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Abstract

This thesis explores the challenges and solutions associated with color percep-
tion in robotics, focusing on the integration of color correction and color con-
stancy techniques. The study introduces a novel approach to color correction
that does not rely on external tools, offering a plug-and-play method for color
correction and color constancy in ROS2. The research investigates the viabil-
ity of using a robot base as ground-truth over a color checker board for color
correction. The potential improvement in color correction results through the
use of color constancy is also assessed. The study also examines the effect of light
source positions on any color correction reference used. The performance of var-
ious color correction and color constancy algorithms is evaluated in the context
of robotics, with the best performing algorithms selected based on their close-
ness to a ground-truth image and their effectiveness in object detection under
different lighting conditions. The findings provide guidelines for implementing
color correction and color constancy in robotics. Although the novel approach
hasn’t yet outperformed conventional techniques in relation to object detection,
the study suggests directions for continued exploration.
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Chapter 1

Introduction

Color, while a potent feature in computer vision applications, is a double-edged sword. Its
susceptibility to changes in illumination conditions can significantly undermine the effec-
tiveness of computer vision algorithms. Figure 1.1 demonstrates the substantial impact the
illuminant’s properties has on the final image captured by a digital camera. Neglecting this
influence can lead to a significant degradation in the effectiveness of computer vision algo-
rithms[18]. Our society’s growing reliance on robotics across sectors, from healthcare to au-
tonomous transportation, underscores the importance of accurate and consistent robotics.
As we integrate robots more deeply into our daily lives and critical infrastructures, their
ability to accurately perceive and interpret their surroundings becomes not just a technical
challenge but a larger societal directive. Therefore, it is crucial to attempt to neutralize the
influence of the illuminant, something that is addressed by the fields of color correction and
color constancy [9][34]. In this paper we will present to the reader what color correction and color
constancy is and what differentiates them. Our investigation will focus on enhancing the re-
liability of color perception in robots that utilize computer vision applications, achieved by
integrating color correction techniques with color constancy techniques. We will research ex-
isting color correction and color constancy algorithms with the aim of finding the best suited
algorithm(s) for robotic applications. A select number of algorithms will be investigated and
the resulting performance of these will be measured and presented.

In this project, our aim is to explore the implementation of color correction using external
tools, such as a color checker (see Figure 1.2). Additionally, we will present and examine a
novel approach to color correction that does not rely on external tools but instead utilizes
the robot’s surrounding environment. This makes the method more versatile and reduces the
dependency on external calibration tools like color checker boards, which can be of extra
importance in the context of mobile robotics. A comparative evaluation will be conducted
to assess the efficiency of using external tools versus relying solely on the environment.

Moving from the theoretical to the practical, our final solution will be implemented in
ROS2 Galactic[32], utilizing the Intel RealSense D405[14] depth camera and OpenCV for the
computer vision components. The practicality and effectiveness of this implementation will
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1. Introduction

Figure 1.1: The
Influence of Illumi-
nation on an Image
(Note the color
shift).

Figure 1.2: The
MacBeth Color
Checker[25].

be assessed in a real-world scenario involving the detection of colored blocks under diverse
lighting conditions.

1.1 Project Scope
The scope of this project is to evaluate different color correction and color constancy al-
gorithms in the context of robotics, specifically a robot arm with a camera mounted to it.
The solution should require minimal calibration and setup time, should be easily portable to
other robots and be able to handle a large variation in illuminants. We will be investigating
two solutions to color correction, the first one using a color checker[25] board, such as the
one seen in Figure 1.2 above. For the second solution, the color correction will be achieved
by the novel approach of positioning the robot in such a way that the camera will be able
to see the robot base, this will then be used as a consistent ground-truth point for executing
color correction. We will also be investigating the use of color constancy as a way to further
decrease the effect of the illuminant. A selection of color correction and color constancy
algorithms will be implemented and evaluated. Here the performance of each algorithm will
be measured and the best algorithm(s) will be selected. The effectiveness of each algorithm
will be evaluated based on two primary criteria. Firstly, how accurately a calibrated image
aligns with a ground-truth image will be measured using rg-chromaticity MSE, detailed in Sec-
tion 3.4.2. Secondly, the efficiency of an object detection algorithm under varied lighting
post-image calibration will be determined using a Real-World Test, discussed in Section 5.2.

1.2 Research Questions
In this project we have chosen to focus on the following questions:

• What is the viability of using a robot base as ground-truth over a color checker board
for color correction?
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1.3 Contributions

• How does the integration of color constancy algorithms enhance the accuracy of color
correction in robotics under dynamic lighting scenarios?

• How do varying positions of light sources impact the accuracy of color correction when
using a robot base as a reference?

1.3 Contributions
This project contributes the following to the fields of color correction, color constancy and
robotic computer vision:

• Introduces a novel approach to color correction that does not rely on external tools.

• An evaluation of existing color correction and color constancy algorithms in the con-
text of robotics.

• Guidelines for implementing color correction and color constancy in robotics.

1.4 Outline
In the subsequent chapters we will delve into the background of color perception, discussing
the role of color in image analysis and object recognition, and the digital representation
of an image. A thorough explanation of color correction and color constancy is provided,
including the mechanisms behind each process and the key factors that distinguish them
from each other. The approach and implementation chapters introduce two solutions to
color correction and investigate the use of color constancy to further decrease the effect of the
illuminant. A selection of color correction and color constancy algorithms are implemented
and evaluated.

We then move on to the evaluation of the implemented methods. The evaluation will
be done first using a large dataset and then using a experimental setup that simulates a real-
world scenario, namely object detection. The results chapter presents the findings from the
dataset evaluation and real-world tests, and includes a discussion on the performance degra-
dation in color correction algorithms, real-world testing results, and the impact of both color
correction and color constancy in the setup. We conclude with a recap of the research prob-
lem and questions, a summary and interpretation of the findings, the limitations of the study,
suggestions for future work, and the final conclusion.
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Chapter 2

Background

This chapter begins by briefly discussing the role of color in computer vision applications,
thereby emphasizing the significance of achieving consistent colors. We then delve into to the
digital representation of an image, first exploring how an image is represented in memory,
then explaining how a digital camera captures and creates these images. This understanding
is fundamental to appreciating the following sections. Finally, we will provide a thorough
and detailed explanation of color correction and color constancy. This will include an in-
depth description of the mechanisms behind each process and a discussion on the key factors
that distinguish them from each other.

2.1 Role of Color in Image Analysis and Ob-
ject Recognition

We will now explore the practical applications of color in image analysis. One method that
heavily relies on color information is multispectral thresholding. This technique involves apply-
ing intensity thresholding to each color channel in an image, as illustrated in Figure 2.1[13].
This approach can be used to perform edge detection in colored images[24], which in turn
aids in the segmentation of an image into separate objects and areas. Such segmentation can
facilitate object recognition in the image[16]. While there are numerous other applications of
color in computer vision, such as the classification of objects according to color, the impor-
tant point to note is that the use of color information generally enhances the performance
of object detection and recognition[5]. Given its many applications and its capacity to en-
hance object detection and recognition, color stands as an indispensable tool in the realm of
computer vision, serving as a cornerstone for the development of more accurate and efficient
visual systems.

11



2. Background

Figure 2.1: Multispectral Thresholding of an RGB Image[13]

2.2 Digital Color Image Representation and
Image Formation

Now that we understand the importance of color in image analysis and object recognition,
how exactly are these colors represented and formed in digital images?

2.2.1 RGB Color Image Representation
An RGB image is represented as a m × n × 3 matrix, where the ’3’ in the matrix denotes the
depth corresponding to the three color components: red, green and blue. Each channel is
represented by an 8-bit integer, meaning a value in the range [0, 255]. The color of a pixel
in location (i, j) of the RGB image is determined by a combination of the red, green and
blue intensities. This gives a potential of 16 million colors[23]. For an illustration of this
representation, refer to Figure 2.2. Lets now look at how this representation is created, and
what influences it.

2.2.2 Image Formation Model and the Role of Illu-
mination in Color Images

The best way to illustrate how the image representation is created, and what influences this
representation, is through the model presented below. This model will also help to create an
understanding of why colors are inconsistent in images and why this problem does not have a
perfect solution. Drawing from the work of Agarwal et al[2], the model has been reformulated
and can be described as:

Ic(x, λ) =
∫

Ω
R(x, λ)L(λ)Sc(λ)dλ, (2.1)

where:

• c is a subscript that represents the sensor’s response in each color channel, c ∈ [R,G, B]

12



2.2 Digital Color Image Representation and Image Formation

Figure 2.2: The Color Planes of an RGB Image[23]

• Ic(x, λ) is the sensor response corresponding to to the cth channel. In other words, it’s
the intensity of the red, green, or blue color at a specific pixel location in the image.
This intensity is determined by the interaction of the light with the object and the
sensor characteristics.

• λ is the wavelength. Different wavelengths correspond to different colors in the visible
spectrum.

• x is the 2D image coordinates. They specify the location of a pixel in the image.

• R(x, λ) is the surface reflection at a specific pixel location for a specific wavelength.
It describes how the object’s surface reflects light of different colors. This reflection
depends on the material properties of the object.

• L(λ) is the illumination property. It describes the properties of the light that is illu-
minating the scene. One important property is the color of the light. For example,
sunlight has a different color than artificial light, which can cause the same object to
appear as different colors under different lights.

• Sc(λ) is the sensor characteristics for each color channel. Different sensors can re-
spond differently to the same light, which can cause the same scene to be represented
differently by different cameras.

• Ω is the visible spectrum. The integral over the visible spectrum takes into account all
the colors of light that can potentially contribute to the image.

13



2. Background

Figure 2.3: Illustration of the Image Formation Model in Digital
Cameras

Figure 2.3 provides an illustration of this image formation model, helping to clarify the im-
plications of the equation.

A closer look at Equation 2.1 and Figure 2.3 reveals that the final image is a product of the
scene being captured (R(x, λ)), the illuminant’s properties (L(λ)), and the capturing device
(S(λ)). In applications like object detection, the goal is to identify elements in the scene
(R(x, λ)). However, the scene’s representation is influenced by both the illuminant (L(λ))
and the capturing device (S(λ)).

This implies that changes in illumination conditions or the capturing device can poten-
tially degrade the performance of our object detection algorithm. Ideally, we would want an
image that is solely dependent on the scene R(x, λ). This is precisely the objective of color
correction and color constancy methods, which we will explore in the following sections.

2.3 Color Correction
Color correction is a technique that seeks to address the inconsistencies that arise from the
image formation model, as outlined in Section 2.2.2. The goal of color correction is to trans-
form an image, captured under specific illumination conditions and on a particular device,
into a representation that is not dependent on either the illuminant or the device[9]. In the
context of the image formation model (Equation 2.1), this implies eliminating the effects of
both the illuminant, L(λ), and the device, S(λ), such that L(λ) = S(λ) = 1. Consequently,
the equation can be reformulated as follows:

Ic(x, λ) =
∫

Ω
R(x, λ)dλ, (2.2)

This process involves converting the image from a representation that depends on the illu-
minant and the device (this image is commonly said to be in RGB-space) to an image that
has a representation that is independent of both, as demonstrated in Equation 2.2 (this image
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2.3 Color Correction

is commonly said to be in XYZ-space). This conversion is achieved through a mapping, as
shown below:

q =Mρ, (2.3)

where:

• ρ is a three element vector representing the three camera responses [R,G, B]. This
corresponds to values found in the image Ic(x, λ) from equation 2.1.

