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Abstract

Analyzing language within Politics and telling the differences between different
narratives and opinions is a difficult task. With Large Language Models and large
amounts of data, however, the last decade has created a possibility to be able
to analyze the semantics of such texts computationally in order to get a well-
founded picture of general patterns within different narratives. In this thesis,
I use models based on BERT language models combined with recurrent neural
networks to classify political speeches in the Swedish parliament by party af-
filiation. The most advanced model tested, KB-BERT-HAN, combines Swedish
BERT word embeddings with a Hierarchical Attention Network (HAN). This
network has the ability to put different amounts of attention on different parts
of the speech, both in terms of words and sentences. Overall, KB-BERT-HAN
performs vastly better than a baseline model based on tf-idf, achieving a macro
F1 score of 68.5% compared to 46.8% for the baseline model. Thanks to its hierar-
chical structure, it is also possible to visualize the model through the attention on
the word and sentence levels. Because of its structure, it can, aside from merely
making predictions, give useful information about how narratives belonging to
different political affiliations relate to each other.

Keywords: Natural Language Processing, Text Classification, Swedish Politics, Long
Short-Term Memory, Hierarchical Attention Network
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Chapter 1

Introduction

1.1 Background
This thesis concerns using computational methods to be able to tell different political narra-
tives apart, within the Swedish political context. Political texts are difficult to analyze, partly
because they contain a lot of information which may not contribute to the overall meaning
of the speech. It is therefore of great value to have a model which is able to find general
well-founded patterns in the language of politicians. A model which is dependent on deep
structures to make its predictions would have the ability to not only predict correctly, but
also tell us important things about the difference in the documents it analyzes. The idea for
this project is to construct and evaluate models which can be used to give a picture of how
different narratives relate to each other semantically. I do this by analyzing and comparing
the model’s internal representations of texts.

I chose the Swedish parliament as a source of data, as the Natural Language Processing
research done and the language models constructed in Swedish is of a much smaller scale, as
compared to English, since it is a smaller language. It is my own first language and I therefore
thought it interesting to work with.

1.2 Introduction to the Problem
The problem in question is a text classification problem. The goal of the task is to assign the
correct label to a whole document, or in other words, put documents into different classes.
In the experiments conducted in this thesis, the documents are transcribed speeches uttered
in the Swedish parliament and the classes the political affiliation (the party) of the speaker.
An illustration of the input and output of the problem is seen in Figure 1.1.

In order to solve this task, a model needs to in one way or the other distinguish between
the semantic content of speeches by different parties, and make the distinction between them

6



1.3 Purpose and Research Questions

Fru talman! När det gäller
en beredskap för sjukvården
har vi en diskussion om hu-
ruvida Sverige kan komma
att behöva ta emot patienter
och öppna upp den svenska
sjukvården för att bistå i den
mån den egna vården inte
räcker till. [...] Det är en
vecka sedan invasionen, och
vi arbetar med den frågan.

Speech

Model S

Political affiliation

Figure 1.1: An input and output example. The goal of the model is
to predict the correct political party.

large enough to be able to tell different parties apart. In order to get a deep understanding of
these narratives, I test several models based on neural networks. The idea is that these should
be able to identify deep patterns in the language of politicians which help deduce their party
affiliation. Most importantly, a Hierarchical Attention Network (HAN)(Yang et al., 2016),
being able to put attention on different words and sentences within a document, is trained
on this task. Furthermore, the models’ internal representations of words and sentences will
be based on language models, and more specifically, BERT models. These models have shown
state-of-the-art performance in many different NLP tasks (Devlin et al., 2019).

1.3 Purpose and Research Questions
The purpose of the experiments conducted in this thesis is to get an understanding for how
well ML models in general, and Deep Learning models in particular, can be developed to
be able to distinguish between different political narratives and opinions. A further goal is
to learn from the models themselves what differs between narratives. It is of great interest
to know on what basis a model makes its predictions, compared to just developing a model
which makes good enough predictions, but does nothing more. Are the predictions based
on certain words, and are these words meaning-bearing words or not? Is it what different
speakers say or the way that they say it that matters? The idea is that a model which makes
good predictions also has an understanding of differences and nuances in language which can
be used for other tasks, such as getting a statistical overview over the differences in language
use of politicians.

I will attempt to answer the following research questions in the report:

(RQ1): How can neural network models based on contextual word embeddings be developed
to classify political documents by party affiliation?

(RQ2): How well do these models perform compared to a baseline model based on tf-idf?

(RQ3): Is it possible to explain the models, and if so, how?

7



1. Introduction

1.4 Earlier Work
Prior attempts to classify political documents by party using Machine Learning methods have
been made. Dahllöf (2012) predicted the gender, age and political affiliation (left or right)
of individual politicians in the Swedish parliament. This study was conducted in the advent
of the Deep Learning era and used Support Vector Machines (SVMs). The politician-level
party affiliation was predicted using multiple document-level party affiliation predictions
from that politician. Since the models predicted left-wing or right-wing as opposed to the
party of the politician, it is difficult to compare to the results which will be seen in this report,
but overall, the highest recall rates for the document-level predictions were 65% and 66%, for
left and right, respectively.

Language models have also been used to try to solve this task. In Doan et al. (2022), the
authors classified political documents in Norwegian, German and English by party. They
compared baseline methods based on tf-idf to BERT language models. They used the multi-
lingual model bert-base-multilingual-cased for all three languages, as well as bert-base-cased for
English documents, the Norwegian nb-bert-base for Norwegian documents and the German
bert-base-german-cased for German documents. They finetuned these models to train on the
specific task. The highest accuracy they achieved on Norwegian speeches was 73%.

In a follow-up article (Doan et al., 2023), the same authors developed a new BERT model,
called SP-BERT, which was trained on Norwegian, Icelandic, Danish and Swedish parliamen-
tary speeches, and compared this to other BERT models. It was evaluated on two tasks: 1)
classifying the speeches as left or right leaning, and 2) classifying the party affiliation of the
speech. Notably, the KB-BERT model, which will be used in this report, and the SP-BERT
model were both evaluated in task 2, using Swedish speeches. They got macro F1-scores of
63% and 62%, respectively.

1.5 Limitations
The data used in this report consists solely of speeches in the Swedish parliament between
1993 and 2022. I have only included speeches from members of parties currently in the par-
liament. The models are based on BERT embeddings combined with (recurrent) neural net-
works, and the purpose of the models is only to predict the party affiliation of the person who
has uttered the speech, and it is according to this they are evaluated. Apart from this, how-
ever, internal states of the most advanced model, KB-BERT-HAN, are also used to visualize
attention on words and sentences, as well as how different speeches relate to each other.

1.6 Outline
The rest of the report will be structured as follows:

2. Theoretical Background: In this section, I give the necessary background needed in
order to understand the models later described. This covers concepts within ML and
NLP as well as the frameworks used.

8



1.7 Prior Knowledge Needed

3. Methodology: This section accounts for how I chose the datasets and constructed the
models, as well as how I evaluated them.

4. Results: Here, I list the results of the evaluation of the models, and visualize some
parts of the most advanced model’s inner workings.

5. Discussion: I discuss the results and make a comparison to earlier work in this section.
I also discuss the technical aspects of training the models. Finally, I answer the research
questions.

6. Conclusion: This section concludes the report, and mentions future work.

1.7 Prior Knowledge Needed
This report assumes knowledge of basic university level mathematics such as linear algebra,
multi-variable calculus and probability theory and statistics. It does not, however, assume
knowledge in Machine Learning (ML) or Natural Language Processing (NLP), and I will at-
tempt to define the concepts related to ML and NLP used in the experiments as clearly as
possible.

9



Chapter 2

Theoretical Background

In the following, I will introduce the concepts used in the models. First, I will give some
background to Natural Language Processing and the text classification task as well as word
embeddings and BERT. Then, I will go through the Machine Learning theory needed for the
models. Finally, I define Artificial Neural Networks, the LSTM and Attention concepts and
the Hierarchical Attention Network, within the context of Natural Language Processing.

2.1 Natural Language Processing

Natural Language Processing (NLP) is the study of making computers able to process and
understand human (natural) language, and it is a field inheriting from Artificial Intelligence
and Linguistics (Khurana et al., 2022). The possible applications of NLP include parsing,
machine translation, sentiment analysis, natural language generation and many more. Up
until the 1980’s, most successful NLP systems were based on handwritten symbolic logical
rules, and designed by expert engineers, such as in Nilsson (1982). With increasing amounts
of empirical data and computational power, the field shifted to using more methods from
Machine Learning in the 1990’s (Manning and Schütze, 1999). These new methods outper-
formed earlier methods in virtually all tasks. In the last 15 years, however, the field has been
increasingly dominated by Deep Learning, just like the field of AI, seen for example in Bengio
(2009). Deep neural networks gained attraction already in the 1990s, but were not success-
ful because of the lack of enough amounts of data and proper design and learning methods.
It was not until the 2010’s that these methods have been successfully applied to real-world
problems. For a more thorough presentation of the history of NLP, see Deng and Liu (2011,
pp. 1-7) or Khurana et al. (2022).

