
MASTER’S THESIS 2023

Detecting Anomalies in
OpenStreetMap Changesets
using Machine Learning
Dan Svenonius

ISSN 1650-2884
LU-CS-EX: 2023-42

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

LUlogoRGB.png

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-42

Detecting Anomalies in OpenStreetMap
Changesets using Machine Learning

Anomalidetektion i OpenStreetMap med
Maskininlärning

Dan Svenonius

Detecting Anomalies in OpenStreetMap
Changesets using Machine Learning

Dan Svenonius
da1881sv-s@student.lu.se

November 14, 2023

Master’s thesis work carried out at AFRY AB.

Supervisors: Hampus Londögård, Hampus.Londogard@afry.com
Patrik Edén, patrik.eden@cec.lu.se

Examiner: Jacek Malec, Jacek.Malec@cs.lth.se

mailto:da1881sv-s@student.lu.se
mailto:Hampus.Londogard@afry.com
mailto:patrik.eden@cec.lu.se
mailto:Jacek.Malec@cs.lth.se

Abstract

OpenStreetMap is an open data set in which anyone can make contributions.
This makes it prone to user errors in edits, and validation of these edits is re-
quired to make the data more trustworthy. As there are vast amounts of possible
errors, it is difficult to create a number of heuristics for validation, making a ma-
chine learning approach interesting which could act as an initial filter, flagging
potentially erroneous edits for further inspection.

This thesis investigates the potential of machine learning in validating Open-
StreetMap changesets. It builds upon existing work in vandalism detection but
attempts to generalize the problem from vandalism to unintentional errors. It
compares neural networks to tree-based models and finds that vandalism detec-
tion methods with machine learning is effective in this task, where tree mod-
els perform significantly better than neural networks. In particular, gradient
boosted trees performs best with regards to every metric, achieving 89.46% ac-
curacy. Finally, an extensive feature importance analysis is performed.

Keywords: Machine learning, Anomaly detection, Validation, Explainable AI, Shapley
values

2

Acknowledgements

I want to express my deepest gratitude to Patrik Edén at Lund University and Hampus
Londögård at AFRY, without which this thesis would not have been possible. Your knowledge
and feedback has truly been both inspiring and invaluable.

I also want to express my gratitude to Björn Pedersen for sharing vital ideas during the
formulation the project and discussions throughout process.

Thank you Per Svensson, Pierre Laveklint and Rik Nauta for your guidance, and Jacek
Malec for your help.

Finally, thank you Leo Westerberg, Simon Erlandsson and Tim Jangenfeldt for your
great company throughout this thesis, and Clara Eklund for your support.

3

4

Contents

1 Introduction 9
1.1 Background . 9
1.2 Purpose . 9
1.3 Problem statement . 10

2 Theory 11
2.1 Classification in Machine Learning . 11

2.1.1 Supervised vs. Unsupervised Learning 11
2.1.2 Parameters vs. Hyperparameters 12
2.1.3 Loss Functions . 12
2.1.4 Training, Validation and Test Data 12
2.1.5 Cross-validation . 12

2.2 Artificial Neural Networks . 13
2.2.1 The Artificial Neuron . 13
2.2.2 The Artificial Neural Network . 14
2.2.3 Loss Function . 14
2.2.4 Back-propagation . 15
2.2.5 Gradient Descent . 15
2.2.6 Attention . 15
2.2.7 Hyperparameters . 16

2.3 Decision Trees . 16
2.4 Random Forest . 17

2.4.1 Hyperparameters . 17
2.5 Gradient Boosted Trees . 17

2.5.1 Loss Function . 18
2.5.2 Hyperparameters . 18

2.6 Evaluation Metrics . 18
2.6.1 Confusion Matrix . 18
2.6.2 Precision, Recall, F1 and Accuracy 18

2.7 Shapley Values . 19

5

CONTENTS

2.7.1 SHAP Values . 20

3 OpenStreetMap Data 23
3.1 Tags . 23
3.2 Changesets . 23

4 Creating a Data set 27
4.1 Finding Reverted Changesets . 27
4.2 Finding Non-Reverted Changesets . 29
4.3 Preprocessing . 30

4.3.1 Changeset Data . 30
4.3.2 User Data . 31
4.3.3 Element Data . 31

4.4 Final Dataset . 32

5 Models 33
5.1 Hyperparameter Tuning . 33

5.1.1 Multilayered Perceptron . 34
5.1.2 Random Forest . 34
5.1.3 Gradient Boosted Trees . 35
5.1.4 Final Hyperparameters . 35

5.2 Reduced Ovid . 36
5.2.1 Architecture of Ovid . 36
5.2.2 Hyperparameters . 36
5.2.3 Element Data in Ovid . 37

5.3 Performance . 38

6 Model Analysis 41
6.1 SHAP Values . 41
6.2 User Data . 43
6.3 Changeset Data . 47

6.3.1 Edit Category . 48
6.3.2 Location Category . 52
6.3.3 Miscellaneous Category . 54

7 Suggestions for Model Improvements 59
7.1 Element Data . 59

7.1.1 Element Data Features . 59
7.1.2 Inconsistent Dimensions . 61

7.2 Three classes . 62
7.2.1 Data Set Evaluation . 63
7.2.2 Method to Find More Reverted Changesets 63

8 Discussion 65
8.1 Vandalism Detection Methods for General Anomaly Detection 65
8.2 Model Comparison . 66
8.3 Feature Importance . 67

6

CONTENTS

8.4 Thoughts on Generalization . 67
8.5 Conclusions . 68
8.6 Future Work . 68

8.6.1 Incorporating Element Data . 68
8.6.2 Increasing the Data Set Size . 68
8.6.3 Three Classes . 69
8.6.4 Applicability . 69

References 71

7

CONTENTS

8

Chapter 1

Introduction

1.1 Background
In large and complex datasets, it can be advantageous to let anyone make contributions, also
known as letting the dataset be open. This extracts individuals’ knowledge in their own re-
spective fields, as well as solves the problem of a central planner gathering all information,
which quickly becomes unfeasible. Open datasets have potential for much better accuracy
and detail, but also run a high risk for errors in contributions. Manually fact-checking indi-
vidual contributions is very time consuming considering both the size and complexity of the
dataset. This makes a machine learning approach interesting, which could act as a filter to
narrow down the number of contributions that should be validated.

Two very large open data sets prone to incorrect contributions, intentional or not, are
Wikipedia and OpenStreetMap. This project will work with geographical data, and hence use
the OpenStreetMap data set. Previous work by Tempelmeier and Demidova (2022) has shown
machine learning to be reasonably effective in flagging potential vandalism in contributions
to OpenStreetMap, where vandalism is classified as an intentional, often dramatic, incorrect
edit. This project will build upon their findings and attempt to generalize the problem. The
aim is to investigate the effectiveness of machine learning methods in detecting unintentional
errors. In addition, different types of machine learning models are compared and feature
importance is analyzed.

1.2 Purpose
Having some kind of quality control in all data sets is important, and arguably the most im-
portant in open data sets. While many OpenStreetMap users correct other editor’s mistakes,
it is reasonable to assume that not all errors are detected and thus stay in the map. Addition-
ally, a time gap between an error and its fix is inevitable. This time gap renders the affected

9

1. Introduction

segment of the map unreliable, although a given map user might not identify the error and
consequently use incorrect information. Furthermore, if another editor is unable to identify
the error, it might propagate through future edits, making a clean revert non-trivial. Intro-
ducing some kind of automatic approach to detecting potential errors can significantly lower
the downtime while possibly also flagging certain suspicious edits to be validated before roll-
out, combating these issues.

The purpose of this project is to investigate a machine learning approach to detecting
a more general type of error than vandalism, however using existing methods based on van-
dalism detection by Tempelmeier and Demidova (2022). Vandalism detection is most likely
easier than general error detection, as vandalism should be more dramatic in nature and thus
easier to detect. Additionally, the project aims to investigate which types of models are well
suited for this task and the importance of different features for the models.

1.3 Problem statement
This work was carried out together with AFRY and a client providing a map service. The
project will attempt to answer the following questions:

1. How do existing vandalism detection methods in OpenStreetMap translate to general
anomaly detection?

2. How do different types of machine learning models compare in anomaly detection in
OpenStreetMap?

3. Which features are most important for the models in anomaly detection, and why?

10

Chapter 2

Theory

2.1 Classification in Machine Learning
In machine learning, a large set supervised (see 2.1.1) machine learning tasks fall into one
of two categories - regression or classification. Regression aims to model a function with
continuous outputs, for example how the price of a house will depend on a number of inputs
like location and number of rooms. Classification on the other hand models a function with
discrete outputs, like whether an image of an animal is a mouse, cat or a dog. Of course, the
modeled function is never perfect as noise is always present in the data in addition to the
sample size being limited, and as such the output of the models are referred to as predictions.

A classification problem could in theory contain any number of different classes, but in
general two cases are distinguished: binary and multi-class classification. Binary classification
refers to a problem with only two classes resulting in an ”either/or” answer, like given a set of
images of cats or dogs, predicting which image contains cats and which contain dogs. Multi-
class on the other hand refers to all classification problems with three or more classes, and
does not answer an ”either/or” question, or at least not in a straight forward manner.

As this project aims to classify edits (or changesets, more about this below) in Open-
StreetMap, the remainder of this section will handle the case of classification tasks in machine
learning and thus omit related theory regarding regression.

2.1.1 Supervised vs. Unsupervised Learning
There are many machine learning algorithms, some of which require information about the
”correct” answer in order to learn how to accurately predict data. Data that has a correct
answer attached to it is called labeled data. Algorithms that require labels are called supervised
and include conventional artificial neural networks and decisions trees, among others. Con-
versely, algorithms that do not require labels are called unsupervised and include clustering
algorithms such as k-means (Ahmed, Seraj, and Islam 2020). There are also other machine

11

2. Theory

learning methods that do not fit into a supervised vs. unsupervised paradigm, such as rein-
forcement learning (Qiang and Zhongli 2011).

2.1.2 Parameters vs. Hyperparameters
A hyperparameter in machine learning is a parameter that is defining how a model is trained,
which is not to be confused with a model’s parameters (sometimes referred to as weights),
which are the model’s learned rules or weights that in turn define the final model. The hy-
perparameters are only relevant when training the model, whereas the parameters define the
model when training is finished. An example of a hyperparameter is how many times a data
set is fed to the model during training, whereas a parameter is what the model learns when
seeing this data set, for example a weight between two nodes in an artificial neural network.

2.1.3 Loss Functions
In supervised machine learning, in order to optimize a model’s parameters, a loss function
is minimized. The loss function quantifies how accurate the model’s predictions are with
respect to its actual value. The loss functions used in this project are presented in further
detail below.

2.1.4 Training, Validation and Test Data
In supervised learning the full data set is split into subsets to use for different purposes. In
general, either a train/test or a train/test/validation split is used. Their purposes are:

Training data: The data used to optimize the model’s parameters. This is the data that is
fed to the model during training and as such the data that determines the model’s parameters
through minimization of the loss function.

Validation: The data used to optimize the model’s hyperparameters. A model will in
general produce different results with the same training data when different hyperparameters
are used. The validation data is then used to determine which model performs best, which
in turn yields the best set of hyperparameters.

Test data: The data used to determine the performance of the model. This data set is
not at all used when training the model, and the model is thus entirely independent of this
data (assuming independent samples), which will indicate how well the model generalizes on
new data.

2.1.5 Cross-validation
Cross-validation is a way to better gauge the general performance of a model based on train-
ing and validation data. When performing K-fold cross-validation, one partitions the data
set into K equal parts, where K − 1 parts are used to train the model and the remaining
part is used to test the model’s performance. This is then done K times while changing the
validation data. The figure below illustrates an example of 3-fold cross-validation:

12

2.2 Artificial Neural Networks

3-fold cross validation.

2.2 Artificial Neural Networks

2.2.1 The Artificial Neuron
Artificial neural networks, or neural networks/ANNs in short, are a family of machine learn-
ing models. Their most basic component is a neuron (also referred to as a node), inspired by
the biological neuron in brains. A neuron in an artificial neural network is a transformation
y : Rp → R:

y(x1, ..., xp) = φ(b +
p∑

i=1

wixi) (2.1)

where xi are the input signals, wi are the weights, b is the bias and φ is the activation
function. The activation function generally has a non-decreasing monotone behaviour. Fig-
ure 2.1 taken from Ohlsson and Edén (2021a) below illustrates this:

Figure 2.1: Illustration of an artificial neuron. The figure is taken
from Ohlsson and Edén (2021a).

13

2. Theory

2.2.2 The Artificial Neural Network
An artificial neural network is composed of many neurons setup in a sequence of layers.
Typically the layers are dense, meaning that every neuron from a given layer has a weight
connected to every neuron in the next layer. Each neuron in a layer will consequently input
its output into all neurons in the next layer, multiplied by different weights for each receiving
neuron. The output dimension is equal to the number of neurons in the last layer. Figure 2.2
taken from Ohlsson and Edén (2021a) illustrates this:

Figure 2.2: Illustration of how artificial neurons stacked in layers
connect in an artificial neural network. The figure is taken from
Ohlsson and Edén (2021a).

