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Abstract

Exploratory testing (ET) is widely used for testing of software products. Pre-
vious studies show that ET is efficient at finding defects of varying types, severity
and difficulty levels. This thesis project studies the use of ET practices and how
they can be used in a risk-aware sense. Specifically the use of ET on the software
product Qlik Sense Enterprise on Windows, which is a server-based data analysis
and visualization software. We measure the code coverage of ET on the software
product as well as gather the metrics code quality, code churn and the number
of bug fixes for each source code file. This data is used to determine how the
files’ risk-profiles correlate with the ET practices. We found that the ET does
not cover the source code very extensively and that it has no correlation with
a file’s risk-profile. We also saw that a file’s code quality is an indicator of the
prevalence of bugs, where a higher code quality yields fewer bugs. Furthermore,
the level of churn is another indicator of risk for bugs, where the risk only per-
tains up to a certain change frequency. With these results, we have corroborated
previous work on the subject in regards to code quality and churn, and proposed
metrics Qlik can use to further improve their ET practices.

Keywords: exploratory testing, manual testing, code quality, code churn, bug fix distri-
bution, code coverage
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Chapter 1

Introduction

This chapter gives the background of the topic, presents a description of the proposed project
as well as related work that have previously been done.

1.1 Background
Software testing relies on a combination of manual and automated approaches. While there
are a lot of tools to measure the test coverage of automatic tests, the same can not be said for
manual tests [1]. Automatic and manual testing are often done to test different aspects of the
software. Automatic testing in the form of unit tests makes sure individual components are
working as intended while manual testing often is done as a functional test of the software
as a whole from the perspective of a user.

This thesis project focuses on exploratory manual testing, specifically the testing of Qlik
Sense Enterprise on Windows performed at Qlik. Exploratory testing (ET) integrate learning,
designing tests and execution of the tests [2]. To achieve success in ET the testers must use
their creativity and imagination to provide a variety of inputs to the system that is being
tested. Due to the nature of ET, in contrast to test case-based testing, the testers are not
exercising the system in the same way every time. Despite this, it can still be valuable to
evaluate which parts of the system that are tested by a test case, to provide rough guidance
to the testers on where to focus their testing resources.

To perform this evaluation one option is to measure code coverage. However, it is often
not ideal to rely exclusively on the coverage metric when designing test cases. Setting an
arbitrary coverage goal, such as 80% statement coverage, without considering the implications
might provide poor guidance to the testers [3]. You can increase coverage through shortcuts
in the testing design, e.g. implementing changes to a test case that does not actually improve
its efficiency at detecting faults, but still raises the coverage by increasing the amount of code
that it executes. Also, reaching 100% code coverage does not guarantee fault-free software [4]
[5]. Not even stricter coverage criteria, such as modified decision/decision coverage (MC/DC)
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1. Introduction

[6] [7].
Coverage measure can also serve the purpose of verifying that certain high-risk areas of

the source code are adequately covered by test activities. A powerful predictor of such areas,
i.e. areas with the potential of being defect, is code churn [8]. Code churn is a measurement
of the amount of changes made to a component over time [9] and most bugs are found in files
that have recently undergone substantial change. There is also a correlation between defect
density and source code quality [10] [11]. The objective of this thesis is to study how code
churn and code quality can aid in prioritizing exploratory test efforts. To summarize, code
that has remained unchanged recently demands less exhaustive testing, whereas code with
inferior quality necessitates greater attention during testing. We refer to this as risk-aware
use of exploratory test resources. Our work will build on academic research on risk-based
software testing [12].

1.2 Project Description
Qlik provides a number of business solutions. This thesis project focuses on the development
of the data analysis and visualization software Qlik Sense Enterprise on Windows, which is
the Windows server version of the software. The manual testing of the software is divided
into flows that are done weekly on the latest build as well as every 3 months on official
releases. The tests are used to detect regression, i.e. to verify that the latest build still works
as intended. The test effort in this activity is a process Qlik is looking to improve.

When looking at test coverage you often want to have it as high as possible, but for a
software the size of Qlik Sense it is not feasible to just increase the test coverage without
considering if it is necessary on all components of the code. That is why we also will be
looking at other metrics such as the number of bug fixes, the source code quality, and the
code churn to see on what parts of the code the test coverage needs to be improved.

The goal of the project is to help Qlik investigate how they can take steps toward a risk-
aware use of their exploratory test resources. Our approach is to introduce new metrics,
which we propose Qlik can use to achieve this goal. This means we want to measure what
parts of the source code the exploratory tests currently cover and analyze what parts are the
most important to cover. We also aim to analyze the correlation between these new metrics
and the exploratory tests’ code coverage to look for patterns that could be used to reach a
more efficient and effective use of exploratory test resources.

In short, Qlik is looking to achieve a more risk-aware use of their resources for ET, for
which we propose they use the new metrics code churn, code quality and bug fix distribution,
to determine the code’s risk profile. The risk profile can then be used to focus their testing
efforts on risk-prone areas of the source code. To study how to come closer to a risk-aware
use of exploratory test resources, we seek answers to three research questions:

RQ1 How do current exploratory test activities cover the source code?

RQ2 How does the file-level bug fix distribution correlate with the exploratory code cover-
age, code churn, and source code quality?

RQ3 How does the source code’s risk profile align with the exploratory test coverage?
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1.3 Related Work

The goal of RQ1 is to determine how much and what parts of the source code the current
test activities cover, in order to locate areas that are lacking coverage. Deciding if the coverage
needs to be increased in areas where it is lacking is then done by analysis of the code churn,
code quality and bug fix distribution, which we use to locate risk-prone areas. Due to the
nature of ET, the hypothesis for the ET code coverage is that it will be low. But if the current
ET practices already extensively cover the source code, including risk-prone areas, the use of
ET resources could already be deemed risk-oriented.

With RQ2 the idea is to use the correlation between the bug fix distribution, code churn
and code quality to direct the focus of the ET. If certain metrics are particularly correlated, it
can provide guidance for more efficient and effective use of test resources. But if the metrics
code churn and code quality currently have no or minimal association with the source code’s
bug fix distribution, another approach, with other metrics, will have to be selected and eval-
uated instead. Answering the question will also give us an indication of if the ET already
matches the bug fix distribution, which would indicate the effectiveness of ET at finding
bugs.

The final research question, RQ3, means to go into further detail about the link between
the exploratory tests and the code’s risk profile, which is defined by the code quality, code
churn and bug fix distribution of each source code file. Performing this analysis in further
depth can provide an example of how to use the code’s risk profile to reach a more risk-aware
use of ET resources.

All gathered metrics will remain static as long as the code and the exploratory tests remain
unchanged. If they were to change, new data would need to be gathered and the research
questions reevaluated. The result of this project is mainly in the context of Qlik Sense at
Qlik, but we believe that the use of these metrics to come closer to a risk-aware use of ET
resources can be applied outside of the context as well.

The Qlik Sense source code consists mainly of C#, JavaScript and C++. To limit the scope
of the project, we will only measure the C# parts of the source code.

1.3 Related Work
This section presents related work on A) exploratory testing, B) test case prioritization, C)
code coverage testing, D) code quality metrics, and E) code churn.

Exploratory testing (ET) is testing of software with minimal or no guidance of how the
test should be performed, often in the form of black-box testing, i.e. the tester knows little
or nothing of the underlying source code. It is widely used in the industry but is not always
clearly defined [13]. In this thesis, we use the following definition: “Exploratory testing is
testing where the test case is not fully scripted. The test case can have non-descriptive steps
to follow, or the tester can be completely free to perform the test case in whatever way they
please.”

Ghazi et al. performed a study on the levels of exploration in ET, from freestyle testing
to completely scripted testing [13]. They determined that different levels of exploration had
different benefits, such as defect detection, ease of reproducing defects and ease of learning.
But, while ET was efficient at finding otherwise hard-to-find defects, it lacked in verifying
conformance to requirements, unlike scripted testing.
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1. Introduction

From a survey by Pfahl et al., it was found that ET is perceived as a testing practice that
supports creativity in the testing phase [2]. The survey also showed that ET is effective and
efficient but that it is hard to use and has little tool support. Although the tool support seems
to have increased in the years since this survey [14].

Afzal et al. performed four experiments where testers and students performed testing
using ET and test case-based testing [15]. The results showed that ET was more efficient at
finding defects and also found more defects of varying types, severity and difficulty levels.

