
MASTER’S THESIS 2023

Evaluating Similarity-Based
Refactoring Recommendations
Emma Ericsson

ISSN 1650-2884
LU-CS-EX: 2023-46

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-46

Evaluating Similarity-Based Refactoring
Recommendations

Utvärdering av likhetsbaserade
refaktoriseringsrekommendationer

Emma Ericsson

Evaluating Similarity-Based Refactoring
Recommendations

Emma Ericsson
ine15eer@student.lu.se

November 6, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Markus Borg, markus.borg@cs.lth.se
Emil Aasa, emil.aasa@codescene.com

Examiner: Emma Söderberg, emma.soderberg@cs.lth.se

mailto:ine15eer@student.lu.se
mailto:markus.borg@cs.lth.se
mailto:emil.aasa@codescene.com
mailto:emma.soderberg@cs.lth.se

Abstract

Within recommendation systems, there is a well-known problem of not hav-
ing the required information for making recommendations, the cold start prob-
lem. CodeScene’s refactoring recommendations are based on earlier refactoring
within a project and therefore, this problem occurs when almost no refactoring
has been carried out in the project. Our goal is to evaluate how existing sim-
ilarity measures can be used to identify similar source code from open-source
software projects that have been improved through refactoring operations. Pre-
senting such examples to developers could prove inspirational to CodeScene,
and thus offer a way forward for CodeScene’s refactoring recommendation fea-
ture. 1,438 refactored methods were collected with CodeScene from top-starred
Java projects on GitHub. Four approaches to measuring source code similarity
from previous research were evaluated on this dataset. We found Levenshtein
distance and code2vec representation of code together with cosine distance to
be the most promising. Furthermore, we designed a user study with 10 realistic
refactoring tasks accompanied by similar refactorings from other projects in the
dataset. Based on interviews with five senior developers, we conclude that there
are indications that cross-project similarity-based refactoring recommendations
could be useful. Finally, developers find that good recommendations shall be
short, concise and self-contained.

Keywords: refactoring, refactoring recommendations, similarity, code2vec, Levenshtein
distance

2

Acknowledgements

I would like to thank:

Markus Borg, for being an incredible supervisor. I am grateful for your generous support
and also for challenging me. I appreciate that you have taken the time to discuss different
aspects of the thesis and given me recurring feedback throughout the whole process.

Emil Aasa, for your ideas and data collection.

Tjaša Heričko, for inspiring the research.

CodeScene, for the opportunity to make this thesis in collaboration with you.

I would also like to thank the CodeScene developers who helped us in the evaluation.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Problem Description . 8
1.3 Research Question . 10
1.4 Contribution . 10
1.5 Outline . 10

2 Theory 11
2.1 Refactoring . 11
2.2 Code Smells . 11
2.3 Recommendation Systems . 12
2.4 Similarity Measures . 12

2.4.1 Code2vec . 13
2.4.2 JPlag . 13
2.4.3 Jaccard Distance . 14
2.4.4 Levenshtein Distance . 14

3 Related Work 15
3.1 Similarity . 15

3.1.1 Metric-Based Approaches . 15
3.1.2 Text-Based Approaches . 15
3.1.3 Token-Based Approaches . 16
3.1.4 Tree-Based Approaches . 16
3.1.5 Graph-Based Approaches . 16
3.1.6 Other Approaches . 16

3.2 Refactoring Recommendations . 16

4 Method 19
4.1 Pilot Experiment . 20

4.1.1 Similarity Measures . 21

5

CONTENTS

4.2 Data Collection . 22
4.3 Processing of Data . 22
4.4 Similarity Calculations . 24
4.5 User Interviews . 24

4.5.1 Selecting Examples . 25

5 Result 27
5.1 Pilot Experiment . 27
5.2 Similarity Calculations . 31
5.3 User Interviews . 33

5.3.1 Example 1 . 34
5.3.2 Example 2 . 36
5.3.3 Example 3 . 39
5.3.4 Example 4 . 41
5.3.5 Example 5 . 43
5.3.6 Example 6 . 46
5.3.7 Example 7 . 49
5.3.8 Example 8 . 51
5.3.9 Example 9 . 54
5.3.10 Example 10 . 58
5.3.11 Summary of the Examples . 61
5.3.12 What Is a Good Refactoring Recommendation? 62

6 Discussion 65
6.1 RQ1 – How Well Do Similarity Measures Work in the Context of Code-

Scene’s Refactoring Recommendations? . 65
6.2 RQ2 – How Do Senior Developers Perceive Similarity-Based Refactoring

Recommendations? . 66
6.3 Limitations . 68

7 Conclusions 69
7.1 Future Work . 69

References 71

Appendix A Manually Created Example Methods for Pilot Experiment 77

Appendix B User Interview Manuscript 95

6

Chapter 1

Introduction

In this chapter, we will provide context for the thesis. We will firstly present some back-
ground (Section 1.1) and then go through the current problem (Section 1.2) and the goal of
the thesis, including our research questions (Section 1.3). In the end of the chapter we will
go through our contributions (Section 1.4) and the outline (Section 1.5) for the report.

1.1 Background
This master’s thesis is carried out in collaboration with the company CodeScene. The Code-
Scene tool is a software engineering intelligence tool that identifies and prioritises technical
debt for software projects to improve their efficiency [7]. It highlights a behavioural dimen-
sion of the software project by analysing the developers’ interaction with the codebase. In
the tool, four factors are used to visualise and understand the source code. Those are code
health, knowledge distribution, team-code alignment and delivery [10].

Code health is a central concept in the tool. It is a metric that is aggregated based on
more than 25 factors that are known to correspond with an increased risk for bugs and higher
maintenance costs [9]. CodeScene measures the code health of the codebase and displays it
through different perspectives to show the status of the codebase. An example can be seen in
Figure 1.1.

In the tool different views can be entered to look into different aspects of the software.
For example, in the hotspots tab the files that are changed most often can be seen. In the
code health tab the files are classified according to their code health. In the refactoring tab
a combination of the hotspots tab and code health tab is showed meaning that the files are
classified according to how often they are changed and how complex they are. This view can
help out with the prioritisation of the improvement work. The files that are most critical
(illustrated in red) can be further examined by identifying issues on the function level. The
functions with issues are suitable for refactoring.

Refactoring implies changing the code to improve its inner structure without changing its

7

1. Introduction

Figure 1.1: A snapshot of the tool CodeScene.

external behaviour [14]. By refactoring the code it can be easier to understand and maintain
the software and therefore decrease the maintenance costs [25]. More information about
refactoring can be found in Section 2.1.

CodeScene carries out automatic code reviews on the code to detect code smells (po-
tential problems in the code, see Section 2.2). When a code smell is detected a refactoring
recommendation will be presented. Usually a static pre-determined example will be shown.
Though if the project has a lot of history with earlier refactorings the example could in-
stead be picked from there. That is, previous changes in the project that have resulted in
improved code health for the same code smell [8]. A supervised machine learning model
predicts whether the previous refactoring is likely to be helpful or not.

1.2 Problem Description
The refactoring recommendations are based on earlier refactorings performed within the
project and therefore the recommendation pool is limited. This is a problem for projects
where almost no refactorings have been carried out. This kind of problem has existed for a
long time in recommendation systems research. It is called the cold start problem [15] and is
basically the problem of not having the required information for making recommendations.
Gope, J. and Jain, S.K. [15] have examined different solutions to gather the missing informa-
tion and found that the solutions could be categorised as explicit and implicit solutions. The
explicit solutions are solutions that interact with the user to collect the desired information,
which could be done by letting the users answer questions in a questionnaire or rate items.
The implicit solutions are on the other hand trying to interact as little as possible with the
user. Here the information is collected through already existing information as demographics
and information from social media.

We will go for an implicit solution which is illustrated in Figure 1.2. Our solution is to
increase the pool of refactoring recommendations by finding similar refactored methods in
other projects. To find similar methods we will use different similarity measures.

8

1.2 Problem Description

Figure 1.2: An illustration of the solution where similar refactored
methods in other projects are used as refactoring recommendations.

The solution is further illustrated in Figure 1.3. Our idea is to collect a set of refactored
methods with both the source code from before and after the refactoring. We call the methods
from before refactoring pre-methods and after refactoring post-methods. A method could be
picked from the set of pre-methods and be compared to the other methods in the set. Then
the post-method to the most similar method would serve as a refactoring recommendation.

Figure 1.3: An illustration of how pre-methods are compared to use
the most similar pre-method’s post-method as a refactoring recom-
mendation.

9

1. Introduction

1.3 Research Question
The goal of this master’s thesis is to evaluate how existing similarity measures can be used
to identify similar methods from open-source software projects for refactoring recommenda-
tions. The goal is also to propose a way forward for CodeScene’s refactoring recommendation
feature. The following research questions form the basis of the work:

• RQ1 How well do similarity measures work in the context of CodeScene’s refactoring
recommendations?

• RQ2 How do senior developers perceive similarity-based refactoring recommenda-
tions?

1.4 Contribution
This thesis contributes with an analysis of existing similarity measures and an evaluation of
two of them in the context of refactoring recommendations. It also contributes with knowl-
edge about how senior developers perceive similarity-based refactoring recommendations.

The author has carried out the work with guidance from the supervisors. The industrial
supervisor helped out with collecting the data with CodeScene. The academic supervisor has
supported with feedback throughout the whole process and was part of creating codes and
themes in the thematic analysis.

1.5 Outline
In Chapter 2, we address the theory needed to understand the report. This covers the three
concepts refactoring, code smells and recommendation systems, and the similarity measures
that will be used in the thesis. Work related to the thesis on similarity and refactoring rec-
ommendations we present in Chapter 3. In Chapter 4 we describe the methodology of the
thesis. This includes a pilot experiment, data collection, data processing, similarity calcula-
tions and user interviews. The result is presented in Chapter 5 and discussed in Chapter 6
where limitations of the thesis are also described. Chapter 7 contains conclusions from the
thesis and suggestions for further work.

10

Chapter 2

Theory

In this chapter, we will go through important concepts to understand the implementation
of the thesis. First, we will dig deeper into refactoring (Section 2.1), code smells (Section 2.2)
and recommendation systems (Section 2.3). Then we will go through the different similarity
measures (Section 2.4) that are used in the thesis.

2.1 Refactoring
As the software grows due to the implementation of new features and modifications, it be-
comes more complex and usually departs from the original design [25]. Therefore the majority
of the development cost is spent on the maintenance of the code. To prevent this, the com-
plexity of the code needs to be reduced by restructuring or refactoring the code. According
to Fowler refactoring is: “the process of changing a software system in such a way that it does
not alter the external behaviour of the code yet improves its internal structure” [14]. This
is done by reorganising classes, variables and methods to make forthcoming adaptations and
extensions easier [28]. If the refactoring is performed well it improves the quality of the code
and makes it easier to understand, change, maintain and evolve.

2.2 Code Smells
Code smells are different kinds of design problems that could be recurring in the code [28].
Those code smells often make the software harder to understand, maintain and evolve [33].
The code smells are often introduced due to bad design and implementation practices and
could be introduced during either the initial design or the development process [28]. Apart
from bad design decisions, they could also be introduced due to ignorance or time pressure.
Refactoring is an efficient way of fixing code smells.

11

2. Theory

In literature, a lot of different code smells can be found but in this thesis, we are focusing
on five function-level code smells that CodeScene detects. Those are bumpy road ahead, com-
plex method, deep nested complexity, excess number of functions and large method. A description of
each of them can be found in Table 2.1.

Table 2.1: The five CodeScene code smells investigated in the thesis.

Code Smell Description
Bumpy Road Ahead The method has several chunks of nested con-

ditional logic [6].
Complex Method The method consists of many conditional

statements as if, while and for. This is mea-
sured with cyclomatic complexity [24] with a
threshold of 9 for Java.

Deep, Nested Complexity The method has if statements inside loops
and/or other if statements.

Excess Number of Function Arguments This indicates either that the function has too
many responsibilities (low cohesion) or that
it misses an abstraction that encapsulates the
arguments. [11] The threshold for Java is four
function arguments.

Large Method The method contains many lines of code. The
threshold for Java is 70 lines of code.

2.3 Recommendation Systems
A recommendation system is a system that through recommendations assists the user in their
decision-making when being faced with a lot of information [35]. By knowing the preferences
of the users the system can navigate in the large information space and recommend items of
interest. The system can offer novelty, surprise and relevance.

In software engineering this could be about a developer trying to find a desired class from
hundreds of libraries. Recommendation systems for software engineering are used for several
activities as for reuse of code, writing effective bug reports and, as in our case, refactoring.
To help out with the refactoring task, a recommendation system can provide a user with
examples of code improvements done by other developers, potentially in other projects, to
inspire similar actions for the task at hand.

2.4 Similarity Measures
In this thesis four different measures are used to identify how similar methods are. Those
measures are code2vec together with cosine distance (Section 2.4.1), JPlag (Section 2.4.2),
Jaccard distance (Section 2.4.3) and Levenshtein distance (Section 2.4.4).

12

2.4 Similarity Measures

2.4.1 Code2vec
Code2vec is a neural model that represents snippets of code as vectors [2]. One snippet of
code is represented as one fixed-length vector with 384 dimensions. The vectors demonstrate
the semantic characteristics of the code meaning that semantically similar code snippets are
closer to each other in vector space. This is demonstrated in the paper by Alon et al. [2] by
the model predicting names for methods. The code of a method is used as input and then
code2vec outputs predicted names. The task of predicting names was evaluated by training
the model on 12 million methods. When Alon et al. compared their approach to previous
approaches using the same dataset, they saw an improvement of 75 percent.

To get the code vector, the code snippet is first parsed into an abstract syntax tree (AST).
Then the paths between the leaves in the AST are collected. Every path is represented as
a vector, a path vector. The tokens where the path begins and ends are represented as two
different token vectors. The path vector and the two token vectors are then combined into
a vector, one for every path vector in the AST. With some further processing these become
vectors called path-contexts. In the paper Alon et al. give an example of how the path-context
could look like for the expression x = 7. The arrows indicate up and down links in the tree:

〈x, (NameExpr ↑ AssignExpr ↓ IntegerLiteralExpr), 7〉

To get a vector for the whole code snippet, an attention approach is used, meaning a
weighted average of the path-contexts. This final vector is the code vector.

Cosine Distance
To measure how close different code vectors are to each other in the vector space we used
cosine similarity. Cosine similarity is the cosine of the angle between two vectors. The vectors
must be the same size and can be calculated according to the following formula:

cosines(A, B) =
A · B
∥A∥ ∥B∥

(2.1)

If the vectors are identical the angle will be 0 degrees and therefore the cosine similarity
will be 1. If the angle is 90 degrees the cosine similarity will be 0 and -1 for an angle of 180
degrees.

