
USING SOCIAL MEDIA AND

PERSONALITY PREDICTIONS

TO ANTICIPATE STARTUP

SUCCESS

DANIEL STENSON

Master’s thesis
2023:E73

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Master’s Theses in Mathematical Sciences 2023:E73
ISSN 1404-6342

LUTFMS-3492-2023

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

ABSTRACT

This thesis explores the potential of integrating predicted founder personalities,
based on the Big 5 Personality Framework, into Machine Learning (ML) models
to enhance the accuracy of early-stage startup success predictions. Leveraging
Natural Language Processing (NLP) techniques, we extracted personality insights
from founders’ tweets, focusing on US startups funded between 2013 and 2015.
Our research utilized a range of models, including XGBoost, Random Forest, and
Feed-forward Neural Network for personality predictions, and Logistic Regression,
XGBoost, and Random Forest for startup success forecasts. Results indicated that
most personality-predicting models outperformed the Naive baseline. In success
predictions, XGBoost emerged as the top performer, showcasing the highest scores
in Macro F1 and AUC for both Series B and Series C funding rounds. While the
trait of Neuroticism was highlighted as significant for Series B predictions across
models, Series C predictions emphasized the importance of Openness and Agree-
ableness. Our findings underline the value of integrating predicted personality
traits into ML models for startup success forecasts. However, as with all research,
our work had inherent limitations and suggested areas for further exploration and
improvement.

Keywords : Machine Learning, Startup Success Predictions, Founder Per-
sonalities, Natural Language Processing, Social Media Analysis, Big 5 Personality
Framework, Feed-forward Neural Network, XGBoost

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my friends and family, whose
support and encouragement have been a constant source of strength throughout
this journey.

A special thanks to my supervisor, Filip Tronarp, for his guidance, patience,
and expertise. His insights and dedication have greatly contributed to my research.

I am also grateful to the few investors who have generously shared their time
and knowledge with me. Their unbiased perspectives and emphasis on what truly
matters have been instrumental in shaping both this thesis and my understanding
of the field.

Thank you all for your invaluable contributions.

i

Contents

Abstract

Acknowledgement i

1 Introduction 1
1.1 Aim and Scope . 1
1.2 Background . 1
1.3 Previous Research . 3
1.4 Defining Startup Success . 5
1.5 Scientific Contributions . 5
1.6 Outline of the Thesis . 6
1.7 Problem Formulation . 6

2 Data 8
2.1 Data Collection . 8
2.2 Data Description . 9
2.3 Data Pre-Processing . 10
2.4 Features for Modeling . 11

3 Artificial Intelligence 16
3.1 Background . 16
3.2 Text Embeddings . 18
3.3 Models . 22
3.4 Dimensionality Reduction . 29
3.5 Unbalanced Data . 32

4 Methods 33
4.1 Formatting Data for Learning . 33
4.2 Constructing the Personality Prediction Models 35
4.3 Establishing the Success Prediction Models 36
4.4 Hyperparameter Tuning . 37
4.5 Performance Evaluation . 39

ii

4.6 Software Implementation . 41

5 Results 45
5.1 Personality Predictions . 45
5.2 Success Predictions . 46

6 Discussion 57
6.1 Significance of Founder Personalities 57
6.2 Performance of Personality Prediction Models 58
6.3 Startup Success Prediction . 59
6.4 Challenges and Limitations . 59

7 Conclusion 60
7.1 Implications . 60
7.2 Recommendations for Future Research 60
7.3 Final Thoughts . 61

iii

List of Figures

2.1 Overview of the connections between the three datasets from Crunch-
base: Companies, Fundings, and Founders. This diagram only high-
lights the features used to interconnect the datasets. 9

2.2 Distribution of Personality Scores for the Five Different Personality
Traits: Openness, Conscientiousness, Extraversion, Agreeableness,
and Neuroticism among the Tweet dataset. 10

3.1 Illustration of various subfields and applications of AI. Derived from
[1]. 17

3.2 Tokenization example of the sentence ”This is a very large tree”. . . 19
3.3 The model architecture of a Transformer 22
3.4 Diagrammatic representation of a decision tree used for classifying

fruits based on their color, shape, size, and taste. The tree structure
provides clear decision rules at each node to categorize the fruits,
ultimately leading to leaf nodes that define the type of fruit. 26

3.5 Graphical illustration of a neuron’s computation in a neural net-
work, highlighting the input neurons, weights, bias, and the acti-
vation function. The computation is driven by the formula: oj =
f (
∑m

i=1wijxi + bj). 30

5.1 Feature importance histograms for random forest Model, derived
from 1000 Monte Carlo samples. In the context of random forest,
feature importance reflects the average reduction in the Gini impu-
rity brought by each feature across all trees in the forest. 49

5.2 Feature importance histograms for XGBoost model, derived from
1000 Monte Carlo samples. In the context of XGBoost, feature
importance indicates the (averaged) number of times a feature is
used to split the data across all trees. 50

5.3 Top 35 feature importances for logistic regression, averaged over
1,000 Monte-Carlo samples. Feature importance here represents the
absolute value of the model’s coefficients. Personality trait features
are highlighted in red. 51

iv

5.4 Top 35 feature importances for random forest, averaged over 1,000
Monte-Carlo samples. In the context of random forest, feature im-
portance reflects the average reduction in the Gini impurity brought
by each feature across all trees in the forest. Personality trait fea-
tures are highlighted in red. 51

5.5 Top 35 feature importances for XGBoost, averaged over 1,000 Monte-
Carlo samples. In the context of XGBoost, feature importance in-
dicates the (averaged) number of times a feature is used to split the
data across all trees. Personality trait features are highlighted in red. 52

5.6 Series C: Feature importance histograms for random forest Model,
derived from 1000 Monte Carlo samples. In the context of random
forest, feature importance reflects the average reduction in the Gini
impurity brought by each feature across all trees in the forest. . . . 53

5.7 Series C: Feature importance histograms for XGBoost Model, de-
rived from 1000 Monte Carlo samples. In the context of XGBoost,
feature importance indicates the (averaged) number of times a fea-
ture is used to split the data across all trees. 54

5.8 Series C: Top 35 feature importances for logistic regression, aver-
aged over 1,000 Monte-Carlo samples. Feature importance here
represents the absolute value of the model’s coefficients. Personal-
ity trait features are highlighted in red. 55

5.9 Series C: Top 35 feature importances for random forest, averaged
over 1,000 Monte-Carlo samples. In the context of random forest,
feature importance reflects the average reduction in the Gini impu-
rity brought by each feature across all trees in the forest. Personality
trait features are highlighted in red. 55

5.10 Series C: Top 35 feature importances for XGBoost, averaged over
1,000 Monte-Carlo samples. In the context of XGBoost, feature
importance indicates the (averaged) number of times a feature is
used to split the data across all trees. Personality trait features are
highlighted in red. 56

v

List of Tables

2.1 Overview of all initial features available from the Crunchbase Com-
panies Data Set. Use-case descriptions: ’Feature Extraction’ de-
notes features used to generate additional features, ’Modeling’ refers
to features directly used in model training, ’Target Extraction’ refers
to features that define the target variable for the predictive model,
and ’Not used’ indicates features not utilized in the project. 13

2.2 Overview of all initial features available from the Crunchbase Fund-
ings Data Set. Use-case descriptions: ’Feature Extraction’ denotes
features used to generate additional features, ’Modeling’ refers to
features directly used in model training, and ’Not used’ indicates
features not utilized in the project. 14

2.3 Overview of all initial features available from the Crunchbase Founders
Data Set. Use-case descriptions: ’Feature Extraction’ denotes fea-
tures used to generate additional features, ’Modeling’ refers to fea-
tures directly used in model training, ’Connecting Data’ means fea-
tures used to connect different datasets, and ’Not used’ indicates
features not utilized in the project. 14

2.4 Overview of final features used for model training. The table show-
cases the feature name, its type, and a brief description. 15

2.5 Overview of features used for training the personality models (before
embedding the tweets). The table showcases the feature name, its
type, and a brief description. 15

3.1 One-hot encoding of the tokens in the sentence ”This is a very large
tree.” . 19

4.1 Range of Parameters Tested for Neural Networks using Keras Tuner 38
4.2 Parameter Grids for logistic regression used in RandomSearch . . . 39
4.3 Consolidated Parameter Ranges for XGBoost used in random search

(for both Personality and Success predictions) 39
4.4 Parameter Grids for random forest used in random search (for both

Personality and Success predictions) 40

vi

4.5 Best Parameters for Feed-Forward neural network Personality Pre-
diction using TF-IDF and BERT 41

4.6 Best Parameters for XGBoost Personality Prediction using BERT
and TF-IDF . 42

4.7 Best Parameters for random forest Personality Prediction using
BERT and TF-IDF . 43

4.8 Best Hyperparameters for LR Success Prediction Model 43
4.9 Best Hyperparameters for RF Success Prediction Model 43
4.10 Best Hyperparameters for XGBoost Success Prediction Model . . . 44

5.1 Comparison of Mean Absolute Error (MAE) across various model
and embedding combinations on the test data, segmented by per-
sonality traits. Trait scores can range from 0 to 100. Bold values
highlight the best performing model for each trait. 46

5.2 Comparison of model performance for predicting Series B raises in
terms of Mean Macro F1 and AUC on the test set. Both metrics are
provided with 95% confidence intervals, derived from 1,000 Monte-
Carlo sampling iterations using varied seeds. 47

5.3 Comparison of model performance for predicting Series C raises in
terms of Mean Macro F1 and AUC on the test set. Both metrics are
provided with 95% confidence intervals, derived from 1,000 Monte-
Carlo sampling iterations using varied seeds. 48

vii

1 Introduction

1.1 Aim and Scope

This thesis aims to ascertain the significance and potential value of integrating
predicted founder personalities into ML models for enhancing the accuracy of
early-stage startup success predictions. Hence, an integral part of this thesis is
to construct well performing personality predictions models, that rely on Natural
Language inputs from social media posts, or tweets.

For this project we use data from US startups who received seed-funding be-
tween the years 2013 and 2015. This time frame allows us to reliably gauge a
startup’s success, under the assumption that if they have not succeeded by now,
they likely will not. For the personality predictions we restrict ourselves to only
using the Big 5 personality Framework as both target variables for the personality
models and as input variables for the startup success models.

We use and compare a feed-forward neural network, an XGBoost model, and
a random forest model for the personality predictions that uses either TF-IDF or
BERT embeddings as inputs. For the startup success predictions, we employ logis-
tic regression models, XGBoost models, and random forest models, and compare
their performance and reliance on personality features. The models are, to varying
extents, tuned, and subjected to different forms of regularization, to achieve the
best possible results.

1.2 Background

Startups are young businesses intending to disrupt industries [2]. Unlike other
businesses, startups focus on speed and growth. They rely on large investments
from institutional investors to bring new products and services to market, intending
to outmaneuver their competition and grab large market shares quickly. Given the
aggressive speed and growth orientation of startups, obtaining sufficient funding
becomes a critical factor for success. This is where the concept of Venture Capital
comes into play. Venture Capital (VC) is a form of financing or private equity to
startup companies believed to have long-term growth potential [3]. VC can come
from a myriad of investors, such as individual investors (known as angel investors,

1

or angels), VC firms, investments banks or other financial institutions. The goal for
these investors is to see high returns, which is why the capital is typically provided
at a very early stage in a company’s development, often at the seed- or early-stage.
VC firms collect and pool money from financially well-off people or institutions
known as limited partners (LPs) and use these funds to invest in startups. The
decision-making process within a VC firm can vary based on numerous factors,
but it typically unfolds according to the following sequence: [4]

1. Origination: At this stage, VC firms seek out potential investment opportu-
nities via either inbound or outbound sources.

2. Screening: This involves a two-fold assessment - VC Firm-specific and Generic.
Firstly, it’s necessary to ascertain whether the opportunity aligns with the
VC firm’s sector interests and investment thesis. Secondly, the investment
potential is evaluated from a growth perspective, among other generic fac-
tors.

3. First-Phase Evaluation: In this phase, the management team of the potential
investment interacts with the VC firm. An initial evaluation is conducted
with the objective of gauging the potential appeal of the opportunity.

4. Second-Phase Evaluation: Should the opportunity prove to be promising,
it advances to this phase, designed to rapidly amass as much knowledge as
possible about the prospective venture. The objective here is to streamline
the decision-making process and prevent the deal from being secured by other
investors.

5. Closing: Following the second-phase evaluation, the deal proceeds to the
closing stage. This is when the terms of the agreement and the legal obliga-
tions are established and finalized.

At every stage of the process, the VC Firm can decide that a deal is not interesting,
and therefore opt-out.

When evaluating opportunities, also known as conducting due diligence, VC
firms look at numerous different factors aiding them in making the right decisions.
Generally, these factors include, but are not limited to, team, business model,
product, market, industry, valuation, ability to add value, and fit [5].