Test case prioritization (TCP) is often done when there is a large number of tests that
needs to be completed in a relatively short amount of time. For ET, TCP becomes more
relevant the lower level of exploration that the test cases have. While most TCP is based on
code coverage, Hemmati et al. showed that history-based and diversity-based techniques can
be modified and applied on manual black-box test cases in rapid-release environments [1].

Felderer and Schieferdecker performed a taxonomy of risk-based testing to understand,
categorize, assess and compare its approaches to support selection for specific purposes [12].
The result was a taxonomy with the top-level classes risk drivers, risk assessment, and risk-
based test process. This taxonomy can be used to allocate testing resources making the test
phase more risk-aware.

Code coverage is used to determine to what extent test cases are executing the source
code and can differ depending on what type of coverage is used, e.g. statement- or branch
coverage. It can also be used to direct ET efforts to specific high-risk parts of the code, i.e.
functionality that is poorly covered by existing test cases.

Marick describes different aspects of code coverage that are important to be aware of
when using code coverage to design test cases and the dangers of blindly relying on the metric
[3]. For instance, when creating tests you should not focus on increasing test coverage but
instead focus on how to improve the test quality. Marick also states that coverage tools “are
only helpful if they are used to enhance thought, not replace it”.

Hemmati performed a study on the effectiveness of fault detection of different types of
code coverage [4]. They found that a basic criteria such as statement coverage is the least
effective at fault detection and reaching 100% code coverage does not guarantee that the
software is fault free.

Kochhar et al. showed the effectiveness of using code coverage to develop and improve
test suits for testing in large systems and showed that there is a statistical correlation between
code coverage and test suits’ fault detection effectiveness [5].

The concept of code quality is used to show how maintainable a software solution is and
subsequently how costly continued maintenance and evolution would be [10]. Numerous
metrics have been proposed for source code quality.

Baggen et al. give a summary of an approach created by the Software Improvement Group
for code analysis and quality consulting where the focus is software maintainability [16]. The
methodology is based on a standardized measurement model using the ISO/IEC 9126 defini-
tion of maintainability and source code metrics, with procedural standardization enhancing
result comparability.

Tornhill and Borg performed an analysis on 39 proprietary production codebases us-
ing the CodeScene tool to highlight the importance of the code quality concept [10]. They
demonstrated that code quality has a considerable impact on the product’s time to market
and its external quality, which is manifested through software defects.

A systematic review of software maintainability prediction and metrics was performed
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1.4 ET at Qlik

by Riaz et al. to determine which maintainability prediction metrics are the most effective
[17]. The review showed that the most commonly used maintainability prediction metrics
were size, complexity and coupling and that the most effective prediction models were those
that used multiple metrics.

Code churn can be described as the number of changes made to a component over a
period of time [9] and can be used to predict components that are defect-prone.

Munson and Elbaum designed and conducted an evaluation experiment to compare some
process measures to code churn and showed that software complexity metrics along with
relative software complexity metric and code churn and code deltas are good measures of
code quality [18].

Liu et al. developed a code churn-based unsupervised defect prediction model and in-
vestigated its effectiveness against existing supervised and unsupervised defect prediction
models under the three prediction settings: cross-validation, time-wise cross-validation and
cross-project prediction [8]. They showed that code churn is an important metric for effort-
aware just-in-time defect prediction models.

Nagappan and Ball conducted a case study that introduced a method for predicting sys-
tem defect density at an early stage, which employs a set of relative code churn measures
[9]. This showed that using relative code churn measures is a better way of predicting defect
density compared to absolute code churn measures.

Code coverage, code quality and code churn can be used to improve exploratory test
practices by guiding the tester in creating test cases. Code coverage can be used to show
what parts of the source code that have not been tested. Code quality can highlight areas
with code of lower quality and code churn can highlight areas with code that are undergoing
frequent changes, which both are areas likely to be more defect prone. While using these
metrics to guide the creation of test cases, as long as they are not fully scripted, the testing
activity still qualifies as ET, although with varying levels of exploration.

1.4 ET at Qlik
The exploratory tests performed at Qlik are called test flows and are divided into two cat-
egories, test flows that are done weekly on the latest internal build of the software and test
flows that are done every 3 months before the latest public release. The test flows focus on
testing different usage scenarios of the software product as well as usage on different plat-
forms such as mobile and tablet versions. Many of the test flows are created to test the
scenario of a certain role, e.g. administrator, developer, content creator, content handler and
consumer. The test flows are done once in every test iteration and which tester that performs
each flow are typically rotated between iterations. The test flows consist of non-descriptive
tests divided into sections, often representing different sections of the software. An example
excerpt of a test flow can bee seen in figure 1.1.
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App

Create app
Add data
…

Edit mode

Create visualizations
Modify visualizations
…

Figure 1.1: Example excerpt of a ET test flow at Qlik.
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Chapter 2

Method

The primary approach that we use to address the research questions is case study research,
that is, "An empirical inquiry that investigates a contemporary phenomenon (the "case") in depth
and within its real-world context, especially when the boundaries between phenomenon and context
are unclear" [19]. According to the ACM SIGSOFT Empirical Standards [20], this type of
software engineering research:

• Presents a detailed account of a specific instance of a phenomenon at a site. The phe-
nomenon can be virtually anything of interest (e.g. Unix, cohesion metrics, commu-
nication issues). The site can be a community, an organization, a team, a person, a
process, an internet platform, etc.

• Features direct or indirect observation (e.g. interviews, focus groups, source code anal-
ysis).

• Is not an experience report or a series of shallow inquiries at many different sites.

In this study, the context is the development of Qlik Sense at Qlik and the phenomenon
under study is ET. Our data collection methods are tool-based source code analysis and cov-
erage measurements from the execution of exploratory test flows. The resulting data are
analyzed using descriptive statistics and correlation analysis. With this data we will study
what parts of the source code the exploratory tests cover, how they correlate with other code
analysis measurement such as code quality, code churn and the bug fix distribution. Further-
more, we will study the correlation between code quality, code churn and bug fix distribution
to determine if there is a correlation between these metrics that can be used to improve the
efficiency and effectiveness of exploratory tests.

By applying the case study research method to our three research questions, we believe we
can determine if our proposed metrics can be used to improve the efficiency and effectiveness
of the ET at the case company. Finding what parts of the source code are lacking ET coverage
in conjunction with determining the correlation between the bug fix distribution and ET
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2. Method

coverage, code churn and code quality, and analyzing the code’s risk profile, the ET resources
can be allocated to areas where they would be the most effectively utilized.

2.1 Code coverage of exploratory testing
To answer RQ1, i.e. how the exploratory test activities cover the source code, we measure
the fraction of line coverage on a file-level that the ET achieves. This is performed by in-
strumenting the source code with the .NET code coverage tool dotCover (version 2022.3.3)
[21] from JetBrains. We then performed the exploratory test flows on the instrumented build
and collected coverage information from the sessions. Since ET is generally dependent on
the tester, ideally we would measure the coverage from multiple testers performing the same
test flows, but with the limited time we had to settle for one test session per test flow.

The result of the ET code coverage measurement in this study will be equivalent to code
coverage measurement of any other type of testing method. Only the way we collect the data,
the setup we use, will differ from measuring code coverage of other testing methods. Meaning
that the theory applied in this study can be applied to all types of testing methods.

Due to the time constraints of this thesis as well as the limitations of the chosen code
coverage tool, we limited the study to only look at the parts of the source code written in .NET
(C#). Further, due to the size of the software under study, Qlik Sense Enterprise on Windows
(QSEoW), as well as time constraints, we only measure the coverage on 3 of the 14 repositories
of QSEoW that contain mainly C# code. Combined, the three chosen repositories consist of
about 260 000 lines of code.

To measure the code coverage on these three components of QSEoW we need to run them
in Visual Studio through the dotCover plugin alongside a full installation of QSEoW. This is
required since we need a fully functioning installation of the software in order to perform the
ET activities. The three components are Windows services which have the advantage of being
able to be run independently from the rest of the software. The installed services can then be
replaced with the instrumented versions run through Visual Studio while measuring the code
coverage. The three Windows services are Qlik Sense Proxy Service (QPS), which handles site
authentication, session handling, and load balancing, Qlik Sense Repository Service (QRS),
which contains all data and configuration information for a Qlik Sense site and Qlik Sense
Scheduler Service (QSS) which manages the scheduled reloads of apps, as well as other types
of reload triggering based on task events [22]. Which parts of the source code for QSEoW
to be included in this thesis project was not decided beforehand. Instead, we incrementally
added repositories and source code files to the instrumentation in discussions with experts
at Qlik until they perceived the volume was sufficient to generate convincing results.