For a classification problem, the output of a given neural network is a discrete probability
distribution over all the classes in the data set. This is achieved by applying a final activation
function to output of the last layer, creating a probability in the binary case or a probability
distribution in the multi-class case. In the binary case, this is the logistic function: (Ohlsson
and Edén 2021b)

φ(a) =
1

1 + e−a (2.2)

and softmax in the multi-class case, where φi corresponds to the probability that the sample
belongs to class i: (Ohlsson and Edén 2021b)

φi(a1, . . . , ap) =
eai∑p

j=1 ea j
(2.3)

2.2.3 Loss Function
The loss function E used in this project for neural network classification is the cross-entropy
function. In the binary case it is given by:

E(ωωω) = −
1
N

N∑
n=1

(dn ln(yn) + (1 − dn) ln(1 − yn))

whereωωω is the vector of all weightsω1, ..., ωk , N is the size of the training data set, dn ∈ {0, 1}
is the target (where 0, 1 are representations of more meaningful class labels) and yn ∈ [0, 1]
is the probability output of the model for sample n in the training data. In the multi-class
case, the categorical cross-entropy loss function is given by: (Ohlsson and Edén 2021b)

14

2.2 Artificial Neural Networks

E(ωωω) = −
1
N

N∑
n=1

c∑
i=1

dni ln(yni)

where the notation is the same as in the binary case, but for each sample in the training
set, the loss function needs to account for the prediction for every individual class, hence
summing over the classes c. However, no class should be given a larger weight than another,
so dni ∈ {1, ..., c} is replaced by a one-hot encoding, where a sample n belonging to class jn:

dni =

 1, if i = jn,
0, if i ̸= jn,

yni ∈ [0, 1] is the predicted probability that sample n belongs to class i (Ohlsson and Edén
2021b). Of course, the dependence on the weightsωωω lies inside of the model’s predictions yn
or yni as the predictions are determined by the weights.

2.2.4 Back-propagation
Back-propagation is an algorithm for finding all partial derivatives ∂E

∂ωi
for a loss function E.

Essentially, back-propagation starts from the output layer of the network (hence the name)
and utilizes the chain rule to iteratively find ∂E

∂ωi
by going backward through the network’s

layers.

2.2.5 Gradient Descent
Gradient descent is the method used for finding a minimum of the loss function. Put simply,
given a gradient (calculated through the back-propagation method), taking a step in the op-
posite direction of the gradient will result in a new point further ”down” the loss function.
Iterating this procedure will result in a finding a minimum. Note that a minimum does not
imply a global minimum, meaning that simply taking steps in the negative gradient direc-
tion can result in convergence yet poor performance. Several methods have been developed
to solve issues with gradient descent such as stochastic gradient descent and Adam (LeCun
et al. 2012; Yi, Ahn, and Ji 2020).

2.2.6 Attention
Attention is a way for a model to learn the most important elements out of a given set of
elements. It consists of a query Q, keys K and values V . The attention function is given by

Attention(Q,K,V) = softmax
(
QKT
√

dk

)
V

where dk is the number of columns in the matrix K . Intuitively, from the similarity be-
tween the query Q and the keys K a probability distribution is created representing attention
weights, and multiplying this with V results in a weighted sum of V . An extension of this
mechanism is multi-head attention, where this mechanism is used multiple times and each

15

2. Theory

”head” focuses on different features. This way, the attention mechanism can output multiple
objects that are important in different ways (Vaswani et al. 2017).

2.2.7 Hyperparameters
Only the hyperparameters tuned or otherwise relevant for the project will be stated.

Hidden layer sizes: The number of layers and the size of each layer in the artificial neural
network, except for the input and output layers, which have to be consistent with the input
and output dimensions.
Epochs: The number of times each sample in the training data is fed to the network dur-
ing training. Occasionally, this is given by a maximum number of epochs, after which the
network will stop training if it hasn’t already converged according to a tolerance parameter.
L2 regularization: L2 adds the sum of the squared weights to the loss function so that E ←
E+α

∑
i ω

2
i . The intuition is that large weights lead to overfitting, and penalizing this reduces

overfitting. In hyperparameter tuning, the factor α is tweaked.
Batch size: The number of data points used for every iteration of updating the weights via
gradient descent. This only applies if some version of stochastic gradient descent is used
where a subset of the training data is used when calculating the gradient.
Learning rate: The length of the step taken in the negative gradient’s direction during gra-
dient descent.

Additionally, the model presented by Tempelmeier and Demidova (2022) uses a number of
hyperparameters which are not tweaked in any of the models that are created in this project,
as Ovid is used without any hyperparameter modifications. They are however given below:

Dropout: The fraction of nodes in layer that are randomly set to zero.
Number of attention heads: Number of heads used in multi-head attention, equaling the
number of outputs from multi-head attention.
Patience: Number of epochs after which to stop training if validation loss has not improved.

2.3 Decision Trees
A decision tree is a supervised model which partitions the data. At every node in the tree,
the data is split based on a condition for an individual feature. The conditions are decided by
a heuristic (which can be interpreted as a sort of loss function) quantifying how well a given
condition partitions the data into subsets that are as homogeneous as possible. Training is
then finished when every leaf consists of only a single class and this class decides the predic-
tion of a sample reaching this leaf (Almog 2022). Hyperparameters can affect the purity of
a leaf, in which case the output probability of a sample belonging to class i is the fraction of
samples of class i in that leaf. This corresponds to the predicted class being the majority class
of the leaf (sklearn.ensemble.RandomForestClassifier 2023).

While several heuristics exist, this project only uses Gini impurity, where a Gini impu-
rity G is defined on a set S with n different classes and is given by

16

2.4 Random Forest

G = 1 −
n∑

i=1

p2
i (2.4)

where pi is the relative frequency of class i in S. Intuitively, it quantifies the spread of classes
within a set where a large G implies a diverse set containing significant numbers of more
than one class. Conversely, a small G corresponds to a very homogeneous set (Almog 2022).

2.4 Random Forest
A random forest is an ensemble of independently trained decisions trees. The method of
training a random forest is slightly different from a single decision tree, however. First, m
subsets S1, ..., Sm are created through bagging, or bootstrap aggregating, where each subset
draws n samples from the training data set with replacement. Here, m corresponds to the
number of decision trees in the forest and n is the size of each subset, often equal to the size of
the training data set. Secondly, a decision tree is trained for every Si , however only a random
subset of the features present in Si are considered when finding the best split condition at
a node. This causes individual trees in the forest to behave differently, reducing overfitting
when considering the ensemble as a whole (Yiu 2019). Finally, the output of a random forest
is a probability distribution over all classes computed by the mean probability output of
every individual tree in the forest. The predicted class is then the class corresponding to the
maximum of this probability distribution (sklearn.ensemble.RandomForestClassifier 2023).

2.4.1 Hyperparameters
Number of trees: The total number of decision trees in the forest.
Maximum depth: The maximum depth of each decision tree within the random forest.
Maximum features: The number of features to consider when deciding a best split in a node.

2.5 Gradient Boosted Trees
When using gradient boosting with decision trees, one uses an ensemble of decision trees to
make predictions. However unlike random forest, trees are not trained independently of one
another, but each tree is instead iteratively introduced to reduce the prediction error of the
existing ensemble. To state the algorithm in an informal fashion:

Consider a series of samples x1, ..., xn and targets y1, ..., yn with k classes and an ensemble
of m decision trees giving predicted probabilities Fmj(xi) = pi j of sample i belonging to class
j . Then consider the residuals for these predictions ri j = pi j − yi where i ∈ 1, ..., n and
j ∈ 1, ..., k. A new decision tree is trained to minimize the residuals ri j and is then added
to the ensemble to create a new model Fm+1. This process is then iterated until the desired
number of trees are added to the model (Masui 2022).

In binary classification, the sigmoid function is applied to the sum of all trees’ outputs,
which in turn is decided by the value of the leaf that the sample reached in a tree. For multi-
class, each class is trained separately and softmax is applied to the outputs of each individual
model (Bùi 2023).

17

2. Theory

2.5.1 Loss Function
The loss function used in this project for gradient boosting with decision trees is the cross-
entropy function, see section 2.2.3 for a detailed explanation.

2.5.2 Hyperparameters
Number of trees: The number of trees in the ensemble.
Depth: The depth of each tree.
L2 regularization: The inverse of the weight each leaf’s output is multiplied by. A large L2
gives the leaf a smaller weight.

2.6 Evaluation Metrics
2.6.1 Confusion Matrix
A confusion matrix provides information about how the ground truth classes relate to the
predicted classes in classification. The rows typically represent the ground truth and the
columns represent the predictions, meaning that an element ci j in a confusion matrix C is
the number of samples that in reality belongs to class i but were classified as class j . Hence,
confusion matrices with large counts along the central diagonal and small counts otherwise
are indicative of a good model. An example of a confusion matrix is given in figure 2.3, using
a simple classification model for SKlearn’s iris data set with three different classes:

2.6.2 Precision, Recall, F1 and Accuracy
Below, TP, FP,TN and FN refers to true positive, false positive, true negative and false neg-
ative, respectively.

For a classification problem, precision is defined as

Precision =
TP

TP + FP
(2.5)

and gives the ratio between the number of samples correctly classified as class i against the
total number of samples classified as i. It is a measure of how ”precise” the model is in its
classification of class i, as a high value yields few samples incorrectly classified as i. On the
other hand, recall is defined as

Recall =
TP

TP + FN
(2.6)

and quantifies the ratio of the number of samples correctly classified as i against the total
number of samples of class i. It describes how well the model classifies all of the samples
within a given class. Finally, F1 (or F1-score) is defined as the harmonic mean between preci-
sion and recall and is given by

18

2.7 Shapley Values

Figure 2.3: Example confusion matrix using a simple classifi-
cation model for SKlearn’s iris data set with three classes -
setosa, versicolor and virginica. The rows represent the ground
truth class and the column the predicted class. The example model
works well except for having a tendency to classify versicolor as
virginica.

F1 = 2
precision · recall
precision + recall

=
2TP

2TP + FP + FN
(2.7)

A property of the harmonic mean is that it punishes extreme values, meaning that although
one of precision or recall might be perfect (equal to one) while the other is zero, the F1-score
in this situation would be equal to zero, maintaining the information that this would be a
bad model. F1-score can be seen as a combination between precision and recall. Precision,
recall and F1-score are given for every class in the classification problem.

Finally, accuracy is given by

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)

where all of TP,TN, FP, FN denotes the correctly/incorrectly classified samples for all classes.
Intuitively, it is the fraction of correctly classified samples in the data set.

2.7 Shapley Values
Shapley values stem from game theory and provides one solution to a cooperative game, which
is a game where players form coalitions to obtain utility, or ”gain”. Within a cooperative
game, the Shapley values provide one answer as to how the utility should be shared between
the players and has a number of desirable properties (additivity, symmetry, efficiency, null

19

2. Theory

player property and uniqueness). The formula for calculating the Shapley value for player i
in a cooperative game is

σi =
∑

S ∈ 2N\{i}

(|N | − |S| − 1)!|S|!
|N |!

(v(S ∪ {i}) − v(S)) (2.9)

where N = {1, ..., n}, are the players, S ⊆ N and v(S) is the utility of coalition S. Intu-
itively, σi can be thought to represent the ”power” of player i through a weighted sum of the
marginal contributions of player i to each coalition, with a combinatorial factor to achieve the
desirable properties. A large Shapley value means that the player gives large contributions to
coalitions, meaning she should also receive a large utility (Lucchetti 2023).

Within machine learning, Shapley values are used to understand models by quantifying
individual features’ effects on a model’s predictions. However in order to utilize the theory
behind Shapley values, one first needs to rephrase the task of predicting with machine learn-
ing to cooperative game theory. Here, the input features are viewed as the players and the
predictions are viewed as the utility (Rozemberczki et al. 2022). Equation (2.9) shows that
calculating the Shapley values requires both v(S) and v(S ∪ {i}), which poses a problem as
this in theory requires 2n different models to be trained - one for each possible subset of N ,
which quickly becomes unfeasible. SHAP values as presented by Lundberg and Lee (2017)
provides a solution to this.

2.7.1 SHAP Values
This project utilizes SHAP values, implemented in Python’s SHAP library, which uses differ-
ent algorithms to calculate the approximations of the Shapley values for different types of
machine learning models. It differentiates between model-specific and model-agnostic meth-
ods, which either utilizes the specific architecture of certain models or makes no assumptions
about the model’s internal structure. Below, the model-agnostic KernelExplainer is de-
scribed because of its generality, although the model-specific TreeExplainer is also used
in the project.

To solve the problem of training a new model for all possible S ⊆ N , the idea is to use
only one model trained on all features in combination with a conditional expectation to han-
dle missing inputs. In KernelExplainer, these missing inputs are calculated by providing
a background data set to sample from, replacing the removed input by the sampled. Then,
the SHAP values for a sample x are calculated all at once using a connection between Shapley
values and linear regression, explained below. The advantage of this method is that it requires
fewer samples and model evaluations than merely approximating by sampling.