Numerous studies have been done trying to identify the factors that lead to
successful ventures; in [6] a literature review of success factors for IT startups was
conducted. They identified three categories of success factors, what they named
organizational, individual, and external factors. The organizational category in-
cludes factors such as organizational age and size, and location of a company

2

(which is tied to connections of potential customers, advisors and investors). In-
dividual factors are related to the founders or founding team, their personalities,
previous work and startup experience. Lastly, external factors contain factors such
as market competition, innovation, and changes in legislation that drive perfor-
mance and growth. Some of the internal factors identified in [6] are related to
personalities and personality traits of the founding team, and therefore could sup-
port the notion of personalities having an effect on the success of a startup. This
is especially relevant for the aim of this paper. These factors include leadership,
motivation, independence, social skills, and business attitude of the founders.

Research in the field of personality psychology establishes a prominent frame-
work known as the Five-Factor Model (FFM), also referred to as the Big Five
personality traits [7]. This model identifies five key dimensions that define human
personality and govern human behavior: Openness (to Experience), Conscientious-
ness, Extraversion, Agreeableness, and Neuroticism. These dimensions originate
from peer rating scales [8] and are currently traced in various research areas such
as questionnaires of needs and motives [9], and self-reports on trait-descriptive
adjectives [10]. As a result, it stands as one of the most widely used frameworks
for personality modeling. The framework typically assigns a number on a scale of
1-100, where each subject receives a score on all five dimensions, which together
constitute their personality. Additionally, research on the FFM suggests that per-
sonalities change over time [11], a factor that will be crucial for data selection, as
discussed later.

1.3 Previous Research

In previous research, various approaches have been employed to predict the
success of startups. In 2016 [12] utilized Crunchbase data, supplemented with
additional information from TechCrunch, to predict success at different startup
stages from Pre-seed to Series G. Machine learning methods used included naive
bayes, ADTrees, and random forest. The study reported high AUC, precision, and
recall scores across different models, with the best model showing an AUC score
of 87%.

In 2018 [13] employed a two-step approach that first identified key uncertainty
factors before investing in startups. These factors were then assessed by a ’do-
main expert’ and the assessments were used to train machine learning models.
Algorithms used in this study included k-Nearest Neighbors (k-NN), naive bayes,
and support vector machine (SVM), with the naive bayes model showing the most
promising results, boasting a precision of 88% and a recall of 81%.

Further research in 2018 utilized Crunchbase data to predict whether a startup
would be acquired or complete an Initial Public Offering (IPO) [14]. This study

3

employed the random forest algorithm and achieved a true positive rate of 94%.
Moreover, a 2018 paper expanded on data sources by including information

from forums, social media sites, and news articles about companies in addition
to Crunchbase data [15]. An advanced learning pipeline was used constituting
of various algorithms including logistic regression, neural network, and CatBoost
(a gradient boosting decision tree modification). Their best performing model
achieved a ROC-AUC of 85%.

[16] used a hybrid intelligence approach using both hard information (team,
capital raised, etc.,) as well as soft information (product innovation, proof of con-
cept, etc.,.) where the latter was judged by a group of people, and then trained
on various models such as logistic regression, naive bayes and SVM.

Another paper from 2019 [17] used a similar approach with Crunchbase data
and machine learning models such as logistic regression, random forest, and eX-
treme Gradient Boosting (XGB), reporting an accuracy of 95%.

Lastly, a 2021 study [18] also utilized Crunchbase data but tried to avoid look-
ahead biased variables. This study employed logistic regression, SVM, and a Gra-
dient Boosting classifier (GBM), with the last one performing best with a Macro
F1 score of 43%.

Looking at the papers referenced above, several of them can be critiqued with
several areas of improvement. Especially, the use of look-ahead factors in both
[12] and [15] could have unknowingly influenced prediction outcomes. [13] which
employed key uncertainty factors, raises concerns about the potential bias due
to the limited dataset used for training and testing, comprising only 198 and 49
observations respectively. In [17], additional look-ahead bias might be displayed,
due to the use of variables not known at the early stages of a startup, such as
the number of funding rounds. Additionally, the claim of a 95% accuracy rate
is questionable given the unbalanced data set, which only had 5% of successes.
Lastly, [18] which to a certain extent pointed out these areas of improvement, can
still be critiqued for the small number of variables, which might be one explanation
for the relatively low F1-score (43%).

Moving on to previous research in the field of personality predictions; one of
the pioneering papers in this field is [19] from 2011. In their study, they collect a
set of users, have them perform Big 5 personality tests, and subsequently extract
their tweets and Twitter user data. From this, they create a set of features includ-
ing LIWC language features, MRC language features, sentiment, and more. They
then feed these features into two different models to predict personalities: a ZeroR
model and a Gaussian process model. They conclude that it is possible to predict
individuals’ personalities accurately using Twitter data, obtaining mean average
errors (MAEs) of between 0.12-0.18 for the five different personality traits. How-
ever, a primary critique of this paper is the absence of a baseline or naive model,

4

which complicates the interpretation of their results. More recently, similar ap-
proaches employing advanced NLP techniques have been evaluated. In 2021, [20]
used pre-trained language models such as BERT and RoBERTa, combined with
NLP features like the number of tweets and sentiment, to predict personalities
from Twitter and Facebook data. They choose to approach it as a classification
problem, dividing the personality trait scores into two classes, ’low’ and ’high’.
For the Twitter dataset, they achieved a (macro) F1 score of 0.88, with the low-
est being 0.74. Opting for a classification approach over a regression is intriguing
but might overlook some nuances in the scores that a regression approach could
capture.

1.4 Defining Startup Success

Defining success in the context of startups can be a complex task due to the
many outcomes that may be considered ”successful”. In this paper, we propose
a novel approach to define success, arguing that a startup’s ability to raise sub-
sequent funding rounds, specifically Series B or Series C and beyond, should be
considered a strong measure of success. This metric can be seen as a reflection of
the startup’s ability to consistently demonstrate promising growth and traction,
which persuades investors to provide further capital.

However, other commonly used indicators of success such as mergers and ac-
quisitions (M&A) can be misleading. It is often difficult to discern whether an
M&A event signals success or represents a final attempt to prevent failure.

Similarly, an Initial Public Offering (IPO) is a rare event among startups, with
even successful ones often deferring this step for extended periods. Using IPOs
as a marker of success might inadvertently exclude many successful startups that
have not yet reached this milestone.

For these reasons, this study asserts that the ability to raise Series B or Series
C funding is a more accurate and encompassing measure of startup success, as it
directly correlates with demonstrated traction and growth.

1.5 Scientific Contributions

The research conducted in this thesis will help understand if and to what extent
different personality traits affect the outcome of startups and give a practical
way for researchers to incorporate personalities into models aiming to predict the
success of startups. This thesis will not only aid researchers, but also assist VC
firms, individual investors, and founders in making informed decisions for both
investment and recruitment purposes.

5

1.6 Outline of the Thesis

This thesis is structured as follows: Chapter 2 introduces the project data, de-
tailing its collection, pre-processing, and the final features used for modeling both
personalities and startup success. Chapter 3 includes a comprehensive coverage of
necessary theory, ranging from text embeddings to machine learning. Chapter 4
outlines the methods used in this thesis. Chapter 5 consolidates all results, offer-
ing a clear overview for the reader. Chapter 6 delves into discussions about the
results and provides recommendations for future research on the topic. The thesis
concludes with Chapter 7, which contains our final thoughts and insights.

1.7 Problem Formulation

We will start by formulating the problems of personality predictions and success
predictions mathematically, to help understand what we want to accomplish.

Personality Prediction

A user’s set of tweets is represented as X = {x1, x2, . . . , xn} where xi denotes
the ith tweet and n is the total number of tweets by the user (10 < n ≤ 1000).
Each set of tweets can be represented as a single document, D. A function, t, is
used to generate a numerical representation (text embedding) of the document,

TD = t(D).

The corresponding personality score is represented as Y = {y1, y2, . . . , y5} where
yi is the score for the ith personality trait in the Five-Factor Model.

The aim is then to construct a model to learn a function f : TD → Y such that
the squared error ϵ between the predicted personality score f(Td) and the true
personality score Y is minimized, i.e.,

min ϵ2 (Y, f(TD)) .

Startup Success Prediction

The predicted personality scores serve as input to a separate model for pre-
dicting startup success. The set of personality scores is represented as P =
{p1, p2, ..., p5}, where pi denotes the mean personality score among the founders
for the ith personality trait in the Five-Factor Model. Additionally, we represent
the categorical variables as C = {c1, c2, ..., cp}, where ci is the ith categorical vari-
able and p is the total number of categorical variables, and the numerical variables
as N = {n1, n2, ..., nq}, where ni is the ith numerical variable and q is the total
number of numerical variables.

6

The complete input to the model then becomes a combination of P , C, and
N . This can be represented as a vector I = (P,C,N), where I includes the mean
personality traits among founders, additional categorical variables, and numerical
variables.

The corresponding startup success label is denoted as S ∈ {0, 1}, where 0
represents failure and 1 represents success.

The overarching goal is not just to construct a model to learn a function g : I →
S that outputs the probability of startup success, but also to minimize the binary
cross-entropy loss between the predicted probability g(I) and the true startup
success label S:

L(S, g(I)) = − (S log(g(I)) + (1 − S) log(1 − g(I)))

min L(S, g(I))

Further, we aim to analyze the weight and importance of P within this model,
thereby understanding the role of founder personalities in predicting startup suc-
cess.

7

2 Data

Before we go into detail on the data specifics, it is crucial to reiterate the
primary objectives of this study. Firstly, we aim to develop a model capable of
predicting individuals’ personalities based on the Five-Factor Model. The sub-
sequent goal is not just to create and assess models that predict startup success
by incorporating these personality predictions, but also to critically evaluate the
significance of these personality attributes in influencing the outcomes.

2.1 Data Collection

To collect the necessary data, we began by identifying Twitter users who had
posted their Five-Factor Model Personality test scores on Twitter. For this pur-
pose, we used Python and through code searched for keywords such as ’My Big 5
Results’, among others. Given the multitude of websites offering Big 5 personality
tests, we ensured that the users we identified had taken the test from a specific
set of websites, which we had pre-determined as trustworthy and reputable. After
identifying a set of users, we extracted either their 1,000 most recent tweets or all
their tweets if they had published fewer than 1,000. Consequently, we accumu-
lated a dataset comprising 1,708 Twitter users with an average of 724 tweets per
user and an average tweet length of 71 words. For the company-specific data, we
turned to Crunchbase, a data-as-a-service provider that hosts information about
both private and public companies. Although the exact methods Crunchbase uses
to collect data are not fully transparent, we considered it a reliable source for our
research.

Our data extraction process from Crunchbase was straightforward. We defined
our criteria: U.S.-founded companies that received seed funding between 2013 and
2015. Subsequently, we extracted the relevant data. In total, we obtained three
distinct datasets: the Companies dataset, the Fundings dataset, and the Founders
dataset. Each dataset was interlinked through specific identifiers: the founded
company’s ID (organization_id) and the founders’ IDs (founder_ids). The
relationships between these datasets can be observed in 2.1.

With the Founders dataset in hand, we identified those who had Twitter ac-
counts. We then proceeded to gather all their tweets and combined this data with

8

the Founders dataset.

Figure 2.1: Overview of the connections between the three datasets from Crunch-
base: Companies, Fundings, and Founders. This diagram only highlights the
features used to interconnect the datasets.

2.2 Data Description

Overviews of features and use-cases for the three distinct datasets were provided
in tables 2.1-2.3. As highlighted in the tables, not all features were utilized, with
some being employed for either feature extraction or target extraction (to define
success).

The Companies dataset contained a total of 9,065 rows, the Fundings dataset
encompassed 26,642 rows, and the Founders dataset comprised 16,553 rows. After
combining the datasets, the resulting set matched the number of rows in the Com-
panies dataset, standing at 9,065. This was because the other two datasets could
contain multiple entries related to a single company. As previously mentioned, the
Tweets dataset consisted of 1,708 unique users, each contributing between 5 to
1,000 tweets, and their personality scores. The distribution of scores in the Tweet
dataset can be seen in figure 2.2. As can be noted, the distribution is fairly left
skewed, especially for the trait Openness and Agreeableness.

As touched upon in the Background section of the Introduction Chapter, [11]
showed that personalities evolve during adulthood. Considering this, we delib-
erately chose to include only those companies whose founders tweeted at least
five times before their company secured a seed round. This decision reduced the
dataset to 299 companies. However, we assessed that this dataset was still suffi-
ciently extensive to yield insightful and meaningful results.

9

Figure 2.2: Distribution of Personality Scores for the Five Different Personality
Traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroti-
cism among the Tweet dataset.