10



2.1 Natural Language Processing

2.1.1 Text Classification
Text classification is one of the tasks within NLP. It has a long history and has applications
such as sentiment analysis (Nasukawa and Yi, 2003) and anti-spam filtering (Cohen, 1996).
It is simple to formulate: given a text document, assign to it a class y ∈ Y , where Y is a set of
possible classes. This class could be anything from sentiment (positive, negative or neutral)
to a topic, depending on the application. There are many ways to tackle this task, and the
methods I present in this report will all first compute a vector representation of the text and
then feed this through a classifier.

2.1.2 Term Frequency - Inverse Document Frequency
A simple way to vectorize a document is to count the words in each document and use this
as a basis for creating the vector. This can then be used for classifying documents. Term-
document matrices were first described in the context of information retrieval by Salton
(1971).

Term frequency - inverse document frequency (tf-idf) is one possible measure for the im-
portance of a word in a document. The term frequency is defined for each term in each doc-
ument as the amount of times it occurs in this document. The inverse document frequency,
on the other hand, is the inverse of the amount of documents that the term occurs in overall
(Sparck Jones, 1972). Only counting the term frequency would mean that the most common
words are taken into account more when predicting, but a lot of these are words which are
common across all documents, such as common non-lexical words. In order to tackle this
issue, the inverse document frequency makes sure that a word in a document becomes more
important for that document if it does not occur in many other documents. Given the term
frequency and the inverse document frequency, the tf-idf score is calculated as follows:

tfidf(t) = tf(t) · idf(t),

where tf(t) is term frequency of the term t and idf(t) is the inverse document frequency of the
term. Both tf(t) and idf(t) can be defined in multiple ways. In the implementation which was
used in this report, the idf was smoothed, which meant that the inverse document frequency
is defined as

idf(t) = log
1 + n

1 + df(t)
+ 1.

Here, n is the total amount of documents and df(t) is the amount of documents which contain
the term t. The vector resulting from this are then normalized according to the Euclidean
norm. Computing tf-idf results in one vector for each document. This vector may then be
input to a classifier such as logistic regression, which will be described in section 2.2.1, in
order to classify the document.

2.1.3 Word Embeddings
Word embeddings is a way of representing words through numerical vectors. It builds on
the distributional hypothesis which says that words with similar meanings tend to occur
in similar contexts (Harris, 1954), (Firth, 1957), (Joos, 1950). Following this, it is possible to
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2. Theoretical Background

compute word embeddings given the distribution of words in documents. Word embeddings
may be static, which means that a given word always has the same embedding. Examples of
widely used vector space models for static word embeddings are word2vec (Mikolov et al.,
2013a), (Mikolov et al., 2013b), which trains a neural network to learn static representations
of words, and GloVe (Pennington et al., 2014). Other word embeddings are contextual, where
the words around it are taken into account, such as in BERT (Devlin et al., 2019). This has
the advantage, compared to static embeddings, of capturing the property of natural language
that a word does not have a single meaning. Instead it may have many different meanings de-
pending on context. Different word meanings can take place both through polysemy (related
but different senses of the same word) and homonymy (unrelated senses of the same word).
For a more thorough description, see for example Saeed (2016, pp. 60-61).

2.1.4 BERT Models
BERT (Bidirectional Encoder Representations from Transformers) models are based on the
Transformer architecture and are used to contextually embed words or sentences. Given a
sentence (or sequence) input, they output numerical vectors which represent the meanings
of the words within the specific context. Transformers use a mechanism called self-attention
which enables the network to directly use information from arbitrarily large contexts and
take this into context when computing representations of words. The Transformer model
was first described in the 2017 paper (updated in 2023) Vaswani et al. (2023). BERT models
are pretrained on two tasks: masked language modeling (MLM) and next sentence prediction
(NSP). MLM is a task consisting of filling in the right word in a sentence where words have
been left out (masked). When training on NSP on the other hand, for each training example
consisting of two sentences the model predicts if one reasonably comes after the other in a
document. The result of the training process is that the model learns the semantics of words
in context. Pretrained BERT are general but they may then be finetuned for specific tasks
(Devlin et al., 2019).

Tokenization within BERT Models
When processing a sequence of words, BERT model perform an internal tokenization. This
is the process of dividing the sequence into tokens. BERT uses WordPiece embeddings, first
described in Wu et al. (2016), to get tokens. Many tokens consist of a complete word but some
words are also divided into multiple tokens. Subsequent tokens after the first token of a word
then begin with ##. There are also special tokens, such as the [CLS] token in the beginning
of a sequence and the [SEP] token which is used as a separation token. [PAD] tokens may
also be added if multiple sentences are encoded at once, and they need to be padded to the
longest length. An example of tokenization using BERT can be seen below:

Original sentences: "På sjätte året Aniara drog med oförminskad fart mot Lyrans bild.",
"Chefsastronomen höll ett föredrag för emigranterna om rymdens djup."

Tokenized:
[’[CLS]’, ’På’, ’sjätte’, ’året’, ’An’, ’##iar’, ’##a’, ’drog’, ’med’,
’oför’, ’##min’, ’##skad’, ’fart’, ’mot’, ’Ly’, ’##rans’, ’bild’, ’.’,
’[SEP]’],
[’[CLS]’, ’Chef’, ’##sas’, ’##tr’, ’##onom’, ’##en’, ’höll’, ’ett’,

12



2.2 Machine Learning

’föredrag’, ’för’, ’emig’, ’##ranterna’, ’om’, ’rymden’, ’##s’,
’djup’, ’.’, ’[SEP]’, ’[PAD]’]]
Text from "Aniara: En revy om människan i tid och rum" by Harry Martinson (1956).

Sentence Transformers
Sentence-BERT is an optimization of BERT which computes embeddings for whole sentences
at an extremely high speed compared to the original BERT models, while still being as accu-
rate as BERT (Reimers and Gurevych, 2019). The Python framework for Sentence-BERT is
called Sentence Transformers. It has the possibility of directly loading multilingual models,
of which I used paraphrase-multilingual-mpnet-base-v2, trained on 50 languages, for this project.

KB-BERT
Kungliga biblioteket (KB) in Stockholm has developed a BERT model trained on Swedish
language data, called KB-BERT. It is trained mainly on Swedish newspapers, but also on
government reports, legal e-deposits and all Swedish Wikipedia articles. The model has a
dictionary size of roughly 50 000 tokens (Malmsten et al., 2020).

2.2 Machine Learning
Machine Learning (ML) is a branch of Artificial Intelligence (AI), in which computers im-
prove their performance for a given task, by observing examples and learning from them, in
contrast to getting explicit rules (Kohavi and Provost, 1998). An example is a program trying
to predict whether an image portrays a dog or a cat. By iterating through datasets consisting
of images of dogs and cats, and comparing its own predictions to the true value (dog or cat),
it learns implicitly what distinguishes these two, without getting explicit rules such as "a cat
has pointy ears". ML consists of many different models, ranging from very simple ones such
as logistic regression to more complex ones, such as deep neural networks.

2.2.1 Classification
Two of the main tasks within Machine Learning are classification and regression. In the
regression task, the goal is to predict a continuous variable. In the classification task, on the
other hand, the purpose of the model is to be able to place predefined labels on input data, or
in other words, put them into the correct classes. It therefore differs from the regression task
in that the variables are discrete. The classes do not necessarily need to be discrete numbers,
even though this is the way they are represented internally in the model. In this report, the
examples will be speeches and the classes are the parties belonging to each speech.

Logistic Regression
Logistic regression is one of the simplest classification algorithms. It was initially introduced
in the context of Statistics by Berkson (1944), and it has many applications, including in
Machine Learning. In the original statistical context, logistic regression uses a logistic curve
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2. Theoretical Background

to model a dependency between an explanatory variable x and an outcome y, by predicting
ŷ according to

ŷ = logistic(x) =
ex

1 + ex .

In the Machine Learning context, inputs are more often in the form of vectors. If an example
consists of an input vector x = [x1x2 . . . xN ] and a true class y, having one of the possible
values y = 0 or y = 1, logistic regression predicts the label according to

ŷ = logistic(w · x) =
ew·x

1 + ew·x ,

i.e. it finds a weight vector w, takes the scalar product of this and x and uses this as input
to a logistic function, which outputs a value between 0 and 1 (Walker and Duncan, 1967).
This value represents the probability that the model "thinks" the correct label is 1. Therefore,
if it is greater than 0.5, the final prediction is 1, and otherwise it is 0. Here, 1 and 0 could
represent any discrete variable with two values, such as "is a cat" and "is not a cat".