• q is the corresponding device independent values, often called [X,Y,Z].

• M is a 3 × 3 matrix that models the transformation. This is the mapping we aim to
calculate.

To calculate the mapping M, we need to select several [R,G, B] values from the input im-
age Ic(x, λ) and place them into the vector ρ. We also need an equal number of corresponding
device-independent [X,Y,Z] values to place in the vector q. These device-independent val-
ues are derived from a ground-truth target, the nature of this ground-truth target and how
the values can be obtained from it will be discussed in detail in Chapter 3.

Once we have the necessary values, we can begin to calculate the mapping M.
However, one fundamental problem with this computation is the inherent need for an

approximation, given that exact inverses for matrices q or ρ don’t exist due to neither being
square matrices. This has given rise to several methods for solving this equation, each with
their unique strengths and weaknesses. We will introduce three such methods in the subse-
quent sections, these three methods are also the once that will be further investigated and
evaluated later in this report.

2.3.1 Root-Polynomial Regression for Color Correc-
tion

Our first computational approach to determine the mapping matrix M is the Color Correc-
tion using Root-Polynomial Regression[19] approach, an enhancement of the conventional least-
square regression technique, which we will be presenting below.

Least-Square Regression
Least-square regression is a method created by Finlayson et al[19] for calculating the mapping
M. The least-square regression method begins by defining a reflectance target matrix called
Q and a corresponding camera response matrix called R. Both these matrices are analogous
to the vectors mentioned in the previous section, with R corresponding to the ρ vector that
represents the three camera responses [R,G, B], meaning the pixel values that are found in
the image. The matrix Q corresponds to the q vector that signifies the corresponding device
and illumination independent values [X,Y,Z], meaning what the pixel values found in the
image should be, if the effect of the illuminant and the device has been removed.

Using the Moore-Penrose Inverse[35] method, we can then compute the least-square of
the following expression:

M = QRT(RRT)−1
(2.4)

Where:

15



2. Background

• R signifies a 3 × N matrix of camera responses, similar to ρ.

• Q symbolizes a 3 × N matrix of the reflectance targets, comparable to q.

• M is a 3 × 3 matrix modeling the transformation.

While this computation does yield an approximate answer, it does not necessarily provide an
exact answer which in our case means that we do not get a perfect mapping M.

Root-Polynomial Regression
The Root-Polynomial Regression method aims to augment the approximation’s precision
by using a polynomial regression of ρ. According to Finlayson et al[19] this means that we
extend the vector ρ by adding additional polynomial terms of increasing degree. However,
it’s important to note that while this expansion may enhance performance under certain
circumstances, it can also amplify the method’s sensitivity to noise in the input data. The
balance between accuracy and noise sensitivity will become more clear in Chapter 6, where
we delve into the performance and limitations of this method.

2.3.2 Color Correction via Polynomial Term Expan-
sion

Our second exploration in computing the transformation matrix is the Polynomial Term Ex-
pansion[9] method. To boost the method’s efficiency, Cheung et al.[9] suggested the use of
polynomial term expansion, in particular expanding ρ. For example, we can augment the ρ
matrix to be an 8×1 matrix of expanded RGB values containing the terms [1 RG B R2 G2 B2 RGB].
Accordingly, M then transforms into a 3 × 8 matrix.

The expression for the device and illuminant independent matrix q thus becomes:

X = a + bR + cG + dB + eR2 + f G2 + gB2 + hRGB
Y = i + jR + kG + lB + mR2 + nG2 + oB2 + pRGB
Z = q + rR + sG + tB + uR2 + vG2 + wB2 + xRGB

(2.5)

By solving this polynomial, we derive the transformation matrix M. Although the accuracy
of this method can potentially be improved by further expanding the polynomial’s terms, it’s
important to note that increasing the number of terms also enhances the sensitivity to noise
in the input data, mirroring the previous method’s restrictions.

2.3.3 Color Correction using Vandermonde Matrix
The third and final method we explore for determining the transformation matrix M, in-
volves the Vandermonde Matrix[36].

To define the Vandermonde Matrix let’s consider a polynomial with unknown coeffi-
cients A = [a0, a1, . . . , an] and known values Y = [y0, y1, . . . , yn]. This polynomial can be
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2.4 Color Constancy

formulated as:
p(x0) = a0 + a1x0+a2x2

0 + . . . + anxn
0 = y0

p(x1) = a0 + a1x1+a2x2
1 + . . . + anxn

1 = y1

...

p(xn) = a0 + anx1+a2x2
n + . . . + anxn

n = yn

(2.6)

If we rewrite this in matrix form we get:


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
... . . . ...

1 xn x2
n . . . xn

n



a0
a1
...

an

 =

y0
y1
...

yn

 (2.7)

From this equation, we can directly define the Vandermonde matrix V as:

V =


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
... . . . ...

1 xn x2
n . . . xn

n

 (2.8)

By multiplying equation 2.7 with the inverse of the Vandermonde matrix, we can obtain the
following expression:

V A = Y =⇒ A = V−1Y (2.9)

This expression, combined with polynomial degree expansion, as discussed in Section 2.3.2,
is employed directly to solve for the transformation matrix M. The reason this can be done is
because the Vandermonde matrix is a square, non-singular matrix, meaning we can take the
inverse of it. This method follows the same restrictions regarding noise as the two methods
presented above.

With color correction presented, we will now move onto presenting color constancy.

2.4 Color Constancy
Color constancy aims to remove the effect of the illuminant L(λ) and the device property
S(λ) from the final image I(x, λ)[2]. Although it might seem similar to color correction, color
constancy is distinctive in its reliance on assumptions rather than ground-truth targets.

The approach of color constancy involves making estimations to eliminate L(λ) and S(λ),
based on a diverse array of assumptions. These assumptions widely vary in the color constancy
literature, each carrying their own advantages and disadvantages based on what is being as-
sumed. Thus, the effectiveness of color constancy is highly dependent on the applicability
and accuracy of these assumptions in a given context.

In the sections that follow, we will delve into the five main categories of color constancy
assumptions, presenting their respective advantages and drawbacks.
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2. Background

2.4.1 Different Categories of Color Constancy Algo-
rithms

Hussain et al. [22] divide color constancy algorithms into five core categories, these are as
follows:

Statistics-based Algorithms: function by making assumptions about image data, such as a
particular average color intensity. A well-known example in this category is the gray
world assumption, which assumes that the average of all the colors in an image should
be gray. These algorithms can be simple and computationally efficient, but their per-
formance may vary depending on the validity of their underlying assumptions.

Gamut-based Algorithms: operate by mapping the colors in an image (captured under an
unknown illuminant) to the gamut of all colors achievable under a standard illumi-
nant. Although these algorithms tend to be effective, they require foreknowledge of
the standard illuminant, including its spectral power distribution — the energy profile
across different wavelengths of light[17][33].

Physics-based Algorithms: use insights from the physics of light and its interaction with sur-
faces to calculate the illuminant properties[15]. For example, these algorithms might
employ reflection models to approximate the illuminant properties[21]. Although these
models can be highly accurate, their effectiveness often depends on the realism of the
underlying physical models and assumptions.

Learning-based algorithms: rely on machine learning techniques. A prominent example of
this approach is the use of Convolutional Neural Networks (CNNs) to carry out color
constancy adjustments. These methods can be highly effective, especially with large
and representative training datasets, but they may also be computationally intensive
and potentially vulnerable to overfitting[22].

Biologically inspired methods: aim to replicate the human visual system and the way it per-
ceives colors under various lighting conditions[37]. These methods can be fascinating
and may offer insights into human perception, but their effectiveness in practical ap-
plications may vary.

In the next section we will be presenting a method where through combination of color
constancy algorithms we can improve on the final illumination estimate.

2.4.2 Enhancing Illumination Estimate through Com-
bination of Color Constancy Algorithms

Cardei et al.[6] demonstrated that combining different color constancy algorithms could
yield significantly better and more consistent performance than any one algorithm could
manage on its own. This improvement stems from the fact that all color constancy algorithms
operate under certain assumptions about the world, which may be more or less accurate de-
pending on the circumstances. By combining several algorithms, the error resulting from the
failure of a single algorithm’s assumption can be mitigated. Cardei et al.[6] proposed three
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ways of integrating these various algorithms: a linear average weighting, an optimized linear
weighting, and a nonlinear, machine learning-based weighting. They found that the opti-
mized linear weighting produced the best results, and as such, this will be the combination
method we examine further in Section 4.3.

Now that we’ve seen the benefits of combining multiple color constancy algorithms to
optimize illumination estimates, let’s turn our attention to the specifics of the three individ-
ual algorithms we’ve selected for further investigation.

2.4.3 Chosen Color Constancy Algorithms
In this section we will be presenting the three color constancy algorithm that we will be
further investigating and presenting why they were chosen. After that we will be going into
detail on each algorithm, detailing how they work.

The Gray World Algorithm: As one of the most widely used and recognized color constancy
algorithms, the Gray World Algorithm offers a simple and efficient computational ap-
proach. This algorithm is an ideal choice for investigation due to its intuitive concept
and wide applicability, making it a classic and fundamental method in the domain of
color constancy[7].

The White Patch Algorithm: The White Patch Algorithm represents an effective solution
for scenes with a dominant white color or bright areas. This algorithm operates under
the premise that the brightest color in the scene should be interpreted as white, and the
illuminant color can then be estimated from these areas. This assumption allows the
algorithm to handle situations where the Gray World Algorithm might falter, making
it a valuable complement to our study[7] [6].

Learning Based White Balance: With the rise of machine learning, algorithms that harness
the power of large datasets have started to outperform traditional methods. Learning-
based color constancy methods, such as Learning Based White Balance, can be highly
effective especially with large and representative training datasets. Despite being po-
tentially computationally intensive, they offer promising results and a way to adapt to
diverse and complex real-world conditions. Therefore, they are crucial to consider in
a comprehensive examination of color constancy techniques[8].

Gray World Algorithm
The Gray World Algorithm is based on the Gray World Assumption which says that the average
color over an entire image should amount to gray. Any deviation from this norm is presumed
to be caused by the influence of the illuminant. We can use this fact to achieve the primary
goal of this algorithm, to remove the effect of the illuminant L(λ). The first step in estimating
the illuminant involves obtaining the average value of each color channel, which can done by
using the following expression:

avgc = mean(Ic), (2.10)
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where Ic are the individual color channels, c ∈ [R,G, B], in the image I . The next step is to
compute the light source intensity for each color channel, as follows:

Lc =
2

E(G)
avgc. (2.11)

In this equation, Lc represents the estimated illuminant for each color channel, while E(G)
is a geometry factor. Assuming the light source is perpendicular to the surface then we can
simplify and use E(G) = 1[2][7]. In the final step we combine our color channel illumination
estimations, Lc, into a final estimation for L, giving us:

L =

LR 0 0
0 LG 0
0 0 LB

 (2.12)

This equation can be inverted and used in conjunction with Equation 2.1 to normalize L(λ),
which gives the following expression:

Ic(x, λ) =
∫

Ω
R(x, λ)L−1(λ)L(λ)Sc(λ)dλ =

∫
Ω

R(x, λ)Sc(λ)dλ. (2.13)

The expression above shows that the effect of the illuminant has been removed from the final
image, thus helping us achieve the desired color constancy in the image. [7]

White Patch Algorithm
The White Patch Algorithm is the second color constancy method we are investigating. Much
like the Gray World Algorithm, it operates based on assumptions about the image content.
Specifically, it assumes that the highest value in each color channel signifies the representa-
tion of white in the image.

