
MASTER’S THESIS 2023

Generating Synthetic Scenarios
to Test an AI-Enabled Traffic
Measurement System
Elias Sjöberg

ISSN 1650-2884
LU-CS-EX: 2023-44

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-44

Generating Synthetic Scenarios to Test an
AI-Enabled Traffic Measurement System

Simulering av trafiksituationer för testning
av ett AI-system

Elias Sjöberg

Generating Synthetic Scenarios to Test an
AI-Enabled Traffic Measurement System

Elias Sjöberg
fys13esj@student.lu.se

November 2, 2023

Master’s thesis work carried out at RISE Research Institutes of Sweden.

Supervisor: Markus Borg, markus.borg@cs.lth.se

Examiner: Per Runeson, per.runeson@cs.lth.se

mailto:fys13esj@student.lu.se
mailto:markus.borg@cs.lth.se
mailto:per.runeson@cs.lth.se

Abstract

To make the future of the transport system efficient, safe and sustainable, under-
standing of the complexities of traffic is vital. Viscando provides detailed traffic
data by utilizing Machine Learning and computer vision algorithms in their in-
frastructure sensor OTUS3D. The purpose of this study was to test OTUS3D us-
ing simulated traffic scenarios. Using the MathWorks package RoadRunner, we
created a digital model based on a real-life junction. This digital model was im-
ported into the open-source traffic simulator CARLA. We developed two models
to generate parameter values that were used to create traffic scenarios: one of the
models used random sampling while the other was based on the Genetic Algo-
rithm NSGA-II. Due to time limitations, it was not possible to create a sufficient
number of simulated scenarios to properly evaluate the two models. However,
some conclusions could be drawn regarding which traffic scenarios were partic-
ularly challenging for OTUS3D to estimate.

Keywords: software testing, machine learning, genetic algorithms, simulators, automo-
tive

2

Acknowledgements

I would especially like to thank Markus Borg for all the advice, feedback and support given,
as well as his enthusiasm throughout this process.
I would also like to thank Viscando for making this work possible, particularly Yury Tarakanov
for his feedback and for the rewarding discussions, and Ulf Erlandsson for his help in pro-
cessing the scenarios.

3

4

Contents

1 Introduction 7
1.1 Research questions . 9
1.2 Contributions and related work . 9

2 Background 11
2.1 Evolutionary Algorithms . 11
2.2 Mutation . 12
2.3 Crossover . 13
2.4 Parent selection . 16
2.5 Elitism . 17
2.6 Multiobjective optimization . 17
2.7 A Genetic Algorithm: NSGA-II . 20
2.8 Assessing the solutions . 21

3 Approach 23
3.1 The system under test . 23
3.2 The CARLA simulator . 23
3.3 DEAP . 26
3.4 Creation of the digital model . 26
3.5 Creation of trajectories . 29
3.6 Defining a traffic scenario . 30
3.7 Setting the position of the sun . 31
3.8 Objective functions . 33
3.9 Overview of the experimental setup . 33

4 Evaluation 35
4.1 Experimental setup . 35
4.2 Results . 40
4.3 Discussion . 54

4.3.1 Answering the research questions 54

5

CONTENTS

4.3.2 Contributions . 56
4.3.3 Lessons learned and limitations . 57

5 Conclusions 59

References 61

6

Chapter 1

Introduction

In recent years, to say that there has been a lot of hype for Machine Learning (ML) solutions to
engineering problems would perhaps be an understatement. There is no doubt however, that
the use of Deep Neural Networks, coupled with more powerful hardware and a seemingly
ever increasing ability to gather and store data, has had a significant impact on numerous
research fields. One example of such a field is computer vision, where recent developments
have radically improved the ability for machines to automatically detect, classify and track
moving objects. While such developments certainly enable the development of exciting and
useful innovations, especially in the field of automated driving, there are also novel challenges
that arise in their wake. Of primary concern to this report is the problem of performing qual-
ity assurance testing on systems that are based on computer vision and ML. For traditional
software, dividing the system under test into smaller components that can be tested indi-
vidually is often an efficient and effective strategy to find possible improvements. The black
box nature of ML systems, where performance is the result of a complex set of connections
between the different components, makes this approach infeasible in most cases. Instead,
other methods must be considered. The search for such methods of testing different aspects
of ML systems has developed into a field of research in itself with a wide range of different
approaches [28], [24]. Since this thesis is concerned about quality assurance testing of an ML
system, it was decided that a suitable approach would one based on Search-Based Software
Testing (SBST).

In the description of the 14th Intl. Workshop on Search-Based Software Testing [1], SBST is
simply defined as “the application of optimizing search techniques (...) to solve problems in
software testing”. The search technique can be performed in a multitude of ways; what is im-
portant is that there is one or more objective functions (sometimes called fitness functions) that
can be used to evaluate candidate solutions. When testing a piece of software, it is common
that the objective function takes the form of an error measurement that results from some
test input, and the goal is to use SBST to generate critical input that maximizes this error [28].
When it comes to search techniques, some of the more popular ones - that are also used in

7

1. Introduction

this report - are based on Genetic Algorithms (GAs). In brief terms, GAs can be used to find
critical input parameters in software by initializing a diverse set of parameter values and then
letting the ones that have the greatest potential of provoking system faults reproduce while
the others are removed. GAs will be presented and explained in depth in Chapter 2.

There is one more challenge regarding quality assurance testing of ML systems that should be
mentioned since it is highly relevant to this report: the difficulty of finding a test oracle, i.e.
a procedure that distinguishes between correct and incorrect behavior of the system under
test by comparing the output to some ground truth. The simple reason behind this difficulty
is that ML is frequently used to solve problems where no other method produces satisfac-
tory results. This challenge, which also exists in non-ML systems, is referred to as The Oracle
Problem in the literature [5]. In the case of this report, The Oracle Problem was solved by
performing tests in a simulator. This will be further explained below, but first we will have a
closer look at the problems that form the basis of this report.

In order to make future transportation systems efficient, safe and sustainable, having ac-
cess to detailed and accurate traffic data is vital. With the help of the already mentioned
ML-enabled solutions that have been developed in the field of computer vision, the company
Viscando is able to provide such data. Through use of DNNs, Viscando’s solution OTUS3D
is able to segment, classify and track distinct objects in traffic; including cars, vans, pedes-
trians and bicyclists. This data collection makes it possible to capture the complex dynamics
that can occur in traffic situations. The data can be used to for example discover traffic
safety issues, to increase perception for autonomous and automated vehicles and to analyze
how to prevent occlusions and improve efficiency on roads. Based on the discussion on ML
quality assurance testing presented above, one might ask how a system like OTUS3D can be
tested. Are there specific traffic scenarios, perhaps coupled with certain weather conditions
or a certain time of day, that are more prone to provoke system faults? Note that the traffic
scenarios mentioned here correspond to the critical input mentioned in the section intro-
ducing SBST, while provoking system faults corresponds to maximizing objective functions,
in this work defined as differences between ground truth and estimations made by OTUS3D.

The testing environment was implemented in the open-source traffic simulator CARLA.
Created with the intention of being used for development of autonomous driving systems,
CARLA contains a large amount of functionalities, some of which include pre-made 3D
scenes, assets for different types of vehicles and human walkers and many different types
of sensors that can be used to collect data. Furthermore, CARLA is built upon Unreal En-
gine 4 which enables state-of-the-art rendering quality and realistic physics. It is designed
as a server-client system where the server runs the simulation and renders the scene while
the client sends commands to the server and receives sensor readings [15]. As was briefly
mentioned above, one advantage with performing tests in a simulator is that ground truth is
easily collected. Another advantage is that multiple traffic scenarios can be tested efficiently
by a simple tuning of the input parameters, an approach that works well with the use of
GAs. This tuning can easily be done in the CARLA simulator, as will be further explained
in Chapter 3.

To make the simulated scenarios as relevant to the testing as possible, we created a low-

8

1.1 Research questions

fidelity digital model of a real-life junction and imported it into CARLA. The junction that
the digital model was based on is located in Lindholmen, Gothenburg, where OTUS3D has
gathered data. All of the simulated scenarios were created in the environment of this digital
model.

1.1 Research questions
The thesis aims to answer the following questions:

RQ1: Can a low-fidelity digital model of a traffic junction be used to find faults in Vis-
cando’s system?
RQ2: Is SBST an efficient and effective approach to provoke system faults in the digital
model?
RQ3: Which parameter configurations are the most effective at provoking system faults?

1.2 Contributions and related work
Previously, there has been extensive research where simulators and SBST have been used
to test different aspects of Advanced Driver-Assistance Systems (ADAS). The studies have
mainly been centered around testing pedestrian detection systems and automatic emergency
braking [6], [7], [16], but other aspects have also been tested; one example includes a lane-
keeping system [22]. It should be noted that these studies have in common that they all
found success in using some variant of the GA algorithm NSGA-II to create critical traffic
scenarios, which is also the algorithm that is used in this report. The main novelty of this
work is that it does not aim to test an ADAS but instead a system that collects traffic data.
One consequence of this was that novel objective functions had to be formulated; we decided
to base them on the errors in estimated positions, speeds and classifications.

Rosique et al. performed a systematic review on perception systems and simulators for au-
tonomous vehicles research [25]. For perception systems, they found that there was a clear
need to combine the advantages of different types of sensors and systems such as millimeter
wave RADARs, 3D LiDARs, cameras and Real-Time Kinematic systems in order to produce
adequate results. In order to combine the different types of sensor data, specific algorithms
that perform data fusion were frequently used. More important to this report was the second
part of the literature review concerning simulators. Rosique et al. found that the use of sim-
ulations to test the perception system of autonomous vehicles is in most cases essential. The
reason for this is economic and legislative obstacles that in many cases make comprehensive
real-world testing impossible. Moreover, they found that while robotics simulators were fre-
quently used in the field of research, they are not always able to provide sufficient realism.
Thus, there is a recent tendency to develop more advanced simulators that use realistic 3D
rendering and advanced physics engines.

CARLA is a popular traffic simulator, introduced by Dosovitskiy et al. [15]. In their paper,
they describe how CARLA has been developed specifically to support development, training

9

1. Introduction

and validation of autonomous driving systems. To showcase its capabilities, they used the
simulator to train and test systems using three different approaches to autonomous driving:
a classic modular pipeline, a deep network trained by imitation learning and a deep network
trained by reinforcement learning. They found that CARLA was capable of delivering re-
sults that could be further analyzed.

State-of-the-art perception systems rely on ML, which introduces novel challenges from a
testing perspective, as was mentioned previously. Zhang et al. presented a review of the
emerging research field [28]. In the review, they divide the field of ML testing research into
four categories: testing of workflow (referring to for example input generation, test adequacy
evaluation and other properties that have to do with how to conduct ML testing), testing of
properties (i.e. correctness, robustness and other properties that have to do with what to
test), testing of components (such as the data or the learning program) and testing of appli-
cation scenarios. They present the current research status for each of these categories and
for ML testing in general. They found several challenges and research opportunities in the
field. Most notable for this report is their observation that test input generation and The
Oracle Problem both present challenges that merit further research. In the case of test input
generation, Zhang et al. highlight SBST as a promising technique.