To get the cosine distance the cosine similarity is subtracted from one as in the following
formula:

cosined(A, B) = 1 − cosines(A, B) (2.2)

In the rest of this thesis, we will treat code2vec and cosine distance as one measure and
thereby refer to it as code2vec + cosine distance (or c2v+cos).

2.4.2 JPlag
JPlag [31] is a plagiarism tool that compares a set of programs through pairwise comparison.
It has been used for finding plagiarism within student groups.

When running JPlag, the input is a set of programs. Every program is parsed and con-
verted into token strings. JPlag tries to capture the program’s structure and ignores elements

13

2. Theory

as comments, whitespace and identifiers as well as putting semantic information into tokens
where it is possible. For every program pair the token strings are pairwise compared. This
is done as Greedy String Tiling [44] which means that JPlag tries to cover a token string with
substrings from the other token string. The similarity value is how much of the token strings
that can be covered, expressed in percentage.

2.4.3 Jaccard Distance
Jaccard index was introduced by Paul Jaccard under the name coefficient de communauté [29]
in 1901. It is defined as the intersection of two sets divided by the union of the sets [43] as in
the following formula:

Jaccardi(A, B) =
|A ∩ B|
|A ∪ B|

(2.3)

Jaccard index has a value between 1 and 0 where the sets are very similar if the index is
close to 1 and very dissimilar if the index is close to 0.

For strings, n-grams can be used to make up the sets. For example the string similarity
with 1-gram is {s,i,m,i,l,a,r,i,t,y}.

While Jaccard index shows similarity Jaccard distance shows dissimilarity [43]. To get the
Jaccard distance the Jaccard index is subtracted from one as for the cosine distance:

Jaccardd(A, B) = 1 − Jaccardi(A, B) (2.4)

2.4.4 Levenshtein Distance
Levenshtein distance calculates the distance between two strings by how many substitutions,
deletions and insertions that have to be done to change one string to the other [41]. An ex-
ample could be illustrated with the strings dissimilar and similar. The first three letters
have to be deleted to change dissimilar into similar and therefore the Levenshtein dis-
tance is 3.

14

Chapter 3

Related Work

In this chapter, we will review work related to the thesis to broaden the context. First, we will
give an overview of existing similarity approaches for comparing code (Section 3.1). Then,
we will also highlight studies that are related to refactoring recommendations (Section 3.2).

3.1 Similarity
There are a lot of different ways to measure similarity in code. Ragkhitwetsagul et al. [32]
have in their study compared 30 similarity tools and techniques. They have classified different
similarity techniques according to what approach they are based on. These approaches are:
metric-based, text-based, token-based, tree-based and graph-based.

3.1.1 Metric-Based Approaches
The metric-based approaches compare source code using different metrics [20] [47]. Otten-
stein [27] used this approach in a tool for plagiarism detection which was based on Halstead
complexity measures [16]. Those measures are the number of unique operators, the number
of unique operands, the total number of occurrences of operators and the total number of
occurrences of operands. Kasper and Godfrey [19] compared a metric-based method to a pa-
rameterized string matching method for code cloning and concluded that the clones from
the parameterized string matching method were more useful. The accuracy of this approach
is low since too much information about the structure disappears [47].

3.1.2 Text-Based Approaches
The text-based approaches are based on comparison of sequences of strings [32]. These ap-
proaches are able to find identical copies of source code but do not effectively detect similar

15

3. Related Work

source code with semantic and syntactic modifications. An example of a tool that uses text
comparison is NiCad [36] as well as the measure Levenshtein distance [41].

3.1.3 Token-Based Approaches
In token-based approaches the source code is transformed into tokens before comparison [26].
Ragkhitwetsagul et al. [32] give an example of this where the tokens are on word level, mean-
ing that every word is replaced by a token, W. In this case both the expression int x = 0;
and the expression String s = "Similarity"; will be represented as W W = W. By defin-
ing the tokens differently a different abstractions level will be captured. CCFinder [18] and
SourcererCC [37] are examples of clone detection tools that use token-based approaches.
Both of them detect clones with different identifier names and have been shown to be effi-
cient on million lines of code. Here we also find JPlag [17] as well as Jaccard distance [29].

3.1.4 Tree-Based Approaches
Tree-based approaches transform the source code into a tree structure and then sub-trees
are compared [32]. Usually Abstract Syntax Trees (ASTs) are used. These approaches focus
on structural similarity and can therefore avoid lexical differences and formatting. Though,
they have high computational complexity. An example of a clone detection tool that uses
ASTs is CloneDR [3]. This tool tackles the problem with high computational complexity by
categorising sub-trees with hash values.

3.1.5 Graph-Based Approaches
Graph-based approaches transform the source code into graphs before comparison [47]. Com-
monly used graphs are program dependency graphs (PDG) and control flow graphs (CFG).
Apart from structure, graph-based approaches also capture the semantics [32]. Those ap-
proaches do not work well on large systems [4] and as for the tree-based approaches the
graph-based approaches have high computational complexity [32]. Examples of tools with
graph-based approaches are one invented by Krinke [22] and another invented by Komondoor
and Horwitz [21].

3.1.6 Other Approaches
Karakatič et al. [20] use Hausdorff distance on code2vec embeddings to estimate semantic
similarity between Java-based libraries. Their study showed that the semantic similarity
could effectively be captured by this approach. This study was a big inspirational source
for the thesis.

3.2 Refactoring Recommendations
In this section, we will highlight four studies that are related to refactoring recommendations.
One of them is using code2vec and one Jaccard distance, which are measures that we also will

16

3.2 Refactoring Recommendations

use.
Ouni et al. [28] introduce an automated search-based refactoring recommendation tool

called MORE. The tool is based on the non-dominated sorting genetic algorithm NSGA-II
and gives recommendations from the perspective of improving software quality, fixing code
smells and introducing design patterns.

Alizadeh et al. [1] introduce an interactive refactoring recommendation tool that dynam-
ically adapts and gives recommendations based on developers’ feedback. This tool also uses
NSGA-II in its recommendations. NSAG-II is used to find good refactoring solutions that
improve the code quality while still trying to stay close to the initial design. From those so-
lutions interesting similarities are collected, as frequently occurring refactorings. Based on
these, refactorings are proposed, in ranked order, to the developer who can accept, decline or
modify the refactoring. The feedback from the developer is used to change the current rank-
ing and for future refactoring recommendations. When evaluating the tool on eight open-
source projects and two industrial projects, the tool performed significantly better than four
search-based refactoring approaches and one tool that is not based on heuristic search.

Tsantalis and Chatzigeorgiou [40] carried out a study about Move Method refactoring.
Move method refactoring means moving the method from the current class to the class where
it is commonly used [23]. This is one of the most popular refactoring types. In the study Tsan-
talis and Chatzigeorgiou are using Jaccard distance to decide the distance between a method
and a class. They concluded that using Jaccard distance to measure how well methods are
placed in classes can be helpful as a basis for ranking refactoring recommendations for Move
Method refactoring. This is one of the studies that the Eclipse plug-in tool Jdeodorant [39]
is based on.

Kurbatova et al. [23] use code2vec to recommend Move Method refactorings. Potential
methods and classes were represented as vectors with code2vec and then the current method
were concatenated with one class vector at a time. The concatenated vector were fed through
a probability classifier to decide whether the method should be moved to the class. Kurbatova
et al. evaluated their approach on one dataset of well-known open-source projects where the
methods were moved manually and one dataset of projects with automatically injected code
smell instances. This showed that their approach recommended accurate refactorings and
outperformed state-of-the-art tools as JDeodorant and JMove.

17

3. Related Work

18

Chapter 4

Method

In this chapter, we will go through the methodology for solving the defined problem in Sec-
tion 1.2. An overview of this phase can be seen in Figure 4.1. Initially, we examined manually
created example methods to figure out how the different similarity measures performed on
those (Section 4.1). To examine how the different similarity measures performed on real
methods, we collected data from open source Java projects (Section 4.2). From this data, we
retrieved methods (Section 4.3) which were used for making similarity calculations (Section
4.4). Some of those methods were also used for evaluating how well the similarity measures
work for refactoring recommendations and to explore how developers perceive similarity-
based refactoring recommendations. This was done in user interviews (Section 4.5).

Figure 4.1: Overview of the method process

19

4. Method

4.1 Pilot Experiment
As a first step, we used the similarity measures on our own manually created example methods
to examine how the different similarity measures performed and if they classified the same
methods as similar.

To do this we created 39 small methods which can be seen in Appendix A. They were all
derived from a method addition which simply calculates the addition of two input num-
bers. To this method, different things were added as a for loop, if statement or a try...catch
block. In some methods the method or parameters were renamed. There were also methods
that had multiple for loops or if statements or a combination. The content in for loops and
if statements could also be different and the order of the for loops and if statements.

We ran the test in two versions. In Test 1, we used the methods that only were changed
in one way meaning, adding a for loop or adding an if statement etc. Those are referred to
as M1-M16 in the appendix. All methods were compared to each other. In Test 2, methods
with several changes were added as several for loops, one for loop and one if statement etc.
Those are referred to as M1-M39 which means that all methods were included in Test 2.

To allow comparisons, we encoded our intuitive understanding of source code similarity.
This can be seen in Figure 4.2. We posit that something is almost similar if only something
small is changed, such as a renaming of the method or a parameter. Then it is a little bit more
dissimilar if something is changed in for example a for loop. Even more so if more identical
for loops are added. One step further away if something in turn is changed within those
added for loops. If we change a for loop to something similar, for example a while loop, we
take another step away from similarity. If we change the for loop to something less similar,
such as a try...catch block, we would take another step away from similarity. The goal of
the pilot experiment was to investigate to what extent the selected similarity measures reflect
our similarity intuition.

Figure 4.2: The intuitive understanding.

20

4.1 Pilot Experiment

4.1.1 Similarity Measures
We compared the methods using different similarity measures. Those were code2vec + cosine
distance, the similarity score provided by JPlag, Jaccard distance and Levenshtein distance.
More information about those can be found in Section 2.4.

We selected measures that differed from each other in various ways to see results from
different interpretations of similarity. Levenshtein distance is text-based and code2vec is a
neural model which captures semantic similarity. Jaccard distance and JPlag are both token-
based tools. JPlag differed in the way that it is a plagiarism tool and thus refactoring recom-
mendations is not its usual area of use.

Code2vec + Cosine Distance
For code2vec + cosine distance, the Java methods were transformed into vectors by code2vec
and then compared with cosine distance. We used the pre-trained model that is referred to
in code2vec’s readme on GitHub [38]. This has been trained for 8 epochs on a pre-processed
dataset with around 14 million Java methods. Before using code2vec, we made some changes.
Firstly, we changed code2vec so we got the code vectors as output instead of the name pre-
dicting vectors. Then we changed how the input was processed. Instead of changing an input
file we made code2vec parse all the files in a folder structure. We also changed the output
format. The code vectors were saved to a Pandas dataframe, which was saved as a csv file.

We examined the similarity of the vectors by using the cosine distance between the vec-
tors. The dataframes from the csv files were imported and converted to numpy arrays. Then
we calculated the cosine distance between every vector. For this we used SciPy’s cosine dis-
tance.

JPlag
For JPlag we cloned the JPlag repository [17] in Google Colab and used Conda to use Java
version 17. The input format for JPlag is a class, therefore we encapsulated every method in
public class Example. We put all the files in a folder and compared them to each other.
When running JPlag we used the default sensitivity.

Levenshtein Distance and Jaccard Distance
For Jaccard distance and Levenshtein distance we used multidistances.jl [34] We ran the pro-
gram with the default settings. The runs were made locally on a computer through Docker.
Here we also compared every file to each other.

For every similarity measure, we calculated the distances between every Java method and
every other Java method. From this, we made one distribution for every similarity measure.
For every measure apart from JPlag, we made a distance matrix which includes the distances
between every method and every other method, including the method itself. This was used
for a mantel test to see the correlations between measures. We used scikit-bio’s mantel
test with Spearman’s correlation. The result can be seen in Section 5.1.

21

4. Method

4.2 Data Collection
To examine how the different similarity measures performed on real Java methods, we col-
lected a dataset of Java refactoring commits that fix code smells. An illustration of the data
collection process can be seen in Figure 4.3. The refactored methods were collected from the
606 Java repositories with the most stars on GitHub. First, the repositories were identified.
This was done by a curl query that collected the repositories from GitHub with the language
Java, in descending order, with the most stars on May 31, 2023.

Then, CodeScene was run on the repositories. When doing this we used several criteria
based on previous experience within the company. The refactoring should add more than
zero lines of code and less than 100. The refactoring should also delete fewer lines of code
than 100. Further, the refactoring should result in a code health improvement that is more
than 0.1.

From the repositories, we collected both pre-methods and post-methods. We also col-
lected the names of the methods, what kind of code smell was fixed for every method, what
repository it belonged to, how many lines had been added and deleted in the different refac-
torings, the date of the commits and an ID for the refactoring. In total, we collected 4,230
Java refactorings.

Figure 4.3: Data collection process

4.3 Processing of Data
To retrieve the methods we went through different stages which can be seen in Figure 4.4.

The processing of the data and analysis were carried out in Google Colab. First, we
discarded refactorings that did not belong to the code smells in Table 2.1. Then, we removed
all but the last refactoring of every method. We decided to never include a method more than
once, i.e., methods that were refactored several times only appear once in the dataset. This

22

4.3 Processing of Data

decision was made to avoid including different versions of the same method multiple times
in the dataset – we wanted to avoid this bias in the dataset. After this step, we had 2,475
methods left.

The whole file for the methods was collected so we had to separate the desired methods
from the files. The files with the methods were decoded from base64. Then we identified
the desired method in every file with javalang [5] and saved the code. Javalang is a lexer and
a parser for Java source code. Every method was saved to a Java file, named by the ID of the
method. Methods that could not be identified were discarded. After this stage we had 1,861
methods.

Methods that could not be converted to code2vec vectors were discarded. Files that could
not be converted were rejected by code2vec due to reasons such as invalid characters and lex-
ical errors. This could for example be that a method was not properly parsed or begun with
an asterisk. After this, we had 1,660 methods. Some methods were divided into several vec-
tors by code2vec. Since we couldn’t associate a refactoring in a method with a specific vector
when multiple vectors were present, we chose to exclude methods with multiple vectors. Af-
ter that we had 1,466 methods. For some projects there were identical methods or code clones
in different places of the project. To have a set of unique methods we removed those which
led to a set of 1,438 unique methods.

The methods were categorised according to what code smell they contained. This led to
438 methods with bumpy road ahead, 587 with complex method, 359 with deep, nested complexity,
203 with excess number of function arguments and 44 with large method. Since a method can
contain several code smells there is some overlap between the code smells. The overlap can
be seen in the GitHub repository for the thesis [12]. The methods come from 163 projects.

Figure 4.4: Number of methods at every stage.