The illumination estimation process in this algorithm mirrors that of the Gray World
Algorithm, with the only difference being that it uses the maximum value instead of the
mean value. This can be expressed in the following way:

maxc = max(Ic), (2.14)

where, Ic represents the individual color channels, with c ∈ [R,G, B], in the image I .
The algorithm assumes that the illuminant for each color channel corresponds to the

maximum value of that channel, resulting in the following straightforward equation:

Lc = maxc. (2.15)

We combine these into a final illumination estimation in the same way as seen in Equation
2.12[6][7].

Learning-Based White Balance
The third and final algorithm under consideration is a Learning-Based White Balance method,
proposed by Cheng et al[8]. This approach utilises image features and a bank of regression
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trees to estimate the illuminant. The features are all extracted while in rg-chromaticity space[8],
a representation that decouples colour information from its luminance[10], with luminance
indicating the amount of light emitted from, passing through, or reflected off an object[28].
The rg-chromaticity-space is computed as follows:

r =
R

(R +G + B)

g =
G

(R +G + B)

(2.16)

Four features are leveraged as input for the bank of regression trees: average color chromaticity,
brightest pixel chromaticity, dominant color chromaticity, and chromaticity mode of the color palette.
Each of these features are described below.

Average color chromaticity is the chromaticity, (avgr , avgg), of the average RGB value in
the image. The average RGB value can be calculated from Equation 2.10, which will give
us the RGB values (avgR, avgG, avgB). We can then transform this to rg-chromaticity
space using Equation 2.18. It is worth noting that this is equivalent to the input to the
Grey World Algorithm.

Brightest pixel chromaticity is the chromaticity, (maxr ,maxg), of the brightest RGB value
in the image. The brightest RGB value can be calculated using Equation 2.14, which
gives us the RGB values of (maxR,maxG,maxB). Same as above we then transform
this value into rg-chromaticity space using Equation 2.18. Here, it is interesting to
note that this is equivalent to the input to the White Patch Algorithm.

Dominant colour chromaticity is the chromaticity of the average RGB value, belonging to
the colour histogram bin with the highest count. In the original paper 128 bins were
used per color channel, meaning a total of 1283 bins were used. What this means is that
we take each color channel and divide the values of that channel into N bins. Then,
for each color channel histogram we find the average value of the bin with the highest
count. This gives us a set of RGB values (domR, domG, domB). As before, we transform
these RGB values into the rg chromaticity space, giving us (domr , domg).

Chromaticity mode of the colour palette represents the average value of each bin in the RGB
histogram previously mentioned that contains more than a minimum number of val-
ues. In the original paper, this threshold was set to 200 values, which gave a total of
roughly 300 different colours for an average image. Taking the average of these 300
colours, the RGB values (modeR,modeG,modeB) are produced. We then transform
these values into the rg-chromaticity space, giving (moder ,modeg).

These four features now need to be used to give a prediction on the illuminant. Here a
learning based method is used. This method is based on variance reduction regression trees[27].
For each feature a series of K regression trees are estimated. The original paper estimated
the regression trees in pairs, one regression tree for the r-chromaticity and one for the g-
chromaticity. Each regression tree pair receives one feature at a time as input, which means
that for each feature two regression trees need to be computed, the r and the g chromaticity
trees. This means that for each feature 2 ∗ K different illumination estimates are generated.
In total we will end up with 8∗K illumination estimates as we have four features. When two
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or more trees give similar illumination estimates these results are saved in two output sets, R
for the r estimation and G for the g estimation. The final rg-chromaticity estimation of the
illuminant is given by:

Lr,g = (mean(R),mean(G)) (2.17)

We can then apply the inverse of Lr,g to the image while still in rg-chromaticity space[8]. We
then convert the image back to RGB space though the following equations:

R =
rG
g

G = G

B =
(1 − r − g)G

g

(2.18)

where G is the original intensity of the green value for that pixel. This is needed as rg-
chromaticity does not encode intensity.

2.4.4 Example of Color Constancy - The Gray World
Algorithm

The gray world algorithms is based on the the gray world assumption that says that the color
of each sensor averages to gray over the entire image. Meaning that the average red intensity
is equal to the average green intensity and the average blue intensity, this can be expressed
as Redmean = Greenmean = Bluemean. This assumption holds best when there are a lot of
colors in the image. This can be used to estimate the illuminant by taking the mean of each
color channel and then looking at the deviation from this assumption, as discussed in Section
2.4.3[7]. As can be seen in Figure 2.4 the input image has a very large Green intensity while
the other two color channels have small values. In the output image this variation has been
greatly reduced and the image is drastically less green. However, it is easy to see the gray
world assumption does not hold if we have a large, single colored object in the scene. For an
illustration of this problem see Figure 2.5. Here, the gray world algorithm made the image
drastically worse because it will always assume that the average color should be gray, no matter
what the content of the image is.

As demonstrated by the last example, the gray world example suffers when the scene
contains a dominant color. To counteract this effect we can combine multiple different color
constancy algorithm. This has the effect that when one algorithm leads us astray, the other
algorithm can hopefully lead us closer to a correct response.

In the next chapter, we will delve into a comprehensive discussion on how color correc-
tion and color constancy can be integrated into one cohesive pipeline. We will be giving a
concrete example of the effect color correction has on the image and based on this we will
be presenting our innovative approach to the color correction problem. We will also be pre-
senting a proposed workflow to effectively process images in the context of robotic vision
application.
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Figure 2.4: Effect of Gray World Algorithm + Average RGB of Image.
Modified image from 10xEngineers[4]

Figure 2.5: Gray World Assumption on raspberry’s. Modified image
from Wikipedia[31]
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Chapter 3

Approach

In this chapter, we will provide a thorough explanation of the methodology used to tackle
our research questions. Initially, we will explore the conventional color correction technique
that involves a color checker, demonstrating its impact on an image through a practical ex-
ample. This discussion will set the stage for the introduction of our innovative approach.
To underscore the practicality and effectiveness of our method, we will provide an in-depth
demonstration of its effect on the image. We will then outline how our approach integrates
into the workflow of a robotic vision application. The chapter will conclude with a presen-
tation of our plan for evaluating our approach’s performance.

Before we proceed, let’s revisit the image formation model, Equation 2.1:

Ic(x, λ) =
∫

Ω
R(x, λ)L(λ)Sc(λ)dλ. (3.1)

This equation will serve as the foundation for understanding how the methods presented in
this chapter modify the image. Now, let’s delve into the most common method for executing
color correction, using a color checker.

3.1 Color Checker Based Color Correction
(CCB-CC)

The conventional approach to color correction is by using a color checker. We will be demon-
strating the inner workings of Color Checker Based Color Correction (CCB-CC) through
the example that follows.
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Figure 3.1: Flowchart of Color Correction using Color Checker. Im-
age adapted from Figure 3, Lai et al[26].

3.1.1 Example of Color Checker Based Color Correc-
tion (CCB-CC)

This example will illustrate the effect that CCB-CC has on the final representation of the
image. In this example we have a scene, Rin(x, λ), that we assume contains a color checker, an
example of a scene that fulfils this assumption can be seen in Figure 3.1. The scene is captured
by a camera with the properties Sin(λ) under an illuminant with the properties Lin(λ). This
gives us an input image Iin that can be expressed as:

Iin(x, λ) =
∫

Ω
Rin(x, λ)Lin(λ)Sin(λ)dλ, (3.2)

where:

• Rin(x, λ) is a scene containing a color checker.

• Lin(λ) is the illumination properties.

• Sin(λ) is the device properties of the camera used to capture the scene.

• Iin is the resulting image.

To begin the color correction process we choose 24 input points ([R,G, B]) from the input
image Iin and place them into ρ. These input points are chosen to represent one square each
of the color checkers 24 squares and will correspond with the ground-truth points ([X,Y,Z])
found in q. The points in q are defined by the manufacturer of the color checker and is
therefore always both illumination and device independent. We now want to calculate the
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mapping M that will transform ρ into q. Once we have calculated the mapping M we can ap-
ply it to the input image Iin giving us the device and illuminant independent image Iindependent ,
as shown in Figure 3.1, that can be expressed as:

Iind(x, λ) =
∫

Ω
Rin(x, λ)dλ. (3.3)

This means that if we take another image of the same scene Rin under a different illuminant,
lets call it Lnew and with another camera, lets call it Snew and we go through the steps described
above and demonstrated in Figure 3.1, we should ideally end up with the same final image
Iind . This is clearly shown in Equation 3.3 as Iind is only a function of Rin. While this method
ensures consistent color representation across various devices and illuminants, it does have
a significant drawback of relying on an external color checker. The upcoming sections will
introduce our novel approach that addresses this limitation.

3.2 Ground-Truth Image Based Color Cor-
rection (GTIB-CC)

Building on the discussions in Chapter 2 and the examples provided, it’s clear that color
correction is fundamentally dependent on ground-truth points. While the most common
solution to gathering these ground-truth points is to use an external tool, such as a color
checker, we propose a solution that does not rely on such an external tool. The approach we
propose involves the use of two distinct images: an Input Image and a Ground-Truth Image.

The Ground-Truth Image is a snapshot of the scene captured under the desired lighting
conditions. The content of this scene isn’t as important as its availability; it should be a scene
that we can reliably return to during the color correction process. For robotic applications,
we recommend using the robot itself as the ground-truth scene. This image provides a reliable
source of reference points that are unaffected by changes in illumination or the capturing
device.

The Input Image, on the other hand, is the image that we wish to correct. It’s captured
of the same scene as the Ground-Truth Image, but under different illumination conditions.
This is the image we will be manipulating to match the color profile of the Ground-Truth
Image.

Our approach, which we’ve named Ground-Truth Image Based Color Correction (GTIB-CC),
allows us to select a number of corresponding points in the two images. These points pro-
vide both the ground-truth data and the input data for the color correction algorithm. This
method is particularly useful in robotic applications where the robot itself can be used as the
ground-truth scene.

The GTIB-CC method offers a unique approach to color correction, providing a flexible
and adaptable solution to the challenges posed by varying illumination conditions and cap-
turing devices. The impact of this method on the final image, along with its advantages and
limitations, will be demonstrated in the example that follows.
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3.2.1 Example of Ground-Truth Image Based Color
Correction (GTIB-CC)

This example will illustrate the effect GTIB-CC has on the final representation of the image
as well as help highlight some of the advantages, but also limitations, of this approach. This
example is also mirrored in Figure 3.2.

