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Abstract

Autonomous vehicles are becoming a subject of testing on public roads to ensure
their safety before making them publicly available. With the complexity of their
operation, new testing routines and standards needs to be implemented and evalu-
ated to ensure safe operation. Many research papers on the subject apply a scenario-
based testing methodology with the principle of finding representative test scenarios
and ensuring that the system performs appropriately for these. Currently the field
is faced with challenges in articulating test scenarios and making sure that they
capture all possible scenarios. I use a scenario-based testing approach combined
with unsupervised learning to find representative scenarios automatically from re-
alistic autonomous vehicle disengagements. The resulting clusters are evaluated to
determine what form of vectorization and embedding of textual entries leads to the
most accurate results. The results from clustering were that the methodology was
able to produce clusters with high performance in regards to three common clus-
tering metrics for a data set of 184 disengagement entries. The evaluation of the
actual scenarios that the methodology was able to cover did however not indicate
that the methodology achieved a high level of accuracy, with the highest percentage
achieved being approximately 41% for KMeans clustering with 19 clusters and ap-
proximately 53% coverage with 35 clusters using DBScan. In conclusion, the report
reveals the methodology as a feasible way to mine test scenarios. However, the lack
of large data sets of disengagements makes the tool hard to conclusively evaluate
and the similarity comparison between disengagement scenarios is hindered by the
lack of embeddings specialized in semantics in the field of autonomous vehicles.
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1
Introduction

Autonomous vehicles are improving and becoming ever more present in the public
eye [1]. The technology is thought to have many possible benefits such as achieving
more safe roads considering the presence of human error in 93% of current acci-
dents. There are also many other benefits such as better infrastructure planning as
population increases, leading to more vehicles on the road [2], [3].

Autonomous vehicles are a subgroup of autonomous systems which are sys-
tems capable of operating on their own without human interaction and other forms
of autonomous systems are currently present in the everyday life [4]. Though au-
tonomous systems are not foreign, there are concerns relating to the evolution of
autonomous vehicles, where the safety related concerns are one of the most promi-
nent concerns holding autonomous vehicles from the public roads [5].

Concerns regarding the safety of the autonomous vehicles and the accuracy of
their decisions are present in the debate [6]. Multiple accidents where autonomous
vehicles have been involved have been reported, where some have had fatal outcome
revealing that the systems are not flawless and these flaws are important to address.
In order to reap the benefits of autonomous vehicles, there needs to be a very low
risk of operation which makes testing a central problem to further expansion of
autonomous vehicles [7].

However, the testing of autonomous vehicles is not a simple task. The way con-
text plays a role in their behavior and the infinitely large possible scenarios that the
vehicle can be involved in requires new forms of testing methodologies [4],[8].

The large and varying number of scenarios an autonomous vehicle needs to take
into consideration makes fully exhaustive testing an impractical option as the iden-
tification of all possible scenarios is infeasible due to limited testing resources. The
process of performing on the road real-world testing of autonomous vehicles have
been estimated to require upwards to 11 billion miles in order to reach a 95% con-
fidence that autonomous vehicles are 20% more safe than human operated vehicles
[9], [10], [11]. Instead of using a mileage-based testing of vehicles, many suggests
using a scenario-based testing approach [11], [12], [13]. Such an approach is based
on finding representative test scenarios that can test the system and make sure that
the scenario representation set covers the possible scenarios that an autonomous
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Chapter 1. Introduction

vehicle can be part of while in operation. This data is essential to build a scenario
database to perform testing based upon [9]. This process is currently adopted and
developed to address the problems of finding and formalizing the scenarios that are
relevant to increase confidence in testing and evaluate test coverage [4].

As an alternative to achieving the coverage purely based on real-world testing,
many autonomous vehicle manufacturers use simulation-based testing, where many
different driving scenarios can be generated and tested to see the autonomous vehi-
cle response for a reduced cost [14]. There are however concerns over the quality
and coverage of scenarios in simulation testing against real-world testing and there-
fore real-world driving is still a part of the testing to bridge the gap in simulation
testing [15].

In order to test the autonomous vehicles on real-world scenarios, the state of
California has passed legislation which allows manufacturers to test autonomous
vehicles on their public roads [7]. Some guidelines are however necessary to follow
for the actors wanting to perform testing on public roads and one part of the require-
ments is that the manufacturers must submit reports annually of the autonomous
vehicle disengagements. The reports include information such as when and where a
disengagement occurred as well as a summary of the situation. The reports are pub-
licly available on the California Department of Motor Vehicles (California DMV)
homepage [16]. Such data is expected to improve the generation and selection of
relevant test cases [17] and enhance safety of autonomous vehicles [18].

However, finding representative scenarios from realistic AV disengagements re-
mains an open challenge, and this project aims to address this by taking an un-
supervised approach to extracting representative disengagement for test scenario
selection and creation for autonomous vehicles as well as providing measurements
to evaluate how such a model performs.

The main goal of the thesis is to achieve an efficient and effective way of se-
lecting test scenarios from real-world driving disengagement data for autonomous
vehicles from California DMV based on unsupervised learning.

The paper is structured into 7 sections where the first section is the introduction.
Section 2 named "Concepts and Related work presents works related to the thesis
as well as concepts applied in the thesis. Section 3 named "Research approach"
presents how I aim to fulfill the main goal of the thesis. Section 4 named "Scenario
Selection Methodology" presents the approach taken to achieve scenario selection
according to the thesis main goal. Section 5 named "Evaluation" shows the eval-
uation of the methodology that has been devised. Section 6 named "Discussion",
the research questions are discussed using the results achieved in section 5. Lastly,
section 7 shows the conclusions that are arrived at using the discussion.
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2
Concepts and Related Work

2.1 Concepts and terms

2.1.1 Testing of autonomous vehicles

2.1.1.a Industrial standards

The level of AV autonomy is commonly described by 5 levels of autonomy ac-
cording to the Society Of Automotive (SAE) standard SAE-J3016 [19]. This ranges
from no automation to fully autonomous vehicles that can drive under all conditions
without human intervention.

Some validation standards related to testing autonomous vehicles exist such as
ISO 26262:2018 [20]. This standard mainly focuses on the security and safety of
electronic hardware under the presumption that a responsible driver is in control of
the vehicle [21]. This standard places emphasis on ensuring that the electronics do
not break during usage.

There is another standard for ensuring that the components of vehicles work as
intended without failure in the form of ISO 21448:2022 [22]. This standard places
the focus more on functionality, where the standard requires that the electronics can
behave correctly even in the case of unexpected scenarios.

These standards does however have a common issue which limits their usabil-
ity in autonomous vehicles as they mainly state general requirements and limited
scenarios for testing, which is insufficient to implement and ensure the safety of
autonomous vehicles [10], [23], [24]. The common challenge that is identified in
the standard is the way testing using current standards requires the presence of a
safety driver to handle the vehicle in the cases where the integrated features of the
vehicle fails. There are also concerns regarding the level of unpredictability present
in machine learning technology and how the standards should be reformulated to
implement a standard validation process for autonomous vehicles. Koopman and
Wagner also describes the infeasibility of performing complete system-level testing
as a way of validation due to the time requirement which is estimated to be many
billion hours [23]. The lack of internationally accepted requirements on testing cur-
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Chapter 2. Concepts and Related Work

rently poses problems with defining what type of testing should be performed for
autonomous vehicles according to Khastgir et al. [13].

2.1.1.b Challenges

Due to the problems regarding standards present in electrical equipment for ve-
hicles, challenges exist for testing autonomous vehicles. Without a comprehensive
standard for testing of autonomous vehicles, much effort is put into finding effective
ways of test functionality and safety of autonomous vehicles [25]. There are other
non-technical factors at play such as the ethics of decision-making, this thesis will
not cover such factors as they are out of the scope of this thesis [23].

Some characteristics that make the validation of autonomous vehicle software
different from other forms of software validation is the complexity of the software
involved in the decision making, which relies on machine learning and other statis-
tical algorithms [2], [23]. The result is that the tests conducted can have different
results even though the same type of information is being inputted. Considering that
many of the software present in AVs is based on ML models, the systems often have
to be seen as black-box systems [26]. These core features are seen by studies also
as the main reasons for why validation is central to AVs as there is a possibility that
the models that are trained have not been trained on all scenarios [27]. The risk of
so called "black-swans" in the system, which may be rare, contributes to the vast
number of mileage necessary to cover in on-road testing [13]. Therefore, it is pos-
sible that the training did not cover all possible scenarios and such scenarios needs
to be revealed to improve performance and safety [27].

2.1.1.c Current practices

Considering the challenges described in Section 2.1.1.b, only using a mileage-based
testing approach is inadequate for autonomous vehicles [12]. Current approaches
are developing towards finding the most critical scenarios instead of just perform-
ing on-road testing [8], [13]. And also finding scenarios that can be representative
of a larger set of concrete scenarios [11] to handle the problem of having infinite
amounts of scenarios that needs to be tested individually. The critical scenarios are
seen as the most important scenarios to validate. This can be based on the severity
of consequences incorrect decisions in the scenario can result in. The benefits of
using real-world validation is that the AVs actual performance can be assessed [11].
However, such testing is expensive, which makes simulation testing a significant
approach in AV testing [25], [26], [27], [28].

Xu et al. shows that there is a challenge to find and formulate ground truths
of expected outcome for a certain test input set due to the vast input space for a
complete autonomous vehicle system [29]. A conventional approach could be per-
forming domain-categorization of the input and see if the system response is as
expected for each domain [30]. With the difficulty of determining desired outputs
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based on singular inputs to the system, and the complexity of surrounding informa-
tion to make a decision [31], [4], many studies advocate a scenario-based approach
to testing autonomous vehicles[4], [30], [32], [33], [34].

The lack of unified standard for validating AVs [25] makes the decision on a test
ending criterion to achieve desired confidence of functionality difficult. Hauer et al.
describes the possible way to determine a test ending criterion for scenario-based
testing is to identify realistic scenarios and then to have them tested for expected
functionality [30]. According to Lou et al., identification of unexpected driving sce-
narios, determining if all similar scenarios result in the same autonomous vehicle
behavior and finding efficient ways to perform validation are the most crucial im-
provements needed in the industry [35]. Wagner and Koopman also state that the
edge cases are more important to find and investigate rather than performing confir-
matory testing of functionality that has already been validated to some extent [36].

2.1.2 Scenario-based testing for Autonomous Vehicles

Scenario-based testing is commonly used in autonomous vehicle testing [8]. With
many non-scenario based testing approaches the problem arises of identifying rel-
evant parameters and combinations of parameters to test [31], [37]. Often, the im-
portance in AV validation is to determine if the system behaves appropriately when
presented with a certain situation rather than seeing the behavior for certain possi-
ble values of the system parameters. Scenario-based testing can also be a possible
solution to the problem of validating using only distance-based on the road testing,
as the goal is instead to cover the scenarios which may occur and validate that the
AVs respond appropriately to similar scenarios [12].

2.1.2.a Definition of a scenario

Extensive studies within the field of scenario-based testing uses the definitions of
scenarios defined by Menzel et al, [25], [34], [37], [38]. The authors describe sce-
narios in three levels of abstraction with logical, concrete and functional scenarios
and their application in different stages of development.

• Functional scenarios are the highest form of abstraction presented in Menzel
et al., where scenarios are usually described verbally or in text. Menzel et al.
considers this level as an appropriate way to describe scenarios during the
early stages of development according to the ISO 26262 as it makes it easy
to interpret the intention of the scenario and to design new complementary
scenarios for testing.

• Logical scenarios are the second highest form of abstraction and has a more
detailed description of the scenario than functional scenarios. With this level,
the parameters are given possible ranges and distributions which can make
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Chapter 2. Concepts and Related Work

up a scenario. For example, a functional scenario state that a lane is wide
and the logical scenario should define the measurement and boundaries for
a road lane width. This abstraction level is seen as a good level to set the
requirements for the scenario as the necessary parameters and their values
have been determined.

