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Abstract 

The European Spallation Source (ESS) infrastructure is being 

constructed in Lund, and will be one of the most powerful research facilities 

of its type in the world. The ESS linear accelerator (linac) utilizes different 

accelerating sections where a wide variety of techniques should be 

employed to accelerate a beam of protons to 2 GeV kinetic energy through 

Radio Frequency (RF) cavities before being collided with a tungsten target 

for the final production of neutrons, through the process of spallation.  

 

This master’s thesis is a continuation on another master’s thesis 

project, (Lundquist, 2022), in which the focus was more on particle 

accelerator physics and to introduce some ML models using single-shot 

measurement scenario, which all failed to meet the requirements. This 

thesis, however, is focused on developing more ANN- models for both 

single-shot and multi-shot measurement scenarios, which succeed in 

meeting the requirements. Another focus of the project is to make the 

models small and feasible to be deployed in the ESS control system. The 

data is the simulated response of the Beam Position Monitor (BPM) 

sensors for the first Drift Tube Linas (DTL) tank, DTL1, at EES. DTL 

tanks are of great importance due to their influence on the overall 

performance. This will give the ESS physicists a powerful tool to direct the 

proton beam within the whole set of the DTL tanks properly, leading to a 

better control and thus, fewer beam losses once they start with the power 

ramp-up of the linac. The deployment of ML-based models in the ESS 

control system will be a step towards more automated and intelligent 

particle accelerators in this infrastructure and in similar future facilities.  
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1 Introduction 

The European Spallation Source (ESS) has a linear accelerator (linac) 

designed and is currently fabricated to accelerate a beam of protons with 

62.5 mA, 2.86 ms long pulses, working at 14 Hz [1]. The final section of 

its normal-conducting cavity setting consists of a 39 m long drift tube linac 

(DTL) divided into five tanks, designed to accelerate the proton beam from 

3.6 MeV to 90 MeV. The high beam current and power impose challenges 

to the design and tuning of the DTL machine. In order to keep the beam 

quality throughout the accelerator and to keep beam losses at minimum 

levels, the Radio Frequency (RF) amplitude and phase within the 

accelerating components have to be set within 1% and 1° of their design 

values in DTLs, respectively. 

 

Machine learning (ML) has proven to be successful in many 

applications, accelerators are not an exception, but tuning of the RF fields 

in accelerators using such techniques and deploying resulting models in 

their control systems has yet to be tried. This project aims to apply ML 

techniques, focusing on ANN models, in the field of particle accelerator 

physics, resulting in new possibilities for much faster machine tuning. The 

first tank in the DTL section of the ESS linac, DTL 1, is the case study in 

this project. Since this part of the linac is still under pre-commissioning 

and commissioning, the real data of tuning set-points of the machine have 

not been provided yet. Thus, some data is simulated using OpenXAL [2], 

and some noise is added to the simulated data to make the models robust 

against any difference between the distribution of the simulated data and 

the future real data. Such data was then used to train ANN models to 

capture behavior of the data.  

 

The physical properties of interest that we could observe in the 

machine are Beam Position Monitor (BPM) phase measurements in the 

tank, as the input data; while the ones we would like to predict by some 

ML models are the RF phase and amplitude, and the input energy of the 

proton beam into the cavity. There exist too many data samples whose 
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labels are almost the same while they are quite different. Hence, the 

simulated data here, we are not facing a function mapping between the 

inputs and outputs. That will be discussed in detail in 2.6, showing that 

single-shot measurement scenario does not work well for the data. Thus, 

some techniques like multi-shot measurement scenarios should be tried to 

see if any improvement with the prediction performance of the models 

could be made. That will be discussed more in 4.2.  

 

The thesis will begin with a general introduction to the particle 

accelerators like the one at the ESS, and RF tuning methods in such 

infrastructures in chapter 2. Next, the methodology of the project 

consisting of different data handling steps are presented in chapter 3. Then, 

different measurement scenarios and the obtained results are presented in 

chapter 4. In chapter 5, the results are analyzed and discussed in details 

and some potential future work is suggested. Finally, in chapter 6, some 

conclusions are derived.  
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2 Particle Accelerators1 

To get familiar with the content and the scope of the project, some 

information on particle accelerators and ML applications in such systems 

are presented in this chapter. First, an overall description of linear particle 

accelerators and the ESS linac are provided in 2.1 and 2.2, respectively. 

Next, some explanations on physical processes in such systems and their 

stability characteristics are discussed in 2.3. RF tuning is explained in 2.4 

and a common traditional technique to do it is presented in 2.5. Then, some 

details on RF phase scan curves are provided in 2.6, and the single-shot 

measurement concept is explained in 2.7. Lastly, the ML applications in 

particle accelerators are reviewed in 2.8, followed by the problem statement 

and modeling applications in the DTL process, which are presented in 2.9 

and 2.10, respectively. 

2.1 Linear particle accelerators  

In very initial accelerators, some constant electric fields used to be 

generated to impose gradient forces to some charged particles, like 

electrons or protons, to accelerate them, but in order to reach high output 

energies, extremely high voltages are required, causing electric 

breakdowns at a few tens of megavolts. This has led to the application of 

RF fields, time-varying electric fields, in particle accelerators in such a way 

that it maintains a phase relative to the beam to ensure continuous 

acceleration as the field oscillates. These fields are housed within cavities, 

with some form of entrance and exit so the beam can move straight through 

while gaining energy from the fields in the gaps between the cavities. The 

particles velocity, described relative to the speed of light, as β =  
v

c
 , 

increases throughout the linac.  

                                                      
1 In this chapter, the particle accelerator physics should be briefly introduced 

and discussed to give a clear picture of the project scope. Since the main focus in 
this project is on developing ML models, while in the previous master’s thesis, [4], 
the main focus was on particle accelerator physics, some particle-physics concepts 
are borrowed from the previous master’s thesis in this chapter. 
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The most basic form of the "RF structure" used in linacs is pillbox 

cavities, a cylindrical space with openings for entrance and exit. A 

schematic model of such cavity and the RF fields flowing within it can be 

seen in Figure 1.  

 

 

Figure 1. Schematic model of pillbox cavities, electric field (E) and magnetic field 
(B) components of an RF field. In proton accelerators like the one at EES, the 

beam moves along the z-direction [3] 

 

Any type of charged particle could be accelerated in such machines, 

two most common ones are protons and electrons. Modern proton linacs, 

like the one at the ESS, are in many ways comparable to their electron 

counterparts. The RF fields are generated by the Low-Level RF (LLRF) 

system and amplified by the klystrons. The modulator is the power supply 

for the klystrons. Different design considerations should be taken into 

account to ensure that particles get exposed to only the accelerating part 

of such oscillating fields while travelling through the gaps, and not being 

decelerated. 

 

The components which help to understand and diagnose the beam are 

called diagnostics. Perhaps the most important and commonly used 

diagnostic elements in particle accelerators are the Beam Position Monitor 

(BPM) sensors, consisting of four electrodes and assembled on the walls of 

the vacuum chamber housing the beam. As the beam passes by a BPM, both 

the amplitude and phase of the fields generated in the BPM electrodes are 
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read out. Although such a BPM phase alone does not hold much 

information, by comparing two BPM phases, we can get a fast 

measurement which is proportional to the time-of-flight, or from the 

acceleration perspective in RF cavities, the energy gains between two 

neighboring drift tubes. It is important to mention that this measurement 

is relative and extracting the absolute values of the energy is not an easy 

task. For this project, however, using only the fractional phase changes is 

proven to be enough. Since BPMs are indirect sensors to energy, they are 

useful diagnostics to use during RF tuning. A simple schematic of the 

longitudinal and transverse cross-sections of a BPM can be seen in Figure 

2. 

 

 

Figure 2. Schematic of the cross-section of a BPM, with longitudinal and 
transverse cross-sections, on the left and right respectively [4]. 

2.2 The ESS Linac 

In Figure 3, a simplified model of the linac at ESS is presented. There are 

two main goals for the linac design: final average beam power to reach 

5MW, and final beam energy being 357 kJ. Preserving the goals, the linac 

has been designed with 9 separate sections. 5 of the sections are 

accelerating ones contributing to final energy of the protons, 2 GeV on the 

tungsten target, while the rest make bunches of the beam while traveling 

through the linac.  
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Figure 3. Simplified schematic of the ESS linac layout [5]. 

