time complexities.
This means the overhead is one of the few factors that make a difference. Another factor
is what makes KDT-DBSCAN different. As shown in Figure 6.2 (and explained earlier),
KDT-DBSCAN depends on the value of ϵ . This dependence can be seen again in Figure 6.17
because ϵ jumps by 10000 at nine dimensions (from 30000 to 40000), resulting in a jump
for KDT-DBSCAN and then ϵ increases again at 14 dimensions (from 40000 to 50000) and
KDT-DBSCAN’s execution time goes up again.

The KDT-DBSCAN has overhead that can be lowered, which would close the gap to the
other implementations. The other implementations were worked on for a long time and had
low overhead. Our KDT-DBSCAN implementation was not worked on for that long and had
room for improvement.
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Figure Dataset(s) |p1| |p2| ∆|p| ∆dim ∆T (µs) ∆T (%)
6.6 Crowd 2000 2600 600 0 2826 +52
6.10 Roundabout 2000 2600 600 0 3900 +27
6.9 Vattenhallen 2000 2600 600 0 2894 +45
6.17 dim2, dim3 2025 2701 676 1 5087 +50

Table 7.1: KDT execution time change.

G13, Delaunay, exact and ρ-approximate
These implementations have better time complexities in increased dimensions and less over-
head. ρ-approximate outperforms the rest regarding increasing dimensions, too.

7.6 Number of points vs dimensions
One issue to investigate is to verify the correlation between execution time and the number
of dimensions in Figure 6.17. As mentioned in Section 4.2.3, the number of points increases
when the number of dimensions is increased1. An increasing number of points affects execu-
tion time, which results in an unreliable correlation for such a graph. Fortunately, it renders
helpful as the number of points in dim2 and dim3 is known. These numbers and some previ-
ous benchmarks can be used to calculate ∆|p| and ∆T . ∆|p| is the change in number of points
where ∆|p| = |p2| − |p1| and ∆T is the change in execution time where ∆T = T2 − T1. Ad-
ditionally, the benchmark |pi | values need to be estimated by taking an average of all points
(at any frame) within ±50 from said |pi |. Table 7.1 shows these calculations.

Even if they use separate datasets (which would change their execution times), the per-
centile increase of execution time should not differ greatly. In this case, three examples have
45 − 52%, and the Roundabout example seems different. It is important to say that real-
world data is being compared to synthetic datasets (dim2 and dim3), so the comparisons
would not be accurate. However, if an increase in dimensions would affect KDT-DBSCAN
dramatically, it would be evident in this observation. Further investigation is required to
validate this observation.

7.7 Flame graph comparison with ρ-approximate
DBSCAN and standard DBSCAN

In Figure 6.18, the relative time between classification and clustering is much lower in ρ-
approximate DBSCAN. This means that clustering takes less time than before or that clas-
sification takes more time. The reason could also be both. If bigger clusters are processed
much faster, other parts of the signal-processing chain can introduce bottlenecks.

The probe result in Table 6.1 confirms that clustering takes lower overall time, with a to-
tal speed improvement of 458%. The maximum time and average time decrease substantially
when clustering, but the maximum time increases substantially for ρ-approximate in classi-
fication and tracking prediction. The number of triggers varies significantly in the two tests

1Increasing number of points is needed to keep the number of clusters the same and the clustering constant.
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because the number of frames dropped is fewer on our version. When frames are dropped and
enough time has passed, tracking will have to restart, leading to many more triggers and time
being spent on the other steps besides clustering. This means that time is saved not only in
the clustering part of the chain but propagates to other parts that do not need to do as much
computationally heavy work because the clusters are kept. Another explanation is that there
is a change in the functionality of DBSCAN and that it generates other clusters compared to
the original; however, this is not the case. When the probes are run on a PC, where frames
are not dropped, it shows the same amount of triggers, max, and averages between the two
implementations. In other words, only the clustering time is changed when run on a PC.

