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Abstract

Arti�cial intelligence (AI) tools are slowly becoming integral to our everyday
lives. Today we already rely on AI for much of our navigation and security. In
the near future, much like the internet today, AI and machine learning tools are
likely to assist us in almost every aspect of our lives, both with our practical and
creative tasks. In recent years, there has been a surge in AI projects focused on
creative pursuits, such as music production, story writing, and art creation.

This thesis aims to contribute to the discussion about what it might look like
when AI is utilised to tackle the subjective task of creativity.

A two-step method of generation is proposed—consisting of a base image
generator and an upscaling model. The base image generator is built using a
generative adversarial network (GAN), trained on abstract art in the public do-
main. The generator is designed to generate base images, small images capturing
the theme of an artist’s work. To �nalise the generation, the base image is passed
to a second GAN model for upscaling. During the construction of this method,
multiple problems surfaced. The empirical testing of potential solutions to these
problems eventually resulted in the proposed two-stepmethod. Due to its design,
the default GAN architecture used as the foundation of the prototype proved to
be a misguided choice, as directly generating any images larger than ���x��� re-
quired hardware more powerful than what was available.

Keywords: AI, ML, GAN, generator, discriminator, style transfer, machine learning,
generative model
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Chapter �

Introduction

This thesis was carried out in collaboration with Posterton, a Stockholm based company
selling posters and paintings online. As all their business is conducted through their website,
and all purchased artwork is printed on-demand, new images can easily be added to their
gallery without any investments in printed stock.

During COVID-��, as many people were forced into lockdown, general interest for home
decoration increased. According to an analysis by Fortune Business Insight, the global wall
art market is projected to grow from ��.�� billion USD in ���� to ��.�� billion USD by ����
[��].

By expanding their business with AI, Posterton can both accommodate for the growing
demand for wall art, and provide more personalised and unique options for their customers.

1.1 Background
Arti�cial intelligence (AI) andmachine learning (ML) are rapidly growing �elds of computer
science, making tasks previously thought of as computationally impossible now easily achiev-
able with everyday hardware. In recent years, there has been a surge in AI projects focused
on creative pursuits, such as screenwriting, music production, story writing, and art [�]. The
two terms, AI and ML, are now also widely used in the world of commerce as selling points
for products entirely unrelated to the world of computer science [��].

There are many concerns that the bubble may eventually burst if the new technology
can’t live up to the many expectations, leading to a drastic decrease in AI funding and general
interest [��]. In the early ����s, the Internet faced this same type of crash after not living
up to its hype. Yet today, many of us are unable to even imagine life without the internet.
Similarly, AI assisted tools and applications are likely to aid us with almost every aspect of
our lives in the future—with tasks both practical and creative [�].
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1.2 Purpose
To help Posterton introduce AI as part of their business model, a prototype of a basic abstract
art generator will be developed and trained. This prototype can then function as a basis for a
generative system, where a GUI and other possible end-user functionality can be developed
on top of it.

1.3 Goals
The goal of this thesis is, through the use of machine learning and a design science methology,
develop and train a prototype that is capable of generating abstract art. As the de�nition of
what quali�es as abstract art is highly subjective, no de�nite qualitative goals are set regarding
the visual quality of the generated images. The only exception is that the generated artwork
has to be of at least full HD.

1.4 Research questions
By answering the following questions, this thesis aims to investigate how machine learning
tools can be used to generate abstract art:

RQ� What steps and technology are required to develop an abstract art generator?

RQ� Can generative adversarial networks (GAN) be used to generate high de�nition art-
work?

RQ� How long does it take to generate a single image; is generating on-demand art feasible?

1.5 Scope
Any training is limited to regular personal computers; no powerful specialised hardware is
available. This may put constraints on the quality of the trained models. It can also limit the
number of iterations trained and the size of the training data used.

To enable Posterton to freely use the generated images, the training data will be limited
to artists whose work is in the public domain, i.e. artwork not protected by copyright laws or
other legal restrictions. Further development could take the form of trainingmore and better
models, enabling NFT generation, adding customer feedback weights for better results, au-
tomatic image �ltering, adjusting and improving the architecture, and experimenting with
other art styles. These are all potential improvements worth considering, but are outside the
scope of this thesis.

1.6 Related work
This thesis is mostly inspired by the project presented in the article GANshare: Creating and
Curating Art with AI for Fun and Profit [�], which provided a basic structure and understanding
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of the required models and networks. Robert’s project did however use the VQGAN, a more
recent and advanced improvement of the basic GAN framework. OpenAI’s CLIP is also used,
a state-of-the-art text-to-image (or image-to-text) network [��]. CLIP is used in the project
to control the image generation, whereas in this thesis the works of famous abstract artists
are used as the basis of the generation.