Afzal et al. conducted a systematic literature review on SBST for non-functional system prop-
erties [4]. They found that most of the studies used SBST to investigate execution time, secu-
rity and usability of software. Moreover, GAs were the most widely used search techniques,
while other techniques such as simulated annealing and particle swarm optimization were
used less frequently. The authors conclude that there is plenty of future potential for testing
non-functional system properties using search-based approaches, and that more studies are
needed to draw more generalized conclusions about the benefits of different approaches.

Borg et al. compared SBST for an automotive pedestrian detection system in two simu-
lated environments, PreScan and ESI Pro-SiVIC [8]. They found that while SBST could be
used to effectively detect failure revealing test scenarios in both simulators, the specific type
of scenarios found between the two simulators differed. This lead them to two conclusions:
that using multiple simulators when testing an automotive pedestrian detection system is
beneficial, as is using fitness functions that are minimally affected by implementation details
in a particular simulator.

10

Chapter 2

Background

We introduce Evolutionary Algorithms and their close relatives Genetic Algorithms, and
describe the parts that make up the latter. We also introduce multiobjective optimization
and the Genetic Algorithm NSGA-II.

2.1 Evolutionary Algorithms
As one might suspect, the concept of Evolutionary Algorithms is inspired by nature, or more
specifically by the principle of “survival of the fittest” found in classical Darwinian evolution.
Given a set of candidate solutions (sometimes the word ‘individual’ is used instead of ‘solu-
tion’) to some problem, the idea is to select the most ‘fit’ solutions to ‘reproduce’ in order to
create new candidates. The least fit solutions do not reproduce and are eventually removed
from the population. The expectation is of course that ‘child’ solutions created through re-
production are similar to their ‘parents’, so that the selection process leads to a population of
fitter individuals as the number of generations grow. ‘Fitness’ is here defined by a numerical
value that is attained by applying a fitness function (also known as an objective function)
to some solution. Reproduction is typically divided into two parts: crossover and mutation.
In a crossover operation, there is an exchange between two parent solutions to create one or
more children. In a mutation, random perturbations are made to an individual solution.

Perhaps the first important aspect that one has to decide on when creating an Evolution-
ary Algorithm is the representation of the candidate solutions. In this report, all solutions are
represented as vectors containing a number of parameter values. The parameter values are
either of floating point type or of integer type. Thus, when the word ‘solution’ or ‘individual’
is used in this report, it should always be assumed that it is a one- or multidimensional vector
that is being referred to. Furthermore, a solution vector of length n can be viewed as a point
in what will be referred to as the n-dimensional solution space. It is worth noting that aside
from vectors, there are many other ways of representing the solutions; two examples covered

11

2. Background

by Luke in [21] are tree representations and graph representations.

Genetic algorithms (GAs) are one form of Evolutionary algorithms. They were first con-
ceived in the 1970s, when the algorithm that is today often referred to as the ‘simple GA’ was
developed [17]. This first GA differs in a few ways from the GAs used in this report; one
important difference is that in early GAs, the candidate solutions were often binary coded
(all parameter values were either 0 or 1). Exactly what differentiates GAs from other Evolu-
tionary Algorithms is not always clear and will not be covered in depth here. Traditionally,
one special property of GAs is that they replace the entire parent population by the child
population in a single generation [17], [21] however as we will see below, this is often not the
case in more recent GAs.

For the purposes of this report, we will assume that a GA can be decomposed into the fol-
lowing six steps:

1. Mutation

2. Crossover

3. Parent selection

4. Existence of elitism

5. Number of objective functions

6. Evaluation

Unsurprisingly, there is a large amount of existing theory about each of these components.
This is not least true for mutations and crossovers, where a vast amount of different methods
have been developed over the years [20]. A few of these methods are described in the following
sections, where we briefly discuss all of the above mentioned components of a GA.

2.2 Mutation
The point of the mutation operator in a GA is to increase the variation in the population by
modifying one or more parameter values in a solution. For applications of the original GA
that uses a binary representation of the individuals, the most common method of mutation
has been to simply ’flip’ each bit with a probability of pm [17]. Thus, if one bit in an indi-
vidual has a value of 1, there is a probability of pm that it will be changed to a zero after the
mutation, and analogously if the bit has a value of 0. For applications that use real-valued
representations, it is common to use methods that in principle are similar to this ’bit-flip’ op-
erator. In what is called a Gaussian mutation, the mutation probability pm works like before,
but instead of flipping a bit we make a zero-mean Gaussian distributed perturbation to the
parameter value. The idea is that we want to encourage making small changes to parameter
values, while larger changes are made rare but not impossible. Exactly how rare larger per-
turbations are is governed by the standard deviation σ of the Gaussian distribution, which
is added as a user-defined parameter.

12

2.3 Crossover

An option to sampling the perturbations from a Gaussian distribution is to do it from a
polynomial distribution. A proposal by Deb and Goyal [12] is to sample from the probability
distribution

P(δ) = 0.5(ηm + 1)(1 − |δ|)ηm ,

where δ ∈ (−1, 1) and ηm is a positive user-defined parameter called the distribution index.
We can easily sample variables δ̄ from this distribution by sampling uniformly distributed
random variables u ∈ (0, 1) and then setting

δ̄ =

(2u)
1
ηm+1 − 1, if u ≤ 0.5

1 −
(
2(1 − u)

) 1
ηm+1 , if u > 0.5.

Given a parent solution xp = (x1
p, ..., xn

p) and a maximal allowed perturbance ∆max we can
then create the i:th parameter value of the child solution xc as xi

c = xi
p + δ̄∆max. Note that

typically, one δ̄ is sampled for each parameter.

The mutation scheme described above assumes that all of the parameter values are unbounded.
If we instead assume that the i:th parameter value should be bounded between upper and
lower values xi

l and xi
u we can sample δ̄ as follows [14]:

δ1 =
xi

p − xi
l

xi
u − xi

l
,

δ2 =
xi

u − xi
p

xi
u − xi

l
,

δ̄ =


(
2u + (1 − 2u)(1 − δ1)ηm+1) 1

ηm+1 − 1, if u ≤ 0.5
1 −
(
2(1 − u) + 2(u − 0.5)(1 − δ2)ηm+1) 1

ηm+1 , if u > 0.5.

Similarly to above, we then compute the child as

xi
c = xi

p + δ̄(xi
u − xi

l).

We note that the bounded scheme reduces to the unbounded one if we set xi
u = ∞ and

xi
l = −∞. When it comes to setting the distribution index ηm, it can be shown that the

expected normalized perturbance
xi

c−xi
p

xi
u−xi

l
on both the positive and negative side is of order

O(1/ηm) [10]. Thus, if we were to set ηm = 10, we would get a mutation effect of around
10%. Moreover, an increase in ηm implies a decrease in the mutation effect. The fact that
the setting of a single hyperparameter create perturbances that are relative to the upper and
lower bounds of each parameter value of the individual makes bounded polynomial mutation
very useful, not least in the experiments carried out in this report.

2.3 Crossover
Crossover is an operation where parameter values are exchanged between two individuals
(parents) to create two or more new individuals (children). Again we will start by examin-
ing operators that are used together with a binary representation of individuals. One tradi-
tionally very common method of doing binary crossover is the one-point crossover. From two

13

2. Background

Figure 2.1: The one-point crossover. The left and right parts of the
two parents are combined to create two children.

parents it creates two children as follows. Given two parents A and B, the idea is to first
randomly select an index. One of the children is created by combining the bit values that
are to the left of the chosen index of parent A with the ones that are to the right of the same
index of parent B — and vice versa for the other child. A visualization of the procedure is
shown in figure 2.1. The idea behind this type of crossover is that building blocks consist-
ing of several bit values are crucial in deciding an individual’s fitness and should therefore
to some extent be maintained across multiple generations [21]. This is one property that we
want to be carried over when using real-valued representation.

When it comes to real-valued crossover, it is common to not simply combine parameter val-
ues of the parents, but to actually change the values themselves [20]. One simple way to do
this is to create a child y by taking a convex combination of the two parents x1 and x2, i.e.
y = αx1 + (1 − α)x2 where α ∈ [0, 1]. This type of operator is called a line crossover, since
from a geometric point of view the child will be located on the line between the two parents
in the solution space.

A more complicated real-valued crossover scheme was introduced by Deb and Agrawal [11];
namely the Simulated Binary Crossover (SBX). The authors’ stated goal was to create a real-
valued version of the one-point crossover (explained above), hence the name. While it can be
shown that the SBX has roughly the same search power as the one-point crossover, i.e a similar
ability to create an arbitrary child solution from a given pair of parent solutions, there are
also significant differences between the two schemes; as we will see below.

The SBX can be implemented as follows, according to Deb [10]. First we sample β from
the probability distribution

P(β) =
0.5(ηc + 1)βηc , if β ≤ 1,
0.5(ηc + 1) 1

βηc+2 , otherwise,
(2.1)

where ηc, similarly to the distribution used in the polynomial mutation scheme, is a user
defined, positive distribution index. A small ηc increases the probability of child solutions
being farther away from the parents while a large ηc decreases that same probability. Note
however that child solutions closer to the parents are always monotonically more likely to
appear; the value of ηc only determines how quickly this probability decreases for points

14

2.3 Crossover

farther away from the parents. The reason behind sampling from this particular distribution
is to make the search power similar to the one attained in one-point binary crossover. Given
a uniformly distributed random variable u ∈ (0, 1) we can sample from the distribution (2.1)
by setting

β =

(2u)
1
ηc+1 , i f u ≤ 0.5,(

1
2(1−u)

) 1
ηc+1
, otherwise.

Again like in the polynomial mutation scheme, one β is typically sampled for each parameter
in the solution vectors. Now, given two parent solutions x(p,1) = (x1

(p,1), ..., x
n
(p,1)) and x(p,2) =

(x1
(p,2), ..., x

n
(p,2)) we can create the i:th parameter value of two child solutions x(c,1) and x(c,2)

as

xi
(c,1) = 0.5

(
(1 + β)xi

(p,1) + (1 − β)xi
(p,2)

)
, (2.2)

xi
(c,2) = 0.5

(
(1 − β)xi

(p,1) + (1 + β)xi
(p,2)

)
. (2.3)

An important implication of the above equations can be seen by subtracting equation (2.2)
from equation (2.3), yielding

xi
(c,2) − xi

(c,1) = β
(
xi

(p,2) − xi
(p,1)

)
.

What this rewriting shows is that the distance between the two children is proportional to
the distance between the parents. This is desirable, since in cases where parent solutions are
farther apart (typically in the early iterations of a GA run) we generally want to emphasize
the exploration of the solution space while in cases where the parents are closer to each other
(typically in the later iterations) we generally want to further narrow down the search. This
balance between exploring the solution space and exploiting the best solutions is a recurring
theme when it comes to SBST in general and GAs in particular. This will be more apparent
as we move on.