7.8 Shortcomings when measuring results
The tests executed on the PC were run eleven times, creating a higher variance in the statis-
tics. We decided not to increase the number of times executed because of time constraints.
These tests were often run in parallel with other tests, and during these tests, the com-
puter was used for other purposes, such as programming, compiling web browsing, or other
resource-demanding activities.

On the other hand, the radar tests were run fifty-one times without other processes using
resources. Consequently, the variance should be much lower in these tests. However, no
further analysis or verification was made.

The flame graph and probe reports were done by simulating the F3 recording on the radar
and attaching perf to the process. The radar was flashed with a firmware image containing a
debug version, making probe reports available. The flags for compiling the image to the radar
use ”-O2” instead of ”-O3”, so there is a possibility that the performance may vary between
these optimization levels. Attaching perf is not an ideal solution since we can not guarantee
that both versions run the same amount of frames. We stop the recording after five minutes.
Even if the time is identical, triggers could still vary, as there are other considerations when
running the signal processing chain on the radar, which makes it hard to carry out entirely
accurate tests.

There also seems to be a discrepancy regarding our conclusion about the regular DB-
SCAN used compared to the internal documents discussed in 2.6. The conclusion drawn
from that document was that a maximum of 400 points are allowed before throttling begins,
but in all the cases tested, the regular DBSCAN can achieve over 2000 points before it comes
close to the 50 ms deadline. This was also the case with ”-O2” optimizations. There are mul-
tiple reasons why these findings vary, ranging from some assumptions about the time scaling
between a PC and the radar to the fact that the tests could have been carried out without
any optimizations when compiling. After these measurements, there have also been a few
additional changes to the algorithms making it harder to compare. Overall, the internal doc-
uments’ conclusions are a pointer of what to expect, but they are not necessarily crucial to
the independent findings from our tests.
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Chapter 8

Conclusion

8.1 ρ-approximate DBSCAN vs regular DB-
SCAN on radar

This paper has found that ρ-approximate DBSCAN performs better on input over five hun-
dred points and that the current implementation of DBSCAN performs slightly better under
five hundred points. Therefore, we suggest changing the current implementation on the radar
to our algorithm.

8.2 Research questions
RQ1. Are there any possibilities to improve the time complexity of the current algorithms?

Yes, we found an algorithm that we could significantly improve the time complexity.

RQ2. What are the advantages and disadvantages of the various implementations of the algorithms?

Current-DBSCAN provides low overhead but high time complexity which works very
well for a relatively low number of points. As a result, it was observed that the investi-
gated implementations eventually surpassed Current-DBSCAN in terms of execution
time. Brute-G13 DBSCAN, compared to Current-DBSCAN, has overhead, leading to
higher execution time for a lower number of points, and the performance varies de-
pending on the cluster formation. Our ρ-approximate DBSCAN also has some over-
head, but it surpasses the Brute-G13 DBSCAN in execution speed. Finally, the current
KDT-DBSCAN has a high overhead, but it can be observed that it has better time
complexity than Current-DBSCAN as it eventually surpasses it. One advantage of
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KDT-DBSCAN is that the implementation can run on arbitrary dimensions, requir-
ing further optimization.
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Chapter 9

Further Work

Over recent years, there has been tremendous work on improving DBSCAN. While G13-
DBSCAN and ρ-approximate DBSCAN already improve upon the original DBSCAN, other
possibilities exist. This chapter covers some of those possibilities.

9.1 ρ-approximate DBSCAN
This section discusses future improvements to our ρ-approximate DBSCAN.

9.1.1 Create own hash table
The parts of our program taking the most time are the inserts and the lookup for our current
hash table. The hash table currently in use is Boost’s unordered_map which we have observed
is slightly faster than the standard library implementation of unordered_map (in C++). Since
all the cells could be made to have a constant size, and each cell has its bucket, it is possible
to create a vector-based grid making lookup and insert as fast as can be.