We have included 14, out of 21, test flows that are done on QSEoW, 6 that are done weekly
and 8 that are done quarterly. The goal was to include as many of the test flows as possible
in this thesis project, only excluding those that test a different product, such as the desktop
version, and those we are unable to sufficiently measure code coverage for with our testing
environment, such as the test flows that test the installation of the software since we require
a fully functional installation of the software to measure the code coverage.

Before starting this thesis project I was employed part-time by Qlik to perform these test
flows, giving me experience of how the test flows are performed as well as experience using
the Qlik Sense software. With that said, the test flows were done by myself and I was taught
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2.2 Code coverage tool validation

Qlik Sense Scheduler Service

Visual Studio

Full installation

Qlik Sense Enterprise on
Windows

Qlik Sense Repository Service

Visual Studio

Qlik Sense Proxy Service

Visual Studio

Figure 2.1: The coverage setup consists of a full installation of Qlik
Sense Enterprise on Windows with the services QPS, QRS and QSS
ran through separate instances of Visual Studio.

to perform them during my employment at Qlik.

2.2 Code coverage tool validation
To ensure that the selected coverage tool performs the measurements as expected, we created
a simple validation test. The idea was to create a test with a known outcome, i.e. a test for
which we knew exactly what code would be executed. We ended up looking at a network call
that was done to the database when a certain button in the UI was pressed. The next step was
to record the coverage that occurred when the UI button was pressed, which lets dotCover
highlight the code in Visual Studio, green for covered and grey for not covered. Then we
located the entry point for the call and placed a break-point in the source code, which allowed
us to activate the debug mode and step through each statement after the break-point to verify
all the statements executed were marked with green by dotCover. We considered the test
successful.

2.3 Exporting code coverage data
The code coverage tool, dotCover, saves a completed coverage measurement as a ’snapshot’.
These snapshots can be merged together into one file, which is what we will do with the
snapshots from the three repositories for each test flow we measure. The snapshot can then be
exported into different file formats, such as Extensible Markup Language (XML), JavaScript
Object Notation (JSON) and HyperText Markup Language (HTML). We chose to export to
XML, specifically what dotCover calls Detailed XML, since it is compatible with and was
proven the easiest format to import into the Qlik Sense software, which is the software we
will use to present and visualize and explore our results. See figure 2.2 for a visualization of
the process.

To import the XML files with the code coverage data into Qlik Sense we need to write
a data load script, see appendix A, which is done in Qlik Sense’s Data Load Editor in the
coding language QlikScript. When importing we can choose what parts of the XML file we
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Visual Studio

dotCover

code coverage snapshot

Visual Studio

dotCover

code coverage snapshot

Visual Studio

dotCover

code coverage snapshot

Visual Studio

dotCover

merged snapshot detailed XML file

Figure 2.2: A visual representation of the creation, merging and ex-
porting of dotCover snapshots.

want to import, e.g. for this study we are mainly interested in the statement (line) coverage
on a file level. We will also use the filename of the XML file to indicate for what test flow
coverage data is being imported, which is needed to sort the data by each test flow.

2.4 Bug reports and file-level fixes
When collecting the distribution of bugs on a file-level we want to look at issues posted to
Qlik’s Jira board for bug reports. However, since we want to know in what file a bug was
located we need to look at the pull request’s changed files in pull requests that are linked to
a Jira issue in the bug reports board.

Qlik provides .qvd files, a Qlik Sense data file, containing different data exported from
their Jira boards. Among them is a data file for all pull requests that have been merged in their
repositories. With a load script we can import the data into Qlik Sense while also filtering
out the specific information we want, i.e. only pull requests for the three repositories we are
measuring code coverage on and pull requests that have been merged to the master branch
since then the pull request has been reviewed and approved.

Unfortunately, the data file does not contain the pull request’s changed files, but we can
get that information from the GitHub API, since we have the pull request’s repository and
pull request number.

The importing of the pull request data file as well as getting the pull request’s changed
files from the GitHub API was done in the same load script, which can be seen in appendix
A. In figure 2.3 you can see a visual presentation of the data collection.

The time window for our collection of reported bugs is the full life span of the source
code, starting with the first bug report submitted in 2015 until the most recent report in
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2.5 Source code quality and churn

Jira issues qvd file

Bug reports

Pull requests qvd file

GitHub API

Changed files

Qlik Sense

Merged pull requests

csv data file

Figure 2.3: A visual representation of the bugs on a file level data
collection.

August of 2023. The distribution of bug reports per year can be seen in figure 2.4. The
resolutions to the reported bugs in total resulted in X changes to Y files, which we use in our
later analysis.

20
15

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

Figure 2.4: Distribution of the number of bug reports per year.

2.5 Source code quality and churn
CodeScene is a tool for code and repository analysis that can be used to visualize source code
quality and development activity. It can show several different analysis metrics pertaining
to your code, and the two metrics from CodeScene we are interested in are code quality
and code churn. Code quality is a measure of how easy the code is to maintain and further
develop, which in CodeScene is called code health and defined as a score from 1 to 10, were
10 is code of the highest quality. Code health is an aggregated metric based on 25+ factors
scanned from the source code [10] [23]. Code churn is the code’s change frequency, which
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2. Method

Figure 2.5: CodeScene Hotspots visualization.

in CodeScene is called Hotspots. CodeScene uses two types of churn, absolute and relative
churn, which we are both interested in. Absolute churn is the number of times a file has been
changed during the specified time period, while relative churn is the churned lines of code
(LOC), lines added plus changed, divided by the files total LOC [9]. Each of these metrics are
displayed on a file-level and in figure 2.5 you can see an example visualization of Hotspots in
CodeScene.

Figure 2.6 shows the distribution of commits per year for the three repositories. The time
window for the data collected from CodeScene is 2014-10-22 to 2023-08-25, corresponding
to the entire available git history.

Since we want to integrate all data collected in this thesis project in one place for analysis
and visualization we export the CodeScene data using a Python script, which can be seen in
appendix A, and import it into Qlik Sense Desktop.

2.6 Code coverage aggregation
Since we measure code coverage per line per test flow, we want to aggregate the code coverage
into one metric, total coverage. We have measured the coverage on the same code for all test
flows, so the total coverage will simply be that if a statement in the code is covered by at
least one of the test flows then that statement is considered covered in the total coverage. We
wrote a Python script to aggregate the coverage, which can be seen in appendix A.
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Figure 2.6: Distribution of the number of commits per year.

2.7 Data consolidation and preprocessing
We gathered all the collected data in a master table table in Qlik Sense listing all metrics per
source code file. The table was exported to an Excel sheet so that it could be transformed to
a Pandas [24] DataFrame for correlation analysis. We also used matplotlib to create graphs
showing the distribution of each metric.

For the correlation analysis, we chose to use Spearman’s since none of the data is normally
distributed. The Python code for the Pandas DataFrame creation, correlation calculation and
distribution graphs can be seen in appendix A.

When analyzing the data, we focus on code that changes. Previous work has shown that
it is where changes are made that faults have a risk of manifesting [25]. In other words, few
bugs are discovered in code that does not change. To explore this, we conduct the correlation
analysis using different subsets of the data. We study the entire dataset, and then subsets
reflecting files that have been changed at least 5, 10, 20, 40 and 80 times, respectively.

The correlation coefficient can be categorized into low, medium and high intervals. A
high value (positive or negative) is between 0.5 and 1 which is said to be a strong correlation,
a medium value lies between 0.30 and 0.49 which is a moderate correlation and a low value
is below 0.29. A coefficient value of 0 shows no correlation.

The file-level source code’s risk profile is based on the metrics code health, churn, and the
number of bug fixes that have been committed to the file. We assume that a file exhibiting low
code health, high churn or a high number of historical bug fixes has a higher risk of containing
bugs. Furthermore, we consider combinations of these concerns as increasingly risky. When
performing the analysis with respect to RQ3 we look to see if there is any correlation between
these conditions and the files’ total code coverage. We also manually inspect the total code
coverage of the 100 most risk-prone files.
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Chapter 3

Results

In this chapter, we will report the results by presenting the data collected as well as the
analysis performed on that data.