2.3 Data Pre-Processing

As described in the Data Collection section, we only gathered data on US-
founded companies, and we thus assumed that most founders were US-born. With
this assumption in mind, we deliberately chose to filter out all non-English tweets
from the Tweet dataset. To achieve this, we employed the language detector from
nltk. Before language detection, we pre-processed the tweets: usernames, sym-
bols, hashtags, emojis, and URLs were removed. After this, we used the language
detector on each tweet, retaining only those identified as English. However, we
preserved their original versions alongside the processed ones. This pre-processing
led to a reduced Tweet dataset of 965 observations, highlighting the significant
number of non-English tweets.

Handling Missing Data

In the three datasets we collected from Crunchbase, missing data presented
a significant challenge. We addressed this primarily through zero replacements
or median replacements. For the Fundings Data set, we replaced missing values
in the money_raised_usd feature with zeros when the investment_stage was
’angel’. However, when the investment_stage was ’seed’, we opted for median

10

replacement, considering only ’seed’ investments. Likewise, we applied median
replacement to the num_investors feature and to the date_announced_on feature,
where we determined the median days between two consecutive rounds or between
founding dates using the founded_on_date feature. Initially, we considered using
the number_trademarks and number_patents features for modeling. Although
we later decided against their inclusion (reasons discussed subsequently), we had
replaced their missing values with zeros.

Feature Extraction

To construct capable models, we had to extract as much information as pos-
sible from the datasets we had collected. At the same time, we had to format
the features so that the models could make the best possible predictions. As
a result, we conducted supervised feature extraction. For the tweets data, we
extracted four features: nr_tweets, avg_tweet_length, avg_nr_mentions, and
avg_nr_emojis. For the other sets, we started by using the data in the Company
dataset and the Fundings dataset. From these, we extracted the following new
features: seed_funding, days_to_seed, nr_seed_investors, seed_investors,
angel_funding, days_to_angel, all of which made use of investment_stage,
date_announced_on, money_raised_usd, and investor_identifiers as described
in table 2.2. We then appended these features to the Company Data set. Moreover,
we took the linkedin_url, facebook_url, and twitter_url features from the
original Company Data set and converted them into binary features: has_linkedin,
has_facebook, and has_twitter. Finally, we used the Founders Data set to
extract the features: is_serial_founders_avg and founders_schools. For
is_serial_founders_avg, we looked at the number_founded_orgs to determine
how many companies each founder had started previously. We then calculated an
average score for the founders: founders who had started other companies in the
past were given a 1; all others received a 0.

Additionally, the founders_schools feature, along with city, region, and
categories, was encoded using one-hot-encoding, resulting in a total of 1,534
unique features.

2.4 Features for Modeling

After the pre-processing and feature extraction were completed, all features
were appended to the Company Data set, which was then referred to as the Final
Company dataset. These features are subsequently utilized to predict two distinct
target variables: Series B and Series C funding success.

All the features used for modeling (except for the personality predictions) are
shown in table 2.4, comprising 1,544 unique features (including the features from

11

the one-hot-encodings of the categorical features).
Excluding the categorical features, the final features utilized only a small subset

of the available features. This choice might surprise some readers. However, one
of the important goals of this thesis was to maintain the credibility of our work
by ensuring that the success prediction models were not biased. For instance, the
features num_patents and num_trademarks represented the company’s current
number of patents and trademarks. Including these would have biased the models
since they would have been strong predictors of success, but such data would not
be available at the time of an investment decision. The same reasoning applied
to features like revenue_range, number_of_employees_range, and many more
shown in tables 2.1-2.3. Consequently, we excluded these from the final feature
set.

12

Feature Description Use-case
number_of_founders Count of company founders. Modeling
categories Company’s associated categories. Modeling
category_groups Broad category groupings. Modeling
location_identifiers IDs and names of office locations. Modeling
founded_on_date Company’s founding date. Feature Extraction
linkedin_url Company’s LinkedIn page URL. Feature Extraction
facebook_url Company’s Facebook page URL. Feature Extraction
twitter_url Company’s Twitter page URL. Feature Extraction
operating_status Current operational status. Target Extraction
acquisition_status Company’s acquisition status. Not used
website_url Company’s website URL. Not used
description Detailed company description. Not used
number_trademarks Count of registered trademarks. Not used
number_patents Count of registered patents. Not used
short_description Brief company description. Not used
revenue_range Estimated revenue range. Not used
number_of_investors Count of total investors. Not used
number_of_lead_investors Count of lead investors. Not used
number_of_employees_range Employee count in ranges. Not used
number_of_funding_rounds Count of total funding rounds. Not used
investor_identifiers IDs and names of investors. Not used
equity_funding_usd Total equity funding received. Not used
last_funding_type Type of latest funding. Not used
last_funding_date Date of latest funding round. Not used
last_equity_funding_usd Amount of latest equity funding. Not used
last_equity_funding_date Date of latest equity funding round. Not used
crunchbase_company_rank Crunchbase ranking for the com-

pany.
Not used

funding_stage Current funding stage. Not used
last_funding_usd Latest round’s funding amount. Not used
number_funding_rounds Total funding rounds count. Not used
acquisition_price_usd Acquisition price, if applicable. Not used
ipo_status Company’s IPO status. Not used
company_valuation_range Estimated company valuation. Not used
funding_usd Total funding received. Not used

Table 2.1: Overview of all initial features available from the Crunchbase Companies
Data Set. Use-case descriptions: ’Feature Extraction’ denotes features used to
generate additional features, ’Modeling’ refers to features directly used in model
training, ’Target Extraction’ refers to features that define the target variable for
the predictive model, and ’Not used’ indicates features not utilized in the project.

13

Feature Description Use-case
number_of_investors Total count of investors. Modeling
investor_identifiers Identifiers for the investors. Modeling
lead_investor_identifiers Identifiers for the lead investors. Modeling
date_announced_on Date when the funding was an-

nounced.
Feature Extraction

investment_type Type of investment (e.g., Equity,
Debt-financing, etc.).

Feature Extraction

money_raised_usd Amount of money raised in USD. Feature Extraction
investment_stage Stage of investment (e.g., Seed, Se-

ries A, etc.).
Feature Extraction

pre_money_valuation_usd Pre-money valuation of the com-
pany in USD.

Feature Extraction

is_equity_funding Indicator if the funding was equity
funding.

Not used

Table 2.2: Overview of all initial features available from the Crunchbase Fundings
Data Set. Use-case descriptions: ’Feature Extraction’ denotes features used to
generate additional features, ’Modeling’ refers to features directly used in model
training, and ’Not used’ indicates features not utilized in the project.

Feature Description Use-case
number_founded_orgs Total count of organizations

founded.
Modeling

attended_schools Schools attended by the founder. Modeling
gender Gender of the founder. Modeling
facebook_url Facebook page URL of the founder. Feature Extraction
linkedin_url LinkedIn profile URL of the

founder.
Feature Extraction

twitter_url Twitter handle URL of the founder. Feature Extraction
primary_org Primary organization associated

with the founder.
Connecting Data

current_org Current organizations associated
with the founder.

Connecting Data

name Name of the founder. Not used
crunchbase_person_rank Crunchbase rank of the founder. Not used
location_identifier Identifier for the founder’s location. Not used

Table 2.3: Overview of all initial features available from the Crunchbase Founders
Data Set. Use-case descriptions: ’Feature Extraction’ denotes features used to
generate additional features, ’Modeling’ refers to features directly used in model
training, ’Connecting Data’ means features used to connect different datasets, and
’Not used’ indicates features not utilized in the project.

14

Feature Type Description
seed_funding Continuous $USD in seed funding.
days_to_seed Continuous Number of days from founding to seed

round.
nr_seed_investors Discrete Count of investors at seed stage.
seed_investors Discrete One-hot encoded list of seed stage in-

vestors (744 unique).
angel_funding Continuous Amount in $USD raised in angel funding.
days_to_angel Continuous Days from founding to angel round, if

funding was raised.
num_founders Discrete Count of company founders.
is_serial_founders_avg Continuous Average count of serial founders among

the founders.
founders_schools Categorical One-hot encoded list of founder’s at-

tended schools (357 unique).
city Categorical City where company was founded (98

unique cities).
region Categorical Region or US state where company was

founded (30 unique regions).
has_twitter Discrete Indicator if company has/had a Twitter

page.
has_facebook Discrete Indicator if company has/had a Facebook

page.
has_linkedin Discrete Indicator if company has/had a LinkedIn

page.
categories Categorical Crunchbase Product Categories associ-

ated with the company (305 unique).

Table 2.4: Overview of final features used for model training. The table showcases
the feature name, its type, and a brief description.

Feature Type Description
tweets Text Raw tweet texts.
nr_tweets Discrete Tweet count by user.
avg_tweet_length Continuous Average tweet length.
avg_nr_mentions Continuous Average mentions per tweet.
avg_nr_emojis Continuous Average emojis per tweet.
openness Continuous Average prediction score for the Openness

trait of the founding team.
conscientiousness Continuous Average prediction score for the Consci-

entiousness trait of the founding team.
extroversion Continuous Score for the Extroversion trait.
agreeableness Continuous Score for the Agreeableness trait.
neuroticism Continuous Score for the Neuroticism trait.

Table 2.5: Overview of features used for training the personality models (before
embedding the tweets). The table showcases the feature name, its type, and a
brief description.

15

3 Artificial Intelligence

This section offers a foundational understanding of key theoretical concepts rel-
evant for this thesis. We touch upon the expansive domain of Artificial Intelligence,
delving into Machine Learning, Natural Language Processing, and the nuances of
Deep Learning. Text embeddings and their significance in contextualizing infor-
mation are explored, followed by a review of various modeling techniques. We will
also address the challenges and solutions associated with high-dimensional and un-
balanced datasets. This understanding is crucial for comprehending the methods
used in this study.

3.1 Background

Artificial Intelligence (AI) is a broad field in computer science that aims to
simulate and enhance human cognitive functions within machines. Its purpose is
to create systems that can perform tasks typically requiring human intelligence.
These tasks include, but are not limited to, image recognition, speech recognition,
decision-making, and natural language understanding [21].

The author in [21] defined AI as ”The study of the computations that make it
possible to perceive, reason, and act.” This definition underscores machines’ abil-
ities to understand their environment, make decisions, and pursue specific goals.

Figure 3.1 illustrates the various subfields and applications of AI.

Machine Learning

Machine learning (ML) is a sub-field of AI that focuses on creating models and
algorithms that allow machines to learn from and make decisions or predictions
based on data [22]. ML tasks can be divided into three categories: supervised
learning, unsupervised learning, and reinforcement learning [23].

In supervised learning, models are trained on data that contain explicit target
variables or labels corresponding to some input data[22]. As an analogy, consider
training an ML model to distinguish apples from oranges using a set of images. In
the case of supervised learning, each image is labeled as either an apple or orange,
to help the model learn.

16

Figure 3.1: Illustration of various subfields and applications of AI. Derived from
[1].

Unsupervised learning, on the other hand, seeks to identify inherent structures
or patterns within data that has not been labeled. Common methods used in
unsupervised learning include K-Mean Clustering, Principal Component Analysis
(PCA), and Autoencoders [24].

Lastly, reinforcement learning operates on a principle of trial and error, where
an agent learns to navigate within a given environment, getting rewarded or pun-
ished for its actions and adjusting thereafter [23]. For instance, consider a com-
puter agent learning to play the game Snake. The agent receives rewards for
consuming ”snacks” and incurs penalties for colliding with its tail. Through this
process of trial-and-error, the agent can learn the optimal strategy to successfully
navigate the game environment.

In general, ML is a very important part of AI as it enables systems to auto-
matically learn and improve from experience without being explicitly programmed
[25].

Natural Language Processing

Natural Language Processing (NLP) is a sub-field within AI that focuses on the
interaction between computers and humans through natural language [26]. Lever-
aging ML techniques, NLP aims to enable computers to understand, interpret, and
utilize human language in meaningful ways.

NLP applications encompass a wide range of tasks including machine transla-
tion, sentiment analysis, named entity recognition, and speech recognition. A core

17

aspect of these tasks involves transforming raw, unstructured text into structured,
numerical representations. These representations, also known as embeddings, en-
able computers to understand the semantic meaning of text [27].

NLP employs ML techniques to convert vast amounts of human language data
into numerical representations. This transformation allows ML models to analyze
and derive insights from the data, thereby enhancing the capabilities of AI systems
in handling language-based tasks [26].

These embeddings, coupled with ML techniques, unlock a myriad of possibil-
ities in understanding and deriving insights from natural language data. This
combination forms the backbone of NLP [27].

Deep Learning and Neural Networks

Deep learning, a subset of ML, harnesses deep neural networks to model and
process data structures within extensive datasets [28]. While traditional ML meth-
ods often require manual feature engineering, deep learning can automatically ex-
tract relevant features from raw data [29]. As such, it has fostered breakthroughs in
several areas, notably computer vision via convolutional neural networks [30], and
natural language processing through the utilization of recurrent neural networks
and transformers [31].