As was the case with the polynomial mutation scheme, the procedure described above as-
sumes that solution parameter values are unbounded. Assuming instead that the i:th param-
eter has the lower and upper values xi

l and xi
u respectively, we generate the children as follows

[2]. First, we define x̄1 = min(xi
(p,1), x

i
(p,2)) and x̄2 = max(xi

(p,1), x
i
(p,2)). For the first parent

we then define

γ = 1 +
2
(
x̄1 − xi

l

)
x̄2 − x̄1

,

and for the second

γ = 1 +
2
(
xi

u − x̄2
)

x̄2 − x̄1
.

15

2. Background

Next, letting α = 2−γηc+1 and again letting u ∈ (0, 1) denote uniformly distributed random
variables, we can sample β as follows:

β =

(αu)
1
ηc+1 , i f u ≤ 1

α
,(

1
2−αu)

) 1
ηc+1
, otherwise.

Finally, we create the children as

xi
(c,1) = 0.5

(
(1 + β)x̄1 + (1 − β)x̄2

)
,

xi
(c,2) = 0.5

(
(1 − β)x̄1 + (1 + β)x̄2

)
.

2.4 Parent selection
In this section we discuss different ways of selecting the parents in a population, i.e the indi-
viduals that we apply mutation and crossover to. The first kind of methods that we cover are
based on the principle of fitness proportionate selection. These methods all have in common that
they select parents with a probability proportional to fitness. Individuals with a high fitness
value have a high probability of being selected and vice versa for individuals with a low fitness
value. A common downside of these types of methods is that they essentially get reduced to
random search when the fitness values in the population are close to each other. For example,
if the least fit individual has a value of 0.48 and the most fit has a value of 0.50, we are almost
as likely to select the worst individual as we are the best one. In cases like this, the internal
rankings of the fitness values are often more important than the values themselves. This is
one main reason why the selection operators of many GAs are instead often based on what
is called tournament selection.

In tournament selection, a number of individuals are randomly selected to participate in
a tournament. The winner of the tournament, i.e the one with the largest fitness value, is se-
lected as a parent. This process is then repeated until the entire parent population has been
allocated. Typically, each individual can be selected at most two times [10]. The number of
individuals participating in each tournament, the tournament size, can be viewed as a tunable
parameter. The probability of selecting the most fit individual is directly related to the tour-
nament size; it approaches 1 as the tournament size grows. See algorithm 1 for the details.
The simplicity of the algorithm and the fact that it works well for most kinds of fitness func-
tions has made tournament selection into a very popular choice of selection operator for GAs
[21].

16

2.5 Elitism

Algorithm 1 Tournament selection algorithm

P ← population
t ← tournament size, t ≥ 1
Best ← individual picked at random from P with replacement
for i from 2 to t do

Next ← individual picked at random from P with replacement
if Fitness(Next) > Fitness(Best) then

Best ← Next
if Best has been selected 2 times then

P ← P \ Best
return Best

2.5 Elitism
As mentioned above, GAs traditionally replace all of the individuals in a parent generation
with the newly created children. The concept of elitism, where the fittest individuals (the
’elite’) are retained in the population across multiple generations, breaks with this tradition.
As it turns out, it does so for good reason; some form of elitism is commonly used in all types
of EAs and GAs [21]. When it comes to multiobjective GAs, which this report is mostly
concerned about, there are multiple studies showing that algorithms that use elitism outper-
form their counterparts that do not [19], [9]. There are two main reasons behind this success:
firstly by keeping some of the elite individuals in the population the overall fitness is kept
from deteriorating, and secondly the probability of creating even fitter offspring is increased
[10]. However, it should be emphasized that keeping too many of the elite individuals reduces
the overall diversity in the population and risks leading to premature convergence. This is
another case of balancing the principles of exploration and exploitation when constructing
a GA.

2.6 Multiobjective optimization
The concept of multiobjective optimization is not hard to understand: it simply means that
more than one objective function are to be optimized simultaneously. That problems of such
kind often appear in the real world is also not hard to realize. One example provided by
Luke [21] is the problem of building a house that simultaneously consumes as little energy
as possible while still keeping building costs down. Optimizing one objective may very well
have a detrimental effect on the other, so it is clear that we will not be able to find some kind
of objectively single best solution in this case. However, what we can say is that a house that
is both more expensive and that consumes more energy is clearly outclassed by a cheaper and
more energy efficient house. Using the terminology of multiobjective optimization, we say
that the second house Pareto dominates the first one.

More formally, we say that one solution A Pareto dominates B if A is at least as ’good’ as
B in all objectives and is ’better’ than B in at least one objective. Whether a ’good’ solution
means an objective function taking larger or smaller values depends on the application. In

17

2. Background

Figure 2.2: The plot shows an example of what the Pareto front
might look like for a multiobjective optimization problem with two
objective functions f1 and f2. Each point corresponds to the objec-
tive function values of one solution.

either case, the takeaway here should be that, given a set of candidate solutions to a multi-
objective optimization problem, we might as well restrict ourselves to the ones that are not
Pareto dominated. This subset of solutions is commonly referred to as the Pareto front of the
space of solutions. Figure 2.2 shows a visualization of the concept behind the Pareto front in
a case with two objective functions. Clearly, the Pareto front gives us a way to evaluate and
compare different solutions, which is of great importance when creating a selection operator
for a GA. Moving on, we would like to expand on this notion of comparing different solu-
tions to each other.

One particularly useful way of evaluating and comparing solutions is to measure their respec-
tive closeness to the Pareto front. There are multiple ways to do this measurement; here, we will
use a concept called the Pareto front rank. The idea behind it is to utilize the fact that solutions
that dominate a large number of other solutions are most likely preferable to solutions that
are themselves largely dominated. Thus, all individuals are assigned an integer ranking, the
lower the ranking the better. Individuals belonging to the Pareto front are given a Pareto
front ranking of 1. A ranking of 2 is given to all individuals belonging to the Pareto front
after all individuals of rank 1 have been removed, and likewise a ranking of 3 is given to the
members of the Pareto front after individuals of rank 2 have been removed, and so on. This
notion of ranking allows us to select between individuals even when one does not dominate
the others. Of course, there could potentially still be several individuals that have the same
Pareto front rank. This serves as motivation for us to look at yet another way of evaluating
individuals: how much they contribute to the spread of the Pareto front.

Beyond trying to find solutions at the Pareto front, there is another important goal in mul-
tiobjective optimization that has not yet been mentioned: to maximize the spread of the so-
lutions across a Pareto front. A set where all individuals are gathered closely together across

18

2.6 Multiobjective optimization

Figure 2.3: The plot shows the idea behind the assignment of spar-
sity to a multiobjective optimization problem, in this case with two
objective functions. The sparsity of solution B is greater than that
of solution A since A1 + A2 < B1 + B2.

the Pareto front does not tell us much about what options are available when trying to se-
lect suitable solution(s). Instead, it is much more preferable to have a set of solutions that is
more spread out across the front, giving us greater diversity when choosing. As to how this
notion of spread can be quantified, there are again several different ways. We will here focus
on the notion of sparsity, defined in algorithm 2 below. The algorithm closely follows the
corresponding one presented in [21]. In short, the sparsity of a solution xi is the sum of the
distance between the closest neighbors in each individual dimension among solutions with
the same Pareto front rank as xi , divided by a normalizing factor. The solutions at the far
ends of the front are assigned an infinite sparsity. The idea behind the concept is shown in
figure 2.3. Naturally, we would like solutions to have as large of a sparsity as possible.

Algorithm 2 Assignment of Sparsity

F ← {F1, ..., Fm} ▷ a Pareto front rank of m individuals
O← {O1, ...,On} ▷ objective functions to assess with
for each individual F j ∈ F do

Sparsity(F j)← 0
for each objective Oi ∈ O do

F′ ← Sort(F,Oi) ▷ sort F with respect to the objective Oi
Sparsity(F′1)← ∞
Sparsity(F′m)← ∞
if F′1 = F′m then

continue
for j from 2 to m − 1 do

Sparsity(F′j)← Sparsity(F′j) +
ObjectiveValue(Oi ,F′j+1)−ObjectiveValue(Oi ,F′j−1)

m(Range(Oi))

19

2. Background

2.7 A Genetic Algorithm: NSGA-II
With the above concepts defined, all the tools are in place for us to describe the Non-dominated
Sorting Genetic Algorithm II, better known as NSGA-II. Ever since it was introduced by Deb
et al. [9], it has become one of the more popular multiobjective GAs and has been widely used
in many different applications [26]. Variants of it have even been previously used to create
simulated traffic scenarios [8], [6], [7].

The algorithm itself can in short terms be described as an elitist GA that uses binary tourna-
ment selection based on Pareto front ranks and sparsity as they were defined above. The two
individuals that get chosen to participate in the tournament are in the first case evaluated
based on their respective front rank, where the individual with a larger rank is selected. In the
case where the individuals happen to have the same front rank, the one with the larger spar-
sity value is chosen. The elitism is introduced through the introduction of an archive with a
fixed size, where the individuals that have the largest front ranks are stored. If there are not
enough slots in the archive to fill it with all individuals of a certain front rank, the ones with
the largest sparsities are again prioritized. All individuals compete for a place in the archive
every generation, while only members of the archive can be selected to crossover and mutate
in the tournament selection. The details are presented in algorithm 3, again closely follow-
ing the corresponding algorithm presented by Luke [21]. Note that the expression Breed(A)
means the execution of parent selection, crossover and mutation in that order.

Algorithm 3 The Genetic Algorithm NSGA-II

m← desired population size
a← desired archive size ▷ typically a = m
P ← {P1, ...,Pm} ▷ build initial population
A← {} ▷ archive
while termination criteria are not satisfied do

AssessFitness(P) ▷ assess the fitness so that the Pareto front ranks can be computed
P ← P ∪ A
BestFront ← Pareto front of P
R← compute front ranks of P
A← {}
for each front rank Ri ∈ R do

AssignSparsities(Ri) ▷ assign sparsities to all individuals in Ri
if ||A|| + ||Ri || ≥ a then ▷ add the sparsest individuals of a front rank into the

archive
A← A ∪ the sparsest a − ||A|| individuals in Ri
break from the for loop

else ▷ add an entire front rank into the archive
A← A ∪ Ri

P ← Breed(A), using Algorithm 1 for selection (with a tournament size of 2)
return BestFront

One consequence of the use of elitism in NSGA-II is that the archive will be almost entirely
composed of only nondominated solutions in the case where we have a large number of ob-

20

2.8 Assessing the solutions

jectives (say, around 10 or more). This can easily lead to situations where the diversity in the
population deteriorates. This is one reason why NSGA-II is best used when having problems
with only a few objectives [13].

2.8 Assessing the solutions
Many methods are proposed as to how the solutions obtained from search-based algorithms
can be evaluated. In their review [27], Wang et al. differentiate between methods that measure
how close the obtained solutions are to the optimal Pareto front and methods that measure
the diversity among the solutions. Most of the methods they discuss require either that the
optimal Pareto front is known or that it is estimated in some other way, making them rather
inconvenient to use. We will therefore only cover one of the methods they present: the hy-
pervolume (HV) indicator.