Multinomial Logistic Regression
When the number of classes is greater than 2, the corresponding model is called multinomial
logistic regression. The weights are then no longer stored in a single vector but instead in
one vector for each class, wc = [wc,1wc,2 . . .wc,N ], forming a matrix W . In order for all
probabilities to sum up to 1, a generalized version of the logistic function, called softmax, is
used. It is defined as

softmax(x)n =
exn∑i=N

i=1 exi
.

Multinomial logistic regression (Engel, 1988) uses this to find the probability of each class

pc = P(y = c) = softmax(W · x)c =
ewc·x∑C

c=1 ewc·x
.

In order to get the final prediction, the class c with the highest probability pc is chosen, i.e.

ŷ = argmax(p) = argmax([p1 p2 . . . pC]).

The logistic function is also called the sigmoid function, and in the following we will use the
notation σ for both the logistic and the softmax function.

2.2.2 Loss Functions and Cross Entropy Loss
In order to measure how well a model has performed, a loss function is used. A good loss
function returns 0 if the model predicts correctly at all times and a high number if the error
is large. For multiclass classification, the cross entropy loss is suitable. It is also one of the
simplest loss functions used in Deep Learning (Tian et al., 2022). It is used directly on the
probability output of a model prior to applying softmax, ŷ = [ŷ1, ŷ2...ŷC], where C is the
number of classes. For an example i with a prediction vector ŷ(i) and true class y(i), the cross
entropy loss between them is defined as

li = − ln P(y = y(i)) = − ln
eŷ(i)

yi∑C
c=1 eŷ(i)

c
,
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where ŷ(i)
c denotes the prediction value for the c:th class of the i:th example. The total cross

entropy loss between a whole matrix of N prediction vectors Ŷ =
[
ŷ(1) ŷ(2) . . . ŷ(N)

]T
and the corresponding true labels y =

[
y(1) y(2) . . . y(N)

]T
is then the average of the cross

entropy losses over all examples,

L(Ŷ , y) =
∑N

i=1 li
N

= −
1
N

N∑
i=1

ln
eŷ(i)

yi∑C
c=1 eŷ(i)

c
.

2.2.3 Training a Model – Gradient Descent
Suppose we are able to calculate the performance of a model through a loss function, L(w),
where w is the vector consisting of the d weights (parameters) of the model. The objective is
now to find weights which minimize the loss function L. A way to do this is through gradient
descent. In gradient descent, we update the weights of the model according to the gradient
of the loss function with respect to the weight vector, ∇wL(w) =

[
∂L
∂w1

∂L
∂w2

. . . ∂L
∂wd

]
. In

the simplest case, batch gradient descent, the gradient is computed for the entire dataset and
the weights updated accordingly:

w ← w − η∇wL(w).

Here, η is the learning rate, which determines how large steps are taken when trying to find
the minimum.

Stochastic gradient descent (SGD), on the other hand, updates the weights for each new
example:

w ← w − η∇wL(w, x(i), y(i)).

In practice, gradient descent is most often performed on minibatches of n items, so called
minibatch gradient descent:

w ← w − η∇wL(w, x(i:i+n), y(i:i+n))(Ruder, 2017).

. This is the version that will be used in the experiments in this report. When performing
gradient descent, we calculate the losses and change the weights repeatedly until the model
has fitted well enough to the data.

Gradient descent can be viewed as traversing a space of the same dimensionality as the
weight vector, where the height in each point in this space is corresponds to the value of the
loss function at this point. What gradient descent then does is to find the steepest downward
slope that eventually will lead to a minimum. For bigger batches, the algorithm is very slow.
It is however more stable, compared to using smaller batches. This has the risk of being too
quick and skipping over minima. On the other hand, it can easier leave local minima and
may then be able to find a better minimum (Ruder, 2017).

There are many ways to optimize gradient descent. It is for example a good idea to be able
to adjust the learning rate η in order to minimize the risk of skipping minima. One of the
methods with overall best performance, and the one which will be used in the experiments
in this report, is called Adam (Kingma and Ba, 2017).
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2.2.4 Overfitting and Underfitting
The goal of a good Machine Learning model is to be able identify patterns in the data seen,
which also hold for unseen data, in order to be able to predict correctly given this new data.
In some cases, the model fits perfectly or close to perfectly to the training data, and finds
patterns which cannot be generalized, and thus performs worse on the testing data. This is
known as overfitting (Ying, 2019).

2.2.5 Evaluation – Precision, Recall and F1

The precision and recall are two separate metrics which are computed for each class in the
dataset a Machine Learning model is evaluated on. The precision for a class c is defined as the
number of times c was predicted and true divided by the number of times c was predicted,
and it therefore answers the question "How often is the model correct when it guesses c?".
The recall for a class c, on the other hand, is the amount of times c was predicted and true
divided by the amount of times c occurred, i.e. it answers the question "In how many of
the cases when c was the correct class did the model predict correctly?" (Sammut and Webb,
2010, p. 781). The F1 score for each class is then defined as the harmonic mean of the precision
and recall (Sammut and Webb, 2010, p. 398), i.e.

F1 =
2

1
P +

1
R

,

where P is the precision and R is the recall. The macro F1 is computed by taking an un-
weighted average of the F1 scores of all classes (Santos et al., 2011).

2.3 Artificial Neural Networks and Applica-
tions in NLP

Artificial Neural Networks (ANNs) is a branch of Machine Learning which is inspired by
biological neural networks. An ANN consists of layers which consist of nodes called units,
with units in different layers being connected to each other. The value of a unit is determined
by computing a weighted sum of the values of the units it is connected to, where one weight
is associated with each edge to the unit. This sum is then the input to an activation function,
the output of which is the resulting value of the unit (Rumelhart et al., 1986).

Let x j be the value of unit j and wi, j the weight of the directed connection from unit i
to unit j . Then

x j = gj(
∑

i

wi, j xi),

where gj denotes the activation function associated with unit j .
Some common activation functions are

1. the aforementioned sigmoid function σ(x) = ex

1+ex returning values between 0 and 1,

2. the hyperbolic tangent, tanh(x) = ex−e−x

ex+e−x , returning values between -1 and 1, and
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Figure 2.1: Two representations of an artificial neural network con-
taining an input layer of size 3, a hidden layer of size 4 and an output
layer of size 1. a) is the units representation and b) the matrix-vector
representation. Activation functions have been omitted for simplic-
ity.

3. the rectified linear unit, ReLU(x) = max(0, x) (Fukushima, 1969).

The simplest ANN consists of just one layer, in which there is a direct mapping from
input to output. A notable early example of such a network is the Perceptron, introduced in
Rosenblatt (1958). Multilayer neural networks contain layers in between the input layer and
the output layer, known as hidden layers. The most straight forward kind of multilayer neural
networks is called feedforward neural networks (FNNs). In these networks, layers feed into
each other in the forward direction, from input to output. The first such network containing
multiple hidden networks, a deep network, was described in Ivakhnenko and Grigorevich
(1967). When all the nodes in one layer is connected to all the nodes in the next layer, this
will be referred to as a fully connected layer. Fully connected layers may be used together
with an activation function such as softmax as the last layer in the network.

The units in a single layer of a network may also be represented as a vector. For example,
with N units in a layer, we can represent this layer with x = [x1x2 . . . xN ]. Computing the
values of the units in a layer given the units in the previous layer then becomes a multiplica-
tion with a weight matrix. For example, if layer i contains nodes xi,1 . . . xi,N and layer i + 1
contains nodes xi+1,1 . . . xi+1,M , we can compute the values in layer i + 1 through

xi+1 = g(Wxi),

where W is an (M × N) matrix and g is an activation function, applied element-wise. We
may also add a bias b (which can be modeled with a unit of constant size 1),

xi+1 = g(Wxi + b)(Rumelhart et al., 1986).
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An illustration depicting both the units representation as well as the matrix-vector represen-
tation of a simple ANN can be seen in Figure 2.1.

2.3.1 Training ANNs – Back-propagation
When modifying the weights of a neural network, it is not enough to just modify the weights
according to the gradient descent algorithm, since there are weights in multiple layers and
it is not sufficient to calculate one simple gradient where the loss is a function of all the
weights. Instead, we use an algorithm known as the back-propagation algorithm, originally
popularized by Rumelhart et al. (1986), to compute derivatives of the loss in an ANN. This
operates on the mathematical principle of the chain rule, and uses this rule backwards in
order to modify weights from the output to the input. The back-propagation algorithm
consists of three parts which follow sequentially; the forward pass, the backward pass, and
updating the weights:

1. The forward pass: First, we determine the values of the input units by taking input data
from the dataset. We then calculate the values of all the following units by repeatedly
stepping forward in the network. Finally the output is reached and we compute a loss
value, depending on the difference between the prediction output and the true value.