First, the concept of an explanation model g is introduced to explain a more complex
model f , which in this case is the conditional expectation representation of the machine
learning model. The model g uses simplified inputs x′ and a mapping x = hx(x′) which maps
the simplified inputs to the original inputs x, where g(x′) = f (hx(x′)). Then, additive feature
attribution methods are defined as having linear explanation models on the form

g(z′) = ϕ0 +

N∑
i=1

ϕiz′i (2.10)

20

2.7 Shapley Values

where z′ ∈ {0, 1}N are binary inputs and each ϕi in the explanation model corresponds to
the effect of feature i. z′i = 1 means feature i is included in the coalition and vice versa for
z′i = 0. For additive feature attribution methods, there exists a unique explanation model
which satisfy three properties (local accuracy, missingness and consistency), which is given
by

ϕi(f , x) =
∑
z′⊆′

(|N | − |z′| − 1)!|z′|!
|N |!

(f (hx(z′)) − f (hx(z′ \ i))) (2.11)

where |z′| are the number of non-zero elements in z′. Note that this is an equivalent formu-
lation of the definition of Shapley values in equation (2.9). To find ϕ, the LIME method is
used, which creates a local approximation around a model’s prediction. This is an additive
feature attribution method, making g follow equation (2.10). LIME establishes that ϕ is found
through the following expression:

arg min
g

L(f , g, πx′) +Ω(g) (2.12)

and if

Ω(g) = 0,

πx′(z′) =
N − 1(

N
|z′ |

)
|z′|(N − |z′|)

,

L(f , g, πx′) =
∑
z′∈Z

(f (hx(z′)) − g(z′))2πx′(z′)

the solution satisfies the three properties, causing ϕ to correspond to the Shapley values for
f (note that f is the conditional expectation and not the true model, making these SHAP
values for the model rather than the true Shapley values). L is weighted sum of squared errors,
weights decided by π′x and Ω is a complexity penalty. Because g is linear and L is a sum of
squared errors, g can be calculated through weighted linear regression. (Lundberg and Lee
2017)

21

2. Theory

22

Chapter 3

OpenStreetMap Data

OpenStreetMap’s geographical model is built from three different types of elements that form
a hierarchical structure - nodes, ways and relations. The node is the most simple element,
defined by a longitude and latitude and represent a point on the map. Nodes are used to either
represent points of interest, for example a restaurant, or are used in sequence to build more
complex elements. Secondly, a way is an ordered sequence of nodes which construct larger
elements like roads or buildings. Finally, relations consists of nodes, ways and other relations
which form the largest OSM elements, for example city borders. In addition, elements can
hold tags further describing the element.

When a user makes a contribution to the database, a changeset is created containing
these edits. Changesets are central to this project as machine learning classification will be
performed on changesets - these are explained in detail below.

3.1 Tags
In OpenStreetMap, both elements and changesets can have tags to further explain the con-
tents of these objects. Tags are key-value pairs of free text fields with a maximum of 255
characters, however there are conventions as to how common information is supposed to be
represented in tags. The key describes a kind of category, while the value gives further in-
formation about the object regarding this specific category (OpenStreetMap Wiki, Tags 2022).
The conventions on how to use a set of common tags are given in OpenStreetMap Wiki, Map
features (2023).

3.2 Changesets
Every single contribution to OSM creates a changeset. Three different operations are possible
when editing - create, modify and delete. Create introduces an entirely new element to OSM,

23

3. OpenStreetMap Data

modify changes an existing element and delete removes an existing element.
A changeset contains all of the edits (meaning creates, modifies and deletes of nodes,

ways and relations) made over a short period of time, limited either by a maximum time
of 24 hours or 1 hour of inactivity. There is a convention regarding the geographical extent
of a changeset in that it should be ”local”. What exactly this entices is however debated, as
some argue that it should not span more than a city, whereas others argue that the maximum
scope could be a continent. In general though, it is recommended to keep the changes to one
country, and preferably as small as possible, and if making edits over several areas it is rec-
ommended to open and close several changesets so as to still make each individual changeset
”local” (OpenStreetMap Wiki, Changeset 2023).

A changeset consists of two XML files. One contains information about the changeset as
a whole, referred to as the metadata file, and the second contains the edited elements, referred
to as the OsmChange file. First, an example of the changeset metadata file is given below:

Figure 3.1: An example of a changeset metadata file downloaded
from OpenStreetMap. This contains information regarding the
changeset as a whole, but not information about individual edits.

Note the comment-tag which will become relevant later. Table 3.1 below describes the rele-
vant attributes in the changeset metadata file.

Table 3.1: Descriptions of the changeset metadata attributes. Only
the attributes relevant to this project are described.

id The unique id of this specific changeset.
created_at When the changeset was opened.
closed_at When it was closed and uploaded to OSM.
uid Unique id of changeset author.

min_lat
Latitude of the southernmost element subject to edits
by the changeset.

min_lon
Longitude of the westernmost element subject to edits
by the changeset.

max_lat
Latitude of of the northernmost element subject to edits
in the changeset.

max_lon
Longitude of the easternmost element subject to edits
in the changeset.

tag: comment
An optional but widely used tag describing the edits.
The comment is written in natural language by the author.

24

3.2 Changesets

Secondly, the OsmChange file contains information about the elements edited by the
changeset. The OsmChange file corresponding to the example used in figure 3.1 is given
below:

Figure 3.2: OsmChange file corresponding to the changeset in figure
3.1. In this changeset, one node and one way was modified.

This file shows the state of the edited elements after the changeset was applied. In order to
see the actual edits one would need to compare with the previous version of these elements.
Figure 3.3 shows the difference between the XMLs for these two versions:

Figure 3.3: The difference between the element versions before and
after the changeset was applied.

The difference is that the node was moved and also integrated into the edited way. The actual
edit was to include the node representing a staircase to be a part of a park, represented by a
way.

The relevant attributes for OSM elements are described in table 3.2 below:

25

3. OpenStreetMap Data

Table 3.2: Descriptions of element attributes relevant to this project.
See the <node>/<way>-tags in figure 3.2 for an example of how an
element is represented in OSM.

id The unique id of this specific element.

visible

Whether this element is visible on the OSM map.
Deleted elements have visible = ” f alse” and deletes
can be reverted by setting visible = ”true”, meaning
deleted elements still exist in the database.

version
The iteration of the element. version = 1 for a
newly created element.

changeset Id of the changeset creating this element version.
uid Unique id of changeset author.

26

Chapter 4

Creating a Data set

The following section will present how the data set is created and how the changesets are
preprocessed. A changeset history dump downloaded on February 27th 2023 constitutes the
basis for the data set, and as such no changeset created at a later point in time is considered
in this project. No changeset committed before 1st December 2011 is considered, which is
motivated below. An element history dump is used in addition to the changeset history, also
downloaded on February 27th 2023.

The finished data set contains 51825 data points, 24950 reverted changesets (ground
truth positive) and 26875 non-reverted changesets (ground truth negative).

4.1 Finding Reverted Changesets
This project aims to use machine learning for detecting suspicious changesets, which will
translate to the task of binary classification of changesets as being potentially erroneous or
not. Thus, there will be no differentiation between changesets where all edits are potentially
erroneous, as opposed to only a subset. The question posed will simply be ”does this changeset
contain at least one potentially erroneous edit?”.

In order to do this with supervised learning, a number of potentially erroneous change-
sets have to be collected, where the most straight forward method is to find changesets known
to contain errors. However, considering the wide range of possible edits and errors that can
be made in OpenStreetMap, it is very difficult to find a set of rules that, if they apply, would
indicate an erroneous edit. Instead, a method very similar to the one used by Tempelmeier
and Demidova (2022) which utilizes the comment tag is adopted. The comment tag is widely
used - a scan of the changeset history shows that 91.2% of all changesets between 1st December
2011 and 27th February 2023 use this tag - and these comments are scanned for four things:

1. The changeset comment contains the keyword ”revert”.

27

4. Creating a Data set

2. The changeset contains an ID, identified by a string of 8 or 9 characters in a row with-
out blank spaces.

3. The ID is preceeded by any of the following three words: "changeset", "chgset"
or "cs".

4. The keyword ”vandalism” is not included in the comment.

There were 27393 changesets satisfying all of the above conditions. These four conditions are
used for the following reasons:

1. Searching for the ”revert” keyword suggests that a user detected some edits that were
a detriment to the quality of the OSM data and reverted these elements back to their
previous state, most likely indicating errors in the reverted edits. It need not be its own
word, but the sequence of characters must exist in the comment such that ”reverting”
and ”reverted” would pass as well.

2. The ID establishes a connection to the reverted changeset, which can then be retrieved.
Restricting to IDs with 8 or 9 digits considers all changesets from December 1st 2011,
equivalent to about 123 million changesets. This provides a compromise between size
and quality in the data set, as conventions and behaviour in OSM editing may change
over time and very old changesets may constitute poor data.

3. The ID needs to refer to a changeset, and not a node, way or relation. By demanding
that the ID is preceeded by "changeset", "chgset" or "cs" - three common words
for ”changeset” in comments - will establish that the ID in fact refers to a changeset
and not an OSM element.

4. The project aims to look at unintentional mistakes. Vandalism has an intentional con-
notation, and reverting changesets mentioning this word in the comment are thus dis-
carded. Similarly to ”revert”, it need not be its own word but the sequence of characters
cannot exist in the changeset comment.

Explained intuitively, the method searches the entire changeset history for reverting change-
sets where a connection to the reverted changeset is established through its ID in the reverting
changeset’s comment. Then, the reverted changeset is retrieved and is labeled as containing
errors, or equivalently in this case, as having been reverted. These two ways of referring to
the same class - containing errors or having been reverted - will henceforth be used inter-
changeably. Figure 4.1 below illustrates this method.

28

4.2 Finding Non-Reverted Changesets

Figure 4.1: Figure illustrating how changesets’ comments are
scanned to find reverted changesets. Note in the third example that
only changeset 35246670 is added to the data set while 35220811 is
not, since the second ID is not preceeded by any of {"changeset",
"chgset", "cs"}. Also note that the comment in changeset
10903557 contained the word ”reverting” rather than ”revert” but
this still passes.

The key reason for using this method is that instead of trying to establish a number of
heuristics to find erroneous changesets, this problem is circumvented by ”outsourcing” this
judgement to the OSM community by using the changeset’s comment tag. It should however
be explicitly said that there is not a perfect match between erroneous changesets and suspi-
cious changesets as some edits could be strange yet correct. The method is however deemed to
be good enough as every erroneous changeset should be flagged for further inspection given
a perfect model.

4.2 Finding Non-Reverted Changesets

To create a ground truth negative data set, an equal number of changesets were randomly
sampled for the same time interval (December 1st 2011 to February 27th 2023), removing
the changesets that were identified in section 4.1. This will be referred to as the Not reverted
class. While this does not guarantee a data set free from reverts nor errors, it is not meant to
constitute a data set entirely free from them either. Rather it represents the true distribution
of OSM changesets as opposed to the reverted distribution, acting as a ”control group”.

However, it is still good to get some data point about the rate of correct vs. incorrect
changesets in this data set. The method resulted in 27393 reverted changesets out of about 123
million total changesets, which is equivalent to a 0.022% probability of a changeset satisfying
the requirements of the method. Of course, not every erroneous changeset is identified with
the aforementioned method, but even a 100-fold increase yields an overwhelming majority
of true negatives in the non-reverted data.

29

4. Creating a Data set

4.3 Preprocessing
The changesets found were then preprocessed into numerical features in a number of steps.
The features used to represent a changeset are identical to the ones used by Tempelmeier
and Demidova (2022), where a changeset’s features are split into three parts - changeset, user
and element data. The features, are given below as well as their variable names. All of the
following data retrieving and processing was performed using either the OSM main API
(OpenStreetMap Wiki, API v0.6 2023) or a combination of PyOsmium developed by Hoffmann
(2015) and Osmium Tool by Topf (2013).

4.3.1 Changeset Data
The changeset data contains information solely about the changeset as a whole (and thus
conceptually more similar to the changeset metadata file rather than the OsmChange file)
and consists of the following:

Table 4.1: Features in the changeset data.

create_cs
modi f y_cs
delete_cs
edits

Number of creates, modifies, deletes and total number of edits (their
sum) in the changeset.

nnodes
nways
nrelations

Number of nodes, ways and relations that were subject to an edit in
the changeset.

min_lon
min_lat
max_lon
max_lat

Minimum/maximum longitude/latitude. These are defined by the
eastern-, northern-, western- and southern-most elements subject to
edits in the changeset.

box_size The size of the bounding box as defined by minimum/maximum lon-
gitude/latitude.

comment_len The number of characters in the comment.
imagery_used If the source of the satellite imagery was given.
editor_app Which editing application was used when creating the changeset. This

is one-hot encoded to have seven levels: josm, go map!!, osm go!,
potlatch, streetcomplete, vespucci, other where other includes
making edits in the OSM web browser.

All of the above information was gathered using the changeset metadata and OsmChange
files, downloaded from the OSM main API in Python. The OsmChange file contained infor-
mation about the operations and elements while the changeset metadata file contained the
rest of the features.