• Concrete scenarios are the lowest form of abstraction. They are specific situ-
ations where the parameters determined in the logical scenarios are assigned
one concrete value. Menzel et al. sees the role of concrete scenarios as a way
to design test cases as they are based on testing the system response for dif-
ferent input parameters and parameter values.

2.1.2.b Scenario Parameterization

The scenarios can be described according to the definitions presented in 2.1.2.a, but
in order to do so with a systematic approach the scenarios can be parameterized.
Goss et al. [39] and Bach et al. [40] have authored two studies that define logical
scenarios by determining parameters present in the scenarios and representing them
by the values of those parameters and the intentions of the involved actors. They
use the parameters and their values as atomic portions of the scenarios in order
to represent the situations in a cohesive way and also to form possible scenarios by
combining new parameter and parameter values to find scenarios that could possibly
be relevant to test as well. Parameterization as a way of test scenario generation is
also seen as a viable approach by Gelder and Paardekooper [11]. An example of
the parameterization can be seen in table 2.1. When the parameters and their values
have been determined, Wotawa shows the possibility of using T-way combinatorial
testing to expand the possible scenarios that can be covered [41]. The T-way testing
requires all combinations of all parameter values to be tested in order to fully test
the system for all possible inputs and their interplay with each other.

Table 2.1 An example of parameterization for a disengagement entry in the California
DMV database.

Description Parameterized representation
Car stopped in middle of inter-
section and did not proceed af-
ter pedestrian was finished crossing
crosswalk

Intersection, Crosswalk, Pedes-
trian, Cross street, legal

2.1.2.c Localizing scenarios to test

In order to perform scenario-based testing of autonomous vehicles, the tester must
have a scenario database containing required scenarios to reach the desired confi-
dence in functionality [9]. It is not only the process of formalizing and describing
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2.2. Related work

the scenarios that is necessary to perform scenario-based testing, but also to deter-
mine which scenarios are relevant to test. One approach of deriving test scenarios is
to select and recreate real-world driving incident reports or studies [9], [39]. Weber
et al. considers accident data as a better way to derive scenarios to test rather than
general driving data as the critical scenarios are more likely to be those that may
result in accidents [37].

Esenturk et al. studied mining possible scenarios for autonomous vehicle val-
idation [3]. Specifically, they have given high level abstractions of the parameters
present in different accidents, such as labeling scenarios where wind was present as
"windy". They rely on the testers to determine the values needed to be tested based
on these high level descriptions, where the testers design rules for what values con-
stitutes a certain categorical value such as windy.

2.2 Related work

2.2.1 Data-driven scenario generation

Some work has previously been done on using real-world driving data to find pos-
sible testing scenarios. Langner et al. use a clustering approach to present logical
scenarios derived from concrete scenarios collected during real-world testing of au-
tonomous vehicles [33]. They aim to build a logical scenario catalog which can be
used both to assess the level of coverage that have been achieved in testing based
on the number of scenarios. They also claim it as a tool to test autonomous vehicles
with. The problem is similar to the one that is posed in this thesis regarding ex-
tracting scenarios from real world driving, but their evaluation process is centered
around manual inspection of clusters. Which our thesis propose an alternative to.
This is described in Section 4.

The process of clustering is also used in a UK-based study, which focus on
accident data from the United Kingdom to identify patterns which may result in
traffic accidents, and are used to generate scenarios for autonomous vehicle testing
[42]. The study does however not handle the task of determining what coverage can
be achieved by their data mining approach, which is explored and reported in this
thesis.

2.2.2 California DMV dataset

The CA DMV dataset [16] has been the subject of many previous research projects
within the context of testing autonomous vehicles. Zhang et al. used this data to re-
veal which factors most commonly lead to disengagements [43]. They used natural
language processing in order to produce a supervised learning model to find cause-
effect relationships between the parameters present in disengagement and disen-
gagements. They found the model as a significant benefit to the field as the manual
processing of disengagement entries is time-consuming with the autonomous vehi-
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Chapter 2. Concepts and Related Work

cle technology advancement and expansion in the future. This study does however
mainly focus on categorizing the different scenarios and does not place emphasis
on the testing of systems using categorization of disengagement causes.

Numerous studies have also worked with investigating the disengagement re-
ports manually to determine possible topics to sort the disengagements in categories
for gaining insight in security problems of AVs [17], [44], [45],[46]. These studies
provide insight into the problem with the formatting of the disengagement entries.
They also observed a problem with how some disengagement entries also lack in-
formation to fully describe the cause of disengagements. One article also analyzed
the data in order to give recommendations to governments and manufacturers for
what kind of types of disengagement the systems needs to be improved for in order
to increase level of autonomy in AVs [18]. Such studies provide a lot of insight in
what one can expect in the reports, but are based on the assumption of that cate-
gories are present in the data set. In the field of testing, the desire is to have an
unbiased approach to finding possible unexpected faults and by performing manual
grouping of scenarios a possible problem of biases arises that unsupervised learning
methodologies may be able to mitigate.

2.2.3 Unsupervised learning classification

The task of classifying natural language entries have previously been investigated
in other studies. In a study by Lu et al., legal documents are clustered to reveal
common topics that are presented in the documents [47]. They classify the docu-
ments using soft clustering to allow multiple topics to be assigned to a certain item.
The results shows the approach can accurately partition documents into topics. One
difference from the application in the autonomous vehicle field is however that the
approach was based on a very large dataset, where the features of documents could
be assessed for millions of documents rather than a couple of thousand disengage-
ments present in the California DMV dataset [16].

Zhang et al. also have presented an approach of finding similar question en-
tries in question and answer archives [48]. Their goal is to find similar questions
to supply answers that to other question entries that may be formulated differently
semantically, but have the same meaning. This study propose a approach for para-
phrasing entries in order to compare the meaning of sentences rather than being
phrased in the same ways. The approach is a possible way to achieve less interfer-
ence of grammatical rules in the similarity comparisons of words. In contrast, we
use the simpler approach of lemmatization to achieve comparable results with less
complexity.
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3
Research approach

The main goal of the thesis is to determine if we can efficiently select test scenarios
from real-world driving data using unsupervised learning. My main contributions
is implementing a methodology based on unsupervised learning and evaluating its
performance. The results of the evaluation will be used to determine its viability
in the field. Some aspects of this process is especially important and needs specific
attention. Therefore i have devised a set of research questions that will go deeper
into the core principles of devising a scenario selection methodology. The research
questions are the following:

• RQ1: How can the similarity between different disengagement scenarios be
determined?

• RQ2: How can representative disengagement scenarios be selected from the
dataset using clustering?

• RQ3: How can test scenarios be formulated to be presented in a standardized
way for all reported scenarios?

• RQ4: What coverage of the dataset can be achieved by selecting representa-
tive disengagement scenarios?

To group the scenarios by similarity, we need to be able to compare entries. RQ1
is therefore a central topic of investigation to reach the goal. We will investigate this
research question by seeing how well common text preprocessing (presented in sec-
tion 4.3) and embeddings (presented in 4.4) is able to represent disengagements. We
also evaluate the results empirically by seeing how large coverage is achievable by
using the methodology and how well we capture relations between the disengage-
ments using the embeddings.

We must also determine how we group the data in a way that maximizes the
similarity within groups and lead to good test representatives. This makes RQ2 a
relevant question to investigate. By using two different clustering algorithms, the

25



Chapter 3. Research approach

similarities of disengagements will be used to form the best groups for cluster se-
lection. For K-means, this is implemented in section 4.5.1 and evaluated using the
clustering coherency metrics defined in 4.6 and visualizations in 5.2. For DBSCAN,
the clustering is implemented in section 4.5.2 and evaluated by visualizations in 5.3.

The disengagement descriptions are initially formulated in natural language.
However, to evaluate how high test coverage is achieved independently of the clus-
tering evaluation we need to standardize their formulation. Therefore, we must in-
vestigate RQ3. In 4.8.1, the process of parameterization is implemented as a possi-
ble standardization approach and the approach’s efficiency is used in evaluating the
coverage in sections 5.2 and 5.3.

Lastly, one central question to investigate is how high coverage we can achieve
with the representative scenarios selected using the methodology. In order to show
that the usage of unsupervised learning is worth implementing the field, we must
investigate RQ4. This research question will be investigated by evaluating the cov-
erage of parameters that can be achieved by the representatives (as described in
4.8.2). The empirical results of the evaluation will be presented in sections 5.2 and
5.3.
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4
Scenario Selection
Methodology

The main structure of the scenario selection methodology is presented in figure 4.1.
Initially, the data is loaded and filtered to exclude uninformative and duplicated data
as presented in section 4.1 and 4.2. Then, the data is preprocessed using common
text-preprocessing methodologies as described in 4.3. The preprocessed data is then
vectorized to represent the data numerically as described in section 4.4. Considering
the high dimensionality of the data, dimensionality reduction is also applied, which
is also described in section 4.4. Clustering is then performed using the K-means
algorithm and DBSCAN as described in section 4.5. The clustering results is also
visualized and evaluated as described in 4.6 and 4.7. Finally the scenarios are pa-
rameterized and evaluated using the cluster representatives using the methodologies
described in 4.8.

The scenario selection methodology is based on a combination of some pre-
existing approaches and some unique steps that I have devised. The process of stor-
ing the data and filtering the dataset (presented in 4.1 and 4.2) was devised by me.
The preprocessing is based on pre-existing methodology, where my contribution is
that I identified the need for them to improve the ability to compare similarities
between disengagement scenarios. The process of embedding the data is based on
previous studies relating to comparing natural language entries. My contribution to
the step is the creation of new embeddings based purely on the field of autonomous
vehicles. The usage of the K-means algorithm and the DBSCAN algorithm is based
on existing implementations of the algorithms. My contribution for these is eval-
uating them to identify if density-based clustering or distance-based clustering is
more appropriate algorithms for the clustering. One large contribution that is made
by me is in the evaluation of the clustering and coverage. No pre-existing work has
been used to devise the parameter coverage metrics, which enables the evaluation
of coverage independently of the evaluation of cluster quality. For a more detailed
reference to the studies that have been used for parts of the methodology, I refer the
reader to the specific section.
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Chapter 4. Scenario Selection Methodology

The connection with the research questions is the following. RQ1 primarily re-
lates to the preprocessing and vectorization stage. The process of restructuring the
natural language entries and representing them numerically is performed in order
to make similarity comparison between disengagement scenarios possible. RQ2
primarily relates to the clustering section of the scenario selection methodology.
The clustering efficiency is evaluated using the visual representations, the silhou-
ette score, CH index and DBI. By combining the results of the clustering evaluation
with the achieved coverage of test parameters in the dataset, it determines if the
clustering approach generates suitable cluster representatives. RQ3 primarily relates
to the the scenario selection methodology’s ability to represent the disengagement
scenarios in a standardized way. This is addressed in the process of parameterizing
the disengagement scenarios. RQ4 primarily relates to the step of evaluating test
suite coverage. It is this step that makes it possible to determine what coverage is
achievable with the scenario selection methodology.
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CSV Dataset

Exclude string duplicates

Exclude short descriptions

Exclude uninformative descriptions

Tokenize

Lemmatize

Remove stop words

Vectorize using word2vec, doc2vec or spaCy

Apply dimensionality reduction

Cluster using KMeans or DBScan

Assign cluster representative data points

Evaluate clustering

Make scatter plots and print CSV files

Parameterize cluster representatives

Evaluate test suite coverage

Storing the dataset

Filtering

Preprocessing

Vectorization

Clustering

Visualization

Test selection

Figure 4.1 The graph shows the processing of the dataset from CA DMV to the point of
evaluation.
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Manufacturer Permit Number . . . DESCRIPTION
OF FACTS
CAUSING
DISENGAGE-
MENT

AImotive Inc. AVT003 . . . Lane change
maneuver: risk of
lane departure,
caused by unsta-
ble target lane
model

Drive.ai Inc. AVT013 . . . System kickout
due to hardware
due to road sur-
face conditions

. . . . . . . . . . . .