2. The backward pass: Then, we compute the gradient of the loss with respect to the
weights on the edges. First, we calculate the gradient with respect to the weights di-
rectly before the output. Then, we use the chain rule to repeatedly calculate derivatives
with respect to the weights in the backwards direction until the input is reached.

3. Updating the weights: Finally, we update the weights of the network by following the
negative direction of the gradient of the loss.

2.3.2 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a kind of ANN which are different compared to reg-
ular FNNs in that the information is not only fed in one direction. While an FNN passes
information from the input to the output through one or more hidden layers, an RNN also
passes information back onto itself. This enables it to not only take the current input but
also its own output of earlier inputs into account when computing the output (Jordan, 1986),
(Schmidt, 2019). Within NLP, RNNs may be used to process sequences of words. The net-
work will then use the hidden state to store the representation of what it has seen so far, and
use the current word as well as the last hidden state, depending on previous words, to com-
pute a new hidden state. Figure 2.2 shows a simple RNN. In the case of sentences with words,
each x(t) would represent a word. For text classification, one can feed a sequence of length
T through an RNN and then use the last hidden state h(T ) as a hidden representation of
the whole text. This can then be input through a fully connected layer to give a class pre-
diction. Training an RNN is known as back-propagation through time, and works similarly to
back-propagation, except the hidden layers are also processed multiple times, backwards in
the order of the sequence (Werbos, 1990).
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x(1) x(2) x(3) . . .

h(1) h(2) h(3) . . .

y(1) y(2) y(3) . . .

Figure 2.2: An example of an RNN structure, where each hidden
state h(t) feeds into the next hidden state h(t+1).

2.3.3 Long Short-Term Memories
Multiple difficulties arise when training ordinary RNNs. One feature which they lack is the
ability to easily track distant information (Bengio et al., 1994). As an example, in the follow-
ing sentence,

"I went to the store to buy some milk, but it was already closed.",

the last phrase "it was already closed" refers back to "store" and has nothing to do with "milk".
In an ordinary RNN, it is difficult to model this long term dependency, when each hidden
word representation is merely a function of the hidden word representation before it. A
better solution would be to remember "store", then process "buy some milk", and once the
last phrase is reached, connect this to "store" again.

Another problem in training RNNs is what is known as the vanishing gradients problem
(Kolen and Kremer, 2001). It arises from the fact that the hidden layer at time t contributes
to the loss in the following time steps. Because of this, many multiplications between the
hidden layers are made. Often this means that the gradients become very close to zero.

Long short-term memories (LSTMs) are a special kind of RNN and were introduced by
Hochreiter and Schmidhuber (1997) to solve the issue of vanishing gradients, and they also
solve the first mentioned problem. They perform well in handling dependencies between
items far apart in a sequence, such as words in a sentence or sentences in a document, but
may also be used for timeseries analysis in which events connected to each other occur with
a big time gap in between them (Van Houdt et al., 2020). This is because they contain several
gates which allow them to learn what to memorise and forget from a sequence.

An LSTM consists of an input gate, a forget gate, and an output gate, as well as a cell state
c(t) and a hidden state h(t). The cell remembers information over arbitrary time intervals
and can be seen as the "long-term memory", keeping track of important information from
the sequence so far. The hidden state, on the other hand, acts as the "short-term memory",
providing a hidden representation of the last item in the sequence, with earlier items taken
into account. Both h(t) and c(t) are vectors of a length called the hidden size which may be
different from the length of each item x(t), t ∈ [1,T ] in the input sequence.

For each new item x(t), the LSTM computes the following:

1. In the forget gate, the previous hidden state h(t−1) and the current input x(t) are con-
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Figure 2.3: A simple illustration of an LSTM layer and its com-
ponents. Source: https://commons.wikimedia.org/wiki/
File:The_LSTM_Cell.svg

catenated, multiplied with a weight matrix and then put through a sigmoid function,
resulting in a vector of values between 0 and 1, often denoted f (t). This represents what
to remember and what to forget from the previous cell state c(t−1).

2. The part of the LSTM devoted to remembering new information consists of the block
input and the input gate.

The block input is calculated similarly to f (t), but goes through another activation
function, often a tanh function, giving values between -1 and 1. This vector can be
seen as candidate values to add to the cell.

In the input gate, x(t) and h(t) are multiplied with yet another weight matrix, and
put through a sigmoid function, just like in the forget gate. This vector, called i(t), is
pointwisely multiplied with the block input. It can therefore be seen as the vector that
is deciding what to keep from the candidate values. The resulting vector is added onto
the result from the forget gate, forming the new cell state c(t).

3. The output gate works completely like the forget and input gates, and uses the sig-
moid activation function as well as a separate set of weights. The resulting vector o(t)

determines what parts of the cell state should be included in the final output. The final
step consists of letting the new cell state c(t) go through a tanh activation function to
normalize it, and multiply the result pointwisely with o(t). The result is the new hidden
state h(t).

The procedure I have accounted for above is the one the Pytorch implementation uses.
A very similar version which also includes so called peep-hole connections is described in
more detail in Sak et al. (2014). All in all, the LSTM computes a new hidden state and a
new cell state for every new item in the sequence. From here on, the whole sequence h =
[h(1)h(2) . . . h(T )] will be referred to as the sequence output of the LSTM.

A conceptual illustration of the LSTM layer can be seen in Figure 2.3.
In order to prevent overfitting too early in the training process, dropout layers may also

be introduced. The simplest dropout layer removes a portion of the units in a layer, which
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is chosen randomly but is of a constant size (Srivastava et al., 2014). An LSTM network may
also consist of several layers. In this case, the output of the i:th layer is the input to the i+1:th
layer. Dropout layers in between the LSTM layers may then be added to decrease overfitting.

2.3.4 Attention
Attention is a mechanism which lets a model focus more on certain parts of a sequence than
other. This is done through attention weights. An attention layer takes as input a sequence
and outputs a weighted average of each element in the sequence (Bahdanau et al., 2016). For
example, an attention layer on the word level may take as input representations of words, and
output a representation of the whole sentence consisting of a weighted average of the rep-
resentations of the words. There are multiple different attention mechanisms, the simplest
one being dot-product attention.

Dot-Product Attention
In the following, I will account for an attention mechanism used for text classification, de-
scribed in Yang et al. (2016).

Given a representation of a sequence h =
[
h1 h2 . . . hT

]
, where each item ht is a

vector representation of a word or a sentence, dot-product attention does the following: First,
a hidden representation of the sequence is computed. Each element in this new sequence ut
is then compared to a context vector c by taking the dot-product between the two vectors.
This is then the input to a softmax function, which produces a normalized distribution of
weights among the items in the sequence, here called a. A new representation of the sentence,
s is then computed by multiplying each item in the original sequence with its corresponding
weight. Mathematically it looks like the following:

ut = tanh (Wht + b), t ∈ [1,T ], (2.1)

at =
eut ·c∑t=T

t=1 eut ·c
, (2.2)

s =
T∑

t=1

at · ht. (2.3)

The context vector c is initially randomized and then learned during the training process
(Yang et al., 2016).

Through this method, a new representation of a sequence with the dimensions the items
in the sequence used to have, is created.

2.3.5 Hierarchical Attention Network
The hierarchical attention network (HAN) was introduced in 2016 by Yang et al. (2016) and
uses attention on multiple levels. It can be used for different sorts of data and tasks but in the
following I will explain how it is used for document classifications. First, word sequences are
encoded using an RNN, such as an LSTM. The sequence of hidden representations resulting
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from this are then fed through a word-level attention layer, which outputs a sentence em-
bedding, being a weighted average of the word embeddings. All the sentence embeddings are
then fed through an RNN as well, whose sequence output is the input to another attention
layer, but on the sentence level. This attention layer computes one document embedding as
a weighted average of the sentence embeddings.