30

4.3 Preprocessing

4.3.2 User Data

The user data contains information about all previous changesets committed to OSM by the
user prior to the creation of the changeset. It gauges the experience level of the users as well
as their editing patterns. It consists of the following features:

Table 4.2: Features in the user data.

create_u
modi f y_u
delete_u
contributions

Total number of creates, modifies, deletes and total number of con-
tributions (their sum) by the user to OSM.

create_nodes
create_ways
create_relations

Number of nodes, ways and relations that the user has created.

active_weeks Number of unique active weeks. A user making many edits within one
week will still only result in one active week, and is as such a measure
of activity over time.

acc_created Time of account creation.

This data was gathered by scanning both the changeset history and the element history files.
Although no changesets before 1st December 2011 are eligible in this project, these are still
included when aggregating the user history to obtain a fair estimate of users’ experience. First,
the changeset history file containing all previous OSM changesets was scanned to count the
number of active weeks for all relevant users. Then, the full element history file containing
every version of every OSM element was scanned to find all elements that were touched by
the relevant users, giving the operations and element counts. These scans were performed
with PyOsmium. Finally, the account creation time was retrieved from the OSM main API
in Python.

4.3.3 Element Data

Finally, the element data contains information about the elements that were edited. As a
changeset can contain edits to multiple elements, the following features were collected for
every individual element subject to an edit in the changeset:

31

4. Creating a Data set

Table 4.3: Features in the element data.

operation The changeset’s operation (create/modify/delete) on the element.
This is one-hot encoded.

type The type of element (node/way/relation) that was edited. This is one-
hot encoded.

version Number of times this element has been edited.
ntags
ntags_added
ntags_deleted

Number of tags for the current version, and number of tags added and
deleted.

nvalid_tags
nprev_valid_tags

Number of valid tags for the current and previous version, see section
3.1.

weeks_to_prev Weeks since last edit of the element.
name_changed If the element’s name tag was changed in the changeset.
nprev_auths Number of unique users to edit the element before the changeset.

These features were gathered in two ways. First, the edit operation and element version
number were retrieved by inspecting the OsmChange file of the changeset, which in turn
was retrieved from the OSM main API in Python. While inspecting this file, all element IDs
subject to edits in the changeset were stored. Second, the element history file was filtered us-
ing Osmium Tool, discarding all irrelevant element IDs. Third, using PyOsmium, the filtered
element history file was scanned searching for all previous versions of the relevant elements.
All of the past versions were used to count the number of previous authors, whereas only the
previous version was used to calculate the rest of the features.

4.4 Final Dataset
Table 4.4 below shows the resulting number of data points of each class after preprocessing,
which is slightly smaller than the initial size as some changesets were discarded due to raising
errors during preprocessing.

Table 4.4: The final data set.

Class Size
Reverted 24950

Not reverted 26875

32

Chapter 5

Models

One of the questions this project attempts to answer is how different types of models perform
at anomaly detection in changesets. Because of this, four models are compared, two based on
neural networks and two based on trees:

1. A multilayered perceptron (MLP). This is a simple neural network model with dense
layers.

2. Random forest.

3. Gradient boosted trees.

4. Reduced Ovid. A slightly tweaked version of Ovid, the model presented by Tem-
pelmeier and Demidova (2022).

These are crude, unrefined models meant to represent a lower bound of performance for a
certain type of machine learning models. Because of this, the problem regarding inconsistent
input dimensions of the element data (see section 4.3.3) is solved by simply circumventing it
- the element data is omitted altogether for the MLP, random forest and the boosted trees
model. Ovid however has a solution to this which is adopted in the Reduced Ovid model,
explained in more detail in section 5.2.3.

5.1 Hyperparameter Tuning
This section presents the method used to find a decent set of hyperparameters for the MLP,
random forest and boosted trees. Reduced Ovid’s hyperparameters are not tuned, but instead
set to be identical to those used in the original Ovid model to maintain maximum similarity
with the results from Tempelmeier and Demidova (2022). The same method is used for all
models - first, the data is split into a 80% training and 20% test data where only the training

33

5. Models

data is used in the hyperparameter tuning. A grid search testing all possible hyperparameter
combinations with 3-fold cross-validation is performed, where the the set of hyperparame-
ters with the highest average validation score are considered best. All hyperparameters not
mentioned are set to default values according to the corresponding package used: SKLearn’s
MLPClassifier and RandomForestClassifier (Pedregosa et al. 2011) and catboost’s
CatBoostClassifier (Dorogush, Ershov, and Gulin 2017).

5.1.1 Multilayered Perceptron

For the MLP, the data was scaled to zero mean and unit variance. Additionally, the grid search
was performed in two steps as one search required an unfeasible amount of computational
resources or time. The result from the first search was used in the second, which together
form the final hyperparameters.

Table 5.1: Hyperparameters tested in the grid search for the MLP,
using 3-fold cross validation. The best hyperparameters are marked
in bold. The result from the first grid search (left table) was input
into the second (right table).

Hyperparameter Values tested Hyperparameter Values tested

Hidden layer sizes

(10),
(10, 10),
(10, 10, 10),
(100),
(100, 100),
(100, 100, 100),
(1000),
(1000, 1000),
(1000, 1000, 1000)

(100, 100), 400
−−−−−−−−−−−−−→

L2 regularization
0.001,
0.0001,
0.00001

Maximum epochs 200, 400, 600 Batch size 100, 200, 300
Learning rate 0.01, 0.001, 0.0001

5.1.2 Random Forest

Random forest is an ensemble method that in general improves with larger ensembles un-
til saturation (Probst and Boulesteix 2017). As such, it is good to ensure that the ensemble
has approximately converged to the asymptote and will not improve considerably from more
trees, which is done by testing three large numbers of trees and comparing the performance
of the best set of hyperparameters with the other number of trees. If the difference in per-
formance is small, convergence is achieved. The following hyperparameters were tested:

34

5.1 Hyperparameter Tuning

Table 5.2: Hyperparameters tested in the grid search with 3-fold
cross-validation. The best set of hyperparameters are bolded.

Hyperparameter Values tested
Number of trees 100, 250, 500
Maximum depth 5, 10, 25, 50
Maximum features 2, 5, 10

With 500 trees performing best, it is sufficient to compare this model to one using identical
hyperparameters but 250 trees instead of 500. The difference in accuracy for these models
on the test data is 0.01 percentage points, showing that the ensemble is saturated.

5.1.3 Gradient Boosted Trees
Similarly to the random forest, with gradient boosted trees you want enough trees to ap-
proximately achieve convergence to a performance asymptote. Again, three large number of
trees are compared to ensure saturation, however note that the number of trees used here
are considerably larger than for the random forest. This is due to the nature of the model
requiring more trees to saturate.

Table 5.3: Hyperparameters tested in the grid search with 3-fold
cross-validation. The best set of hyperparameters are bolded.

Hyperparameter Values tested
Number of trees 2000, 4000, 6000
Depth 3, 7, 10
L2 regularization 0.5, 3, 10

Comparing the performance of the best set of hyperparameters with an identical model but
with 4000 trees, the resulting difference in accuracy is 0.23 percentage points. The ensemble
is estimated to be saturated, as a 50% increase of number of trees resulted in only a marginal
gain in accuracy.

5.1.4 Final Hyperparameters
The final hyperparameters used for all models are the following:

MLP Random Forest Boosted trees
Hidden layer sizes (100, 100) Number of trees 500 Number of trees 6000
Maximum epochs 400 Depth 50 Depth 7
L2 regularization 0.00001 Max features 5 L2 regularization 3
Batch size 200
Learning rate 0.001

35

5. Models

5.2 Reduced Ovid
Because this project builds upon previous work by Tempelmeier and Demidova (2022), it
is interesting to compare the performance of the vandalism detection model presented in
that project - Ovid - on the data set used in this project, which is intended to contain more
unintentional mistakes and should represent a somewhat different distribution.

In order to make Ovid compatible with the data used in this project, some minor tweaks
had to be made. First, because of difficulty in gathering information about tags for objects in
a reasonable time span, the top 12 keywords variable used in Ovid has been omitted. Secondly,
for the element data, Ovid uses a feature representing the distance an element has been moved
for an edit, which is also omitted in this project as its usage was not mentioned in the paper
but rather became evident when reviewing Ovid’s source code. This became an issue as all
changesets were preprocessed on the fly, making this information unavailable given the time
constraints for this project. For this reason, we call the model in this project Reduced Ovid.

5.2.1 Architecture of Ovid
Ovid is a complex architecture compared to the other models presented in this project, utiliz-
ing multi-head attenion and a number of fully connected (FC), concatenation (concat) and
normalization (norm) layers. Figure 5.1 is taken from Tempelmeier and Demidova (2022),
which illustrates the model.

Figure 5.1: A figure taken from Tempelmeier and Demidova (2022)
describing the architecture of Ovid.

The fully connected layer is a dense neural network layer, the normalization layer normalizes
every individual sample, and a concatenation simply joins two output vectors of size m and
n into one vector of size m + n. Finally, the multi-head attention is used to extract the most
important edits in the changeset, more on this in section 5.2.3.

5.2.2 Hyperparameters
In order to minimize the difference between Ovid and Reduced Ovid, this project will not
optimize Reduced Ovid’s hyperparameters but rather use the same set of hyperparameters
as used in the source code for Ovid. These are however tuned for the vandalism data set,
which could result in some performance loss when applying the model to the data set based
on reverts. The following hyperparameters are used (Tempelmeier and Demidova 2021):

36

5.2 Reduced Ovid

Table 5.4: Hyperparameters used for Reduced Ovid.

Max edits 20
npred 1
hiddenpred 24
Dropout 0.5
Patience 10
Number of attention heads 10
Batch size 2000

Max edits define a maximum threshold for the number of edits in a changeset, before the
entire element data (XE′) is set to zero and only the user and changeset data is used. npred is
the number of repeating FC→ Norm blocks in the rightmost section of Ovid’s architecture
in figure 5.1, and hiddenpred is the number of nodes in some of the hidden layers, explained
further in the following table below. Each FC layer will be identified by the input/output or
previous/next layer name:

Table 5.5: Number of nodes in the FC layers of Reduced Ovid.
The layers are identified by the input/output or previous/next layer
names as defined by figure 5.1.

FC layer Number of nodes
Xc → FC → Xc′ nchangeset f eatures + nuser f eatures
Xu → FC → Xu′ nchangeset f eatures + nuser f eatures
Concat→ FC → Norm→ Xc,u nchangeset f eatures + nuser f eatures
ME → FC →Multi-Head Attention nedit f eatures
XE → FC → Norm hiddenpred
Xp → FC → ...→ Xp′ hiddenpred

5.2.3 Element Data in Ovid
Because of Reduced Ovid utilizing multi-head attention, it does in fact have access to the
element data unlike the MLP, random forest and boosted trees models. In addition to multi-
head attention, it introduces an upper bound of 20 edits per changeset, and if this threshold
is exceeded the element data is entirely omitted, setting XE′ = 000. Their reasoning is that one
individual edit is negligible if nedits > 20 (Tempelmeier and Demidova 2022).

Explaining the details of Reduced Ovid’s element data implementation will become
relevant when analyzing feature importance in section 6. Every feature in the element data is
prefixed by an index in the interval [0, 19] which corresponds to an edit. Hence element data
features are repeated 20 times, each time for a different edit. Additionally, a mask feature
is used for each edit, which determines whether the multi-head mechanism has access to it.
Manipulating mask is how XE′ can be set to zero - by ”hiding” every edit in input vector
from the multi-head attention, which is also how non-existent edits are made unavailable for
changesets with fewer than 20 edits. The formal logic for mask for edit i for a changeset with
nedits edits is given in the equation below (i is 0-indexed):

37

5. Models

mask(i, nedits) =
 True, if i < nedits and nedits ≤ 20

False, otherwise

5.3 Performance
Figure 5.2 shows the confusion matrices and tables 5.6, 5.7 shows the precision, recall, F1 and
accuracy. All metrics are calculated on the test data.

Figure 5.2: Confusion matrices.

Table 5.6: Precision, recall and F1-score.

MLP Random forest
Precision Recall F1 Precision Recall F1

Not reverted 0.8496 0.8126 0.8307 Not reverted 0.8698 0.8967 0.8831
Reverted 0.8073 0.8452 0.8258 Reverted 0.8850 0.8556 0.8700

Boosted trees Reduced Ovid
Precision Recall F1 Precision Recall F1

Not reverted 0.8935 0.9045 0.8990 Not reverted 0.7855 0.8574 0.8199
Reverted 0.8959 0.8840 0.8899 Reverted 0.8298 0.7480 0.7868

38

5.3 Performance

Table 5.7: Accuracy.

Accuracy
MLP Random forest Boosted trees Reduced Ovid

0.8283 0.8769 0.8946 0.8047

39

5. Models

40

Chapter 6

Model Analysis

Because the performance in section 5 was very good, in particular for the tree models, what
follows is an extensive analysis of how the models perform so well. To do this, first the SHAP
values will be presented and analyzed briefly. Secondly, the models will be retrained on a
reduced set of features to find more information about them, and the features containing
strong signals will be analyzed further to find the reason for this signal. The SHAP values will
complement this in depth feature analysis. Throughout this analysis, all models presented in
section 5 will be trained on the reduced set of features to find potential differences between
them, however the main focus of this section is not to make comparisons between the models,
but rather an investigation of feature importance - only in the initial SHAP analysis will the
models be compared thoroughly, otherwise only major differences between models will be
commented.