 

The protons are generated by a microwave-discharge ion source, 

designed to output a continuous beam with an energy of 75 keV. The 

particles then travel to the Low Energy Beam Transport (LEBT) section, 

which includes multiple diagnostics, magnetic focusing elements and a 

chopper that shapes the beam to the nominal 2.86 ms long pulse required 

in the later sections. The next element is the Radio-Frequency Quadrupole 

(RFQ). This is a RF structure, operating at a fundamental frequency of 

352.21 MHz, which is designed to bunch, accelerate and focus the beam all 

at once. After this acceleration, the beam has reached the 3.6 MeV and 

enters the Medium Energy Beam Transport (MEBT) section. This serves 

a similar functionality to the LEBT, but also includes three buncher 

cavities to improve the beam input in the longitudinal plane to the 

following section. The Drift Tube Linac (DTL) then covers the next 40 m 

of the linac, shown in  

Figure 4, raising the energy of the beam to 90 MeV, using the same 

frequency as the RFQ section. The first of these superconducting 

structures after DTL are the spoke cavities, 13 separate cryo-modules 

containing two spoke cavities each, which raise the proton energy to 216 

MeV. After the spokes, the beam will travel through the medium and high 

β sections, consisting of 9 and 21 cryo-modules respectively, each housing 

4 cavities. These two last accelerating sections, operating at twice the RF 

frequency of previous ones, raise the beam energy to the final design value 

of 2 GeV. After there are 2 separate transport lines, which guide the beam 

to either a final beam dump if it is not to be used for neutron production, 

or through the DogLeg and Accelerator-to-Target (A2T) sections, to 

finally impact on the tungsten target to produce neutrons for the 

experimental stations [5]. 
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Figure 4. The ESS linac tunnel (top) [6], schematic of DTL tanks (middle) in 
which radio-frequency power source setting are RF phase and RF amplitude [7], 

drift tubes in a DTL tank (below left) [8], and the ESS DTL1 tank assembled 
(below left) [9], with the BPM sensors on the top of the tank inside the green 

covers in the photo 
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2.3 Longitudinal Motion in Accelerators 

As batches of particles travel through the cavity, they maintain a certain 

spread around a central particle, called the synchronous particle, being 

synchronous relative to the accelerating time-varying fields. It always 

arrives to the cavity when the field inside is the design amplitude while 

moving from gap to gap in the accelerating field, thus it experiences the 

ideal acceleration. This is the particle which a linac structure is based on 

designed. Particles will not have to be synchronous to remain stable and at 

the same time, to be accelerated. This is due to what called longitudinal 

phase stability. 

 

In proton linacs, by keeping the time relation between incoming 

particles of a travelling batch and the RF fields in a way that the particles 

arrive upon the rising or falling parts of the fields, a focusing effect in time 

can be achieved. This is demonstrated for proton particles in Figure 5. This 

is somehow intuitive by considering a batch of particles moving through a 

series of accelerating gaps. The synchronous particle could arrive on either 

the rising part or the falling part of the RF field as it moves through the 

gaps, while the particles having less energies will arrive later since they 

have lower velocities as well. This leads to such particles facing the low-

amplitude part of the time-altering field if the synchronous particle arrives 

in the falling part of the field or vice versa if it does in the rising part; hence, 

they will gain higher energies or lower energies than what they had in the 

previous gap depending on the part of the RF filed where the synchronous 

particle arrives upon. Gaining more energy by such late particles is desired 

to avoid them from getting lost; hence, we want the synchronous particle 

to arrive on rising part to make the movement of the late particles stable. 

In addition, in the subsequent gap, the previously-late particles will arrive 

earlier, due to their higher energies compared to the synchronous particle, 

and will gain lower energies from the RF field due to being already high 

energy. Thus, such particles oscillate around the synchronous particle 

provided that it arrives on the rising part of the field. A similar logic can 

be used for particles having more energy than the synchronous particle. 

They need to get low energies from the RF field not to get separated from 

the synchronous particle and the batch; hence, for such particles in the 
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batch, it is more desirable to have the synchronous particle arrived in the 

rising part. This phenomenon introduces two fixed points on the RF waves: 

the first is stable and the second is unstable. As can be seen in the middle 

plot in Figure 5, the particles of a batch oscillate around the synchronous 

particle while the batch travel along gaps if the synchronous particle 

arrives on the rising part of the RF field; otherwise, the batch falls apart 

and the particles get out of the batch.  

 

 

Figure 5. A sinusoidal electric field with particles arriving at different times, and 
the separatrix, [4] 
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Longitudinal phase stability allows the beam a certain level of 

spreading in the longitudinal phase space while still gaining energy and 

remaining stable, but there are some specific limits in here. For a beam of 

protons, arriving on the falling part makes the batches unstable. The 

resulting limits of stability, which are calculated beyond the scope of this 

project, is often called separatrix, within which the stable region of the 

phase space is called the bucket. The separatrix and its bucket are shown in 

the below plot  in Figure 5. Such a separatrix in DTL 1, relevant to scope 

of this project, shows the possibilities of setting the RF field parameters to 

tune the machine to generate stable beams. Accelerations through 

insufficiently or inaccurately tuned machines lead to some particles ending 

up outside the bucket, and thus eventually being lost. 

2.4 RF Tuning 

The ESS linac is a high-power accelerator and any losses will have 

long-lasting repercussions. Sudden losses of the proton beam may result in 

some damage to different parts of the machine caused by the dissipated 

power. These types of losses can be catastrophic, but they are often avoided 

using machine protection systems not covered by this project. The losses 

relevant to the work of RF tuning are slow, coming from inefficient 

acceleration or mismatched optics, which can result in activating the 

surrounding components undesirably, limiting any access to the linac 

elements and machinery being necessary for ongoing operations or 

maintenance and subsequently, delays in operation. Such slow losses can 

be minimized by ensuring that the acceleration is optimized by proper 

tuning of the accelerating RF fields.  

 

The RF fields within the accelerating cavities are generated by a 

klystron connected to an RF modulator. The exact field amplitude and 

phase experienced by the passing beam does not correspond exactly to the 

one set by the klystron control since the true magnitudes depend on losses 

in the wave guides and construction tolerances of the resonant structure 

the klystron is connected to. The following sections describe the most 
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common methods for determining the actual RF phase and amplitude 

experienced by the beam. 

2.5 RF Phase Scan 

In order for the DTL tanks to have acceptable matching with the 

upstream sections of the ESS linac, the field in RF accelerating cavities 

must be set within 1% in amplitude and 1° off in phase of the design set-

points; thus, an accurate technique is needed to fulfill the requirements. In 

order to specify how the beam responds to changes with the RF set-points, 

some diagnostics that are sensitive to the beam time of flight within the 

cavity, should be used. In such cases, Beam Position Monitors (BPM) can 

serve the purpose.  

 

As the most common RF phase scan method, a cavity is set with a certain 

value of RF amplitude while the RF phase is scanned through its full range. 

This scan is repeated for different values of RF amplitude inside the cavity, 

and then, the predictions using some simulation-based models, like 

signature matching technique in [4], are compared with the data collected 

here. Based on such iterative comparison, the proper RF phase and RF 

amplitude are specified so that they get in line with their corresponding 

design values. Two examples of such simulation data, similar to the RF 

phase scan data in reality, can be seen in Figure 6. 

 

 Such RF phase scanning is an established and reliable method for 

extracting the information needed to achieve good tuning, and having 

limited number of diagnostics, it is the only option available. However, 

having plenty of BPMs within the ESS DTL1 tank, an idea of a much faster 

alternative was proposed by [4], but the proposed models failed to meet 

the requirements. Hence in this project, the goal is to develop some ANN 

models which meet the requirements alongside being feasible and practical 

to be deployed as a tuning and monitoring tool in the ESS control system. 