In the GTIB-CC method, we begin by capturing a scene under the desired lighting con-
ditions to create the Ground-Truth Image. For this example, we will say that the camera used
to capture the scene has the properties Sgt and that the illuminant we captured the scene
under has the property Lgt . Finally, we say that the scene that is captured is called Rgt . This
gives us the Ground-Truth Image, Igt that can be expressed as:

Igt(x, λ) =
∫

Ω
Rgt(x, λ)Lgt(λ)Sgt(λ)dλ. (3.4)

The next step is to capture the Input Image, Iin(x, λ), which is the image we wish to
correct. The goal is to transform this image to match the Ground-Truth Image, Igt(x, λ). This
is achieved by mapping the input illuminant Lin and device Sin to the reference illuminant
Lgt and device Sgt .

To do this, we select N number of reference points from the images Iin and Igt . It is
important that these points represent the same scene, as such, we need to avoid any shadows
and highlights that appear in one image, but not the other. We also need to avoid any objects
that might be unique to one of the images. This is done by creating a map of any differences
in the two images, something which will be discussed in Section 4.1.3. If we fulfill this criteria
we put the points from Iin into ρ and the points from Igt into q. We then use these points to
calculate the mapping M and finally apply this to the Input Image Iin.

The mapping M maps the input illuminant Lin and the input device Sin to the ground-
truth illuminant Lgt and the ground-truth device Sgt . This means that the Input Image can
be expressed as:

Iin(x, λ) =M
∫

Ω
Rgt(x, λ)Lin(λ)Sin(λ)dλ = Igt(x, λ) (3.5)

This method allows us to consistently achieve the ground-truth conditions by mapping
the current illuminant and device to those of the Ground-Truth Image, provided we have
access to the scene Rgt . While this does not give us a device and illuminant independent
image, this does give us an image with a consistent color representation, which is what we
want for computer vision applications.

In the following section we will discuss the proposed workflow of both of these color
correction solutions and how they can be used in the workflow of a robotic vision application.
We will also describe how we plan on utilizing the power of color constancy as a complement
to these methods.

3.3 Proposed Workflow
In the context of an industrial robot, we can integrate two methods into its workflow: the
Ground-Truth Image Based Color Correction (GTIB-CC) and the Color Checker Based Color
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Figure 3.2: Color Correction flowchart. Image adapted from Figure
3, Lai et al[26].

Correction (CCB-CC). The specific workflow varies depending on the method applied. We’ll
first outline the workflow for CCB-CC, followed by GTIB-CC.

To aid in this description we will consider an industrial robot with a camera mounted to
it. There are three "scenes" available to the robot. The first scene is a table with colored blocks
placed on it, these blocks will be manipulated by the robot. This is the "working scene". The
second scene is the "ground-truth scene", this is a scene showing the robot base. The third
and final scene is a scene showing the color checker, which is placed near the "working scene".
In this example we assume the robot is tasked with pick-and-place. The setup required for
this is a tuning of an object detection algorithm under the current illumination conditions.

With this scenario in mind we will now present the two workflows of this robot, starting
with the workflow of CCB-CC.

3.3.1 Workflow of CCB-CC
The CCB-CC workflow initiates with a setup step, that starts by directing the camera to-
wards the "color checker scene". The camera captures an image, locates the color checker
within it, and extracts the input points. These points are used, together with the ground-
truth points provided by the manufacturer, to calculate a mapping, which is then saved and
applied to the images of the "working scene". Optionally, color constancy can be applied at
this stage. The final step involves calibrating the object detection algorithm with the color-
corrected image. At this point the setup stage is finished.

During operation, the camera periodically returns to the "color checker scene" either at a
set interval or when lighting conditions change. It locates the color checker, calculates a new
mapping, and applies this mapping to the images of the working scene. Optionally, color
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constancy can be applied at this point as well.

3.3.2 Workflow of GTIB-CC
The GTIB-CC workflow starts again with a setup. The setup begins by capturing a ground-
truth image of the "ground-truth scene" under the desired illumination conditions. A sub-
sequent image of the "ground-truth scene" under the current conditions is taken to serve as
the input image. A mapping is calculated from these two images and applied to the "working
scene" images. Optionally, color constancy can be applied at this stage. The object detec-
tion algorithm is then tuned using the color-corrected image and at this point the setup is
complete.

During operation, the camera periodically captures a new image of the "ground-truth
scene" either at a set interval or when lighting conditions change. A new mapping is calcu-
lated using the Ground-truth image and the new image, and this mapping is applied to the
working scene. Optionally, color constancy is applied at this point.

3.4 Methods for Evaluation of Algorithms
Performance

To evaluate the performance of the algorithms, we need a method to measure the proximity
of the colors in the final image to a series of ground-truth colors. We decided to define our
own method, where we will be calculating the Mean Square Error (MSE) between an input
array of color values and a ground-truth array of color values, providing a measure of how
closely the colors of the input array align with those of the ground-truth array.

However, it’s important to note that this method is influenced by the brightness of the
image. For instance, if the input array values are derived from an image that is darker than
the ground-truth array, the MSE will increase. Given that some color correction and color
constancy algorithms can affect the brightness of the image, we will instead aim to measure
the MSE independently of brightness.

To understand how we can calculate the MSE independently of brightness we will first
introduce how we calculate MSE. We will then introduce a modified version that we call
rg-chromaticity MSE. rg-chromaticity MSE is a luminance-independent version of the MSE
calculation, providing us with a method for evaluating the proximity of colors without the
influence of the brightness of the image.

The details of these methods are presented in the sections below.

3.4.1 Understanding the Calculation of RGB MSE
The Mean Square Error (MSE) is a measure calculated from the difference between two arrays
of color values: the input color array and the ground-truth color array. The input color array
consists of color values from the image that is either to be color corrected or has already been
color corrected, depending on the stage of evaluation.

On the other hand, the ground-truth color values are derived from one of two sources.
They can either be the color checker values provided by the manufacturer of the color checker
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or extracted directly from the ground-truth image.The next chapter will provide a more de-
tailed explanation of how we collect both the ground-truth and input values. Once we have
these two arrays of color values, we can calculate the MSE. This calculation is demonstrated
in Algorithm 1:

Algorithm 1 Calculation of RGB MSE

Vin = [Rin,Gin, Bin] ∈ {0, 255}3
Vgt = [Rgt,Ggt, Bgt] ∈ {0, 255}3
N = 1
arrayLength← sizeO f (Vin)
while N ≤ arrayLength do

MSEN = (Rin,N − Rgt,N )2 + (Gin,N −Ggt,N )2 + (Bin,N − Bgt)2

end while
MSE =

∑arrayLength
n=1 MSEN

3.4.2 Understanding the Calculation of rg-chromaticity
MSE

This algorithm provides a luminance-independent version of the MSE calculation. The key
difference lies in the space where we calculate the MSE value: instead of the RGB space, we
use the rg-chromaticity space. This adjustment ensures that any differences in luminance
are not factored into the calculation, resulting in an MSE value that exclusively depends on
the differences in color. The calculation of this algorithm’s MSE value is demonstrated in
Algorithm 2. Although we have included the calculation for the b-chromaticity value for
completeness, it does not need to be explicitly calculated as the total sum r + g + b always
equals one:

Algorithm 2 Calculation of rg-chromaticity MSE

[Rin,Gin, Bin] ∈ {0, 255}3
[Rgt,Ggt, Bgt] ∈ {0, 255}3
N = 1
M = 1
arrayLength← sizeO f (Vin)
while N ≤ arrayLength do

[rin,N , gin,N , bin,N ] = [ Rin,N
Rin,N+Gin,N+Bin,N

,
Gin,N

Rin,N+Gin,N+Bin,N
,

Bin,N
Rin,N+Gin,N+Bin,N

]
[rgt,N , ggt,N , bgt,N ] = [ Rgt,N

Rgt,N+Ggt,N+Bgt,N
,

Ggt,N
Rgt,N+Ggt,N+Bgt,N

,
Bgt,N

Rgt,N+Ggt,N+Bgt,N
]

end while
while M ≤ arrayLength do

MSErg,N = (rin,N − rgt,N )2 + (gin,N − ggt,N )2 + (bin,N − bgt,N )2

end while
MSE =

∑arrayLength
n=1 MSErg,N

In the following section we will be giving an introduction to the dataset used during
evaluation of the algorithms being investigated.
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3.4.3 Dataset Employed for Evaluation
For the testing and evaluation of the color correction and color constancy algorithms, we
utilized The Rendered WB dataset (Set 1), a dataset curated by Afifi et al[1]. This comprehensive
dataset comprises a vast array of images captured both indoors and outdoors. Each input
image in this dataset is accompanied by a calibrated ground-truth image. The dataset includes
images both with and without color checkers, making it an ideal choice for this project as
we aim to investigate methods that both utilize and do not utilize color checkers. While we
considered generating our own dataset as this would have made testing and evaluation more
consistent and reliable, the pre-existing The Rendered WB dataset (Set 1) offered a depth of
variety that would have been time-consuming and challenging to replicate on our own.
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Implementation

This chapter provides a comprehensive guide to the methods used to improve color percep-
tion in robotics. It begins with a detailed explanation of the color correction implementation,
including automatic color checker detection and point selection for ground-truth image-
based color correction. Next, the chapter delves into the application of color constancy algo-
rithms, explaining how they enhance color correction results. The chapter then explores the
combination of color correction and constancy algorithms, discussing the implementation
of rg-chromaticity MSE and optimized linear weighting for improved outcomes. Finally, the
chapter concludes with a discussion on shape detection and color segmentation techniques,
which are used during the evaluation of the color correction and constancy algorithms.

Each section provides a step-by-step guide, making this chapter a potentially valuable
resource for those interested in enhancing color perception in robotics.

4.1 Color Correction Implementation
The implementation of color correction in this project utilizes a color science library known
as Colour[11]. This library offers a wide array of tools for handling colors in Python, including
color correction algorithms. As outlined in Section 2.3, our investigation focuses on three
distinct color correction algorithms:

• Color Correction using Root-Polynomial Regression

• Color Correction using Polynomial Term Expansion

• Color Correction using the Vandermonde Matrix

The Colour library provides implementations of all three of these algorithms. However, in
the Colour library these algorithms are named after the author, as such these are called:

• Finlayson 2015
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• Cheung 2004

• Vandermonde

The Colour library’s implementation of each algorithm shares a similar interface. De-
pending on the method chosen, either the number of terms or the degree of polynomial
expansion can be specified. All algorithms require three common inputs:

• An image to be corrected: This input represents the image that requires color correc-
tion.

• An array of input values: These values are extracted either from the color checker found
in the input image, or directly from the input image, depending on the method of color
correction being used. These values will be matched to the ground-truth values during
the color correction process.

• An array of ground-truth values: These values are either given to us from the manufac-
turer of the color checker, or directly extracted from the ground-truth image, depend-
ing on the method of color correction being used. This array serves as the ground-truth
against which the input values will be compared and adjusted.

The algorithm Cheung 2004 also requires the number of terms of the expanded polynomial
as an input, these terms must be ∈ 3, 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22, 35. The algo-
rithms Finlayson 2015 and Vandermonde both take the degree of the expanded poly-
nomial as an input, which must be ∈ 1, 2, 3, 4. In the following section the details of our
implementation is presented.

4.1.1 Implementation Details of Color Correction
The color correction calculation is encapsulated within a function named
calculate_color_correction_matrix, which computes the color correction matrix for
a given image. This function accepts three arguments: input_values_RGB,
ground_truth_values_RGB and color_checker. See Figure 4.1 for an illustration of the
program flow described below.