Only the changeset and user data will be analyzed in detail for two reasons. First, only
Reduced Ovid actually uses the element data, and considering that this model performs worst
with regards to most metrics, the element data does not seem be very effective in this case.
Second, there is a strong signal in the user and changeset data which is interesting to inves-
tigate further, especially considering that these features do not contain information about
individual edits, which is causal in deciding if an edit is correct.

Below, the model hyperparameters and architectures as well as the data split will be
identical to the one used in section 5. Reduced Ovid uses 10% of the training data as validation
for early stopping. Note that when omitting features the hyperparameters found may not be
as effective. This is ignored as finding a new set of hyperparameters for each reduced model
is unfeasible, however this may affect results.

6.1 SHAP Values
In figure 6.1 the 10 most important features (out of 24 total in the changeset and user data or
344 if also using the element data) and their SHAP values are presented in descending order,

41

6. Model Analysis

decided by the mean absolute SHAP value.

(a) MLP.
(b) Random for-
est.

(c) Boosted trees. (d) Reduced Ovid.

Figure 6.1: The 10 most important features ordered descendingly
according to the SHAP values for each model. A red and blue data
point indicates a high and low relative feature magnitude, respec-
tively. A large distance from x = 0 indicates a large SHAP value
which implies a large impact on the model’s prediction. The fea-
tures are ordered according to their mean absolute value, placing an
emphasis on high average impact.

A number of observations can be made from figure 6.1. One, there is a considerable over-
lap between the ten most important features for both tree models - they share delete_cs,
box_size, contributions, min_lon, create_cs and modi f y_u, and the SHAP values look sim-
ilar for these features. Second, the tree models seem to give larger importance to features re-
lated to user experience than the ANN models, as the random forest and boosted trees have
four and five out of ten features from the user data, while the MLP has 2 and Reduced Ovid
has 0.

Third, the MLP places a very large emphasis on the location of the edit, as min/max_lon/lat
constitute the four most important features, where it is surprising that min and max have re-
versed behaviours - this is discussed further in section 6.3.2. Fourth, both ANN models weigh
editor_app very heavily whereas the tree models do not. Fifth, eight out of ten features for
Reduced Ovid are from the element data, and in particular only the first two edits, as can be
seen by the prefixed index 0 and 1.

42

6.2 User Data

Figure 6.2: Heat map of the correlations between variables in the
user data.

These observations and the SHAP values rank orderings will be referred to during the
further analysis below. The changeset and user data will be analyzed separately because of
similarity in the information contained in the features within each category.

6.2 User Data
To begin the analysis of the user data, the correlation matrix is presented in figure 6.2 to
find potential redundancy in the features. It is presented as a heat map to give a better
overview. The correlations between all variables except acc_created are very high. This
is not unreasonable, considering that all of these variables increase monotonically as a user
commits more changesets to OSM. acc_created correlating negatively is also expected as
newer accounts should on average have made fewer edits.

To gain a better understanding for these features, their SHAP values are given in figure
6.3. The SHAP values indicate a trend of low user experience leading to higher probability of
predicting a sample as reverted. They also introduce a rank ordering between these features,
but considering the high redundancy in the features it is not unreasonable to think that any
one feature in the user data is not significantly more important than another. To investigate
this, a univariate analysis using only one feature from the user data is performed to see if any
one feature gives a higher contribution than another. Table 6.1 gives the accuracy metrics for
the univariate models, first including the changeset data, and then omitting it. It is omitted

43

6. Model Analysis

(a) MLP.
(b) Random for-
est.

(c) Boosted trees. (d) Reduced Ovid.

Figure 6.3: The SHAP values for the user data features. The models
are trained on all features.

to find potential overlap in information between the user and changeset data, to amplify the
signals in these features and to give a point of comparison.

Two specific things should be noted before making a general analysis of these results.
First, Reduced Ovid has the same performance for all features when omitting the changeset
data. This is most likely due to the signal in the single feature used being lost among the large
number of element data features in combination with the models being trained with a fixed
random seed. Secondly, random forest trained on acc_created performs significantly better
than any other model. This could be due to data leakage, since the account creation date is
translated to a timestamp which could be used as an ID, as some users occur more than once
in the data set. It is however unclear why the other models did not exploit this leakage, if
that is the case.

As for the general analysis, two things can be observed when including the changeset
data. First, most features achieve fairly similar accuracy metrics with the different features,
although all models agree that create_relations is a slightly worse predictor than most other
features. Secondly, using one user data feature as compared to none gives a significant per-
formance boost in most cases, but the same is also true for using all features rather than
one. This indicates that the user’s experience level is important when predicting, and while
there is a lot of overlap in the user data features, they do not all simply gauge general user
experience but also provides slightly different information. Comparing the results with and
without the changeset data, it can be seen that all models perform well on the active_weeks
feature (arguably the most general user experience heuristic) when omitting the changeset

44

6.2 User Data

Table 6.1: Accuracy on the test data for the univariate models. The
row represent the single user data feature used. All and None rep-
resents two baseline models where all features in the user data are
included and omitted, respectively. Bolded values are the best per-
forming feature for each model.

Accuracy, with changeset data

MLP Random forest Boosted trees Reduced Ovid
create_u 0.8020 0.8644 0.8719 0.7807
modi f y_u 0.7945 0.8699 0.8727 0.7657
delete_u 0.7852 0.8680 0.8724 0.7483
contributions 0.8071 0.8663 0.8725 0.7777
create_nodes 0.8014 0.8659 0.8752 0.7716
create_ways 0.8032 0.8669 0.8733 0.7719
create_relations 0.7922 0.8528 0.8642 0.7485
active_weeks 0.8146 0.8636 0.8700 0.7862
acc_created 0.8028 0.8521 0.8648 0.7727
All 0.8283 0.8769 0.8946 0.8047
None 0.7745 0.8334 0.8408 0.7338

Accuracy, without changeset data

MLP Random forest Boosted trees Reduced Ovid
create_u 0.6787 0.6736 0.7004 0.6771
modi f y_u 0.6348 0.6408 0.6774 0.6771
delete_u 0.6515 0.6758 0.6829 0.6771
contributions 0.6774 0.6403 0.6869 0.6771
create_nodes 0.6747 0.6685 0.6964 0.6771
create_ways 0.6824 0.6687 0.6907 0.6771
create_relations 0.6304 0.6532 0.6526 0.6771
active_weeks 0.6881 0.7007 0.7011 0.6771
acc_created 0.6053 0.7565 0.6455 0.6771
All 0.7436 0.8160 0.8167 0.7339

45

6. Model Analysis

data, but the same is not true for the tree models when including it. This suggests that there
could be some patterns between the changeset data and user data which the tree models find,
perhaps that the committed changeset follows previous editing behaviour.

There may be some behaviour where the models are aggressive against lower experienced
users, as indicated by the SHAP values. This may be problematic on a general data set, as
it will almost surely not have a 50/50-split of good and suspicious edits. This behaviour
could be identified if the predictions are partitioned based on the users’ experience levels.
To do this, the active_weeks feature is used as a heuristic for general user experience. The
thresholds are set so that the low experienced category is set strictly to ensure a large majority
of beginners, while the threshold between the medium and high experienced users are set so
that the number of reverted samples in these categories are approximately equal.

Table 6.2: The test data was partitioned based on experience levels
according to active_weeks.

Interval Experience level Reverted samples Non-reverted samples
active_weeks = 0, 1 Low 1916 596

active_weeks = 2, ..., 24 Medium 1537 1770
active_weeks ≥ 25 High 1539 3007

Figure 6.4 gives the precision and recall metrics for both classes for all models. The full set
of user and changeset data features are used.

Figure 6.4: Precision and recall when partitioning the test data set
based on experience levels according to table 6.2 for all models. As a
reminder, Precision = TP/(TP+FP) and Recall = TP/(TP+FN)

While precision is reasonably balanced, there is a clear pattern in recall - the number of
false negatives decrease with experience level for the non-reverted data, and increases in the

46

6.3 Changeset Data

reverted data. Intuitively, this means that all models are more aggressive for changesets where
the user has low experience and more lenient for those with high experience. While this
still leads to high accuracy metrics due to the imbalanced data set in these categories, one
would expect this to cause generalization problems as a general distribution would most likely
contain a large majority of correct changesets regardless of experience level. This problem
would be most apparent for beginners where the models are most aggressive, but might cause
similar problems albeit probably to a smaller extent in the other categories as well. How the
models could be expected to generalize is discussed further in section 8.

6.3 Changeset Data
To begin the analysis of the changeset data, the correlations are presented in figure 6.5. They
are presented as a heat map to give a better overview. Some clusters in the correlations can be
observed, such as in the top left and bottom right corners, as well as two along the diagonal.
Based on the correlations and intuitive similarity in information in the features, three feature
categories will be introduced where the attempt is to minimize the overlap in information
between these categories to gauge the importance of each type of information. Table 6.3
presents these categories.

Figure 6.5: Correlations in the changeset data.

47

6. Model Analysis

Table 6.3: The three categories that the changeset data features are
split into.

Category Features
Edit create_cs,modi f y_cs, delete_cs, edits, nnodes, nways, nrelations, box_size
Location min_lon,min_lat,max_lon,max_lat
Miscellaneous imagery_used, editor_app, comment_len

The motivation for the categories are the following:

• Edit: There is a cluster of higher correlations (top left in the heatmap), and these vari-
ables have a comparatively strong correlation with box_size. The information in this
category represent what kind and how many edits were made in the changeset, to which
box_size was added because of the high correlation. This is intuitive, as when box_size
increases, so does most likely the number of edits, which in turn increase the other fea-
tures.

• Location: Minimum and maximum longitude and latitude give the location of the
edits. It could be argued that box_size should belong to this category as it can be
inferred from these features, but considering that box_size not only correlate very
weakly with min/max_lon/lat, but also correlate considerably more with the features
in the Edit category, box_size was instead included in the Edit category to minimize
information overlap.

• Miscellaneous: This category contains the three remaining variables with no clear com-
mon denominator. editor_app and imagery_used do however have a very high cor-
relation (0.869) and is thus reasonable to place in the same category. comment_len is
also placed in this category despite a low correlation and no obvious overlapping in-
formation. The motivation for this is that the SHAP values in figure 6.1 indicate that
comment_len is not a very important feature as it is only among the boosted trees 10
most important features, and creating a new category for this is deemed excessive.

A similar analysis to the user data is performed, but now using the categories instead of
individual features. With only three categories however, all possible combinations can be
tested. Table 6.4 shows the accuracy for the reduced models with and without the user data.
Some observations can be made from table 6.4. First, all models agree that Edit + Location
performs best with some margin when including the user data. Secondly, when omitting the
user data, there is a clear pattern that the tree models find a significantly stronger signal
in the Location category than any other, and that this pattern does not exist for the ANN
models. This strong signal is somewhat unintuitive and will be analyzed further in section
6.3.2. Thirdly, all models predict better on only the changeset data rather than user data, as
can be seen by comparing None in the upper table with All in the lower.

What follows is an analysis of the information contained in and a discussion of their
importances.

6.3.1 Edit Category
Figure 6.6 presents the univariate histograms are presented for the Edit category features,
split on ground truth label. The most apparent difference between the reverted and non-

48

6.3 Changeset Data

Table 6.4: The accuracy on the test data for the reduced models.
Each row represents the categories trained upon. All and None are
given as baselines, where all categories are included and omitted, re-
spectively. None is not given in the second table, as this corresponds
to an empty model for all but Reduced Ovid. Bolded values are the
best performing category for each model, which are given twice -
once for two category models, and once for one category models.

Accuracy, with user data

MLP Random forest Boosted trees Reduced Ovid
Edit + Location 0.8159 0.8687 0.8836 0.8041
Edit + Miscellaneous 0.8024 0.8542 0.8597 0.7914
Location + Miscellaneous 0.8006 0.8576 0.8620 0.7878
Edit 0.7899 0.8439 0.8538 0.7575
Location 0.7819 0.8502 0.8537 0.7231
Miscellaneous 0.7559 0.8304 0.8227 0.7605
All 0.8283 0.8769 0.8946 0.8047
None 0.7436 0.8160 0.8167 0.7339

Accuracy, without user data

MLP Random forest Boosted trees Reduced Ovid
Edit + Location 0.7152 0.8059 0.8094 0.7109
Edit + Miscellaneous 0.7082 0.7465 0.7617 0.7119
Location + Miscellaneous 0.7248 0.8038 0.7945 0.7279
Edit 0.6520 0.6694 0.6870 0.7021
Location 0.6740 0.7678 0.7512 0.6904
Miscellaneous 0.6259 0.6403 0.6410 0.6943
All 0.7638 0.8347 0.8408 0.7431

49

6. Model Analysis

(a) create_cs. (b) modi f y_cs.

(c) delete_cs. (d) edits.

(e) nnodes. (f) nways.

(g) nrelations. (h) box_size.

Figure 6.6: Histograms for all features in the Edit category split on
ground truth label. Note the logarithmic y-axis. A clear pattern can
be observed, where the reverted data has more large values.