Table 4.1 The table shows how the data in the CA DMV files are presented. Columns with
information about report date, VIN number, vehicle capability of operating without a driver,
driver present or not, disengagement initiator (system or driver) and disengagement location
have been omitted for brevity.

4.1 Storing the dataset

The input dataset consists of multiple comma separated value (CSV) files fetched
from the CA DMV. An example of the information contained in the CSV files can
be seen in table 4.1. Each row in the files represent a disengagement situation where
the information regarding the disengagement is provided. The description column
specifies the situation and cause of the disengagement in natural language. For this
thesis, it is the descriptions that is of interest and the data in other columns are
excluded from the dataset. The data structure that the dataset is initially formatted
as a list of textual entries in order to enable further filtering of the data.

4.2 Filtering the dataset

The dataset comprises a total of 21,351 entries, combining all disengagement de-
scriptions from 2019 through 2022. Earlier descriptions exists, but were not used
in this thesis as they were not CSV formatted. However, a lot of these are dupli-
cates and by removing duplicates based on exact string comparisons, the dataset
retains 1176 unique textual descriptions. Furthermore, we filtered out possible non-
informative entries by setting a threshold corresponding to approximately the length
of the average English sentence of 100 characters (20 words per sentence and 5
characters per word) [49]. The threshold is set so that all entries with less than 100
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Classification Disengagement description
FULLY CLEAR The car was performing a parking ma-

neuver, when the driver had to take
control, because the side wall was
within 0.5 meters from the car. This
event was caused by the error in ob-
ject detection by s ultrasonic sensor.

PARTIALLY INFORMATIVE The AV was approaching a turn too
fast. As a result, the driver safely dis-
engaged and resumed manual control.

UNINFORMATIVE Localization/position discrepancy - a
problem was observed in the vehicle’s
estimate of its position; causes may in-
clude the accuracy of the imu, lidar,
and gps sensor data, the algorithms
used to process that data, or the accu-
racy of the vehicle’s maps

Table 4.2 The table shows an example of how disengagement scenarios are classified based
on the clarity of their textual descriptions.

characters is removed. This results in a dataset of 552 textual descriptions of au-
tonomous vehicle disengagements.

Still, some long descriptions are also non-informative. We manually filtered out
non-informative entries by assigning disengagement entries the labels "uninforma-
tive", "partially uninformative" and "fully clear". The classifications are based on
if the scenario is described clearly enough to determine a logical and or concrete
scenario from. This requires that the disengagement is described with specific de-
tails to indicate which concrete scenarios should be associated with the entry. As an
example, table 4.2 shows how certain disengagements would be labeled. The unin-
formative entry is not unclear but rather unspecific. The partially informative entry
has some information regarding the scenario, but still proves unspecific and hard to
reproduce in the form of a logical or concrete scenario. The last fully clear entry
is specific and clearly described in such a way that the cause of the disengagement
can be reproduced and tested upon. Within the dataset, there are 11 entries which
are identical to other entries in terms of meaning, but have slight differences in the
formatting of their descriptions, such as a misplaced white space character. These
are also removed from the dataset. As a result, the dataset consists of 184 fully clear
disengagement scenarios.

31



Chapter 4. Scenario Selection Methodology

4.3 Preprocessing of the dataset

In information retrieval from natural language texts one article shows common pre-
processing steps for extracting relevant information from natural language [50].

The first common step for pre-processing text in natural language, as described
by Mohan, [50], is to split the sentences into individual words in order to make
the data more easily manipulated. The process is known as tokenization, where the
result is a representation where words are individual objects known as tokens. In this
thesis, these tokens are stored in lists, where each list represents a disengagement
description.

Initially, Mohan describes that the natural language entries usually have some
words that carry little information within them, known as stop words [50]. These
are functional words often present for grammatical reasons and some examples are
words such as "it", "is" and "the". In order to make the texts comparable these stop
words are often disregarded in similarity comparisons and therefore removed in the
pre-processing steps of natural language processing. The number of stop words that
are discarded varies from the dataset and which approach is applied. A common
tool in natural language processing known as spaCy has a default set of 326 stop
words [51]. spaCy is used in this thesis for stop word removal.

Following this step, Mohan presents the process of stemming, which is used
to further handle grammatical differences in the context that words are used in.
Stemming is the process of extracting the base of words which may be defined
by different endings depending on the situation they are used in. Stemming uses a
set of common endings such as "ing" and "er" and remove these endings from all
words in order to make them comparable. This however results in the possibility
of different words resulting in the same root words as shown by Pramana et al.
[52]. They consider the usage of lemmatization, which is a method of getting the
root of words with the context. They found the lemmatization as a better tool for
comparing similarities of sentences compared to stemming in their evaluation. In
this thesis, lemmatization is used to reduce the impact that grammatical differences
can have on similarity comparisons.

4.4 Vectorization and embedding of the dataset

The task of comparing similarity of texts written in natural language can be per-
formed in different levels. Less complex methodologies such as a string compari-
son can be used to determine the similarity of texts or words. Such methodologies
however do not capture sentences that are structured differently but still have the
same meaning. In order to perform a more thorough comparison of the similarity
of natural language entries, the context that words are used in and the interplay of
words in sentences needs to be taken into consideration.

In a study by Srinivasa-Desikan [53], the author presents multiple tools to deal
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with the task of performing semantical comparisons of texts. The author shows how
spaCy [51] can be used as an initial way to represent words and sentences in a way
that captures the meaning of the sentences. Srinivasa-Desikan also introduces the
word embedding tools Word2Vec, Doc2Vec as alternatives to achieve a numerical
representation of words and sentences in order to determine their similarities.

With the text tokenized and preprocessed, the task is to capture the relations
of the different words and represent them numerically which is done using word
embeddings and vectorization [50]. Common embeddings used to capture the rela-
tionships between words in texts are word2vec, spaCy and term frequency - inverse
document frequency (TF-IDF) [54], [55], [56].

Word2Vec is a neural network based word embedding tool which can learn re-
lations between words in texts [57], [58]. The tool can be used both to train on texts
of the users choice or with pre-existing models. One pre-existing model trained by
Google for word2vec is word2vec-google-news-300 [59]. I embedded the disen-
gagements descriptions by representing the sentences by calculating the mean ma-
trices of the word2vec representations of the words that make up the disengagement
descriptions. Similarly, Doc2Vec is an extension of the Word2Vec implementation
that takes a document level approach of similarity and not only single words [60].
The framework has been used by Tahvili et al. to reduce a test case suite by finding
and filtering out similar cases with clustering based on semantic similarity between
test cases [56].

SpaCy is a framework for natural language processing [51]. The model provides
tools to preprocess text and give semantic information of each word within a text
based on the usage of the word. Models can be trained on corpuses to compare the
similarities of words or sentences based on the usage in the corpuses. The module
can also be implemented using pre-trained models where the en_core_web_sm and
en_core_web_lg models are commonly used [61]. The embeddings for the data was
achieved by representing the data with their similarity matrices.

Term Frequency - Inverse Document Frequency (TF-IDF) is an algorithm used
to describe the relevance of certain terms within a set of documents [62]. The algo-
rithm calculates the number of occurrences of a term in a certain text collection or
document (term frequency). This is weighed towards the number of documents that
the term is not present in (inverse document frequency). The result is a measure-
ment that gives an indication of the importance of certain terms and can be used to
compare how similar documents are based on the occurrence of words and if they
share important words [63].

In section 4.2 and 4.3 we will evaluate different forms of vectorization for clus-
tering to find the best numerical representation for the disengagement descriptions.
The following vectorization approaches will be evaluated:

• word2vec trained on the dataset

• word2vec pre-trained model (word2vec-google-news-300)
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• doc2vec trained on the dataset

• spaCy pre-trained model (en_core_web_lg)

• TF-IDF

The embeddings have quite a high dimensionality, where the word2vec google
news embedding has a dimension of 300. With the sparseness of the data present in
the dataset, multiple studies comment on the possibility of a phenomena known as
the Curse of dimensionality [64], [65]. These studies present the curse as a problem
with using vectors of high dimensionality in categorization of small datasets, where
the usage of too large dimension in relation to the dataset may lead to a higher num-
ber of features making the accuracy of the classification worse due to inducing noise
rather than valuable information about the associations between the data points.

To mitigate this curse of dimensionality for the dataset, different levels of di-
mensionality reduction are applied in this thesis to find the optimal number of
dimensions when grouping the data points. The dimensionality reduced data that
achieves the highest scoring is presented for each measurement in sections 4.2 and
4.3. The data is reduced to dimensions ranging from 2 to 99 dimensions as well as in
its original dimensions. We use PCA for dimensionality reduction, which have been
proven to perform well with K-means clustering approach [66]. The vectorized data
are scaled in order to normalize the vectors so that the values within each vector is
between 0 and 1.

4.5 Clustering

With a numerical representation of words and sentences as vectors, it is feasible
to determine the similarity of sentences mathematically [63] with metrics such as
the cosine metric or the euclidean distance metrics [67], [68]. These metrics are in
line with unsupervised learning as they have no labeling for the correct assignment
to clusters but rather to find clusters that minimize distances to similar data points.
The choice of clustering algorithm is dependant on the input data [3], [69] and in
order to validate the choice of clustering approaches used in the thesis, two different
algorithms are presented, namely K-means and Density based spatial clustering of
applications with noise (DBSCAN).

4.5.1 K-means

The K-means algorithm is one of the most commonly used clustering algorithms ac-
cording to Sinaga and Yang [70]. It has a requirement on the number of clusters to
be configured prior to clustering, which is problem dependant and commonly eval-
uated to see which number of clusters result in the best clustering for the problem
[71].
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A description for the process of clustering with the algorithm can be found in
Na et al. [72]. After the number of clusters desired (K) have been set, the algorithm
selects K cluster centers at random. The data will then be grouped with a cluster
center based on the minimal euclidean distance to the data point to be clustered.
The process is repeated until all data points are assigned to a cluster. The initial
assignment of the data points to clusters is used to calculate a new centroid for
each cluster based on the mean position of all the data points within the cluster.
The assignment procedure is repeated with the new cluster centers until there is no
change of cluster centroids.

4.5.2 DBSCAN

DBSCAN is a clustering algorithm based on areas with high density of data points
[73]. This clustering approach is achieved by initializing the algorithm with a
threshold radius, commonly denoted ε and a threshold of the number of points
which must be within the radius to form a cluster. With these parameters set, the
algorithm proceeds to select data points and see if the desired number of data points
can be found within the threshold radius. If the data point fulfills the criterion, the
point is determined to be a core point from which a cluster is formed together with
the neighboring points within the threshold radius. The algorithm iterates through
the data points until all possible assignments have been made for data points. The
data points which do not fulfill the criterion are considered and labeled as noise in
the data.

4.5.3 Determining the optimal number of clusters

Due to the nature of K-means and other clustering approaches, Kodinariya and al.
has reviewed approaches to determine the optimal number of clusters [74]. Among
them, one of the most commonly used approach is the "elbow method". The elbow
method is based on plotting cost function for different cluster numbers to identify
the cost functions changes starts to flatten out. The plateau indicates that a further
increase of the number of clusters will result in diminished improvements of the
cost function. Often, the elbow method takes the distortion of the clusters as the
cost function, which is computed by taking the sum of the euclidean distances from
each point within clusters to the centers of their cluster [75]. Though it is commonly
calculated by manually examining of the plot to find the elbow point, one library
calculates the elbow point automatically [75]. The library utilizes the "kneedle"
algorithm, which finds the point where the curvature of a graph starts to flatten after
reaching a maximum curvature [76]. In this thesis, the Yellowbrick implementation
of the kneedle algorithm will be used to determine the optimal number of clusters
for K-means.
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4.5.4 Implementation of clustering algorithms

With the preprocessed and embedded data as input, the clustering is performed us-
ing the K-means algorithm implemented in the Scikit-learn library [77]. The input is
in the form of vectorized and scale-normalized representations of the preprocessed
disengagement entries. Due to the nature of the data in the project, the exact number
of clusters that is desired and results in the best clustering is not known to the user
and some exploratory testing is necessary to identify the optimal number of clusters.
Through every iteration, all the different vectorization methodologies are evaluated
based on the cluster metrics that are achieved. In order to determine the optimal
number of clusters, the elbow method is used as a way to determine when added
clustering does not improve grouping of the data. The elbow method is originally
a visual inspection of the plot of the mean distortion score to different number of
clusters, where the elbow point is the position where the curve starts to flatten, indi-
cating that an increase of the number of clusters leads to diminishing improvements.
The implementation of the elbow method in Yellowbrick is used to determine the
elbow point automatically for each iteration [78].