 

As the RF phase scan method is simulated using OpenXAL here, in 

addition to the RF amplitude, the cavity input energy could be another 
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physical property that plays a role. In reality, however, that is not possible, 

for there is no way to measure and set the cavity input energy in DTL 

tanks in practice. On the other hand, the BPM pair phase difference signals 

proportional to the beam time-of-flight, so the cavity input energy can be 

calculated using some techniques like in [10]. Hence, the presented models 

which are fitted to the BPM phase difference data could serve two goals; 

one as an RF tuning and monitoring tool, and another as a virtual 

diagnostics (sensors) tool for the cavity input energy if the predictions are 

of high accuracies. 
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(a) BPM4 – BPM2 

 

 
(b) BPM2 – BPM1 

Figure 6. The phase curves for different tuning set-points related to two BPM 
pairs in the first DTL tank 1 in the ESS linac, [4]. A0 and E0 are designed values 

of the RF amplitude and input energy of the cavity in DTL1, respectively. 

2.6 General overview of  the RF phase curves 

As an important investigation into the RF phase curves data to check 

how many quite different label points are mapped (correspond) to almost 

the same input points in the dataset, it turned out that there are lots of such 
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sample points that regardless of any model structures, they could raise 

confusion for models to predict the true labels. An example of such sample 

point is shown in Figure 7, where the orange line connects two black points 

of the same BMP pair phase differences, the same RF amplitudes and the 

same input energies, but totally different RF phases. If that happens for all 

the BPM pairs used in the dataset at the same time, any model gets 

confused on what the true RF phase is by looking at the BPM phase 

differences as the input. That is the case in our data; hence, we need at least 

two shots of measurements for the models to predict the true outputs 

correctly. 

 

 

Figure 7. Non-function mapping between the inputs and the outputs of the 
dataset we have at ESS 

 

There is some other behavior in the data that needs to be considered; 

it is not always easy to differentiate every curve from any others even for 

human beings, for example in RF amplitude direction in the plot (b) in 

Figure 6. As it can be seen, the curves of the same line styles, showing the 

same RF phases and input energy values but different RF amplitudes, 

overlap within the RF phase range of [-15,4] degrees. That would cause 

fundamental limitations in RF amplitude predictions using any models. 
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2.7 Single-shot measurement concept 

As discussed in 2.5, the traditional RF phase scanning is a common and 

reliable method to extract the information needed to achieve good tuning. 

However, having plenty of BPMs within the ESS DTL tanks, a good 

reconstruction of the data can be done such that we can see distinct 

signatures for each cavity set-point in amplitude, phase and beam input 

energy without the need for a full phase scan. We look at BPM phase 

differences, not versus RF phase values, but versus each BPM pair. Figure 

8 shows an example of such a plot, where each line represents a cavity set-

point which is measured in a single-shot scenario through the machine.  

 

 

Figure 8. BPM phase differences for each possible BPM pair using single-shot 
measurement scenario; each curve corresponds to a cavity set-point, [4]. 

 

It should be noted that the phase difference values of BPM pairs are 

relative, meaning that, for example, the phase difference of the BPM3- 

BPM2 equals to the phase difference of the BPM3-BPM1 subtracted by the 

phase difference of the BPM2-BPM1. Hence, the phase differences of all the 

BPM pairs are not needed, but only the ones which are relative to the one 
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of the BPMs, that could be BPM1 which is the most reliable and accurate 

one, are needed to create the dataset. That would result in a smaller number 

of features which are uncorrelated, which could make the models avoid 

overfitting. That is the dataset available to develop the ANN models based 

on. 

 

If good models could be developed, there will be some advantages in 

tuning the RF field of the DTL section in the ESS linac. Being able to tune 

the machine acceptably through a single shot or a few shots could cut down 

the time needed to tune and run the machine substantially. One would also 

not need to determine a good range for the parameters through scanning 

techniques as in more traditional RF tuning [11], but would in principle 

just need to reload the last machine state with good settings and run a 

single or a few verification pulses to calibrate the models with real 

distribution of data. Another application of accurate models could be virtual 

diagnostics for the signal which are hard to measure, like the cavity input 

energy in the ESS DTL tanks. 

2.8 Machine Learning in modern accelerators 

Particle accelerators are some of the largest, most data-intensive, and most 

complex scientific infrastructures in existence. The interrelations between 

machine subsystems are complicated and often nonlinear, the system 

dynamics involve large parameter spaces that evolve over multiple relevant 

time scales, and accelerator systems can be difficult to model a priori. 

Relevant problems for accelerators include, for example, analysis of large 

quantities of archived data, accurate and fast modeling of accelerator 

systems, detection of aberrant machine behavior, optimization of 

accelerator design, and active tuning and control. At present, ML-based 

approaches are technologically mature enough to be brought to bear on a 

wide variety of problems within these domains. 

 

ML techniques have been applied to particle accelerators since the late 

1980s. Much early discussion during the late 1980s and early 1990s focused 

on applying rule-based systems to accelerator control and tuning, [12], 
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[13], and [14]. In the early 1990s, scientists at Los Alamos National Lab 

had some experimental success with neural-network-based ion source 

control, [15], [16], and [17]. Other early studies at the University of New 

Mexico focused on orbit/trajectory control, [18] and [19] and fault 

detection and management [20]. General AI/ML platform for beamline 

tuning were also planned [21]. None of these systems were eventually 

used routinely as part of an accelerator’s main control system. The lack of 

clear success in bringing ML to regular use in accelerator systems was 

partly due to limitations in the then-available hardware, algorithms, and 

software packages, as well as the limited accessibility of good data sets and 

simulation tools. Similar situations were encountered in other scientific 

fields where ML approaches were tried before they had reached sufficient 

technological maturity relative to the challenges of the particular 

application. 

 

Diagnostics, such as the BPMs employed for this project, are vital 

elements for tuning and running particle accelerator. They, like any other 

elements, can become non-functional, unreliable or faulty. There might be 

some construction limitations in accelerators which do not allow for 

diagnostics in needed areas. In all such cases, virtual diagnostics, where 

ML techniques could be employed to model the system to provide an 

estimate of what a diagnostic would read when such a reading is 

unavailable, could be a good idea. Some examples are the longitudinal phase 

space predictions from SLAC [22] and a virtual instrument developed at 

LANSCE [23]. 

 

The use of ML techniques to build models to do RF tuning and 

monitoring at the ESS DTL1 was tried in the previous master’s thesis [4], 

but the models failed to meet the requirements. This project aims to gain 

better results using smaller, simpler, and faster models which could be 

deployed in the integrated control system at the ESS. 
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2.9 Problem Statement 

In ESS DTL section, the requirement for prediction error of the RF 

setpoints must be at most within 1% and 1° off relative to their 

corresponding design values in amplitude and phase, respectively. The 

requirements are presented in Table 1. Since the range of unscaled original 

RF phase is [-50,4] degrees, when they are scaled to the range [0,1] 

degrees using MinMaxScaler Python function, the prediction error should 

be also scaled into the range; hence, the scaling factor of required prediction 

error bound for the scaled RF phase is 
1

4−(−50)
=  

1

54
  of the required 

prediction error bound for the original RF phase. The required prediction 

error bound for the input energy is considered to be 0.1% to figure out how 

accurate the models are. The range of the original input energy is 

[0.99,1.01], resulting in (
1

1.01−0.99
=  

1

0.02
= 50) as the scaling factor of the 

prediction error bound for the scaled input energy with respect to the 

original input energy. 

 

 

Output Scaling factor of 
required prediction 
error bound for the 

scaled data with respect 
to the FSR data 

Required prediction 
error bound for original 

or Full Scan-Range 
(FSR) data 

RF phase 
          

1

54
 

1 degree 

RF amplitude 1 1% 
Input energy 50 0.1% 

Table 1. Required prediction errors by ESS; the required prediction error bounds 
for the data scaled into [0,1] (the middle column) as a factor of the prediction 

errors for the FSR data (the left column) 

 

Since this project is a continuation on the previous master’s thesis, in 

which only single-shot measurement scenario was implemented and the 

models did not meet the requirements, careful data handling and some 

other measurement scenarios should be performed to develop some models 



 

27 
 

which can meet the requirements. Being able to tune the machine properly 

using just a few shots, instead of the time-consuming RF phase scans, could 

cut down the set-up time noticeably since the total number of such RF 

stations at the ESS is in the order of 100. In addition, as there is no way to 

measure the cavity input energy in practice, neither in DTL section nor in 

the upstream sections, the models which can give an accurate indication of 

it to the beam physicists at the ESS are so helpful and practical. 