3.1 Data distribution
We gathered all collected data in a master table in preparation for further analysis. The table
consists of metrics for 1,729 source code files.

Figure 3.1 shows the distribution of total coverage per file. We find that the distribution
is heavily skewed. The majority of the files had 0 to 10 percent code coverage with the rest
of the data relatively evenly spread across the 10 to 100 percent range. In total the test flows
covered 14.4% of the source code.

Figure 3.2 presents the distribution of code health per file. We can see that the majority
have high code health, i.e. code health of 9 to 10. There are few occurrences at code health
range 6 to 9, and even fewer in the range 1 to 6. Files with code health below 1 do not contain
logic, e.g. interface classes, and were excluded from the analysis. The average code health of
the files included in the study is 9.64.

Figure 3.3 displays the distribution of bug fixes per file. The distribution is very skewed
with most files having no bug fixes. The average number of bug fixes per file is 0.57.

Figures 3.4 and 3.5 show the distribution of relative and absolute churn per file, respec-
tively. Both relative and absolute churn have high outliers compared to where the majority
of the data lies. For the absolute churn, we can see that almost all the data is in the 0 to
50 range with only a single occurrence as high as 250. A similar pattern can be seen in the
distribution for relative churn, where most of the data is in the 0 to 250 range and only a
single occurrence of relative churn up to 2,500. The average absolute and relative churn per
file is 12.78 and 153.24, respectively.
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Figure 3.1: The distribution in percent of the amount of total code
coverage per file achieved when performing the test flows.
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Figure 3.2: The distribution of the code health per file.
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Figure 3.3: The distribution of the number of bug fixes per file
recorded during the time period 2015-2023.
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Figure 3.4: The distribution of the absolute churn per file.
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Figure 3.5: The distribution of the relative churn per file.

3.2 Data correlation
In table 3.1, we can see the Spearman correlation between our collected metrics. Firstly, we
can see that there is a very low correlation between the total exploratory test coverage and
any of the other metrics.

For code health, it has notable correlations with absolute churn, relative churn and the
number of bug fixes. Its most notable correlation is with absolute churn which is a negative
moderate correlation of -0.466, and its correlation with the number of bug fixes is also mod-
erate at -0.382, while the correlation with relative churn is in the top end of a low correlation
at -0.255.

Relative and absolute churn have a strong positive correlation with each other, which
makes sense because of their close relationship.

Other than its negative correlation with code health, the number of bug fixes also has a
positive correlation with relative and absolute churn, where the increase in absolute churn
would increase the risk of more bugs at a higher rate than the increase of relative churn.

Table 3.1: The Spearman correlation matrix for the collected met-
rics. Values of 0.3 or higher are highlighted in bold.

Total coverage (%) Code health Absolute churn Relative churn Nbr bug fixes

Total coverage (%) 1.000 -0.040 0.076 0.036 0.082
Code health -0.040 1.000 -0.466 -0.255 -0.382
Absolute churn 0.076 -0.466 1.000 0.787 0.382
Relative churn 0.036 -0.255 0.787 1.000 0.238
Nbr bug fixes 0.082 -0.382 0.382 0.238 1.000

In table 3.2 and 3.3 we can see the correlation matrix for our metrics after we have filtered
out files with a lower absolute churn than 20 and 40, respectively. The largest change we can
see in these matrices compared to the correlation for all files is the decrease of the positive
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correlation between absolute and relative churn. Another notable change is the decrease of
correlation between code health and relative churn, which decreases as far as almost reaching
zero. The correlation between code health and absolute churn and the correlation between
code health and the number of bug fixes also decreased slightly. Furthermore, we see a large
decrease in correlation between the number of bug fixes and relative churn which almost
reaches zero for files with absolute churn of 20 or higher. Finally, we see an increase in
correlation between total coverage and relative churn and between total coverage and the
number of bug fixes, which both reach above 0.2 for files with absolute churn of 40 or higher.

Table 3.2: The Spearman correlation matrix for the collected metrics
for files with an absolute churn of 20 or higher. Values of 0.3 or
higher are highlighted in bold.

Total coverage (%) Code health Absolute churn Relative churn Nbr bug fixes

Total coverage (%) 1.000 0.066 0.034 0.082 0.056
Code health 0.066 1.000 -0.363 0.153 -0.322
Absolute churn 0.034 -0.363 1.000 0.306 0.311
Relative churn 0.082 0.153 0.306 1.000 0.069
Nbr bug fixes 0.056 -0.322 0.311 0.069 1.000

Table 3.3: The Spearman correlation matrix for the collected metrics
for files with an absolute churn of 40 or higher. Values of 0.3 or
higher are highlighted in bold.

Total coverage (%) Code health Absolute churn Relative churn Nbr bug fixes

Total coverage (%) 1.000 0.132 -0.067 0.206 0.202
Code health 0.132 1.000 -0.371 0.069 -0.343
Absolute churn -0.067 -0.371 1.000 0.412 0.174
Relative churn 0.206 0.069 0.412 1.000 -0.063
Nbr bug fixes 0.202 -0.343 0.174 -0.063 1.000

Table 3.4 shows the correlation between code health and the number of bug fixes when
we have filtered out files with lower absolute churn than 5, 10, 20, 40 and 80. The table also
shows the number of files left after filtering. We can see that the negative correlation stays
the same almost across the board, only increasing slightly for files with absolute churn of 80
or higher.

3.3 Risk-prone files
In table 3.5 and 3.6 we can see our metrics for the 100 most risk-prone source code files. We
obtained these files by sorting our master table on code health, the number of bug fixes and
absolute and relative churn (in that order). Code health is sorted in ascending order while
the other metrics are sorted in descending order. We also added the lines of code (LOC) for
each file, which we gathered manually from the repositories on GitHub.
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Table 3.4: Correlation between Code Health and the number of bug
fixes for different subsets of absolute churn.

Absolute churn Correlation Number of files

>=5 -0.351 1081
>=10 -0.322 664
>=20 -0.322 339
>=40 -0.343 101
>=80 -0.436 20

We can see that all the files have varied coverage, ranging from 0% to 90% but none have
a coverage of 100%. The lowest code health we have is 2.2, but it increases rapidly when going
down the table and only 11 files have a code health of below 6. Furthermore, we see that the
file with the lowest code health is also one of the largest in terms of LOC.

26



3.3 Risk-prone files

Table 3.5: The 100 most risk-prone source code files (0-49).

Total coverage (%) Code health Nbr bug fixes Absolute churn Relative churn LOC

0 54.1 2.2 8 213 224 2135
1 50.0 4.9 1 39 122 1073
2 0.0 4.9 3 33 139 2404
3 0.0 5.2 2 65 193 2826
4 39.7 5.2 0 51 146 810
5 0.0 5.2 3 19 185 1399
6 0.0 5.2 2 23 153 1963
7 0.0 5.4 0 47 176 1862
8 0.0 5.6 5 56 175 1010
9 0.0 5.8 0 31 373 1095
10 0.0 5.8 0 56 154 1608
11 0.0 6.0 0 25 126 1159
12 0.0 6.0 0 79 421 1238
13 0.0 6.2 1 10 166 341
14 78.6 6.2 11 247 389 900
15 29.8 6.3 4 8 140 193
16 0.0 6.3 2 42 140 2390
17 0.0 6.4 3 83 228 1466
18 69.6 6.5 1 35 145 413
19 0.0 6.6 2 17 120 784
20 0.0 6.6 0 45 122 1632
21 62.3 6.6 20 89 242 667
22 0.0 6.7 0 22 116 930
23 0.0 6.7 2 69 184 1667
24 0.0 6.7 2 26 112 931
25 80.3 6.8 2 20 168 340
26 0.0 6.8 0 123 162 969
27 0.0 6.9 18 52 117 2942
28 0.0 6.9 0 27 208 632
29 0.0 6.9 2 25 121 1202
30 0.0 6.9 5 135 224 1113
31 0.0 7.0 12 224 347 705
32 0.0 7.0 2 43 296 728
33 0.0 7.0 15 67 295 1702
34 0.0 7.0 2 4 100 820
35 0.0 7.0 2 17 133 882
36 52.9 7.1 1 134 279 803
37 7.6 7.1 1 103 241 673
38 0.0 7.1 2 78 316 1476
39 0.0 7.2 1 4 112 723
40 0.0 7.2 0 52 359 768
41 36.8 7.3 8 44 167 286
42 60.0 7.3 8 41 158 302
43 0.0 7.3 0 21 135 1026
44 40.5 7.4 3 68 164 430
45 0.0 7.4 1 8 109 385
46 64.3 7.4 0 23 137 224
47 13.2 7.4 0 28 160 534
48 52.6 7.5 16 66 239 352
49 0.0 7.5 0 19 227 700
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Table 3.6: The 100 most risk-prone source code files (50-99).