Chen et al. aims to find representatives of clusters by using a subset clustering
approach [79]. They create an initial clustering of large groups and perform further
clustering until they reach a subset of representatives of a desired amount. For the
subset clustering, they opt for the usage of a medoid-based assignment of cluster
centers instead of the centroid based assignment of centers. The difference is that
medoid is based on assigning the center to the data point which has the highest
similarity to the other data points as opposed to setting the cluster center based on
finding the mean coordinates for the data points. Chen et al. reveals the benefit of us-
ing K-medoid in the possibility to get a cluster representative instantly in the form
of the center point and also that the medoid approach leads to robustness against
skewing of outliers in the dataset. The effectiveness of medoid selection for clus-
tering categorical data is also reported by other studies searching for data mining
approaches in vehicle datasets [3].

In this thesis, the cluster representatives are determined using a medoid-based
approach. For each data point the pairwise distances are calculated in respect to all
other data points and their sum is calculated. The data point which has the low-
est total pairwise distance to the other data points is determined to be the cluster
representative.

The implementation for DBSCAN is similar in many aspects and use the Scikit-
learn library [77]. For DBSCAN clustering, the parameters needed include the mini-
mum samples required to form a cluster and the ε-value which determines the radius
in which samples needs to be placed to form clusters. The clustering is performed
with varying values on these parameters to determine the optimal clustering.
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4.6 Evaluation of clusters

In a study by Tomašev and Radovanović, tools are presented to determine the op-
timal parameters for clustering without analyzing the resulting clustering manually
[80]. Also, the study describes a series of common metrics to evaluate clustering
such as Davies-Bouldin index (DBI), the silhouette index and the Calinski-Harabasz
index (CH index).

Another approach to evaluate clustering was reported by Sapna and Mohanty
[81]. They compare the clustering results to the results achieved by randomly group-
ing data points to give an indication of how much potential improvement the clus-
tering results in.

4.6.1 Silhouette index

Dudek present silhouette score as a clustering evaluation metric [82]. Silhouette
score is a measurement of how similar objects within clusters are to each other.
The silhouette score is calculated by first taking a data point and calculating the
mean distance from the point to other data points within the cluster. Then, the mean
distance from the same data point to data points in the nearest neighboring cluster
is computed. The silhouette score is the difference of these two distances divided
by the larger one of them and is a value between 1 and -1, calculated according to
equation 4.1. The equation shows the formula to calculate the silhouette index. i is
the index for a data point, N is the number of data points, a(i) is the mean distance
from point i to the other points in the same cluster, b(i) is the smallest mean distance
to all points in a different cluster. A value of 1 indicates that the data point is well
matched to its own cluster and dissimilar to other clusters data points. A value of -1
indicates that the point has strong correlation to other clusters and weak cohesion
with the cluster it is placed within.

Silhouette =
1
N

N

∑
i=1

b(i)−a(i)
max{a(i),b(i)}

(4.1)

4.6.2 Calinski-Harabasz Index

Baarsch and Celebi presents the principle behind the Calinski-Harabasz (CH) index
[83]. The CH index is used to measure the variance that exists between different
clusters in comparison to the variance found within a cluster. First, the euclidean
distance from the center of each cluster to the center of the complete dataset. Sec-
ond, the mean euclidean distance from the center of the cluster to the data points
within the cluster is calculated for each cluster. Thirdly, compute the within-cluster
variance WC for each cluster as well as the between-cluster variance BC between
the clusters. With these values calculated, the CH index is calculated according to
equation 4.2. The equation shows the formula to calculate the CH index, where k
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is the number of clusters and n is the numbers of data points clustered. A high CH
index indicates strongly bound clusters with a high level of separation from other
clusters.

CH =
BC

(k−1)
· n− k

WC
(4.2)

4.6.3 Davies–Bouldin index

The Davies-Bouldin index (DBI) is a metric used to validate clustering performance
[80]. Singh et al. uses the clustering to evaluate K-means clustering and finding the
optimal numbers of clusters to sort similar groups of cereals [84]. They present DBI
as a metric that aims to measure the compactness of clusters by calculating the dis-
tances between data points within clusters and comparing to the level of separation
that the clusters have by calculating the distances between clusters, similar to the
CH index. The difference lies in how these parameters are calculated. The algorithm
takes the centroid of each cluster (C(i)) and the mean distance from all data points
within a cluster to the centroid (a(i)) and maximize the value of R(i) as defined by
equation 4.3 by evaluating combinations of i and j where i ̸= j and i and j indicates
the cluster number. The DBI is calculated according to 4.4 [80]. In other words,
DB index takes pairwise difference while CH index takes the total variance within
clusters in relation to the total variance between different clusters.

R(i) =
a(i)+a( j)
C(i)−C( j)

(4.3)

DBI =
1
k

k

∑
i=1

R(i) (4.4)

4.6.4 Implementation of evaluation

In this thesis, the evaluation of the clustering for K-means is based on evaluating
mean silhouette scores, CH index, DBI as well as the optimal number of clusters
using the elbow method based on the distortion score. This is used together with an
estimation of how large portion of the disengagements the representative scenarios
are able to accurately replicate as described in section 4.8.2. The clustering from
DBSCAN can not be evaluated in the same way as K-means, but is also evaluated
based on coverage of scenarios presented in section 4.8.2.

4.7 Visualizing the clustering result

In order to visualize the data of high dimensionality, the Yellowbrick clustering
library is used together with Matplotlib in this thesis [78], [85]. The data points are
both visualized using their inter cluster similarities, showing the similarities with
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other clusters and as scatter plots. We use PCA to reduce the dimensions of the
data. The cluster representations are visualized together with the cluster centers.
The clustering results are also presented in CSV files that show which data points
are to be considered border points.

4.8 Test scenario suite representation and coverage analysis

The metrics presented in section 4.6 serves as evaluation to indicate if well-formed
clusters have been found. However, the main goal is to see if the clustering is a vi-
able way to efficiently test the dataset. In order to evaluate if the resulting clustering
representatives are good representations of the dataset, the coverage of scenarios
based on the representations needs to be evaluated.

Due to this problem of determining if the clustering has achieved the goal to
group similar entries in the same clusters in the context of disengagement scenarios
and not only their vector representations, a manual evaluation is also performed. The
evaluation is based on the process of parameterizing and capturing the scenarios in
a standardized manor.

4.8.1 Test scenario representation

In the California DMV dataset, concrete values are not included and due to the
formulation of disengagement scenarios in the California DMV dataset, concrete
values are excluded and functional scenarios provide too little detail to distinguish
different scenarios from each other. Therefore, the logical scenarios will be used to
parameterize the disengagement. An example is the disengagement entry "Camera
vision impeded by sun. Vehicle not in an active construction zone. No emergency
vehicles or collisions present in the vicinity. Weather and/or road conditions dry in
the area.". In order to recreate this scenario, the relevant characteristics are placed
in the columns, and their values are assigned in the rows as shown in table 4.3.

Sunshine on
camera

In construc-
tion zone

Emergency vehicles
or collisions present

Weather and road
conditions

True False False Dry

Table 4.3 The table shows the parameterization of the disengagement scenario "Camera
vision impeded by sun. Vehicle not in an active construction zone. No emergency vehicles or
collisions present in the vicinity. Weather and/or road conditions dry in the area.".

This way of parameterization makes it possible to describe the disengagements
in a way that makes it possible to compare disengagement scenarios by compar-
ing the parameter values shared between disengagements. Further, it also makes it
possible to make combinations of parameters to generate test scenarios not present
in the dataset by combining parameter values which can co-exist between different
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scenarios. The result is a test scenario suite containing already existing disengage-
ment scenarios and scenarios not found in the disengagement data base. The ex-
traction of the disengagement conditions is determined manually. Parameterization
is made for each cluster based on the data point that is the representative of that
cluster.

4.8.2 Coverage evaluation

The coverage of the dataset is calculated by using the parameterization described
in 4.8.1 to the filtered dataset. The parameterized versions of the entries are used to
evaluate the level of coverage that have been achieved by clustering and selecting
clustering representatives.

First, the number of parameter values found in the cluster representatives is
determined. The total parameter value coverage is then calculated by calculating
the proportion of the total number of parameter values in the dataset have been
captured by the representatives.

Secondly, the number of clusters have a great effect on the number of parameter
values that can be covered. This is due to the number of cluster representatives in-
creasing and therefore results in a higher possible number of parameter values cov-
ered by them. Therefore the parameter values found with the cluster representatives
will also be compared to the number of parameter values that would be captured
with optimal scenario selection. The optimal coverage is calculated by combining
the scenarios that achieve the highest number of unique parameter values when
combined.

Another coverage value is achieved by selecting cluster representatives at ran-
dom, which shows how much the selection process has improved the representative
selection over random assignment.

For each parameterization, the basis will be to let parameters which can’t be
combined and have similar scope to be grouped together. One such example is the
parameter group ’autonomous vehicle location’ which can have values such as ’In-
tersection’ or ’Construction site’, which have values that are related in the sense
that they give the location of the vehicle. But they are not possible to combine as
the vehicle must be at one place in a certain time. The parameterization is per-
formed manually by the author on the non clustered dataset. The parameters are
never passed to the clustering model and are not used when determining the cluster
coherence’s of data points.
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To determine the effectiveness of the scenario selection methodology, we will in-
vestigate its cluster quality and coverage performance. In section 5.1, we present the
parameters found using the parameterization technique described in section 4.8.1.
Moving to section 5.2 we evaluate to what extent the cluster representatives selected
with K-means can cover the total number of parameters in the dataset set. The clus-
ter quality is also evaluated using silhouette scoring, CHI and DBI. In 5.3 we also
evaluate the coverage of parameters as well, but for the DBSCAN based selection
methodology.

We investigate RQ1 by determining the level that the embeddings can separate
disengagements both visually and using the coverage results. A high level of spread
in the representations combined with a high coverage result indicates that the em-
beddings can represent similarities for the disengagements. We also investigate RQ2
by determining if we can achieve well-defined clusters indicating that the data can
be clustered and achieve good representative selection. This is done by investigat-
ing the performance in terms of silhouette score, CHI and DBI where well-scoring
measurements indicate effective clustering. We can link the findings in terms of pa-
rameters with RQ3, as they show if the parameterization methodology is able to
describe the scenarios in a standardized way. Lastly, RQ4 concerning the coverage
performance of the methodology is investigated with the coverage scores presented
in sections 5.2 and 5.3. This reveals what the highest level of coverage performance
the methodology can achieve is.

5.1 Parameterization of scenarios

I present the results from the parameterization process described in 4.8.1 in this
section. The parameters necessary to describe all the disengagements in the dataset
fully is presented in tables 5.1 and 5.2. The parameter values that are mutually
exclusive (right column of the tables) in the dataset are grouped within a certain
parameter group (left column of the tables). This classification is devised by me,
as a way to better show how the parameters can be combined to craft disengage-
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ment scenarios. The total number of parameter groups is 27 and the total number of
parameter values is 92.