50

6.3 Changeset Data

reverted data can be seen in the tails of the distributions, showing that changesets containing
a very large number of edits are more prevalent in the reverted data. This is not unreasonable
as when the number of edits increase, so does most likely also the probability that at least
one of them is incorrect and is consequently reverted. Additionally, the large amount of edits
within one changeset indicate that there could be vandalism in the dataset despite making
an attempt to exclude it.

(a) MLP.
(b) Random for-
est.

(c) Boosted trees. (d) Reduced Ovid.

Figure 6.7: The SHAP values for the Edit category features. The
models are trained on all features.

The SHAP values shown in figure 6.7 correspond well with the histograms, where a
sample falling into the tail of the histogram has a considerably higher probability to be clas-
sified as reverted. This holds for all models but Reduced Ovid which has a strange behaviour,
most likely due to the model giving a much heavier weight to the element data than other
the features in the Edit category.

To further investigate the Edit category’s outlier detection properties, the predictions
of the models trained on all features is compared to an identical model, but where the Edit
category is omitted. Table 6.5 gives the confusion matrices for the samples in the test data
lying above the 99th percentile of the non-reverted distributions of any Edit category feature,
corresponding to 877 reverted and 237 non-reverted data points.

51

6. Model Analysis

Table 6.5: Confusion matrices for the samples in the test data above
the 99th percentile of the non-reverted distributions with respect to
any of the features in the Edit category. The reduced model uses all
features except the Edit category. The rows represent the ground
truth and columns the predictions.

MLP

Reduced All

Not reverted Reverted Not reverted Reverted

Not reverted 176 61 129 108

Reverted 248 629 106 771

Random Forest

Not reverted 219 18 127 110

Reverted 267 610 49 828

Boosted Trees

Not reverted 192 45 134 103

Reverted 210 667 47 830

Reduced Ovid

Not reverted 152 85 105 132

Reverted 256 621 108 769

While including the Edit category provides an improvement in terms of overall accuracy,
table 6.5 shows that classifying the non-reverted class for these samples is more difficult when
introducing the Edit category and vice versa for the reverted class. This is not unexpected,
but highlights that these features introduce a trade-off between overall and edge case (in the
not reverted class) accuracy that could be relevant depending on the use case.

6.3.2 Location Category

The univariate histograms of the features in the Location category split on ground truth label
are given in figure 6.8. Some thin peaks in the histograms are seen in the reverted data which
does not exist in the non-reverted data.

52

6.3 Changeset Data

(a) min_lat. (b) max_lat.

(c) min_lon. (d) max_lon.

Figure 6.8: Histograms for the Location category features split on
label.

Figure 6.9 shows the SHAP values for these features to give further insight.

(a) MLP.
(b) Random for-
est.

(c) Boosted trees. (d) Reduced Ovid.

Figure 6.9: The SHAP values for the Location category features. The
models are trained on all features.

The SHAP values look relatively similar for the tree models, with a rough pattern that a
large lat and small lon increases the probability to classify as reverted and vice versa. The
MLP however shows a interesting trend that was mentioned in section 6.1 - min and max
have opposite behaviour. This pattern appears in Reduced Ovid as well however to a smaller
extent and and only for lat. This may be due to the MLP mainly using these features to infer

53

6. Model Analysis

box_size, as a small box_size is less suspicious than a large one (see the histogram in figure
6.6h). This idea is supported by box_size being a weak feature for the MLP as seen in figure
6.7a but a very important feature for the better performing tree models, according to the
SHAP values.

To briefly test this, table 6.6 presents two models, one trained on only the Location
category, and the same model but where box_size is included.

Table 6.6: The accuracy of the models trained on only the Location
category vs. the Location category and box_size. No other features
are used.

MLP Random forest Boosted trees Reduced Ovid
Location 0.6740 0.7678 0.7512 0.6904

Location + box_size 0.6757 0.7645 0.7644 0.7217

Indeed, the MLP barely improves when introducing box_size, indicating that min/max_lon/lat
are used to find outliers with regards to it. Interestingly, the random forest does not improve
and the boosted trees improves little despite the SHAP values ranking it as a very important
feature, perhaps suggesting multivariate relations with other features. Nonetheless, the tree
models’ accuracies are very high considering that the location of the edited elements should
intuitively not be important. Additionally, table 6.4 shows that out of the models trained
on no user data and only one changeset data category, the best were the tree models by a
significant margin, finding a strong signal in these features.

To inspect this further, a scatter plot of the test data in figure 6.10 is presented. Here,
min_lon is plotted against min_lat and split on the ground truth label, where the colors cor-
respond to the predictions of the random forest model trained on only the Location category.
This paints something akin to a world map. The choice of min instead of max is arbitrary -
both illustrate the data well and the plot looks essentially the same. It can be observed that
both in terms of the predicted and ground truth data, there is a larger spread of the non-
reverted data over the continents and conversely the reverted data is more clustered along
densely populated coasts and Europe - perhaps areas with a more active OSM community.
A possible explanation could simply be that areas with active OSM communities are more
likely to inspect existing elements and find editing errors, while also putting in effort into
reverting it.

Furthermore, this ”map” highlights a difference between the distributions of reverted
and erroneous changesets, as editing errors are probably not more frequent in Europe and
densely populated areas as the map suggests, but they rather have larger OSM communities
finding and reverting these errors, which causes this skewed distribution toward densely
populated areas and creates the strong signal in latitude and longitude.

6.3.3 Miscellaneous Category
The univariate histograms for the features in the Miscellaneous category are presented in
figure 6.11, split on the ground truth label. Some differences can be observed between the re-
verted and non-reverted distributions, such as a number of ”spikes” in the reverted data, most
notably when comment_len assumes its maximum value. Additionally, a higher probability

54

6.3 Changeset Data

Figure 6.10: A scatter plot of the test data set, where min_lon is
plotted against min_lat, split on the ground truth label. The color
corresponds to the predictions of a random forest model’s prediction
trained only on the Location category features.

that imagery_used is true in the reverted data and some differences for editor_app = other
and editor_app = josm.

(a) comment_len.
(b)
imagery_used.

(c) editor_app.

Figure 6.11: Histograms for the Miscellaneous category features.

Furthermore, the SHAP values for these features is given in figure 6.12. Here, editor_app

55

6. Model Analysis

is not aggregated as in figure 6.1 but instead split into each individual level to gain more
information. These show that all models do not agree on how to interpret most levels of
editor_app. Interestingly, some SHAP values even reverses the intuitive relation between the
histograms and predictions, such as the MLP’s other and Reduced Ovid’s josm. Furthermore,
a large comment_len is associated with an increased probability to classify a changeset as
reverted.

(a) MLP.
(b) Random for-
est.

(c) Boosted trees. (d) Reduced Ovid.

Figure 6.12: The SHAP values for the Miscellaneous category fea-
tures. The models are trained on all features.

While there are no obvious patterns to analyze, some insight can be given into these fea-
tures. A manual inspection of the 54 changesets in the test data where comment_len assumed
its maximum value, 87% of these were reverted due to spamming OSM with commercial for
their business in the comment tag. In addition, editing applications vary in their difficulty
to navigate, causing some levels of editor_app to correlate with user experience as can be
seen by table 6.7, providing a potential explanation for josm and other having different dis-
tributions for the classes.

Table 6.7: Correlations between active_weeks and the values in
editor_app. active_weeks is seen as a heuristic for general user ex-
perience.

other josm potlatch streetcomplete go map!! vespucci osm go!
-0.227 0.243 -0.030 0.014 0.020 0.024 0.008

In general, table 6.4 show that omitting the Miscellaneous category does not impact the

56

6.3 Changeset Data

models much, causing a drop of about 1 percentage point of accuracy for the model trained on
all features except for Reduced Ovid in which the impact is negligible. However, intuitively
these features should not contain strong signals and as such these results are not unexpected.
The results also show that while SHAP values are valuable in explaining a model, they may
not always give the entire picture, as seen by omitting editor_app having a small effect on
the models despite them being very important in Reduced Ovid and the MLP’s SHAP values.
It also shows that reduced model analyses complement the SHAP values well. In conclusion
though, these features may be more important in vandalism detection which do not transfer
well into a general anomaly detection paradigm.

57

6. Model Analysis

58

Chapter 7

Suggestions for Model Improvements

7.1 Element Data
Out of the models in this project, only Reduced Ovid actually uses the element data while
also performing worst overall out of all models, making improvements to the element data
and incorporating it into the other models a natural next step.

There are two main components to incorporating the element data in a successful way.
First one would need to handle the issue of inconsistent dimensionality stemming from
changesets in general containing different numbers of edits, which in Reduced Ovid is solved
by using multi-head attention. Secondly, one would need to have a representation of the edits
in such a way that important information is retained.

7.1.1 Element Data Features
7.1.1.1 Tags
Briefly, a tag is represented as a key-value pair, and a valid tag is a key-value pair that fol-
lows OSM convention. Manual inspection of some reverted changesets shows that it is not
uncommon to revert a changeset for tagging errors. Common occurrences is using a tag in a
way that it is not intended for, like giving general information in the name-tag or giving an
incorrect value to tag according to OSM convention.

A lot of information is lost when using simple counting mechanisms for the number
of tags in OSM elements as is done in the element data in this project. To investigate po-
tential improvements to this, the tag-keys for all elements touched by the changesets in this
project’s data set are counted. Both the current and previous element versions are counted,
corresponding to the version before and after the changeset was applied. This is done to give
an idea of the content of the edits. Table 7.1 below presents the 10 most frequent keys as
decided by the current element. A caveat however is that the Current and Previous columns

59

7. Suggestions for Model Improvements

are not inherently connected - this is simply counting the occurrences of keys in the current
and previous versions of elements over the entire set of elements subject to edits in any of
the changesets. It is in theory possible that the set of elements containing these tags in the
Current and Previous columns are entirely disjunct.

Table 7.1: The 10 most common tag-keys in the data set as decided by
the Current column, split by label. This corresponds to the element
version after the changeset was applied, which in the reverted data
is the version that was then reverted. Previous refers to the element
version before the changeset was applied.

Reverted data Non-reverted data
Key Current Previous Key Current Previous
name 438062 450747 highway 71485 74613
highway 352893 392102 name 52895 45107
crop 238407 130 source 42986 47657
source 150741 274074 building 41406 50697
addr:housenumber 150005 170307 addr:street 19817 14794
addr:street 148329 162403 surface 19406 15836
addr:city 143322 143097 addr:housenumber 19064 16143
building 139050 183740 addr:city 15381 11656
addr:postcode 127788 139444 addr:postcode 14395 12164
addr:country 108624 68325 oneway 13456 13403

The reverted data contains significantly more tags than the non-reverted data - about 5.5
million vs. 600 thousand, or around 9 times more. A reason for this can simply be that
elements with more tags have more activity, causing errors to be identified and reverted to
a greater degree than for elements containing fewer tags. Furthermore, the key crop has
many occurrences in the reverted data - this is probably due to a small number of OSM users
incorrectly adding this tag to many elements and is discarded as noise. Additionally, the
source- and addr:country-tags have considerable differences as compared to the previous
versions, which is a difference not present in the non-reverted data. (addr:country is not
among the top 10 in the non-reverted data, and is instead at place number 14 with Current =
7800 and Previous = 6166.)

There could potentially be that some tags are significantly more common than others
to be used in an incorrect way, like name or addr:country. Some may also be suspicious to
remove, such as source. One possible way to improve the tagging information is include
features identifying suspicious use of the most common tags, like a character count for the
name-tag or whether a source-tag was removed in the edit.

A more ambitious method is to have a one-hot encoding for every possible valid tag (and
perhaps a final category representing a non-valid tag), and iterate over every past version of
the element to find all occurrences of all valid tags. This could provide tagging context based
on past element versions which could identify tagging anomalies.

60

7.1 Element Data

7.1.1.2 Geographical Features
For nodes, the distance moved in the edit could be added as a feature. As nodes, ways and
relations can be part of larger elements, parent element status could also be added as two
features holding boolean values. Additionally, the size of the parent elements could also be
added. This may give information of suspicious behaviour of performing dramatic edits on a
part of an established element, which could be suspicious. A more challenging method would
be to add features based on validating elements part of a parent against each other.

7.1.2 Inconsistent Dimensions
In changesets, the edits within a changeset are often similar, especially if performing many
edits in a single changeset. An easy way to reduce the number of rows in the element data is
to introduce a counting mechanism for repeating rows. Keeping only the unique row in the
element data for a changeset, along with a counter giving the number of occurrences of this
row in the changeset reduces the number of rows without any loss of information. Figure
7.1 shows that this simple addition drastically reduces the number of rows - the left shows a
histogram of the total number of edits for each changeset, and the right a histogram of the
total number of unique rows in the element data for each changeset.

Figure 7.1: Histogram over the number of rows (left) and number of
unique rows (right) for the data set in this project. The yellow line at
x = 20 represents the maximum number of edited elements before
Reduced Ovid omits the element data, while the red line represents
the 95th percentile.