The HV indicator measures the volume that is covered by the solutions in the objective space.
We first define S to be a set containing solutions si , where each si belongs to the Pareto front.
Now, the idea is to for each si create a corresponding hypercube vi that has one corner at si
and its other diagonal corner at a reference point. The reference point is often selected by
combining the worst objective values among all solutions. The HV value is then defined as
the union of all the hypercubes, or in mathematical terms

HV = volume
(
∪
|S|
i=1 vi
)
.

Figure 2.4 illustrates the idea behind the HV indicator. Looking at the figure, it is clear
that a larger HV value indicates both a greater diversity among the solutions and that the
computed Pareto front is closer to the optimal front. Thus, it is desirable for an algorithm
to yield solutions with as large of an HV value as possible.

21

2. Background

Figure 2.4: The plot illustrates how the HV indicator for a set of
solutions is computed for a problem with two objective functions.
The inside of the ellipse denotes the region where solutions are de-
fined. Thus, the upper right part of the ellipse constitutes the opti-
mal Pareto front and the solutions A to D are the members of the
computed Pareto front. The solution P is a reference point. In this
example, the HV value is equal to the area enclosed by the dashed
lines. Note that a larger HV value indicates both a greater diversity
among the solutions and that the computed Pareto front is closer to
the optimal front. Thus, larger HV values are desirable.

22

Chapter 3

Approach

We introduce the tools that were used to carry out the experiments (most importantly the
CARLA simulator) and describe how they were used. We also describe how the simulated
traffic scenarios were generated and how they were used to test OTUS3D. An overview of
the workflow of the entire project is presented in figure 3.1.

3.1 The system under test
The system under test was the solution OTUS3D, developed by Viscando. OTUS3D is based
on the principle of stereoscopic vision where, similarly to the human eyes, images from two
separate cameras placed close to each other enable the creation of a 3D view of the environ-
ment. By then utilizing computer vision and ML algorithms, the system is able to segment the
images and then classify and track pedestrians, cyclists and motor vehicles. The tracked ob-
jects all have properties such as their positions, directions and speeds estimated by OTUS3D
at different time points.

3.2 The CARLA simulator
The traffic scenarios were simulated using the open-source traffic simulator CARLA. Be-
ing built upon Unreal Engine 4, CARLA provides high-end rendering quality and realistic
physics. The CARLA server runs the simulation while receiving commands from the client.
These commands could for example be instructions on how to change the steering and accel-
eration of one or more vehicles, or they could affect properties of the simulation environment
such as weather, illumination or walker behavior. The client API is implemented in Python.
What this means is that the server, and the entire simulation, can be controlled through
the execution of Python scripts. In the documentation of the API that is presented at the
CARLA webpage [3], there is a large number of pre-defined classes and methods that sim-

23

3. Approach

plify the implementation of such scripts.

One of the most important classes of the CARLA API is the Actor class. Three different
subclasses of the Actor class were used in this project: vehicles, walkers and sensors. Note
that the vehicle subclass includes both bicycles and cars. There exists a number of blueprint
3D models in CARLA so that vehicles and walkers of different kinds can be created. More-
over, both of these types of actors can be controlled either manually or by autopilot. Sensors
are actors that retrieve data from simulations; some examples include RGB cameras, collision
detectors and LIDAR sensors. Different sensors naturally produce different types of output.
For example, RGB cameras retrieve images from the simulation, collision detectors retrieve
frames at which collisions occured and LIDAR sensors retrieve point clouds.

Weather conditions are easily customizable in CARLA. Cloudiness, precipitation, fog thick-
ness and wind intensity are some examples of weather effects that can be customized simply
by setting an intensity parameter. The placement of the sun can also be fully customized.

By default, the CARLA server runs as fast as possible without waiting for the client. What
this means is that when executing a script, it is not possible to know how long the simulation
has progressed between two lines of code. This is not ideal in situations where we want to
collect simulation data at a set time interval. In these types of situations, it is better to use
what the CARLA documentation calls synchronous mode. When set to synchronous mode,
the server will only advance a frame when given permission from the client. The amount of
time in the simulation that each frame will correspond to can be set by the user.

When it comes to the installation of CARLA, there are two existing options: installing the
package version or the source version. The source version is more arduous to install, as it
requires additional steps and more kinds of different software. The upside of installing it
is that 3D scenes can be directly customized in the Unreal Engine editor. This is true both
for the default scenes created by the CARLA developers and for imported ones. Moreover,
the process of importing scenes is a lot simpler in the source version of CARLA. For these
reasons, we used the source version of CARLA in this project.

24

3.2 The CARLA simulator

Figure 3.1: An overview of the workflow of the project.

25

3. Approach

3.3 DEAP
The implementation of NSGA-II that was used in this project was created using the Python
evolutionary computation framework DEAP [18]. All parts of the algorithm, including the
computation of the hypervolume used for the evaluation, was implemented using DEAP. The
main part that we had to implement ourselves was the calculation of fitness of the individuals;
how this was done is explained in section 3.7.

3.4 Creation of the digital model
As was mentioned in the introduction, the environment that was created in the simulation
was based on a real life junction, one where OTUS3D had gathered data. This junction is lo-
cated in Lindholmen, Gothenburg (lat 57.7086727, long 11.9395434). The junction is shown
in figure 3.2. Another image taken from Eniro Maps is shown in figure 3.3. The digital model
of this junction was created using the MathWorks package RoadRunner. RoadRunner is
an interactive editor built for the purpose of creating 3D models of traffic environments.
With its help, roads can easily be created and customized and there exists a large number of
blueprints of 3D models such as signs, guardrails, trees and buildings that can be inserted
into the environment.

When exporting the scene that was created in Roadrunner, the data was stored in one xodr
file and one fbx file. The xodr extension indicates the OpenDRIVE file format. OpenDRIVE
files describe road network data: the geometry of roads, lanes and markings as well as fea-
tures along the road like stop signals are saved in such files. The fbx file on the other hand
contains 3D geometry and animation data: in the case of our scene it contained information
about 3D objects like trees, bushes and street lights. With the data contained in the xodr and
fbx files, importing a 3D scene into a version of CARLA that had been built from source was
easily done by using methods that were provided with the installation. Images of the digital
model that was built in RoadRunner are shown in figure 3.4 and figure 3.5.

After the scene was imported into CARLA, some of the 3D assets had either disappeared
or did not look particularly visually pleasing. This is shown in figure 3.6. This problem was
fixed by using the Unreal Engine editor to add blueprints developed by the CARLA team.
The results can be seen in figure 3.7.

26

3.4 Creation of the digital model

Figure 3.2: A photograph taken above the junction in Lindholmen,
Gothenburg where Viscando has collected data. Note in particular
the distinct shadow from the building in the morning sun (April
29th, 9:45 am).

Figure 3.3: An image of the Lindholmen junction taken from Eniro
Maps.

27

3. Approach

Figure 3.4: The digital model of the Lindholmen junction was cre-
ated in RoadRunner. This is an image of the model. Compare with
figure 3.2.

Figure 3.5: The digital model of the Lindholmen junction was cre-
ated in RoadRunner. This is an image of the model. Compare with
figure 3.3.

Figure 3.6: The digital model of the Lindholmen junction after it
was imported into CARLA. Note that some of the signs present in
figure 3.5 are missing. Some of the textures, particularly the leaves
and the pavement material, also do not look particularly realistic.
3.3.

28

3.5 Creation of trajectories

Figure 3.7: The improved digital model of the Lindholmen junc-
tion after it was imported into CARLA. Compared to figure 3.6,
the tree and bush textures look more realistic, some ground mate-
rial has been changed and some signs have been added. The building
to the left in the image has also been re-scaled to better resemble the
real one shown in figure 3.3.

3.5 Creation of trajectories
When defining a traffic scenario, the paths that vehicles and walkers follow, i.e their trajec-
tories, are of great importance. In this project, all trajectories were kept constant over the
course of the experimental testing that was made. In other words, a number of trajecto-
ries were manually created before any experiments were made, and these trajectories were
not changed during or in between the experiments. A trajectory was defined as a vector of
waypoints, i.e points in 2D space that specified the path that the actor should strive to follow.
Suitable waypoints were found with the help of data that had already been collected from the
real-life Lindholmen junction by Viscando. This data contained two pieces of information
that were of interest to us: the estimated positions of passing vehicles and walkers in the form
of 2D points and the corresponding estimated speeds of these objects, with a time interval
of 0.05 seconds between each data point. The 2D points were, after some modifications to
better suit the digital model, suitable to use as waypoints. The final trajectories consisted of
approximately between 150 and 350 waypoints.

In practice, the actors (cars, bicycles and walkers) followed the set trajectories and kept their
assigned velocities by setting the CARLA simulator to synchronous mode and advancing it
in a frame by frame fashion. After the creation of an actor, that actor was assigned a target
velocity and was set to steer towards the next waypoint. Once that waypoint was reached, the
actor was assigned a new target velocity and was set to steer to yet another waypoint. This
was repeated until the entire trajectory was completed. It should be noted that the exact
velocities and positions of the actor were ultimately decided by the CARLA server; the way-
points and target velocities were treated as just that - targets. Therefore, the exact position
and velocity data had to be fetched from the simulator and saved to later provide ground
truth for the estimations made by OTUS3D.

While simulating a scenario, images that could be used as input to the OTUS3D system

29

3. Approach

Figure 3.8: A captured image from the simulation that was used as
input to OTUS3D.

needed to be captured. This was done by placing RGB cameras at the two spots in the sim-
ulated environment that corresponded to the placements of the two cameras used by the
OTUS3D sensor in the real Lindholmen junction. These cameras were set to capture 20
images per second, since this was an appropriate rate for OTUS3D to receive image input.
Finally, the images were converted into video format - with one video for each scenario - and
these videos were used as input for OTUS3D. In figure 3.8 we see an example of a captured
simulated image that was used as input to OTUS3D.

3.6 Defining a traffic scenario
In this section, we slightly formalize what is meant by a traffic scenario in the context of this
report. We assume that a traffic scenario is defined through the following properties:

• The number of actors following each of the trajectories. There could for example be
two actors following trajectory 0 and zero actors following trajectory 1.

• The starting time for each actor. This is defined by an integer denoting the number of
frames passed since the start of the simulation.

• Target velocities of the actors at specific points in their respective trajectory.

• The color of each car. This is defined by a triplet of integers from 0 to 255 denoting
the RGB-value.

• The setting of weather parameters.

Moving forward, we will refer to the numbers describing the above properties as scenario pa-
rameters. It should be noted that the blueprint model of each actor potentially constituted

30

3.7 Setting the position of the sun

another property of a traffic scenario. However, to simplify the implementation of the GA,
it was decided that the same blueprint model should be used for each car, bicycle and walker
across all experiments.

The more formalized view of traffic scenarios presented above allows us to generate synthetic
scenarios in a systematic manner. In particular, it makes it possible to keep some of the prop-
erties of a traffic scenario fixed while treating others as variable parameters. Moreover, the
allowed ranges of the variable parameters is also something that needs to be considered.