Autonomous Vehicle Scenario Parameters (Part 1)
Autonomous Vehicle Road Blockage Construction cones, Construction

work, Throughlanes fully blocked,
Garbage on road, Road debris

Autonomous Vehicle Vision Limited view of oncoming lane,
Camera impeded

Sight Blocker Dust, Sun, Actor
AV Location Intersection, Turn, Roundabout,

Open railway, Junction, Street, Park-
ing lot

Back Wall Modifier Close to back wall
Side Wall Modifier Close to side wall
Curb Modifier Curb nearby
Lane Position Modifier Over lane boundary, Off center in

lane, At lane marker
Road Curve Modifier Straight road
Intersection Modifier 3-way, 4-way
Crosswalk Modifier Crosswalk
Width Modifier Narrow path, Wide lane
Bike Lane Modifier Bikelane present
Sign Modifier Stop sign, Traffic light, Pedestrian

yield sign, Construction warning,
Stop line

Traffic Light Modifier Green, Red Yellow, Green turn
Autonomous Vehicle Rights Right of way
Autonomous Vehicle Limitation Double yellow line
Autonomous Vehicle Trajectory Forward, Backward, Turn, Turn over

oncoming traffic lane, Merge, Start
after full stop, Brake

Merge Destination Highway, Lane, Express-lane

Table 5.1 The table shows the parameters used to construct the scenarios present in the
dataset. The parameter groups is shown in the left column and their values are shown in the
right column. (Part 1).
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Autonomous Vehicle Scenario Parameters (Part 2)
Actor Type Vehicle, Big vehicle, Motorcycle, Cy-

clist, Pedestrian, Traffic, Bus, Ani-
mal, Construction vehicle, No traffic,
Pedestrians

Actor State Parked, Oncoming traffic, Double
parked, Sitting in parked car, Pri-
vate driveway, Fire lane, Outer lane,
Parked on both sides, Parking lane, In
target lane, Side of road

Actor Position towards Autonomous
Vehicle

In front of, Behind of, Adjacent lane

Actor Action Merge to AV lane, Open door in
AV trajectory, Start from stop, Cross
street, Leave car, U-turn, Turn, Turn
passing AV trajectory, Enter oncom-
ing traffic lane, Go forward, Yield to
other actor, Braking, Reversing, Cut-
in, Swerve, Collide with AV, Stand
still

Collision Present Contact with AV
Actor Intent Legal/Odd/Illegal Illegal, Legal, Unexpected
Weather Sunny, Cloudy
Road Conditions Dry

Table 5.2 The table shows the parameters used to construct the scenarios present in the
dataset. The parameter groups is shown in the left column and their values are shown in the
right column. (Part 2).

5.2 Coverage achieved with K-means clustering

As shown in tables 5.3 through 5.4. The results from clustering without dimension
reduction show that no approach achieve significantly higher coverage than random
representative selection would. With the lowest achieving approach performing at
approximately 89 % of a random assignment and the highest at 102 %. Considering
that the silhouette score, DBI and CH index achieved for these measurements is
relatively low, the clustering is not able to achieve well-formed clusters with the
embeddings. This could be one of the reasons for the low coverage improvements
over random selection.
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Table 5.3 The table shows the silhouette score, DBI and CH index achieved with the differ-
ent embedding methods. The optimal number of clusters as determined by the elbow method
is also presented.

Embedding K Sil. DBI CHI
word2vec 12 0.1 2.3 9.95

word2vec (Google news) 14 0.01 1.71 6.06
doc2vec 6 0.12 1.67 67.13
spaCy 12 0.1 2.18 9.42

TF-IDF 13 0.09 2.86 5.63

Table 5.4 The table shows the coverage results achieved for K-means clustering with the
embeddings. The first two columns show the embedding used and the optimal number of
clusters determined by the elbow method. The next four columns display the coverage of
parameter, parameter values, the coverage relative to optimal selection and the coverage rel-
ative to random assignment.

Embedding K Param. cov. Val. cov. Opt. cov. Rand. cov.
word2vec 12 55.17% 26.09% 60% 101.61%

word2vec (Google news) 14 51.72% 28.26% 59.09% 99.24%
doc2vec 6 34.48% 15.22% 60.87% 98.61%
spaCy 12 55.17% 22.83% 52.5% 88.87%

TF-IDF 13 41.38% 27.17% 59.52% 100.22%

The measurements in tables 5.3 and 5.4 is also visualized. We present the data
with 2-dimensional scatter plots in figures 5.1 through 5.5. We assigned colors to
the data points to show cluster membership. To achieve a 2D representation of the
data, we used PCA to reduce the dimension of the embeddings.

Figure 5.1 shows the disengagements embedded with doc2vec assigned to 6
clusters with K-means. Most of the data points are within the horizontal range of 0
to 0.4. This indicates that most of the data are represented similarly with the embed-
dings. The plot reveals that fewer data points have been assigned to the two clusters
to the far right. In the two clusters, the data points also appear more spread-out.
This indicates that the two clusters to the far right can be groupings of outliers,
considering their internal variance and the separation from the other clusters. Each
cluster is clearly separated in the horizontal axis. This indicates that clustering pri-
marily is based on a small selection of features. The grouping of the data points
as a whole suggests that the doc2vec embeddings may not be able to separate the
disengagements in the dataset.

Figure 5.2 shows the representation of the disengagements embedded with
spaCy assigned to 12 clusters. The clusters appear well separated in the outer edges
of the data with some overlapping in the middle of the plot. The lack of separation
can reveal a problem in terms of clustering. This indicates that the disengagements
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Figure 5.1 The figure shows the plot for the K-means approach using doc2vec embedding
performed without dimensionality reduction. The stars show the cluster representatives, the
crosses show centroids of clusters.

are hard to clearly divide into clusters. The results in table 5.3 show a high DBI, a
low silhouette score and a low CH index for the measurement as well, indicating low
levels of separation. The data does however appear well separated, which indicates
that the embeddings are able to show differences in disengagements. Large scatter-
ing could also be the reason for the low clustering results, as data points are seen
as more dissimilar. The spread in both axes in the graph of clusters also indicate
that more features carry information relevant for clustering. The disengagements
are varied in their natural language representations and therefore a utilization of a
high number of features to separate disengagements is expected.

Figure 5.3 shows the representation of the disengagements embedded with TF-
IDF assigned to 13 clusters. The two clusters to the far right and at the top are
well defined and separated, while the other clusters are less separated. This lack of
separation is also indicated in figure 5.3, with a low silhouette score, low CH index
and a high DBI for the measurement.

Figure 5.4 shows the representation of the disengagements embedded with
word2vec (Google news) assigned to 14 clusters. The data is tightly bound together
with the exception for 5 data points that are more spread out and form their own
clusters. The low level of separation between most data points indicate that the ma-
jority of the disengagements are represented similarly with the embeddings. The
word2vec (Google news) model is built from a broad data base from many fields,
which could be the reason that the overarching topic of autonomous vehicles cause
the disengagements to be represented as highly similar.

Figure 5.5 shows the representation of the disengagements embedded with
word2vec assigned to 12 clusters. The data shows a large spread. Some fairly well-
separated clusters can be seen, but also a high level of overlap in the middle of the
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Figure 5.2 The figure shows the plot for the K-means approach using spaCy embeddings
performed without dimensionality reduction. The stars show the cluster representatives, the
crosses show centroids of clusters.

Figure 5.3 The figure shows the plot for the K-means approach using TF-IDF embeddings
performed without dimensionality reduction. The stars show the cluster representatives, the
crosses show centroids of clusters.

plot and its upper left corner. The spread indicates that the embeddings can repre-
sent differences in disengagement scenarios which makes the clustering approach
feasible. However, the overlap between clusters may effect the accuracy. Many data
points may be placed on the border between clusters and have weaker associations
with a specific cluster.

The summary of the results from figures 5.1 through 5.5 will be made. The clus-
tering with the embeddings in their original format gives some insight to their effec-
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Figure 5.4 The figure shows the plot for the K-means approach using word2vec (Google
news) embeddings performed without dimensionality reduction. The stars show the cluster
representatives, the crosses show centroids of clusters.

Figure 5.5 The figure shows the plot for the K-means approach using word2vec embed-
dings performed without dimensionality reduction. The stars show the cluster representa-
tives, the crosses show centroids of clusters.

tiveness. The visual inspection indicates that the spaCy and word2vec embeddings
can represent the disengagements well separated. For word2vec (Google news), TF-
IDF and doc2vec the data appears with quite a low level of separation, indicating
that they may not be able to capture the differences between disengagement sce-
narios. However, the metrics presented in table 5.3 does warrant further evaluation
as all embedding approaches achieve low silhouette scores, high DBI and low CH
index. Which indicates that clustering using the embeddings will not form well-
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defined clusters.
Now we will present the results achieved with PCA dimensionality reduction

applied to the embeddings before clustering. The embeddings were reduced to di-
mensions between 2 and 99. The values were initially tested with increments of
10ths in dimensions. When the range that high scoring results were present in be-
came apparent, increments of one were used to find the optimal dimensionality. We
determined the optimal number of clusters (K) with the elbow method based on
distortion scoring. The tested number of clusters were in the range of 2 to 19. We
present the highest scoring measurements in tables 5.5 through 5.11

Tables 5.5 through 5.7 concern the clustering metrics in the form of silhouette
scores, CH indexes and DBI. These tables gives us some insight into what ma-
nipulation of the input data leads to high-scoring clusters. For all measurements
except for the word2vec (Google news) approach performance in DBI, the highest
results were achieved for embeddings in two dimensions. The high scores indicate
that similar data points have been grouped together and dissimilar data points are
well-separated. This indicates that the data points can be separated most distinc-
tively when the clustering is based only on the most predominant features. 4 em-
bedding approaches scored the highest in all three metrics with the same number
of dimensions and clusters. word2vec (Google news) did however achieve its high-
est DBI measurement with a higher dimensionality together with a higher number
of clusters. In regards to the performance seen in the tables 5.5 through 5.7, the
word2vec (Google news) and TF-IDF embeddings outperform word2vec, doc2vec
and spaCy in terms of silhouette score, CH index and DBI. This indicates that in
regards to these clustering metrics, the TF-IDF and word2vec (Google news) are
the best embedding approaches for achieving well-defined clusters. The word2vec
(Google news) achieved the best scoring and the TF-IDF approach achieving the
second best results in all three metrics.

Table 5.5 The table shows the measurements that achieved the highest silhouette score for
each embedding methodology. It is presented together with the number of dimensions that
the vectorized data was reduced to as well with the number of clusters that the score was
achieved for.

Embedding N dim. K Silhouette score
word2vec 2 8 0.39

word2vec (Google news) 2 6 0.56
doc2vec 2 7 0.37
spaCy 2 6 0.38

TF-IDF 2 5 0.52
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Table 5.6 The table shows the measurements that achieved the highest Calinski-Harabasz
index for each embedding methodology. It is presented together with the number of dimen-
sions that the vectorized data was reduced to as well with the number of clusters that the
score was achieved for.

Embedding N dim. K CH Index
word2vec 2 8 162.98

word2vec (Google news) 2 6 591.25
doc2vec 2 7 165.32
spaCy 2 6 136.66

TF-IDF 2 5 434.5

Table 5.7 The table shows the measurements that achieved the lowest Davies-Bouldin in-
dex for each embedding methodology. It is presented together with the number of dimensions
that the vectorized data was reduced to as well with the number of clusters that the score was
achieved for.

Embedding N dim. K DBI
word2vec 2 8 0.81

word2vec (Google news) 8 9 0.32
doc2vec 2 7 0.8
spaCy 2 6 0.81

TF-IDF 2 5 0.57

In table 5.8, the measurements that achieved the highest level of coverage based
on the parameters defined in section 4.8.1 is presented. The table shows that all
of the approaches achieve the highest result for the maximum number of possible
clusters, 19 except for the TF-IDF measurement. This means that a large number
of cluster representatives selected leads to a high coverage. This is to be expected
as the number of possible parameters that can be covered is increased. The dimen-
sionality of the data was also high, ranging between 20 and 43 dimensions for the
measurements. A reason for this can be that a higher number of dimensions makes it
easier to interpret disengagements numerically as dissimilar. The optimal coverage
measurements were achieved with a higher number of clusters and dimensions than
those that scored the highest in silhouette score, CH index and DBI. This could in-
dicate that a higher level of features can achieve a higher level of variation between
the clusters which in turns increases the number of parameters that were covered.
However, the scores achieved were not very high, with a range between 65%-69%
coverage for the parameters with these measurements. word2vec (Google news),
doc2vec and spaCy outperforms word2vec and TF-IDF in these measurements by a
small margin of approximately 4 percentage points.
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Table 5.8 The table shows the measurements that achieved the highest coverage of parame-
ters for each embedding methodology. It is presented together with the number of dimensions
that the vectorized data was reduced to as well with the number of clusters that the score was
achieved for.