Established applications like OpenAI’s DALL-E �, andWOMBO dream, have also provided
a lot of inspiration, and helped with problem solving issues. Neither OpenAI nor WOMBO
have disclosed how their generators work, but their set of features and generated results have
provided insight into various possibilities and limitations.
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Theory

To better understand the following chapters, this section aims to provide the reader with
the necessary theoretical information about machine learning, and about the models and
methods used in the thesis. Colloquially, arti�cial intelligence and machine learning are
sometimes used interchangeably. However, the �eld of AI encompasses not only the entire
�eld of machine learning, but many other sub-�elds concerned with acting and reasoning
(just without the learning aspect) [�]. Figure �.� shows the relationship between the three
�elds; AI, ML, and DL.

Figure �.�: A Venn diagram of the relationship between AI, ML,
and DL.

2.1 Machine learning
Machine learning algorithms are often divided into three categories; supervised, unsupervised,
and reinforcement learning. Supervised learning is sometimes also referred to as predictive,
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as it takes a number of input xn, and predicts an output y. Unsupervised learning, or the
descriptive algorithms, explore the data on its own, without any help from labels, and �nds
similarities and patterns in the data. Reinforcement learning acts based on a reward and
punishment systems, and dynamically makes decisions based on it [��]. For this thesis, only
supervised learning is relevant, as no unsupervised or reinforcement learning methods are used.

An example of supervised learning is the regression problem of predicting the cost of
house y, given the variables xn. Equation �.� describes the problem in it’s most basic form,
using only one variable:

w0 + w1 ⇤ xsize = y (�.�)

Finding good values for the weight variables w0,w1 (the weight variable w0 is sometimes
called the bias), is the learning part of machine learning. The variable xsize describes the size
of a house, and y is the selling price. The training data in this example would consist of the
labels size and price.

To train the model, which means �nding accurate values for the weight variables, a loss
function is needed. This function quanti�es the predicted error, and is used to direct the
adjustment of theweights [��]. Function �.� is the squared loss, or L2 function. Calculating this
would result in the numerical number of the total di�erence between the predicted number
and the ground truth—or simply, how wrong the predicted results are compared to the real
values.

loss =

NX

j=1
(yj � (w1 ⇤ x j + w0))2 (�.�)

More interesting than a numerical value is the function’s derived properties. As a quick
reminder in calculus, the derivative of a curve is the line tangent of that curve in any of its
points. A high value of the tangent indicates a steep slope, whilst a zero indicates a plateau
or minimum point.

Gradient descent, the most used algorithm in all of machine learning [��], updates the
weights w0,w1 by using the derivative of the loss function to adjust the weights in the di-
rection of the steepest slope. This is done iteratively until a satsifactory result to the loss
function is reached, and the weights are considered optimal.

2.1.1 Deep learning
Deep learning is a sub-�eld of machine learning, where the word deep refers to it’s hierarchical
structure. The learning is distributed over multiple layers and neurons throughout the neural
network, where every neuron solves it’s own unique problem [�]. This structure forces the
network to not only learn the weights, but also the features of the data (or what to weigh).

Convolutional neural networks
This thesis will mainly be concernedwith convolutional neural networks (ConvNet or CNN),
as a GAN is simply a combination of a convolutional neural network and a deconvolutional
neural network, where a deconvolutional neural network is a ConvNet working in reverse.
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The invention of ConvNets greatly improved the results in image classi�cation tasks. The
�eld of computer vision, including tasks such as autonomous driving, medical diagnosis, and
facial recognition, heavily relies on ConvNets for their image processing [�].

Two important hyperparameters (i.e. variables controlling the process) of the ConvNets
to consider are the kernel size and stride. The kernel is sometimes described as a small win-
dow through which the network looks at the image, and the kernel size de�nes how large this
window is. Much like reading a page, the window scans from left to right, top to bottom,
trying to make sense of the pixel patterns of the image. The stride determines how large the
steps are. A stride of one means the kernel is only moved a single pixel at a time. If a stride
of two is used, the kernel is instead centred around every other pixel. For every step, the
convolution of the kernel sized matrix is calculated. Since the stride skips every other pixel,
the results are saved in a new matrix of half the height and width [�].