Total coverage (%) Code health Nbr bug fixes Absolute churn Relative churn LOC

50 60.8 7.5 0 27 169 298
51 0.0 7.5 1 7 106 780
52 0.0 7.5 1 15 146 327
53 0.0 7.6 5 8 103 1205
54 70.2 7.6 7 67 190 757
55 0.0 7.6 1 21 120 1747
56 0.0 7.6 0 17 151 341
57 0.0 7.6 2 36 274 563
58 30.3 7.6 0 33 69 482
59 0.0 7.7 1 28 301 503
60 0.0 7.7 2 21 134 442
61 0.0 7.7 0 31 226 862
62 0.0 7.7 0 6 100 588
63 71.8 7.8 2 71 219 541
64 0.0 7.8 7 22 108 249
65 0.0 7.8 2 21 131 659
66 0.0 7.8 0 18 215 346
67 34.1 7.8 5 74 439 314
68 61.0 7.8 11 35 164 248
69 0.0 7.8 7 22 125 1068
70 76.6 7.8 4 73 209 339
71 0.0 7.9 0 51 257 860
72 0.0 7.9 0 18 187 682
73 0.0 7.9 2 13 119 602
74 0.0 7.9 0 17 217 378
75 0.0 7.9 0 17 143 617
76 0.0 7.9 1 44 152 455
77 29.8 7.9 0 9 107 331
78 0.0 7.9 4 34 234 252
79 10.5 8.0 1 31 185 260
80 60.9 8.0 3 5 102 340
81 7.4 8.0 1 4 100 328
82 0.0 8.0 0 22 176 589
83 0.0 8.0 0 14 17 479
84 76.2 8.0 3 15 232 394
85 0.0 8.0 2 17 126 591
86 59.2 8.0 0 25 167 479
87 82.1 8.0 1 18 177 325
88 0.0 8.0 0 17 215 444
89 0.0 8.1 0 15 125 1345
90 44.0 8.1 5 50 200 286
91 52.6 8.1 1 6 133 211
92 0.0 8.1 1 6 133 211
93 0.0 8.2 2 26 179 779
94 0.0 8.2 8 77 226 474
95 67.4 8.2 1 80 314 235
96 15.7 8.2 0 35 255 213
97 0.0 8.2 2 29 127 741
98 90.1 8.2 0 8 137 385
99 0.0 8.2 2 21 138 715
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Chapter 4

Discussion

In this chapter we will discuss the results and the main threats to the validity of this study.

4.1 RQ1: Code coverage of exploratory test-
ing

As we can see from the results in figure 3.1, the exploratory test activities do not cover the
source code very extensively. A majority of the files have no coverage at all. However, high
coverage is seldom the goal of ET, and using ET it is difficult to achieve high coverage on a
software product the size of Qlik Sense.

Studies have shown that varying levels of exploration, from freestyle to scripted, in ET
have different benefits [13], and it can very well be that the level of exploration can determine
the degree of code coverage. When performing scripted tests, e.g. unit tests, the goal is often
to cover the code as extensively as possible. Traditional coverage testing is an iterative exercise
where you continuously add test cases to increase the test coverage. This is structural testing
(whitebox) while ET is functional testing (blackbox).

The test flows we have measured in this thesis project are high-level tests created to test
functions in Qlik Sense a normal user will encounter. They are also relatively few, to achieve
extensive coverage using ET one possibility could be to create more test flows. Another reason
for the low coverage could be dead code, i.e. old code that is no longer used. And while dead
code does not sound like a dangerous issue, studies have shown that it is harmful especially
during the evolution and maintenance phases [26]. Furthermore, there could be code that is
still under development that is hidden behind a feature flag to prevent execution until it is
done, which is used instead of branching versions of a software product [27].

With this result, we have found that there is room for improvement regarding the code
coverage of the ET practices. Furthermore, the coverage data can be used to identify source
code files that are lacking coverage and to focus the ET on risk-prone areas with low coverage,
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in order to improve the efficiency and effectiveness of the use of ET resources.

4.2 RQ2: Bug fix correlation
The correlation between the number of bug fixes and ET coverage, code churn and code
health, as seen in table 3.1, gives us an idea of the relationship between source code and
process metrics and the prevalence of bugs.

Looking at the correlation between the total coverage for the exploratory tests and the
number of bug fixes we see a small positive correlation. This means a higher degree of test
coverage is correlated with an increased ability to identify bugs. However, the correlation is
almost negligible at 0.082. Previous studies have found that ET is perceived as effective and
efficient [2], but that is not something we can corroborate with these results.

Our next observation is the negative correlation between code health and the number of
bug fixes. This would indicate a prevalence of fewer bugs in files with higher code health. At
a value of -0.382 the correlation between these variables is moderate and we believe it is a
meaningful insight. This can be further corroborated when we look at the same correlation
in table 3.4, which is the correlation after we have filtered out files with lower than 5, 10,
20, 40 and 80 absolute churn. Here we can see that the correlation stays the same across
the board with a negative moderate correlation, only increasing slightly for files with an
absolute churn of 80 or higher. When removing files with lower churn we only calculate the
correlation for files that have undergone substantial change. Previous work has shown that
it is where changes are made that bugs have a risk of manifesting [9], which is reflected in
our result. The code health metric is an indicator of code quality, and code quality is used
to show how maintainable software is and how costly continued maintenance and evolution
would be [10]. From our results we can see an indication that ease of maintainability and
evolution of the software lowers the risk of introducing bugs.

Since the correlation between the number of bug fixes and code health indicate areas
with lower code health are areas with a higher risk of containing bugs, we can use this result
to improve the ET by focusing the ET coverage to areas of the code with lower code health.
This will improve the efficiency of the ET and reducing the amount of resources required to
improve its effectiveness.

Looking at the correlation between the number of bug fixes and absolute and relative
churn we see that these correlations differ slightly. With absolute churn, the number of bug
fixes has a positive moderate correlation of 0.382. While with relative churn the correlation
is a positive low correlation of 0.238. This is logical since, as we mentioned above, prior
work has demonstrated that bugs are more likely to appear where changes are implemented
[25]. But we can observe further that this correlation decreases if we only look at files that
have been changed a certain number of times. In table 3.2 and 3.3 we can see that both the
correlation with absolute and relative churn decreases quite significantly, with relative churn
decreasing as far as almost reaching zero. For relative churn, this would indicate that the
risk of bugs appearing is only correlated with churn up to a certain change frequency, when
files change very frequently the pattern disappears. This is less apparent for absolute churn,
although its decrease in correlation with the number of bug fixes still indicates a similar
pattern. Future research could explore this phenomenon further.

Just like with the correlation between the number of bug fixes and code health we can use
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the correlation between the number of bug fixes and both types of churn to focus the ET to
improve its coverage of areas with high churn. Although to a lesser extent, due to the lower
correlation and the fact that they are only correlated up to a certain change frequency.

4.3 RQ3: Risk profile and exploratory test
coverage

The source code’s risk profile is given by its code health, churn and bug fix distribution.
Looking at table 3.1 we see a very low correlation between the exploratory test coverage
and these metrics. After filtering on absolute churn we mostly see a notable change for the
correlation between the ET coverage and relative churn and the ET coverage and the number
of bug fixes, which for files of absolute churn of 40 or higher in table 3.3, increases to 0.206
and 0.202, respectively. We also see an increase in correlation between ET coverage and code
health, which increased to 0.132. While these increases in correlation are quite high, note
that the subset of files with absolute churn of 40 or higher is small, with only 101 out of 1,729
files.

When looking at the 100 most risk-prone files in table 3.5 and 3.6 we see that most of the
files have no coverage from our ET. While some of the files have coverage, very few of them
are very high. For example, of the 100 most risk-prone files only 16 have a coverage of above
60%.

While the risk profile at the moment does not align with the ET coverage it can be used
to further improve it, increasing its effectiveness at locating bugs.