Embedding N dim. K Coverage of
parameters

word2vec 43 19 65.52%
word2vec (Google news) 25 19 68.97%

doc2vec 41 19 68.97%
spaCy 37 19 68.97%

TF-IDF 20 16 65.52%

Similar results can also be seen in table 5.9, which shows the highest coverage
of parameter values achieved. The value coverage is within the ranges 38%-41%
for the measurements, which is quite low. Like for the parameters, a high number
of clusters with a high dimensionality of input data achieved a high value cov-
erage. This can be explained with the same reasoning regarding the benefits of a
high number of representatives and an improved ability to separate dissimilar dis-
engagements. One difference between tables 5.8 and 5.9 is that the TF-IDF achieves
a higher coverage of values with 19 clusters. Where the highest parameter cover-
age is achieved with 16 clusters. The dimensionality of the input data between the
two tables also have slight differences, with the spaCy and TF-IDF measurements
changing from 37 to 58 and 20 to 36 respectively from table 5.8 to 5.9.

Table 5.9 The table shows the measurements that achieved the highest coverage of the
values within parameters for each embedding methodology. It is presented together with the
number of dimensions that the vectorized data was reduced to as well with the number of
clusters that the score was achieved for.

Embedding N dim. K Coverage of
values

word2vec 42 19 41.3%
word2vec (Google news) 25 19 39.13%

doc2vec 41 19 39.13%
spaCy 58 19 39.13%

TF-IDF 36 19 38.04%

We also evaluate the value measurements in regards to what could be achieved
with an optimal selection of cluster representatives. These measurements are pre-
sented in table 5.10. The measurements have a high spread in terms of dimension-
ality and the number of clusters. The highest results were achieved for doc2vec,
scoring approximately 85%, with the other measurements within the range of 71%
to 74%. The high scoring of the doc2vec approaches indicate that the representative
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scenarios selected are well-spread and have parameter values that to a higher de-
gree differ from each other. Considering that the number of representatives selected
were fairly low (7), this indicates that the initial representative choices are made
with higher accuracy. This means that the doc2vec approach is the best in terms of
a high level of coverage per cluster representative selected.

Table 5.10 The table shows the measurements that achieved the highest coverage of the
values within parameters in relation to what coverage is achievable based on combining an
optimal selection of scenarios for parameter value coverage. The results are presented for
each embedding methodology. It is presented together with the number of dimensions that
the vectorized data was reduced to as well with the number of clusters that the score was
achieved for.

Embedding N dim. K Compared
to optimal
selection

word2vec 42 19 71.7%
word2vec (Google news) 17 11 73.68%

doc2vec 6 7 84.62%
spaCy 2 6 69.56%

TF-IDF 4 6 73.91%

Lastly, measurements were made to see what improvement could be made over
random selection of cluster representatives. This result is presented in table 5.11.
The highest scoring measurements share many similarities with table 5.10. One
difference is that the dimensionality and cluster numbers changed for spaCy from
2 to 6 and 6 to 8 respectively. The highest results were instead by doc2vec and
word2vec (Google news) with approximately 138% respectively 126% achieved
coverage compared to random selection. These results reveal that the embeddings
can outperform random selection, with the doc2vec approach showing the highest
improvement.

Table 5.11 The table shows the measurements that achieved the highest coverage of the
values in relation to what coverage is achievable based on combining scenarios at random.
The results are presented for each embedding methodology. It is presented together with the
number of dimensions that the vectorized data was reduced to as well with the number of
clusters that the score was achieved for.

Embedding N dim. K Compared to random selection
word2vec 42 19 119.5%

word2vec (Google news) 17 11 125.94%
doc2vec 6 7 137.72%
spaCy 6 8 113.09%

TF-IDF 4 6 119.72%
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The results in tables 5.8 through 5.11 is summarized in 5.12. In total, the result
shows us that the word2vec (Google news) approach led to the highest scoring re-
sults in terms of silhouette score, DBI and CH index. This result indicates that the
approach is the optimal selection to achieve accurate clustering. However, the cover-
age evaluations reveals that the word2vec (Google news) approach only was able to
perform the best in terms of parameter coverage in shared first place. When it came
to coverage of the values, the word2vec approach performed slightly better than the
other approaches. In regards to coverage in relation to the maximum achievable for
the approach, doc2vec achieved the highest results. Lastly, in terms of improvement
over random selection, the doc2vec approach had the highest performance. This
results leads to inconclusive results regarding which embedding approach is best
for representative selection for disengagement scenarios. However, it can be seen
that all approaches can be tuned in a way that outperforms random selection. But
considering the current maximum levels of coverage that have been achieved, the
approach does not select representatives in a way that is close to achieving 100%
coverage of all parameters and all values in the dataset.

Table 5.12 The table shows a compilation of the highest scoring measurements in regards
to silhouette score, DBI, CH index and the coverage evaluation values described in section
4.8.2

Metric Vec. N dim. N clusters Value
Sil. score word2vec

(Google
news)

2 6 0.56

DBI word2vec
(Google
news)

8 9 0.32

CH Index word2vec
(Google
news)

2 6 591.25

Param. cov. (1) doc2vec 41 19 68.97%
Param. cov. (2) word2vec

(Google
news)

25 19 68.97%

Param. cov. (3) spaCy 37 19 68.97%
Value cov. word2vec 42 19 41.3%
Compared to op-
timal selection

doc2vec 6 7 84.62%

Compared to ran-
dom selection

doc2vec 6 7 137.72%

The measurements shown in table 5.12 is also visualized. For the entries which
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scored highest in regards to the clustering evaluation metrics, which can be seen in
figures 5.6 through 5.12.

Figure 5.6 shows the cluster measurement that achieved both the highest sil-
houette score and CH index. The plot shows that the clusters are well defined, with
the outlying data points being assigned their own clusters. As discussed in regards
to figure 5.4, a lot of the data points are placed in a narrow interval meaning that
different disengagements may be hard to differentiate with this embedding.

Figure 5.6 The figure shows a scatter plot of the K-means clustering with the highest sil-
houette score and CH index. The embedding was word2vec (Google news) reduced to 2
dimensions, with 6 cluster formed, represented by different colors. The stars show the data
points that are cluster representatives, crosses show the centroids of clusters.

Figure 5.7 shows the clustering that achieved the highest DBI. The clusters are
well-separated and outliers are assigned to own clusters. The spread of the data
points indicate that differences between data points can be discerned.

Figure 5.8 shows the clustering which achieved the highest level of value cov-
erage. The clusters appear to be overlapping with a low level of separation. The
high level of value covered seem to be an effect of the high separation between
data points and the forming of many clusters as opposed to forming clearly defined
clusters.

Figures 5.9 through 5.11 show the two measurements that achieved the high-
est level of parameter coverage. Both embeddings make the points well separated.
However, similarly to the embedding that scored the highest in terms of value cov-
erage shown in figure 5.8, many clusters have been formed but show low levels of
separation.

Figure 5.12 shows the measurement that achieved the highest improvement
compared to random disengagement representative selection. The two clusters to
the far right show a fairly high level of separation with the rest of the data points,
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Figure 5.7 The figure shows a scatter plot of the K-means clustering with the lowest
DBI. The embedding was word2vec (Google news) reduced to 8 dimensions, with 9 clus-
ter formed, represented by different colors. The stars show the data points that are cluster
representatives, crosses show the centroids of clusters.

Figure 5.8 The figure shows a scatter plot of the K-means clustering with the highest cov-
erage of parameter values. The embedding was word2vec reduced to 42 dimensions, with 19
cluster formed, represented by different colors. The stars show the data points that are cluster
representatives, crosses show the centroids of clusters.

with some overlap in the center of the plot. The spread of the data points indicate
that differences can be determined with the embeddings. The overlapping of the
clusters indicate that the assignments made may be uncertain as the data points are
close to being assigned to another cluster.

The combined results of the scatter plots as well as tables indicate that no clear
correlation between well-formed cluster and high coverage can be established. Ta-
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Figure 5.9 The figure shows a scatter plot of the K-means clustering with the highest cov-
erage of parameters. The embedding was spaCy reduced to 37 dimensions, with 19 cluster
formed, represented by different colors. The stars show the data points that are cluster repre-
sentatives, crosses show the centroids of clusters.

Figure 5.10 The figure shows a scatter plot of the K-means clustering with the highest
coverage of parameters. The embedding was doc2vec reduced to 41 dimensions, with 19
cluster formed, represented by different colors. The stars show the data points that are cluster
representatives, crosses show the centroids of clusters.

ble 5.12 and figures 5.9 through 5.12 show that the highest scoring measurements
in terms of coverage of parameters and values are not associated with clear cluster
formation in the figures. The best performing clustering in terms of cluster clarity
was shown for the measurements associated with a high CH index, low DBI and
high silhouette score as shown in figure 5.6 and figure 5.7. These figures did how-
ever show that the embeddings may not be able to separate different disengagements
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Figure 5.11 The figure shows a scatter plot of the K-means clustering with the highest
coverage of parameters. The embedding was word2vec (Google news) reduced to 25 dimen-
sions, with 19 cluster formed, represented by different colors. The stars show the data points
that are cluster representatives, crosses show the centroids of clusters.

as most data points are placed with low separation. Though these results together
indicate that the selection of disengagement representatives using K-means is un-
successful, the comparison with random assignments show some promising results.
The measurement that achieved the highest performance over random assignment
did show some level of cluster separation in figure 5.12. This may indicate that most
of the embeddings can be used to achieve results higher than random selection.
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Figure 5.12 The figure shows a scatter plot of the K-means clustering with the highest
coverage of values in relation to random selection and optimal selection. The embedding
was doc2vec reduced to 6 dimensions, with 7 cluster formed, represented by different colors.
The stars show the data points that are cluster representatives, crosses show the centroids of
clusters.
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5.3 Coverage achieved with DBSCAN clustering

This section deals with the results from the DBSCAN clustering. The difference in
clustering between K-means and DBSCAN means that the silhouette score, DBI and
CH index can not be used to evaluate the clustering. However, the coverage metrics
will be presented the same way as they were for K-means. The measurements were
achieved by clustering with a minimum samples parameter set within a range of 2
to 6 samples. The ε value was empirically tested to achieve the best scoring mea-
surements. DBSCAN does not instantiate with a set number of clusters. Therefore,
the optimal number of clusters will be determined by the DBSCAN algorithm and
not by the knee method. The resulting coverage of the dataset is presented in tables
5.13 through 5.16.

Table 5.13 presents the highest parameter coverage achieved. The measurements
have a low level of dimensions, ranging from 3-5 with word2vec (Google news)
being an exception which scored its highest measurement for 20 dimensions. The
number of clusters formed were within the range 14-35 which, in comparison to the
limit set on K-means of 19, is high. The minimum samples for each measurement
were 2. This shows that the measurements scored high when a low number of data
points were needed to see a region as dense and form clusters. This in turn leads to
the ability to form more clusters and therefore reach a higher coverage. The cover-
age results have a high level of spread between 55% for doc2vec embeddings and
80% with spaCy embeddings. Compared to the parameter coverage in the K-means
approach, the results indicate that the DBSCAN approach achieves higher coverage.
However, the DBSCAN measurements did not have an upper limit and the increased
coverage could be attributed to the difference between the highest DBSCAN mea-
surement with 35 clusters and the K-means measurement with 19 clusters.

Table 5.13 The table shows the measurements that achieved the highest coverage of param-
eters for each embedding. The measurements are presented with the number of dimensions
that the input was reduced to, the number of clusters that were formed and the minimum
samples parameter value for DBSCAN.