2.10 Applications of  modeling in DTL 
process  

There are some applications which need the models to outperform the 

design requirements, while some others can still go with low-performance 

models. An example of such first applications is RF tuning of the DTL 

machine. After every major machine shutdown or anytime the RF system 

is altered, RF tuning should be performed. Models could be used to help 

the machine operators to start up or ramp up the machine properly in 

shortest time, so it is important to have high-performance models that 

could meet the design requirements. On the other hand, some examples of 

the latter applications are monitoring and verification. Verification is 

needed when a configuration of the machine is already loaded via RF 

tuning, and it needs to ensure that the model still works well on new real-

time data. Monitoring is needed to keep track of the process within the 

machine in case of slow changes and drifts. 
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3 Methodology 

In this chapter, the methodology used in the project is described in detail. 

It consists of the steps we need to take to handle the data and the 

measurement scenarios implemented in the project. Lastly, the results 

using the best models developed for different measurement scenarios are 

presented. 

 

3.1 Data handling 

The quality of training data has a huge impact on the efficiency, accuracy, 

and complexity of machine learning tasks. Neglecting or simply not going 

the extra mile to ensure that the quality of the data used is up to standards 

can adversely affect the entire machine learning process. Thus, it is so 

worthwhile to scrutinize the data before developing any models based on 

it. In this section, the data used in the project is defined in 3.1.1, 

investigated in 3.1.2, and lastly, pre-processed in 3.1.3 in detail. 

Subsequently, two helpful techniques to develop good ANN models, such 

as weight initialization and weight scaling, are presented in 3.2 and 3.3, 

respectively. Lastly, the ANN models presented are described in detail in 

3.4. 

 

3.1.1 Data generation  
In this project, the process in the first DTL tank, DTL1, is simulated using 

the accelerator environment OpenXAL. It is an open-source software 

environment coded in Java for accelerator physics. It has been developed 

in a collaboration among many different accelerator facilities, ESS and The 

Spallation Neutron Source (SNS) among them.  

 

Phase differences of the BPM pairs are the data of interest as the input 

in the dataset, while the RF amplitude, RF phase and input energy are the 

labels. As mentioned before, since there are high dependencies between the 

phase differences of the BPM pairs, just the ones relative to the first BPM, 
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BPM1, are considered as the input of the dataset. Artificial neural networks 

(ANN) make high prediction performance possible when big data is 

provided to train them. As the data used in this project are simulation data, 

there are no limitations in generating huge amounts of data. In this project, 

110 different RF amplitude values, with a variation of ±5.5% around the 

design RF cavity amplitude A0 = 6.89 MV, 60 different input energy 

values, with a variation of ±1.5% around the design input energy E0 = 3.6 

MeV, and 55 different RF phase values, spread evenly around -35° as the 

design value for RF phase is considered to simulate the data.  

 

3.1.2 Data investigation 
There are some common data investigation and data processing actions 

needed to be accounted for in all the scenarios, especially when working on 

real data. First, missing data points or outliers should be imputed or 

removed not to effect the performance of models negatively. As in this 

thesis, the data are simulated, there is no need for dealing with such 

problems. Plus, we need to check the distribution of the data to make sure 

if there is a need for any transformations, like log-transform to make the 

data more Gaussian and less skewed. The ANN models can handle little 

skewness in the data due to being nonlinear and their complexities 

especially in their hidden layers [24]; while if distribution of data is highly-

skewed, it can reduce the performance of the model significantly. That can 

be checked by Box-Cox transformation technique [25]. Having each 

feature data in the project almost normally distributed, an example 

illustrated in Figure 9, there is no need for any transformation. In this 

figure, the left plots regard the original unscaled data, while the right ones 

relate to the scaled data; the top plots are for the training data, the middle 

ones for the validation data, and the below ones for the test data; showing 

that distribution of the training, validation and test datasets are almost the 

same, as they should be. Furthermore, drawing correlation heat-map of the 

input data, depicted in Figure 10, some high correlations between different 

features can be realized. Making the data less auto-correlated through only 

keeping the features that do not have so much correlations and removing 
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the others, we can perform some data reduction, resulting in more clean 

and useful data. It is useful to mention that BPM2 – BPM1, BPM3 – BPM1, 

BPM4 – BPM1, BPM5 – BPM1, and BPM6 – BPM1 phase differences are 

shown by features 0 to 4 in the heat-map plot. Regarding our data, it can 

be seen that the phase difference values of BPM2 – BPM1 and BPM4 – 

BPM1 are highly correlated, so we can exclude the BPM4 – BPM1 phase 

difference data from our dataset due to having real data of the other pair 

more reliable.  
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Figure 9. Distribution of the data related to the first feature (the BPM2-BPM1 
phase difference); it is fairly Gaussian, so no need for any transformation. The 
lambda value in Box-Cox criterion for such data is 0.93, proving that linear 

transformation, or explicitly no transformation, is needed. The left plots regard 
the scaled data, while the right ones relate to the Box-Cox transformed data. 
Having similar distributions before and after the transformation proves that 
there is no need for transforming the data. The top plots are for the training 

data, the middle ones for the validation data, and the below ones for the test data; 
showing that distribution of the training, validation and test datasets are almost 

the same, as they should be. 
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Figure 10. Correlation heat-map of the input data in the single-shot 
measurement scenario; due to high correlation between phase differences of 

BPM2 – BPM1, shown as 0, and BPM4 – BPM1, shown as 3, we can exclude the 
BPM4 – BPM1 phase difference data from our dataset to reduce dimensionality 
of the data; the signal from BPM4 is less reliable than it from BPM2 in the real 

data collected while commissioning on the machine in June, 2022  

 

3.1.3 Data pre-processing 
Four different types of errors are added to the perfect machine, noise-free, 

data. BPM longitudinal positions within the machine could be different 

from the designed values, potentially due to installation and construction 

limitations, resulting in BPM ∆s error. Plus, the BPMs phase readouts may 

be erroneous, induced by electronic limitations. There are also errors 

arising from production limitations when fabricating the cavities. Such 

limitations could give rise to errors in both RF amplitude and phase gap-

to-gap. The errors in the RF parameters and of the BPM longitudinal 

placement are "static", in that, once different elements of the machine are 
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installed, they will have a given reproducible value, as compared to the 

BPM readout errors, which will be random each time the diagnostic is used. 

All the errors are modelled as being normal distributed. The different types 

of errors and their 3 standard deviation values, which are the maximum 

theoretical values calculated in the technical design of the DTL1 tank, are 

summarized in Table 2. As the error values are considered as being 

maximum, the models are expected to outperform for the real data. 

 

 

 

 

 

 

  

Table 2. Different types of errors and their magnitudes, added to the noise-free 

Perfect Machine data; BPM ∆φ: the BPMs phase readout error due to electronic 
limitations, BPM ∆s: the error in BPM longitudinal positions due to installation 

and construction limitations, RF Amplitude and RF ∆φ: errors in both RF 
amplitude and phase readouts; Static errors are the ones which have fixed 

reproducible magnitudes, while the dynamic one has different changing values in 
different times 

 

The noise-added data then needs to be scaled into [0,1] for the 

optimization algorithm to have a faster convergence. Since the labels in our 

data are of quite different scales, 54° for the RF phase, 1% for the RF 

amplitude and 0.02% for the input energy, they should be scaled to [0,1] 

as well to get good initial weights, and to give all the outputs the chance 

to contribute equally to the network training. 