For instance, the test flows can be improved by focusing on areas with high risk. This can
be done by improving the ET coverage of specific files. Such as file 0 in table 3.5 which has
the lowest code health, high churn and moderately high bug fixes while only being covered
at a total of 54.1% by the test flows. While 54.1% coverage is relatively high compared to the
other risk-prone files, file 0 is also one of the largest files with 2,135 LOC, leaving about 980
LOC uncovered. But increasing ET coverage is not the only way to reduce a file’s risk. Since
we have seen a moderate correlation between code health and the number of bug fixes, and
previous work shows that higher code quality leads to fewer bugs [10], increasing a file’s code
health could lower the risk of future bugs. Lowering the risk of bugs appearing in a file rather
than increasing the chance of catching them would be the ideal solution, although it would
probably require more resources.

Another risk-prone file worth focusing on is file 27, which has relatively low code health,
moderately high churn and one of the highest number of bug fixes while having a total cover-
age of 0%. It is also the largest file among the most risk-prone files with 2,942 LOC. Compared
to file 0, file 27 has relatively high code health, at 6.9, but it could still benefit from being
increased.

Further down the list in table 3.5 we have file 31, which has high churn, moderately high
bug fixes and relatively low code health with 0% total coverage. ET is often used for testing
before each new release of a software, and when a file is changed as much as file 31 it certainly
should be included in that testing phase.

In regards to churn, increasing the ET coverage of risk-prone files with high churn could
be beneficial. Compared to code health churn is not something that can be easily improved.
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Instead increased coverage could certainly be a solution for raising the chance of catching
churn-induced bugs, which is shown by previous work [8].

4.4 Threats to Validity
There are several threats that affect the validity of this thesis project. Such as the results from
the collected data regarding code coverage, code churn, code quality and bug fix distribution,
the correlations between the data and the conclusions drawn from these results.

4.4.1 Internal Validity
Threats to internal validity refer to whether there exist other factors that could affect the
achieved result. In the context of this study, it refers to the validity of the conclusions drawn
from the correlation analysis of our collected data as well as the analysis of risk-prone files.

Using the correlation analysis of our data to draw causal conclusions would be invalid.
We can only see correlation analysis, not causation.

The correlation we have seen between the bug fix distribution and code health as well
as the correlation between the bug fix distribution and code churn could be caused by other
factors. But what those factors are would require further study on the subject.

Similarly, the conclusions drawn from the analysis of risk-prone files could also be caused
by other factors. Such as the fact that two of the largest files in terms of LOC are among the
files deemed most risk-prone, which could have nothing to do with the size of the files.

4.4.2 External Validity
Threats to external validity refer to the generalizability of findings, which in the context of
this study is generalizability of the ET code coverage, and use of code churn, code quality and
bug fix distribution to reach a risk-aware use of ET resources.

While the amount of source code this thesis project studies is substantial, we have looked
at a relatively small subset of the software product. The results may differ if the study was
performed on the entirety of the product’s source code. Further, this thesis project only looks
at one software product at a single company written in one single programming language,
and to generalize these results could be incorrect. But we believe that using the metrics
code churn, code quality and bug fix distribution in conjunction with the code coverage of
ET can help come closer to a risk-aware use of ET resources when applied outside of this
thesis project’s context. Still, additional studies in other contexts are needed in the future to
corroborate this statement.

4.4.3 Construct Validity
Threats to construct validity refer to the suitability of evaluation metrics, which in the con-
text of this study is the suitability of line coverage, code health, absolute and relative churn
and the bug fix distribution.
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Whether code coverage is a meaningful metric for measuring the performance of manual
ET remains an open question. In ET, as the name suggests, you are encouraged to explore the
software during execution. If you perform the same test multiple times, the idea is to vary in
what way you check each step of the test flow.

To improve the code coverage metric for ET you would need to perform a test case mul-
tiple times, while varying each step as much as possible, and then join all covered statements
from each execution into one total coverage metric. We also measure the code coverage as
percentage covered per file, without considering the LOC of the file. Looking at the total
LOC covered by the tests or somehow considering each file’s LOC in the coverage metric
could show a different result, since the other metrics may depend on the file’s LOC.

Previous work has shown that code quality has a considerable impact on a product’s time
to market and external quality, manifested through bugs in the software [10]. But there are
several ways of measuring code quality, and whether CodeScene’s code health is a good mea-
sure of such could be further investigated.

Similar to assessing code quality, various metrics exist for measuring code churn. It would
be beneficial to delve deeper into evaluating the effectiveness of CodeScene’s absolute and
relative code churn metrics in gauging the change frequency of the source code.
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Chapter 5

Conclusion and Future Work

In this chapter we summarize the results of this thesis project into a conclusion and give
suggestions for future work to be performed on the subject.

5.1 Conclusion
We have found that the exploratory testing (ET) does not cover the source code very exten-
sively and that there is lacking coverage of risk-prone files. While previous studies have found
that ET is perceived as effective and efficient [2], that is not something we can corroborate
with our results. We also found that the ET coverage has no correlation with code quality,
code churn or the number of historic bug fixes.

We saw a moderate negative correlation between the number of bug fixes and code health,
indicating a prevalence of fewer bugs in files with higher code health. The correlation is also
relatively unchanged when looking at our absolute churn subsets, reinforcing this result fur-
ther. Code health, or code quality, is a metric to show maintainability and cost of continued
maintenance and evolution [10] and from our result we see an indication that that leads to
a lower risk of introducing bugs. For improvement of ET, this can be used to focus the ET
coverage to areas of the code with lower code health, since the correlation between the bug
fix distribution and code health indicate those are areas with a higher risk of containing bugs.

Furthermore, we saw a positive correlation between the number of bug fixes and our two
churn metrics, absolute and relative churn. The correlation is somewhat weaker for relative
churn, but still notable. This result suggests the risk of bugs being tied to how much a file
is changed, which is in line with previous work [9]. We also observed that this correlation
became weaker for our absolute churn subsets, indicating that the risk for bugs is only cor-
related with churn up to a certain change frequency. Since historic churn is not a metric
that can be reduced, only its rate of future increase, increasing the ET coverage for files with
high churn could be beneficial. Just like the previous correlation, the correlation between the
number of bug fixes and both types of churn can be used to focus the ET, increasing coverage
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in areas with higher churn, since this correlation would indicate that those are areas at higher
risk of containing bugs.

The source code’s risk profile is given by its code health, churn and bug fix distribution.
From the correlation analysis we saw that the correlation between the risk profile and the ET
coverage is very low. We also found that the ET coverage of the 100 most risk-prone files is
low, where only 16 files had a coverage of above 60%. Looking further, we saw that the worst
performer was also one of the largest files in terms of LOC, and with 54% coverage it has a
substantial number of uncovered LOC.

Improving the ET coverage for it to align with the source code’s risk profile could increase
the chance of catching bugs in these high-risk areas. But since we have seen a moderate
correlation between code health and the number of bug fixes – and previous work shows
that higher code quality leads to fewer bugs [10] – one could also improve the risk profile by
for instance increasing the files’ code health. Thus decreasing the chance of bugs appearing
in the first place.

With this thesis project, we have corroborated previous work in regards to the correlation
between code quality, code churn and bug fix distribution and provided Qlik new metrics to
further improve their ET practices.

5.2 Future work
This thesis project is an example of case study research on a subset of QSEoW at Qlik. To
achieve a generalized result on this subject more studies need to be performed at different
companies and different software products.

As discussed under threats to construct validity (see Section 4.4.3) we have not considered
a file’s LOC when measuring its code coverage and other metrics. This could bias our results
as LOC might be a strong confounding factor. Previous work reports that LOC should be
controlled when analyzing object-oriented languages [28]. Since we analyze C# code, future
work should investigate how a file’s LOC influences the correlation between code coverage,
code health and churn.

Another future project could implement improvements of the ET coverage with these
results as guidance. And furthermore, analyze if risk-aware use of ET could contribute to
making Qlik’s testing process more efficient and effective.
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Appendix A

Code listings

A.1 Qlik Sense load scripts
Below are the load scripts written in QlikScript used for importing data into Qlik Sense.

Load script for importing dotCover snapshots exported to XML as well as the aggregated
total coverage.