23

4. Method

4.4 Similarity Calculations
In this phase, we made calculations on our collected pre-methods. As for the manually cre-
ated methods in the pilot experiment, we investigated the distributions for every similarity
measure and analysed how the different similarity measures correlate. At this step, we used
the measures code2vec + cosine distance, Jaccard distance and Levenshtein distance. To anal-
yse the correlations, we used SciPy’s stats.skewtest. The result can be seen in Section 5.2.

4.5 User Interviews
In this phase, we wanted to evaluate the similarity measures and learn how senior developers
perceive refactoring recommendations selected based on different similarity measures. The
evaluation consisted of five individual interviews with developers from CodeScene where
the interviewees were told to express their thoughts about different refactoring recommen-
dations. The interviews were conducted remotely and relied on screen sharing.

For the task, the interviewees got an example of some code that they were going to get
familiar with. This was a pre-method. After that, they got two Examples of Refactoring
Recommendations (ExRR). One of the ExRRs was the refactoring of a pre-method that was
close to the example according to code2vec + cosine distance and the other ExRR was the
refactoring of a pre-method that was close to the example according to Levenshtein distance.
The ExRRs were designed as git commits where lines that had been removed were marked
in red and lines that had been added in green. Then we asked which one of the ExRRs was
the most helpful as a refactoring recommendation. In total, ten pre-method examples were
displayed (two from each code smell). The experimental examples were prepared in a slide
deck using standard syntax highlighting of the source code. The two ExRRs were presented
in random order.

When carrying out the interviews, we followed a manuscript that can be seen in Ap-
pendix B. We started by giving the interviewees a brief background of the thesis project, i.e.,
we explained that we studied refactoring recommendations but did not mention code simi-
larity measures. We also asked for their consent to record the interview and use their answers
for the thesis. Then we asked about their Java experience and their high-level understanding
of refactoring. Before presenting any examples, we told the interviewees to have the perspec-
tive that it is Friday and a clean-up day at the office and that they have the whole day to
improve some code that they have not had time to refactor before. At the end of the inter-
view, after discussing the 10 examples, we asked what they thought was a good refactoring
recommendation and if they wanted to add something that came up during the interview.

To validate our design, we conducted a pilot experiment to check whether the 10 exam-
ples were a suitable amount of tasks for an interview session. The thesis student and the
academic supervisor independently conducted the pilot experiment using their own laptops.
We concluded that ten examples was an appropriate number, more than ten methods would
be hard to assess in one single interview session.

The interviews followed a Think Aloud Protocol which means that the interviewees were
asked to share their thoughts while carrying out the tasks [45]. The interviews were con-
ducted remotely via Google Meet. Three of the interviews were held in Swedish and two in
English. All interviews were recorded and those conducted in English were also automatically

24

4.5 User Interviews

transcribed by Google’s provided service.
Information about the interviewees can be found in Table 4.1. They had between 26 and

6 years of professional development experience. Four of the developers were men and one
was female. For confidentiality reasons, we do not share more information.

Table 4.1: Overview of the interviewees.

Interviewee Role Years of experience Java Experience
P1 Senior developer 15 Substantial
P2 Tech lead 19 Limited
P3 Tech lead 26 Some
P4 Senior Developer 15 Substantial
P5 Senior Developer 6 Limited

After the interviews, the Swedish interviews were transcribed and the English transcrip-
tions from Google were corrected. The transcriptions were sent to the interviewees for val-
idation. Each interviewee’s answer was summarised for every example and ExRR and put
in a mind map. General things that the interviewees pointed out were also transferred to
the mind map. From the mindmap, we conducted a thematic analysis [13]. We analysed the
statements and started creating low-level codes that emerged in the process. We refined the
set of codes in a coding workshop involving the thesis student and the academic supervisor.
Once we had coded all transcripts once, we revisited them a second time to ensure that all
statements were consistently coded using the final version of the codes. The codes and their
descriptions can be seen in Table 4.2. After the coding, we created high-level themes. Those
are presented in Section 6.2.

4.5.1 Selecting Examples
In this section, we describe how we selected the ten examples and their ExRRs.

When selecting the ten examples, we selected pre-methods carefully to mitigate con-
founding factors related to code comprehensibility [46]. We started by looking at the length
of the methods. We selected methods between 30 and 35 lines of code except for the two ex-
amples for large method (which inevitably had to be longer). We wanted to have a fixed length
for the methods to eliminate its impact while comparing the examples. Further, methods be-
tween 30 and 35 lines easily fit on a single screen which eliminates the need for scrolling.

Before selecting ExRRs we had to create their visual presentations. To do this, we first
pushed the pre-methods to GitHub and then the post-methods. Then we used the git dif-
ferences as ExRRs. When selecting the ExRRs, we tried to choose examples that were as
close to the example as possible (according to code2vec respectively Levenshtein distance)
while they should 1) not be too long, 2) not have been changed in too many places (frag-
mented changes) and 3) be reasonably simple (based on the first author’s subjective opinion).
Since we wanted to examine the possibility of using refactoring recommendations from other
projects, all ExRRs were selected from projects different from the example provided.

The selected examples and their ExRRs are presented in the results in Section 5.3.

25

4. Method

Table 4.2: Low-level codes.

Low-level codes Description
Explain example When an interviewee explains what the intervie-

wee sees in one of the ten examples.
Explain expectation When an interviewee expresses what the intervie-

wee thinks or expects to receive as a refactoring
recommendation for the given example.

Conclude example When an interviewee concludes their thoughts.
Function extraction When an interviewee talks about extracting a part

of the method.
Structural reasoning/control flow When an interviewee talks about the structure of

the code or the control flow.
Missing context/unclear conse-
quences or actions

When an interviewee expresses that context is
missing or the interviewee does not understand
the refactoring recommendation or its conse-
quences.

Inspiration/some value When an interviewee expresses that the refactor-
ing recommendation is inspirational, add some
value or points in the right direction but does not
meet the expectations.

Trivial example/no value/irrelevant When an interviewee expresses that the refactor-
ing recommendation is too trivial to help, adds
no value or is irrelevant.

Code removal When the interviewee states that code has been
removed.

Size of recommendation/presentation When an interviewee talks about the size of the
refactoring recommendation or how it is pre-
sented.

Not applicable here When an interviewee expresses that the refactor-
ing recommendation does not fit the current ex-
ample.

Functionality change When an interviewee expresses that the function-
ality has been changed.

Concise and easy to comprehend When an interviewee expresses that a refactoring
recommendation is concise and easy to compre-
hend.

Good recommendation When an interviewee expresses that a refactoring
recommendation is a good recommendation for
the current example

Similarity When an interviewee sees similarities between
the example and the refactoring recommenda-
tion.

Parameter object When an interviewee talks about creating a pa-
rameter object.

26

Chapter 5

Result

In this chapter, the results from the pilot experiment, similarity calculations and user inter-
views will be presented. First, the result from the pilot experiment (Section 5.1) is presented
where the manually created methods were analysed (see M1-M39 in Appendix B). The pi-
lot experiment is also presented with a comparison between the similarity measures for the
most similar method pairs among the manually created example methods according to the
intuitive understanding (Figure 4.2). Then the result from the similarity calculations on the
collected methods from the Java projects are presented (Section 5.2). Those parts are pre-
sented with distributions and correlations. Finally, the results from the user interviews are
presented (Section 5.3). In this part, each example from the interviews will be described with
a summary of the interviewees’ answers.

5.1 Pilot Experiment
In this section, we present the different distributions for Test 1 and Test 2 (Figure 5.1). In
those we compared the manually created example methods to each other. For Test 1 M1-
M16 are included and for Test 2 M1-M39 are included. Then, we present the ranking of
the different similarity measures for the most similar method pairs according to our intu-
itive understanding (Table 5.1). We will also present the correlation between the different
measures (Table 5.2).

In Figure 5.1, the result from code2vec + cosine distance can be seen. For the first test,
the distances between the methods appears spread, but as more methods with more changes
are added, the distribution becomes skewed toward lower scores, i.e., more similar methods.

In Figure 5.2, the result from Jaccard distance can be seen. For both the first and the
second test, the distances between the methods are spread. Though the methods appears to
be more dissimilar according to Jaccard distance than code2vec + cosine distance in the first
test.

In Figure 5.3, the result from Levenshtein distance can be seen. For the first test, the

27

5. Result

Figure 5.1: The normalised distributions of the methods in the pilot
experiment for Test 1 and Test 2 when using code2vec + cosine dis-
tance as a similarity measure. The x-axis shows the intervals for the
distances between every method on a scale from zero to one. The
y-axis shows the frequency of value occurrences.

Figure 5.2: The normalised distributions of the methods in the pilot
experiment for Test 1 and Test 2 when using Jaccard distance as the
similarity measure. The x-axis shows the intervals for the distances
between every method on a scale from zero to one. The y-axis shows
the frequency of value occurrences.

distribution appears to be skewed toward lower scores, i.e., more similar methods. For the
second test, the distribution has no clear shape.

In Figure 5.4, the result from JPlag can be seen. Instead of a distance, JPlag outputs
the percentage of plagiarism for every method pair in the pairwise comparison. Four Java
methods (M1, M13, M15 and M16), were not accepted by JPlag since they contain fewer tokens
than the allowed minimum. Therefore, they are not part of the distributions. According to
JPlag most methods are considered as dissimilar. The output format from JPlag was not
suitable for further analysis and therefore, we chose to continue without JPlag.

In Table 5.1, the most similar method pairs, with their ranking, can be seen according to
the intuitive understanding in Figure 4.2. The higher ranking (lower number) of a method
pair, the smaller is the distance between them. Those are also ranked according to the intu-

28

5.1 Pilot Experiment

Figure 5.3: The normalised distributions of the methods in the pilot
experiment for Test 1 and Test 2 when using Levenshtein distance
as the similarity measure. The x-axis shows the intervals for the dis-
tances between every method on a scale from zero to one. The y-axis
shows the frequency of value occurrences.

Figure 5.4: The distributions of the methods in the pilot experiment
for Test 1 and Test 2 (except M1, M13, M15 and M16) when using
JPlag as the similarity measure. The x-axis shows the intervals for
the percentage of plagiarism for every method pair. The y-axis shows
the frequency of value occurrences.

itive understanding, code2vec + cosine distance, Jaccard distance and Levenshtein distance.
For Test 1, the lowest ranking was 120 and for Test 2, the lowest ranking was 741.

When looking at code2vec + cosine distance, renaming of a method is ranked first for
both tests, as for the intuitive understanding. The method pair addForLoop and addForLoopV2
is ranked as number two in both tests. Therefore, this change of a for loop is also considered
as a small change according to code2vec + cosine distance. What stands out is the changes of
a parameter. Renaming, adding and deleting a parameter gets a very low ranking compared
to the intuitive understanding which means that code2vec + cosine distance consider those
actions as a big change while the intuitive understanding does not. Other than that, the
ranking for code2vec + cosine distance is not that different from the intuitive understanding
in the first test while it differs more in the second test.

29

5. Result

Jaccard distance also ranked the method pair addForLoop and addForLoopV2 as number
two but Jaccard distance’s number one is the change from five lines of printing statements
to ten lines of printing statements. This change, from five lines to ten, stands out for Leven-
shtein distance. It is considered as a big change compared to the intuitive understanding
and the other method pairs for Levenshtein distance. Other than that, Levenshtein dis-
tance consider the current method pairs as highly ranked in both tests apart from addFor-
LoopV2X3+IfStatementX3 and addForLoopV3X3+IfStatementX3 and addForLoopX3+IfStatementV3X3
and addForLoopX3+IfStatementX.

Table 5.1: The most similar method pairs according to the intu-
itive understanding, with ranking for the intuitive understanding,
code2vec + cosine distance, Jaccard distance and Levenshtein dis-
tance. The higher ranking (lower number) of a method pair, the
smaller is the distance between them.

Test 1
method 1 method 2 Intuitive C2v+cos Jacc Lev

Underst. Dist. Dist. Dist.
M1: addition M15: renameMethod 1 1 45 3
M1: addition M16: renameParameter 1 99 18 3
M4: addForLoop M5: addForLoopV2 3 2 2 1
M6: addIfStatement M7: addIfStatementV2 3 7 6 2
M1: addition M8: addParameter 5 29 12 5
M1: addition M13: deleteParameter 5 70 19 5
M3: addFiveLines M10: addTenLines 5 5 1 102
M4: addForLoop M12: addWhileLoop 8 16 14 13
M5: addForLoopV2 M12: addWhileLoop 8 15 13 13
Test 2
method 1 method 2 Intuitive C2v+cos Jacc Lev

Underst. Dist. Dist. Dist.
M1: addition M15: renameMethod 1 1 453 5
M1: addition M16: renameParameter 1 676 279 5
M4: addForLoop M5: addForLoopV2 3 2 37 1
M6: addIfStatement M7: addIfStatementV2 3 44 122 2
M25: addForLoopV2X3 M24: addForLoopV2X3 3 19 88 5
+IfStatementX3 +IfStatementV2X3
M25: addForLoopV2X3 M26: addForLoopV3X3 3 99 81 70
+IfStatementX3 +IfStatementX3
M30: addForLoopX3 M31: addForLoopX3 3 46 132 118
+IfStatementV2X3 +IfStatementV3X3
M30: addForLoopX3 M32: addForLoopX3 3 21 81 5
+IfStatementV2X3 +IfStatementX3
M31: addForLoopX3 M32: addForLoopX3 3 29 116 97
+IfStatementV3X3 +IfStatementX3

In Table 5.2, the correlations between the different similarity measures can be seen, when

30

5.2 Similarity Calculations

they are applied to the manually created example methods (M1-M39). The correlation be-
tween code2vec + cosine distance and Jaccard distance is moderate while the correlation be-
tween Levenshtein distance and Jaccard distance is weak. The correlation between code2vec
+ cosine distance and Levenshtein distance is very weak.

Table 5.2: Correlation between the similarity measures in the pilot
experiment.

Similarity measures Correlation coefficient P-value
Levenshtein - Jaccard 0.347 0.001
Code2vec + Cosine - Jaccard 0.444 0.001
Code2vec + Cosine - Levenshtein 0.152 0.015

5.2 Similarity Calculations
In this section, we will present the different distributions that we received when compar-
ing all of the pre-methods to every other pre-method with the different similarity measures
(Figure 5.5). In total, the number of pairwise comparisons presented in the following figures
are 1,033,203. We will also present the correlations between the similarity measures (Table
5.3).

In Figure 5.5, the distribution for code2vec + cosine distance can be seen. The z-score for
the skewtest is -204 and the p-value is 0. Therefore, the distribution is negatively skewed. In
this case, there are a few pairs of methods that are more similar than others.

In Figure 5.6, the distribution for Jaccard distance can be seen. The z-score for the
skewtest is 60 and the p-value is 0. Therefore, this distribution is slighlty positively skewed.