 

Error Magnitude Type 

BPM ∆φ ± 1° Dynamic 

BPM ∆s ± 100 μm Static 

RF ∆A ± 0.2% Static 

RF ∆φ ± 0.5° Static 
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3.2 ANN model weight initialization 

Weight initialization is an important design choice when developing deep 

learning neural network models. To get output of activation functions of 

the links in every ANN layer being of order one using random walk theory, 

[26], the best initial values for the weights, 𝜔, are random numbers of zero 

mean and 
1

𝑘
 variance, where k represents the number of inputs in the layer; 

while the best initial values of biases in the layer, b, are random numbers 

of zero mean and unit variance. That is, if the number of inputs to a hidden 

layer is, for example, 16, the best initial values for the weights are random 

numbers of zero mean and variance 
1

16
 , and the best initial values of the 

biases are random numbers of zero mean and zero variance.  

3.3 ANN model weight scaling 

Weight scaling is a technique that can help better predictions in some 

directions where there are many sample points whose corresponding target 

values are very similar, like the overlapped curves shown in Figure 6, [27]. 

By setting the scale of RF amplitude data in the target points being smaller 

than the scale of other target values, namely RF phase and input energy, 

we will force the corresponding weights in the RF amplitude being bigger 

by the same scale, making the models more flexible in the RF amplitude 

direction and the cost function get larger in that direction compared to 

other target directions. Different scaling factors were tested and the best 

one was 0.5, resulting in increasing the prediction accuracy in the RF 

amplitude by almost 100%, from 35 - 40% to 70 - 75%. 

 

3.4 ANN model description 

There are a wide variety of ML techniques that could have been used in 

this project. As a kick-off, having access to plenty of simulated data 

samples, AAN models, or more accurately, Deep Learning models could be 

a good option, for they give higher performances when big amount of data 
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is provided, compared to classical ML techniques such as SVM, Random 

Forest, Regression, and so on [28]. The more data we have, the deeper 

networks could be, resulting in more accurate models. Another reason why 

ANN models is a good option for this project is that they could be easily 

deployed in the control system at ESS using Field Programmable Gate 

Arrays (FPGAs) as a hardware module or via C++ APIs to develop 

software modules. The ML framework was chosen to be PyTorch to have 

the ease to use GPUs to run models faster.  

 

A schematic of ANN model structures is shown in Figure 11. In this 

project, the number of inputs is 5, 10, and 15 for single-shot, double-shot, 

and triple-shot measurement scenarios, respectively. Excluding some of 

highly-correlated inputs, discussed in 3.1.2, the number of inputs reduced 

to 4, 8 and 12 for the mentioned measurement scenarios to reduce the 

dimensionality of input space, and to reduce risks of overfitting. The 

number of outputs is 3 for all the scenarios, which are RF phase, RF 

amplitude and input energy. The number of hidden layers determines how 

deep the network is, while the number of hidden nodes in each hidden layer 

specifies the width of the network. For the networks to capture the 

nonlinear behavior of data, deeper networks are preferred to wider ones 

[29] and [30].  
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Figure 12. ANN model structures, [31] 

 

The models developed were all fully-connected with different number 

of hidden layers and hidden nodes for different measurement scenarios, and 

it turned out that for the single-shot one, double-shot ones and the triple-

shot one, at least 6, 5 and 4 hidden layers were needed, respectively. The 

number of hidden nodes in each hidden layers were chosen to be a power 

of 2, such as 8,16, and 32. Regarding the learning rate orders, it was 

realized soon that they should be small of order 10−3or 10−4. Decaying 

learning rates to take big steps at initial epochs and small steps at later 

epochs for the networks to converge better to the optimal weights was 

implemented. Different PyTorch built-in decaying learning rates functions 

were tested, but all my models faced reproducibility issues, which is 

common in ML, as discussed in [32]. A decaying learning rate technique 

was instead coded to start from 2 ∗ 10−3 as the initial rate, reducing by a 

factor of 1.5 every 20 epochs. The ADAM optimization turned out to be 

the best and fastest one in comparison to the other ones such as Stochastic 

Gradient Descent (SGD) with momentum, RMSprop, and Mini Batch 

Stochastic Gradient Descent (MB-SGD). The activation function in the 

hidden layers is set as ReLU due to its non-zero gradients in positive 

arguments, and subsequently faster convergence for the networks 

compared to Sigmoid and Tanh. Both Mean Squared Error (MSE) and 
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Mean Absolute Error (MAE) loss functions, MSELoss and L1Loss in 

PyTorch, were tried out, and having a regression problem, the MSE one 

was chosen as the one. Different batch sizes of order 2 to the power of 5 to 

10 meaning 32 to 1024, were tested, and 128 and 256 were proven to be 

the best ones. As there was no overfitting happening, there was no need for 

any regularization techniques, such as weight decaying or L2 

regularization, L1 regularization, drop-out, or pruning. Since the networks 

are not so deep, there was no need to have Batch Normalization, 

BatchNorm2d in PyTorch, layers in the networks. The networks needed 

only 300 epochs to converge, so the trainings were fairly fast. It took me 

1.5 hours, 3 hours, and 5 hours for the single-shot measurement, the 

double-shot ones, and the triple-shot one using a laptop with the 

specifications shown in Figure 13. 

 

 

Figure 13. Laptop specifications 

 

To monitor how the training was happening and to figure out how 

well the models worked for each single output prediction over epochs, 

different techniques were tested. First, both the training and validation 

losses versus epochs were plotted, shown in Figure 14, to make sure the 

models were being trained well and there were no either overfitting or 

underfitting problems with the models. Both the training and validation 

MSE loss values when the networks were well-converged were in the order 

of 10−4 and 10−5 for the single-shot measurement and the rest, 

respectively. The spikes in the plot come from the fact that the errors are 

calculated based on the difference between the predictions and their 

corresponding target points in the last batch of the dataset, and not the 
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whole dataset, in each epoch; hence, the models might not be well fitted to 

those points, resulting in the spinks. 

 

 

 

Figure 14. Training and validation losses versus epochs; Shows that the 
networks were being trained well and as there is not a big difference between the 

training and validation losses plots and the training loss is decreasing over 
epochs, so the networks do not either overfit or underfit to the data, respectively. 

 

Another visualization that gave us a good view of how well the models 

were predicting different outputs was to plot the number of misprediction 

over epochs at a semi-logarithmic scale. By misprediction, it means the 

predictions that its difference with their corresponding target points is 

bigger than the requirements for each output. The reason why the number 

of mispredictions was needed to be at a logarithmic scale was for us to get 

a chance to explore more into small numbers of mispredictions, and to 

reflect the single number of misprediction onto the horizontal axis, for log 

of 1 is zero. In this way, the performance of the models was investigated 

for each output separately. An example of such plots is shown in Figure 15. 
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Figure 15. Number of mispredictions for RF amplitude during training on a 
logarithmic scale using double-shot measurement scenario; the plot shows the 
training is going well as the number of mispredictions decreases over epochs  

 

As a more detailed investigation into the performance of the models 

during training, some animations of histograms of prediction errors for 

both scaled and original data for every output was made2. 

 

To get even higher performances, especially in RF amplitude, 

different built-in PyTorch ensembles using torchensemble package such as 

Fusion, Voting, Bagging, Gradient Boosting, Snapshot, and Fast 

Geometric ensembles, [33], were tested on the data. Despite the fact that 

they all took more time for training, they did not make any improvements 

with results compared to the models presented here. 

                                                      
2 An example of such animations will be presented in the presentation. 
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4 Measurement scenarios and 
Results 

In this chapter, first a description of all the histogram plots presented in 

the report is given in 4.1. Then, different measurement scenarios and their 

resulting results are presented. The single-shot measurement is the first 

one, which is discussed in 4.2. Then, two different double-shot 

measurement scenarios are implemented to see which one works better in 

a hope for any improvements with the prediction performance. They are 

presented in 4.3. Lastly, a triple-shot measurement scenario is tested to 

make the results even better, being presented in 4.4. 