9.1.2 Try different ρ parameters for our ρ-approximate
implementation

Outlining the performance impact of the variable ρ is vital for future use in the radar. We
know that a higher ρ increases the speed of the RangeQuery, while a lower ρ decreases the
speed but increases the accuracy.

Being able to fine-tune this parameter depending on the input points to stay inside the
frame deadline budget is essential in regulating so as much time as possible is allotted to each
frame without trespassing onto another frame’s time.
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9. Further Work

Figure 9.1: Example of a 3d grid.

Figure 9.2: A point outside a cube which radius creates a sphere.

9.1.3 3D
In order to extend our current implementation and optimize it for 3D, some changes are
needed. Every cell becomes a cube where the space diagonal now becomes ϵ size, meaning
each side is ϵ

√
3
. Additionally, the hash table used need to accommodate a grid G(i, j, k) and

produce a hash function that works for a grid of cubes. This new grid is demonstrated in
Figure 9.1, where we can see five points inside a grid of eight cubes.

Lastly, it will be different when calculating ”disjoint”, ”intersect”, and ”fully covered”
functions. In Figure 9.2, we can see the same three possibilities presented in the 2D case. A
point could be close to a corner of the cube, it could also be close to the plane created by
the side of the cube, and lastly, it could be inside a cube. Here the only change is the second
case. In Figure 9.3, we see little difference between getting the shortest distance from a plane
and a line. It is still the case that the orthogonal vector to the plane in relation to the point
creates the shortest path. To create the ”disjoint”, ”intersect”, and ”fully covered” functions,
the same logic is applied as in the 2D case.

9.2 More on KDT-DBSCAN
Our implementation for KDT-DBSCAN is fairly optimized, but there is still room for im-
provement. Four kinds of optimizations may be done so that KDT-DBSCAN becomes more
optimized.
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Figure 9.3: A red point close to a black plane, with a blue vector that
is orthogonal to the plane.

9.2.1 BuildTree
Firstly, building the tree entails a high amount of overhead. The bottleneck in BuildTree
calculates the median by sorting lists on every level. This can be optimized by storing the
sorting states for each dimension so that the sorting is done only k amount of times where
k is the number of dimensions. This is complex because it will make the splitting process
more tedious as splitting will be performed on all states instead of just one list. There is also
a proposed optimization where MapReduce is used for producing a balanced tree [10].

The latter improvement that can be done on KDT-DBSCAN is the following. Our im-
plementation for KDT-DBSCAN was focused on improving RangeQuery while the rest of the
DBSCAN implementation stayed identical to the 1996 DBSCAN. This may be the issue in
the implementation. Adapting KDT-DBSCAN to Current-DBSCAN may be the next step
to improving the execution time of the clustering algorithm. Additionally, it may be possible
to apply KDT-DBSCAN in a more G13 way and divide the KDT-DBSCAN clustering process
into phases.

Quickselect
One possibility is to improve the search for median points by using Quickselect [35]. Quickselect
is an algorithm used to select the median and split the list in the middle, where the values
on the left are guaranteed to be less than the median and vice versa. Quickselect works better
than Quicksort in this situation as it has O(n) instead of Quicksort’s O(n log(n)), and it is not
necessary to sort the list on each level completely.

Parallelization
There is a possibility to take advantage of parallelization in building the tree for KDT-
DBSCAN. Suppose the mentioned optimization to store the sorting state is used. In that
case, it becomes possible to run the process of splitting the different sorting lists in parallel,
as they are not all dependent on each other. In this case, the performance will be improved for
dimensions higher than two, but it may remain the same for two dimensions. This remains
to be tested.

9.2.2 RangeQuery
There are few ideas to improve KDT-DBSCAN’s range query, but there is one inspired by
G13 where two other min/max keys are introduced that guarantee the point is within ϵ . In
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this case, these two keys are only calculated when the point is within the original keys, but
these keys will have the coordinates added or subtracted1with ϵ

√
2

instead (same as G13 cells).
This will guarantee that the point is within ϵ without distance calculation. This is expected
to improve the algorithm for high-density clusters and reduce its dependency on ϵ as the
number of distance calculations would be reduced.