Mathematically, we can represent each document as D = [S1S2 . . . SL]T , containing sen-
tences Si = [wi,1wi,2 . . .wi,Wi ], where each wi, j is a word embedding of the j :th word in the
i:th sentence, i ∈ [1, L], j ∈ [1,Wi]. In other words, each sentence is here represented as a
matrix of word embeddings. The model first applies an RNN to each sentence. The RNN is
bidirectional which means that it is first applied from the first to the last item and then from
the last to the first item in the sequence. Denoting these two networks

−−−−→
RNN and

←−−−−
RNN, we

compute

−→
h i, j =

−−−−→
RNN(wi, j), j ∈ [1,Wi]

←−
h i, j =

←−−−−
RNN(wi, j), j ∈ [Wi, 1],

and then concatenate these two into

hi, j = [
−→
h i, j
←−
h i, j],

which is the hidden representation of the word sequences. These sequences are then the
input to a word attention network, in which a sentence vector si for each sentence is formed
according to equations 2.1-2.3.

These sentence embeddings are also encoded using an RNN:

−→
h i =

−−−−→
RNN(si), i ∈ [1, S],

←−
h i =

←−−−−
RNN(si), i ∈ [S, 1],

hi = [
−→
h i
←−
h i].

These hidden representations are then the input to a sentence attention layer, which
outputs an embedding for the entire document, d. Finally the probability of the classes are
achieved through applying a fully connected layer,

ŷ = Wdd + bd .

In order to get one single prediction, softmax followed by argmax are applied to this vector.

2.4 Frameworks Used
I used the following frameworks in the experiments. SpaCy is a framework which contains
models for NLP, such as tokenization models for many languages, and is implemented in
Python. Beautiful Soup is a Python package dedicated to parsing HTML documents. It may
be used to extract information within certain tags. Scikit-learn is a Machine Learning library,
which contains many different models as well as methods to evaluate them. It does not,
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however, focus on deep learning. Pytorch, on the other hand, is a library mainly devoted to
deep learning models and includes implementations of many of the concepts brought up in
this chapter, such as RNNs, as well as practical tools, like loss functions and convenient ways
to create datasets and load data for training and testing. It also offers GPU support, which
was needed in order to implement the most computationally heavy models in this report.
Links to these projects as well as other packages used can be accessed in appendix A.
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Chapter 3

Methodology

In this section I will account for how the datasets were chosen and divided into training,
validation and test sets, how the data was pre-processed, and most importantly, how the
models were constructed, trained and evaluated.

3.1 Pipeline
The whole pipeline, from collecting the data to getting a prediction, can be divided into the
steps seen in Figure 3.1. The main component that differs is between different experiments
is the classifier. However, the final model in this report, KB-BERT-HAN, features another
BERT model than the other models, which is on the word level as opposed to the sentence
level.

Data Pre-processing Processed data
BERT

Embeddings
Classifier Prediction

Figure 3.1: The complete pipeline for predicting a party, given a text.

3.2 Datasets

3.2.1 Raw Data
Data consisting of speeches in the Swedish parliament is available on Sveriges Riksdag (2023a).
The data reaches from parliamentary years 1993/1994 to 2022/2023. Each speech is con-
tained in one file, with several attributes, the most important ones used in the experiments
being the speech text, the party and the speech ID. The parties currently in the Swedish par-
liament are Socialdemokraterna (S, Social Democrats), Moderaterna (M, Moderate Party),
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Sverigedemokraterna (SD, Sweden Democrats), Vänsterpartiet (V, Left Party), Miljöpartiet
(MP, Green Party), Centerpartiet (C, Centre Party), Kristdemokraterna (KD, formerly KDS,
Christian Democrats) and Liberalerna (L, formerly FP, Liberals).

Distribution of Parties in the Dataset

Out of the aforementioned parties, S, M, V, MP, C and KD have had seats in the parliament
throughout the whole dataset, while MP entered the parliament in 1994 after leaving it in
1991 and SD did not enter it until in 2010 (Sveriges Riksdag, 2023c). This means that for a
model training on all available speeches, speeches from the third biggest party in the parlia-
ment today, SD, will be nonexistent in more than half of the dataset. From 1993 and up until
now, most governments have been run by S, the biggest exception being the government lead
by Reinfeldt (M) between 2006 and 2014 (Sveriges Riksdag, 2023c). Table 3.1 shows how the
parties are currently distributed in terms of seats in the parliament and in terms of amount
of speeches in the dataset most widely used in the experiments.

Party
Seats 2022 Speeches 2014-2022

No. Rel. freq. No. Rel. Freq.
S 107 30.7% 32842 33.4%

SD 68 19.5% 9609 9.8%
M 73 20.9% 18260 18.6%
V 24 6.9% 8058 8.2%

MP 18 5.2% 10543 10.7%
C 24 6.9% 6792 6.9%

KD 19 5.4% 6440 6.6%
L (FP) 16 4.6% 5752 5.9%
Total 349 100% 98296 100%

Table 3.1: Distribution of speeches between 2014/15 and 2021/22 as
well as parliament seats after the 2022 election for the parties in the
Swedish Parliament. Source: Sveriges Riksdag (2023b)

Sentence and Word Counts of Speeches

To get an overview of the speeches, I also computed the distribution of the amounts of sen-
tences and words in the speeches. I did this for both all speeches from 1993 to 2023, as well as
the speeches from 2014 to 2022, which constituted the most used training set. The resulting
means, medians and standard deviations can be seen in Table 3.2. The complete distributions
can be seen in Figure 3.2.
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Dataset
Amount of sentences Amount of words

Mean Median Std. dev. Mean Median Std. dev.
Speeches 1993/94-2022/23 23.3 17 20.8 351 249 325
Speeches 2014/15-2021/22 23.6 18 19.1 355 262 297

Table 3.2: The mean, median and standard deviation for the amount
of sentences and words for speeches within the complete dataset as
well as the most used training set.

(a)

(b)

Figure 3.2: The distributions of sentences and words per speech in
a) the complete dataset, b) the dataset most widely used in the ex-
periments.
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3.2.2 Training, Validation and Test Sets
I divided the data set into training sets, as well as a validation set and a test set. The main
training, validation and test sets together constitute speeches from the last two complete
terms (2014-2018 and 2018-2022). Throughout these terms, the governments Lövfen I, II
and III consisting of S and MP, as well as the Andersson government consisting of S have
been in place. The main training set consists of the first seven years; that is all speeches
in the parliament between 2014/15 and 2020/21. All models were trained on this dataset.
The validation and test sets together make up the last year of speeches in this term, that is,
speeches from the parliamentary year 2021/22.

I used dataloaders which shuffled the datasets and gave examples to be classified, consist-
ing of a randomly selected batch of speeches and the corresponding parties.

Once all models had been run on the eight year period, I investigated the most advanced
model, KB-BERT-HAN, further. I trained it on all available speech data from the years
1993/94 to 2020/21 and tested it on the year parliamentary year 2021/22 once again. I also
trained the baseline model on these 29 years of speeches.

3.2.3 Sentence VS Word Embeddings in Datasets
All neural models except KB-BERT-HAN use datasets which directly outputs sentence em-
beddings computed using Sentence Transformers. For KB-BERT-HAN, a specific dataset had
to be created. This outputs the sentences themselves, tokenized by the KB-BERT tokenizer.
The tokenized sentences were then processed by the KB-BERT model outside the dataset.

3.3 Pre-processing
Before being loaded into datasets for training and testing, I processed the speech data from
Riksdagen, formatted as json files, using the json module in Python. From each relevant
json file, I extracted the speech text and the party as well as the ID. In some speeches, the
person uttering the speech is either the speaker of the parliament or a member of a party
not currently in the parliament. I did not include these speeches in any datasets. I parsed
the paragraphs of each speech using Beautiful Soup and divided the text into sentences using
the spaCy tokenizer for Swedish using the model sv-core-news-lg. I also manually filtered out
some unneccesary strings, such as "(Applåder)" and formatting text.

3.3.1 Filtering out Party Names
For KB-BERT-HAN I constructed yet another, more filtered, data set. In this dataset, I re-
placed words for parties such as "Vänsterpartiet" with a placeholder party "Partiet", and words
for members of a party such as "vänsterpartister" with "partister". I state the rationale for this
in section 5.2.3.
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3.3.2 Oversampling

Since the different parties in the parliament are of different sizes, in terms of the amount of
votes and members in the parliament, it is expected that the amount of speeches available
will differ among parties as well. This is also the case, with S being represented roughly twice
as often as any other party in the datasets available. This poses a problem because of the
way Machine Learning works. Since a model always seeks to minimize loss, is has a tendency
to predict a larger class more often because it is a quick way to decrease the overall loss
and increase the overall accuracy. As a result, the classifier achieves a lower recall on other
classes. One way to tackle this issue is to oversample, that is, to introduce more examples
from smaller classes so that all classes get the same portion of the training set (R. C. Prati
and Monard., 2009). This can be done automatically by using the package Imbalanced learn
(Lemaître et al., 2017). In this report, I tested random oversampling, which simply duplicates
examples with underrepresented classes, for all models.