 

4.1 Description of  histogram plots  

The histograms plots and the relevant results correspond to training the 

networks using the full datasets, without excluding any of highly- 

correlated features from the datasets as discussed in 3.1.2. The reason why 

is that there were no significant differences between the performance of the 

models using full datasets or reduced datasets. In all the histogram plots 

presented, the left plots target the scaled data while the right ones 

correspond to the unscaled original data. The top ones are for the 

prediction error for the RF phase, the middle ones for the RF amplitude, 

and the below ones for the input energy, respectively. The yellow lines are 

the 3 standard deviation interval corresponding to 99.7% confidence of the 

prediction errors, the green ones are the 2 standard deviation interval 

corresponding to 95% confidence of the prediction errors, and the red ones 

show the requirements set by the ESS, so the yellow lines are desired to be 

between the red lines to show that the requirements are met by models. 

The black line represents the mean value of the prediction errors. The 

resulting values for the prediction error confidence interval, the 

requirements, and the mean values are presented in the legend of the plots. 

It is useful to mention that only the 3 standard confidence interval matters, 

not the 2 standard confidence interval, so the yellow lines should be inside 
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the red lines, not the green ones, to show that models are successful. The 

green lines are just to express the 95% confidence of the predictions for the 

RF amplitude to be within the requirements. It should be re-emphasized 

that the prediction accuracies are calculated based on the 99.7% confidence, 

not the 95% one. 

 

The prediction accuracy is the metric expressing how well the 

predictions are compared to the requirements. They are calculated in a way 

that if a model fails to meet the requirements, meaning that the yellow lines 

are outside the red lines range, they get values less than 100%; and the 

smaller values they have, the further from the requirements the model 

performs. If the model prediction errors are exactly the same as the 

requirements, the prediction accuracy is exactly 100%, and if they 

outperform the requirements, meaning that the yellow lines are between 

the red line, the predictions accuracy takes values more than 100%, and the 

lower prediction errors by the models are obtained, the larger values this 

metric represents. The formula of the prediction accuracy is defined as 

below: 

 

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 

 100 ∗ 
Required error prediction bound

3 standard deviation confidence interval mean bound 
  

 

where the denominator is the average of the upper bound and the lower 

bound of the 3 standard deviation confidence intervals. 

 

There is some performance leakage from the scaled data, which the 

models are trained and validated based on, to the original unscaled data, 

which are the base to evaluate the models. That can be seen from lower 

prediction accuracies in right plots compared to them in the right plots in 

all the histogram plots. The possible reason behind that could be that 

noise-signal ratio of the data in the outputs is high, especially in RF 

amplitude. Adding big noise levels could change the distribution of data, so 

transforming back the scaled data to the original ranges of them could 

result in some outputs which are slightly different from the targets; hence 
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the prediction error values using the scaled data could be different from 

them using the transformed-back data. Such performance reduction in 

input energy is big compared to the other outputs because the range of 

input energy data is [0.99,1.01], while the acceptable noise level 

considered for the input energy to be added to the noise-free data is 0.04%. 

The performance reduction for the other outputs is rather negligible. It is 

useful to mention that the prediction accuracies of the scaled and 

transformed-back data if no noise is added are exactly the same, proving 

the effect of the additive noise on the performance leakage. 

4.2 Single-shot measurement scenario 

In the first attempt, single-shot measurement scenario, discussed in section 

2.7, is implemented, in which the model designed is tested on the BPMs 

data in a real-time manner; that is, every time the set-points of the machine 

get tuned, the resulting BPMs data are read out and their phase differences 

are calculated to be used as a test point at that time. The number of samples 

in the dataset for this scenario is 363000, and the dataset is divided into 

training, validation and test datasets by a factor of 80%, 10% and 10%, 

respectively. 

 

The dataset structure needed here should have the phase difference 

values of every BPM compared to the first BPM, BPM 1, as the input, 

creating a 4-dimensional feature space due to excluding the data of BPM4 

– BPM1 thanks to its high correlation with the data of BPM2 – BPM1, and 

their corresponding RF phase and amplitude, and input energy, φ, A, E, 

respectively, as the labels. In Figure 16, the histogram of the prediction 

error of single-shot measurement using the best model, whose 

specifications are tabulated in Table 3, is shown.  
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Figure 16. Histogram of the prediction error of single-shot measurement using 
the best model. The plot description is presented in 4.1. The best model here fails 

at fulfilling the requirements (red lines) for all the outputs by 95% confidence 
(green lines) or 99.5% confidence (green lines), proving that the single-shot 

measurement scenario does not work well here. The left plots show histograms 
of prediction errors for the original data, while the left ones are for the scaled 

data. 
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Layer widths 16-32-16-16-16-8 
Initial LR 2e-3 
Batch size 256 

Optimization algorithm ADAM 
Number of epochs 300 

Loss function MSE loss 
Activation function ReLU 

Table 3. Model structure and hyperparameter values for the best model in the 
single-shot measurement scenario 

 

4.3 Double-shot measurement scenarios 

In this section, the double-shot measurement scenario is presented. That 

is, the BPMs data related to the first shot are read out and their phase 

differences are calculated and considered as values for the initial 5 features 

of the data points, while there needs to take one more shot of measurement 

either through shifting the RF phase by certain degrees, discussed in 

2.1.1.1, or via shifting the RF amplitude by certain percentages, discussed 

in 2.1.1.2. Since it is complicated to tune the input energy precisely, the 

second shot could not be taken in the input energy direction. The number 

of samples in the dataset for this scenario is twice it in the single-shot one, 

due to considering both positive and negative shifts, so in total it is 726000, 

and the dataset is divided into training, validation and test datasets by a 

factor of 80%, 10% and 10%, respectively. The number of features are 10 

consisting of 5 BPM pair differences in the first shot, and 5 BPM pair phase 

differences after taking the shifts.  

 

The shifts have to be only positive for the data points whose values of 

their corresponding labels exceed the lower limits by applying the shift, 

and only negative for the data points whose values of their corresponding 

labels exceed the upper limits by applying the shift; otherwise, they could 

be and should be both negative and positive to cover all the possible shifts 

while tuning the machine in reality. The datasets created for training the 
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models should be smart in that way. The best model order for both the 

double-shot measurement scenarios is 16-32-16-16-8. The hyperparameter 

values are the same as in the single-shot one. 

 

4.3.1 In RF phase direction 
Looking at the upper plot in Figure 6, we can see that some curves are 

partly flat in the RF phase direction, so the shift in this direction should be 

big enough to make the second shot sufficiently different from the first one, 

but not too big in a way that it becomes hard for the real process to get 

tuned and at the same time, to stay stable. This measurement scenario is 

depicted in Figure 17. Different phase shifts were tested and the best value 

was realized as 25 degrees. Table 4 depicts different values for the RF phase 

shift and their resulting prediction accuracies. Histogram of the prediction 

error using the best model for this measurement scenario is illustrated in 

Figure 18. 

 

 

Figure 17. Double-shot measurement scenario in the RF phase direction 
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Phase 
shift 
(Degrees) 

RF 
phase 

(φ), 
Scaled 
(%) 

RF 
phase 

(φ), 
Original 
(%) 

RF 
phase 

(A), 
Scaled 
(%) 

RF 
phase 

(A), 
Original 
(%) 

Input 
energy 
(E), 
Scaled 
(%) 

Input 
energy 
(E), 
Original 
(%) 

3 103.1 103 34 31 137 93 
5 107 106.9 40.3 36.8 150 101.4 
10 128 127.7 50.8 46.4 176 119 
15 140 139.5 57.9 52.9 191.7 130 
20 145.2 145 65.8 60.2 196 132.5 
25 161.3 161 78.8 72 207 140 

Table 4. Prediction accuracies for different RF phase shifts; the best RF phase 
shift and its corresponding prediction accuracies are bold. As the RF phase shift 
gets bigger, the prediction accuracies increase, which is sensible, for the much 

further the second shot is taken, the chance to avoid the data confusion, discussed 
in 4.2, gets higher. Form practical point of view at ESS, it is applicable to 

implement the RF phase shift by 25 degrees while tuning the machine by taking 
small steps. 
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Figure 18. Histogram of the prediction error using the best model for the double-
shot measurement scenario in the RF phase direction. The plot description is 

presented in 4.1. The best model meets the requirements (red lines) for the RF 
phase and input energy, but not for the RF amplitude by 99.7% confidence 

(yellow lines). The reason is discussed in 2.6. However, it fulfills the requirement 
in RF amplitude by 95% confidence (green lines). The 99.7% confident prediction 

accuracies showing the performance of the model are 161%, 68%, and 140% in 
RF phase, RF amplitude and input energy, respectively. 
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4.3.2 In RF amplitude direction 
Considering the plot (b) in Figure 6, we can see that some curves are not 

quite separate and thus identifiable in RF amplitude direction; thus, it 

might be a good idea to take the second shot in the RF amplitude direction, 

instead of the RF phase direction. Again the shift should be big enough to 

make the second shot sufficiently different from the first shot, but not too 

big. This measurement scenario is depicted in Figure 19. Table 5 presents 

the prediction accuracies using the best models for different RF amplitude 

shifts. Histogram of the prediction error using the best model for this 

measurement scenario is illustrated in Figure 20. 