In Figure 5.7, the distribution for Levenshtein distance can be seen. The z-score for the
skewtest is 673 and the p-value is 0. Therefore, this distribution is a positively skewed which
means that the majority of the methods are considered similar to each other according to
Levenshtein distance.

We also calculated the correlation between the different similarity measures. Those can
be seen in Table 5.3. The correlation between Levenshtein distance and Jaccard distance is
negative and very weak. The correlation between cosine distance and Jaccard distance is
positive and very weak, even though it is a bit higher. There is no significant correlation
between code2vec + cosine distance and Levenshtein distance.

Table 5.3: Correlation between similarity measures when using
methods from top-starred Java projects on GitHub.

Similarity measures Correlation coefficient P-value
Levenshtein - Jaccard -0.089 0.001
Code2vec + Cosine - Jaccard 0.139 0.001
Code2Vec + Cosine - Levenshtein 0.006 0.511

For the evaluation, we wanted a set-up that resembles the envisioned future user experi-
ence in CodeScene. Therefore, we wanted to show one ExRR at a time. To be able to compare

31

5. Result

Figure 5.5: The normalised distribution of the pre-methods when
using code2vec + cosine distance as similarity measure. The x-axis
shows the intervals for the distances between every pre-method on
a scale from zero to one. The y-axis shows the frequency of value
occurrences.

Figure 5.6: The normalised distribution of the pre-methods when
using Jaccard distance as the similarity measure. The x-axis shows
the intervals for the distances between every pre-method on a scale
from zero to one. The y-axis shows the frequency of value occur-
rences.

32

5.3 User Interviews

Figure 5.7: The normalised distribution of the pre-methods when
using Levenshtein distance as the similarity measure. The x-axis
shows the intervals for the distances between every pre-method on
a scale from zero to one. The y-axis shows the frequency of value
occurrences.

ExRRs without having them side by side, we thought that two ExRRs would be manageble
to keep in mind. We wanted to continue with two measures that interpreted similarity dif-
ferently. Code2vec + cosine distance and Levenshtein distance seemed to interpret similarity
differently since the distribution for code2vec + cosine distance is clearly negatively skewed
while the distribution for Levenshtein distance is clearly positively skewed. Thus, those were
good candidates. Code2vec + cosine distance and Jaccard distance had the strongest corre-
lation for both the GitHub methods and for the pilot experiment. Therefore, we wanted
only one of them. According to this, and that code2vec is considered as state-of-the-art for
measuring code similarity at the time, we chose to continue with code2vec + cosine distance
and Levenshtein distance.

5.3 User Interviews

In this section, we will present all ten examples that were part of the user interviews. For every
example, we will first present the distances between the example and the ExRRs. Then, we
will summarise the interviewees’ answers regarding ExRR A, then regarding ExRR B and
then regarding who preferred which ExRR. In the end of every example we will also reflect
on the findings.

In the end of the section, we will summarise the findings (Section 5.3.11) and address
what the interviewees thought was a good refactoring recommendation (Section 5.3.12).

33

5. Result

5.3.1 Example 1
The first example contains the code smell bumpy road ahead and can be seen in Figure 5.8.

Figure 5.8: Example 1 in the user interviews.

Option A is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.9. The Levenshtein distance between this ExRR’s pre-method and the example is
1,084 and the code2vec + cosine distance is 0.885. It is ranked as number 14,967 for Leven-
shtein distance and 25,083 for code2vec + cosine distance. The total number of ranked pairs
is 93,434, which represents the number of pairwise combinations between methods within
the code smell bumpy road ahead that are not originating from the same project.

Option B can be seen in Figure 5.10. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.594. The Levenshtein distance is
1,497. It is ranked as number 200 for code2vec + cosine distance and 35,687 for Levenshtein
distance.

P1 liked A because it "follows some pattern that seems to remove stuff or move logic to a more
appropriate place". P3 and P5 also liked that A extracts parts in the method. P2 and P4 did not
think A was helpful. P2 thought that A did not solve the problem with bumpy road ahead and
that "it probably was part of a bigger refactoring". P4 thought that some code was removed and
would rather have seen a function extraction.

“/. . .Extract a small piece and give it a name and reduce the complexity of this function.. ./” - P3 about A in the first
example

34

5.3 User Interviews

Figure 5.9: Option A for the first example. This was selected as a
close recommendation based on Levenshtein distance. The Leven-
shtein distance is 1,084 and the code2vec + cosine distance is 0.885.

Figure 5.10: Option B for the first example. This was selected as
a close recommendation based on code2vec + cosine distance. The
code2vec + cosine distance is 0.594 and the Levenshtein distance is
1,497.

“/. . .Here, it feels like it just removes a bit of the condition in the example in the previous one and it’s not at all sure
that it’s fully applicable to what you can do in the actual code here. Because in it, I think that there you probably get
more work to do with breaking out functions.. ./” - P4 about A in the first example

For B, both P3 and P1 claimed that the change in B is not a big change, or basically the
same. P2 thought that B gives you an idea of where to start but that it is a bit too simple to
solve the problem in the example. P4 thought that B is a good refactoring but not applicable
to this example.

35

5. Result

“/. . .structurally it looks good, we have changed an else and a nested if statement that was empty to an else if, it will
be a little better but is really the same thing.. ./” - P1 about B in the first example

“/. . .the example that we have with the bumpy road is much more complex and so this might help you get started down
the right path, I guess, but it’s quite a bit simpler than what you need for solving the problem in the example.. ./” - P2
about B in the first example

P1 and P3 preferred A whereas P2 and P5 preferred B. When forced to make a choice, P4
preferred A.

In the first example, the interviewees were divided about which ExRR was the best one.
Three interviewees preferred A and two B. In A three people perceived that code had been
extracted while one perceived that it only had been removed. In B we interpret that two of
the interviewees considered B too trivial to be helpful.

5.3.2 Example 2
The second example also contains the code smell bumpy road ahead and can be seen in Fig-
ure 5.11.

Figure 5.11: Example 2 in the user interviews.

Option A is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.12. The Levenshtein distance between this ExRR’s pre-method and the example is

36

5.3 User Interviews

Figure 5.12: Option A for the second example. This was selected as
a close recommendation based on Levenshtein distance. The Leven-
shtein distance is 1,113 and the code2vec + cosine distance is 0.992.

1,113 and the cosine distance is 0.992. It is ranked as number 16,181 for Levenshtein distance
and 62,033 for code2vec + cosine distance.

Option B can be seen in Figure 5.13. It is a close recommendation according to code2vec
+ cosine distance and has a code2vec + cosine distance of 0.424. The Levenshtein distance is
1,178. It is ranked as number 26 for code2vec + cosine distance and 18,945 for Levenshtein
distance.

In A P1, P3, P4 and P5 pointed out that a part of the code is extracted. P3 and P4 expressed
that something similar could be done in the example. P1 thought this could be good and P4
thought that this is good. P4 said that: "It was still, spontaneously, quite a good example of what
can be broken out and simplified.". P2 thought that A would be a bit hard to apply to the example.
P2 thought that A could be used as inspiration but it does not tell the developer where to
begin and therefore it can be difficult to use if the developer is a novice developer.

“/. . . So, we removed 15 lines of code and extracted it to a method which is good. . . /” - P5 about A in the second
example

“/. . .I would say this is kind of inspirational in the sense that people should see this and start looking for ways to do the
same thing. It doesn’t really provide you with, I’m thinking if someone is new to refactoring or might not know, this
doesn’t really tell them where to start, but it does kind of give you an idea.. ./” - P2 about A in the second example

37

5. Result

Figure 5.13: Option B for the second example. This was selected as
a close recommendation based on code2vec + cosine distance. The
code2vec + cosine distance is 0.424 and the Levenshtein distance is
1,178.

P2 thought that B " looks a lot more similar to the example" while P1 did not think that the
loop structure in B matched the loop structure in the example. P2 thought that B generally
is a good example of refactoring bumpy road ahead but pointed out that the developer have to
think a lot itself. P1 pointed out that B is a lot to read and P5 pointed out that a lot of code
has been removed. P3 stated that the behaviour also had been changed in B.

“/. . . This is not only a refactoring but it has also slightly changed the behaviour in some way, error handling which
has been introduced here. In this case, I would have preferred the first one. It’s a little cleaner refactoring. This
one I have to sit down and think about what is actually refactored here. What is refactoring and what is handling
exceptions?. . . /” - P3 about B in the second example

P3, P4 and P5 preferred A and P2 preferred B. P1 did not think that any of the examples
were helpful but had a slight preference for A. P5 preferred A since P5 understood A bet-
ter since it contains less code. P4 also expressed that it was hard to translate an unrelated
recommendation to solve the problem, even though it solved the same code smell.

In this example, four interviewees preferred A while one preferred B. Four of the inter-
viewees thought that a part of the code was extracted in A. Those four were the same four
that preferred A. For B the reasoning was quite divided.

38

5.3 User Interviews

5.3.3 Example 3
The third example contains the code smell complex method and can be seen in Figure 5.14.

Figure 5.14: Example 3 in the user interviews.

Option A can be seen in Figure 5.15. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.524. The Levenshtein distance is
988. It is ranked as number 481 for code2vec + cosine distance and 22,347 for Levenshtein
distance. The total rank is 167,850, which represents the number of pairwise combinations
between methods within the code smell complex method that are not originating from the
same project.

Option B is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.16. The Levenshtein distance between this ExRR’s pre-method and the example is
990 and the code2vec + cosine distance is 0.852. It is ranked as number 22,507 for Levenshtein
distance and 26,665 for code2vec + cosine distance.

P3 and P4 noted that the switch statement is replaced with some kind of datatype. P3
pointed out that this was a good idea but was not sure if P3 would have done this type of
refactoring in all situations. P4 thought that A is good, simple, and that something similar
should be done in the example. P5 stated that A is very good and readable. P2 thought that A
is what the example should look like when the refactoring is done but it is up to the developer
refactoring to come up with how to get there. P2 addressed that some knowledge and skills
are required for that.

39

5. Result

Figure 5.15: Option A for the third example. This was selected as a
close recommendation based on code2vec + cosine distance. The the
code2vec + cosine distance is 0.524 and Levenshtein distance is 988.

Figure 5.16: Option B for the third example. This was selected as a
close recommendation based on Levenshtein distance. The Leven-
shtein distance is 990 and the code2vec + cosine distance is 0.852.

“Okay, so this is really good, this is really readable. So you have not so much repetition of the code and you have
exactly the action types. You can see them really clearly. And the final method, the edgeTypeByActionType is so
simple. So this is a good example of refactoring.” - P5 about A in the third example

P1, P2, P3 and P4 thought that B was not relevant or not applicable to the example. P2
thought that B does not fix the real problem and pointed out that it could be used for only a
part of the code. P3 thought that the example probably has another cyclomatic complexity.
P5 was not sure why this was a refactoring example at all.

40

5.3 User Interviews

“/. . . That didn’t say much, I must say.. . . /” - P4 about B in the third example

Everyone preferred A. P2 preferred A since P2 thought it points in the right direction
while P2 thought that B is more detailed.

For example 3, everyone agreed that A was more helpful. However, there was a difference
in how much they liked A. We interpret that everyone found B irrelevant. We interpret that
everyone was slightly positive to A and quite negative to B, i.e., A was a clear winner.

5.3.4 Example 4
The fourth example also contains the code smell complex method and can be seen in Figure 5.17.

Figure 5.17: Example 4 in the user interviews.

Option A is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.18. The Levenshtein distance between this ExRR’s pre-method and the example is
947 and the code2vec + cosine distance is 0.930. It is ranked as number 19,371 for Levenshtein
distance and 66,045 for code2vec + cosine distance.

Option B can be seen in Figure 5.19. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.474. The Levenshtein distance is
1,405. It is ranked as number 420 for code2vec + cosine distance and 58,342 for Levenshtein
distance.

P2 did not think that A was that useful since it was hard to understand if the code was
only simplified or if the behaviour also was changed. P3 did not think that A is helpful since

41

5. Result

Figure 5.18: Option A for the fourth example. This was selected as
a close recommendation based on Levenshtein distance. The Leven-
shtein distance is 947 and the code2vec + cosine distance is 0.930.

Figure 5.19: Option B for the fourth example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.474 and the Levenshtein distance is 1,405.

functionality has been removed and the cyclomatic complexity decreased as a result of that. P4
thought that A is somehow relevant but P4 would rather oneself figure out how to extract
code. P5 expressed confusion as to what was happening in A.

“This one is not very helpful because this one has only removed code. Removed a functionality that was there before.
Has reduced its cyclomatic complexity, but it has been reduced because some functionality has been removed here, I
think. Of course, it could have been moved somewhere else, but it’s hard to tell from just the small code snippet, so it’s
not that helpful.” - P3 about A in the fourth example

“Yes. Fairly relevant, but I wouldn’t have looked so much at that example if I had it shown to myself, but I would
probably have sat and figured out for myself how to break out. How to create that entity in this code primarily, and
focus on that instead.” - P4 about A in the fourth example

42

5.3 User Interviews

P2 thought that B was a clear example and that it was an extract method refactoring. P3,
P4 and P5 also noted that a block of logic is extracted. Therefore P5 liked B more. P3 and P5
noted that this change could also be applied to the example.

“A logical block. Instead of having it here, we just extracted it to a method and do all the logic there. So I like this
one. And this all logic will be probably in this getApiException.. ./” - P5 about B in the fourth example

Everyone preferred B. P1 did not like neither A nor B but found B slightly better. P3
pointed out that P3 preferred B since it is a refactoring, but also said that that it is only
inspirational, while A was only removing a snippet of code.

In this example, everyone preferred B but as for the last example there was a difference in
how much they liked B. Two interviewees raised that functionality was removed both in A and
in B. Four interviewees raised that code had been extracted. When looking at that reasoning,
we think that the interviewees choice is aligned with the definition of a refactoring, that the
external behaviour should not be changed.

5.3.5 Example 5
The fifth example contains the code smell deep, nested complexity and can be seen in Figure 5.20.

Figure 5.20: Example 5 in the user interviews.

Option A is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.21. The Levenshtein distance between this ExRR’s pre-method and the example is
1,021 and the code2vec + cosine distance is 0.983. It is ranked as number 5,645 for Levenshtein

43

5. Result

distance and 39,557 for code2vec + cosine distance. The total rank is 62,640, which represents
the number of pairwise combinations between methods within the code smell deep, nested
complexity that are not originating from the same project.

Figure 5.21: Option A for the fifth example. This was selected as a
close recommendation based on Levenshtein distance. The Leven-
shtein distance is 1,021 and the code2vec + cosine distance is 0.983.

Option B can be seen in Figure 5.22. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.441. The Levenshtein distance
is 1,222. It is ranked as number 5 for code2vec + cosine distance and 9,887 for Levenshtein
distance.

44

5.3 User Interviews

Figure 5.22: Option B for the fifth example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.441 and the Levenshtein distance is 1,222.