As can be seen by x = 20 corresponding to the 87th percentile rather than the 60th when
using the counting mechanism, a reasonably low threshold like Reduced Ovid’s 20 results in
considerable more changesets not omitting the element data. Furthermore, if the threshold is
instead used as a cutoff and the rows are sorted by descending counts, the most common edits
are guaranteed to be used, giving a decent representation of the edits for most changesets even
if the number of unique rows exceeds the cutoff value.

Another way to create consistent dimensionality is to use embeddings for the element
data, but investigating this is however beyond the scope of this project.

61

7. Suggestions for Model Improvements

7.2 Three classes
A fundamental flaw of using binary classification in this case is that the models do not dis-
tinguish between ”the changeset is believed to contain at least one error” and ”the changeset
is believed to contain only errors”. However, when using this kind of model in practice, this
is of course relevant information - given that a user trusts the model, a changeset that is pre-
dicted to only contain errors can be instantly reverted, perhaps even automatically, whereas
a changeset where only a subset of the edits are suspicious require further inspection to de-
termine which edits that ought to be reverted. Additionally, some methods to find the po-
tentially erroneous edits within a changeset are only natural to use if one assumes that only
a subset of the edits are incorrect, like outlier detection. Hence, a natural extension of the
model is to introduce three classes instead of two that would represent whether a changeset
contains only errors, some errors or no errors, and in turn should be fully, partially or not
reverted, respectively.

To test the performance of introducing these three classes, the reverting changeset com-
ments were scanned for the keyword ”part”, resulting in 2309 hits - considerably smaller than
any other class, which is discussed in section 7.2.1 below. The keyword ”part” is used instead
of ”partial” as it includes cases of ”partly”, ”parts” and ”partiel” in french, for example. The
reverted changesets are now classified as partially reverted, introducing these three classes.
Conversely, the remaining reverted changesets are labeled as full reverts.

Table 7.2: Number of samples for the three different classes.

Category Number of samples Fraction of dataset
Not reverted 26875 51.9%
Fully reverted 22974 44.3%

Partially reverted 1976 3.8%

Table 7.3 below presents the F1-scores for each class for all models.

Table 7.3: F1-scores for each class when using three classes. Bolded
values are the best performing model for each class.

MLP Random forest Boosted trees Reduced Ovid
Not reverted 0.8202 0.8854 0.8932 0.7627
Fully reverted 0.7894 0.8489 0.8586 0.8185

Partially reverted 0.3688 0.3423 0.4314 0.0000

As can be seen, the F1-scores for the partially reverted class are bad for all models. With such
an unbalanced dataset however, this is not unreasonable. If a large majority of the fully and
not reverted samples are discarded to balance the classes to 1976 samples each, the retrained
models on the balanced data set obtain the following F1-scores:

62

7.2 Three classes

Table 7.4: F1-scores for each class when using three classes with a
balanced dataset of 1976 samples per class. Bolded values are the
best performing model for each class.

MLP Random forest Boosted trees Reduced Ovid
Not reverted 0.6964 0.7687 0.8005 0.6160
Fully reverted 0.6191 0.6391 0.6828 0.3133

Partially reverted 0.5973 0.7126 0.7195 0.5765

While the results are not great, the F1-scores are both fairly balanced and decently high con-
sidering the small sample size. The models can more easily distinguish between non-reverted
samples and reverted samples, indicating that the average partial revert is closer to a full re-
vert than a non-revert. Boosted trees perform best in all three classes, and in general, the tree
models do a significantly better job in the non-reverted and partially reverted classes. Given
more data, in particular in the partially reverted class, this extension to three classes could
be promising.

7.2.1 Data Set Evaluation
Table 7.2 shows that the data set is heavily biased toward full rather than partial reverts. As
the method for gathering data in this project is based on the method for vandalism detection
in OSM changesets used by Tempelmeier and Demidova (2022), it is relevant to discuss how
the method may be biased towards creating a data set similar to the vandalism data set. The
method to find reverted changesets places a bias toward finding changesets that were fully
reverted, as reverting changeset comments containing any of "node", "way", "relation"
or "part", all of which suggesting a partial revert, only constitute 13.4% of the reverting
changesets found. Two examples would be ”reverting a way in changeset 12345678” or ”partial
revert of changeset 23456789”. In vandalism detection, it is natural to use a method biased
toward finding fully reverted changesets, as many cases of vandalism will be intentional,
motivating a full revert. However in general anomaly detection, it is reasonable to believe that
there is more balance between changesets that should be fully reverted and those that only
require a partial revert. For example, edits based on incorrect information such as outdated
satellite imagery or lack of local knowledge would motivate a full revert, while an incorrect
tag on an otherwise correctly modified element would motivate a partial revert. The data
set in this project probably has considerably more changesets that should be fully reverted
as opposed partially reverted than the true distribution of OSM changesets, where these two
classes are most likely more balanced or perhaps even skewed toward partial reverts.

7.2.2 Method to Find More Reverted Changesets
A way to find more changesets that were reverted either fully or in part would be to perform a
tweaked and slightly more complicated data gathering technique as compared to the method
in 4.1. First, the entire changeset history is scanned for comments containing the keyword
”revert” and an ID, however the ID does not refer to a changeset, but instead a node, way or
relation. This way one finds reverted elements rather than changesets. Knowing the ID of the
reverting changeset, one could scan the history of the reverted element and find the element

63

7. Suggestions for Model Improvements

version previous to the reverting changeset’s edit, thus finding the version being reverted.
This element version has a changeset ID corresponding to the changeset making the reverted
edit. Finally, iterating over that changeset’s edits to find if other edits were reverted or not by
checking if previous and succeeding element versions are identical provides the information
needed to determine if this was a full or partial revert.

64

Chapter 8

Discussion

8.1 Vandalism Detection Methods for Gen-
eral Anomaly Detection

The best performing model according to every metric is the boosted trees, achieving an ac-
curacy of 0.8946 with balanced F1-scores, which is high. This indicates that the features
optimized for vandalism detection translate well to the task of general anomaly detection.
The best point of comparison is Reduced Ovid’s anomaly detection performance in this
project against the original Ovid’s performance on the vandalism data set as presented by
Tempelmeier and Demidova (2022) which have accuracies of 0.8047 and 0.8137, respectively
- a small difference. This suggests that vandalism detection work about equally as well on
both vandalism and non-vandalism data. However, these results may be somewhat biased to
work better on this particular data set as the methods used to collect the data places a bias
on finding full reverts rather than partial reverts, as discussed in section 7.2.1.

Furthermore, this bias may also cause the features optimized for vandalism detection
to perform better than they would on a general data set. The task of finding changesets that
should be fully reverted is considerably closer to vandalism detection than the task of finding
changesets that only should be partially reverted. This may be a reason for the models’ im-
pressive performance. If the models were instead trained on the true distribution of change-
sets partially vs. fully containing errors, the performance using these features optimized for
vandalism detection could be worse.

The introduction of three classes in section 7.2 experimented with changing the class
balances, where a balanced data set did however show that the best model (boosted trees) was
reasonably effective at differentiating fully, partially and not reverted samples as well. The
F1-scores are however quite low, but this may simply stem from the small sample size. While
it is not possible to make a clear judgement regarding the effectiveness of these features in a
general distribution or the more nuanced task of using three classes before more data is used,
the results in this project does however indicate that the features optimized for vandalism

65

8. Discussion

detection used by Tempelmeier and Demidova (2022) are also effective in general anomaly
detection.

8.2 Model Comparison

The performance metrics in section 5.3 clearly show that the boosted trees performs best,
followed by random forest, the MLP and finally Reduced Ovid. The tree models in general
perform better than the ANN models with a significant margin, and this pattern in general
holds when using three classes rather than two. It should also be noted that Reduced Ovid
performs worst despite being the only model to utilize the element data, although using
hyperparameters tuned for the vandalism data set may have affected this.

One explanation for the tree models outperforming the ANN models could be the size
of the data set - random forests seem to give better predictions given a relatively small data
set, whereas neural networks in general needs larger amounts of data to achieve the same level
of prediction accuracy. However, the neural network models generally continue to improve
as the size of the data set increases, giving it a larger potential given that the data set can
be expanded (Roßbach 2018). It is not unreasonable that this dynamic could extend from
random forests to boosted trees as well, as the results support this. Another reason for the
tree models performing best could be that the data set is tabular, meaning it is well structured
and not ”chaotic” like images or natural language. Grinsztajn, Oyallon, and Varoquaux (2022)
have shown that over a number of medium sized data sets (defined by containing about 10
thousand samples), tree-based models perform best at tabular data, even without accounting
for hyperparameter tuning being more computationally expensive in ANNs than trees.

Despite this, it should be noted that finding the optimal set of hyperparameters for
neural networks is more demanding than for the tree-based models. As there was limited time
for hyperparameter tuning, the tree models could have a more optimal set of hyperparameters
than the ANN models, as they were not tuned in two steps like the MLP, and are tuned for
this specific data set rather than vandalism data set, like Reduced Ovid. Providing more time
for hyperparameter tuning may benefit the ANN models more than the tree models, which
could narrow the performance gap between them.

With more data though, ANN models (probably more complex models than the simple
MLP presented in this project, and perhaps different/more complex than Reduced Ovid as
well) could perhaps perform better than the tree models. This may also provide an explana-
tion for Reduced Ovid performing poorly in relation to the other, simpler models presented
in this project. If neural networks require more data than tree models to achieve the same
performance, more complex models like Ovid probably require even more data. This could
also explain the MLP outperforming Reduced Ovid, as less complex architectures probably
require less data to become ”decent”. Reduced Ovid’s complexity may in this case hinder it,
but given an order of magnitude of more data, this complexity may instead be to its benefit
rather than its detriment.

66

8.3 Feature Importance

8.3 Feature Importance
Section 6 provides a substantial analysis and some discussion of the changeset and user data
following the surprisingly good performance on just these two sets of features. Below is only
a brief discussion on the findings and machine learning in this task in general.

The models predict better on only the changeset data features rather than the user data.
This provided an interesting result as before starting this analysis, we expected the opposite -
if a human was given the task of predicting if a changeset was reverted or not without access
to its’ individual edits, we imagined that the easiest and intuitively strongest predictor to use
would be overall user experience, and although this is effective, the changeset data proved to
be more effective. While section 6.3 sheds some light as to why this may be, this highlights the
incredible potential of machine learning in this case. In the changeset data, there are signals
which are hard for humans to see, but which nonetheless are good predictors. Considering
the wide array of potential editing errors that can occur in OSM, using machine learning
to recognize complex patterns that humans struggle to see or understand can not only be
effective in itself, but also complement manually determined validation heuristics very well
as these, of course, are reserved for patterns that humans can understand and implement. In
this way, machine learning models have a natural spot alongside heuristics in creating a more
secure system.

8.4 Thoughts on Generalization
Throughout the report, there has been discussions on the generalization of these models and
potential issues with regards to this. Section 6.2 shows that the models seem to be very ag-
gressive in classifying beginners’ changesets as potentially erroneous and vice versa, which
could cause generalization issues but could hopefully be mediated by the element data, if
introduced effectively. The balance between classes is discussed in section 7.2 and how it
most likely does not represent the true distribution of OSM changesets, however this could
potentially be solved by tuning the classification probability thresholds. Third, sections 7.2.1
and 6.3.2 discuss how the data gathering method seems to skew the reverted data to some-
thing similar to a vandalism data set as well as placing a bias toward areas with active OSM
communities. To make a judgement to what extent this affects the models, one may need a
less biased data set, perhaps even using a fundamentally different data gathering technique
to avoid the issues of errors having to be found by another user. A way to circumvent these
problems is to restrict usage of these models to areas that already have a large OSM activity.

While the models are not perfect and more work is required to get a clear picture of their
generalized performance, they do not have to be perfect to provide value. No set of heuristics
or any extent of manual inspection are going to be perfect, but are rather at some point
deemed ”good enough” to be used, and this perspective is relevant in this case as well. Having
a model act as an initial filter could provide value given that there is a process to handle the
flagged changesets. In fact, even if there is not, these models could be initially deployed to flag
changesets but without any action taken, instead collecting data on the flagged/not flagged
samples which can be analyzed further to give an idea of its generalization performance and
the scale of changesets being flagged, despite them not being labeled.

67

8. Discussion

8.5 Conclusions
The main conclusions of this project are:

1. The vandalism detection methods as presented by Tempelmeier and Demidova (2022)
translate well to general anomaly detection. There may however be some bias toward
the method working better on this particular data set, as the data gathering algorithm
is biased toward finding changesets that were fully reverted, making the task more
closely resemble vandalism detection.

2. Among the models tested, the boosted trees performs best with regards to every metric
and achieves an accuracy of 89.46%. The tree models perform significantly better than
the neural network models at this task, although this may change with a larger data
set.

3. Both the changeset and user data are important and give considerable contributions
to the models. A changeset from a beginner is more likely to be flagged as potentially
erroneous than others, and the converse for experienced users. Location of the edits
plays a large role in predictions, however this is most likely due to the data gathering
method placing a bias on the reverted data to areas with active OSM communities. In-
formation about the edits in the changeset as a whole is important in detecting outliers.
Good performance was achieved while not utilizing the element data due to inconsis-
tent dimensionality and Reduced Ovid performed worst despite accessing the element
data, suggesting it could be improved.