The input_values_RGB argument is an array of input values in the RGB color space,
representing the colors in the image that are to be corrected. The ground_truth_values_RGB
argument is an array of ground-truth values, also in the RGB color space, which serve as the
ground-truth to which the input values should be adjusted. The color_checker argument
is a boolean indicating whether a color checker is utilized in the color correction process.

The function first checks if a color checker is used. If it is, the function calculates the
color correction matrix using the Cheung 2004 method with root-polynomial regression
of terms 7 and 8, and the Vandermonde method with a polynomial degree expansion of 2.
The resulting matrices are then combined into a single matrix using predefined weights. The
combined matrix is returned by the function.

If a color checker is not used, the function calculates the color correction matrix us-
ing the Cheung 2004 method with root-polynomial regression of terms 5 and 7, and the
Vandermonde method with a polynomial degree expansion degree 2. The resulting matrices
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4.1 Color Correction Implementation

Figure 4.1: Flow Chart of Color Correction Implementation

are combined into a single matrix using a different set of predefined weights. The combined
matrix is again returned by the function.

The color correction matrix calculated by this function can be used to adjust the colors
in the input image so that they match the ground-truth values as closely as possible. This is
typically done by multiplying the color values in the image by the color correction matrix.

For more detailed information regarding the implementation and usage of these algo-
rithms, we refer the reader to the official documentation of the Colour library[12]. We will
discuss the performance of these algorithms in Section 6.1. During the performance evalua-
tion, we evaluate each possible term or degree expansion allowed by the algorithm’s imple-
mentation to find the best performing.

4.1.2 Automatic Color Checker Detection
The automatic color checker detection process utilizes the Macbeth Chart module from the
OpenCV library[30]. The key function in this process, find_color_checker, takes an RGB
input image as an argument. This function creates a color checker detector object and ini-
tiates the detection process on the input image, a flow chart of this can be seen in Figure
4.2.

If the color checkers is successfully detected in the image, the function extracts its color
values. However, the output from the color checker detector object is not in the desired
format for further processing. To address this, the output is passed to another function,
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Figure 4.2: Flow Chart of Color Correction Implementation

convert_color_checker_matrix.
The convert_color_checker_matrix function transforms the color checker values

into a 24×3 vector. Each row in this vector corresponds to the RGB value of a specific square
on the color checker. The vector’s height is 24, reflecting the 24 distinct squares present on
the color checker. The values are consistently stored in a left-to-right, top-to-bottom order.
This consistent ordering facilitates the straightforward matching of detected values to the
corresponding ground truth values provided by the color checker’s manufacturer.

These processed values serve as input for both the color correction algorithms and the
Mean Squared Error (MSE) calculation. If the color checker is not detected in the image, the
find_color_checker function returns -1, signaling the detection failure.

Next we will be presenting how we can find ground-truth points from our ground-truth
image when utilizing GTIB-CC.

4.1.3 Automatic Point Selection for GTIB-CC
For GTIB-CC we need a systematic way for selecting good ground-truth points. We will
begin with making the assumption that the input and ground-truth images are aligned. We
do, however make no assumption about the content of each image more than that there are
common parts. We do allow, for example, shadows, highlights and new objects to enter the
scene. However, we assume that there are some common parts that can still be seen as this
is crucial for being able to select reference points. The core idea is that we want to only
select reference points at the pixel coordinates that represent objects that are common to
both images. An example of how the ground-truth and input images can look is shown in
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4.1 Color Correction Implementation

Figure 4.3: Input and Reference Image Example

Figure 4.3.

Finding Common Points in Images
In the process of identifying common points in the images, the initial step involves analyzing
the differences between the images. This is achieved by converting the images to grayscale, a
step that is crucial to ensure that color variations do not influence the determination of simi-
larities. We defined a function called create_similarity_binary_map that performs this
task by converting both the input and ground-truth images to grayscale using the OpenCV
function cv.cvtColor.

Next, the function computes the absolute difference between the grayscale versions of
the input and ground-truth images, resulting in a new image (diff_image) where each pixel
value represents the absolute difference between the corresponding pixels in the two original
images. The pixel values in this difference image range from [0, 255], with larger values
indicating greater differences and smaller values indicating smaller differences.

To isolate the common points in the images, a threshold is applied to the difference image,
generating a binary image. This is achieved using the OpenCV function cv.threshold,
which applies an inverse binary threshold to diff_image. The thresholding value we found
showed the best result was 7, meaning that all pixel values in diff_image that are less than
or equal to 7 are set to 1 in the binary image, and all other pixel values are set to 0.

In this binary image, a pixel value of 1 indicates a potential reference point, while a pixel
value of 0 indicates a point that cannot be used as a reference. By adjusting the thresholding
value, we can control the degree of similarity required for a pixel to be considered a potential
reference point.

Figure 4.4 provides an example of such a binary image, which was generated using the
ground-truth and input images shown in Figure 4.3 and a thresholding value of 7. In this
binary image, black pixels represent non-reference points, while white pixels represent po-
tential reference points.

Selecting Reference Points
The selection of reference points aims to ensure a comprehensive representation of the im-
age’s content while avoiding any local peculiarities. This is achieved by choosing points that
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Figure 4.4: Binary Image Example. Created by taking the difference
between the input and reference image in Figure 4.3.

are evenly distributed across the image and only where the binary map has a value of one,
indicating potential reference points.

The function pick_ref_points is used to select these reference points. It first cal-
culates the number of points to select along each dimension of the image and the spacing
between these points. It then iterates over the points to select along each dimension of the
image, computes the coordinates of each point, and checks if each point is a valid reference
point by calling the is_valid_ref_point function.

The is_valid_ref_point function checks if a given reference point is valid by ver-
ifying the condition that the binary map has a value of one at the point’s location, which
indicates that the point is within the image bounds. If it passes this condition, it is consid-
ered valid.

If a point is deemed valid, it is added to the list of selected reference points. Once all
points have been evaluated, the function returns the list of selected reference points. These
points are then used to extract the corresponding pixel values from both the input image and
the ground-truth image. These values are stored in two N ×3 vectors, where N is the number
of points, and are used in the same way as the color checker values when performing color
correction and Mean Square Error (MSE) calculations.

Figure 4.5 illustrates the selected reference points overlaid on the input image from Figure
4.3, using the binary image from Figure 4.4 as a guide. This visual representation aids in
understanding how the selected reference points are distributed across the image.

4.2 Implementation of Color Constancy
The implementation of color constancy in this project leverages the additional photo pro-
cessing algorithms provided by the OpenCV library[29]. This library offers three classes for
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Figure 4.5: Input Image with Reference Points Drawn

color constancy: GrayworldWB, LearningBasedWB, and SimpleWB. All these classes in-
herit from the base class WhiteBalancer (white balance correction is an alternative term
for color constancy).

The function apply_color_constancy is defined to apply these color constancy meth-
ods to an RGB input image. The function applies the three color constancy methods to
the input image. This is achieved by creating an instance of each color constancy class
(greyworldWB, simpleWB, and learningBasedWB) and invoking the balanceWhite method
on each instance with the image as input. This method applies the corresponding color con-
stancy algorithm to the image and returns three corrected images, one for each method.

The function then combines the three corrected images into a single image. This is ac-
complished by taking a weighted sum of the three images, the calculation of these weights is
discussed in Section 4.3.

This comprehensive approach ensures that the final image benefits from the strengths of
each white balance correction method, leading to a more accurate and robust color constancy.

In the next section we will discuss how we can combine color correction algorithms and
how we can combine color constancy algorithms. We will also be presenting how we imple-
mented the rg-chromaticity MSE calculation.

4.3 Combining Multiple Color Correction and
Constancy Algorithms

As previously discussed, the combination of several color constancy algorithms can yield su-
perior results compared to each algorithm operating independently. We also want to investi-
gate if this holds true for color correction. In this section, we present our approach to combin-
ing algorithms, starting with the implementation details of calculating the rg-chromaticity
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MSE values, as this is a crucial component in determining the ideal combination of algo-
rithms.

4.3.1 Implementation of rg-chromaticity MSE
The function designed to calculate the rg-chromaticity Mean Squared Error (MSE) is called
rg_chromaticity_MSE and accepts two sets of RGB values as input: input_values and
ground_truth_values. Initially, it scales the RGB values of both the input and ground-
truth sets to be in the rg-chromaticity space. This is achieved by dividing each RGB com-
ponent by the sum of all RGB components for each color, see Algorithm 2. This process is
applied to each color in the input and ground-truth sets, resulting in two new sets of scaled
values in rg-chromaticity space. The function then calculates the MSE between these two
sets of rg-chromaticity space values using the calc_MSE function.

The calc_MSE function calculates the Mean Squared Error between two sets of val-
ues: input_values and ground_truth_values. It accomplishes this by subtracting the
ground-truth values from the input values, squaring the result, and then taking the mean of
these squared differences, the function then returns this mean squared error.

In summary, the rg_chromaticity_MSE function calculates the luminace invariant
Mean Squared Error between two sets of RGB values, which is useful for comparing the
similarity of colors in different images. The calc_MSE function is a helper function used to
calculate the Mean Squared Error.

We now move on to the implementation of the function used to calculate the optimal
weighting for combining algorithms.

4.3.2 Optimized Linear Weighting
Our goal is to optimally combine the results of the three different image enhancement meth-
ods discussed above - namely, CCB-CC, GTIB-CC, and Color Constancy (CC). We calculate
three different weightings, one for each method. Each method takes an original image as
input and transforms this image, producing three different resultant images for every single
input image, which we refer to as image_1, image_2, and image_3. To effectively merge
these three images, we create a final composite image for each input image through a linear
combination of the three resultant images from the algorithms.

The main challenge here lies in determining the most suitable weighting for each algo-
rithm in the linear combination, denoted as [w1,w2,w3]. We aim to select these weights in
such a way that the final composite image is as close as possible to the ground-truth image,
with the ’closeness’ quantified through the rg-chromaticity Mean Squared Error (MSE). The
lower the MSE, the closer the composite image is to the ground-truth image.

Two conditions must be satisfied by the chosen weights:

• The sum of the weights w1 +w2 +w3 = 1, which ensures that the total intensity of the
final image remains the same.

• The individual weights are all non-negative: w1 ≥ 0,w2 ≥ 0,w3 ≥ 0.

To identify the best weights, we first initialize them to random values that satisfy these
conditions. Then we employ a gradient descent process, iterating through potential sets of
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weights and calculating the MSE of the composite images formed by using these weights.
Specifically, we explore the neighboring weights and select the ones that lead to the smallest
MSE. We continue this process until we find a set of weights where no neighbors provide an
improved MSE.

This weight determination process is performed on a large dataset, and the effectiveness
of the chosen weights is then validated during testing. The output of the code is the MSE
value of the optimal weighting combination and the respective weightings for each of the
three images. In doing so, the algorithm enables us to seamlessly combine different image
enhancement methods into a single, optimized process.

We conclude this chapter with a brief overview of the shape detection used during the
real-world scenario evaluation portion.