P1 stated that: "Here we also have quite the same structure" and P2 thought that A was a nice
recommendation since "it does show how they managed to eliminate several layers of conditionals".
P3 noted that A is less nested but have about the same cyclomatic complexity as the example.
P3 did not like A since P3 thought that more should be done in the recommendation and
pointed out parts to extract. P4 also mentioned that A is less nested but that it was: "a lot to
take in to translate that into what you would like to do with this code that you have in front of you".
P5 also thought that A is too long and pointed out that refactoring recommendations should
make it easier and therefore you should not have to spend much time on analysing them.

“I have to do some thinking when I look at this example. Has it gotten easier? It’s less nesting. Obvious. Cyclomatic
complexity is about the same. I think neither before nor after is particularly good. The example after has an if (isBegin)
and a big block that is completely independent of the big block down there. It would have been very easy to split these
blocks into two functions in that case. And then we have things that look very similar, synchronised (listenersMap), in
the example after the refactoring, is refactored but very obvious that you can make things even simpler. That was my
reflection. So I would have looked at that and thought, well, this was no good.” - P3 about A in the fifth example

P1 questioned the helpfulness of B. P2 found B (compared to A) closer to what should be
done in the example but that it is only a small step on the way. P2 thought that somehow you
would want to show both examples. P3 thought that B is a very simple way of reducing the
nesting and thus it does not bring much inspiration. P4 thought that B is short and concise
which P4 found good. P5 thought it was good to combine the if statements instead of having
two since there is no else clause.

“/. . .I would have liked, generally if you refactor these kinds of methods, you want to separate iterating over something
from doing something on what you iterate over. So I would have looked at this one and gone one step further. Picked
out that green in a function. So that the for loops were one thing and what you did with what you iterated over was
another thing.. ./” - P3 about B in the fifth example

45

5. Result

“It was a little kinder. Short and concise. It gets plus points for that alone and also shows how to keep in nesting as
much as possible. So of these two, I definitely think B was the most useful.” - P4 about B in the fifth example

P1 and P2 preferred A. On the contrary, P3, P4 and P5 preferred B. Though P3 would go
further with the refactoring than what is presented in B.

In this example, two interviewees preferred A while three interviewees preferred B. The
reasoning was quite divided but for A, two people raised that the refactoring made the
method less nested and two people raised that they thought that the recommendation was
too long. For B, three interviewees thought it provided little or no inspiration while a few
interviewees were positive to the recommendation.

5.3.6 Example 6
The sixth example also contains the code smell deep, nested complexity and can be seen in
Figure 5.23.

Figure 5.23: Example 6 in the user interviews.

Option A can be seen in Figure 5.24. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.560. The Levenshtein distance is
1,219. It is ranked as number 49 for code2vec + cosine distance and 9,819 for Levenshtein
distance.

Option B is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.25. The Levenshtein distance between this ExRR’s pre-method and the example is

46

5.3 User Interviews

Figure 5.24: Option A for the sixth example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.560 and the Levenshtein distance is 1,219.

1,076 and the code2vec + cosine distance is 0.933. It is ranked as number 6,719 for Levenshtein
distance and 27,668 for code2vec + cosine distance.

P1 did not think that A was helpful with the nesting in the example. P2 thought that A
was a good example and that A is not entirely solving the same problem as in the example
but gives you a general idea. Both P3 and P5 thought that A was a bit hard to absorb due to
the diff view. P3 also thought that A before refactoring is quite trivial and probably a case
where it is easy to reduce the nesting while A after the refactoring is rather complex. P4 and
P5 thought that A was big.

“/. . . This example removes some nesting, it does, but it was quite a lot to take in. Relatively large. Lots of ifs and so
on too. Spontaneously, a bit difficult to translate it to, to apply it to the code example.” - P4 about A in the sixth
example

47

5. Result

Figure 5.25: Option B for the sixth example. This was selected as a
close recommendation based on Levenshtein distance. The Leven-
shtein distance is 1,076 and the code2vec + cosine distance is 0.933.

“/. . . it’s a big example again. So you have to analyse what’s happening here and then you have to see what’s deleted
and what’s added. Maybe a side by side view would be better than the combined one.” - P5 about A in the sixth
example

P1 did not think that B was a perfect match but could bring inspiration for delegating to
another class. P2 thought that B was really suitable due to the reduction from four levels of
conditionals to two. P3 stated that B is more relevant and more similar to the example. P3
explained that instead of having several if statements in the example, those could be extracted
into a function and thereby separated from the inner logic. P3 thought that something similar
was done in B. P4 thought that B is more comprehensible than A and the interviewee would
have done something similar with the example. P5 thought that B was more readable than A
but was not sure if it removed functionality or not.

“Yes, I think the second one is more relevant because even there, there is some type of delegation to another class,
maybe you could be inspired by it a little here but not a spot on example here either, but it is probably difficult to
recommend something good for this that has five ifs in a row with business logic, I don’t expect to be able to get any
good recommendations for this either.” - P1 about B in the sixth example

“/. . . they had four levels of conditionals and now they’ve got it down to two. So this is exactly what needs to happen
in six. I’m not totally sure how they did it. . . /” - P2 about B in the sixth example

Everyone preferred B.
In this example, everyone agreed that B was the better refactoring recommendation. The

reasoning about A differs quite much but some interviewees thought that A was hard to
understand due to the diff view and/or the size of the recommendation. The reasoning for B
also differs.

48

5.3 User Interviews

5.3.7 Example 7
The seventh example contains the code smell excess number of function argument and can be
seen in Figure 5.26.

Figure 5.26: Example 7 in the user interviews.

Option A is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.27. The Levenshtein distance between this ExRR’s pre-method and the example is
986 and the code2vec + cosine distance is 0.727. It is ranked as number 7,591 for Levenshtein
distance and 1,153 for code2vec + cosine distance. The total rank is 19,840 which represents
the number of pairwise combinations between methods within the code smell excess number
of function arguments that are not originating from the same project.

Option B can be seen in Figure 5.28. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.595. The Levenshtein distance is
4,283. It is ranked as number 54 for code2vec + cosine distance and 18,849 for Levenshtein
distance.

P1 liked A since P1 thought that introducing a context object would be a good idea.
P2 and P3 assumed that context contains the parameters that were removed. Therefore P3
thought that A was a good recommendation. P2 pointed out that this kind of solution is used
in those cases. P4 also thought that A was a good example but pointed out that you still have
to insert all this information somewhere. P5 did not think that A was a good recommendation
since it only showed a change from six parameters to two and did not show what context is.

49

5. Result

Figure 5.27: Option A for the seventh example. This was selected as
a close recommendation based on Levenshtein distance. The Leven-
shtein distance is 986 and the code2vec + cosine distance is 0.727.

“Um, exactly. This makes quite a bit of sense. Squeeze multiple things into objects. Then in cases like this, you always
end up having to create a selection context or somehow still get all this information in somewhere. But it’s a good
suggestion, I think.” - P4 about A in the seventh example

P1 and P3 thought that B was about the same type of refactoring as A. However, P3
described B more as a chain since the input object is also passed on to something else. P2
thought that B also works for the task and pointed out that there are not many ways of
reducing the number of function arguments. P5 likes B better since it is shown what is in the
request.

“Yes, and this is probably something similar, but this is a bit more of a chain because here you pass on the object
that you receive to something else as well. That should have been mainly done in the left-hand method as well (the
example). Is also an okay example of what you can do. Which is the best of these then? I do not know. The left method
there doesn’t do much, it just forwards everything. I think both work well here in this case. Take A if I have to choose.
Was a little cleaner.” - P3 about B in the seventh example

P1, P3 and P4 preferred A and P2 and P5 preferred B. P2 preferred B since the original
object was passed down instead of creating a new kind of context object. P3 thought that A
was a bit cleaner than B and therefore preferred A.

50

5.3 User Interviews

Figure 5.28: Option B for the seventh example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.595 and the Levenshtein distance is 4,283.

“/. . . both are good. The first one is better. It actually points to the only solution to this that I know of. When you
have something like this, or rebuild the entire system.” - P1 about A and B in the seventh example

In this example, the interviewees disagreed on which was most helpful but everyone some-
how talked about encapsulating parameters in an object.

5.3.8 Example 8
The eighth example also contains the code smell excess number of function arguments and can
be seen in Figure 5.29.

Option A can be seen in Figure 5.30. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.591. The Levenshtein distance is
2,647. It is ranked as number 44 for code2vec + cosine distance and 17,134 for Levenshtein
distance.

Option B is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.31. The Levenshtein distance between this ExRR’s pre-method and the example is
921 and the code2vec + cosine distance is 0.870. It is ranked as number 6,831 for Levenshtein

51

5. Result

Figure 5.29: Example 8 in the user interviews.

distance and 8,646 for code2vec + cosine distance.
P2 and P4 noted that the method definition is missing. Thus, P2 did not think that

A was a good recommendation. P4 did not think that B was a bad recommendation but
did not think that it was a perfect match for this code smell. P4 also pointed out that in
the process some complexity has been removed. P3 stated that in A, the change probably is
made to change how the objects are connected to each other rather than refactor to get fewer
arguments. Therefore, P3 did not think that B was helpful. P5 did not think that B was an
example of removing the code smell excess number of function arguments.

“Not really maybe. Trying to scroll up a bit to see the function signature up there, it has removed some stuff. Ah, but
it was a decent example anyway. Have removed some complexity in the process. Spontaneously, for this smell, maybe
it wasn’t spot on. Not a bad example, a little big though.” - P4 about A in the eighth example

“Here, I have to think a little more, because here it doesn’t feel like you’ve just refactored, but that you’ve also changed
something, in how they interact. So you may not have done this refactoring in the first place to get fewer arguments
or that you have simplified something, but that you have actually changed how the objects are connected here. I
think this particular one is not very helpful then. It feels more like it has slightly changed the behaviour of how these
different objects are connected.” - P3 about A in the eighth example

P3 thought that B is cleaner than A since the options are encapsulated. P4 expressed that
B is more relevant and useful and pointed out that almost all arguments have been taken care
of.

52

5.3 User Interviews

Figure 5.30: Option A for the eighth example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.591 and the Levenshtein distance is 2,647.

53

5. Result

Figure 5.31: Option B for the eighth example. This was selected as
a close recommendation based on Levenshtein distance. The Leven-
shtein distance is 921 and the code2vec + cosine distance is 0.870.

P1 preferred A whereas P2, P3, P4 and P5 preferred B.
In this example, all but one interviewee preferred B. Two interviewees did not think

that A fit as a recommendation for the code smell. The interviewees also raised that the
recommendation removed complexity and changed how the objects are related. It seems like
more things are happening in the recommendation than only removing the code smell.

5.3.9 Example 9
The ninth example contains the code smell large method and can be seen in Figure 5.32.

Option A is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.33. The Levenshtein distance between this ExRR’s pre-method and the example is
2,207 and the code2vec + cosine distance is 0.839. It is ranked as number 10 for Levenshtein
distance and 182 for code2vec + cosine distance. The total rank is 895 which represents the
number of pairwise combinations between methods within the code smell large method that
are not originating from the same project.

Option B can be seen in Figure 5.34. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.698. The Levenshtein distance
is 4,405. It is ranked as number 45 for code2vec + cosine distance and 684 for Levenshtein
distance.

P1 and P3 expressed that A was a bad recommendation. P1 pointed out that logically

54

5.3 User Interviews

Figure 5.32: Example 9 in the user interviews.

55

5. Result

Figure 5.33: Option A for the ninth example. This was selected as a
close recommendation based on Levenshtein distance. The Leven-
shtein distance is 2,207 and the code2vec + cosine distance is 0.839.

there is no difference in the change. P4 did not think that A says much and thought that A
is rather formatting. P2 and P5 were not sure whether A is a refactoring. P5 thought that
the change in A leads to almost the same results but liked that the code is in one row instead
since it still fits the screen.

“I’m not even sure this is refactoring. Just shuffle some things around almost, they made one string into a constant,
that is good. Other than that it is pretty minimal.” - P2 about A in the ninth example

“/. . . I’m not sure if that can be a refactoring example. I’m not sure how is the large method calculated. Is it the same
if those are in one line or not? According to this, it’s different. . . /” - P5 about A in the ninth example

P1, P4 and P5 pointed out that in B several lines were removed. P1 did not think that B
was inspirational for removing the code smell except removing code. P2 thought that a lot of
context was missing in B and thought that it did not give the developer much information
but showed the developer where the refactoring should end up. P3 and P5 were not sure what
B does.

56

5.3 User Interviews

Figure 5.34: Option B for the ninth example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.698 and the Levenshtein distance is 4,405.

“There is so much context missing here, like why and how they are able to do this. It doesn’t give you much information
but it does point you in the right general idea, what the refactoring ultimately should look like. But obviously there is
so much stuff going on, code they got cut out, something they must be doing somewhere else, but we don’t know why
or how. Maybe this would mean something to someone.” - P2 about B in the ninth example

“Ah, it removes a lot of code anyway. I’d like to see some example where it suggests removing a lot of code and replace
with a function call. I don’t think I saw that in any of these. I wasn’t too keen on any of these suggestions actually.
If someone would be the least bad, it would probably be B, mostly because it rips out quite a lot of code in any case
and maybe collects it somewhere else.” - P4 about B in the ninth example

57

5. Result

P5 preferred A and P1, P2, P3 and P4 preferred B. P3 and P4 pointed out that they did
not like neither A nor B. P3 would like to have better examples and P4 would like to have an
example where a substantial chunk of code was extracted and replaced with a function call.

In this example, four interviewees preferred B. Those four interviewees thought that A
was a bad recommendation. We interpreted that the interviewees also thought that B was
bad.

5.3.10 Example 10
The tenth example also contains the code smell large method and can be seen in Figure 5.35.

Option A can be seen in Figure 5.36. It is a close recommendation according to code2vec
+ cosine distance and has the code2vec + cosine distance 0.771. The Levenshtein distance
is 3,100. It is ranked as number 82 for code2vec + cosine distance and 215 for Levenshtein
distance.

Option B is a close recommendation based on Levenshtein distance and can be seen in
Figure 5.37. The Levenshtein distance between this ExRR’s pre-method and the example is
2,913 and the code2vec + cosine distance is 0.956. It is ranked as number 163 for Levenshtein
distance and 488 for code2vec + cosine distance.

P1 did not think that A was helpful and pointed out that it looks like the code only has
been removed. P2 thought that A is quite detailed and a good recommendation but that it
does not match the example. P3 liked the fact that code had been moved elsewhere which
resulted in a shorter method and thought that A maybe could be used as inspiration. P4 liked
the thought of A and thought it is positive that code has been removed. However, P4 pointed
out that it looks like functionality also has been removed which you do not want when you
refactor. P5 did not understand why A is an example of how to solve the code smell large
method.