. 

 

 

Figure 19. Double-shot measurement scenario in the RF amplitude direction 
  



 

49 
 

Amplitude 
shift (%) 

RF 
phase 

(φ), 
Scaled 
(%) 

RF 
phase 

(φ), 
Original 
(%) 

RF 
phase 

(A), 
Scaled 
(%) 

RF 
phase 

(A), 
Original 
(%) 

Input 
energy 
(E), 
Scaled 
(%) 

Input 
energy 
(E), 
Original 
(%) 

2 113.7 113.5 36 33 155.8 105.3 
4 114.5 114.2 35 32 151.5 102.4 
6 116.5 116.3 35.4 32.2 154.7 104.7 
8 117.2 117.1 35.8 32.8 154.6 104.9 
10 118.6 118.4 36.2 33.5 156.1 106.2 

Table 5. Prediction accuracies using the best models for different RF amplitude 
shifts; the best shift and its corresponding prediction accuracies are bold. It 

should be noted that taking the second shot of measurement having different RF 
amplitude shift values do not affect the prediction accuracies significantly, so the 

smallest RF amplitude shift which is the easiest and fastest one to put in the 
control system is chosen as the best one. In addition, this measurement scenario 

underperforms the double-shot one in the RF phase direction significantly, 
presented in 4.3.1, so this scenario is disregarded. 

 



50 
 

 

Figure 20. Histogram of the prediction error using the best model for the 
doubleshot measurement scenario in RF amplitude direction. The best model 

meets the requirements (red lines) for the RF phase and input energy, but not for 
the RF amplitude. The 99.7% confident prediction accuracies showing the 

performance of the model are 113%, 33%, and 105% in RF phase, RF amplitude 
and input energy, respectively. This double-shot scenario underperforms the 

double-shot scenario in RF phase, presented in 4.3.1, but outperforms the single-
shot one, presented in 4.2. 
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4.4 Triple-shot measurement scenario 

Since the predictions in the RF amplitude direction are not good enough 

yet, the prediction error for the RF amplitude is still bigger than the 

requirement by 1%, a third shot of measurement might help. The idea 

comes from the fact that although some curves overlap, they have different 

slopes at the overlapping regions. The slopes are defined by the triple-shot 

measurement scenario in that the second shot is taken via a shift in the RF 

phase direction relative to the first shot, which is horizontal and is shown 

by light orange arrow, and the third one is taken via the shift in the RF 

amplitude direction relative to the second shot, which is vertical and is 

shown by dark orange arrow. The idea is depicted in Figure 21. The 

resulting measurement is shown as the brown arrow in the figure.  

 

The dataset created should be smart in a way that it covers both 

negative and positive shifts both in the RF phase and amplitude directions, 

but should not cross the upper and lower limits while taking the shifts. The 

number of samples in the dataset for this scenario is 4 times it in the single-

shot one, due to considering both positive and negative shifts in the RF 

phase and both positive and negative shifts in the RF amplitude, so in total 

it is 1452000, and the dataset is divided into training, validation and test 

datasets by a factor of 80%, 10% and 10%, respectively. The number of 

features is 15 consisting of 5 BPM pair differences in the first shot, 5 BPM 

pair phase differences after taking the RF phase shifts in the second shot, 

and 5 BPM pair phase differences after taking the RF amplitude shifts in 

the third shot. The best model order for the triple-shot measurement 

scenario is 16-32-16-8. The hyperparameter values are the same as in the 

single-shot one. Table 6 presents prediction accuracies using this model for 

different RF phase and amplitude shifts. Histogram of the prediction error 

using this model for this measurement scenario is illustrated in Figure 22.  
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Figure 21. Triple-shot measurement scenario; light orange arrow: the second 
shot in RF phase direction, the dark orange arrow: the third shot in RF 

amplitude direction, and the brown arrow: resulting triple-shot measurement. 
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Amplitude 
shift (%) 

Phase 
shift 

(Degrees) 

 RF 
phase 

(φ), 
Scale
d (%) 

RF 
phase 

(φ), 
Original 
(%) 

RF 
phase 

(A), 
Scaled 
(%) 

RF 
phase 

(A), 
Original 
(%) 

Input 
energy 
(E), 
Scaled 
(%) 

Input 
energy 
(E), 
Original 
(%) 

2 3  110 110 34.2 31.2 152.4 103.2 
2 5  110 110 37.2 34 146.9 99.3 
2 10  121.4 121.2 26.9 42.8 171.2 115.7 
2 15  170.6 170.2 68.9 62.9 231 156.1 
2 20  186.4 185.9 83.2 76 251.4 170 
4 3  101 101 31.6 28.8 143 96 
4 5  101.5 101.1 32.1 29.2 140.1 94.2 
4 10  112.7 112.5 31.9 29.2 140.4 95 
4 15  125 125 50 45 173 117 
4 20  130 130 55.5 50 184 124 
6 3  102.9 102.6 34.1 31.1 139 94 
6 5  99 98.8 31.4 28.6 135.1 91.3 
6 10  128.7 128.4 51.8 42.3 176.8 119.53 
6 15  133.6 133.3 53.2 48.6 178.8 121 
6 20  163.2 162.1 64.2 59.2 212.3 139.1 
8 3  113.4 113.2 34.8 31.8 153.6 103.9 
8 5  114.2 113,.8 36.3 33.2 158.3 106.1 
8 10  142.4 141.5 59.1 57.1 189.3 123.3 
8 15  158.1 157.7 66.23 60.5 214.2 144.8 
8 20  159.7 159.4 62.41 59.25 222.8 153.5 
10 3  112.6 112.4 35.5 32.5 151.4 102.3 
10 5  114.3 113.8 37.2 33.2 152.5 102.2 
10 10  98.7 98.5 39.8 36.3 134.3 90.7 
10 15  125.1 124.9 52.7 48.1 171.2 115.7 
10 20  132 131.6 56.7 51.8 182.5 123.3 

Table 6. Prediction accuracies using the best models for different RF phase and 
amplitude shifts; the best RF phase and RF amplitude shifts and the 

corresponding prediction accuracies are bold. As the RF phase shift gets bigger 
and the RF amplitude shift be small, the prediction accuracies are higher, which 
is what we got in the double-shot measurement scenarios, discussed in 4.3. Form 
a practical point of view at ESS, it is applicable to implement the RF phase shift 

by 25 degrees while tuning the machine. 
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Figure 22. Histogram of the prediction error for the triple-shot measurement 
scenario. It is the best measurement scenario, and the best model meets the 

requirements (red lines) for the RF phase and input energy, but not for the RF 
amplitude by 99.7% confidence (yellow lines). However, it fulfills the requirement 
in RF amplitude by 95% confidence (green lines). The 99.7% confident prediction 

accuracies showing the performance of the model are 186%, 76%, and 170% in 
RF phase, RF amplitude and input energy, respectively. 
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As a summary, the results using the best models for different 

measurement scenarios are presented in Table 7. The results are compared 

with the previous master’s thesis results in which only the single-shot 

measurement scenario was implemented, [4], and the requirements. As 

discussed in 2.7, since the nature of the data is a non-function mapping 

between the inputs and the outputs, the single-shot measurement should 

not suffice to get good results, which is reflected in Table 7. As an idea, 

multi-shot measurements could solve the challenge by defining new 

features in the feature space, making the similar inputs different and 

resulting in function mapping between the inputs and the outputs. As a 

natural option, a double-shot measurement in either the RF phase or the 

RF amplitude direction, but not in the input energy as discussed in 4.3, 

could be one of them. According to Natlalia Milas, as my supervisor, it is 

easier to change the RF phase rather than the RF amplitude in the LLRF 

system; hence, the first double-shot measurement would be in the RF phase 

direction, giving very good results as presented in Table 7. As the 

predictions in the RF amplitude have yet to improve, the second double-

shot measurement option could be in the RF amplitude direction, though 

it is harder in practice to perform, outperforming the single-shot one and 

the requirements in the RF phase and input energy, but underperforming 

the double-shot one in the RF phase. As the last effort, the triple-shot 

measurement scenario was tested, giving the best results compared to all 

the other ones. Using weight scaling technique, discussed in 3.3, better 

predictions could be made for the RF amplitude for all the measurement 

scenarios. As discussed in 2.6, the reason why none of the models succeeds 

in meeting the requirements for the RF amplitude prediction is the 

fundamental limitation in its data. 