However, the architecture and design of deep neural networks sometimes lead
to challenges surrounding interpretability [29]. Additionally, these models require
abundant data for training and considerable computational power [28]. Yet, within
AI, deep learning stands as a critical tool, with its ability to engage with vast
datasets and learn complex patterns from data, which has considerably advanced
current AI systems [29].

3.2 Text Embeddings

Text embeddings are numerical vector representations of text [27]. These are
fundamental to natural language processing (NLP) as they allow for machines
to interpret and understand meaningful relationships within text [26]. There are
numerous methods to construct text embeddings, some of which will be described
below.

Tokenization

An important step in creating text embeddings is to turn raw text into words or
tokens. A token is a single unit of meaning, most typically a word [26]. However,
depending on the specifies of the NLP task, a token could also refer to a single
character, a syllable a sentence or even an entire document of text [26]. While not

18

all text embeddings techniques explicitly require this step, it generally forms an
integral part of NLP. The tokenization of the sentence ”This is a very large tree”
can be seen in Figure 3.2, where each token refers to a single word.

Figure 3.2: Tokenization example of the sentence ”This is a very large tree”.

Encodings

Once raw text has been tokenized, the subsequent step involves encoding these
tokens to produce embeddings [27]. To illustrate, let us use the one-hot encoding
method on our previous example sentence, ”This is a very large tree.” In one-hot
encoding, each unique token in the corpus is associated with a distinctive binary
vector [27]. In this vector, one position corresponds to ’1’ (denoting the presence of
the token), while all other positions are marked as ’0’. Table 3.1 shows the one-hot
encoding method. While one-hot encoding provides a simple, straightforward way

Token One-hot vector
”This” [1, 0, 0, 0, 0, 0]

”is” [0, 1, 0, 0, 0, 0]
”a” [0, 0, 1, 0, 0, 0]

”very” [0, 0, 0, 1, 0, 0]
”large” [0, 0, 0, 0, 1, 0]
”tree” [0, 0, 0, 0, 0, 1]

Table 3.1: One-hot encoding of the tokens in the sentence ”This is a very large
tree.”

to represent text numerically, it fails to capture any semantic relationships between
words, which is often crucial in NLP tasks. In search for techniques that can better
account for semantic relevancy, we turn to more advanced methods, such as Term
Frequency-Inverse Document Frequency (TF-IDF), and Transformers.

19

Term Frequency-Inverse Document Frequency (TF-IDF)

Term Frequency-Inverse Document Frequency (TF-IDF) is a statistical mea-
sure that determines the relevancy of a word or a phrase (term) in a document
within a corpus [32]. The relevancy increases proportionally to how many times
a given term appears within a document but is offset by the frequency of the
term within the corpus. Thus, TF-IDF assumes that terms which appear less
frequently in a set of documents carry more information, and hence gets assigned
greater weights. Because of this assumption, TF-IDF is a very common and effec-
tive technique for tasks such as information retrieval and text mining. The Term
Frequency (TF) for a specific term t in a document d is calculated as:

TF (t, d) =
nt,d

Nd

where nt,d is the number of times term t appears in document d and Nd is the total
number of terms in document d. The Inverse Document Frequency (IDF) for term
t in the corpus of documents D is:

IDF (t,D) = log

(
ND

nt,D

)
where ND is the total number of documents in corpus D and nt,D is the number of
documents with term t in corpus D. By combining TF and IDF, we get the final
formula for Term Frequency-Inverse Document Frequency (TF-IDF):

TF -IDF (t, d,D) = TF (t, d) × IDF (t,D)

Although TF-IDF effectively captures term relevancy, it lacks contextual under-
standing and does not capture semantic relationships between words. To address
these limitations, newer models like BERT, which consider context and capture
semantic nuances, have been developed [33]. This will be the focus of the following
section.

Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) is an NLP
model developed and open source by Google in 2018 [33]. As the name suggests,
BERT is a transformer-based model, meaning it is grounded in the transformer
architecture seen in Figure 3.3, a model architecture based on the attention mecha-
nism. The purpose of the attention mechanism is to weigh the influence of different
input elements when producing an output. In simpler terms, when BERT gener-
ates an output (such as translating a word from one language to another) the

20

attention mechanism helps the model decide which input elements to ”pay atten-
tion to”, given the surrounding input elements. The formula for attention (more
formally, Scaled Dot-Product Attention) is given by the following,

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

where Q (Query), K (Key) and V (Value) are vectors derived from the input data,
and dk refers to the dimensionality of Q and K. The attention score determines
how much focus to place on a given element, where the score is scaled down by the
square root of the dimension of the query and key given by the input element for
computational stability. Then a softmax function is applied, to have the attention
scores sum to one, which makes the score interpretable as a probability. The
softmax function is defined as follows,

softmax(z)i =
ezi∑N
j=i e

zj
.

Apart from the transformer architecture and attention mechanism, another
important aspect of BERT, is the Bidirectional Nature. Instead of reading text
input in one direction (i.e., left-to-right, or right-to-left), BERT reads the text in
both directions at once, allowing it to understand the context of a word based on
all its surroundings.

BERT generates context-sensitive embeddings. The length of the embeddings
varies depending on the sentence or the word’s context. This means that the
same word or sentence can have different embeddings based on its surroundings.
These embeddings are produced by the encoder part of the BERT model and are
essentially the model’s hidden states.

For tasks such as classification, a common approach is to utilize the embedding
of the ’CLS’ token. This token is appended at the beginning of each input text
and is trained to encapsulate the overall context of a sentence. Hence, it serves
as a representative vector that carries information about the text. Typically, re-
searchers and practitioners use the last hidden state of the ’CLS’ token because it
has accumulated information from all previous layers, making it the most informa-
tive and rich representation. This state has proven to be effective in downstream
tasks since it captures both low-level features and high-level semantic information
of the text, making it a comprehensive representation.

21

Figure 3.3: The model architecture of a Transformer

3.3 Models

Linear Regression

Linear regression is a statistical method used to model the relationship between
a dependent variable (also known as the ’outcome’ or ’response’ variable) and one
or more independent variables (also known as ’explanatory’ or ’predictor’ variables)
[34].

Given a dataset D = {(yi,xi) : i = 1, . . . , n} where yi is the ith response and
xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor vector (n >> p). The
general form of the model is specified as:

yi = β0 + β1xi1 + · · · + βpxip + ϵi with ϵi ∼ N(0, σ2),

for i = 1, . . . , n.
If we were to formulate this using matrix notation, we get:

y = Xβ + ϵ with ϵ ∼ N(0, σ2I)

22

where

y =

y1
y2
...
yn

 ,

X =

xT
1

xT
2
...
xT
n

 =

1 x11 · · · x1p

1 x21 · · · x2p
...

...
. . .

...
1 xn1 · · · xnp

 ,

β =

β0

β1

β2
...
βp

 , ϵ =

ϵ1
ϵ2
...
ϵp

 .

The linear regression model undertakes four major assumptions, that is,

1. Linearity: µ = [E(yi|xi)]n×1 = Xβ,

2. Independence: ϵi’s are independent of each other,

3. Homoscedasticity: ϵi’s have equal variance σ2,

4. Normality: ϵi’s are normally distributed.

The goal with linear regression is to identify the set of independent variables
that influence the dependent variable. To discover this dependency, one must
carry out the model estimation, which is the process of calculating the best, or
optimal, fitting line through the observed data D. Typically, model estimation is
carried out through either Ordinary Least Squares (OLS) or Maximum Likelihood
(ML). If the four assumptions above are met, the OLS and ML estimate coincide,
because under this assumption the likelihood function for a linear regression model
is maximized at the same point where the sum of squared residuals (which is what
OLS minimizes) is minimized. For OLS we have,

Q(β) =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 = (y −Xβ)T (y −Xβ).

Differentiating Q(β) with respect to β and setting the equation to 0, we get the
least squares estimator (LSE) β̃ that exists as a unique solution if the matrix XTX
is invertible. It is given by:

β̃ = (XTX)−1XTy.

23

For ML we have,

L(β, σ2) = (2πσ2)−n/2exp

(
−βTXTXβ

2σ2

)
· exp

(
βTXTy

σ2
− yTy

2σ2

)
,

and the log-likelihood is given by,

l(β, σ2) = −n/2 · log(2π) − n/2 · logσ2 − (y −Xβ)T (y −Xβ)/(2σ2).

By taking the first derivative with respect to (β, σ2) and setting it to 0 we get
the ML estimator (MLE), which for β, and already stated, is the same as its LSE.

Logistic Regression

Logistic regression is a statistical method that is primarily used for binary clas-
sification problems, but it can be adapted for multiclass problems as well [35]. In
the binary case, it models the probability that the dependent variable (or ’out-
come’) is a specific class given the values of the independent variables (also known
as ’features’ or ’predictors’).

Given a dataset D = {(yi,xi) : i = 1, . . . , n} where yi ∈ {0, 1} is the ith
binary response and xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor vector
(n >> p). The general form of the model is specified as:

log

(
p(xi)

1 − p(xi)

)
= β0 + β1xi1 + · · · + βpxip,

for i = 1, . . . , n, where p(xi) represents the probability of the outcome being 1
given the predictor values xi.

Using matrix notation, we can write the logistic regression model as:

log

(
p

1 − p

)
= Xβ,

where p is a vector of outcome probabilities, X is the matrix of predictors, and β
is the vector of coefficients.

Logistic regression makes the following assumptions:

1. Linearity: The log odds ratio is a linear function of the predictor variables,
log(p

1−p
) = Xβ.

2. Independence: The observations yi’s are independent of each other.

3. Absence of multicollinearity: There is no perfect linear relationship between
the predictor variables.

24

4. Large Sample Size: logistic regression requires a larger sample size to ensure
reliable results.

The goal with logistic regression, like linear regression, is to identify the set
of independent variables that influence the dependent variable. However, unlike
linear regression which uses either OLS or ML for model estimation, logistic re-
gression typically uses the method of ML. The log-likelihood function for logistic
regression is given by,

L(β) =
n∑

i=1

yi · log(p(xi)) + (1 − yi) · log(1 − p(xi))

The MLEs of the parameters are the values of β that maximize this log-
likelihood function. However, unlike linear regression, there is no closed-form
solution for the MLEs in logistic regression. Instead, numerical methods such as
Newton-Raphson or gradient ascent are typically used to find the MLEs.

Decision Trees

Decision trees serve as a fundamental building block for ensemble models, like
random forest and XGBoost, which are deployed in this project.

A decision tree is a hierarchical, non-parametric model that splits the feature
space into several partitions following a tree-like structure [36]. This structure
comprises of internal nodes, branches, and leaf nodes. The internal nodes represent
features or predictors, each branch signifies a decision rule based on the value
of the associated feature, and each leaf node indicates an outcome or decision
(usually the mean or mode of the target variable for the observations falling in that
partition). For clarity and better understanding, a specific example of a decision
tree, classifying fruits based on their characteristics, is illustrated in Figure 3.4.

The tree construction begins at the root node, which uses the most predictive
feature to make the initial binary split in the data. The selection of this feature
and the value at which the split is made is typically based on an impurity measure
like Gini Index or Information Gain.

Formally, suppose we have a dataset D = {(yi,xi) : i = 1, . . . , n} where yi is
the ith response and xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor vector.
Let S be a subset of D represented by a node. If S is pure (all yi in S are the
same) or another stopping criterion is met, S becomes a leaf and is assigned the
most common value of yi in S. Otherwise, the feature xj and the value t that
minimizes the impurity in the resulting subsets is chosen, and the data is split into
two subsets Sleft = {(yi,xi) ∈ S|xij ≤ t} and Sright = {(yi,xi) ∈ S|xij > t}. The
process is then repeated for Sleft and Sright.

25

Figure 3.4: Diagrammatic representation of a decision tree used for classifying
fruits based on their color, shape, size, and taste. The tree structure provides
clear decision rules at each node to categorize the fruits, ultimately leading to leaf
nodes that define the type of fruit.

This partitioning process, also known as binary recursive partitioning, is per-
formed recursively, creating an increasing number of mutually exclusive and ex-
haustive groups. The partitioning continues until a predefined stopping criterion
is met. Typical stopping criteria include a minimum node size, a maximum tree
depth, or no further decrease in the impurity.

Bootstrapped Aggregating

Bootstrapped Aggregating (Bagging) plays a significant role in several ensemble-
based ML models, including the random forest algorithm explored later in this
document. Bagging is a technique that enhances the stability and accuracy of ML
algorithms and is particularly effective in reducing overfitting by mitigating the
variance of the model [37].

Bagging algorithm operates by creating multiple subsets of the original dataset,
with replacement. Suppose we have a dataset D = {(yi,xi) : i = 1, . . . , n} where
yi is the ith response and xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor
vector. For a Bagging algorithm with B iterations, we generate B different boot-
strapped datasets D1, D2, . . . , DB, each of size n, by sampling with replacement
from D.