4.4 Implementation of Shape Detection and
Color Segmentation

The primary objective of this application is to assess the effectiveness of color correction and
color constancy algorithms in real-world situations. As such, while we recognize that the
performance of an HSV-based (HSV stands for hue, saturation, value and is an alternative
method of representing a color image) segmentation approach tends to be suboptimal under
varying illumination conditions our goal is to demonstrate that by employing both color
correction and color constancy techniques, we can mitigate this sensitivity to changes in
lighting. In doing so, we aim to demonstrate the overall increase in performance.

The process begins by receiving an image which is then converted to HSV (Hue, Satura-
tion, Value) color space. HSV color space is frequently used in computer vision applications
as it separates image intensity from color information, making it more resilient to lighting
variations.

Subsequently, the code defines the hue, saturation, and value ranges. These ranges are
utilized to create masks for different objects in the image. Each object has a specific HSV
value, which is employed to create a binary mask where the pixels of the object fall within
the specified HSV range.

The code then specifies the HSV values for various objects (e.g., banana, cups, post-its,
pen, apple, red ring), see Figure 6.4 for an example of the scene being investigated. For each
object, it calculates the lower and upper HSV values that define the range for that object.
For the red ring and apple, two ranges are defined because their hue values are close to either
0 or 180, and as such the hue value wraps around in the HSV color space.

The cv2.inRange function is used to create a binary mask for each object. The function
checks if the HSV value of each pixel falls within the specified range. If it does, the pixel is
set to 255 (white), otherwise, it is set to 0 (black).

All the masks are then combined to create a final mask that includes all the objects.
This mask is then processed using morphological operations (closing and opening) to remove
noise. The kernel size for these operations is defined as an 11x11 matrix of ones.

The cv2.bitwise_and function is used to apply the mask to each pixel in the original
RGB image, resulting in an image where only the objects of interest are visible, and everything
else is black.
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Finally, the code finds contours in the mask using the cv2.findContours function. For
each contour, it calculates the center point and draws the contour and the center point on the
original RGB image, it also adds a text label for each shape. The final image is then displayed
on screen.
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Chapter 5

Evaluation

This chapter outlines the evaluation methods employed to assess the performance of the color
correction and color constancy algorithms discussed in the previous sections. The results of
these evaluations will be presented in the subsequent chapter (see Chapter 6).

Our evaluation strategy comprises two distinct approaches. The first is a statistical ap-
proach, where we utilize a large dataset to measure the performance of the various color
correction and color constancy algorithms. The second is an experimental approach, where
we assess the performance of the methods in a real-world scenario.

5.1 Evaluation Using Dataset
The evaluation process utilizes the The Rendered WB dataset (Set 1)[1], as detailed in Section
3.4.3. We will be using 300 images from this dataset during out evaluation. We assess three
distinct methods:

• Color Checker based Color Correction (CCB-CC).

• Ground-Truth Image based Color Correction (GTIB-CC).

• Color Constancy (CC).

Each of these methods comprises several image correction algorithms that require evaluation,
as outlined in Sections 4.1 and 4.2. The evaluation process is as follows:

1. For each image in the dataset, we identify and measure N distinct reference points.
Depending on the method under evaluation, these points will either be the 24 points
found in the color checker or N points directly from the input image, as described in
Section 4.1.3. If we are using the latter method, we also select the same N points in the
ground-truth image.
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2. We then calculate the initial rg-chromaticity MSE value using these points. This metric
quantifies the color difference between the input colors and the ground-truth colors.

3. Next, we apply each of the color correction algorithms (outlined in Section 4.1) or the
color constancy algorithms (outlined in Section 4.2) to each image individually.

4. From the output of each color correction method, we calculate a new rg-chromaticity
MSE value. This value represents the color difference between the corrected colors and
the ground-truth colors.

5. After performing this process for all 300 images from the dataset, we calculate the
average rg-chromaticity MSE for each color correction method, as well as for the input
image itself.

6. To facilitate comparison, we normalize these average rg-chromaticity MSE values such
that the input image’s value is equal to 1. This normalization allows us to assess the rel-
ative improvement or degradation in color accuracy achieved by each color correction
method.

5.1.1 Evaluation of Combined Methods
To assess the effectiveness of combining methods, we selected the top three techniques from
each of the methods evaluated previously. The combination process follows the approach
outlined in Section 4.3. Subsequently, we calculated the average rg-chromaticity MSE across
the 300 tested images. Finally, we normalized this value to ensure that the rg-chromaticity MSE
of the input image equaled 1. This normalization process facilitates a relative comparison of
the performance improvement or degradation achieved by the combined methods.

5.2 Experimental Setup
For our experimental testing, we attached a camera to an ABB GoFa robotic arm[20]. We pro-
grammed the robotic arm to alternate between two positions. The first position, referred to
as the "working position," displayed a scene with multiple colored objects and a color checker.
The second position, known as the "ground-truth position," was chosen to capture images of
the robot base, which are necessary for Ground-Truth Image based Color Correction (GTIB-
CC).

We collected images under various scenarios and lighting conditions. The scenarios in-
cluded a dark room with a light placed above the scene (Scenario 1), a dark room with a light
placed at the robot base (Scenario 2), and a bright room with a light placed at the robot base
(Scenario 3). For each scenario, we used eight different light colors:

• White ("Neutral")

• Blue

• Green

• Purple
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• Red

• Teal

• Orange

• Yellow

For each combination of scenario and light color, we captured an image in both the "working
position" and the "ground-truth position". Some examples of the captured images can be seen
in Figure 5.1.

After capturing the necessary images, we proceeded with their evaluation. As this test is
designed to simulate a real-world scenario, we assessed the relative improvement of an object
detection algorithm with and without image enhancement. For each testing scenario, we
calibrated the object detection algorithm using the white light, which is intended to replicate
a neutral lighting situation.

The calibration process begins by applying the appropriate calibration. For instance, if
we are evaluating Color Checker based Color Correction (CCB-CC), we first detect the color
checker in the "working position" image under neutral lighting conditions, apply color cor-
rection, and then tune the object detection algorithm. We then switch to the image taken
under blue light, turn off CCB-CC, run the object detection algorithm, and count the num-
ber of objects detected. Next we once again run CCB-CC, detecting the color checker, this
time under blue light, and apply the color correction. We then run the object detection al-
gorithm and count the number of objects detected after calibration. We repeat this process
for every scenario, every color and every method.

We also tested whether combining color correction with color constancy could improve
performance. To do this, we followed the same calibration and testing steps as detailed above.
However, we also applied color constancy before tuning the object detection algorithm.
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Figure 5.1: Example of Images Captured During Experimental Data
Collection
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Chapter 6

Result

In this chapter we will present the result of both the evaluation done on the dataset and the
result of the real world experiments.

This chapter presents the findings from the evaluation of various color correction and
color constancy algorithms in the context of robotics. It begins with the results from the
dataset evaluation, where the performance of different methods such as Color Checker based
Color Correction (CCB-CC), Ground-Truth Image Based Color Correction (GTIB-CC), and
Color Constancy (CC) are discussed.

We then transition into the results from real-world tests, providing insights into the prac-
tical application of these methods. This includes the results of using only color correction in
the setup, as well as the results when combining color correction with color constancy.

We conclude with a discussion section, where the performance of color correction and
color constancy algorithms, real-world testing results, and the impact of both color correc-
tion and color constancy in the setup are analyzed.

6.1 Dataset Evaluation Results
This section details the findings from our evaluation of the dataset using three different
methods: Color Checker based Color Correction (CCB-CC), Ground-Truth Image Based
Color Correction (GTIB-CC), and Color Constancy (CC).

6.1.1 Color Checker based Color Correction (CCB-
CC)

Figure 6.1 illustrates the evaluation results of the CCB-CC method. It particularly highlights
the top three high-performing algorithms and their combined result. As shown in the graph,
the superior-performing algorithms are Cheung 2005 with 7 and 11 root-polynomial term
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Figure 6.1: Normalized rg-chromaticity MSE for Color Checker
based Color Correction (CCB-CC)

expansions and Vandermonde with 2 polynomial degree expansions. Notably, the graph also
demonstrates that some algorithms exhibit a decline in performance as the number of poly-
nomial or root-polynomial expansions increase. This trend suggests an increased sensitivity
to noise and other measurement errors in these algorithms.

6.1.2 Ground-Truth Image Based Color Correction (GTIB-
CC)

As depicted in Figure 6.2, the GTIB-CC method’s evaluation presents the best three algo-
rithms and their combined result. The most efficient algorithms in this case are Cheung
2005 with 5 and 7 root-polynomial term expansions and Vandermonde with 2 polynomial
degree expansions, the degradation effect is more pronounced here, especially at high term
or degree expansions. We attribute this to the increased noise and other measurement er-
rors inherent in this method. Furthermore, the overall performance improvement with this
method is lower, which we believe is due to the higher measurement error introduced.
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Figure 6.2: Normalized rg-chromaticity MSE for Ground-Truth Im-
age Based Color Correction (GTIB-CC)
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Figure 6.3: Normalized rg-chromaticity MSE for Color Constancy
(CC)

6.1.3 Color Constancy (CC)
Figure 6.3 portrays the results of the CC method evaluation. The data clearly indicates a
significant advantage when the algorithms are combined.

6.2 Real-World Test Result
This section documents the real-world scenario test results. Our experimental setup has four
distinct conditions, differentiated by the use of different color correction methods and the
application of color constancy. In Figure 6.4, the setup of the GTIB-CC and GTIB-CC-CC
method can be seen and in Figure 6.5 the setup of the CCB-CC and CCB-CC-CC methods
can be seen. In Figure 6.6 and 6.7, the effect of applying each respective method to an image
under a blue illuminant can be seen.

In the tables provided, we display the outcomes of object detection using various meth-
ods, with the total number of objects that can be detected capped at 13. Each table includes
the following results:

• No Correction: This represents the outcome when no adjustments are made to the
image before executing the object detection algorithm.

• Color Correction (GTIB-CC or CCB-CC): This shows the result of applying color
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Figure 6.4: GTIB-CC and GTIB-CC-CC Setup

correction to the image before running the object detection algorithm. The specific
method used is indicated by either “GTIB-CC” or “CCB-CC.”

• Color Constancy (CC): This entry details the outcome of applying only color con-
stancy to the image prior to running the object detection algorithm.

• Color Correction and Constancy (GTIB-CC-CC or CCB-CC-CC): This illustrates
the result of applying both color correction and color constancy to the image before
executing the object detection algorithm. The specific method used is denoted by
either “GTIB-CC-CC” or “CCB-CC-CC.”

6.2.1 Result of Only Using Color Correction In Setup
In Table 6.1, we present the results of solely using GTIB-CC (Ground-Truth Image Based
Color Correction) in the setup of our object detection algorithm. As can be observed from
the table, the performance fluctuates significantly across different scenarios. We hypothesize
this variability may be due to the relative placement of the light source with respect to the
scene and the robot as well as noise in the measurement data. It is also worth noting that
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Figure 6.5: CCB-CC and CCB-CC-CC Setup

Figure 6.6: Effect of Utilizing GTIB-CC and GTIB-CC-CC

Figure 6.7: Effect of Utilizing CCB-CC and CCB-CC-CC
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this setup did not result in any significant increase in performance. A detailed analysis and
interpretation of these results will be provided in the following section.