1 let flow_index = 0;
2

3 for each file in FileList (’lib :// Testflows merged \*. xml ’)
4

5 flow_index = flow_index + 1;
6

7 TestFlows :
8 Load
9 ’$( flow_index )’ as TestFlowIndex ,

10 SubField ( SubField (’$(file) ’,’/’,-1), ’-’, 1) as TestFlow //
file naming convention : TESTFLOW - Merged .xml

11 FROM [$(file)];
12

13 CoverageData :
14 LOAD
15 $( flow_index ) & ’-’ & "Index" as FileIndex ,
16 SubField (Name , ’\’, 7) as Repository ,
17 Trim( Replace ( SubField (Name , SubField (Name , ’\’, 6)&’\’, -1),

’\’, ’/’)) as CoverageData .FileName , // removing unnecessary
folder path by splitting before Repository , and changing all ’\’

to ’/’
18 lower(Trim( Replace ( SubField (Name , SubField (Name , ’\’, 6)&’\’,

-1), ’\’, ’/’))) as FileNameLowercase , // to avoid case
sensitivity

19 $( flow_index ) as TestFlowIndex
20 FROM [$(file)]
21 (XmlSimple , table is [Root/ FileIndices /File ]);
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22

23 Statements :
24 LOAD
25 $( flow_index ) & ’-’ & FileIndex as FileIndex ,
26 "Line" as Statement .Line ,
27 Covered as Statement . Covered
28 FROM [$(file)]
29 (XmlSimple , table is [Root/ Assembly / Namespace /Type/ Method /

Statement ]);
30

31 LOAD
32 $( flow_index ) & ’-’ & FileIndex as FileIndex ,
33 "Line" as Statement .Line ,
34 Covered as Statement . Covered
35 FROM [$(file)]
36 (XmlSimple , table is [Root/ Assembly / Namespace /Type/Type/ Method /

Statement ]);
37

38 LOAD
39 $( flow_index ) & ’-’ & FileIndex as FileIndex ,
40 "Line" as Statement .Line ,
41 Covered as Statement . Covered
42 FROM [$(file)]
43 (XmlSimple , table is [Root/ Assembly / Namespace /Type/Type/Type/

Method / Statement ]);
44

45 next file
46

47 TotalCoverage :
48 LOAD
49 FileNameLowercase ,
50 Statement .Line as line ,
51 Statement . Covered as totalcovered
52 FROM [lib :// Testflows merged / totalcoverage .csv]
53 (txt , codepage is 28591 , embedded labels , delimiter is ’,’, msq);

Load script for importing pull request data including pull request’s changed files from
the GitHub API.

1 JiraIssues :
2 LOAD
3 %ID ,
4 SUMMARY ,
5 issuenum ,
6 PrettyNumID ,
7 Resolution ,
8 Status ,
9 "type",

10 CREATED ,
11 RESOLUTIONDATE
12 FROM [lib :// JiraData / Issue_Now .qvd]
13 (qvd)
14 Where "type" = ’Bug ’
15 and ( Resolution = ’Fixed ’ or Resolution = ’Done ’);
16

17 PullRequests :
18 LOAD
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19 % Pull_Request_ID ,
20 Pull_Request_Name ,
21 Pull_Request_Destination_Branch ,
22 Pull_Request_Source_Branch ,
23 Pull_Request_Source_Repo ,
24 Pull_Request_Last_Status ,
25 Pull_Request_URL ,
26 SubField ( Pull_Request_URL , ’/’, -1) as PR_Number ,
27 Pull_Request_Executed_By ,
28 Pull_Request_Author ,
29 Pull_Request_Updated_On ,
30 PR_TO_ISSUE_ID ,
31 PrettyNumID
32 FROM [lib :// JiraData / Jira_Pull_Requests .qvd]
33 (qvd)
34 Where Exists ( PrettyNumID , PrettyNumID )
35 and Match( Pull_Request_Source_Repo , ’qlik -trial/qlik -proxy ’, ’

qlik -trial/qlik -scheduler ’, ’qlik -trial/qlik -repository ’)
36 and Pull_Request_Last_Status = ’MERGED ’;
37

38 // The PullRequestFiles response includes a maximum of 300 (3000?)
files (API limit).

39

40 LIB CONNECT TO ’GitHub - ktm - erikkullberg ’;
41

42 for each repo in FieldValueList (’ Pull_Request_Source_Repo ’)
43

44 for each url in FieldValueList (’ Pull_Request_URL ’)
45

46 prnumber = SubField (url , ’/’, -1); // prnumber is at the end
of the url (ex. https :// github .com/qlik -trial/qlik -proxy/pull /7)

47

48 if SubField (repo , ’/’, -1) = SubField (url , ’/’, -3) then //
checks that current repo is the same as repo in current url

49

50 ChangedFiles :
51 LOAD
52 ’$(repo)’ as [ PullRequestsFiles . Source_Repo ],
53 ’$( prnumber )’ as PR_Number ,
54 Filename as [ PullRequestsFiles . Filename ],
55 Status as [ PullRequestsFiles . Status ],
56 File_Addition as [ PullRequestsFiles . File_Addition ],
57 File_Deletion as [ PullRequestsFiles . File_Deletion ],
58 Total_Changes as [ PullRequestsFiles . Total_Changes ]
59

60 Where SubField (Filename , ’.’, -1) = ’cs ’ // load only .
cs files

61 and Status = ’modified ’; // only modified files , i.e.
bug -fixes (?)

62

63 SELECT
64 Filename ,
65 Status ,
66 File_Addition ,
67 File_Deletion ,
68 Total_Changes

45



A. Code listings

69 FROM PullRequestsFiles
70 WITH PROPERTIES (
71 repoName =’$(repo)’,
72 PRNumber =’$( prnumber )’
73 );
74

75 end if
76

77 next url
78

79 Commits :
80 LOAD DateTime as [ Commits . DateTime ];
81

82 SELECT DateTime
83 FROM Commits
84 WITH PROPERTIES (
85 repoName =’$(repo)’,
86 branchSha =’master ’,
87 sinceDate = ’01 -01 -2013 ’
88 );
89

90 next repo
91

92 Store ChangedFiles into ’lib :// Documents - OD/ PullRequests /
PullRequestsChangedFiles .qvd ’;

A.2 CodeScene data parser
Python script for parsing the data from the CodeScene analysis and writing it to a .csv file
which can be imported into Qlik Sense.

1 # Script for parsing the systemmap .json file found in the CodeScene
analysis folder .

2 # >python codescene -data - parser .py "input -file" "output -file"
3

4 import json
5 import sys
6

7 def parser ( data_tree ):
8 if " children " in data_tree :
9 for i in range(len( data_tree [" children "])):

10 parser ( data_tree [" children "][i])
11 elif data_tree ["path"][ -1]. split(".")[-1] == "cs":
12 path = ’/’.join( data_tree ["path"])
13 file_writer ([path , data_tree ["churn"], data_tree ["high -

resolution -score"], data_tree ["revs"]])
14

15 def file_writer ( data_values ):
16 f = open(sys.argv [2], "a")
17 f.write(’,’.join(list(map(str , data_values )))+"\n")
18 f.close ()
19

20 data_file = open(sys.argv [1], "r")
21
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22 json_string = data_file .read ()
23 json_dict = json.loads( json_string )
24

25 f = open(sys.argv [2], "w")
26 f.write("filename ,churn ,high -resolution -score ,revs\n")
27 f.close ()
28

29 parser ( json_dict )

A.3 Code coverage aggregation
Python script using pandas [24], a data analysis and manipulation tool, and the reduce()
function from the functools library.

1 import pandas as pd
2 from functools import reduce
3

4 def totalcovered (seq):
5 return reduce ( lambda x, y: x if x==’True ’ else y, seq)
6

7 df = pd. read_excel (io="file - coverage .xlsx", sheet_name =" Sheet1 ")
8 df_merged = df. groupby ([’FileNameLowercase ’,’Statement .Line ’]).agg

({’Statement . Covered ’: totalcovered }). reset_index ()
9 df_merged . to_csv ( path_or_buf =’totalcoverage .csv ’)

A.4 Correlation calculation and 100 most risk-
prone files

Python code for correlation calculation and extraction of the 100 most risk-prone files using
pandas [24]. Originally written in a Jupyter Notebook.