For each bootstrapped dataset Db, we train a separate instance of the base
model (e.g., a decision tree), resulting in B different models M1,M2, . . . ,MB. The
final model output for a new input xnew is obtained by averaging the predictions

26

(for regression) or voting (for classification) from all B models. In mathematical
terms, for regression, the bagging estimator is given by:

fbag(xnew) =
1

B

B∑
b=1

Mb(xnew),

and for classification, it is given by:

fbag(xnew) = argmaxk

B∑
b=1

I(Mb(xnew) = k),

where I is the indicator function.

Random Forest

Random forest is a widely used ML algorithm that utilizes an ensemble of deci-
sion trees and operates based on the principles of bagging and feature randomness
[38]. It can be employed for both regression and classification tasks.

Suppose we have a dataset D = {(yi,xi) : i = 1, . . . , n} where yi is the ith
response and xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor vector. For a
random forest algorithm with B iterations, we generate B different bootstrapped
datasets D1, D2, . . . , DB, each of size n, by sampling with replacement from D.

However, random forest introduces an additional level of randomness. Instead
of considering all predictors at each split in the decision tree, only a random subset
of the predictors is considered. The optimal split is then found among this subset
of predictors.

For each bootstrapped dataset Db, we train a separate instance of the base
model (a decision tree), resulting in B different models M1,M2, . . . ,MB. The final
model output for a new input xnew is obtained by averaging the predictions (for
regression) or voting (for classification) from all B models. In mathematical terms,
for regression, the random forest estimator is given by:

fRF (xnew) =
1

B

B∑
b=1

Mb(xnew),

and for classification, it is given by:

fRF (xnew) = argmaxk

B∑
b=1

I(Mb(xnew) = k),

where I is the indicator function.

27

By introducing this additional layer of randomness, random forest tends to
exhibit robust performance and is generally less prone to overfitting than a single
decision

eXtreme Gradient Boosting (XGBoost)

Gradient Boosting Machine (GBM) is a powerful ensemble ML technique that
builds a sequence of models, typically decision trees, by iteratively adding predic-
tors to minimize the loss function. Each new tree helps to correct the errors made
by the previously trained tree [39].

eXtreme Gradient Boosting (XGBoost) is an optimized and more efficient vari-
ant of the GBM algorithm. It employs the gradient boosting framework to produce
this sequence of models in a stage-wise fashion [40]. XGBoost is frequently em-
ployed for both classification and regression tasks.

Given a dataset D = {(yi,xi) : i = 1, . . . , n} where yi is the ith response and
xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor vector. At each iteration
m, a new model fm is fit to the negative gradient of the loss function L evaluated
at the previous iteration’s prediction. In mathematical terms, for a differentiable
loss function L(y, ŷ), the model fm at iteration m is fit to:

rim = −
[
∂L(yi, ŷi)

∂ŷi

]
ŷi=ŷi,m−1

,

and then the update is given by:

ŷi,m = ŷi,m−1 + ν · fm(xi),

where ν is the learning rate.
XGBoost improves upon the standard Gradient Boosting Machine (GBM) al-

gorithm in several ways. Firstly, it uses parallel processing, making it more efficient
for large-scale tasks. Secondly, XGBoost includes regularization parameters (L1
and L2), which helps prevent overfitting. Specifically, XGBoost minimizes the
following objective:

Obj =
n∑

i=1

L(yi, ŷi) +
K∑
k=1

Ω(fk),

where K is the number of trees, Ω(fk) is a regularization term that penalizes
the complexity of model fk.

Moreover, unlike GBM which stops splitting a node as soon as it encounters a
negative loss, XGBoost splits up to the maximum depth specified and then prunes
the tree backwards (a method known as ”post-pruning”). Finally, XGBoost is
designed to efficiently handle sparse data and missing values.

28

Neural Networks

A neural network is a computational model that is inspired by the structure
of biological brain networks. It consists of interconnected layers of nodes, known
as neurons, which are designed to imitate the neurons in a brain. Each of these
neurons takes a set of inputs, applies a weighted linear transform, and then applies
an activation function.

Given a dataset D = {(yi,xi) : i = 1, . . . , n} where yi is the ith response and
xi = (xi1, . . . , xip) ∈ Rp is the corresponding predictor vector. A neuron j in the
neural network calculates its output oj as follows:

oj = f

(
m∑
i=1

wijxi + bj

)
,

where wij is the weight of the connection from input xi to neuron j, bj is a bias
term, m is the number of inputs, and f is the activation function, which introduces
non-linearity into the model.

Neural networks typically consist of one input layer, one output layer, and one
or more hidden layers. The input layer receives input features, and the output
layer produces the prediction. Each neuron in the hidden layer transforms the
values from the previous layer with its weights, bias, and activation function. For
binary classification tasks, the final output layer typically uses a sigmoid function
to produce a probability, and a threshold (e.g., 0.5) determines the class prediction.
For multi-class classification tasks, the final output layer uses a softmax function
to produce probabilities for each class, and the class with the highest probability is
selected as the prediction. For regression tasks, the output layer usually contains
a single neuron, and the output of this neuron is the predicted value.

The weights and biases of a neural network are learned by minimizing a loss
function that represents the difference between the predicted and actual output.
This is usually done using a method known as backpropagation in combination
with an optimization method, such as stochastic gradient descent (SGD) [29].

An illustration of the architecture of a neural network can be seen in Figure
3.5.

3.4 Dimensionality Reduction

When dealing with large datasets with numerous features (or predictors), a
common practice is to reduce the number of features, a process known as dimen-
sionality reduction. There are several benefits to dimensionality reduction. This
includes reduced model complexity, lesser storage required for computation leading

29

Figure 3.5: Graphical illustration of a neuron’s computation in a neural network,
highlighting the input neurons, weights, bias, and the activation function. The
computation is driven by the formula: oj = f (

∑m
i=1wijxi + bj).

to faster training times, and decreased noise in the data, which could potentially
improve model accuracy.

However, the challenge lies in deciding which and how many features to elim-
inate without losing significant information. Several techniques have been devel-
oped to address this, including Principal Component Analysis (PCA) and Trun-
cated Singular Value Decomposition (SVD), which will be discussed in the follow-
ing subsections [22].

Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method used for dimen-
sionality reduction. The method employs an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of linearly un-
correlated variables called principal components. The first principal component
accounts for the largest possible variance in the dataset, and each succeeding com-
ponent in turn has the highest variance under the constraint that it is orthogonal
to the preceding components. The number of principal components is less than or
equal to the number of original variables.

To apply PCA, one must first center the data. Let’s define the centered data
matrix Z as:

30

Z = X− µ, (3.1)

where X is the original data matrix and µ is a matrix where each row is the
mean of X.

The covariance matrix of the centered data is then given by:

C =
1

n− 1
ZTZ, (3.2)

where n is the number of observations.
The principal components are the eigenvectors of the covariance matrix C.

Mathematically, this is represented by the eigenvalue equation:

Cui = λiui, (3.3)

where λi are the eigenvalues and the ui are the eigenvectors of C, ordered such
that λ1 ≥ λ2 ≥ . . . ≥ λp [41].

Truncated Singular Value Decomposition

Singular Value Decomposition (SVD) is a matrix decomposition method for
reducing a matrix to its constituent parts to make subsequent matrix calculations
simpler. For the sake of demonstration, we will only focus on real numbers.

Given a matrix X, the singular value decomposition of X is a pair of orthogonal
matrices U and V, with a diagonal matrix S, such that:

X = USVT, (3.4)

where U and V are orthogonal matrices (i.e., UTU = I and VTV = I) and S
is a diagonal matrix consisting of the singular values of X. The columns of U and
V are the left-singular vectors and right-singular vectors of X, respectively [41].

Truncated SVD, as the name suggests, is a variant of SVD where we only keep
the largest singular values and corresponding vectors. This method is effective for
reducing the dimensionality of data and works well when there are a small number
of meaningful singular values.

In the truncated SVD, the decomposition of X takes the form:

X ≈ UkSkV
T
k , (3.5)

where Uk, Sk and Vk contain only the first k columns, singular values, and
rows from U, S and V, respectively [41].

In essence, truncated SVD allows us to approximate the original matrix using
fewer dimensions, which can be beneficial in a variety of ML applications for dealing
with high-dimensional data.

31

3.5 Unbalanced Data

The dominance of one class can lead to poor performance of classifiers, espe-
cially towards the minority class, as most algorithms tend to maximize overall
accuracy, which can be done by merely predicting the majority class [42]. There-
fore, it is essential to use techniques that can address this issue effectively. In this
context, two of the most prominent methods employed to tackle class imbalance,
SMOTE and ADASYN, are detailed.

Synthetic Minority Over-sampling Technique (SMOTE)

The Synthetic Minority Over-Sampling Technique (SMOTE) addresses the is-
sue of class imbalance by creating synthetic samples in the feature space. Rather
than just duplicating examples from the minority class (which could result in over-
fitting) or removing examples from the majority class (risking the loss of valuable
information), SMOTE works as follows: For a given instance from the minority
class, it identifies a few nearest neighbors from the same class. It then chooses
one of these neighbors and creates a new instance that lies in between the chosen
instance and its neighbor.

In essence, SMOTE ”draws lines” between existing instances and fills in new
points on those lines. This method not only increases the number of instances in
the minority class but also makes the decision boundary more general, avoiding
an over-specific boundary that might not perform well on new data [43].

Adaptive Synthetic Sampling (ADASYN)

Adaptive Synthetic Sampling (ADASYN) is another over-sampling approach
that builds on the idea of SMOTE but introduces a density distribution, where
more synthetic data is generated for minority classes that are harder to learn.
The algorithm calculates the class distribution density for each data point in the
minority class and then generates synthetic instances accordingly. This means that
those minority instances that lie closer to the decision boundary (and hence are
harder to learn) will have more synthetic examples generated. The adaptive nature
of ADASYN makes it particularly useful in scenarios where the class distribution
is not merely imbalanced, but the minority class instances are also scattered and
have varied densities [44].

32

4 Methods

In the following section, we outline the steps and strategies implemented for
this study. Starting with the process of formatting data and converting text into
embeddings, we detail our approach to model construction, both for predicting
personality and startup success. We also delve into the necessary procedures of
hyperparameter tuning and methods for evaluating model performance. Lastly, a
brief note on the software tools used for implementation will be provided.

4.1 Formatting Data for Learning

TF-IDF Embeddings

The Term Frequency Inverse Document Frequency (TF-IDF) method, detailed
earlier in the Theory section, was employed as the primary approach to convert
tweets into embeddings. We tokenized words, capturing both unigrams and bi-
grams. For building the vocabulary, a subset of the data, distinct from the sets
reserved for validation or testing, was used. To strike a balance between reducing
computational overhead and preserving important information, only the 10,000
most frequent n-grams from this subset were retained in the final matrix. Conse-
quently, the produced matrix had dimensions M × 10, 000, where M represented
the number of unique Twitter users in our dataset.

BERT Embeddings

For the second approach to convert the collected tweets into text embeddings,
the Bidirectional Encoder Representations from Transformers, commonly known
as BERT, optimized specifically for English text, was utilized. A pre-trained BERT
model and its associated tokenizer, available from the Hugging Face’s transformers
library, were employed.

Each tweet from a user was fed individually into the BERT model. This process
generated contextual embeddings for every token within the tweet, producing a
sequence of high-dimensional vectors, with each vector representing a token in the
tweet.

33

To represent each tweet, the last hidden state output from BERT was taken and
transformed into a singular vector through a max-pooling operation. As outlined in
the Theory section, this max-pooling method identifies the maximum value across
each dimension from all token vectors in the tweet, culminating in a single vector
reflecting the entire tweet’s content. Subsequently, embeddings of all tweets from
a specific user were averaged, yielding a singular vector representing that user’s
collective tweets.

This procedure was repeated for all users’ tweets. Finally, all the generated
embeddings were compiled into a single matrix for downstream prediction tasks.

Truncated SVD

For the TF-IDF embedding matrix, truncated SVD was employed to reduce its
dimensionality. The explained variance for different numbers of components (or
lengths) was analyzed, and a decision was made based on the number of compo-
nents that explained 95 percent of the variance in the matrix. By doing this, the
most crucial information from the input was retained while eliminating any noise
that might adversely affect predictions later.

Data Partitioning

To train, validate, and evaluate our models, we partitioned both our datasets:
the Final Company data and the Tweet dataset.

The Tweet dataset was divided into three separate subsets: training, valida-
tion, and testing. This partitioning was done randomly, but once it was established,
it was consistently maintained throughout the training and evaluation phases of
the various models. The testing subset constituted 20% of the total data. The
remaining 80% was split between training and validation. Specifically, the valida-
tion subset made up 20% of this split (equivalent to 16% of the total data), while
the training subset constituted the remaining 80% (equivalent to 64% of the total
data).