3.7 Setting the position of the sun
The setting of the weather parameters describing the position of the sun was not as straight-
forward as for the other weather parameters and therefore needs a more detailed description.
In CARLA, the position of the sun in the sky is decided by two parameters: the altitude an-
gle and the azimuth angle. The altitude angle is the number of degrees above the horizon
that the sun is situated: a value of 90 implies that the sun is directly overhead. The azimuth
angle describes the position of the sun’s projection onto the horizontal plane: it takes a value
between 0 and 360 degrees. In the case of CARLA, the direction of a zero azimuth angle is
decided arbitrarily by Unreal Engine.

In order to make the simulated scenarios as realistic as possible we wanted the placement
of shadows from different objects, and by extension the position of the sun, to be roughly the
same as in the real Lindholmen junction. This was achieved by using data from the Swedish
Meteorological and Hydrological Institute, SMHI. Figure 3.9 shows sun-path diagrams in
Gothenburg at different times of the year. The diagram that was selected as the one to follow
in the simulated scenarios is specified in the figure; it shows the sun-path in Gothenburg on
August 1st. We wanted to select one of the summer months because the blueprint models of
the trees had leaves on them. The diagram in question was approximated as a second degree
polynomial function. During simulation, when using the sun position as a variable parameter,
the altitude angle was found by plugging the azimuth angle parameter into the polynomial
function.

31

3. Approach

Figure 3.9: Sun-path diagrams for Gothenburg, for different times
of the year. The x-axis denotes the azimuth angle in degrees,
where 180 means a straight southward direction. The y-axis de-
notes the altitude angle in degrees. The diagram that we used in the
project is marked in the figure; it shows the sun-path in Gothen-
burg on August 1st. The image is an adapted version of the origi-
nal found at https://www.smhi.se/polopoly_fs/1.178701!
/goteborg%5B1%5D.png.

32

https://www.smhi.se/polopoly_fs/1.178701!/goteborg%5B1%5D.png
https://www.smhi.se/polopoly_fs/1.178701!/goteborg%5B1%5D.png

3.8 Objective functions

3.8 Objective functions
The formulation of the objective functions (fitness functions) was crucial when using NSGA-
II to generate the scenario parameters. Since the purpose of the experiments was to find
traffic scenarios that tested the limits of OTUS3D, we wanted to develop fitness functions
that in some sense maximized the errors between the ground truth and the estimations made
by OTUS3D. We decided to focus on three different error measurements that each corre-
sponded to one objective function. In order to formulate these functions we define the i:th
ground truth trajectory as xi = xi

1, ..., x
i
ni

, where each xi
j corresponds to one waypoint. The

corresponding i:th estimated trajectory we define analogously as x̃i = x̃i
1, ..., x̃

i
ni

. Similarly,
we define the corresponding ground truth speeds as a sequence of points vi

1, ..., v
i
ni

and the
estimated speeds as a sequence ṽi

1, ..., ṽ
i
ni

. Letting m denote the number of trajectories, we
can then define the three objective functions as follows:

• Distance errors:

O1 =
1
m

m∑
i=1

1
ni

ni∑
j=1

√(
xi

j − x̃i
j

)2
.

This is essentially the mean euclidean distance between the ground truth trajectories
and the trajectories estimated by OTUS3D.

• Speed errors:

O2 =
1
m

m∑
i=1

1
ni

ni∑
j=1

∣∣∣∣vi
j − ṽi

j

∣∣∣∣.
This is essentially the mean absolute errors between the ground truth speeds and the
estimated speeds.

• The third objective concerns the percentage of misclassifications across the trajecto-
ries. Assuming that the i:th trajectory had ci misclassifications we define

O3 =
1
m

m∑
i=1

ci

ni
.

Note that the ground truth trajectories were matched with the estimated trajectories that
minimized the O1-value presented above. Using these three objective functions, each simu-
lated scenario could be assigned three fitness values that could then be used in the NSGA-II
algorithm 3.

3.9 Overview of the experimental setup
An overview of the experimental setup is presented in figure 3.10. In short, the hyperpa-
rameters set the general behavior and boundaries of the whole experiment - they were also
kept constant throughout. They include properties such as GA parameters, values of fixed

33

3. Approach

Figure 3.10: An overview of the experimental setup. In the baseline
model, the scenario parameters were randomly generated while in
the GA model, the NSGA-II algorithm was used to generate the pa-
rameter values (see algorithm 3 for details).

scenario parameters and minimum and maximum values for variable scenario parameters.

The scenario parameters were generated based on the hyperparameters. More specifically, as
will be explained in section 4.1, the scenario parameters were generated either by sampling
from uniform probability distributions (the baseline model) or by use of the GA NSGA-
II. One set of scenario parameters defined one traffic scenario that was then simulated in
CARLA. The captured images were converted into a video format that were used as input
to OTUS3D. OTUS3D in turn produced classifications and estimations of the positions and
speeds of the actors participating in the simulation, which could be evaluated by comparing
to the ground truth that was produced by CARLA. Note that in the baseline model, there
was no feedback of evaluation results to the parameter generation since the parameter values
were randomly generated. When using NSGA-II, the procedure described in algorithm 3 was
followed, using the objective functions defined in section 3.8 and with one set of scenario pa-
rameters constituting a single individual in the population.

It should be pointed out that not all parts of the setup as presented in figure 3.10 were imple-
mented in a single automatic loop. Specifically, since we had no direct access to the OTUS3D
system, the synthetic images (converted into videos) that were created by the running of traf-
fic scenarios had to be manually sent to Viscando so that they could be processed by OTUS3D
to produce estimations that could be evaluated. Because of this manual step, there was no
time to test the two models for more than a few number of generations. There was also no
time to test different values for the hyperparameters.

A complete reproduction package is available on GitHub: https://github.com/EliasSjoberg/rise-
viscando-thesis

34

Chapter 4

Evaluation

We describe the experimental setup in greater detail and present and analyze the results. We
also attempt to answer the Research Questions and point out the limitations and the lessons
learned from this work.

4.1 Experimental setup
In order to perform the experiments, trajectories that decided the paths that cars, bicycles
and walkers should follow in the simulated scenarios were created using past data from Vis-
cando. Note that both the positions and the velocities of the actors were determined using
this data. Figure 4.1(a), (b) and (c) show the trajectories that were created for cars, bicycles
and walkers respectively. Two different sets of trajectories were used in the experiments: one
set that contained the car trajectories and another that contained the bicycle trajectories.
Moreover, both sets contained the walker trajectories. In all scenarios, only one instance of
each trajectory was used, and this number was kept fixed across all generations. The main
thought process behind selecting these trajectories was that they seemed be a realistic repre-
sentation of the trajectories that could appear in the real Lindholmen junction. They were
also selected to minimize the number of collisions between actors, as these could lead to un-
realistic scenarios.

In addition to the two sets of trajectories, experiments were performed using two different
models to generate scenario parameters: one baseline model where parameter values were
sampled from a uniform random distribution and one GA model where parameter values
were generated using the NSGA-II algorithm with tournament selection, bounded polyno-
mial mutation and bounded Simulated Binary Crossover. The following scenario parameters
were set to be variable and thus constituted the individuals in the two models:

• The starting time for each actor participating in the simulation. It ranged from a
minimum of 0 simulated seconds to a maximum of 10 simulated seconds.

35

4. Evaluation

population size 20
ηm 20
ηc 20

crossover probability 0.9
car model vehicle.tesla.model3

bicycle model vehicle.bh.crossbike
walker model walker.pedestrian.0001

Table 4.1: GA specific parameter values and blueprint models used
in the experiments. All of these values were kept fixed.

• The color of each car. It consisted of triplets of integers denoting the RGB-values
between 0 and 255.

• The level of cloudiness in the simulation, described by a float value between 0 and
100. Images of the Lindholmen junction captured in CARLA at different levels of
cloudiness are presented in figure 4.3(a)-(c).

• The sun azimuth angle. As we described in section 3.6, the altitude angle was calculated
based on the azimuth angle and was set so that it mimicked the position of the sun in
the real Lindholmen junction during early August. Moreover, the azimuth angle was
set to a minimum of 25° and a maximum of 255° to keep the captured images from
being too dark. Images of the Lindholmen junction captured in CARLA at morning,
midday and evening are presented in figure 4.2(a)-(c).

These parameters were chosen mainly because they were believed to represent realistic vari-
ations that occur in the real Lindholmen junction. Moreover, since we expected varying
levels of visibility and occlusion in the simulation to be highly relevant to the performance
of OTUS3D, these parameters seemed appropriate. Three generations of both models were
created, i.e. a population of scenario parameters was generated three times. A population
size of 20 was used. For the first generation of the NSGA-II model, the parameter values
were generated by sampling from a uniform random distribution. The values of some other
parameters that were set to be constant are presented in table 4.1.

The total number of variable parameters was different depending on the set of trajectories
that was used. With the car and walker trajectories, there were a total of seven actors that
each had a starting time. Moreover, there were three cars that each had one triplet of integers
describing the color, and two weather parameters. This created a total of 7 + 3 · 3 + 2 = 18
parameters. With the bicycle and walker trajectories there were no color parameters and thus
only a total of 7 + 2 = 9 parameters.

Since we had two sets of trajectories and two models, a total of four experiments were per-
formed. Since there were 20 individuals (i.e. scenarios) in the population and three genera-
tions, a total of 20 · 4 · 3 = 240 scenarios were simulated. Half of these scenarios contained
the three car trajectories in figure 4.1(a), while the other half contained the three bicycle tra-
jectories in (b). All scenarios contained the walker trajectories in (c).

36

4.1 Experimental setup

As the experiments were carried out, the models were evaluated by computing the distance
error, speed error and number of misclassifications as was described in section 3.8. Further-
more, the hypervolume was computed for each model and generation. We also did a number
of investigations with the aim of being able to draw conclusions on the effects that differ-
ent parameter configurations had on the ability of OTUS3D to produce correct estimations.
To this end, we computed the mean of the three error measurements for each of the 10 tra-
jectories and closely examined how the location of the actors affected the performance of
OTUS3D. Moreover, we investigated the effects that occlusion, the position of the sun, the
cloudiness value and the relative luminance values of the cars had on the error measurements.

(a) (b)

(c)

Figure 4.1: A visualization of the (a) car trajectories, (b) bicycle tra-
jectories and (c) walker trajectories that were used to create traffic
scenarios.

37

4. Evaluation

(a) (b)

(c)

Figure 4.2: (a)-(c) show the Lindholmen junction in CARLA in the
early morning, at midday and in the evening respectively. The az-
imuth angles are 26.2°, 134° and 240° while the corresponding alti-
tude angles are 8.54°, 49.9° and 18.2°.

38

4.1 Experimental setup

(a) (b)

(c)

Figure 4.3: (a)-(c) show the Lindholmen junction in CARLA with
a cloudiness value of 14.0, 82.3 and 95.1 respectively. The azimuth
angle was kept roughly at a constant 170° in all three cases. We see
that visibility is still quite good in (b), but in (c) the images start to
become quite dark.