Embedding N dim. N clusters Coverage Min samples
word2vec 5 19 72.41% 2

word2vec (Google news) 20 18 62.07% 2
doc2vec 3 14 55.17% 2
spaCy 4 35 79.31% 2

TF-IDF 3 31 68.97% 2

Moving on, the highest measurements for coverage of values is presented in
5.14. The value coverage is within the ranges of 26%-53% for the DBSCAN ap-
proach. The dimensionality of the data that resulted in the highest measurements
are similar to the ones that achieved the highest parameter coverage. The only
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differences being the word2vec and word2vec (Google news) measurements. The
word2vec measurement changed from 5 to 3 dimensions and the word2vec (Google
news) measurement changed from 20 to 25 dimensions. They also were the only
one with a different number of clusters, changing from 19 to 26 for word2vec and
from 18 to 23 for word2vec (Google news). The performance of the approaches still
ranked in the same ordering as the parameter coverage, with the spaCy remaining
the embedding with the highest coverage and doc2vec remaining the lowest mea-
surement.

Table 5.14 The table shows the measurements that achieved the highest coverage of values
for each embedding. The measurements are presented with the number of dimensions that
the input was reduced to, the number of clusters that were formed and the minimum samples
parameter value for DBSCAN.

Embedding N dim. N clusters Cov. Min samples
word2vec 3 26 46.74% 2

word2vec (Google news) 25 23 40.22% 2
doc2vec 3 14 26.09% 2
spaCy 4 35 53.26% 2

TF-IDF 3 31 44.65% 2

The measurements for the embedding approaches in order to evaluate how they
performed in relation to the optimal selection of cluster representatives is presented
in table 5.15. The measurements achieve fairly high coverage in this regard except
for the doc2vec approach. doc2vec achieves a maximum of 56% of the optimal se-
lection coverage, while the other achieves scores of 75% and above. The highest
scoring is word2vec (Google news) and spaCy, both with a coverage of 79%. A no-
table difference in the higher scoring measurements in this table in comparison to
table 5.13 and 5.14 is that the results are achieved for lower number of clusters. The
dimensionality of the data is also lower in the measurements for all approaches ex-
cept for the doc2vec and TF-IDF measurements where the dimensionality remained
3 throughout the measurements. This could be attributed to the fact that the initial
assignments have low chance of picking representatives with overlapping param-
eters and therefore scoring closer to the optimal selections. One difference is also
that the minimum samples to form clusters where higher for the doc2vec and spaCy
measurements that scored highest in table 5.15. The change of the minimum sam-
ple parameter indicates that selections made from regions with high density can
represent a larger number of disengagements.
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Table 5.15 The table shows the measurements that achieved the highest coverage of param-
eter values in relation to what could be achieved with optimal selection. The measurements
are presented with the number of dimensions that the input was reduced to, the number of
clusters that were formed and the minimum samples parameter value for DBSCAN.

Embedding N dim. N clusters Compared
to optimal
selection

Min samples

word2vec 2 2 75% 2
word2vec (Google news) 12 5 78.95% 2

doc2vec 3 6 56.52% 3
spaCy 3 5 78.95% 3

TF-IDF 3 6 76.92% 2

Lastly, the evaluation of how the approaches performed compared to random
selection is presented in table 5.16. The table reveals that a very low number of
clusters are associated with a high improvement over the random cluster represen-
tation selection. With no approach forming more than 3 clusters. The dimensionality
of the data was also low with all approaches performing best with embeddings of
3 dimensions or less. The word2vec and TF-IDF approaches increased the mini-
mum number of samples necessary to form clusters while no embedding approach
decreased the parameter. These combinations indicate that the highest level of im-
provement in comparison to random selection is achieved when clusters are formed
from regions which are dense. As the number of clusters are quite low for the mea-
surements achieved, this could indicate that there are a few dense regions where
cluster representations accurately represent a large portion of the data.

Table 5.16 The table shows the measurements that achieved the highest coverage of param-
eter values in relation to what could be achieved with random selection. The measurements
are presented with the number of dimensions that the input was reduced to, the number of
clusters that were formed and the minimum samples parameter value for DBSCAN.

Embedding N dim. N clusters Compared
to random
selection

Min samples

word2vec 2 1 165.07% 4
word2vec (Google news) 2 2 140.72% 2

doc2vec 2 2 105.43% 3
spaCy 3 3 136.12% 3

TF-IDF 3 3 160.97% 4

In order to evaluate the clustering results from DBSCAN as a whole, the best
scoring results from each table is presented in table 5.17. In total, the result reveals
that the DBSCAN approach is able to achieve a high improvement over random sce-
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nario selection with the best scoring approach, word2vec, achieving 165% coverage
compared to random selection. The value coverage is fairly low for the approach,
with the spaCy approach reaching 53% coverage but capturing a relatively high
number of parameters in the dataset with 79% parameter coverage. Finally, the cov-
erage compared to what is realistically achievable is fairly high for all approaches
except doc2vec as can be seen in table 5.15 with a coverage of 56% of the highest
achievable. Both the word2vec (Google news) and spaCy approaches achieved high
coverage in this regard, scoring 79% for 5 clusters formed.

Table 5.17 The table shows the measurements that scored highest in tables 5.13 through
5.16. The measurements are presented with the number of dimensions that the input was
reduced to, the number of clusters that were formed and the minimum samples parameter
value for DBSCAN.

Metric Embedding N dim. N clusters Min samples Value
Coverage of
parameters

spaCy 4 35 2 79.31%

Coverage of
values

spaCy 4 35 2 53.26%

Compared
to optimal
selection (1)

word2vec
(Google
news)

12 5 2 78.95%

Compared
to optimal
selection (2)

spaCy 3 5 3 78.95%

Compared
to random
selection

word2vec 2 1 4 165.07%

The results presented in table 5.17 is visualized in figures 5.13 through 5.16.
Figure 5.13 shows the measurement that achieved the highest coverage for parame-
ters and parameter values. The points that have been labeled as noise are visualized
in black. The figure has a large number of noise points while the clusters formed are
fairly small and are well-separated. The number of clusters are high, with 35 cluster
representatives selected being approximately 19% of the full size of 184 disengage-
ments clustered. This result indicates that the clustering approach needs to select
a high number of disengagement representatives to achieve a high coverage of the
dataset.

Figure 5.14 and figure 5.15 show the measurements that achieved the highest
coverage in relation to what optimal representative selection would result in. For
figure 5.14, only a few outliers are labeled as noise points as well as some points
in the center. The clustering has formed clearly separated clusters with some over-
lapping in the middle of the plot. In figure 5.15, the data has a greater spread and
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Figure 5.13 The figure shows a scatter plot of the DBSCAN clustering with the highest
parameter coverage and parameter value coverage. The embedding was spaCy reduced to
4 dimensions, with 35 clusters formed, represented by different colors. The noise points
are black. The stars show the data points that are cluster representatives, crosses show the
centroids of clusters.

the clusters are more overlapping. The low level of clusters for both figures indicate
that assignment of cluster representatives is more accurate when a low number of
representatives were selected.

Figure 5.16 show the measurement that performed highest in relation to what a
random representative selection would result in. The clustering is only separating
a few noise points and grouping the rest of the data into one cluster. This gives an
indication like figures 5.14 and 5.15 that the initial cluster representation selections
are the most accurate. This result shows that the initial representative selection has
a high chance of being better than a random assignment would be.
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Figure 5.14 The figure shows a scatter plot of the DBSCAN clustering with the highest
coverage in relation to optimal selection. The embedding was word2vec (Google news) re-
duced to 12 dimensions, with 5 clusters formed, represented by different colors. The noise
points are black. The stars show the data points that are cluster representatives, crosses show
the centroids of clusters.

Figure 5.15 The figure shows a scatter plot of the DBSCAN clustering with the highest
coverage in relation to optimal selection. The embedding was spaCy reduced to 3 dimensions,
with 5 clusters formed, represented by different colors. The noise points are black. The stars
show the data points that are cluster representatives, crosses show the centroids of clusters.
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Figure 5.16 The figure shows a scatter plot of the DBSCAN clustering with the highest
coverage in relation to random selection. The embedding was word2vec reduced to 2 dimen-
sions, with 1 cluster formed. The noise points are black. The stars show the data points that
are cluster representatives, crosses show the centroids of clusters.
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In summary, the results presented in the section shows that the DBSCAN ap-
proach overall achieves higher coverage results than the K-means approach. The
only coverage result that was higher for the K-means approach was the coverage
evaluation towards what optimal representative selection would result in. One fac-
tor that could skew the comparison is that the DBSCAN approach achieved the
result with a higher number of clusters.
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6
Discussion

In the discussion, we will discuss the possible ways that scenario selection using
unsupervised learning could be improved and what promise it shows in the field of
autonomous vehicles. In section 6.1, the way that we compared similarities is dis-
cussed and how better comparisons can be achieved. In section 6.2, we discuss the
size of the dataset and possible problems associated with it. In section 6.3 we look
at the clustering algorithms used in the methodology and what other clustering al-
gorithms should be evaluated. In section 6.4, we discuss the usage of parameteriza-
tion as a way to represent disengagements. In section 6.5 we discuss the evaluation
metrics used to determine the performance of the model. Lastly, in section 6.5, we
discuss the performance of the scenario selection methodology and unsupervised
learning’s viability to be used in the field.

6.1 Improving similarity comparisons

RQ1 concerns the ability to capture the similarities and differences of disengage-
ment scenarios. The K-mean approach was able to reach a coverage of 41% of
the parameter values for the disengagements and DBSCAN achieved a coverage
of 53%. This reveals that the K-means approach fails to represent the majority of
potential parameter values leading to disengagement, while the DBSCAN approach
successfully captures slightly over half of them. In the background, we established
that testing unexpected edge cases is central to autonomous vehicle testing. The ap-
proach presented in the thesis would leave many possible values untested. Therefore
it can’t be applied to the field in its current state. The low coverage suggests that
there are issues with both the chosen embeddings for disengagement scenarios and
the clustering approaches.

If the embeddings accurately represented the disengagements, we would expect
to observe a high coverage result in measurements with effective clustering. How-
ever, the highest coverage results were not attained with the same embeddings as
those that achieved high silhouette scores, low DBI, and a high CH index, which are
indicators of effective clustering. The embeddings that achieved the highest scor-
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6.2. The size of the dataset

ing in these metrics were embeddings with less spread and a high level of dimen-
sionality reduction. If the embeddings effectively represented the similarity among
disengagements, rather than just general language, the expectation is for them to
have a high level of separation. However, the word2vec (Google News) embedding
achieved the highest silhouette score and CH index, while also recording the low-
est DBI score. The embeddings in the word2vec (Google news) model show a very
tight clustering of data points in the plots, which is not ideal for separating different
disengagement scenarios. The reason for the models poor separation could be that
the word2vec (Google news) model is trained on a very large dataset. This means
that the terms used in the disengagement scenarios may be seen as very similar in
terms of a general comparison. Due to the specific application that we desire to
use them in this is a problem. We wish to capture the small differences that separate
disengagement scenarios rather than just being able to label them as autonomous ve-
hicle related texts. With the K-means approach, both word2vec and doc2vec scored
roughly equal or higher to the pre-trained models in terms of coverage. Consider-
ing that the training is performed on a very small dataset which is also the same
used for assessment, the embeddings could be too well fitted with the data. But
the result does warrant that the embeddings used for similarity comparison need to
be worked on. It is also possible that the preprocessing could have stripped infor-
mation necessary to capture the differences between disengagements. However, the
preprocessing steps steps used in my work are commonly used in natural language
processing tasks. Therefore, embeddings derived from a larger dataset within the
field of autonomous vehicles is needed to evaluate the feasibility of a clustering
approach of disengagements.