“Here, it looks like you just removed something completely, doesn’t help much.” - P1 about A in the tenth example

“I like the idea of this. A bit hard to follow, what is addExtraKeywords? I don’t know, maybe I’m trying to see too
much of the details in it. But it feels like in the example, functionality has also been removed. Maybe it was okay just
when you did this but, not the way you want to think when you sit and refactor yourself. Then I think that then you
have to keep exactly the same functionality. But still, it removes quite a lot of code in any case so it has it going for
it in any case.” - P4 about A in the tenth example

P1 thought that B is better since you could get inspired to extract a function. P2 also stated
that B looks like some kind of extract method and that B is quite a good recommendation
for the example. P3 and P4 also pointed out that code is replaced with a function call and
explained that B is more applicable to the example.

“This one made more sense. Yes, cut out a lot of code and replace with function calls. I like that. Spontaneously, stuff
like I’d like to do with that method on the left (the example). In this case I would definitely say B.” - P4 about B in
the tenth example

58

5.3 User Interviews

Figure 5.35: Example 10 in the user interviews.

59

5. Result

Figure 5.36: Option A for the tenth example. This was selected as
a close recommendation based on code2vec. The code2vec + cosine
distance is 0.771 and the Levenshtein distance is 3,100.

60

5.3 User Interviews

Figure 5.37: Option B for the tenth example. This was selected as a
close recommendation based on Levenshtein distance. The Leven-
shtein distance is 2,913 and the code2vec + cosine distance is 0.956.

“/. . .I prefer this example in that case even though it is a bit different. It’s like that with almost all of these, yes, it must
be a bit of inspiration, then you have to take some more steps on how to use it.” - P3 about B in the tenth example

Everyone preferred B.
In this example, everyone preferred B. In A, three interviewees talked about that code

had been removed, one of them that it was moved elsewhere, but it differed if they thought
the recommendation was helpful or not. When it comes to B, everyone talked about that
code was extracted which they were positive about.

5.3.11 Summary of the Examples
In this section, we will go through a summary of the results from the examples. An overview
can be seen in Table 5.4. The first column shows which example the information relates to
and the second what code smell the example contains. The columns P1-P5 contains the inter-
viewees answers for every example. The columns Sum of Lev and Sum of C2v+cos contains the
total number of interviewees that thought the close recommendation according to Leven-
shtein distance respectively code2vec + cosine distance was most useful. In the bottom of the
table, this is also summarised for all examples. Lev rank (dist) and c2v+cos rank (dist) consists of
the two ExRRs for the example, referred to A) respectively B) according to the designation in
Section 5.3. The first number is the rank and the number in parenthesis is the distance. The

61

5. Result

ExRR that is marked in bold is the one that is selected as a close recommendation according
to the current measure.

For four of the ten examples, highlighted in bold font, all interviewees agreed on which of
the two recommendations that was the most useful. For three examples, everyone apart from
one interviewee agreed on which example was the most useful. Therefore, the interviewees
agreed or almost agreed in seven of ten examples. Two interviewees (P3 and P4) agreed on
which recommendation was the most useful for each example.

There is no indication that one of the measures is better than the other. The Levenshtein
distance recommendations received 27 votes and the code2vec + cosine distance recommen-
dations received 23 votes. For both of the examples with the code smell complex method (exam-
ples 3 and 4), everyone chose the recommendations that were closest according to code2vec
+ cosine distance. This could mean that this distance measure is suitable for the code smell
complex method, but further investigations are needed to confirm this. There were two more
examples that everyone agreed on, one with the code smell deep, nested complexity (example 6)
and one with the code smell large method (example 10). For those, the recommendations were
closest according to Levenshtein distance.

There is no indication that a recommendation is better simply because it is close to the
example according to both measures, neither in general nor for specific code smells. If we are
looking in general, ExRR B for example 2 and ExRR A for example 3 could be considered as
close to the example according to both code2vec + cosine distance and Levenshtein distance.
For example 3, everyone chose A but for example 2, only one interviewee chose B.

If we are looking per code smell, we can look at the examples with complex method again
(example 3 and 4). Here everyone agreed on A in the third example and B in the fourth
example. As stated before, ExRR A for example 3 is close according to both measures, but
that is not the case for ExRR B in example 4.

When looking at the ranking, the code2vec + cosine ranking is in general lower than the
ranking for Levenshtein distance. This is because there are more methods that are consid-
ered as close for Levenshtein distance than for code2vec + cosine distance as can be seen in
Figure 5.5 and Figure 5.7.

5.3.12 What Is a Good Refactoring Recommenda-
tion?

In the end of the interviews, we asked the interviewees what they thought characterised a
good refactoring recommendation.

P2 shared that the challenge when making refactoring recommendations is to present
enough context. P2 pointed out that there are things happening outside of the snippet that
you cannot see and gave the example that when being presented an extract method refactoring,
you do not know if the method is doing what it is supposed to do. Further, P2 thought that
some blanks could be filled in if you are familiar with the context or the code base. P2 raised
a fear of breaking things that already worked and thought that refactoring recommendations
could help with that fear in the sense that they show that someone else has done a similar
refactoring in the past. P2 also stated that seeing the recommendations as inspirational could
be more important than we tend to think.

62

5.3 User Interviews

Table 5.4: An overview of the result from from the examples.

Ex Code P1 P2 P3 P4 P5 Sum Sum Lev C2v+cos
Smell Lev C2v+cos Rank (Dist.) Rank (Dist.)

1 Bumpy A B A A B 3 2 A) 14,967 A) 25,083
(1,084) (0.885)

B) 35,687 B) 200
(1,497) (0.594)

2 Bumpy A B A A A 4 1 A) 16,181 A) 62,033
(1,113) (0.992)

B) 18,945 B) 26
(1,178) (0.424)

3 Complex A A A A A 0 5 A) 22,347 A) 481
(988) (0.524)
B) 22,507 B) 26,665
(990) (0.852)

4 Complex B B B B B 0 5 A) 19,371 A) 66,045
(947) (0.930)

B) 58,342 B) 420
(1,405) (0.474)

5 Deep A A B B B 2 3 A) 5,645 A) 39,557
(1,021) (0.983)

B) 9,887 B) 5
(1,222) (0.441)

6 Deep B B B B B 5 0 A) 9,819 A) 49
(1,219) (0.560)
B) 6,719 B) 27,668
(1,076) (0.933)

7 Excess A B A A B 3 2 A) 7,591 A) 1,153
(986) (0.727)

B) 18,849 B) 54
(4,283) (0.595)

8 Excess A B B B B 4 1 A) 17,134 A) 44
(2,647) (0.591)
B) 6,831 B) 8,646
(921) (0.870)

9 Large B B B B A 1 4 A) 10 A) 182
(2,207) (0.839)

B) 684 B) 45
(4,405) (0.698)

10 Large B B B B B 5 0 215 A) 82
(3,100) (0.771)
B) 163 B) 488
(2,913) (0.956)

All 27 23

63

5. Result

“I think the challenge with refactoring recommendation is that it’s hard to provide enough context. . ./” - P2

P3 expressed that a good refactoring recommendation changes and simplifies the code
without changing the behaviour of the code. Further, P3 expressed that the recommendation
should be solving one small problem that is not dependent on too much refactoring outside
of the snippet that is shown.

“Find examples that restructure, simplify the code without changing its behaviour. Ideally, it should solve a specific
problem... ./” - P3

P4 thought that a good refactoring recommendation should be short and concise to help
the developers get an overview of what they are recommended to do.

“Short and concise example. Because if you get too much, it becomes so difficult to get an overview of what you are
recommended to do. So that these ones, which were a little shorter, I clearly liked better, when they were relevant of
course.” - P4

P5 also thought that a good recommendation should be short and concise and that it
should be easy to follow what has been done to solve the code smell so the developer does
not have to analyse it too much.

“/. . .So short and concise and readable.” - P5

When we asked if there was anything that the interviewees wanted to add, P3 raised a
wish to get a recommendation that fits the context. P3 thought that in test code, the desired
refactorings could differ. Further, P3 thought that it would be good to not only know that
it is a bumpy road ahead but also what was done to create that smell. As an example, P3 came
up with the example of having try...catch blocks and for loops mixed in a method and
thought that the recommendation could be to separate for loops from try...catch blocks.
However, P3 pointed out that this would be harder to accomplish.

During the interview P3 also expressed that the task of choosing which refactoring rec-
ommendation was most helpful was hard since P3 did not feel the need for recommendations.
Further, P3 said that as soon as the example was shown, P3 began to think about approxi-
mately how P3 hoped the recommendations would look like.

64

Chapter 6

Discussion

In this chapter, we will discuss the findings from the result in Chapter 5. This will be done
in relation to the research questions.

6.1 RQ1 – How Well Do Similarity Measures
Work in the Context of CodeScene’s Refac-
toring Recommendations?

In this section, we will discuss how the similarity measures performed together and individ-
ually.

There were indications that similarity-based recommendations could be useful. Among
the similarity-based recommendations, there were recommendations that the interviewees
thought were good. Since the interviewees had to choose between two recommendations, it is
not always clear if they actually thought that the recommendation was useful or if it only was
considered as better than the other. However, there were examples where the interviewees
expressed that they thought that the recommendation was good. Every recommendation
was close to the examples according to at least one of the measures (except for maybe the
examples with large method where the recommendations were not that close since the sample
data only contained 44 methods with this code smell). Thus, we conclude that there were
useful input to developers among recommendations that were close to an example according
to the similarity measures.

The question is whether there also would have been recommendations that the inter-
viewees thought were good if all the recommendations had been far from the examples. By
looking at methods that are similar according to both similarity measures, there is no indi-
cation that the similar ExRRs are better. A few times, the recommendation was mentioned
as similar to the example. Every time an interviewee expressed that a recommendation was
similar to the example, the interviewee also chose that recommendation. If it was classified as

65

6. Discussion

dissimilar, the recommendation was not chosen. This further indicates that similarity-based
recommendations could be useful.

When looking at the similarity measures individually, generally Levenshtein distance and
code2vec + cosine distance interpret different methods as similar but there is no indication
that one of them is better than the other. In the pilot experiment and the similarity calcula-
tions, Levenshtein distance and code2vec + cosine distance had a very weak correlation (Table
5.2) respectively no correlation (Table 5.2). The distributions from the similarity calculations
are positively respectively negatively skewed. Therefore, one might wonder whether the mea-
sures interpret similarity differently. If one of the measures would be better than the others
is hard to say. The Levenshtein distance and code2vec + cosine distance almost got the same
votes by the interviewees in the user study.

In our small user study, code2vec is not as successful for refactoring the code smells bumpy
road ahead, complex method, deep, nested complexity, excess number of function arguments and large
method as for move method refactoring [23]. However, further research has to be conducted
to verify this finding.

6.2 RQ2 – How Do Senior Developers Per-
ceive Similarity-Based Refactoring Rec-
ommendations?

In this section, we will go through differences in how the developers interpreted the examples
and present our high-level themes.

From a top-down perspective, the interviewees mostly agreed, but their reasoning dif-
fered considerably. When analysing their answers on a word-by-word level, it did not seem
like they agreed that much. The interviewees interpreted several recommendations differ-
ently. For example, in some cases when code was removed, some people interpreted that the
code was only removed and some that it was moved somewhere else. Sometimes, the inter-
viewees focus on different things that happened in the code. For example, for ExRR B in
example 2, one interviewee focused on the similarity of the loop structures while one focused
on the functionality change. The interviewees also saw the recommendations from different
perspectives. For example, one interviewee pointed out several times that the refactoring
recommendation probably was not enough for a novice developer, while some interviewees
already before the recommendations expressed what kind of recommendation they hoped
would come.

Based on the coding, we identified four high-level themes that can be seen in Table 6.1.
Those were 1) sentiment/usefulness, 2) motivations why bad, 3) case-specific presentation
and 4) "textbook" refactorings. The sentiment/usefulness includes the codes a) good recom-
mendation, b) inspirational/some value and c) trivial/no value/irrelevant. It provides a scale
for how good a recommendation is, from good to useless where inspirational recommenda-
tions end up somewhere in between.

The interviewees often reasoned about the completeness of the recommendation and
how much information they thought it gave the developer. The interviewees identified rec-
ommendations where the recommendation gave the developer a lot of information. In those
recommendations, they thought the developer was guided through the whole process. The

66

6.2 RQ2 – How Do Senior Developers Perceive Similarity-Based Refactoring Recommendations?

interviewees also identified recommendations with little information. Those could be giving
information in a way that helped the developer getting started with the refactoring or those
could be an example of the end goal of the refactoring. A recommendation could also be
giving so little information that the interviewees thought it was useless. Sometimes, inter-
viewees also said that they did not understand the recommendation. Lack of information or
a good amount of information could explain where a recommendation ends up on the scale
that this theme provides, but there were other explanations too.

Table 6.1: The four high-level themes and their corresponding low-
level codes.

High-level themes Codes
1. Sentiment/usefulness a) Good recommendation

b) Inspirational/some value
c) Trivial/no value/irrelevant

2. Motivations why bad a) Missing context/unclear consequences or actions
b) Functionality change
c) Not applicable here

3. Case-specific presentation a) Size of recommendation/presentation
b) Concise and easy to comprehend
d) Similarity

4. "Textbook" refactorings a) Function extraction
b) Structural reasoning/control flow
c) Parameter object

The theme motivations why bad includes the codes a) missing context/unclear conse-
quences or actions, b)functionality change and c) not applicable here. It provides explana-
tions for why a recommendation is not useful. The case could for example be that unclear
things were going on in the code or that the code or change missed context. As for too lit-
tle information, this may also be a source of not understanding the recommendation. Other
things mentioned was that the functionality was changed and therefore interviewees thought
that the recommendation did not fit as a refactoring recommendation. The interviewees also
raised that a recommendation did not fit the current example as a reason for why it was not
useful.

Case-specific presentation includes a) size of recommendation/presentation, b) concise
and easy to comprehend and c) similarity. The size of the recommendation or the presen-
tation could also be a source of not understanding or thinking that a recommendation is
useful, leading us to the theme case-specific presentation. Two interviewees thought that the
diff view in ExRR B for example 6 made the recommendation hard to understand. Further,
the interviewees did not like large recommendations, while smaller recommendations were
praised for being small. Clear recommendations that did not contain more changes than
fixing the smell were also considered good.

"Textbook" refactorings includes the codes a) function extraction, b) structural reason-
ing/control flow and c) parameter object. For this theme, there were also things that were
highlighted as good. A recurring type of refactoring that was frequently mentioned was func-
tion extraction. This was mentioned for every code smell, except for the excess number of func-
tion arguemnts, and it was mentioned as a positive thing. Either the recommendation was

67

6. Discussion

praised for extracting code or a wish was expressed that the recommendation should have
contained such an operation. Parameter object was another type of refactoring, linked to the
"textbook" refactorings. This was frequently mentioned among the two examples with the
code smell excess number of function arguments but not for other code smells.