39

4. Evaluation

4.2 Results
The results can be divided into three parts. In the first part, we present the performances of
the NSGA-II model and the baseline model. These results are presented in table 4.2. In the
second part, we examine the errors resulting from each of the trajectories used. These results
are presented in tables 4.3–4.5 and in figures 4.4–4.7. In the third part, we investigate the ef-
fects that the different scenario parameters (car colors, sun positions, cloudiness values and
actor starting times) had on the error measurements. These results are presented in figures
4.8–4.13 and in tables 4.6–4.8.

Table 4.2 contains the three error measurements and the hypervolume computations for each
generation using the car/walker and the bicycle/walker trajectories on the baseline model and
the NSGA-II model. Ideally, the error measurements as well as the hypervolume computa-
tions would grow as the number of generations increases in the NSGA-II model. However,
with just three generations, it is not surprising that no such trend can be discerned.

Tables 4.3, 4.4 and 4.5 contain the mean errors for each of the car, bicycle and walker trajec-
tories respectively. The errors for the i:th trajectory have been computed by adding together
all of the individual estimations made at each waypoint for every simulation of that trajec-
tory (120 simulations in the case of the car and bicycle trajectories and 240 simulations for
the walker trajectories). We see that the errors vary a fair bit depending on the trajectory.
Generally speaking, cars seem to be more difficult to estimate with regards to their positions
and speeds while the walkers are more difficult to correctly classify.

40

4.2 Results

gen 0 gen 1 gen 2
distance error (m) 2.27 2.26 2.27

c+w/baseline
distance error (m) 2.26 2.21 2.22

c+w/NSGA-II
distance error (m) 1.89 1.92 1.92

b+w/baseline
distance error (m) 1.90 1.89 1.99

b+w/NSGA-II
speed error (m/s) 0.61 0.57 0.65

c+w/baseline
speed error (m/s) 0.62 0.55 0.59

c+w/NSGA-II
speed error (m/s) 0.39 0.40 0.40

b+w/baseline
speed error (m/s) 0.39 0.40 0.36

b+w/NSGA-II
misclassifications (%) 25.8 29.5 26.4

c+w/baseline
misclassifications (%) 24.8 24.1 22.5

c+w/NSGA-II
misclassifications (%) 30.1 27.5 29.1

b+w/baseline
misclassifications (%) 27.8 29.7 29.2

b+w/NSGA-II
hypervolume 4.41 3.93 4.10
c+w/baseline
hypervolume 4.81 3.16 3.55
c+w/NSGA-II
hypervolume 2.69 3.54 2.59
b+w/baseline
hypervolume 2.91 2.93 2.60

b+w/NSGA-II

Table 4.2: Error measurements and hypervolume computations for
the baseline model and the NSGA-II model with car/walker and bi-
cycle/walker trajectories for three generations.

traj car0 traj car1 traj car2
distance error (m) 2.81 2.97 2.76
speed error (m/s) 1.49 0.96 0.50

misclassifications (%) 12.8 12.9 2.45

Table 4.3: Mean errors for each of the three car trajectories. The
numbering is in accordance with figure 4.1(a).

41

4. Evaluation

traj bike0 traj bike1 traj bike2
distance error (m) 1.49 2.27 2.11
speed error (m/s) 0.41 0.66 0.31

misclassifications (%) 1.55 31.2 12.3

Table 4.4: Mean errors for each of the three bicycle trajectories. The
numbering is in accordance with figure 4.1(b).

traj walker0 traj walker1 traj walker2 traj walker3
distance error (m) 2.04 1.98 1.54 1.82
speed error (m/s) 0.24 0.50 0.39 0.18

misclassifications (%) 11.1 14.0 43.6 85.2

Table 4.5: Mean errors for each of the four walker trajectories. The
numbering is in accordance with figure 4.1(c).

Figures 4.4, 4.5 and 4.6 illustrate the error measurements for the car, bicycle and walker tra-
jectories in greater detail. In these figures, the simulated junction has been divided into a
grid and the mean errors have been computed inside each square (of size 1 × 1 meter) of the
grid. Thus, we can see how the positions of simulated actors affect the errors. The location
and viewing direction of the OTUS3D system is represented by an arrow. The most obvious
conclusion from these three figures is that there seems to be a general trend of errors in grid
squares that are either far away from the OTUS3D system or in the periphery of its field of
view being greater. There are of course exceptions to this tendency; the trend mainly seems
to hold for the walker trajectories.

In figure 4.7, the ground truth x- and y-values have been subtracted from the estimated x-
and y-values for all trajectories. This results in plots illustrating to what extent the estimated
trajectories systematically differ from the ground truth trajectories. Since the errors in the
x-direction in most cases are below zero, we can conclude that OTUS3D systematically un-
derestimates the x-values. Put differently, OTUS3D estimates that the actors are closer to
the system than they actually are. In contrast, the errors in the y-direction are generally sig-
nificantly smaller and also tend to be positive, meaning that the estimations are skewed a bit
too far to the right. This trend is not as strong as the one in the x-direction however.

42

4.2 Results

(a) (b)

(c)

Figure 4.4: Heatmaps showing the distance errors (m), speed errors
(m/s) and misclassifications (decimal percentage) of the car trajec-
tories at set positions. Note that the x-axis is the vertical axis while
the y-axis is the horizontal one. The arrow close to the bottom of
the plots shows the position and direction of the OTUS3D system.

43

4. Evaluation

(a) (b)

(c)

Figure 4.5: Heatmaps showing the distance errors (m), speed errors
(m/s) and misclassifications (decimal percentage) of the bicycle tra-
jectories at set positions. Note that the x-axis is the vertical axis
while the y-axis is the horizontal one. The arrow close to the bot-
tom of the plots shows the position and direction of the OTUS3D
system.

44

4.2 Results

(a) (b)

(c)

Figure 4.6: Heatmaps showing the distance errors (m), speed errors
(m/s) and misclassifications (decimal percentage) of the walker tra-
jectories at set positions. Note that the x-axis is the vertical axis
while the y-axis is the horizontal one. The arrow close to the bot-
tom of the plots shows the position and direction of the OTUS3D
system.

45

4. Evaluation

(a) (b)

Figure 4.7: Heatmaps showing the distance errors ((m), ground truth
subtracted from the OTUS3D estimation) in the x- and y-directions
respectively for all the trajectories. Note that the x-direction is the
vertical direction while the y-direction is the horizontal one. We see
that most of the errors in the x-direction are below zero, meaning
that OTUS3D systimatically estimates the actors to be closer than
they actually are.

Figure 4.8 shows how different luminance values affect the distance errors of the car trajecto-
ries. Each point in the plot corresponds to one car trajectory; in total, there are 120 ·3 = 360
points. As we can see, there appears to be no correlation between the distance errors and
luminance values. Figure 4.9 similarly shows the relationship between the sun altitude an-
gles and the distance errors for cars, bicycles and walkers respectively. The expectation here
would of course be that scenarios with a lower sun altitude would result in larger errors. In
figure 4.9, there are no significant correlations when it comes to the car and bicycle trajec-
tories however. For the walker trajectories, there appears to be a small negative correlation;
computing the Pearson correlation coefficient between the two arrays gives a value of −0.17.
Figure 4.10 shows the distance errors plotted against the cloudiness values for the car, bicycle
and walker trajectories. Here, there are no significant correlations. It should be pointed out
that the speed and classification errors for the luminance values, altitude angles and cloudi-
ness values were also examined, but they are not included here since they did not contribute
any significant additional information.

46

4.2 Results

Figure 4.8: Scatterplot of the luminance values and the correspond-
ing mean distance errors for each car trajectory across all simulated
scenarios. There appears to be no clear correlation between the er-
rors and luminance values.

47

4. Evaluation

(a) (b)

(c)

Figure 4.9: Scatterplots of the sun altitude angles and the corre-
sponding mean distance errors for the car trajectories, bicycle tra-
jectories and walker trajectories respectively. There are no obvious
correlations, except possibly for the walker trajectories.

48

4.2 Results

(a) (b)

(c)

Figure 4.10: Scatterplots of the cloudiness values and the corre-
sponding mean distance errors for the car trajectories, bicycle tra-
jectories and walker trajectories respectively. There are no clear cor-
relations.

49

4. Evaluation

It is important to note that while the sun altitude angle is important in determining the
visibility for a traffic scenario, the azimuth angle has a larger impact on the placement of
shadows and is therefore also worth examining. Figure 4.11 shows the azimuth angles and the
corresponding distance errors for walker trajectory 2. We see that there is a trend of the er-
rors being lower when the azimuth angle is between 150° and 200°. This can be confirmed by
computing the mean of these errors: it was found that this mean was 1.50, compared to 1.60
for errors outside of this range. Another plot showing the relationship between the azimuth
angles and distance errors is presented in figure 4.12, this time for car trajectory 2. Here, we
see that the errors are larger for azimuth angles between approximately 80° and 130°. The
mean of these errors is 2.78, compared to 2.74 for errors outside of the range. Lastly, in figure
4.13(a) the misclassifications for bicycle trajectory 2 are plotted for different azimuth angles.
For azimuth values between 200° and 255° the mean error was 15.0 compared to 7.06 for the
other errors. The corresponding cloudiness values for the same errors are plotted in figure
4.13(b).

Figure 4.11: Scatterplot of the azimuth values and the corresponding
mean distance errors for walker trajectory 2. The errors are quite
clearly lower for azimuth angles between 150° and 200°.

50

4.2 Results

Figure 4.12: Scatterplot of the azimuth values and the corresponding
mean distance errors for car trajectory 2. The errors are quite clearly
larger for azimuth angles between 100° and 150°

(a) (b)

Figure 4.13: In (a), we see a scatterplot of the azimuth values and
the corresponding mean misclassifications for bicycle trajectory 2.
We see that the errors are larger for large azimuth angles. In (b), we
see the same misclassifications plotted against different cloudiness
values. Here, the errors are larger for small cloudiness values.

51

4. Evaluation

Some investigations were also done to assess the effect of occlusion on the estimations made
by OTUS3D. To this end, we created three sets, each of which contained scenarios where some
occlusion event occurred between two trajectories. In the first set (containing 21 scenarios),
car trajectory 1 started 2.5 seconds or less before car trajectory 0. In the second (containing
10 scenarios), bicycle trajectory 2 started 1 second or less before bicycle trajectory 0. In the
third (containing 13 scenarios), bicycle trajectory 1 started between 3.5 and 5 seconds before
bicycle trajectory 2. In the first two sets, the occlusion event happened at the start of the two
trajectories, while in the third, the event happened right in the middle of the intersection.
Images illustrating the first, second and third occlusion events are presented in figure 4.14(a),
(b) and (c) respectively.

(a) (b)

(c)

Figure 4.14: The top right of (a) shows the occlusion event between
car trajectory 0 and car trajectory 1. The bottom right of (b) shows
the occlusion event between bicycle trajectory 0 and bicycle trajec-
tory 2. The left of (c) shows the occlusion event between bicycle
trajectory 1 and bicycle trajectory 2.