1 import pandas as pd
2

3 df = pd. read_excel (’mastertable .xlsx ’, na_values =’-’)
4 df = df.drop(df[df[’FileNameLowercase ’]. str. contains (’generated ’)].

index)
5 df = df.where(df[’high -resolution -score ’] != 0). dropna (how=’all ’)
6 df = df. dropna ( subset =’high -resolution -score ’)
7 df = df. set_index (’FileNameLowercase ’)
8 df[’nbr_fixes ’]. fillna (0, inplace =True)
9

10 df5 = df.where(df[’revs ’] >= 5). dropna (how=’all ’)
11 df10 = df.where(df[’revs ’] >= 10). dropna (how=’all ’)
12 df20 = df.where(df[’revs ’] >= 20). dropna (how=’all ’)
13 df40 = df.where(df[’revs ’] >= 40). dropna (how=’all ’)
14 df80 = df.where(df[’revs ’] >= 80). dropna (how=’all ’)
15

16 corr = df.corr( method =’spearman ’)
17 corr5 = df5.corr( method =’spearman ’)
18 corr10 = df10.corr( method =’spearman ’)
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19 corr20 = df20.corr( method =’spearman ’)
20 corr40 = df40.corr( method =’spearman ’)
21 corr80 = df80.corr( method =’spearman ’)
22

23 corr_chealth_nbrfix = pd. DataFrame (data ={’\\ textbf {{ Absolute churn
}}’:[’ >=5’,’ >=10’,’ >=20’,’ >=40’,’ >=80’],

24 ’\\ textbf {{ Correlation }}’:[
25 corr5[’high -resolution -score ’][’

nbr_fixes ’],
26 corr10 [’high -resolution -score ’][’

nbr_fixes ’],
27 corr20 [’high -resolution -score ’][’

nbr_fixes ’],
28 corr40 [’high -resolution -score ’][’

nbr_fixes ’],
29 corr80 [’high -resolution -score ’][’

nbr_fixes ’]],
30 ’\\ textbf {{ Number of files }}’:[ df5.

shape [0], df10.shape [0], df20.shape [0], df40.shape [0], df80.shape
[0]]})

31

32 chealth_nbrfix_latex = corr_chealth_nbrfix . to_latex ( float_format =’
%.3f’,

33 caption =’
Correlation between Code Health and the number of bug fixes.’,

34 label=’tab:
chealth_nbrfix ’, decimal =’.’, index=False , position =’h’)

35 f = open(’corr_chealth_nbrfix .tex ’, ’w’)
36 f.write( chealth_nbrfix_latex )
37 f.close ()
38

39 headers = [’Total coverage (\\%) ’, ’Code health ’, ’Relative churn ’,
’Absolute churn ’, ’Nbr bug fixes ’]

40 headers = list(map( lambda str: ’\\ textbf {{’ + str + ’}}’, headers ))
41 d = {list(corr. columns )[i]: headers [i] for i in range(len( headers ))

}
42 corr. rename (index=d, columns =d, inplace =True)
43 corr_latex = corr. to_latex ( float_format =’%.3f’, caption =’The

Spearman correlation matrix for the collected metrics .’,
44 label=’tab: corr_table ’, decimal =’.’,

position =’h’)
45 f = open(’corr_matrix .tex ’, ’w’)
46 f.write( corr_latex )
47 f.close ()
48

49 d = {list( corr20 . columns )[i]: headers [i] for i in range(len( headers
))}

50 corr20 . rename (index=d, columns =d, inplace =True)
51 corr20_latex = corr20 . to_latex ( float_format =’%.3f’, caption =’The

Spearman correlation matrix for the collected metrics for files
with an absolute churn of 20 or higher .’,

52 label=’tab: corr20_table ’, decimal =’.
’, position =’h’)

53 f = open(’corr20_matrix .tex ’, ’w’)
54 f.write( corr20_latex )
55 f.close ()
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56

57 d = {list( corr40 . columns )[i]: headers [i] for i in range(len( headers
))}

58 corr40 . rename (index=d, columns =d, inplace =True)
59 corr40_latex = corr40 . to_latex ( float_format =’%.3f’, caption =’The

Spearman correlation matrix for the collected metrics for files
with an absolute churn of 40 or higher .’,

60 label=’tab: corr40_table ’, decimal =’.
’, position =’h’)

61 f = open(’corr40_matrix .tex ’, ’w’)
62 f.write( corr40_latex )
63 f.close ()
64

65 def f0(x):
66 return ’%.0f’ % x
67

68 def f1(x):
69 return ’%.1f’ % x
70

71 df_sorted = df.iloc [: ,[0 ,1 ,4 ,2 ,3]]
72 df_sorted = df_sorted . sort_values (by=[’high -resolution -score ’,’

nbr_fixes ’,’revs ’,’churn ’], ascending =[True ,False ,False , False ])
73 df_sorted = df_sorted .head (100)
74

75 d = {list( df_sorted . columns )[i]: headers [i] for i in range(len(
headers ))}

76 df_sorted . rename ( columns =d, inplace =True)
77 df_sorted_1 = df_sorted .head (50)
78 df_sorted_2 = df_sorted .tail (50)
79 df_sorted_1_latex = df_sorted_1 . to_latex ( formatters =[f1 ,f1 ,f0 ,f0 ,f0

,f0], caption =’The 100 most risk -prone source code files (0 -49).
’,

80 label=’tab :100 _files_1 ’, decimal =’.’, position =’h
’)

81 df_sorted_2_latex = df_sorted_2 . to_latex ( formatters =[f1 ,f1 ,f0 ,f0 ,f0
,f0], caption =’The 100 most risk -prone source code files (50 -99)
.’,

82 label=’tab :100 _files_2 ’, decimal =’.’, position =’h
’)

83 f = open(’100 _files_1 .tex ’, ’w’)
84 f.write( df_sorted_1_latex )
85 f.close ()
86 f = open(’100 _files_2 .tex ’, ’w’)
87 f.write( df_sorted_2_latex )
88 f.close ()
89 df_sorted_1_latex
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Riskmedveten användning av
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POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Kullberg

Utforskande testning (UT) används i stor utsträckning för testning av mjukvara. Tidi-
gare studier har visat att UT effektivt hittar buggar av varierande typ, allvarlighetsgrad
och svårighetsgrad. Detta arbete är en fallstudie på hur företaget Qlik kan riskmed-
vetet använda UT för att testa sin programvara Qlik Sense Enterprise on Windows.

Programvarutestning bygger på en kombination
av manuella och automatiserad metoder och tes-
tar vanligtvis olika aspekter av en mjukvara. Au-
tomatisk testning, ofta så kallade enhetstester, an-
vänds för att verifiera att individuella komponen-
ter fungerar som de ska, medan manuell testning
ofta är funktionella tester av mjukvaran som hel-
het från perspektivet av en användare.

I detta arbete fokuserar vi på utforskande
manuella tester, specifikt testningen av Qlik Sense
Enterprise on Windows som utförs på Qlik. Ut-
forskande tester (UT) integrerar inlärning, test-
design och testutförande och vi använder följande
definition: “Utforskande testning är testning där
testfallet inte är helt skriptat. Testfallet har icke-
beskrivande steg att följa, eller testaren kan vara
helt fri att utföra testfallet på vilket sätt de vill.”
För att framgångsrikt utföra UT måste testaren
använda sin kreativitet och fantasi för att tillhan-
dahålla en mängd olika input till systemet som
testas.

I denna fallstudien mättes vilka delar av koden
som de utforskande testerna exekverade och det
samlades in data för att bestämma kodens riskpro-
fil. Kodens riskprofil bestäms av parametrarna
kodkvalitet, ett värde som baseras på hur enkel

koden är att underhålla samt bygga vidare, och
kod-churn, som säger hur mycket koden har än-
drats under utvecklingens gång, samt antalet bug-
gfixar som har utförts på koden. Dessa värden
bestäms per fil och hjälper oss hitta vilka filer som
är särskilt riskbenägna, det vill säga filer där det
är hög risk att buggar förekommer.

Gather
metrics

  Determine
  risk-prone

files

Measure
code

coverage

Improve
  exploratory

testing

Risk-aware
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testing

Vårt resultat visar att de utforskande testerna
inte täcker en särskilt stor del av koden och att
det är en bristande kodtäckning av riskbenägna
filer. Vi såg även att de utforskande testerna inte
har någon korrelation med kodkvalitet, kod-churn
eller antalet buggfixar. Däremot såg vi en korrela-
tion mellan kodkvalitet och antalet buggfixar samt
en svag korrelation mellan kod-churn och antalet
buggfixar.

Med denna fallstudie har vi bekräftat tidigare
studier kring korrelation mellan kodkvalitet, kod-
churn och distributionen av buggfixar samt till-
handahållit Qlik med en process för att ytterligare
förbättra sitt användande av utforskande tester.
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