  



56 
 

Error distributions 3𝜎𝜑[𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 3𝜎𝐴[%] 3𝜎𝐸[%] 𝜇𝜑[𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 𝜇𝐴[%] 𝜇𝐸[%] 

Requirements 1 1 0.1 0 0 0 
Previous project 2.242 1.535 0.421 -0.049 -0.007 0.011 

Single-shot 1.31 4.15 0.117 -0.035 0 0 
DS in RF Phase 0.62 1.45 0.072 -0.006 0 0 

DS in RF Amplitude 0.88 3 0.095 -0.0146 0 0 
Triple-shot 0.53 1.32 0.06 -0.027 0 0 

Table 7. Results of the best models using different measurement scenarios in 
comparison with the requirements and the previous master’s thesis results, [4]; 

DS stands for Double-shot. 𝜑, 𝐴, and 𝐸 stand for the RF phase, RF amplitude, 

and input energy, respectively. 3𝜎 and 𝜇 represent the 3 standard deviation 
confidence interval and the mean value of prediction errors, respectively. All the 

models, except the single-shot one, outperform the model in the previous 
master’s thesis. The best model is the triple-shot one, and the second best one is 

the double-shot one in RF phase direction, which could be deployed in the 
control system at ESS to do RF phasing and monitoring, respectively, as 

discussed in 2.10. 
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5 Discussion and future work 

As discussed in 4.2, it was expected that, regardless of any model 

structures, the single-shot measurement scenario does not yield satisfying 

results. That was resulted in the previous master’s thesis, [4], where only 

this scenario was implemented. Hence, two double-shot measurement 

scenarios in the RF phase and RF amplitudes are implemented in this 

project, resulting in significantly better results than the single-shot one. 

The models also meet the requirements for the RF phase and the cavity 

input energy, but still not for the RF amplitude of being 99.7% confident 

which is statistically accepted, as discussed in 2.6. To get even better 

predictions, the triple-shot measurement is implemented and tested, giving 

the best results as expected. The RF amplitude predictions, however, are 

of 95% confidence using the double-shot measurement in the RF phase and 

the triple-shot one; thus, the beam physicists at the ESS should account for 

some small number of uncertainties for the RF amplitude predictions when 

tuning the machine. However, for monitoring and verification of the 

process within the machine, they can use the models without any 

uncertainty.  

 

Another important aspect of the results are really accurate predictions 

for the cavity input energy, having less than 0.1% prediction error, 

showing that the models are more than 99.9% accurate on the input energy. 

Hence, being impossible to have any instrumentation to measure the cavity 

input energy in the ESS DTL section and the upstream sections, the 

models presented here could be to a good extent used as the virtual 

diagnostics (sensors) to monitor the input energy for daily use. That is so 

important to the ESS staff because it is the physical property that needs to 

be known in each cavity for them to keep track of the beam properly.  

 

In addition to the better results, another merit of the presented models 

compared to the ones developed in the previous master’s thesis is the sizes 

of the networks, which are extremely smaller. The model order of the 

single-shot, double-shot and the triple-shot models are only 16-32-16-16- 
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16-8, 16-32-16-16-8 and 16-32-16-8, respectively, in comparison with 160- 

160-80-80-40-40-80-80-160-160 in the previous master’s thesis, which is 

seriously large and impractical. Another advantage is the fast convergence 

of the networks, taking only 300 epochs, in comparison with 20000 epochs 

in the previous master’s thesis. One of the reasons why the presented 

models outperform the ones in the previous master’s thesis is that better 

data handling and data pre-processing, and proper data scaling have been 

done in this project. Another reason is that all the 15 BPM pair phase 

differences, shown in Figure 8, are considered as the inputs in the datasets 

in the previous master’s thesis, while as discussed in 2.7, 10 BPM pair phase 

differences have high correlation with the rest, so they should be excluded 

from the dataset.  

 

As stated before, it is vital to work with models which meet the design 

requirements to do RF tuning. As the triple-shot one is the closest one to 

that among the other, this is the one which is going to be deployed to 

perform RF tuning of the DTL 1 tank; while since there is no serious need 

for very accurate models for the monitoring and verification, as discussed 

in 2.10, the double-shot one in the RF phase is the proper model in such a 

case. The reason why we would go with the double-shot one and not the 

triple-shot one in such cases is that the ESS staff need to wait until only 

the second shot of measurement is taken for the model to do the 

predictions, which is faster than the situation when they need to wait for 

the third shot as well.  

 

Since the prediction accuracies of both the double-shot in the RF phase 

and the triple-shot models increase as the RF phase shift increases, there 

could be some limitations making the use of the best models in practice, 

though it is possible to imply big RF phase shifts by taking small steps to 

cover the shift range. As another limitation, the distribution of real data 

could be different from the data used for the project, even considering the 

added noise, causing the models to fail to make good predictions. As an idea 

for the future work, the models could get calibrated with the real data using 

transfer learning technique, [27], to update the weights in the last or two 

last hidden layers to get more fitted to the real data, and then use the 

calibrated model. If the size of real data is small, a part of it can get added 
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to the available simulated data to create big training and validation 

datasets, while the rest of the real data is considered as the only data in the 

test dataset, as some other future work. That would make the distribution 

of the training and validation dataset closer to the test dataset.  

 

There are some other types of ML techniques that could be used in 

line with or complementary to this project in the future. ANN models are 

too confident about their predictions, while Bayesian Neural Networks 

(BNN), which can introduce the uncertainties from the model and provide 

the distributions over the weights and outputs instead of fixed certain 

weights [34], or Gaussian Process Regression (GPR), which can make 

predictions incorporating prior knowledge (kernels) and provide 

uncertainty measures over predictions [35], could be developed to get both 

the expected value and the variance of the predictions.   
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6 Conclusion 

The project aims at developing ANN-based models to meet the 

requirements on the tuning parameters of the ESS DTL1 tank. The models 

are supposed to be deployed in the control system at ESS to be used either 

as a modeling or a monitoring and verification tool of the DTL process 

while starting up or ramping up the machine. As the requirements are 

really high, asking for model accuracies by 99%, there was a big challenge 

to reach such accuracies, especially when some noise, described in 3.1.3, is 

added to the simulated data to make the models robust against possible 

different distributions of real data compared to the simulated data, as 

discussed in 3.1.1. Deep learning models could be a good option, since the 

size of available data is large. The data consists of the BPM pairs phase 

differences as the inputs, and the RF phase, RF amplitude and input energy 

as the outputs, being simulated using OpenXAL and some noise, presented 

in 3.1.3, added to make the models robust. Different measurement scenarios 

were implemented and tested, and the resulting double-shot and triple-shot 

models meet all the requirements, except the RF amplitude which was 

discussed in 2.6. They also outperform the models developed in the 

previous master’s thesis, [4], in all the predictions significantly. As 

mentioned in 2.8, though a lot of ML-based research has been done in the 

world of particle accelerators, just a few have been eventually used 

routinely as part of an accelerator’s main control system; hence, there is a 

huge possibility to build more advanced intelligent accelerators benefiting 

from the AI and ML achievements, and we are happy to take such a step 

through this project. 
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