3.4 Classification Models
All models take speeches as input and compute document embeddings which are used as
input for classification by party. I constructed one model utilizing tf-idf scores and logistic
regression as a baseline to compare the more advanced models to. The more advanced models
are ANNs which use BERT word or sentence embeddings to compute the document embed-
dings. The models utilizing sentence embeddings use Sentence Transformers with the model
paraphrase-multilingual-mpnet-base-v2. The most advanced model, KB-BERT-HAN, computes
individual word embeddings and uses the bert-base-swedish-cased model and tokenizer from
KB for this.

3.4.1 Tf-idf Baseline Model

The baseline model is a tf-idf model. First, we remove stop-words such as "a", "an" and "the" as
they do not contribute to the meaning of the document using this method. The model then
performs a tf-idf weighting of the words in all documents according to equation 2.1.2. The
parameter min_df, which controls the amount of documents a word needs to be in for it
to be counted, was set to 10. For a dataset containing many documents, the tf-idf vectors
become very large. In order to lower the dimensions of the vectors, I use singular value
decomposition (SVD). Using tf-idf together with truncated SVD is known as latent semantic
analysis (LSA)(Dumais, 2004). In this case the vectors were reduced from the amount of
unique words down to 512.

I then fed the matrix of dimensions n×512, where n is the amount of documents, through
a multinomial logistic regression model, in order to get a party prediction from each docu-
ment vector in the matrix. I used the cross entropy loss as a loss function for the logistic
regression algorithm.
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3.4.2 Average of Sentence Embeddings
The first ANN I developed for this task computes the embeddings of individual sentences
in a speech using Sentence Transformers and the paraphrase-multilingual-mpnet-base-v2 model.
The model then calculates the global average of these embeddings in order to receive an
embedding of the whole speech. It then feeds this embedding through a fully connected
layer which outputs the predicted probability of a label, given the speech embedding it has
received.

3.4.3 LSTM on Sequences of Sentences
A more sophisticated model used a bidirectional LSTM layer on a whole speech of sentences.
The LSTM layer takes a sequence of sentence embeddings as input. The model uses the last
hidden state of the LSTM as input for a fully connected layer with an output size corre-
sponding to the amount of parties. I constructed this model in two variants: one which had
a one-layer LSTM and one which had a two-layer LSTM with a dropout probability of 30%
between the layers.

3.4.4 LSTM with Attention
I then added an attention mechanism onto the LSTM model. This model still used Sentence
Transformers to compute sentence embeddings. These were encoded with an LSTM, and in
contrast to the model before this model uses the hidden state of each sentence, not only the
last hidden state. These hidden states were the input to an attention layer which computed a
weighted average. The result of the attention layer is an embedding for the whole document
which is used for classification.

3.4.5 KB-BERT-HAN
The most complex model I tested for this task was a HAN. I constructed the model by mod-
ifying a HAN model already implemented in Python using Pytorch, by Kim (2019). I mod-
ified the HierarchicalAttentionNetwork class to take an already tokenized batch of
sentences as input. I combined the model with the tokenizer and language model by KB in
order to form KB-BERT-HAN. Running this model in practice follows this procedure:

1. Optionally, we create embeddings for each document beforehand, each consisting of a
tensor of word embeddings, using bert-base-swedish-cased from KB. We save these in a
dictionary for accessing later in the training process.

2. Then, each forward pass through a batch of documents looks like the following:

(a) All embeddings corresponding to the documents in the batch are accessed from
the BERT dictionary or computed directly if the dictionary was not created.

(b) The model creates a vector representation of each sentence in each document
from the word embeddings belonging to that sentence using a word attention
network.
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Figure 3.3: A simplified illustration of the complete KB-BERT-HAN
model. Each word embedding wi, j is here a vector of the length 768.

(c) These sentence vectors are input to a sentence attention network, which outputs
document vectors.

(d) Each document is the input to a fully connected layer, giving unnormalized class
probabilities.

The word and sentence attention models work very similarly and use LSTMs with the
same parameters: hidden size, attention size (the size the sequence gets in the attention step
after it has been encoded, and therefore also the size of the context vector), number of layers
and dropout probabilities.

An illustration of the complete model can be seen in Figure 3.3.
I created two versions of the model; one in which all of the word embeddings were com-

puted beforehand and stored in the RAM and one in which they were computed for every
new prediction. The first version has the perk of being faster once training the HAN, but also
has the downside of being very storage intensive. The second version on the other hand, is
able to process much more data, but does this slower. Due to memory and storage limitations,
I opted for the second version.

3.5 Practical Difficulties for Data Handling
I implemented all models except the baseline model in Pytorch, which uses tensors as its data
type. These are multidimensional matrices in which all elements are of the same datatype.
Because of this, tensors cannot contain vectors of variable length, which becomes a problem
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in this case since every speech contains a variable amount of paragraphs which in turn con-
tain variable amounts of sentences. In order to handle this, a sequence may be padded or
packed. A padded sequence fill in sequences with padding elements, for example 0 or −∞,
when needed. to make all sequences the same length. A packed sequence on the other hand
stores all sequences in a list and keeps track of the length of each, which makes it possible to
store all sequences together in less space while being able to reconstruct them. Both padded
and packed sequences are implemented in Pytorch. The LSTM layer in Pytorch is also able
to directly take a batch in the form of a packed sequence of tensors as input and automati-
cally handle each one separately. In the implementations, all models implemented in Pytorch
process multiple speeches simultaneously as a packed sequence.

3.6 Training
I trained the models on batches of the training set. I optimized the gradient descent with
Adam. For evaluating a model’s performance during training, I used the cross-entropy loss.

I trained and evaluated the models according to the following scheme. Each epoch con-
sists of the following steps:

1. Training - do the following for every batch in the training set:

(a) Use the model to predict the classes of a whole batch, i.e. make a forward pass.

(b) Calculate the training loss by comparing to the true classes.

(c) Reset the gradient of the optimizer.

(d) Make a backward pass to calculate gradients.

(e) Use the optimizer and the calculated gradients to change the weights of the
model.

2. Evaluating:

(a) Predict all classes in the validation set.

(b) Calculate the validation loss by comparing to the true classes.

3.6.1 Hyperparameters
I investigated hyperparameters such as batch size, the maximum learning rate and the amount
of epochs. I found a batch size of 32 to be suitable for most models. I tested the maximum
learning rate in logarithmic steps, and learning rates from 1·10−3 to 1·10−4 were tested. For
KB-BERT-HAN, I tweaked the learning rate and amount of epochs further, since it was the
most advanced mode, and therefore the one i focused the most on. As previously stated, I
constructed the validation and test sets by extracting a full year of speeches, different from
the speeches in the training set. From this set, I constructed the validation and test sets by
randomly selecting half of these speeches into each set. This makes the evaluation unbiased
in terms of seasonal differences in speeches. For the same reason, I did not choose the parlia-
mentary year 2022/23 to neither train nor evaluate, as it is not yet a complete parliamentary
year.
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3.7 Implementation
3.7.1 Software
I implemented all the models in Python 3.9.16. For the baseline model, I used Scikit-learn
(Pedregosa et al., 2011), since this offers easy to use tf-idf and SVD implementations. For the
neural models, on the other hand, I used Pytorch 2.0.1 (Paszke et al., 2019).

3.7.2 Hardware
The largest models are very memory and CPU intense. I therefore used the computation
cluster COSMOS at LUNARC (LUNARC, 2023) for computing. Each node in the cluster
is equipped with two 24-core AMD7413 CPUs, 512GB RAM as well as an A100 GPU with
80GB VRAM, which was used to train the models. I used a single node of the cluster for each
training session.

3.8 Evaluation
After training the models, I evaluated them on the test set. As evaluation metrics, I used the
accuracy and macro F1 score.

3.9 Visualizing KB-BERT-HAN
Once I had trained and evaluated KB-BERT-HAN, I visualized the version of it with the
highest evaluation scores.

First, the final embeddings before the last layer determining the party can be reduced
down to two dimensions and visualized. I did this using the UMAP algorithm (McInnes
et al., 2020), which is a non-linear dimension reduction algorithm. This gives a clear view on
how far apart different political narratives are according to the model. If clear clusters are
formed, this means that there is a clear distinction between parties, but if the clusters are
harder to tell apart, the different narratives are closer to each other according to the model.
I used the parameter values n_neighbors=1200 and min_distance=0.1, and the cosine
metric for measuring distance between the vectors.

I also visualized the attention weights of the model, for both sentences and words. When
visualizing, the colorfulness of a token is determined by multiplying the token weight and the
sentence weight of the sentence in that token. This is normalized for each speech by dividing
by the largest of these products within that speech.
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Chapter 4

Results

The models performed according to the results below. Since KB-BERT-HAN had the best
performance, I also investigated this model more thoroughly.