Tables 4.6, 4.7 and 4.8 each correspond to one of the three aforementioned sets and contain
the resulting mean errors of the trajectories involved in the occlusion. The mean errors across
all trajectories are also included for reference. Examining table 4.6, we see that the occlusion

52

4.2 Results

has no significant effect on the errors for car trajectory 1. For trajectory 0 however, there
seems to be a large effect from the occlusion both on the mean distance error and mean speed
error. That we see effects on trajectory 0 but not on trajectory 1 is entirely expected since in
these scenarios, the former car is blocked by the latter. In table 4.7, we see that the errors are
more significant for bicycle trajectory 0 than for trajectory 2 when there is occlusion, with
the exception of the number of misclassifications which is large in both cases. Lastly, in table
4.8 we see that the speed error is the most significant error for bicycle trajectory 1 while both
the speed error and especially the classification error are large for trajectory 2.

traj car0 traj car0 traj car1 traj car1
occl all occl all

distance error (m) 4.13 2.81 2.92 2.97
speed error (m/s) 2.39 1.49 0.72 0.96

misclassifications (%) 12.8 12.8 11.7 12.9

Table 4.6: The first and third columns contain the mean trajectory
errors for the 21 scenarios where car trajectory 1 started 2.5 seconds
or less before car trajectory 0. The second and fourth columns con-
tain the mean trajectory errors across all of the scenarios, the same
values as in table 4.3.

traj bike0 traj bike0 traj bike2 traj bike2
occl all occl all

distance error (m) 1.60 1.49 2.11 2.11
speed error (m/s) 0.52 0.41 0.26 0.31

misclassifications (%) 7.96 1.55 34.7 12.3

Table 4.7: The first and third columns contain the mean trajectory
errors for the 10 scenarios where bicycle trajectory 2 started 1 second
or less before bicycle trajectory 0. The second and fourth columns
contain the mean trajectory errors across all of the scenarios, the
same values as in table 4.4.

traj bike1 traj bike1 traj bike2 traj bike2
occl all occl all

distance error (m) 2.19 2.27 2.18 2.11
speed error (m/s) 0.85 0.66 0.46 0.31

misclassifications (%) 35.8 31.2 21.9 12.3

Table 4.8: The first and third columns contain the mean trajectory
errors for the 13 scenarios where bicycle trajectory 1 started between
3.5 and 5 seconds before bicycle trajectory 2. The second and fourth
columns contain the mean trajectory errors across all of the scenar-
ios, the same values as in table 4.4.

53

4. Evaluation

4.3 Discussion

4.3.1 Answering the research questions
In this section, we will analyze the results further, answer the research questions as well as
point out future research that could be done to further investigate these questions. We will
start by reminding ourselves of the three research questions:

RQ1: Can a low-fidelity digital model of a traffic junction be used to find faults in Vis-
cando’s system?
RQ2: Is SBST an efficient and effective approach to provoke system faults in the digital
model?
RQ3: Which parameter configurations are the most effective at provoking system faults?

When it comes to the results relating to the performance of the NSGA-II algorithm, which
is related to RQ2, it is difficult to draw conclusions. More generations would have to be eval-
uated to determine whether NSGA-II is efficient and effective at finding faults in OTUS3D.
However, there are still signs pointing towards the approach of using SBST to generate sim-
ulated traffic scenarios to be one worth further research, as will be argued below.

Before answering RQ1 and RQ3, we will need to examine the results a bit more closely.

As was previously mentioned, figure 4.7 shows that OTUS3D was found to have a clear ten-
dency to underestimate the x-values of detected actors, i.e. how far away they were in the
viewing direction. The reasons behind this tendency are largely unknown at the time of
writing. It is possible that the discrepancy between the digital model and the real-life Lind-
holmen junction is part of the problem. We did take a great deal of care, including making
several distance measurements, to have the digital model be as close to reality as possible, but
some differences are unavoidable.

When it comes to the mean errors for the car trajectories, table 4.3 shows that the errors
were smallest for trajectory 2, which is unsurprising considering its closeness to the OTUS3D
system. In contrast, the small size of the distance errors for points far away, in the top right
of figure 4.4(a) is more of a mystery; it contradicts the speed and classification errors which
are both large at the same spot. And while simple explanations can be made as for why the
car trajectories generally have larger speed errors and lower classification errors (they have
greater speed in general and their size make them easier to classify) it is not as obvious why
the distance errors are as large as they are.

Regarding the errors for the bicycle trajectories, table 4.4 shows that the errors are the largest
for trajectory 1. Figure 4.5(a) shows that the sharp turn in the middle of trajectory 1 is asso-
ciated with large distance errors. This is also true for the similar turn made in car trajectory
1. There also seem to be elevated errors before this turn, when the bicycle is moving directly
towards the OTUS3D system. These errors are also present for the walker trajectory taking
a similar path, as seen in figure 4.5(a)-(c). Lastly regarding the bicycle errors, it should be
mentioned that in consultation with Viscando it was pointed out that regions close to the

54

4.3 Discussion

edges of the field of view of OTUS3D are more prone to errors. The elevated distance and
classification errors present in the left part of figure 4.4(a) and (c) are possibly a result of this.

For the walker trajectory errors, there is less to discuss. Clearly, all three errors are large
for points far away. Walkers were also more difficult to correctly classify in general.

The fact that the cloudiness values and the sun altitude angle had such a small impact on
the scenarios was surprising. It is likely that the minimum and maximum azimuth angles did
not allow for scenarios to be sufficiently dark to create major estimation problems.

The three plots containing azimuth angles all potentially point towards the significance of
shadows on the estimations. In figure 4.11, the angles that resulted in smaller errors corre-
spond to the shadow from the large building not being present, giving a clearer view of that
walker trajectory, see figure 4.15(a). For car trajectory 2, it is possible that the small shadow
in front of the car (see figure 4.15(b)) that is created when the azimuth angle is in the 100°
to 150° range is the cause of the elevated distance error that we see in figure 4.12. Similarly,
the large classification errors for bicycle trajectory 2 seen in figure 4.13 when the azimuth
angles were large could also be due to shadows creating problems, see figure 4.15(c). In this
case, there is also a trend where lower cloudiness values are associated with larger errors. This
shows that although larger cloudiness values do decrease visibility, they also make shadows
less pronounced which could in some cases make errors smaller.

Now, turning our attention back to RQ1, we can say that yes, the digital model could in-
deed be used to find faults in OTUS3D. Some faults were more expected, like the difficulty
of estimating actors in occlusion events or the difficulty of estimating actors far away in the
viewing direction or far away into the periphery. Others were not so expected, such as the
systematic distance error in the x-direction. Further investigations would have to be done to
determine which of these faults are largely due to the properties of the digital model or due
to the simulator, and which are transferable to reality. One obvious but time consuming way
of testing this would be to build a new digital model and then test this new model and the
old one in both CARLA and in a different simulator.

We can also draw some conclusions regarding RQ3. The results suggest firstly, that the es-
timation errors were very much dependent on the properties of the trajectories. Generally,
trajectories that had paths far away from the system under test and far into the periphery of
its field of view proved to be particularly challenging to estimate; this was especially the case
for walker trajectories. Secondly, occlusion events seemed to be a source of significant esti-
mation errors. The placement of shadows seemed to be of less importance, but still a possible
source of errors in some cases. The luminance values of the cars, the altitude of the sun and
the amount of cloudiness were all found to be relatively insignificant sources of errors. In the
case of all of these parameters, further investigations are needed to draw more and stronger
conclusions. For instance, it is an open question as to how low the illumination in a simulated
scenario can become before the estimation errors start to increase. Much more can also be
done to investigate the circumstances under which occlusion events lead to increased errors.
The fact that the effects of shadows could only be found in such a limited number of cases
also merits further investigation. Other parameterizations, such as varying the velocities or

55

4. Evaluation

the trajectories themselves or introducing more weather parameters could also be done, but
that would also increase the complexity of the optimization problem.

(a) (b)

(c)

Figure 4.15: The top left of (a) shows that the shadow from the large
building is small, which leaves the entirety of walker trajectory 2 in
sunlight. (b) shows a small shadow in front of car trajectory 2. (c)
shows the long shadows that possibly cause problems in estimating
bicycle trajectory 2.

4.3.2 Contributions
There are three main contributions of this work. Firstly, it provides a digital model of the
Lindholmen junction that can either be further developed or used for further testing of
OTUS3D as it is. Secondly, this work shows that this digital model can be used to find faults
in OTUS3D when the trajectories and weather conditions are within the range of what would
commonly be encountered in the junction. Third, this work identifies some traffic scenario
parameters that seem to be more effective than others at provoking system faults, which
could be valuable knowledge for future research; particularly when making future scenario
parametrizations. In short, this work shows that search-based simulated testing of OTUS3D
is possible while providing some results and insights that could potentially be of use to future
research.

56

4.3 Discussion

4.3.3 Lessons learned and limitations

There are a few experiences taken from this work that could hopefully be helpful to future
research.

First, a few words on our experience of using the CARLA simulator. Despite the complexity
and the sheer amount of things that are possible to do in CARLA, it is still easy to learn and
to use. There were certainly a large number of excessive features considering that this project
had such a limited scope, which in turn made the installation process quite long and com-
plicated. At the same time, some features were not properly developed at the time when the
simulator was used: mainly a simple way to generate complex traffic scenarios with the use
of waypoints. The scenario generation that we made, with actors manually steering towards
each waypoint, was a bit complicated to implement, but the results were satisfactory. Com-
bining the use of CARLA with the parameter generation was particularly appropriate since
all code execution could be done with Python scripts. All in all, our experience of working
with CARLA was positive.

Next, we discuss the fitness function that was used in this report. It consisted of three ob-
jectives: distance errors, speed errors and misclassifications. One potential problem with
using these three measurements is that they to an extent are dependent, as can be seen for
instance by comparing figure 4.4 (b) and (c). Thus, they partly describe the same thing with-
out giving any new information. An arguably more important problem however, is that a
large amount of information is lost when error measurements of seven largely independent
actors are crammed into just three numbers. One solution to this problem could of course
be to increase the number of objectives, and to for instance use one objective for each actor.
Doing so would make NSGA-II an inappropriate algorithm to use however, since it under-
performs when using a large number of objectives [13]. Other algorithms such as NSGA-III
[13] and MOSA [23] that have been developed to handle many-objective optimization prob-
lems would be more suitable in this case. An alternative could of course be to simply lower
the number of actors taking part in the simulation. This approach would be more in line
with previous research [6], [7], [16] where the scenarios have as few as two actors.

There is also the possibility to include objectives that can test aspects of OTUS3D that were
overlooked in this report. One example is related to an issue that appeared when matching
the ground truth trajectories with the trajectories estimated by OTUS3D. It was found that
while the ground truth scenarios always had exactly seven trajectories, there were often ten
or more trajectories that were estimated by OTUS3D. This problem was solved by combining
each ground truth trajectory with the estimated trajectory that minimized the mean distance
error. More work could be done to take a wider view at all of the estimated trajectories and
possibly include them into some objective function.

There are some more limitations of this work that should be pointed out. First, and per-
haps most obvious, is the question of relevance that arises when using simulated scenarios
to test a system that has been developed to measure real-life scenarios. This question is of
course related to the discrepancies between the digital model and the real-life Lindholmen
junction. To what extent the results found in this work are transferable to reality will have

57

4. Evaluation

to be decided by future investigations.