Another noteworthy finding is that dimensionality reduction appeared to signifi-
cantly improve the CH index, DBI and silhouette score for all clustering approaches.
PCA dimensionality reduction aims to retain the variance of data, but it does how-
ever filter out possible noise in the data. This could mean that the high level of
dimensionality reduction leads to good clustering by reducing the variance due to
noise in the data. In regards to value coverage, the reduction also seem to improve
the clustering which may indicate that the embeddings can be subject to the curse
of dimensionality. The dataset is very small for the project and the embeddings can
capture many dimensions of noise that are not significant for separating disengage-
ment scenarios.

6.2 The size of the dataset

One central challenge to the clustering approach is the small size of the dataset. The
purpose of selecting cluster representatives is to reduce the number of required tests
while retaining high coverage. However, the high variance of disengagements in the
disengagement reports needs a high number of cluster representatives to achieve a
high coverage. With the low coverage achieved using the proposed approach, the
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clustering does not work at a high enough efficiency to be used in the field. The
need for a high certainty in the safety of autonomous vehicles requires firstly that a
testing approach achieves significant coverage and secondly a high efficiency.

6.3 Choosing an appropriate clustering algorithm

RQ2 concerns the clustering of disengagement scenarios with unsupervised learn-
ing. As discussed for RQ1, all clustering approaches achieved low coverage of the
dataset. The evaluation highlights that it is possible to attain a high silhouette score
and CH index while maintaining a low DBI for the chosen approaches. The results
indicate that DBSCAN can have some advantages over the K-means approach. DB-
SCAN does not require a predetermined number of clusters for initialization. Its
density-based approach also enhances its robustness in dealing with data points
that may be difficult to assign to clusters. The approach’s potential to find noise
points could also improve the result. Some disengagements could be too different
to be clustered with other scenarios within the limited dataset. K-means requires
every data point to be assigned to a cluster even if the cluster quality is decreased.
Edge cases could be grouped with dissimilar data points, hiding unique values if
the wrong number of clusters are selected. In DBSCAN, the appropriate number of
clusters can be based on setting a similarity radius (ε) and a minimum number of
points (min. samples) to initiate clusters. The approach of determining the optimal
number of clusters using the elbow method is based on stopping when the cluster
quality is not improved by a higher number of clusters. The high cluster quality in
terms of CH index, silhouette score and DBI, did not seem to be associated with a
high coverage value. This means that the stopping criterion based on a cluster qual-
ity metric (distortion scoring) may be unsuited for the goal of clustering data of a
very high variance. The reason that DBSCAN outperformed the K-means clustering
may predominately be associated with a higher number of cluster representatives
being selected for the DBSCAN approach, but in terms of determining the optimal
number of clusters the DBSCAN may be favorable.

6.4 Representing disengagements with parameterization

RQ3 addresses representing scenarios in a standardized way. This approach will also
be discussed. We used parameterization to represent disengagements in the thesis.
The parameterization was performed manually by the author as a way to evaluate
the clustering result. In the thesis it was used to evaluate clustering. In that regard
the approach shows promise. The clustering would have needed to be interpreted
manually for all scenarios to determine coverage if the dataset was not parameter-
ized to reveal coverage results. The parameterization serves as an important tool
to determine the correlation between cluster performance and effective coverage of
parameter values. In terms of time required, the task is quite cumbersome and is
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applied to all scenarios as a means of evaluation. In a real application, the only dis-
engagements that would be parameterized is the cluster representations in order to
create a test suite.

6.5 Assessing clustering performance and coverage

Silhouette score, DBI and CH index are some of the most common evaluation met-
rics for K-means clustering quality. In this thesis they were chosen to see if the clus-
tering could accurately separate different disengagements. Though the metrics are
commonly used, one drawback is that they can not be applied to the DBSCAN ap-
proach for evaluation. The metrics indicated that K-means could form well-defined
clusters, ensuring that the embedded entries were being grouped well according to
their numerical differences and similarities. However, as revealed previously in the
discussion the cluster quality does not seem to correlate to high coverage of the
dataset. This issue is most likely not only a problem caused by clustering but rather
caused by the problems with embeddings previously discussed.

Moving on to the test coverage of the dataset, the evaluation approach can be
discussed. The evaluation was based on the ratio of covered parameter values in
relation to the total number of parameter values. An alternative approach would be
to see how large portion of the disengagement scenarios could be tested with the
representations. It can be argued that the chosen approach of evaluation does not
reveal the actual coverage achieved of the dataset. However, in terms of industrial
application, less common causes of disengagements are also of importance. The
first choice provides a way to better see how large portion of possible values can
be tested with the clustering. Whereas the assessment of scenario coverage would
reveal more information in regards to if the most common parameters and their
most common values have been accurately selected. This validates the choice of
parameter value coverage as evaluation in the thesis.

Another choice of coverage that needs to be discussed is the evaluation of cover-
age in relation to what optimal representative selection would achieve. This method
of evaluation was included together with the comparison to random selection. These
metrics provide insight in how much higher performance can be achieved as well
as a comparison to what level of coverage can be attributed to chance. The results
shows that the initial cluster assignments are most accurate. This is indicated with
the low number of clusters that the highest measurements were achieved with. How-
ever, it is worth nothing that the result may not be highly reliable. As this behavior
is expected with the first assignments being less prone to selecting disengagements
with overlapping parameter values, which may account for the result.

One choice that have been made in regards to the results presented is to only
show the best scoring measurements. The reasoning for this evaluation process is
that the main focus of the thesis was to determine if the approach could be used for
cluster representative selection. As the highest performing results were not indicat-
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ing that the approach was efficient, further evaluation of worst-case scenarios were
not included. Such an evaluation could however be insightful if the approach could
be optimized further.

6.6 Improving performance of the model

RQ4 concerns the coverage evaluation of the clustering approaches in the thesis.
The evaluation was devised to test the approach in two stages. First, with silhouette
score, CH index and DBI to determine if the approach formed well-defined clusters.
Secondly, to evaluate the coverage of the dataset achieved by the complete approach.

One final question is worth discussing in regards to the coverage achieved with
the thesis approach. That is, what level of improvements are necessary to make it
usable in its field. The current selection of 19 representative scenarios only manages
to achieve a coverage of approximately 41% of parameter values with K-means and
53% for 35 clusters with DBSCAN. Considering that the selection of more cluster
representatives comes with diminishing returns due to parameter value overlap be-
tween scenarios, a coverage of 90% would require a high number of representative
disengagement scenarios. This indicates that major improvements are needed in or-
der for the unsupervised learning approach presented in this thesis to be applicable
to the field.
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7
Conclusion

For the research questions, we are now able to draw some conclusions. Our conclu-
sion regarding RQ1 is that the similarity between disengagements can not be com-
pared accurately using the approach applied in the thesis. This seems to be due to
a lack of detail in the language processing tools applied for similarity comparisons.
To enhance similarity comparisons, a field-oriented form of embedding needs to be
evaluated which can better capture the differences between autonomous vehicles
disengagements.

For RQ2 our conclusion is that the clustering approach presented is not ready for
practical application without additional optimization. Future research should aim
to evaluate the approach for larger datasets. Other clustering algorithm need to be
evaluated in order to handle the large variety of disengagement scenarios. Finally,
approaches that can determine the optimal number of clusters for data with high
variety should be implemented in the approach.

For RQ3 the conclusion is that the approach shows promise. In terms of evalu-
ation, it provides a way to determine if the clustering actually achieves a high level
of coverage. This evaluation method also seems unprecedented and therefore could
benefit substantially to the field. In terms of crafting a test suite, it provides the
ability to combine the features of different test scenarios efficiently to test a large
amount of non-exclusive parameters together.

For RQ4 our conclusion is that the clustering approach is unable to reach higher
coverage than 53%. The evaluation process devised does however show some appli-
cability in the field of testing clustering approaches for autonomous vehicles. The
approach of cluster representation selection using unsupervised learning has proven
to have many possible points of failure. The evaluation approach used with param-
eter value coverage can give a good insight into how well representation selection
can cover the full dataset.

The main conclusion of the thesis is therefore that the clustering approach de-
vised need more optimization to be useful. At its current stage, the achieved cov-
erage is too low for practical implementation in the field of autonomous vehicle
testing.
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Though, the results show that the full approach can not currently be imple-
mented. An area where the thesis can benefit the field is in the way that scenarios
were parameterized and used in coverage evaluation. The representation of scenar-
ios in a parameterized way has been utilized in earlier studies, their usage to evaluate
coverage with representative scenario selection is unprecedented. This is a valuable
addition as the project has shown that the clustering metrics (silhouette score, DBI
and CH index) could not be used to find the optimal clustering in terms of coverage.
The usage of parameterization to evaluate coverage provides an approach to better
reveal coverage results. It is also an evaluation approach that can be applied to a
larger range of clustering approaches compared to DBI, silhouette score and CH
index.

We cannot conclusively determine if the proposed approach can be optimized
to the level that the industry requires. However, some parts of the approach should
be re-evaluated when better embeddings can be achieved and the data available has
increased. My hope is that this thesis can serve as a base for future research. The
focus of future research should be to find suitable embeddings for the context of
autonomous vehicles. Larger datasets of autonomous vehicle disengagements are
also crucial to reap the benefits that unsupervised learning can have in the field of
autonomous vehicle testing.
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Data availability

The data used in this paper was accessed using the California DMV homepage and
by contacting the CA DMV using the following address AVarchive@dmv.ca.gov.
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Urval av testscenarier för förarlösa bilar

POPULÄRVETENSKAPLIG SAMMANFATTNING Oskar Andersson

Förarlösa bilar börjar nå offentliga vägar runt om i världen och många känner oro för
vilka säkerhetsrisker det kan innebära. För att förbättra vår förmåga att testa förar-
lösa bilar har mitt examensarbete undersökt möjligheten att gruppera trafiksituationer
baserat på likheter.

Mitt examensarbete har fokuserat på att effek-
tivisera testning av förarlösa bilar. I ett första
steg har jag grupperat olika trafiksituationer som
förarlösa bilar har problem med att hantera.
Genom att identifiera grupper av liknande situa-
tioner så kan vi minska mängden test som behöver
genomföras då vi kan testa ett fall per grupp istäl-
let för varje enskilt fall om gruppernas scenarier är
väldigt lika.

Förarlösa bilar har stor potential att öka trafik-
säkerheten på lång sikt då många olyckor sker på
grund av förares misstag. Vi måste dock först be-
visa att förarlösa bilar kan tolka och hantera alla
möjliga trafiksituationer. Processen att testa dem
på offentliga vägar är både kostsam och kan leda
till att stora resurser läggs på att upprepa scenar-
ier som bilen redan hanterat. För att försäkra sig
om att även ovanliga fall testas måste vi använda
testresurser effektivt.

Att granska tusentals trafiksituationer och
bedöma deras likheter är både svårt och tid-
skrävande. Jag har därför tränat en dator
att göra bedömningarna genom maskininlärning.
Datorn kan klara av uppgiften genom att vi
först anger vilka egenskaper som är viktiga hos
beskrivningarna. Därefter kan datorn skapa grup-

per av beskrivningarna baserat på vilken grad av
likhet vi vill att beskrivningar i grupper ska up-
pnå.

Mitt projekt visade att metoden i nuläget inte
kan användas för testning då den kan leda till att
vi missar många testfall. För att förbättra meto-
den måste vidare undersökningar göras om vilka
egenskaper hos beskrivningarna som ska avgöra
deras likheter.

Att göra testning mer effektivt gör att vi kan
säkerställa att den testning som genomförs fak-
tiskt ställer nya krav på bilen och därmed ökar
dess säkerhet. Det går exempelvis inte att säga
att en förarlös bil är säker bara för att den har
kört tusentals mil men aldrig mött en poliskon-
troll.

Allteftersom fler förarlösa bilar sätter sina hjul
på offentliga vägar kommer inrapporteringen av
situationer som skapar problem för bilarna öka.
Genom att identifiera grupper av liknande sce-
narier med maskininlärning kan vi avgöra vilka
unika situationer som behöver testas automatiskt.
Framtiden med självkörande bilar kan bidra med
en stor mängd fördelar så länge vi bekräftar att
bilarna klarar av det oväntade!