9.2.3 More tests
The benchmarks that were performed on KDT-DBSCAN were inconclusive as more tests are
required to be done. One observation that needs to be done is comparing KDT-DBSCAN in
2 dimensions with it being used in 3 dimensions, and the only variating variable would be
the number of points.

9.3 GriT-DBSCAN
GriT-DBSCAN is another optimization for DBSCAN that is a grid-based exact DBSCAN
in Euclidean space. It builds on the findings from Gan and Tao and was released this year.
The algorithm is divided into two main parts. The first part involves organizing Grid Tree;
secondly, a technique is used to prune unnecessary distance calculations [22].

Some of the first steps in GriT-DBSCAN involve building the Grid Tree, which only
contains non-empty grids. Afterward, Grid Query can be performed, equivalent to Range-
Query but is performed on grid level and optimized by determining core points by stopping
query once minPts is reached. Other stages of GriT-DBSCAN involve merging, which is
optimized with a method called Fast-Merging, and another optimization technique called
pruning which eliminates unnecessary distance calculations.

In total, GriT-DBSCAN’s time complexity is complicated as it involves multiple stages
and optimizations. However, according to the Article [22], it has a time complexity of
O((2⌈

√
d⌉)d+2κn + dη). The time complexity is given where n is the number of points, d is

the number of dimensions, κ is the maximum number of iterations in the merging step, and
η is the maximum interval number in the feature space. Given these variables to be constant,
the algorithm’s time complexity becomes O(n). According to their results, this algorithm
performs much better than ρ-approximate DBSCAN.

1Depending on if it is max or min.
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Appendix B

Results Details

B.1 Real-world recordings
The recording locations can be viewed in Table B.1

B.2 Raw benchmarks
When first approaching how to visualize the results, our first plots were constructed with
time on the y-axis and each frame on the x-axis. These plots could be more readable and
needed to be visualized differently. However, one benefit is how they can visualize the load
during a recording. In Table B.2, one can see the raw benchmarks for each recording made.
For example Figure B.8, one can see many points being recorded in the 2100 first frames; after
that, the number of points almost goes to zero. This can indicate that all the walking took
place before frame 2100, and after that frame, everyone was inside the house and not getting
picked up by the radar.

Location name Description Figure
H2 Covering parking lot and some bushes B.1
Crowd Crowd of employees at hosting company walking B.2
F3 A lot of bushes and trees as well as a road B.3
Knutpunkten Overseeing a traffic light B.4
Roundabout Busy roundabout with cars, buses and trucks B.5
Vattenhallen Road near E-huset at LTH B.6

Table B.1: Description of the different locations.
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B. Results Details

Figure B.1: Picture of parking lot with bushes.

Figure B.2: People walking in crowd.
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B.2 Raw benchmarks

Figure B.3: Road with swaying bushes and trees.

Figure B.4: Crowded traffic light with park near by.

Location name Figure
H2 B.7
Crowd B.8
F3 B.9
Knutpunkten B.10
Roundabout B.11
Vattenhallen B.12

Table B.2: Table referencing every raw benchmark.
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Figure B.5: Busy roundabout.

Figure B.6: Vattenhallen near LTH in Lund.
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B.2 Raw benchmarks

Figure B.7: H2 raw Benchmark.

Figure B.8: Crowd raw Benchmark.
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Figure B.9: F3 raw Benchmark.

Figure B.10: Knutpunkten raw Benchmark.
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Figure B.11: Roundabout raw benchmark.

Figure B.12: Vattenhallen raw benchmark.
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Appendix C

DBSCAN: Other Variations

C.1 Leaf-DBSCAN
This is one of the first variations of DBSCAN that were researched. This implementation
uses a grid-based system for DBSCAN and reduces memory usage by reducing the number
of heap allocations [34]. This was not further investigated because memory optimization is
not the main focus of the thesis since the radar units do not struggle in that aspect.