The Final Company dataset, on the other hand, was divided into two subsets:
training and testing, following an 80/20% split. We did not reserve data for a
validation set in the Final Company dataset. This decision was based on our use
of Random Search with Cross-Validation for parameter selection.

Handling Unbalanced Classes

The Final Company dataset was unbalanced. It comprised 40 startups that
had raised a Series B round (≈ 13.4%) and only 10 that had progressed to a
subsequent Series C round (≈ 3.3%). Due to this imbalance, for all models, we
adopted Synthetic Minority Over-sampling Technique (SMOTE) for oversampling

34

the minority class in the training data. It is important to note that SMOTE
was only applied to the training data. This measure ensured that our models did
not simply optimize for predictions on the predominant class (failure) and could
discern genuine patterns in the data. We also explored the use of the Adaptive
Synthetic (ADASYN) algorithm for managing unbalanced data. However, based
on our evaluations, we opted for SMOTE.

Standardization

All input data, encompassing both tweets and company data, was standardized
to have a mean of zero and a standard deviation of one. For the tweets, standard-
ization primarily aimed to improve convergence speed during model training. For
the company data, the goal was to ensure consistent and unbiased comparisons
across various models.

4.2 Constructing the Personality Prediction Models

Before describing the specific models constructed for predicting the personality
traits of the Five-Factor Model, we wanted to outline the common procedure used
for all personality models. Initially, all models were created in pairs: one using the
TF-IDF embeddings as inputs and the other using the BERT embeddings as input.
For each unique set of input and model type, five distinct models were constructed
with different parameters to predict each trait of the Five-Factor model. While
this was our general approach, there was one exception: the Naive Model, which
had its unique construction and purpose.

Naive Model

To set a benchmark for the performance of our advanced personality models, we
incorporated a naive personality prediction model, referenced as the Naive Model.
This basic model served as a foundational reference, enabling us to establish a
standard of comparison and assess the additional benefits our more sophisticated
models provided.

In constructing our Naive Model, we calculated the mean personality score for
each of the Five-Factor traits using the training data. For each trait, its corre-
sponding mean score was then applied as the predicted value for every observation
in the test dataset, disregarding individual differences in the data.

Feed-forward Neural Network

After establishing our baseline with the Naive Model, we proceeded to develop
more complex models, beginning with feed-forward neural networks.

35

The initial architecture for these neural networks utilized three hidden layers
with a descending number of neurons, starting at 256. Each layer employed the
ReLU activation function, while the final output layer used a linear activation
function.

During training, we employed the Adam optimization algorithm. The models
were trained with a batch size of 64, using the Mean Squared Error (MSE) as the
loss function, over 150 epochs.

Random Forest

For our third personality prediction model, we turned to the random forest
approach. This decision was motivated by the model’s ability to efficiently manage
our sizable dataset and its aptitude in capturing non-linear relationships between
variables. Furthermore, the ensemble nature of random forest, which leverages
multiple decision trees, offered us an added resistance to overfitting, a critical
concern given the complexity of personality traits and their predictors. Initially,
we utilized the default parameters from Scikit-learn’s package.

XGBoost

For our fourth and final personality prediction model, we employed the XG-
Boost regression algorithm. The rationale behind this selection was its computa-
tional efficiency, largely attributed to its parallel processing capabilities. Just as
with the random forest model, we were keen on methods that enhance the gener-
alizability of our predictions and reduce overfitting. XGBoost’s inherent regular-
ization features align with this aim, reinforcing our confidence in its application.

We initiated the models using the default parameters of XGBoost.

4.3 Establishing the Success Prediction Models

Since the predicted personalities served as input to the startup success predic-
tion models, we applied the best-performing personality prediction model for each
personality trait to every founder’s tweets.

Given that many companies had multiple founders, we needed a method to
represent the personalities of the entire team. We opted for selecting the mean
score for each trait among all the founders. Additionally, we also evaluated other
approaches such as the median, maximum, and minimum scores.

After obtaining the predicted personality scores for all founders and determin-
ing a method to represent the entire team for each startup, we appended this
information to the Final Company dataset. This enriched dataset then served

36

as input for constructing two sets of models for each modeling technique, one
targeting the Series B outcome and the other targeting the Series C outcome.

Logistic Regression

Given our goal for the startup success prediction models was to primarily assess
the impact of the predicted personalities, we chose a logistic regression model as our
baseline. With this model, we aimed to determine whether a linear relationship
existed between the predicted personalities and the success of startups and to
gauge the effectiveness of the more complex models. Initially, we used the default
parameters for the LogisticRegression module provided by Scikit-learn.

Random Forest

Our second startup success prediction model utilized the random forest ap-
proach to achieve greater model complexity. While we initially used the default
parameters from Scikit-learn’s RandomForest module, as with the personality pre-
diction model, we specifically tailored this model for classification tasks. The ben-
efits of random forests, such as its ability to handle complex interactions and its
built-in feature importance metrics, made it an apt choice for our classification
objectives.

XGBoost

Our third startup success prediction model employed the XGBoost algorithm,
adapted for classification. We began with the default parameters of XGBoost,
drawing on its renowned efficiency and scalability to optimize our model’s perfor-
mance.

4.4 Hyperparameter Tuning

Hyperparameter tuning was undertaken for all models, excluding the naive per-
sonality prediction model. For the machine learning models, we utilized random
searches coupled with 5-fold cross validation. The evaluation metrics we used in-
cluded mean MAE for personality prediction models and mean F1-score for startup
success models.

Evaluation Metrics

To evaluate our models effectively, we employed various metrics tailored to the
unique nature of each prediction task.

37

For our success prediction models, we utilized the Macro F1 score and the Area
Under the Curve (AUC). The Macro F1 score, balancing precision, and recall,
is especially pertinent for imbalanced datasets as it affords equal weight to the
performance of both classes. It is given by:

Macro F1 =
2 × Precision × Recall

Precision + Recall

Where precision denotes the fraction of relevant instances among the retrieved
ones, and recall is the fraction of the total relevant instances that were retrieved.

The AUC measures the ability of the model to differentiate between positive
and negative classes. A value of 0.5 implies a performance no better than random
guessing. As a benchmark, a study by [18] achieved a Macro F1 score of 0.43,
emphasizing the relative success of models that exceed this value.

For the personality prediction aspect, we relied on the Mean Absolute Error
(MAE). This metric captures the average magnitude of errors between the pre-
dicted and actual values, irrespective of their direction. The MAE is described
by:

MAE =
1

n

n∑
i=1

|yi − ŷi|

Here, yi represents the actual value, ŷi stands for the predicted value, and n is the
total number of observations.

Details of Hyperparameter Tuning

For the neural network models, we tuned parameters related to the number of
hidden layers and their units, the choice of optimizer, the learning rate, dropout
rate, and the type of regularization. The parameters tested are found in table 4.1.

Hyperparameter Range Tested
Number of Hidden Layers 2-6
Units per Layer 64-4096 (halved after every layer)
Dropout Rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
Learning Rate 0.005, 0.01, 0.05, 0.1
Optimizer Adam, RMSprop
Loss MSE, Huber

Table 4.1: Range of Parameters Tested for Neural Networks using Keras Tuner

In the logistic regression models, our tuning process encompassed the regu-
larization strength, different penalty types, various solvers, and the ratio for the

38

Parameter Values
C 0.001, 0.01, 0.1, 1, 10, 100, 1000
penalty l1, l2, elasticnet
solver (l1 penalty) liblinear, saga
solver (l2 penalty) newton-cg, lbfgs, liblinear, sag, saga
solver (elasticnet penalty) saga
l1 ratio (for elasticnet) 0.1, 0.2, ..., 0.9

Table 4.2: Parameter Grids for logistic regression used in RandomSearch

elasticnet penalty. All parameters tested for the logistic regression model can be
found in table 4.2.

In the case of XGBoost, we adjusted parameters such as the number of boost-
ing rounds, learning rate, maximum tree depth, subsample ratio, the fraction of
columns used by each tree, and the minimum loss reduction required to make a
split. The full range of parameters tested can be found in table 4.3.

Parameter Values
n estimators 10 to 1000 (step 10)
learning rate 0.001, 0.01, 0.1, 0.2, 0.3
max depth 2 to 40 (step 1)
subsample 0.5 to 1.0 (step 0.1)
colsample bytree 0.5 to 1.0 (step 0.1)
gamma 0, 0.1, 0.2, 0.3, 0.4, 0.5

Table 4.3: Consolidated Parameter Ranges for XGBoost used in random search
(for both Personality and Success predictions)

Lastly, for the random forest models, we modified the number of trees in the
forest, the maximum number of features considered for splitting, the maximum
depth of the tree, the minimum number of samples required to split, and the
minimum number of samples required at each leaf node. All parameters tested for
the two sets of random forest models can be found in table 4.4.

The final parameters that resulted in the best performance for the personality
prediction models can be found in tables 4.5 - 4.7, and the for the success prediction
models in tables 4.8 - 4.10.

4.5 Performance Evaluation

For a comprehensive evaluation of our models, we used a set of metrics based
on different objectives.

39

Parameter Values
n estimators 10 to 1000 (step 10)
max features sqrt, -
max depth 2 to 40 (step 1), None
min samples split 2 to 80 (step 2)
min samples leaf 1 to 40 (step 1)

Table 4.4: Parameter Grids for random forest used in random search (for both
Personality and Success predictions)

In the case of personality prediction models, we utilized the Mean Average
Error (MAE) to evaluate the performance of the models while monitoring the
performance of the Naive Models. In this scenario, the MAE provided a clear
understanding of model performance since the personality scores ranged between
0-100 for each trait. This meant that an MAE of 10 indicated that, on average,
we were 10 points away from the actual personality score.

Monte Carlo Sampling

For the assessment of our success prediction models, we employed Monte Carlo
sampling to counteract potential biases that originated from model initialization
and the inherent randomness in parameter selection. By drawing 1,000 seeds from
a uniform probability distribution, we sought to ensure that our model evaluations
were robust and that our conclusions were not influenced by any specific seed. This
technique enabled us to create a distribution of potential outcomes, thereby giving
us greater confidence in the stability and generalizability of our model outcomes.

Feature Importance

Regarding the startup success prediction models, our main approach to eval-
uate the impact of the predicted personalities was by examining the importance
of the set of features over the 1,000 Monte Carlo samples. We defined feature
importance in three distinct ways, depending on the specific model utilized. Since
our input data was standardized, we used the absolute value of the coefficients
from the logistic regression as an indicator of feature importance. For the random
forest models, the feature importance represented the average reduction in the
Gini impurity introduced by each feature across all trees in the forest. For the
XGBoost models, the feature importance was computed as the (averaged) number
of times a feature was used to split the data across all trees.

40

Open- Conscien- Extro- Agree- Neuro-
ness tiousness version ableness ticism

TF-IDF
Num Layers 4 5 2 6 4
Units 2112 3648 576 3392 1600
Dropout 0.1 0.3 0.4 0.4 0.2
Learning Rate 0.005 0.05 0.005 0.01 0.05
Optimizer Adam Adam RMSprop Adam Adam
Loss MSE MSE MSE MSE MSE
BERT
Num Layers 2 5 2 2 2
Units 256 1024 256 1024 1280
Dropout 0.4 0.3 0.2 0.3 0.3
Learning Rate 0.01 0.1 0.005 0.1 0.1
Optimizer RMSprop Adam Adam Adam Adam
Loss MSE MSE MSE MSE MSE

Table 4.5: Best Parameters for Feed-Forward neural network Personality Predic-
tion using TF-IDF and BERT

4.6 Software Implementation

The entirety of our project’s implementation was grounded in the Python pro-
gramming language, taking full advantage of its extensive library ecosystem. We
heavily relied on several Python libraries for specific tasks.

To extract English tweets, we utilized the nltk library. Feature extraction
from the text data, specifically using TF-IDF (Term Frequency-Inverse Document
Frequency) vectorization, was achieved with the Scikit-learn library. For deeper
language representations, the BERT model from the Huggingface Transformers

library was employed.
Dimensionality reduction, especially using Truncated Singular Value Decom-

position (SVD), was done with Scikit-learn. This library was also indispensable
for data partitioning and to address class imbalances using the Synthetic Minority
Over-sampling Technique (SMOTE).

For modeling, we utilized a variety of algorithms. Logistic regression (LR) and
random forest (RF) were implemented via Scikit-learn, while XGBoost was
handled through the xgboost library. neural network architectures were crafted
and trained using TensorFlow and Keras.