What was also recurring was an expression of what kind of recommendation the inter-
viewees expected or what kind of recommendation they would have preferred instead. It
seemed like some of the interviewees did not need recommendations since when they looked
at the examples, they started to talk about how they would refactor the example and what
recommendations they hoped would come. This was more common for some interviewees. It
is possible that the other interviewees thought that the recommendations were more useful
or it is linked to that they had another perspective, as discussed above.

6.3 Limitations
A limitation of the work is the size of the data sample. With a bigger sample, there would
be greater opportunities for investigating the similarity measures. The probability would be
higher to get methods that are more similar to each other according to code2vec + cosine
distance and Levenshtein distance. Especially for large methods, we had to choose ExRRs
with greater distances to the examples than the other code smells due to a small data sample.
The probability would also be higher to get different combinations that one can consciously
explore. One combination could for example be an ExRR that is very close to an example
according to both measures. Another combination could be that the ExRR is close to the
example according to one measure but not the other. A third combination could be that the
ExRR is far away according to both measures. You can also ask yourself if our methods in the
evaluation are close enough to be able to determine if the measures are helpful?

Another limitation is that we check the distance between the example and the pre-
method for the ExRR, but then we evaluate the refactoring. The similarity measure is thus
linked to how the method looked before it was refactored. The refactorings can be more or
less well implemented, which affects the result.

The thesis only investigates a limited number of similarity measures. Therefore, other
measures could have given another result. All methods are in Java. The result could be differ-
ent for other languages. The experience of the developers is somehow spread but they are still
considered as a group of senior developers. We do not know if novice developers would in-
terpret the recommendations the same way. The developers also work on the same company
and could therefore have common ideas about refactoring recommendations. Furthermore,
the developer work on a tool for improving code comprehension and therefore they could be
more aware of refectorings than senior developers from other companies.

68

Chapter 7

Conclusions

The purpose of the thesis was to evaluate how existing code similarity measures could be
used to identify similar methods from open-source software projects for refactoring recom-
mendations. Also, to explore a potential way forward for CodeScene’s refactoring recom-
mendations. To do this, different similarity measures were identified in the literature and
evaluated on manually created example methods and methods from top-starred Java projects
on GitHub. For the manually created methods, the measures were evaluated with our in-
tuitive understanding (Figure 4.2) and for methods from Java methods, the measures were
evaluated qualitatively with senior developers from CodeScene.

The qualitative evaluation also examined how the developers interpret refactoring rec-
ommendations. This showed that the developers preferred recommendations that are short,
clear and easy to comprehend. The interviewees also wished for recommendations that only
solve the current code smell and do not contain other changes. As few changes as possible
should occur outside of the recommendation shown – the changes should ideally be self-
contained. The similarity measures encode different aspects of similarity but there is no in-
dication that one of them is better than the other for refactoring recommendations. On the
other hand, there were indications that similarity-based recommendations could be useful.
To get a better picture, the area needs to be investigated further.

7.1 Future Work
As a first step, we suggest to interview more developers to see if new things arise. It would
also be interesting to examine how novice developers interpret refactoring recommendations
since they are probably the group most in need of this type of support.

For better understanding if the similarity measures are helpful for refactoring recommen-
dations, a quantitative analysis could be conducted to examine whether a pattern emerges
for recommendations considered as similar versus recommendations considered as dissimi-
lar. This study should include more developers, automated data collection using a dedicated

69

7. Conclusions

tool, a bigger sample of methods and evaluate more examples.
The rapid development of artificial intelligence could lead to AI taking over a substantial

part of refactoring. Early results are promising [30] [42]. At first, AI-based refactoring will
be for small local code smells which means that the human will be needed for more bigger
complex refactorings. However, this focus is in line with what our interviewees prefer –
recommendations that are small and local. From this point of view, our findings encourage
more work on AI-based refactorings.

70

References

[1] Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel Ó Cinnéide,
Ali Ouni, and Yuanfang Cai. An Interactive and Dynamic Search-Based Approach
to Software Refactoring Recommendations. IEEE Transactions on Software Engineering,
46(9):932–961, September 2020. Conference Name: IEEE Transactions on Software
Engineering.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning distributed
representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):40:1–
40:29, January 2019.

[3] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using ab-
stract syntax trees. In Proceedings. International Conference on Software Maintenance (Cat.
No. 98CB36272), pages 368–377, November 1998. ISSN: 1063-6773.

[4] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. Com-
parison and Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineer-
ing, 33(9):577–591, September 2007. Conference Name: IEEE Transactions on Software
Engineering.

[5] c2nes. c2nes/javalang: Pure python java parser and tools. Available at https://
github.com/c2nes/javalang (2023/10/09).

[6] CodeScene. Code health – how easy is your code to maintain and evolve? Avail-
able at https://codescene.io/docs/guides/technical/code-health.html
(2023/06/15).

[7] CodeScene. Codescene documentation - getting started. Available at https://
codescene.io/docs/getting-started/index.html (2023/04/20).

[8] CodeScene. Codescene documentation - refactoring recommenda-
tions. Available at https://codescene.io/docs/guides/technical/
refactoring-recommendations.html (2023/04/20).

71

https://github.com/c2nes/javalang
https://github.com/c2nes/javalang
https://codescene.io/docs/guides/technical/code-health.html
https://codescene.io/docs/getting-started/index.html
https://codescene.io/docs/getting-started/index.html
https://codescene.io/docs/guides/technical/refactoring-recommendations.html
https://codescene.io/docs/guides/technical/refactoring-recommendations.html

REFERENCES

[9] CodeScene. Codescene’s code health metric. Available at https://codescene.com/
code-health (2023/05/03).

[10] CodeScene. From code to delivery: The 4 factors model. Available
at https://codescene.io/docs/4f-dashboard/4-factors-dashboard.html
(2023/05/19).

[11] CodeScene. Virtual code review. Available at https://codescene.io/projects/
1690/jobs/231817/results/code/hotspots/biomarkers?name=Mvc%
2Fsrc%2FMicrosoft.AspNetCore.Mvc.ViewFeatures%2FViewFeatures%
2FHtmlHelper.cs (2023/10/09).

[12] Codescene-research. Similarity-refactorings. Available at https://github.com/
codescene-research/similarity-refactorings (2023/11/01).

[13] Daniela S. Cruzes and Tore Dyba. Recommended Steps for Thematic Synthesis in Soft-
ware Engineering. In 2011 International Symposium on Empirical Software Engineering and
Measurement, pages 275–284, September 2011. ISSN: 1949-3789.

[14] Fowler M. Refactoring. Addison-Wesley Professional, 1999.

[15] Jyotirmoy Gope and Sanjay Kumar Jain. A survey on solving cold start problem in
recommender systems. In 2017 International Conference on Computing, Communication and
Automation (ICCCA), pages 133–138, May 2017.

[16] Halstead, Maurice H. Elements of software science (operating and programming systems
series). Elsevier Science Inc, 1977.

[17] jplag. jplag/jplag: Token-based software plagiarism detection. Available at https:
//github.com/jplag/JPlag (2023/06/28).

[18] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software Engi-
neering, 28(7):654–670, July 2002. Conference Name: IEEE Transactions on Software
Engineering.

[19] Cory Kapser and Michael W Godfrey. Toward a Taxonomy of Clones in Source Code:
A Case Study. Evolution of large scale industrial software architectures, 16:107–113, 2003.

[20] Sašo Karakatič, Aleksej Miloševič, and Tjaša Heričko. Software system comparison with
semantic source code embeddings. Empirical Software Engineering, 27(3):70, March 2022.

[21] Raghavan Komondoor and Susan Horwitz. Using Slicing to Identify Duplication in
Source Code. In Patrick Cousot, editor, Static Analysis, Lecture Notes in Computer
Science, pages 40–56, Berlin, Heidelberg, 2001. Springer.

[22] J. Krinke. Identifying similar code with program dependence graphs. In Proceedings
Eighth Working Conference on Reverse Engineering, pages 301–309, October 2001. ISSN:
1095-1350.

72

https://codescene.com/code-health
https://codescene.com/code-health
https://codescene.io/docs/4f-dashboard/4-factors-dashboard.html
https://codescene.io/projects/1690/jobs/231817/results/code/hotspots/biomarkers?name=Mvc%2Fsrc%2FMicrosoft.AspNetCore.Mvc.ViewFeatures%2FViewFeatures%2FHtmlHelper.cs
https://codescene.io/projects/1690/jobs/231817/results/code/hotspots/biomarkers?name=Mvc%2Fsrc%2FMicrosoft.AspNetCore.Mvc.ViewFeatures%2FViewFeatures%2FHtmlHelper.cs
https://codescene.io/projects/1690/jobs/231817/results/code/hotspots/biomarkers?name=Mvc%2Fsrc%2FMicrosoft.AspNetCore.Mvc.ViewFeatures%2FViewFeatures%2FHtmlHelper.cs
https://codescene.io/projects/1690/jobs/231817/results/code/hotspots/biomarkers?name=Mvc%2Fsrc%2FMicrosoft.AspNetCore.Mvc.ViewFeatures%2FViewFeatures%2FHtmlHelper.cs
https://github.com/codescene-research/similarity-refactorings
https://github.com/codescene-research/similarity-refactorings
https://github.com/jplag/JPlag
https://github.com/jplag/JPlag

REFERENCES

[23] Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. Recommen-
dation of Move Method Refactoring Using Path-Based Representation of Code. In Pro-
ceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops,
ICSEW’20, pages 315–322, New York, NY, USA, September 2020. Association for Com-
puting Machinery.

[24] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, SE-
2(4):308–320, December 1976. Conference Name: IEEE Transactions on Software En-
gineering.

[25] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, February 2004. Conference Name: IEEE Transactions on
Software Engineering.

[26] Hou Min and Zhang Li Ping. Survey on Software Clone Detection Research. In Proceed-
ings of the 2019 3rd International Conference on Management Engineering, Software Engineering
and Service Sciences, ICMSS 2019, pages 9–16, New York, NY, USA, January 2019. Asso-
ciation for Computing Machinery.

[27] K. J. Ottenstein. An algorithmic approach to the detection and prevention of plagiarism.
ACM SIGCSE Bulletin, 8(4):30–41, December 1976.

[28] Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide, Houari Sahraoui, Kalyan-
moy Deb, and Katsuro Inoue. MORE: A multi-objective refactoring rec-
ommendation approach to introducing design patterns and fixing code
smells. Journal of Software: Evolution and Process, 29(5):e1843, 2017. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1843.

[29] P. Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques
r´egions voisines. In Bulletin de la Soci´et´e vaudoise des sciences naturelles, page
37:241–272, 1901.

[30] Russell A. Poldrack, Thomas Lu, and Gašper Beguš. AI-assisted coding: Experiments
with GPT-4, April 2023. arXiv:2304.13187 [cs].

[31] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding Plagiarisms among a
Set of Programs with JPlag. 2002.

[32] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. A comparison of code simi-
larity analysers. Empirical Software Engineering, 23(4):2464–2519, August 2018.

[33] Ghulam Rasool and Zeeshan Arshad. A review of code smell mining tech-
niques. Journal of Software: Evolution and Process, 27(11):867–895, 2015. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1737.

[34] Robertfeldt. Robertfeldt/multidistances.jl: Collects many string and object dis-
tances (incl compression and set distances). Available at https://github.com/
robertfeldt/MultiDistances.jl/tree/master (2023/06/28).

73

https://github.com/robertfeldt/MultiDistances.jl/tree/master
https://github.com/robertfeldt/MultiDistances.jl/tree/master

REFERENCES

[35] Martin Robillard, Robert Walker, and Thomas Zimmermann. Recommendation Sys-
tems for Software Engineering. IEEE Software, 27(4):80–86, July 2010. Conference Name:
IEEE Software.

[36] Chanchal K. Roy and James R. Cordy. NICAD: Accurate Detection of Near-Miss In-
tentional Clones Using Flexible Pretty-Printing and Code Normalization. In 2008 16th
IEEE International Conference on Program Comprehension, pages 172–181, June 2008. ISSN:
1092-8138.

[37] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes.
SourcererCC: scaling code clone detection to big-code. In Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE ’16, pages 1157–1168, New York, NY,
USA, May 2016. Association for Computing Machinery.

[38] Tech-Srl. Tech-srl/code2vec: Tensorflow code for the neural network presented in the
paper: “code2vec: Learning distributed representations of code”. Available at https:
//github.com/tech-srl/code2vec (2023/06/12).

[39] tsantalis. tsantalis/jdeodorant: Jdeodorant. Available at https://github.com/
tsantalis/JDeodorant (2023/10/19).

[40] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Move Method
Refactoring Opportunities. IEEE Transactions on Software Engineering, 35(3):347–367,
May 2009. Conference Name: IEEE Transactions on Software Engineering.

[41] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics-doklady, volume 10, page 707–710, 1966.

[42] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C. Schmidt.
ChatGPT Prompt Patterns for Improving Code Quality, Refactoring, Requirements
Elicitation, and Software Design, March 2023. arXiv:2303.07839 [cs].

[43] Wikipedia. Jaccard index. Available at https://en.wikipedia.org/wiki/
Jaccard_index#cite_note-3 (2023/06/29).

[44] Michael Wise. String Similarity via Greedy String Tiling and Running KarpRabin
Matching. Unpublished Basser Department of Computer Science Report, January 1993.

[45] Michael D. Wolcott and Nikki G. Lobczowski. Using cognitive interviews and think-
aloud protocols to understand thought processes. Currents in Pharmacy Teaching and
Learning, 13(2):181–188, February 2021.

[46] Marvin Wyrich, Justus Bogner, and Stefan Wagner. 40 Years of Designing Code Compre-
hension Experiments: A Systematic Mapping Study. ACM Computing Surveys, October
2023. Just Accepted.

[47] Feng Zhang, Lulu Li, Cong Liu, and Qingtian Zeng. Flow Chart Generation-Based
Source Code Similarity Detection Using Process Mining. Scientific Programming,
2020:e8865413, July 2020. Publisher: Hindawi.