8.6 Future Work
8.6.1 Incorporating Element Data
A large potential for improvement is to incorporate the element data effectively. Improving
tagging information and removing redundancy is discussed in section 7.1.1, however these
two suggested methods are mutually exclusive. Increasing the complexity in edit descrip-
tions lowers the probability that two edits would have identical representations. A possible
middle ground is to use some kind of feature engineering, adding a small number of impor-
tant features. Embeddings could also be explored, as well as validating individual edits rather
than entire changesets. Adding a large number of features could however cause overtraining
issues, which ties this to the next point...

8.6.2 Increasing the Data Set Size
Creating a larger data set shows the models more types of errors, which becomes increasingly
important if the element data is used. Additionally, a larger data set can set aside more
test data to test the models’ performance on the true distribution of reverted/not reverted
changesets, which is most likely far from 50/50. The method in section 7.2.2 could be used,
for example.

68

8.6 Future Work

8.6.3 Three Classes
Gathering more data and expanding the models to classify changesets as only, partially or not
containing errors will probably make them more useful, if successful. Section 7.2 shows that
with balanced data sets, the F1-scores are also reasonably balanced. Furthermore, additional
data in the partially reverted class would better show the models’ abilities to distinguish
between similar changesets.

8.6.4 Applicability
While many improvements and ways to build upon the results in this project are possible,
this project aimed to investigate the potential in machine learning methods to flag potentially
erroneous changesets for further inspection. Boosted trees very good performance suggests
that without much further work it could be valuable as a filter in edit validation in Open-
StreetMap.

69

8. Discussion

70

References

Ahmed, Mohiuddin, Raihan Seraj, and Syed Mohammed Shamsul Islam (2020). “The k-means
Algorithm: A Comprehensive Survey and Performance Evaluation”. In: Electronics 9.8.
issn: 2079-9292. doi: 10.3390/electronics9081295. url: https://www.mdpi.
com/2079-9292/9/8/1295.

Almog, Uri (2022). Decision Trees, Explained. [Accessed 22/5-2023].url: https://towardsdatascience.
com/decision-trees-explained-d7678c43a59e.

Bùi, Bào (2023). How Boosted Trees Inference Works. [Accessed 4/7-2023]. url: https : / /
medium.com/@bobi_29852/how-boosted-trees-inference-works-f161b03d5f5b.

Dorogush A., V., V. Ershov, and A. Gulin (2017). “CatBoost: gradient boosting with categorical
features support”. In: Conference on Neural Information Processing Systems.

Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux (2022). Why do tree-based models still
outperform deep learning on tabular data? arXiv: 2207.08815 [cs.LG].

Hoffmann, Sarah (2015). pyosmium. [Accessed 18/5-2023]. url: https://github.com/
osmcode/pyosmium.

LeCun, Yann A. et al. (2012). “Efficient BackProp”. In: Neural Networks: Tricks of the Trade:
Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 9–48. isbn: 978-3-642-35289-8. doi:
10.1007/978-3-642-35289-8_3. url: https://doi.org/10.1007/978-3-
642-35289-8_3.

Lucchetti, Roberto (2023). Game Theory: An Introduction, pp. 102, 117–121.
Lundberg, Scott M. and Su-In Lee (2017). “A unified approach to interpreting model predic-

tions”. In: CoRR abs/1705.07874. arXiv: 1705.07874. url: http://arxiv.org/abs/
1705.07874.

Masui, Tomonori (2022). All You Need to Know about Gradient Boosting Algorithm Part 2. Clas-
sification. [Accessed 23/5-2023]. url: https://towardsdatascience.com/all-
you - need - to - know - about - gradient - boosting - algorithm - part - 2 -
classification-d3ed8f56541e.

Ohlsson, Mattias and Patrik Edén (2021a). “Introduction to Artificial Neural Networks and
Deep Learning”. In: Lund University. Chap. 1 - Introduction, pp. 2–8.

— (2021b). “Introduction to Artificial Neural Networks and Deep Learning”. In: Lund Uni-
versity. Chap. 2 - Feed-forward Neural Networks, pp. 9–46.

71

https://doi.org/10.3390/electronics9081295
https://www.mdpi.com/2079-9292/9/8/1295
https://www.mdpi.com/2079-9292/9/8/1295
https://towardsdatascience.com/decision-trees-explained-d7678c43a59e
https://towardsdatascience.com/decision-trees-explained-d7678c43a59e
https://medium.com/@bobi_29852/how-boosted-trees-inference-works-f161b03d5f5b
https://medium.com/@bobi_29852/how-boosted-trees-inference-works-f161b03d5f5b
https://arxiv.org/abs/2207.08815
https://github.com/osmcode/pyosmium
https://github.com/osmcode/pyosmium
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-2-classification-d3ed8f56541e
https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-2-classification-d3ed8f56541e
https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-2-classification-d3ed8f56541e

REFERENCES

OpenStreetMap Wiki, API v0.6 (2023). [Accessed 18/5-2023].url: https://wiki.openstreetmap.
org/wiki/API_v0.6.

OpenStreetMap Wiki, Changeset (2023). [Accessed 17/5-2023].url: https://wiki.openstreetmap.
org/wiki/Changeset.

OpenStreetMap Wiki, Map features (2023). [Accessed 18/5-2023].url: https://wiki.openstreetmap.
org/wiki/Map_features.

OpenStreetMap Wiki, Tags (2022). [Accessed 18/5-2023].url: https://wiki.openstreetmap.
org/wiki/Tags.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.

Probst, Philipp and Anne-Laure Boulesteix (2017). To tune or not to tune the number of trees in
random forest? arXiv: 1705.05654 [stat.ML].

Qiang, Wang and Zhan Zhongli (2011). “Reinforcement learning model, algorithms and its
application”. In: 2011 International Conference on Mechatronic Science, Electric Engineering
and Computer (MEC), pp. 1143–1146. doi: 10.1109/MEC.2011.6025669.

Rozemberczki, Benedek et al. (2022). The Shapley Value in Machine Learning. arXiv: 2202.
05594 [cs.LG].

Roßbach, Peter (2018). Neural Networks vs. Random Forests – Does it always have to be Deep
Learning? [Accessed 9/6-2023]. url: https://blog.frankfurt-school.de/wp-
content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf.

sklearn.ensemble.RandomForestClassifier (2023). [Accessed 1/6-2023]. url: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html#sklearn.ensemble.RandomForestClassifier.

Tempelmeier, Nicolas and Elena Demidova (2021). Ovid Repository. [Accessed 2/6-2023]. url:
https://github.com/NicolasTe/Ovid.

— (2022). “Attention-Based Vandalism Detection in OpenStreetMap”. In: Proceedings of the
ACM Web Conference 2022. WWW ’22. Virtual Event, Lyon, France: Association for Com-
puting Machinery, 643–651. isbn: 9781450390965. doi: 10.1145/3485447.3512224.
url: https://doi.org/10.1145/3485447.3512224.

Topf, Jochen (2013). Osmium Command Line Tool. [Accessed 18/5-2023]. url: https : / /
github.com/osmcode/osmium-tool.

Vaswani, Ashish et al. (2017). “Attention Is All You Need”. In: CoRR abs/1706.03762. arXiv:
1706.03762. url: http://arxiv.org/abs/1706.03762.

Yi, Dokkyun, Jaehyun Ahn, and Sangmin Ji (2020). “An Effective Optimization Method for
Machine Learning Based on ADAM”. In: Applied Sciences 10.3. issn: 2076-3417. doi: 10.
3390/app10031073. url: https://www.mdpi.com/2076-3417/10/3/1073.

Yiu, Tony (2019). Understanding Random Forest. [Accessed 23/5-2023].url: https://towardsdatascience.
com/understanding-random-forest-58381e0602d2.

72

https://wiki.openstreetmap.org/wiki/API_v0.6
https://wiki.openstreetmap.org/wiki/API_v0.6
https://wiki.openstreetmap.org/wiki/Changeset
https://wiki.openstreetmap.org/wiki/Changeset
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Tags
https://wiki.openstreetmap.org/wiki/Tags
https://arxiv.org/abs/1705.05654
https://doi.org/10.1109/MEC.2011.6025669
https://arxiv.org/abs/2202.05594
https://arxiv.org/abs/2202.05594
https://blog.frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf
https://blog.frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://github.com/NicolasTe/Ovid
https://doi.org/10.1145/3485447.3512224
https://doi.org/10.1145/3485447.3512224
https://github.com/osmcode/osmium-tool
https://github.com/osmcode/osmium-tool
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.3390/app10031073
https://doi.org/10.3390/app10031073
https://www.mdpi.com/2076-3417/10/3/1073
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

Appendices

73

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-08-21

EXAMENSARBETE Detecting Anomalies in OpenStreetMap Changesets using Machine Learning
STUDENT Dan Svenonius
HANDLEDARE Patrik Edén (LU), Hampus Londögård (AFRY AB)
EXAMINATOR Jacek Malec (LTH)

Fungerar maskininlärning för att hitta fel
i stora mängder geografisk data?

POPULÄRVETENSKAPLIG SAMMANFATTNING Dan Svenonius

OpenStreetMap är som Wikipedia för kartor, där vem som helst kan bidra. Eftersom
databasen är så stor är det svårt att ha en bra kvalitetskontroll, vilket gör validering
av bidrag med maskininlärning intressant, och det visar sig att det funkar ganska bra.

Tänk er att ni får i uppgift att skapa ett system
för kvalitetskontroll av bidrag till hela Wikipedia.
Svårt? Det är vad vi försökt göra i det här exam-
ensarbetet, fast med OpenStreetMap (OSM) och
geografisk data. Ett bidrag är en samling indi-
viduella redigeringar, som att ändra ett adress-
namn eller lägga till ett hus. När det är så många
sorters fel som kan uppstå blir det orimligt att
skapa ett antal regler, exempelvis att ett hus inte
kan ligga i havet, för att göra denna kontroll. Då
blir det naturligt att istället testa om maskinin-
lärning kan fungera, då det hade kunnat flagga
misstänksamma bidrag som får genomgå en mer
ordentlig validering.

Här behöver vi dock veta om ett bidrag var bra
eller dåligt, så vi är till synes är tillbaka på ruta
ett. Istället hittar vi bidrag som av en annan an-
vändare har dragits tillbaka (utan att vi vet var-
för), och säger att dessa borde innehålla något
konstigt. För de bra bidragen så drar vi slump-
mässiga bidrag och antar att en stor majoritet av
bidragen är bra.

Vi testar detta i fyra olika maskininlärn-
ingsmodeller (två baserade på neurala nätverk och
två på beslutsträd) och får oväntat bra resultat -
den bästa modellen har rätt på 9 av 10 bidrag
i genomsnitt. Det visar sig även att modellerna
baserade på beslutsträd med råge fungerar bäst.

Något väldigt intressant är att modellerna
fungerar så bra trots att de inte har tillgång
till information om specifika redigeringar, utan
snarare om bidraget som helhet och dessutom an-
vändarens erfarenhet. Man hade kunnat tänka sig
att den går mest på användarerfarenhet, men det
är relativt balanserat mellan dessa två kategorier.

Detta visar på den otroliga potentialen i mask-
ininlärning - att algoritmen hittar regler och mön-
ster snarare än vi - både i denna uppgift, men
egentligen överallt där stora datamängder finns.

Även LTH:s Sjön Sjøn finns med i OpenStreetMap,
inlagd här som ”Lake Lake”.

	Introduction
	Background
	Purpose
	Problem statement

	Theory
	Classification in Machine Learning
	Supervised vs. Unsupervised Learning
	Parameters vs. Hyperparameters
	Loss Functions
	Training, Validation and Test Data
	Cross-validation

	Artificial Neural Networks
	The Artificial Neuron
	The Artificial Neural Network
	Loss Function
	Back-propagation
	Gradient Descent
	Attention
	Hyperparameters

	Decision Trees
	Random Forest
	Hyperparameters

	Gradient Boosted Trees
	Loss Function
	Hyperparameters

	Evaluation Metrics
	Confusion Matrix
	Precision, Recall, F1 and Accuracy

	Shapley Values
	SHAP Values

	OpenStreetMap Data
	Tags
	Changesets

	Creating a Data set
	Finding Reverted Changesets
	Finding Non-Reverted Changesets
	Preprocessing
	Changeset Data
	User Data
	Element Data

	Final Dataset

	Models
	Hyperparameter Tuning
	Multilayered Perceptron
	Random Forest
	Gradient Boosted Trees
	Final Hyperparameters

	Reduced Ovid
	Architecture of Ovid
	Hyperparameters
	Element Data in Ovid

	Performance

	Model Analysis
	SHAP Values
	User Data
	Changeset Data
	Edit Category
	Location Category
	Miscellaneous Category

	Suggestions for Model Improvements
	Element Data
	Element Data Features
	Inconsistent Dimensions

	Three classes
	Data Set Evaluation
	Method to Find More Reverted Changesets

	Discussion
	Vandalism Detection Methods for General Anomaly Detection
	Model Comparison
	Feature Importance
	Thoughts on Generalization
	Conclusions
	Future Work
	Incorporating Element Data
	Increasing the Data Set Size
	Three Classes
	Applicability

	References