4.1 Results per Model

4.1.1 Summary
The accuracy and F1 scores for the models evaluated can be seen in Table 4.1. The accuracies
and F1 scores shown are from the runs which resulted in the highest F1 scores.

Model Training set Accuracy Macro F1
Tf-idf 2014/15-2020/21 55.2% 46.8%
Tf-idf 1993/94-2020/21 48.8% 38.6%

Embedding average 2014/15-2020/21 39.1% 35.1%
One-layer LSTM 2014/15-2020/21 61.6% 55.8%
Two-layer LSTM 2014/15-2020/21 63.4% 58.1%

LSTM with attention 2014/15-2020/21 61.9% 56.0%
KB-BERT-HAN 2014/15-2020/21 72.9% 68.5%
KB-BERT-HAN 1993/94-2020/21 71.8% 67.2%

Table 4.1: A summary of the highest macro F1 and accuracy scores
for the models evaluated.
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4.1.2 Tf-idf
When trained on speeches from the parliamentary years 2014/15 to 2020/21 and evaluated on
speeches from 2021/22, the tf-idf model achieves an accuracy of 55.2% and a macro F1 score
of 46.8%. When trained on speeches all the way from 1993 to 2021, the tf-idf model achieves
an accuracy of 48.8% and a macro F1 score of 38.6%. In these experiments, I used SVD on the
entire matrix of document vectors and reduced the tf-idf vectors to 512 dimensions.

4.1.3 Average of Sentence Embeddings
The embeddings average model managed to receive an accuracy of 44.1% and a macro F1 score
of 28.2%, when trained for 20 epochs, with a batch size of 32 and a maximum learning rate of
3.33 · 10−4. The precision and recall was very low for the smaller classes. Oversampling while
keeping the number of epochs and the learning rate increased the accuracy and F1 scores to
39.1% and 35.1%, respectively.

4.1.4 LSTM on Sentences
An LSTM model using a one-layer LSTM network with a hidden size of 128 achieved an
accuracy of 61.6% and a macro F1 score of 55.8%, with a batch size of 32 and a maximum
learning rate of 3.33 · 10−4. This model also had a 50% dropout after the LSTM layer.

When using a two-layer LSTM with a hidden size of 128 and a dropout probability of 50%
between the layers, the accuracy and F1 scores increased to 63.4% and 58.1%, respectively.

4.1.5 LSTM with Attention
Using attention, but only on the sentence to document level, produced similar results: a
macro F1 score of 56.0% and an accuracy of 61.9%. This model had a hidden size of 128, an
attention size of 256, and 2 layers in the LSTM with a dropout probability of 30% between
them. It was also trained on a batch size of 32 and with a maximum learning rate of 3.33 ·
10−4.

4.1.6 KB-BERT-HAN
KB-BERT-HAN achieves at most an accuracy of 72.9% and a macro F1 score of 68.5% when
trained on seven years of speeches. For this model, the hidden size was 128, the attention size
256 and there was a dropout probability of 30% between the two layers of each LSTM layer.
I trained it on batches of 32 examples, for 20 epochs, with a maximum learning rate of 3.33
· 10−4. When evaluated on oversampled sets, the HAN produced very similar results. It also
achieved practically the same scores when trained on 29 years of data instead, for 10 epochs.
The results for different datasets and hyperparameters can be seen in Table 4.2.

A table illustrating the performance of the model per class can be seen in Table 4.3. Con-
fusion matrices displaying how many examples there were of each predicted and true label
can be seen in Figure 4.1.
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Training set Max lr Epochs Accuracy Macro F1
2014/15-2020/21 3.33 · 10−4 20 72.4% 67.4%
2014/15-2020/21 1 · 10−3 20 72.9% 68.5%

2014/15-2020/21, refiltered 3.33 · 10−4 20 60.1% 50.4%
1993/94-2020/21 3.33 · 10−4 10 71.8% 67.2%
1993/94-2020/21 1 · 10−3 10 72.0% 67.2%

Table 4.2: The macro F1 and accuracy scores with different hyper-
parameters and datasets for KB-BERT-HAN.

Class Precision Recall F1-score Support
S 0.8460 0.8328 0.8394 2052
M 0.6808 0.7508 0.7141 963
SD 0.7096 0.7229 0.7162 747
V 0.7013 0.7094 0.7053 523

MP 0.4957 0.6410 0.5591 454
C 0.7197 0.5723 0.6376 498

KD 0.6590 0.6005 0.6284 428
L 0.7716 0.6043 0.6778 369

Accuracy 0.7290 6034
Macro avg 0.6980 0.6792 0.6847 6034

Weighted avg 0.7356 0.7290 0.7299 6034

Table 4.3: The classification report after evaluating KB-BERT-HAN,
trained on speech data from 2014/15 to 2020/21 and evaluated on
speech data from 2021/22.

Figure 4.1: Unnormalized and normalized confusion matrices for
KB-BERT-HAN, trained on speech data from 2014/15 to 2020/21.
The normalized matrix is normalized according to the columns,
which means that the values on the diagonal are the precision values
for each class.

When I trained the model on the dataset where the party names and affiliations had been
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Figure 4.2: A visualization of the word weights for each sentence in
an example speech. Higher sentence and word weights, multiplied,
correspond to a stronger color.

Figure 4.3: A visualization of the word weights for each sentence
in an example speech where party names have been replaced with a
generic word. Higher sentence and word weights, multiplied, corre-
spond to a stronger color.

filtered out from the speeches, the performance of the model decreased. When trained with
the same model parameters as the best performing KB-BERT-HAN prior to changing the
dataset, it achieved a macro F1-score of 50.4% and an accuracy of 60.1%. The precision and
recall values were unbalanced over the classes, with S achieving a precision of 80.7% and a
recall of 80.4% while MP achieved a precision of 34.0% and a recall of 39.2%.

4.2 Results from Analyzing KB-BERT-HAN
An example of a visualization of attention weights for words and sentences can be seen in
Figure 4.2. Another example, where party names have been filtered out, can be seen in Figure
4.3.

A UMAP visualization of the document vectors can be seen in Figure 4.4.
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(a)

(b)

(c)

Figure 4.4: A visualization of the different document vectors for the
best performing KB-BERT-HAN, reduced to two dimensions using
UMAP. In a), the colors match the predicted label, and in b), they
match the true label, and in c) the incorrect and correct predictions
are shown.
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Chapter 5

Discussion

In the following, I compare the models to each other according to how they performed, and
discuss what these differences are based on. I also discuss results from analyzing the inner
states of KB-BERT-HAN.

5.1 Differences between the Models
The results indicate that the LSTM models are superior to both the tf-idf model and the
embedding average model in solving the task. The best tf-idf model predicts correctly more
than 55% of the time, compared to the 12.5% a random guess would give. It therefore clearly
manages to find some distinctions between different parties. It works on the assumption that
words that occur in the same documents are similar and places all documents in a semantic
space according to their tf-idf vectors. However, it lacks a way of relating different words
within individual sentences to another, and therefore does not take the nearest context into
account. In this sense it also does not get a picture of the meanings of individual sentences.
Interestingly, training on the larger training set makes the model perform worse. This may
be due to the fact that political discourse varies over time, and that the same party may have
a completely different narrative further back in time.

Most of the models using static sentence embeddings and LSTMs (the embedding average
model being the exception) achieve accuracy and F1 scores notably higher than the baseline
model. However, the fact that the embeddings are static for the whole sentences makes it
harder to take information within the sentences into the political context. KB-BERT-HAN,
on the other hand, is able to change its representation of sentences through encoding the
words and putting different amounts of attention on different words, before relating sen-
tences to each other, which has made it even more accurate. It outperforms the tf-idf model
by 21.7 percentage units, macro F1-wise.
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5.2 Analysis of the Results from KB-BERT-
HAN

KB-BERT-HAN has a high accuracy, and somewhat balanced F1 scores for all classes, meaning
that it is able to clearly distinguish any of the eight parties from the others a majority of the
time.

5.2.1 Document Vectors
It can be seen in Figure 4.4 that KB-BERT-HAN has placed documents corresponding to S
and MP, who have been in the same governments throughout most of the dataset from 2014
until 2022, quite close together in the space. The second and third biggest parties, M and SD,
are also quite closely connected. The parties which were in the same government as M from
2006 until 2014, L, C and KD, are mostly separated from M, and C is especially far away. V,
which has not been in a government throughout the period of the whole dataset, is partly
connected to and partly separated from S and MP.