Finally, for hyperparameter optimization, random searches for traditional ma-
chine learning models were facilitated by Scikit-learn. For optimizing the neural

41

Open- Conscien- Extro- Agree- Neuro-
ness tiousness version ableness ticism

BERT
n estimators 117 74 117 117 94
max leaves 1 - 1 1 -
max depth 3 2 3 3 2
learning rate 0.0742 0.07 0.0742 0.0742 0.1357
TF-IDF
n estimators 50 65 25 50 35
max leaves 4 6 4 4 3
max depth 13 4 17 13 13
learning rate 0.1136 0.0818 0.1909 0.1136 0.2318

Table 4.6: Best Parameters for XGBoost Personality Prediction using BERT and
TF-IDF

networks, we leveraged the Keras Tuner library.

42

Open- Conscien- Extro- Agree- Neuro-
ness tiousness version ableness ticism

BERT
n estimators 190 60 10 25 300
min samples split 8 14 8 10 4
min samples leaf 16 1 20 20 18
max features sqrt - sqrt sqrt -
max depth None 10 2 None 10
TF-IDF
n estimators 22 110 70 210 150
min samples split 7 8 2 26 24
min samples leaf 25 25 7 7 5
max features sqrt - sqrt sqrt -
max depth 9 8 9 2 8

Table 4.7: Best Parameters for random forest Personality Prediction using BERT
and TF-IDF

Series B Series C
solver saga saga
penalty elasticnet elasticnet
l1 ratio 0.1 0.1
C 0.01 0.01

Table 4.8: Best Hyperparameters for LR Success Prediction Model

Series B Series C
n estimators 225 880
min samples split 3 24
min samples leaf 4 9
max features None 150
max depth 10 22

Table 4.9: Best Hyperparameters for RF Success Prediction Model

43

Series B Series C
subsample 0.8 0.5
n estimators 160 360
max depth 8 5
learning rate 0.001 0.1
gamma 0.5 0.2
colsample bytree 0.5 0.7

Table 4.10: Best Hyperparameters for XGBoost Success Prediction Model

44

5 Results

The results are organized in two distinct parts: first, we examine the personality
predictions and highlight which models perform best. We then turn our attention
to the success prediction models, which use the top-performing personality models
as input for predicting personality features. For each model, we report the signif-
icance of the personality predictions across different iterations of a Monte-Carlo
sampling run. We also compare the predicted personality features to other key
features to gauge their influence on success predictions. To demonstrate the mod-
els’ efficacy, we present the macro F1 and AUC scores for both the ’Series B’ and
’Series C’ targets.

5.1 Personality Predictions

Upon examining Table 5.1, it was evident that, on average, all models out-
performed the Naive model (with an MAE of 10.65) except for the TF-IDF+NN,
which exhibited a slightly higher MAE of 10.69. The random forest model with
BERT-embeddings (BERT+RF) demonstrated the best performance, registering
an average MAE of 10.44. This model was closely followed by the XGBoost model
using the same embeddings, which recorded an MAE of 10.45.

When assessing individual personality trait predictions, it was found that at
least one model surpassed the Naive predictor for every trait:

• For the Openness trait, the neural network with BERT embeddings (BERT+NN)
performed the best with an MAE of 7.11.

• For the Conscientiousness trait, the BERT+XGB model performed the best
with an MAE of 11.11.

• For the Extroversion trait, the TF-IDF+RF model performed the best with
an MAE of 10.41.

• For the Agreeableness trait, the BERT+RF model performed the best with
an MAE of 10.53.

45

Open- Conscien- Extro- Agree- Neuro- Average
ness tiousness version ableness ticism

Naive 7.87 11.81 10.49 10.54 12.53 10.65
BERT + NN 7.11 11.47 10.85 10.94 12.40 10.55
BERT + RF 7.35 11.48 10.95 10.53 11.88 10.44
BERT + XGB 7.88 11.11 10.49 10.54 12.21 10.45
TF-IDF + NN 7.69 11.24 11.21 10.82 12.51 10.69
TF-IDF + RF 7.87 11.49 10.41 10.63 12.07 10.49
TF-IDF + XGB 7.83 11.22 10.71 10.96 11.85 10.51
Average 7.66 11.40 10.73 10.71 12.21 10.54

Table 5.1: Comparison of Mean Absolute Error (MAE) across various model and
embedding combinations on the test data, segmented by personality traits. Trait
scores can range from 0 to 100. Bold values highlight the best performing model
for each trait.

• For the Neuroticism trait, the TF-IDF+XGB model performed the best with
an MAE of 11.85.

In a comparison between the Naive predictor and the average MAEs for each
trait, the average MAEs for Openness, Conscientiousness, and Neuroticism are
lower than that of the Naive model. However, for the traits of Extroversion and
Agreeableness, the average MAEs are slightly higher than the Naive predictor’s
MAE.

5.2 Success Predictions

The results for the Success Predictions are also organized into two sections: Fea-
ture Importance and Model Performance. The first aims to display the significance
of the predicted personality features, and the second showcases the performance
of the models where these features were incorporated.

Feature Importance

The histograms in Figures 5.1-5.2 illustrate the distribution of importance of
the five personality trait features for the random forest (RF) and eXtreme Gradient
Boosting (XGBoost) models, based on 1,000 Monte-Carlo (MC) samples for the
Series B target variable. Both figures indicate that all personality traits hold non-
zero significance in both the RF and XGBoost models, with Neuroticism emerging
as the most important feature in both cases. In contrast, the results for the logistic
regression model showed significance for only two out of the five traits: Openness

46

and Neuroticism, effectively diminishing the importance of Conscientiousness, Ex-
troversion, and Agreeableness. The histogram for the logistic regression model was
not included due to the minimal randomness associated with logistic regression,
and the figures did not offer substantial value.

The bar charts in Figures 5.3-5.5 display the average importance of the top 35
features for each respective model for the Series B target, representing roughly the
top 2.3% of all features. For the logistic regression (Figure 5.3), both Neuroticism
and Openness appear within this upper tier. For the RF and XGBoost models,
all personality traits are found within the top 2.3%. Notably, in the random
forest model, Neuroticism ranks as the fourth most important feature, whereas in
XGBoost, it holds the fifth spot.

Regarding the Series C target, the results were somewhat different. However,
for the RF and XGBoost models, all five traits remain significant, as shown in
Figures 5.6 and 5.7, with all feature importance being non-zero. The variations are
that, for the logistic regression, the Agreeableness trait had non-zero importance,
and in general, all models placed a higher emphasis on the Agreeableness trait.
This emphasis is evident in the bar charts showcasing the top 35 features for each
model for the Series C target in Figures 5.8-5.10. Furthermore, the Neuroticism
trait was not as pivotal for the Series C round as it had been for the Series B
round, with Openness (or Agreeableness) seeming more critical. Again, for both
the RF and XGBoost models, all five predicted traits are within the top 2.3% of
most important features.

Model Performance

Macro F1 (C.I.) AUC (C.I.)
Logistic regression 0.5852 (0.5935, 0.5867) 0.6440 (0.6412, 0.6467)
random forest 0.6192 (0.6172, 0.6213) 0.6485 (0.6463, 0.6507)
XGBoost 0.6868 (0.6846, 0.6890) 0.6947 (0.6922, 0.6973)

Table 5.2: Comparison of model performance for predicting Series B raises in terms
of Mean Macro F1 and AUC on the test set. Both metrics are provided with 95%
confidence intervals, derived from 1,000 Monte-Carlo sampling iterations using
varied seeds.

The performance metrics when predicting Series B raises are displayed in table
5.2. Derived from Monte Carlo sampling, the results show the Macro F1 and AUC
values on the test dataset. The XGBoost model stands out, achieving the top
scores for both Macro F1 (0.6868) and AUC (0.6947). The RF model follows,
securing the second-best scores for both metrics: Macro F1 (0.6192) and AUC

47

Macro F1 (C.I.) AUC (C.I.)
Logistic regression 0.5321 (0.5318, 0.5324) 0.6007 (0.6005, 0.6009)
random forest 0.5849 (0.5844, 0.5855) 0.6307 (0.6300, 0.6315)
XGBoost 0.6188 (0.6165, 0.6212) 0.6372 (0.6349, 0.6394)

Table 5.3: Comparison of model performance for predicting Series C raises in terms
of Mean Macro F1 and AUC on the test set. Both metrics are provided with 95%
confidence intervals, derived from 1,000 Monte-Carlo sampling iterations using
varied seeds.

(0.6485). The logistic regression model, although trailing in terms of Macro F1
(0.5852), has an AUC score (0.6440) that is competitive, being relatively close to
that of the RF model.

For predictions concerning Series C raises, as shown in Table 5.3, there’s a
general decline in model performance when compared to Series B predictions.
However, XGBoost remains at the forefront, leading in both Macro F1 (0.6188)
and AUC (0.6372) metrics. Logistic regression produces a Macro F1 of 0.5321
and an AUC of 0.6007. The RF model is closer to the XGBoost in performance,
achieving a Macro F1 of 0.5849 and an AUC of 0.6307. Notably, the AUC scores
between RF and XGBoost are quite similar, indicating comparable performances
in ranking predictions.

48

Figure 5.1: Feature importance histograms for random forest Model, derived from
1000 Monte Carlo samples. In the context of random forest, feature importance
reflects the average reduction in the Gini impurity brought by each feature across
all trees in the forest.

49

Figure 5.2: Feature importance histograms for XGBoost model, derived from 1000
Monte Carlo samples. In the context of XGBoost, feature importance indicates
the (averaged) number of times a feature is used to split the data across all trees.

50

Figure 5.3: Top 35 feature importances for logistic regression, averaged over 1,000
Monte-Carlo samples. Feature importance here represents the absolute value of
the model’s coefficients. Personality trait features are highlighted in red.

Figure 5.4: Top 35 feature importances for random forest, averaged over 1,000
Monte-Carlo samples. In the context of random forest, feature importance reflects
the average reduction in the Gini impurity brought by each feature across all trees
in the forest. Personality trait features are highlighted in red.

51

Figure 5.5: Top 35 feature importances for XGBoost, averaged over 1,000 Monte-
Carlo samples. In the context of XGBoost, feature importance indicates the (aver-
aged) number of times a feature is used to split the data across all trees. Personality
trait features are highlighted in red.

52

Figure 5.6: Series C: Feature importance histograms for random forest Model,
derived from 1000 Monte Carlo samples. In the context of random forest, feature
importance reflects the average reduction in the Gini impurity brought by each
feature across all trees in the forest.

53

Figure 5.7: Series C: Feature importance histograms for XGBoost Model, derived
from 1000 Monte Carlo samples. In the context of XGBoost, feature importance
indicates the (averaged) number of times a feature is used to split the data across
all trees.

54

Figure 5.8: Series C: Top 35 feature importances for logistic regression, averaged
over 1,000 Monte-Carlo samples. Feature importance here represents the absolute
value of the model’s coefficients. Personality trait features are highlighted in red.

Figure 5.9: Series C: Top 35 feature importances for random forest, averaged over
1,000 Monte-Carlo samples. In the context of random forest, feature importance
reflects the average reduction in the Gini impurity brought by each feature across
all trees in the forest. Personality trait features are highlighted in red.

55

Figure 5.10: Series C: Top 35 feature importances for XGBoost, averaged over
1,000 Monte-Carlo samples. In the context of XGBoost, feature importance indi-
cates the (averaged) number of times a feature is used to split the data across all
trees. Personality trait features are highlighted in red.

56

6 Discussion

In this section, we dissect the results from our modeling efforts aiming to un-
derstand the potential of integrating founder personalities into early-stage startup
predictions. Through a closer examination of feature importance, model perfor-
mance, and the predictability of different personality traits, we aim to provide a
comprehensive view of our findings and their implications.

6.1 Significance of Founder Personalities

Understanding the significance of founder personalities necessitates a multi-
faceted approach, considering the specific trait, model used, and target variable
in question. A key insight for our results is that the advanced models, namely
random forest and XGBoost, heavily rely on all Big 5 personality traits in deter-
mining a company’s success. This is evident from the feature importance observed
in figures 5.1-5.2 and 5.6-5.7, where all traits were among the top 2.2%.

In contrast, the simpler logistic regression models recognize only a subset of
these traits as significant, namely, Openness and Neuroticism for both targets, and
Agreeableness for the Series C target. This discrepancy might indicate that there is
a nonlinear relationship between some traits and startup success. However, as the
feature importance for logistic regression is the absolute value of the coefficients,
we cannot make any claims about whether the success increases with the scores
for these traits.

Of note is the pronounced influence of the Neuroticism trait, which consistently
ranks as one of the most influential for all models and targets. Based on our
understanding of Neuroticism, this finding is quite intriguing. However, we cannot
determine whether a lower or higher level of this trait is advantageous. Similarly,
Openness consistently ranks among the top traits across all models and targets.
Building on this, a distinct differentiation arises when comparing Series B and
Series C fundings. Specifically, for Series C, the Agreeableness trait becomes more
prominent, even emerging as the top trait for the XGBoost model.