Table 6.1: Number of Detected Objects Using GTIB-CC During
Setup

Illuminant No Correction GTIB-CC Color Constancy (CC) GTIB-CC-CC
Blue 6 8 2 4
Green 4 6 3 4
Purple 8 9 2 4
Red 7 4 4 6
Teal 5 2 2 2
Orange 6 8 6 5
Yellow 8 6 6 5
Scenario (1) 6.29 6.14 3.57 4.29
Blue 4 0 3 0
Green 3 1 3 2
Purple 6 3 3 3
Red 5 5 8 4
Teal 5 2 3 0
Orange 10 2 5 4
Yellow 8 4 7 0
Scenario (2) 5.86 2.43 4.57 1.86
Blue 3 4 5 3
Green 9 0 9 0
Purple 5 0 5 0
Red 5 1 6 0
Teal 6 1 4 0
Orange 6 0 5 0
Yellow 8 2 6 3
Scenario (3) 6.0 1.14 5.71 0.86
Result 6.05 3.24 4.62 2.34

The second table, Table 6.2, provides different results. The baseline performance is no-
tably worse than the first table, however, the color corrected version (CCB-CC) shows a
considerable improvement. A discussion on the reasons behind these observations will be
covered in the next section.

6.2.2 Color Correction and Constancy in Setup
This section presents the test results from the setup that combines both color correction
and color constancy methods. This setup involves applying both color correction and color
constancy to the image of the scene prior to tuning the object detection algorithm.

In Table 6.3, the results of applying GTIB-CC-CC (Ground-Truth Image Based Color
Correction + Color Constancy) are presented. Comparing these results with Table 6.2, we can
see a small performance loss when using GTIB-CC alone, which was anticipated. We can also
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Table 6.2: Number of Detected Objects Using CCB-CC During
Setup

Illuminant No Correction CCB-CC Color Constancy (CC) CCB-CC-CC
Blue 1 12 2 12
Green 0 6 2 3
Purple 1 11 2 11
Red 0 9 1 9
Teal 0 6 1 8
Orange 0 8 0 3
Yellow 0 8 2 2
Scenario (1) 0.29 8.57 1.43 6.86
Blue 1 12 3 11
Green 2 13 4 9
Purple 0 13 5 13
Red 0 11 5 9
Teal 3 12 4 13
Orange 1 11 4 8
Yellow 0 12 3 5
Scenario (2) 1.0 12.0 4.0 9.71
Blue 2 7 1 5
Green 1 8 4 6
Purple 2 8 2 8
Red 2 9 3 7
Teal 1 6 3 7
Orange 2 7 0 6
Yellow 1 8 4 7
Scenario (3) 1.57 7.57 2.43 6.57
Result 0.95 9.38 2.62 7.71

observe a slight performance gain when GTIB-CC-CC was used, however, this improvement
is less than we initially anticipated. More surprisingly, there is a significant performance gain
when only Color Constancy is applied to the image.

On the other hand, the results in Table 6.4 show a similar pattern, but not the same, to
that of GTIB-CC-CC. We observe a performance boost for CCB-CC-CC and a performance
loss for CCB-CC. However, it is quite surprising to notice a performance loss when only
Color Constancy is applied.

6.2.3 Conclusion of Real-World Test
In conclusion, the application of color correction and color constancy methods can have var-
ied impact on the performance of the object detection algorithm. These findings are subject
to several variables and need to be analyzed further. This analysis and a more comprehensive
discussion will be provided in the following sections.
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Table 6.3: Number of Detected Objects Using GTIB-CC-CC Dur-
ing Setup

Illuminant No Correction GTIB-CC Color Constancy (CC) GTIB-CC-CC
Blue 4 7 5 6
Green 6 3 8 6
Purple 2 4 7 9
Red 2 3 11 9
Teal 4 0 9 4
Orange 3 6 10 7
Yellow 4 0 12 4
Scenario (1) 3.57 3.29 8.86 6.43
Blue 3 0 7 0
Green 3 0 10 0
Purple 2 0 6 4
Red 3 1 7 11
Teal 7 2 8 7
Orange 3 3 10 4
Yellow 4 2 7 3
Scenario (2) 3.57 1.14 7.86 4.14
Blue 8 4 10 4
Green 3 0 9 0
Purple 4 0 10 0
Red 4 0 9 0
Teal 4 0 6 0
Orange 4 1 9 1
Yellow 5 2 10 3
Scenario (3) 4.57 1.0 9.0 1.14
Result 3.9 1.81 8.57 3.9

6.3 Discussion
The performance degradation due to noise, the real-world testing results, and the impact of
both color correction and color constancy in setup will be discussed further in this section.
We will begin by discussing the degradation due to noise observed in the color correction
algorithms.

6.3.1 Performance Degradation in Color Correction
Algorithms

Our analysis suggests that the performance degradation seen in both Figure 6.2 and 6.1 is
due to the increasing computational complexity and the propagation of approximation er-
rors which is often experienced when executing more polynomial term expansions or root-
polynomial expansions [3]. This is analogous to overfitting, where a algorithm is overtrained
on the dataset, resulting in a negative impact on the models performance on previously un-
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Table 6.4: Number of Detected Objects Using CCB-CC-CC During
Setup

Illuminant No Correction CCB-CC Color Constancy (CC) CCB-CC-CC
Blue 1 7 2 12
Green 0 8 2 7
Purple 0 11 3 12
Red 0 12 1 13
Teal 1 5 3 6
Orange 0 10 1 8
Yellow 2 11 2 13
Scenario (1) 0.57 9.14 2.0 10.14
Blue 1 10 3 11
Green 2 11 2 7
Purple 0 12 2 13
Red 0 12 0 10
Teal 2 10 3 12
Orange 0 10 0 6
Yellow 0 11 3 10
Scenario (2) 0.71 10.86 1.86 9.86
Blue 1 6 4 9
Green 2 7 3 7
Purple 3 6 3 8
Red 2 7 4 8
Teal 1 7 2 8
Orange 2 6 3 7
Yellow 3 6 3 9
Scenario (3) 2.0 6.57 3.14 8.0
Result 1.09 8.86 2.33 9.33

seen data. What this means in our case is that as the polynomial terms or the root-polynomial
terms are expanded further, the algorithm becomes more and more sensitive to any noise in
the measurements taken.

This may also explain why the GTIB-CC method exhibits a more noticeable impact as
it exerts less control over the ground-truth data and the input data. On the contrary, the
CCB-CC method, which employs a color checker, uses calibrated ground-truth data and a
calibrated external tool for data collection. We will discuss a possible solution to this in the
next chapter.

6.3.2 Discussion on the Real-World Testing Results
The real-world testing reveals that the performance variability among different contexts and
environments should be a significant consideration for anyone looking to use this method.
Key factors such as the relative positioning of the light source with respect to the scene and
robot have been found to influence the outcomes. This is of extra importance to the GTIB-
CC method, for instance, if the light source is closer to the ground-truth scene, than to
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the scene being evaluated, this will cause the color correction algorithm to overcompensate,
leading to decrease in performance. This also tells us that the ground-truth scene need to
be chosen to be as representative to the working scene as possible. This means that the
positioning of any light sources needs to be chosen with care to ensure the best possible
performance.

We also saw that the GTIB-CC method did not yield any performance advantages over
the baseline or the use of CCB-CC, CCB-CC-CC and Color Constancy (CC). We do how-
ever believe that with further development this method could yield significantly better per-
formance than shown here as we have identified several areas where the method could be
improved, what this development could entail will be discussed in detail in the following
chapter.

A clear difference in the baseline performance of GTIB-CC and GTIB-CC-CC from
that of CCB-CC and CCB-CC-CC can clearly be seen. This is due to the fact that before
calibrating the object detection algorithm color correction is applied to the image. When
CCB-CC is applied this causes the image to be heavily altered as the image is now device
and illumination independent. When the baseline value is calculated no color correction of
color constancy is first applied, meaning that the object detection is first tuned on a heavely
alrered image and then ran on a not so heavely altered image. When using GTIB the difference
between a non-color corrected image and a color corrected image is not as large and therefore
the baseline is not as affected.

The performance disparity in the baseline performance of GTIB-CC and GTIB-CC-CC
as compared to CCB-CC and CCB-CC-CC is evident. This stems from the preliminary ap-
plication of color correction to the image before calibrating the object detection algorithm,
where using CCB-CC before the calibration results in a more pronounced alteration as com-
pared to using GTIB-CC before the calibration. This means that the object detection al-
gorithm calibrated using CCB-CC has been calibrated on an image with more pronounced
alteration than that calibrated using GTIB-CC. When the baseline value is calculated the
object detection application is run on an unaltered image, causing the large performance dis-
parity between GTIB-CC and GTIB-CC-CC as compared to CCB-CC and CCB-CC-CC.

We did however see that CCB-CC and CCB-CC-CC yielded significant performance
boosts over the baseline. This is no major surprise, as using a color checker is the most
common method for executing color correction. However, it did confirm that combining
the result of multiple color correction algorithms has merit.

6.3.3 Impact of Both Color Correction and Color Con-
stancy in Setup

The role of color correction and color constancy in a given setup brings about intriguing
results. While combining these two elements sometimes results in a performance increase,
the margin of improvement in these cases are not large enough to be deemed significant.
This could be due to implementing both simultaneously introducing conflicting signals or
adding noise to the system. Interestingly, a more substantial performance gain is witnessed
when only color constancy is applied, which might mean that for some applications, only
using color constancy might be the most effective method to achieve stable color represen-
tation. Unpacking the reasons behind these observed results is essential to further fine-tune

57



6. Result

the systems and maximize their performance.
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Chapter 7

Conclusions

We will begin this chapter by recapping the research problem and questions. We will then
move on to summarizing our findings, relating back to the research problem as we go. Next
we will be discussing the implications of our findings in the broader context of the field of
color perception in robotics. We will then be giving an open account of any limitations of
this study. Based on that, we will be giving suggestions on areas where future research could
improve the result achieved, or address some of the limitations. Finally, we will conclude
the chapter by summarizing what this research has contributed to the field of robotic color
perception.

7.1 Recapping of Research Problem and Ques-
tions

The research problem this thesis addresses is the challenge of optimizing color perception in
robotics by integrating color correction and constancy. As stated before, color, while a potent
feature in computer vision applications, is susceptible to changes in illumination conditions,
which can significantly undermine the effectiveness of computer vision algorithms. There-
fore, it is crucial to attempt to neutralize the influence of the illuminant, which is addressed
by color correction and color constancy.

The primary research questions that guided this study are:

• What is the viability of using a robot base as ground-truth over a color checker board
for color correction?

• Can the result of color correction be further improved by the use of color constancy?

• How does the position of the light sources affect the color correction reference?
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The investigation focused on enhancing the reliability of color perception in robots that
utilize computer vision applications, achieved by integrating color correction techniques
with color constancy methods. The research explored the implementation of color correction
using external tools, such as a color checker as a reference, and examined a novel approach
to color correction that does not rely on external tools but instead utilizes the robot’s sur-
rounding environment. A comparative evaluation was conducted to assess the efficiency of
using external tools versus relying solely on the environment.