5.2.2 Misclassification Analysis
The class with the lowest precision is MP, and the single biggest misclassification by a great
margin is misclassifying MP as S (34%, see Figure 4.1). This is not surprising since these
two parties have been in the same government for the years from which the data was taken.
Interestingly, S is very seldom misclassified as MP. This may be due to the fact that S has a
much bigger representation in the dataset. These misclassifications are also consistent with
the look of the document vector plots.

The second largest misclassification is misclassifying SD as M, followed by misclassifying
M as KD and M as SD. This is also not surprising, as M, C and KD have been in the same
governments, and SD is cooperating with the current M-led government.

5.2.3 Qualitative Evaluation and Refiltration of Data
From attention plots like the one in Figure 4.2 it becomes clear that the model puts a lot
of attention on names of persons and parties, as well as political and societal concepts. The
dataset I used initially contains a lot of sentences where the actual party speaking is men-
tioned, such as "Vänsterpartiet anser att den utredning som regeringens förslag bygger på
inte har visat på något behov av att införa dessa nya brott." ("The Left party believes that the
investigation which the proposal of the government is built on has not shown any need for
introducing these new crimes."). In examples with sentences like this, it can be seen that the
model puts clear emphasis (attention) on these sentences, and that within these sentences
there is also a clear emphasis on the words indicating the party, such as "Vänsterpartiet", "vi
moderater", etc. The speech shown in Figure 4.2 is also an example of this. This is an inter-
esting find because it confirms that the model has been able to make a connection between
these terms and the party speaking. It could however also be seen as a flaw, since the idea is to
find underlying differences in the rethoric between different parties. It could be argued that
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mentioning the party itself in the speech makes it a bit too easy for the model to predict (even
though other parties are also mentioned), without understanding the speeches deeply. As I
did not discover the magnitude of this problem until late in this project, it was not possible
to try the new dataset thoroughly on the model. However, the results from training a new
KB-BERT-HAN with the same model parameters as the best one, on this new dataset, shows
that it is a more difficult task if all these clues are removed. The unbalance in F1-scores per
class for this model suggests that the model would benefit from oversampling.

5.3 Comparison to Related Work
I have described prior experiments similar to this, in which texts are also classified by po-
litical affiliation, in section 1.4. The biggest difference between the models I have used and
those described in that section, is the use of LSTMs and attention, and especially hierarchi-
cal attention in combination with BERT embeddings. On the other hand, I did not finetune
the BERT models in this project. The results of the simpler models based on sentence em-
beddings perform worse than the best results in Doan et al. (2022) and Doan et al. (2023).
However, KB-BERT-HAN gets comparable and in some cases better results.

5.4 Technical Difficulties and Necessary Re-
sources

The models require memory, processing power and storage increasing with the complexity. I
noted the times required to complete one epoch of training for each model, when trained on
a node in COSMOS, using 8 tasks. The results can be seen in Table 5.1.

Model Iteration time Epoch time
Average of sentence embeddings 135 it/s 20 s/epoch

One-layer LSTM 104 it/s 26 s/epoch
Two-layer LSTM 73 it/s 37 s/epoch

LSTM with attention 60 it/s 45 s/epoch
KB-BERT-HAN (pre-computed embeddings) 6.0 it/s 7 min 30 s/epoch∗

KB-BERT-HAN (embeddings computed each iteration) 1.2 it/s 37 min/epoch

Table 5.1: The amount of iterations per second as well as the time
one epoch takes when training on the dataset featuring speeches
from 2014 to 2021 for the different BERT based models. Each it-
eration is here a batch of 32 speeches.
∗Estimated time, since it was not possible to run this model on such
a big dataset.

KB-BERT-HAN is especially memory intensive, and on the COSMOS node these models
were run on it was not possible to store all word embeddings in the available 80 GB of GPU
memory. This is the reason why this model is much slower than the other models, and a
KB-BERT-HAN which uses pre-computed word embeddings is 5 to 6 times quicker. With
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GPU memory, this is something which could be done even with a large dataset like the one
featuring 7 years of speech data.

5.5 Answers to the Research Questions
(RQ1) In this report, I have developed and evaluated neural models with varying degrees of
complexity. The LSTM and attention mechanism prove practical when constructing a model
to handle text sequences, which is reflected in the performance of the models utilizing these
techniques.

The results show that neural models using LSTMs and attention mechanisms are able to
distinguish quite clearly between narratives from different political parties, given that they
have access to a sufficient amount of data, and that they are sufficiently complex. The results
indicate that a model benefits from being able to acquire and be attentive to information not
only on the sentence level but also on the word level, as KB-BERT-HAN vastly outperforms
the other models.

(RQ2) All neural networks I evaluated except the embedding average model get better
scores than the baseline model. This is especially notable with KB-BERT-HAN getting an F1
score 21.7 percentage units above the baseline model.

(RQ3) It is possible to partly explain KB-BERT-HAN. Through the UMAP algorithm,
applied on the document vectors computed by KB-BERT-HAN, it is possible to see how
close different parties are according to the model. Since KB-BERT-HAN operates on the
word level, it is also possible to get an insight into it and explain it. Through visualizing its
attention weights on the word and the sentence level, we partly understand how the model
reaches its conclusions.
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Chapter 6

Conclusion

In this report, I have combined large language models, and in particular BERT models, with
LSTM networks and Hierarchical Attention Networks in order to attempt to distinguish
between different party affiliations. The results show that these models outperform baseline
models based on tf-idf, and that KB-BERT-HAN, utilizing Swedish BERT word embeddings
as well as hierarchical attention, is particularly accurate, outperforming tf-idf by a substantial
margin. The reason for this is the fact that it is able to change its representation of language
down to the word level. Due to its hierarchical structure it can relate both different words
and sentences to each other as well as put more attention on some words or sentences than
others. This model is also interpretable in that the attention weights can be visualized to
see the parts of documents and sentences the model focuses more on. From the model’s
internal representation of documents we can also visualize how they relate to each other using
a dimension reduction algorithm, and use these relations to tell something about differences
and similarities between different political affiliations. Analyses like this can be used further
in applications were one wants to get a picture of different political narratives.

6.1 Future Work
Due to time constraints and an already quite high complexity in KB-BERT-HAN, there were
various ideas that arose, which I never implemented. On the technical side, the models
could be optimized. Given enough storage or memory, KB-BERT-HAN could also utilize
pre-computed embeddings, like the other models, which would allow for faster training.

It would also be interesting to analyze the differences in speech content through time,
and perhaps accomodate for these differences when constructing models. Since narratives
within the same party affiliation sometimes changes a lot over time, it might not be useful
to train the models on close to 30 years of data. After all, both tf-idf and KB-BERT-HAN
actually performed better when trained on just 7 years of data.

There are also improvements to KB-BERT-HAN itself which could be made to possibly
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achieve higher scores. I did not explore the possibility of finetuning in this report, but the
KB-BERT-HAN model could utilize finetuning on the embedding layers within BERT. Fur-
thermore, the model could be divided into more hierarchies. A lot of the speech data available
is divided into paragraphs. Introducing this level of hierarchy, leading to a word-sentence-
paragraph-document hierarchy, might lead to better predictions. This is due to the fact that
it may be the case that paragraphs contributes roughly equally to the overall semantic con-
tent of the document, despite being of different lengths. It is also motivated to make such a
division since the speeches are between 23 and 24 sentences long on average.

Most of all, it would be interesting to explain KB-BERT-HAN more thoroughly as well. In
the visualizations seen in Figure 4.2 it becomes clear what the model puts most attention on.
However, this does not explain which words and sentences contribute the most to predicting
a given class, as opposed to all the other possible classes. This could however be done using
packages like SHAP (Lundberg and Lee, 2017), and would make the model more practically
usable in applications.
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Appendix A

Source Code, Libraries and Image Credit

The Python code written in order to construct the datasets as well as implement, train and
test all models described in this report is available on GitHub: https://github.com/
ErikKjellberg/Speech-Classification. Aside from this there is also a Jupyter note-
book which can be used to visualize some examples with KB-BERT-HAN, without needing
to train it.

Except the built-in Python libraries, the following libraries were also used:

• PyTorch: https://pytorch.org/

• Scikit-learn: https://scikit-learn.org/stable/

• NumPy: https://numpy.org/

• Beautiful Soup: https://www.crummy.com/software/BeautifulSoup/

• SpaCy: https://spacy.io/

• Imbalanced-learn: https://imbalanced-learn.org/stable/

• Transformers: https://github.com/huggingface/transformers

• SentenceTransformers: https://www.sbert.net/

• Matplotlib: https://matplotlib.org/

Front-page image credit: Ray Swi-hymn / CC-BY-SA-3.0. Url: https://commons.wikimedia.
org/wiki/File:20180625_Riksdagshuset_7968_(48413007596).jpg
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