C.2 G-DBSCAN
One of the DBSCAN implementations that were looked at is G-DBSCAN. The idea behind
this implementation is to run the clustering on the GPU [2]. However, this was already
investigated by the hosting company, so we did not prioritize investigating this further.

C.3 Multi-Core
Parallelization of programs is one of the classic ways to attempt to improve the performance
of a program. Parallelization revolves around using multiple processors or cores to execute the
same program in parallel to reduce execution time. Respectively, there are a few factors that
need to be taken into account before deciding if a multi-core approach is worth attempting.

First, it may seem obvious, but it is necessary to know if the hardware contains multiple
cores (or processors) available for parallelization. If the processing unit contains only one
core, the program will likely be slower due to unnecessary context switches.

Secondly, any dependency between the cores for shared resources must be considered
when implementing a multi-core approach. If the code contains too many dependencies, it
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must be run sequentially. Consequently, if most of the code can not be parallelized, then the
performance gain will be limited by Amdahl’s law Slatency(s) = 1

(1−p)+ p
s

[1, 21].
The question then is if the DBSCAN in the given radar can be parallelized, and the answer

is probably not, according to some of our tests with locks and OpenMP. The CPU has multiple
cores, which means it is possible to run threads in parallel.

We have added a simple lock-based multi-core functionality to an improved implemen-
tation of DBSCAN based on our ”1996 DBSCAN” and realized that there is an excessive
amount of overhead, making the multi-core approach generally slower than the sequential
DBSCAN. However, the part of DBSCAN that was parallelized was only the calculation of
neighbors, which is the most costly part. In addition, that part is the most independent. It is
also possible to parallelize the clustering algorithm itself. On the one hand, parallelizing the
cluster identification would improve execution time. On the other hand, the time complex-
ity of this step is not as significant as the neighbor calculation since that part of DBSCAN
is only O(n), so the performance would not be improved enough. It remains to be seen if
using a lock-free data structure to calculate neighbors would be faster than the sequential
algorithm.
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Ett snabbare radarsystem

POPULÄRVETENSKAPLIG SAMMANFATTNING Joakim Mörling, Joseph Atalla

Ett radarsystem behöver kunna hantera stora mängder data varje sekund. Vi har
utforskat olika sätt att göra radarsystemet bättre, vilket lett till en ny algoritm. Al-
grotimen ger en växande tidsvinst när man ökar mängden data.

Ett radarsystem kan användas till att spåra bilar
och människor. Den signalen som radarn skickar
ut och tar emot kan omvandlas till koordinater
där det finns rörelse. Det är dessa koordinater
som sedan blir till mätpunkter, som grupperas för
att avgöra vad det är som rör sig.

Vid stora mängder punkter är det svårt att
hantera alla punkter. Ett sätt att lösa detta prob-

lem är att ta bort punkter, istället för att hantera
dem. Detta fungerar men har nackdelen att man
mister informationen som dessa punkter kan ge.
Lycklingsvis finns det en lösning där inga punk-
ter behöver kastas. Denna lösning är att se över
algoritmen, för att göra grupperingen snabbare.

Vårt examensarbete har tittat på den senaste
forskningen om dessa typer av algoritmer. Vi har
även undersökt att använda algoritmen i tre di-
mensioner istället för de två dimensioner som al-
goritmen använder just nu.

Olika algoritmer testades och jämfördes på en
dator tills en utmanare uppenbarade sig. Den
förbättrades efteråt för radarnsystemets specifika-
tioner.

Resultaten visar en stor tidsvinst på radarsys-
temet när det är mer än 500 mätpunkter. Efter
500 mätpunkter så blir vår algoritm snabbare och
snabbare jämfört med en referensalgoritm. Det är
först när det är över 10 000 punkter som vår al-
goritm inte kan hantera punkterna i tid. Slutsat-
sen blir således att referensalgoritmen bör ersättas
med vår algoritm då den är snabbare vid många
punkter och runt samma hastighet vid få punkter.
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