Another limitation of this work is the existence of counterexamples that contradict some
of the drawn conclusions. While it seems reasonable to assume that the placement of shad-
ows contributed to the errors shown in figures 4.11–4.13, there were many seemingly similar
cases where the shadows did not affect the errors. This calls into question whether the shadow
placements really were the main cause of the errors shown in these figures. Similarly, figures
4.4–4.6 show that some of the errors were small for points far away from the OTUS3D system
and significantly larger for points close to it, contrary to our expectations and conclusions.
What all of this speaks to is that the relationship between input and output in an ML system
like OTUS3D is highly complicated, and one has to be careful to not draw too strong con-
clusions.

Lastly, it should be pointed out that while the trajectories that we used for the testing were
a realistic representation of the trajectories that occur in the real Lindholmen junction, they
were far from comprehensive. It is possible that using trajectories where walkers and bicy-
clists follow less orthodox pathways would be a suitable approach to provoke system faults
within OTUS3D.

58

Chapter 5

Conclusions

To answer RQ1, we created a digital model of the Lindholmen junction that could be used
to simulate a wide range of traffic scenarios in CARLA. Videos of these synthetic scenarios
provided input to OTUS3D, which returned estimations of the actors (cars, bicycles, walkers)
participating in the simulation. These estimations could then be compared with the ground
truth. Noting that certain scenarios produced particularly large errors between the estima-
tions and ground truth, we can conclude that the digital model indeed could be used to find
faults in Viscando’s system.

To answer RQ2, we implemented a version of the GA NSGA-II and used it to generate param-
eters that defined a traffic scenario. We also implemented a baseline model which generated
scenario parameters randomly. We were only able to execute three generations of both mod-
els, which was not enough to give a sufficient answer to RQ2. However, the fact that some
parameter configurations generated by NSGA-II were particularly good at revealing faults
in the system under test suggests that a future search-based approach could be suitable to
further investigate the parameter configurations used in this work or potentially other ones.

To answer RQ3, we investigated the effect that cloudiness, occlusion, the color of the cars,
and the position of the sun had on the estimation errors. We also examined each individ-
ual trajectory to investigate which positions were the most prone to errors. It was found
that there was a large difference in errors depending on the trajectory, with certain trajecto-
ries being more "critical" than others. It was also found that occlusion events, and in some
cases specific placements of shadows, were important factors in creating large errors. The sun
altitude angle, the level of cloudiness and the luminance values of the cars were less impactful.

We can recommend the use of CARLA to simulate traffic scenarios, particularly when using
an SBST approach to generate these scenarios. Future research into testing OTUS3D or sim-
ilar traffic measurement systems should further investigate which parameter configurations
are critical at provoking system faults; testing of the circumstances under which occlusion,

59

5. Conclusions

illumination and shadows result in elevated errors appears particularly promising. More un-
orthodox bicycle and walker trajectories could potentially be used to further test the limits
of OTUS3D. If future testing is done with an SBST approach, we recommend either reducing
the number of actors participating in the simulations or increasing the number of objective
functions and using an algorithm that is better suited for many-objective optimization than
NSGA-II is. There is also the possibility of including new objective functions that evaluate
other aspects of OTUS3D. One such aspect could be the tendency of OTUS3D to introduce
new trajectories. An objective that punishes this behavior could for example be introduced.
Lastly, more research is needed to determine to what extent the faults found in this report
are transferable to reality.

60

References

[1] About SBST. https://sbst21.github.io/. Accessed 2022-02-14.

[2] Deap: crossover.py. https://github.com/DEAP/deap/blob/master/deap/
tools/crossover.py. Accessed 2022-09-22.

[3] Python api reference. https://carla.readthedocs.io/en/latest/python_
api/. Accessed 2022-06-07.

[4] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review of search-based test-
ing for non-functional system properties. Information and Software Technology, 51(6):957–
976, 2009.

[5] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The
oracle problem in software testing: A survey. IEEE Transactions on Software Engineering,
41(5):507–525, 2015.

[6] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing
advanced driver assistance systems using multi-objective search and neural networks.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 63–74, 2016.

[7] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing
vision-based control systems using learnable evolutionary algorithms. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), pages 1016–1026. IEEE, 2018.

[8] Markus Borg, Raja Ben Abdessalem, Shiva Nejati, François-Xavier Jegeden, and Dongh-
wan Shin. Digital twins are not monozygotic–cross-replicating ADAS testing in two
industry-grade automotive simulators. In 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), pages 383–393. IEEE, 2021.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

61

https://sbst21.github.io/
https://github.com/DEAP/deap/blob/master/deap/tools/crossover.py
https://github.com/DEAP/deap/blob/master/deap/tools/crossover.py
https://carla.readthedocs.io/en/latest/python_api/
https://carla.readthedocs.io/en/latest/python_api/

REFERENCES

[10] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, first
edition, 2001.

[11] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated binary crossover for continuous
search space. Complex Systems, 9(2):115–148, 1995.

[12] Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search (geneas) for
engineering design. Computer Science and Informatics, 26:30–45, 1996.

[13] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization al-
gorithm using reference-point-based nondominated sorting approach, part i: Solving
problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4):577–
601, 2014.

[14] Kalyanmoy Deb and Santosh Tiwari. Omni-optimizer: A generic evolutionary algo-
rithm for single and multi-objective optimization. European Journal of Operational Re-
search, 185(3):1062–1087, 2008.

[15] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017.

[16] Hamid Ebadi, Mahshid Helali Moghadam, Markus Borg, Gregory Gay, Afonso Fontes,
and Kasper Socha. Efficient and effective generation of test cases for pedestrian
detection-search-based software testing of baidu apollo in SVL. In 2021 IEEE Interna-
tional Conference on Artificial Intelligence Testing (AITest), pages 103–110. IEEE, 2021.

[17] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, second
edition, 2015.

[18] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171–2175, jul 2012.

[19] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective optimization using
genetic algorithms: A tutorial. Reliability Engineering System Safety, 91(9):992–1007,
2006. Special Issue - Genetic Algorithms and Reliability.

[20] Siew Mooi Lim, Abu Bakar Md. Sultan, Md. Nasir Sulaiman, Aida Mustapha, and K. Y.
Leong. Crossover and mutation operators of genetic algorithms. International Journal of
Machine Learning and Computing, 7(1):9–12, 2017.

[21] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[22] Mahshid Helali Moghadam, Markus Borg, Mehrdad Saadatmand, Seyed Jalaleddin
Mousavirad, Markus Bohlin, and Björn Lisper. Machine learning testing in an ADAS
case study using simulation-integrated bio-inspired search-based testing. Journal of Soft-
ware: Evolution and Process, n/a(n/a):e2591.

62

REFERENCES

[23] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
branch coverage as a many-objective optimization problem. In 2015 IEEE 8th Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pages 1–10, 2015.

[24] V. Riccio, G. Jahangirova, A. Stocco, et al. Testing machine learning based systems: a
systematic mapping. Empirical Software Engineering, 25:5193–5254, 2020.

[25] Francisca Rosique, Pedro J Navarro, Carlos Fernández, and Antonio Padilla. A sys-
tematic review of perception system and simulators for autonomous vehicles research.
Sensors, 19(3):648, 2019.

[26] Abdel Salam Sayyad and Hany Ammar. Pareto-optimal search-based software engineer-
ing (posbse): A literature survey. In 2013 2nd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE), pages 21–27, 2013.

[27] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. A practical guide to
select quality indicators for assessing pareto-based search algorithms in search-based
software engineering. In 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), pages 631–642, 2016.

[28] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering, 48(1):1–36, 2022.

63

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-08-24

EXAMENSARBETE Generating Synthetic Scenarios to Test an AI-Enabled Traffic Measurement System
STUDENT Elias Sjöberg
HANDLEDARE Markus Borg (LTH)
EXAMINATOR Per Runeson (LTH)

Simulering av trafiksituationer för
testning av ett AI-system

POPULÄRVETENSKAPLIG SAMMANFATTNING Elias Sjöberg

Den pågående utvecklingen inom AI har gjort det möjligt att samla in och analysera
trafikdata på ett helt nytt sätt. I detta examensarbete har simulerade trafiksituationer
genererats för att testa ett AI-system som samlar in trafikdata.

De senaste årens utveckling inom AI har revolu-
tionerat flera teknikområden. Företaget Viscando
använder sig av modern AI-teknik för att göra
trafiken i våra städer smartare, säkrare och mer
hållbar. Genom att samla in och analysera stora
mängder data över rörelsemönster hos fotgängare,
bilar och cyklister kan slutsatser dras för till ex-
empel var, när och hur olyckor sker, bilköer up-
pstår eller trafikförseelser begås. Dessa slutsatser
kan sedan användas för att utvärdera och utveckla
rådande infrastruktur. Allt detta är möjligt tack
vare Viscandos AI-system OTUS3D, som placeras
ut där man vill samla in trafikdata.

Syftet med detta examensarbete var att bidra
till utvecklingen av OTUS3D genom att försöka
hitta trafiksituationer där detta AI-system under-
presterar. För att bättre kunna styra över trafik-
situationer att testa så simulerade vi dessa i en
digital miljö. Därför byggde vi en digital modell
(se bild) över en korsning i Lindholmen i Göte-
borg där ett exemplar av OTUS3D finns utplac-
erat; målet var att den simulerade miljön skulle
vara så lik den riktiga som möjligt. Därefter an-
vände vi en sökalgoritm för att på ett så effektivt
sätt som möjligt anpassa de simulerade trafiksitu-
ationerna och på så sätt hitta de situationer som
resulterade i störst fel hos OTUS3D.

Utifrån resultaten kunde vi identifiera några
egenskaper hos trafiksituationerna som resulter-
ade i att OTUS3D uppvisade särskilt stora fel.
Dels visade det sig att bilar, cyklister och fotgän-
gare som rörde sig på vissa platser skapade prob-
lem. Likadant var det i situationer där bilar och
cyklister blockerade varandra och i situationer där
skuggor försämrade sikten. Solhöjd, molnighet
och färg på bilarna verkade inte påverka felen
i lika hög utsträckning. Vår bedömning är att
det finns stora möjligheter att i framtiden bygga
vidare på dessa resultat; dels för att ytterligare
kunna fastslå vilka trafiksituationer som skapar
särskilt stora fel och dels för att kunna avgöra
vilka fel i den simulerade miljön som är mest över-
förbara till verkligheten.

	Introduction
	Research questions
	Contributions and related work

	Background
	Evolutionary Algorithms
	Mutation
	Crossover
	Parent selection
	Elitism
	Multiobjective optimization
	A Genetic Algorithm: NSGA-II
	Assessing the solutions

	Approach
	The system under test
	The CARLA simulator
	DEAP
	Creation of the digital model
	Creation of trajectories
	Defining a traffic scenario
	Setting the position of the sun
	Objective functions
	Overview of the experimental setup

	Evaluation
	Experimental setup
	Results
	Discussion
	Answering the research questions
	Contributions
	Lessons learned and limitations

	Conclusions
	References