Similarly, to the pronounced influence of Neuroticism and Openness, Extrover-
sion emerges as a contrasting point of interest. Specifically, it consistently ranks
either last or second-to-last in feature importance across all models. Despite this,

57

in the context of both the random forest and XGBoost models, Extroversion still
finds a place among the top 35 most significant features for Series B and Series
C targets. Building on this observation, it is worth noting that Extroversion does
not play as significant a role as one might anticipate, particularly given that social
skills are often deemed essential for startup success.

6.2 Performance of Personality Prediction Models

Delving into the performance of our personality models, discerning the effec-
tiveness of TF-IDF and BERT embeddings is not straightforward. A direct obser-
vation indicates that three traits show superior performance when modeled using
BERT embeddings. This leads to the preliminary conclusion that BERT, known
for its advanced contextual understanding, is generally better suited for predicting
personality traits.

However, a closer look reveals that Neuroticism, which stands out as the most
crucial trait in our earlier discussions, was more accurately predicted using TF-
IDF. This distinction suggests a nuanced understanding is necessary; some traits
might be better predicted by the word-focused approach of TF-IDF, rather than
BERT’s ability to understand context.

As detailed in table 5.1, no singular model architecture consistently outper-
forms the rest across all traits. Interestingly, when averaging performance metrics
over all traits, the random forest model exhibited the lowest MAE for both BERT
and TF-IDF embeddings. The absence of a universally superior model and embed-
ding combination can be attributed to the intricate nature of embedded text data
and the diverse characteristics of the personality traits themselves. Such variations
emphasize the importance of a tailored approach, considering the specificities of
individual personality traits and their corresponding embeddings.

A vital aspect of this modeling was including a Naive Model to assess the per-
formance and reliability of the more advanced models. Surprisingly, predicting the
traits more accurately than the Naive proved harder than initially thought. Even-
tually, we found combinations of embeddings and models that outperformed the
Naive Model for all traits, but only after numerous fine-tuning and hyperparam-
eter optimization iterations. The difficulty in efficiently constructing models for
predicting personalities might indicate potential biases in the data collected, such
as specific demographics being overrepresented in tweets, individuals attempting
to emulate others online, or tweets being auto generated through other apps. With
the emergence of foundation models for text generation, it will be interesting to
see how this approach to predicting personalities fares.

58

6.3 Startup Success Prediction

The best-performing model for predicting the outcomes of both Series B and
Series C success was XGBoost. For Series B, it achieved a Macro F1 Score of 0.6868
and an AUC score of 0.6947. For Series C, it achieved a Macro F1 Score of 0.6188
and an AUC score of 0.6372. While these models are not infallible, they effectively
learn from the data and distinguish successful ventures from unsuccessful ones.

The gradient boosting mechanism of XGBoost, which corrects errors in parallel,
might have an edge over bagging due to its built-in regularization that mitigates
overfitting. Moreover, XGBoost’s ability to construct deeper trees may enable
it to capture intricate data relationships, thereby enhancing its performance. A
prevalent assumption for these models is that n >> p, but this was not our sce-
nario. Notably, both XGBoost and the random forest have inherent dimensionality
reduction properties, making them adept at sidelining noise without resorting to
other methods for feature reduction.

Even though we did not exclude personality traits in our experiments, most
models, regardless of the target, highlighted their importance. This indicates the
positive influence of these traits on model performance. Given the robustness of
models like the random forest and XGBoost against overfitting and their general-
ization capabilities, it is plausible they could perform well even in the absence of
these personality traits.

6.4 Challenges and Limitations

A primary constraint of our study was the relatively small dataset we used
to build our success models. This limitation arose mainly because we focused
on founders with active Twitter accounts who tweeted before securing their seed
rounds. While our results are promising, and the methods chosen aimed to reduce
biases and prevent overfitting, further research on a larger dataset is needed to
verify these findings. Additionally, the brief timeframe in which we considered
company founding dates could introduce bias to certain features. For instance, VC
investments often target future trends, and per definition trends change over time.
Beyond personality features, we relied exclusively on Crunchbase data for feature
creation. To enhance accuracy, future research could incorporate diverse data
sources, including details on founder experiences, academic credentials, financial
records, mentions of startup features in the news, and more.

59

7 Conclusion

The primary objective of this thesis was to ascertain the significance and po-
tential value of integrating predicted founder personalities into ML models with
the goal of enhancing the accuracy of early-stage startup success predictions. Our
research indicates that the integration of the predicted Big 5 personality traits into
ML models has a notable impact on the accuracy of startup success predictions.
Notably, models such as the random forest and XGBoost demonstrated a signif-
icant reliance on these traits, underlining the importance of considering founder
personalities in predictive modeling.

7.1 Implications

Our research findings offer valuable insights into the startup ecosystem.
Investors and VC firms can benefit from a broader evaluation perspective.

Beyond the hard facts like job titles and experience, considering the personalities
of founding teams can be pivotal. This thesis lays out a clear method for this:
from how to gather the right data to utilizing these personality insights for better
startup success predictions.

Founders, on the other hand, have a tool to self-reflect. By understanding where
their team’s personality strengths and potential gaps lie, they can strategically
recruit individuals with complementary traits, paving the way for a more cohesive
and balanced startup team.

However, it is essential to recognize the potential limitations. The training
data for personality predictions could be biased, and hence may not capture the
founders’ true personality nuances accurately. Additionally, while this research
has focused on the personalities of the founding team, considering the personali-
ties of other key company members could be essential for a more comprehensive
understanding.

7.2 Recommendations for Future Research

Our research, while offering valuable insights, has inherent limitations. A cru-
cial step forward would be to expand the dataset, encompassing a wider timeframe

60

and ensuring a varied geographic representation of startups and founders. Along-
side this expansion, introducing data from sources beyond Crunchbase and Twitter
could potentially enhance all models under consideration. This broader scope can
further validate or refine our initial findings.

In expanding the dataset, especially to non-English regions, the choice of em-
beddings becomes paramount. Given the multilingual nature of the data, mBERT
would likely be a more suitable choice for predicting personality.

Additionally, the current research could be aided by testing a more diverse
set of embeddings and models, such as Glove and RoberTa embeddings coupled
with more non-tree-based models such as support vector machines. For the case of
startup success predictions, a neural network would also be interesting to evaluate.

Furthermore, while this study focused on the Big 5 personality framework,
other personality assessment systems, like the Myers-Briggs Type Indicator or
the DISC assessment, could be integrated to ascertain which provides the most
predictive power. A more granular approach to evaluating team personalities could
also be adopted – instead of combining scores to produce a singular team metric,
future research could explore the influence of individual roles, such as the CEO,
CFO, etc., on startup success.

7.3 Final Thoughts

The intersection of machine learning with entrepreneurship has presented an
intriguing frontier for exploration. By investigating the influence of founder per-
sonalities on startup success, we have ventured into a domain where human char-
acteristics intersect with algorithmic prediction. Our findings not only showcase
the potential of combining human-centric data with machine learning models but
also stress the need for balanced consideration when using such tools for predictive
purposes. The emphasis of this research on the human element, as represented by
personality traits, serves as a reminder that while technology and data play crucial
roles, startups’ success is equally about the people behind them. As we continue to
harness the power of machine learning in entrepreneurship, it is vital to maintain
a nuanced approach, recognizing the technology’s potential and its boundaries.
The evolution of the startup landscape will undoubtedly be influenced by research
endeavors like this, emphasizing the complementary roles of data-driven insights
and the innate human elements that underlie any business venture.

61

Bibliography

[1] M. Regona, T. Yigitcanlar, B. Xia, and R. Y. M. Li, “Opportunities and
adoption challenges of ai in the construction industry: a prisma review,”
Journal of Open Innovation: Technology, Market, and Complexity, vol. 8,
no. 1, p. 45, 2022.

[2] R. Baldridge, “What Is A Startup? The Ultimate Guide — forbes.com.”
https://www.forbes.com/advisor/business/what-is-a-startup/. [Ac-
cessed 06-Jul-2023].

[3] “Venture Capital: What Is VC and How Does It Work? — investope-
dia.com.” https://www.investopedia.com/terms/v/venturecapital.

asp#:~:text=Venture%20capital%20provides%20funding%20to,gain%

20equity%20in%20promising%20companies. [Accessed 06-Jul-2023].

[4] V. H. Fried and R. D. Hisrich, “Toward a model of venture capital investment
decision making,” Financial management, pp. 28–37, 1994.

[5] P. A. Gompers, W. Gornall, S. N. Kaplan, and I. A. Strebulaev, “How do ven-
ture capitalists make decisions?,” Journal of Financial Economics, vol. 135,
no. 1, pp. 169–190, 2020.

[6] J. Santisteban and D. Mauricio, “Systematic literature review of critical suc-
cess factors of information technology startups,” Academy of Entrepreneurship
Journal, vol. 23, no. 2, pp. 1–23, 2017.

[7] P. T. Costa and R. R. McCrae, “A five-factor theory of personality,” The
five-factor model of personality: Theoretical perspectives, vol. 2, pp. 51–87,
1999.

[8] E. C. Tupes and R. E. Christal, “Recurrent personality factors based on trait
ratings,” Journal of personality, vol. 60, no. 2, pp. 225–251, 1992.

[9] P. T. Costa Jr and R. R. McCrae, “From catalog to classification: Murray’s
needs and the five-factor model.,” Journal of personality and social psychology,
vol. 55, no. 2, p. 258, 1988.

[10] G. Saucier, “Effects of variable selection on the factor structure of person
descriptors.,” Journal of personality and social psychology, vol. 73, no. 6,
p. 1296, 1997.

[11] R. Helson, V. S. Kwan, O. P. John, and C. Jones, “The growing evidence
for personality change in adulthood: Findings from research with personality
inventories,” Journal of research in personality, vol. 36, no. 4, pp. 287–306,
2002.

[12] A. Krishna, A. Agrawal, and A. Choudhary, “Predicting the outcome of star-
tups: less failure, more success,” in 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pp. 798–805, IEEE, 2016.

[13] S. Tomy and E. Pardede, “From uncertainties to successful start ups: A
data analytic approach to predict success in technological entrepreneurship,”
Sustainability, vol. 10, no. 3, p. 602, 2018.

[14] F. R. d. S. R. Bento, Predicting start-up success with machine learning. PhD
thesis, 2018.

[15] B. Sharchilev, M. Roizner, A. Rumyantsev, D. Ozornin, P. Serdyukov, and
M. de Rijke, “Web-based startup success prediction,” in Proceedings of the
27th ACM international conference on information and knowledge manage-
ment, pp. 2283–2291, 2018.

[16] D. Dellermann, N. Lipusch, P. Ebel, K. M. Popp, and J. M. Leimeister,
“Finding the unicorn: Predicting early stage startup success through a hybrid
intelligence method,” arXiv preprint arXiv:2105.03360, 2021.

[17] C. Ünal, “Searching for a unicorn: A machine learning approach towards
startup success prediction,” Master’s thesis, Humboldt-Universität zu Berlin,
2019.

[18] K. Żbikowski and P. Antosiuk, “A machine learning, bias-free approach for
predicting business success using crunchbase data,” Information Processing
& Management, vol. 58, no. 4, p. 102555, 2021.

[19] J. Golbeck, C. Robles, M. Edmondson, and K. Turner, “Predicting person-
ality from twitter,” in 2011 IEEE third international conference on privacy,
security, risk and trust and 2011 IEEE third international conference on social
computing, pp. 149–156, IEEE, 2011.

[20] H. Christian, D. Suhartono, A. Chowanda, and K. Z. Zamli, “Text based per-
sonality prediction from multiple social media data sources using pre-trained

language model and model averaging,” Journal of Big Data, vol. 8, no. 68,
2021.

[21] P. H. Winston, Artificial Intelligence. Addison-Wesley Longman Publishing
Co., Inc., 1993.

[22] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[24] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition
letters, vol. 31, no. 8, pp. 651–666, 2010.

[25] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.

[26] C. D. Manning and H. Schütze, Natural Language Processing. Cambridge
University Press, 2019.

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2013.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information process-
ing systems, vol. 25, 2012.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[32] G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Information processing & management, vol. 24, no. 5, pp. 513–523,
1988.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[34] X. Su, X. Yan, and C.-L. Tsai, “Linear regression,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 4, no. 3, pp. 275–294, 2012.

[35] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regres-
sion, vol. 398. John Wiley & Sons, 2013.

[36] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media,
2009.

[37] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–
140, 1996.

[38] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[39] J. H. Friedman, “Greedy function approximation: a gradient boosting ma-
chine,” Annals of statistics, pp. 1189–1232, 2001.

[40] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
pp. 785–794, 2016.

[41] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value decomposition
and principal component analysis,” in A practical approach to microarray data
analysis, pp. 91–109, Springer, 2003.

[42] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions
on knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[43] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

[44] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling
approach for imbalanced learning,” in 2008 IEEE international joint confer-
ence on neural networks (IEEE world congress on computational intelligence),
pp. 1322–1328, Ieee, 2008.