74

https://github.com/tech-srl/code2vec
https://github.com/tech-srl/code2vec
https://github.com/tsantalis/JDeodorant
https://github.com/tsantalis/JDeodorant
https://en.wikipedia.org/wiki/Jaccard_index#cite_note-3
https://en.wikipedia.org/wiki/Jaccard_index#cite_note-3

Appendices

75

Appendix A

Manually Created Example Methods for Pi-
lot Experiment

Listing A.1: M1: addition
private int addition(int x, int y){

return x + y;
}

Listing A.2: M2: addElseIfStatement
private int addition(int x, int y) {

if (x < 1) {
System.out.println("Hello");

} else {
System.out.println("Hi");

}
return x + y;

}

Listing A.3: M3: addFiveLines
private int addition(int x, int y) {

System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
return x + y;

}

77

A. Manually Created Example Methods for Pilot Experiment

Listing A.4: M4: addForLoop
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}
return x + y;

}

Listing A.5: M5: addForLoopV2
private int addition(int x, int y){

for (int i = 0; x < y; i++) {
System.out.println(i);

}
return x + y;

}

Listing A.6: M6: addIfStatement
private int addition(int x, int y) {

if (x < 1) {
System.out.println("Hello");

}
return x + y;

}

Listing A.7: M7: addIfStatementV2
private int addition(int x, int y) {

if (x != y) {
System.out.println("Hello");

}
return x + y;

}

Listing A.8: M8: addParameter
private int addition(int x, int y, int z){

return x + y + z;
}

Listing A.9: M9: addSwitch
private int addition(int x, int y) {

switch (x) {
case 1:

System.out.println("Hello");
break;

case 2:
System.out.println("Hi");

78

break;
}

return x + y;
}

Listing A.10: M10: addTenLines
private int addition(int x, int y) {

System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
System.out.println("Hello");
return x + y;

}

Listing A.11: M11: addTryCatch
private int addition(int x, int y){

try {
x = x/y;

} catch(Exception e) {
System.out.println("Error");

}

return x + y;
}

Listing A.12: M12: addWhileLoop
private int addition(int x, int y){

int i = 0;
while (i < x) {

System.out.println(i);
i++;

}
return x + y;

}

Listing A.13: M13: deleteParameter
private int addition(int x){

return x;
}

79

A. Manually Created Example Methods for Pilot Experiment

Listing A.14: M14: nestedForLoop
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {

System.out.println(i);
}

}
return x + y;

}

Listing A.15: M15: renameMethod
private int method(int x, int y) {

return x + y;
}

Listing A.16: M16: renameParameter
private int addition(int nbr, int y) {

return nbr + y;
}

Listing A.17: M17: addForLoop+IfStatement
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}
return x + y;

}

Listing A.18: M18: addForLoop+IfStatementX2
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

80

return x + y;
}

Listing A.19: M19: addForLoop+IfStatementX3
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

return x + y;
}

Listing A.20: M20: addForLoopMixX3+IfStatementMixX3
private int addition(int x, int y){

for (int i = 0; x < y; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
y++;

}

if (x < 1) {
System.out.println("Hello");

}

if (x != y) {
System.out.println("Hello");

}

81

A. Manually Created Example Methods for Pilot Experiment

if (x < 1) {
x = x + y;

}

return x + y;
}

Listing A.21: M21:
addForLoopMixX3+IfStatementMixX3+changedOrder

private int addition(int x, int y){
for (int i = 0; x < y; i++) {

for (int i = 0; i < x; i++) {
System.out.println(i);

}

}

System.out.println(i);

for (int i = 0; i < x; i++) {
y++;

}

if (x < 1) {
System.out.println("Hello");

}

if (x != y) {
System.out.println("Hello");

}

if (x < 1) {
x = x + y;

}

return x + y;
}

Listing A.22: M22:
addForLoopMixX3+IfStatementMixX3+changedOrder2

private int addition(int x, int y){
for (int i = 0; x < y; i++) {

for (int i = 0; i < x; i++) {
System.out.println(i);

}

82

}

System.out.println(i);

for (int i = 0; i < x; i++) {
y++;

if (x < 1) {
System.out.println("Hello");

}
}

if (x != y) {
System.out.println("Hello");

}

if (x < 1) {
x = x + y;

}

return x + y;
}

Listing A.23: M23:
addForLoopMixX3+IfStatementMixX3+changedOrder3

private int addition(int x, int y){

if (x != y) {
for (int i = 0; x < y; i++) {

for (int i = 0; i < x; i++) {
System.out.println(i);

}

}
}

System.out.println(i);
System.out.println("Hello");

for (int i = 0; i < x; i++) {
y++;

if (x < 1) {
System.out.println("Hello");

}
}

83

A. Manually Created Example Methods for Pilot Experiment

if (x < 1) {
x = x + y;

}

return x + y;
}

Listing A.24: M24: addForLoopV2X3+IfStatementV2X3
private int addition(int x, int y){

for (int i = 0; x < y; i++) {
System.out.println(i);

}

for (int i = 0; x < y; i++) {
System.out.println(i);

}

for (int i = 0; x < y; i++) {
System.out.println(i);

}

if (x != y) {
System.out.println("Hello");

}

if (x != y) {
System.out.println("Hello");

}

if (x != y) {
System.out.println("Hello");

}

return x + y;
}

Listing A.25: M25: addForLoopV2X3+IfStatementX3
private int addition(int x, int y){

for (int i = 0; x < y; i++) {
System.out.println(i);

}

for (int i = 0; x < y; i++) {
System.out.println(i);

}

84

for (int i = 0; x < y; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

return x + y;
}

Listing A.26: M26: addForLoopV3X3+IfStatementX3
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
y++;

}

for (int i = 0; i < x; i++) {
y++;

}

for (int i = 0; i < x; i++) {
y++;

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

85

A. Manually Created Example Methods for Pilot Experiment

return x + y;
}

Listing A.27: M27: addForLoopX2+IfStatement
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}
return x + y;

}

Listing A.28: M28: addForLoopX3
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

return x + y;
}

Listing A.29: M29: addForLoopX3+IfStatement
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

86

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}
return x + y;

}

Listing A.30: M30: addForLoopX3+IfStatementV2X3
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x != y) {
System.out.println("Hello");

}

if (x != y) {
System.out.println("Hello");

}

if (x != y) {
System.out.println("Hello");

}

return x + y;
}

Listing A.31: M31: addForLoopX3+IfStatementV3X3
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {

87

A. Manually Created Example Methods for Pilot Experiment

System.out.println(i);
}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
x = x + y;

}

if (x < 1) {
x = x + y;

}

if (x < 1) {
x = x + y;

}

return x + y;
}

Listing A.32: M32: addForLoopX3+IfStatementX3
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

88

}

return x + y;
}

Listing A.33: M33:
addForLoopX3+IfStatementX3+changedOrderAndContent

private int addition(int x, int y, int z){
for (int i = 0; i < x; i++) {

y = y + i;
}

if (y < x) {
y = y + 100;

}

for (int i = 0; i < x; i++) {
System.out.println("Running");
System.out.println("Hola");

}

x = z;

for (int i = 0; i < x; i++) {
System.out.println(i);

}

if (y > 50) {
System.out.println("Bonjour");
if (y < 100) {

System.out.println("Okay");
y = 2*z;

}
}

return y;
}

Listing A.34: M34:
addForLoopX3+IfStatementX3+changedOrderAndContent2

private int addition(int x){
int y = 0;

for (int i = 0; i < x; i++) {
y = y + i;

89

A. Manually Created Example Methods for Pilot Experiment

}

if (y < x) {
y = y + 20;

}

if (y < 100) {
for (int i = 0; i < x; i++) {

System.out.println("Running");
System.out.println("Hola");

}
}

for (int i = 0; i < x; i++) {
y++;

}

if (y > 50) {
System.out.println("Bonjour");

}

return y;
}

Listing A.35: M35: addForLoopX5
private int addition(int x, int y){

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

for (int i = 0; i < x; i++) {
System.out.println(i);

}

90

return x + y;
}

Listing A.36: M36: addIfStatementX3
private int addition(int x, int y) {

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

return x + y;
}

Listing A.37: M37: addIfStatementX5
private int addition(int x, int y) {

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

if (x < 1) {
System.out.println("Hello");

}

return x + y;
}

Listing A.38: M38: addWhileLoopX3

91

A. Manually Created Example Methods for Pilot Experiment

private int addition(int x, int y){
int i = 0;
while (i < x) {

System.out.println(i);
i++;

}

while (i < x) {
System.out.println(i);
i++;

}

while (i < x) {
System.out.println(i);
i++;

}
return x + y;

}

Listing A.39: M39: addWhileLoopX5
private int addition(int x, int y){

int i = 0;
while (i < x) {

System.out.println(i);
i++;

}

while (i < x) {
System.out.println(i);
i++;

}

while (i < x) {
System.out.println(i);
i++;

}

while (i < x) {
System.out.println(i);
i++;

}

while (i < x) {
System.out.println(i);
i++;

}

92

return x + y;
}

93

A. Manually Created Example Methods for Pilot Experiment

94

Appendix B

User Interview Manuscript

95

User Interview Manuscript

Background
Today we are doing a qualitative interview for my master’s thesis. The master’s thesis is about
finding similar methods - primarily from open-source software repositories - to be used as
inspirational examples in the context of refactoring recommendations. We have used
CodeScene to collect refactoring examples that improved the Code Health of files in popular
open-source projects.

Consent
- Everything you say will be anonymous. As a first step after this interview, we will

anonymize the information.
- You do this interview voluntarily. You can skip answering any question, and you are free

to stop the interview at any time.
- The information collected during this interview, such as notes, will be securely stored.
- Before we start we want to ask for your consent to also record the interview. The

recording will only be used for the thesis and will be deleted when the thesis is
completed. Ok?

- We also want to ask for your consent to use your answers for the thesis and for the
thesis only. Your answers will be kept anonymous and confidential. Ok?

- You have the right to withdraw your consent if you change your mind.

Basic information
So first some basic information about you…

- Please describe your experience/career as a developer.
- How long have you worked as a developer?
- Describe your current role?

- You’ll get to see some Java code. How much Java experience do you have?
- We’re going to discuss refactoring examples. What thoughts come to your mind when I

say refactoring? Please elaborate. Posivite/Negative?

Perspective
Before we start with the main task, we want you to imagine that it is Friday and it is clean-up day
at the office. You will get the whole day to clean up some code that you haven’t had time to
clean up before.

Instructions
We will show you a Java method containing one code smell detected by CodeScene. Suppose
your task is to remove that code smell. To inspire you, you will get to see two previous
refactoring examples.

We will show you two different examples of how some unknown developer commited a
refactoring change that - again according to CodeScene - removed the same code smell from
another Java method in some other project.

We want you to explain which of the two inspirational examples that you perceive as the most
helpful in your refactoring task.

You will get ten methods in total. The methods are classified according to a code smell that it
contains. Take the code smell into consideration when looking at the recommendations.

We are doing this according to the think aloud protocol which basically means that we want you
to verbalize your thoughts while you are looking at the example methods and the refactoring
recommendations.

Examples
Here is the first example. Feel free to zoom in and out. *Read the code smells*

…

Now that you’ve looked at this, what would you say is a good refactoring recommendation?
Is there anything that you would like to add that came up during the interview?

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-10-26

EXAMENSARBETE Evaluating Similarity-Based Refactoring Recommendations
STUDENT Emma Ericsson
HANDLEDARE Markus Borg (LTH), Emil Aasa (CodeScene)
EXAMINATOR Emma Söderberg (LTH)

Hur får man en programmerare att städa
i sin kod?

POPULÄRVETENSKAPLIG SAMMANFATTNING Emma Ericsson

Med en växande mängd källkod finns det ett ständigt behov av att "städa" den för
att undvika onödigt komplexa lösningar. Som hjälp vill programmerare få rekommen-
dationer som är korta och enkla att förstå.
Eftersom vår värld ständigt går mot ökad digitalis-
ering växer mängden mjukvara lavinartat. Inom
företag så finns det mer och mer kod att hålla
reda på och det är många personer som skriver på
den. Det är som att hundratals personer håller på
att skriva en och samma enorma bok tillsammans.
Inom programmering kallas all kod som tillhör en
mjukvaruapplikation en kodbas.

För att alla som arbetar med koden ska kunna
förstå den, måste den vara enkel att läsa och ar-
beta med. För att koden ska vara enkel och lätt-
hanterlig så behöver man med jämna mellanrum
städa i den. Precis som att man omarbetar ett
stycke eller en mening som är svår att förstå. Med
verktyget CodeScene kan man få rekommenda-
tioner som hjälp för att städa i koden. Om en
kollega som arbetar på samma kodbas har arbe-
tat med liknande kod som dig själv och gjort en
ändring som gör att koden blir enklare så rekom-
menderar CodeScene dig att själv göra en liknande
ändring. Om ingen har gjort en sådan ändring
tidigare så får du bara ett skolboksexempel på vad
som skulle kunna göras. För att få mer hjälp än
vad ett standardiserat skolboksexempel kan erb-
juda, ville vi utforska sätt att hitta rekommenda-
tioner utanför den egna kodbasen.

Låt oss återgå till bokliknelsen. Trots att det
finns hundratals författare, vill vi ändå att boken
ska vara enhetlig och skriven på samma sätt från
början till slut. Det här vill vi ha i en kodbas
också. Därför ville vi hitta rekommendationer som
passade in på det sättet som kodbasen var skriven
på. För att koden ska hållas enhetlig har vi därför
undersökt hur man kan hitta rekommendationer
som liknar de man skulle ha fått om en kollega
hade gjort liknande ändringar i kodbasen tidigare.
Detta gjordes genom att hitta liknande kod från
andra kodbaser som är allmänt tillgängliga.

Det finns inget entydigt sätt att jämföra kod på
så vi undersökte olika sätt och testade till slut två
av dessa i försök med erfarna programmerare. Det
ena sättet jämförde bokstavligen själva texten som
koden bestod av medan det andra snarare jäm-
förde innebörden av koden. Det var inget av sät-
ten vi jämförde koden på som visade sig vara bät-
tre eller sämre än det andra men det visade sig att
rekommendationer som är framtagna genom att
hitta liknande kod skulle kunna vara hjälpsamma
för programmerare. Deltagarna i studien före-
språkade starkt rekommendationer som var korta,
tydliga och lätta att förstå.

	Introduction
	Background
	Problem Description
	Research Question
	Contribution
	Outline

	Theory
	Refactoring
	Code Smells
	Recommendation Systems
	Similarity Measures
	Code2vec
	JPlag
	Jaccard Distance
	Levenshtein Distance

	Related Work
	Similarity
	Metric-Based Approaches
	Text-Based Approaches
	Token-Based Approaches
	Tree-Based Approaches
	Graph-Based Approaches
	Other Approaches

	Refactoring Recommendations

	Method
	Pilot Experiment
	Similarity Measures

	Data Collection
	Processing of Data
	Similarity Calculations
	User Interviews
	Selecting Examples

	Result
	Pilot Experiment
	Similarity Calculations
	User Interviews
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Summary of the Examples
	What Is a Good Refactoring Recommendation?

	Discussion
	RQ1 – How Well Do Similarity Measures Work in the Context of CodeScene’s Refactoring Recommendations?
	RQ2 – How Do Senior Developers Perceive Similarity-Based Refactoring Recommendations?
	Limitations

	Conclusions
	Future Work

	References
	Appendix Manually Created Example Methods for Pilot Experiment
	Appendix User Interview Manuscript