7.2 Summary of Findings
The results of the study, as presented in Chapter 6, were derived from both dataset evalua-
tions and real-world experiments. Three primary methods were tested: Color Checker based
Color Correction (CCB-CC), Ground-Truth Image Based Color Correction (GTIB-CC), and
color constancy (CC).

The evaluation done with the aid of the dataset helped guide which algorithms where
further investigated in the real-world scenario testing. What the dataset evaluation showed
was that for CCB-CC, the three best performing algorithms were Cheung 2005 with 7 and 11
term expansions and Vandermonde with 2 polynomial degree expansions. For GTIB-CC the
three best performing were Cheung 2005 with 5 and 7 term expansions and Vandermonde
with 2 polynomial degree expansions. We also saw for all the methods (CCB-CC, GTIB-
CC and CC) that combining algorithms increased the total performance. We decided to
linearly combine the three best performing algorithms respectively. These linearly combined
algorithms is also what was used during the real-world scenario testing.

In the real-world scenario testing, four different results were presented. These results
were differentiated based on the color correction method used during the setup and whether
or not color constancy was also applied. The performance of the object detection algorithm
showed a significant improvement when utilizing both CCB-CC and CCB-CC-CC. How-
ever, we did not see any significant performance gain while utilizing either GTIB-CC or
GTIB-CC-CC, suggesting that utilizing the robot base as a reference over a color checker is
not a viable solution without further research being put into this.

We found that performance of the GTIB-CC method also was dependent on the position
of the illuminant. When the illuminant illuminated the scene and the ground-truth reference
(the robot base) equally, the performance was generally better. However, when the ground-
truth reference received a larger impact from the illuminant than the working scene did, this
lead to overcompensation and when it received a lower impact this lead to undercompensa-
tion. The impact the placement of the illuminant had when utilizing CCB-CC was not as
drastic as for GTIB-CC, however, it is still significant.

One of the most intriguing findings was the role of color correction and color constancy
in a given setup. While it was hypothesized that combining these two elements would result
in a performance increase, the margin of improvement was generally less than anticipated.
This could be due to the simultaneous implementation of both methods introducing con-
flicting signals or adding noise to the system. Interestingly, a more substantial performance
gain was witnessed when only color constancy was applied. This suggests that for some ap-
plications, relying solely on color constancy might be the most effective method to achieve
stable color representation.
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However, it is important to note that the results did not fully meet the expectations set
at the beginning of the research. We identified performance degradation due to noise in the
data as a potential area for improvement, especially for our novel approach, GTIB-CC. One
proposed solution was to not use one pixel as input, but instead use an average of a number
of nearby pixels. However, predicting the impact of this change on the final performance is
challenging and requires further investigation.

In conclusion, while the research did not fully achieve the desired results, it provided
valuable insights into the complexities of optimizing color perception in robotics. It high-
lighted the potential of color constancy as a standalone method for achieving stable color
representation and identified areas for further investigation to improve the performance of
color correction methods.

7.3 Interpretation of Findings
The findings of this research have some implications for the field of robotics and computer vi-
sion, particularly in the context of color perception. The research was guided by the theoreti-
cal framework that color is a potent feature in computer vision applications but is susceptible
to changes in illumination conditions, which can significantly undermine the effectiveness
of computer vision algorithms. Therefore, it is crucial to attempt to neutralize the influence
of the illuminant, which is addressed by color correction and color constancy.

The results of our study confirmed that the classical solution for color correction, namely
using a color checker is a viable solution for increasing the performance of computer vision
applications. While we also introduced a novel approach to color correction that would
remove the need for an external tool, we did not achieve the desired level of performance.
We believe that through further development this method could be made viable, what this
development could entail will be discussed further in the following sections.

We also investigated the impact the position of the light source relative to the ground-
truth reference has on the final result of color correction. We found that the position of
the light source should be such that the illuminant has a similar level of impact on both the
ground-truth reference, be it a color checker or a robot base, as well as the working scene. If
this is not fulfilled it can lead to overcompensation or undercompensation in color correction.

We have also confirmed the viability of color constancy in the context of computer vi-
sion. We investigated and confirmed that color constancy can be combined with color cor-
rection, providing in some cases, a performance gain. However, the margin of improvement
was generally less than anticipated, suggesting that implementing both simultaneously might
introduce conflicting signals or add noise to the system.

Interestingly, the research found that a more substantial performance gain was witnessed
when only color constancy was applied. This suggests that for some applications, relying
solely on color constancy might be the most effective method to achieve stable color repre-
sentation. This finding has significant implications for the development of computer vision
applications, suggesting a potential shift in focus towards the development and refinement
of color constancy methods.

In conclusion, the findings of this research provide insights into the complexities of opti-
mizing color perception in robotics. They affirmed the effectiveness of classical color correc-
tion methods, i.e using a color checker. We also investigated and evaluated a novel approach
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to color correction that removes the need for external tool and identified areas for further in-
vestigation that improve the performance of this color correction method. The findings also
highlight the potential of color constancy as a standalone method for achieving stable color
representation. These findings directly address the research questions and contribute to the
broader field of study by providing a deeper understanding of the challenges and potential
solutions in optimizing color perception in robotics.

7.4 Limitations
While the research conducted in this thesis provides valuable insights into the optimization
of color perception in robotics, it is important to acknowledge its limitations. These limita-
tions primarily revolve around the data collection process, the methodology used, and certain
aspects that were outside the scope of the thesis but may still impact the interpretation of
the findings.

One of the main limitations of the study was the performance degradation due to noise
in the data. We identified this as a potential area for improvement, suggesting that future
research could focus on developing methods to minimize noise in the data. However, it is
important to note that the impact of such changes on the final performance is difficult to
predict and requires further investigation.

Another limitation was related to the methodology used for color correction. The re-
search explored the implementation of color correction using external tools, such as a color
checker as a reference, and examined a novel approach to color correction that does not rely
on external tools but instead utilizes the robot’s surrounding environment. While this ap-
proach has potential, the results varied significantly across different scenarios, indicating that
it may not be universally applicable or reliable.

Furthermore, the research was conducted in the context of a specific use-case: a robot
arm with a camera mounted to it. While the findings may be applicable to similar scenarios,
they may not be generalize to all robotics or computer vision applications. This limitation is
inherent in the scope of the thesis and should be considered when interpreting the findings.

Finally, the research did not fully meet the expectations set at the beginning of the study.
We did not achieve the results we hoped for, indicating that there may be other factors at
play that were not accounted for in the research. These could include unexplored aspects of
color correction and constancy, or other variables related to the robot’s environment or the
specific implementation of the computer vision algorithms.

In conclusion, while the research provides insights and contributes to the field of robotics
and computer vision, these limitations should be taken into account when interpreting the
findings and planning future research in this area.

7.5 Future Work
The research conducted in this thesis has opened up several avenues for future work. These
areas of future research could continue the study or address limitations identified in the
research.
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7.5.1 Performance Degradation Due to Noise
One of the main limitations identified in the study was the performance degradation due to
noise in the data. There are generally two ways to solve this, either reducing the sensitivity
to the noise, or reducing the amount of noise. While both are viable solutions, we will focus
on how we can reduce the measurement noise. One such method that could do this is to not
use one pixel as input, but instead use an average of a number of nearby pixels as input. This
approach could potentially reduce the noise in the data and improve the performance of the
color correction methods. However, it is difficult to predict how this would affect the final
performance, and as such, needs to be further investigated in future research.

7.5.2 Potential Improvements to GTIB-CC
The Ground-Truth Image Based Color Correction (GTIB-CC) method showed varied results
across different scenarios, indicating that it may not be universally applicable or reliable. Fu-
ture research could focus on improving the GTIB-CC method. This could include researching
what an ideal ground-truth image should contain, for example, what should the illumination
conditions be when capturing the ground-truth image and what is an ideal scene for this
ground-truth image. Another avenue of research with large potential is to improve how the
ground-truth image is used, for example developing a method for aligning the ground-truth
image with the input image could reduce any measurement errors.

7.5.3 Optimized Integration of Color Correction and
Constancy

We found that the integration of color correction and constancy does not always lead to a
significant improvement in performance. Future research could focus on exploring ways to
better use color constancy and correction at the same time. This could involve developing
new methods or refining existing ones to effectively integrate color correction and constancy,
potentially leading to improved performance in color perception in robotics.

7.6 Conclusion
In our research, we have made progress in addressing the challenge of optimizing color per-
ception in robotics by integrating color correction and constancy. Our study has shed light
on the potential of using a robot base as a ground-truth over a color checker board for color
correction and the possible enhancement in color correction results through the application
of color constancy. We have also contributed an evaluation of current color correction and
color constancy methods in the context of robotic computer vision applications by investi-
gating a real-world situation.

However, our research has also uncovered several limitations and areas for future explo-
ration. One of the main limitations we identified was the degradation in performance due to
noise in the data. Future research could focus on developing methods to minimize this noise,
potentially improving the performance of color correction methods. Another limitation was
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related to the methodology we used for color correction. We explored the implementation
of color correction using external tools and a novel approach that does not rely on external
tools but instead utilizes the robot’s surrounding environment. While this approach has po-
tential, the results varied significantly across different scenarios, indicating that it may not
be universally applicable or reliable.

Furthermore, our research was conducted in the context of a specific use-case: a robot
arm with a camera mounted to it. While our findings may be applicable to similar scenarios,
they may not generalize to all robotics or computer vision applications. This limitation is
inherent in the scope of our thesis and should be considered when interpreting our findings.

Finally, our research did not fully meet the expectations we set at the beginning of the
study. We did not achieve the results we hoped for, indicating that there may be other factors
at play that we did not account for in our research. These could include unexplored aspects
of color correction and constancy, or other variables related to the robot’s environment or
the specific implementation of the computer vision algorithms.

In conclusion, while our research provides insights and contributes to the field of robotics
and computer vision, these limitations should be taken into account when interpreting our
findings and planning future research in this area. Future research could focus on explor-
ing ways to better use color constancy and correction simultaneously, potentially leading to
improved performance in color perception in robotics.
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Optimizing Color Perception in Robotics

POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Folkesson

This thesis delves into the complexities of color perception in robotics, presenting
a unique approach for integrating color correction and color constancy. However,
real-world testing reveals limitations.

Achieving accurate color perception in robots is
complex due to variables like lighting and operat-
ing conditions. Traditional techniques often re-
quire specialized calibration or controlled light-
ing, impractical for robots in diverse, real-world
settings. This research develops a new plug-and-
play method for color correction and constancy for
the Robot Operating System 2 (ROS2), aiming
for autonomous operation without external tools.
Extensive experimentation was conducted, evalu-
ating various algorithms using metrics like Mean
Squared Error (MSE).

A comparison of the original and corrected im-
ages against the ground-truth image is presented
on the next page, aiming for consistency between
the corrected input and ground-truth images.

In controlled environments, the methodology
showed promise for broad applications in robotics
where accurate color perception is crucial. How-
ever, the study faced challenges in real-world sce-
narios, with the performance of the color cor-
rection algorithms deteriorating under fluctuating
lighting conditions, limiting its applicability in dy-
namic settings.

These limitations underline the complexity of
the problem and open up avenues for further
study, focusing on improving the robustness of
color perception algorithms under varying condi-

tions. This research serves as a step towards accu-
rate color perception in robotics, emphasizing the
complexities that remain.
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