A basic classi�cation model implemented with a ConvNet, begins with a layer of the
same size as the input image. This �rst layer learns the local pixel structure of the image.
Gradually through the network, the width and height of the layers shrink, and the represen-
tation becomes more complex and less humanly understandable. This allows the network to
learn more complex structures of the images, starting with pixels and lines, and ending with
facial features and objects [�]. By using these learned complex representations associated with
a classi�cation class, the model can predict new images by looking for these representations
in the image. The network results in a probability based on how well these representations
match the input image, and thus how likely the image is to belong to a speci�c class.

2.1.2 Generative adversarial networks
Generative adversarial networks, or GANs, were introduced in ���� by Ian Goodfellow et al.
during a period in machine learning history where most advances in deep learning happened
in the �eld of classi�cation rather than within generative models [��].

The network consists of two competing neural networks, a discriminator and a generator,
see �gure �.�. The two networks are trained together, and competing with each other in a
zero-sum game. In the original report, the discriminator and generator are compared to a
team of counterfeiters and the police respectively. The counterfeiter (generator) produces
a set of fake banknotes. These are then passed on to the police (discriminator) who has to
determine if the banknotes are real or fake. In this scenario, instead of arresting them for
the crime, the police tells the counterfeiter which notes they think are real and which they
think are fake. Using this information, the counterfeiter improves the process and produces
slightly more realistic banknotes, then repeatedly returns to the police for new feedback [��].

The discriminator is a classi�er network with two inputs and one output. The �rst input
is the external training data—depending on what the GAN is trying to generate, this could
be anything from images, to sound clips, to text. The second input is generated data fed
directly from the generator. Since the generator is trying to fool the discriminator, this data
is formatted in the same way as the real input data. The output of the discriminator is the
classi�cation results. The activation function used in the discriminator is a sigmoid function,
which means the network’s output is the probability of how real (i.e. from the training data)
the discriminator think the data is. These results are then used to calculate the error of the
system, which in turn is then �nally backpropagated through both the networks [�].

The generator is a generative network with two inputs and one output. Unlike the dis-
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Figure �.�: Diagram of a generative adversarial network.

criminator, the generator does not have access to the training data. The process of generation
works a bit like the game of hot or cold, where the generator constantly has to ask the discrim-
inator if the generated data is hot or cold (i.e. high or low probability of it being real). This
feedback is one of the generator’s inputs. The other input is a random noise sampled from
the Gaussian distribution. This noise is often referred to as the latent space, and can be seen
as injecting random creativity into the generation process. It is the processing of this latent
space, and the adjustment of the internal weights and biases through training, that �nally
results in an output of generated data [��].

Mathematically, when training the discriminator, the goal is to maximise the function
�.� [��]. The �rst part of this equation, log(D(x)) where x is the training data, denotes the
discriminator, D, correctly classifying x as training data. The second part, log(1 � D(G(z)))
where G(z) is generated data from the generator, G, is maximised when the generator is
unable to fool the discriminator, and as a result D(G(z))! 0.

max
D

log (D(x)) + log (1 � D(G(z))) (�.�)

In this zero-sum game, the discriminator doing well means the generator isn’t, and vice
versa. For that reason, training the generator means minimising the second part of function
�.�, log(1 � D(G(z))), the same function that the discriminator is trying to maximise [��].
However, the results of minimising this function are the same as instead maximising the
inverted function �.�.

max
G

log(D(G(z))) (�.�)

The loss function for binary cross entropy is de�ned in function �.�. By setting the vari-
able y = 0, the �rst half of the function is cancelled out, and what remains is the second half
of the discriminator in function �.�. In the same way, setting y = 1 gives us the the �rst half
of the discriminator in function �.�, as well as the generator in function �.� [��].
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� (x, y) = L = {l1, ..., lN }T , ln = �!n[yn · log xn + (1 � yn) · log(1 � xn)] (�.�)

By controlling the y-variable, the standard binary cross entropy function can be used as
a loss function in the training of the full GAN.

2.1.3 ESRGAN
Enhanced Super-ResolutionGenerativeAdversarial Networks, ESRGAN, is an improvement
of the SRGAN, a GAN based image upscaling network [��, ��].

Both upscaling networks (SRGAN and ESRGAN) are designed to solve the task of SISR
(Single-image super-resolution), a task in generating an image I

SR, from a low-resolution
image I

LR, to closely resemble it’s original high-resolution image I
HR [��]. The low-resolution

image I
LR is a downscaled version of the I

HR, that has also been blurred using aGaussian�lter.
The generator of the SRGAN is designed to upscale the image I

LR, without any knowledge
of the image I

HR, and fool the discriminator that the generated image I
SR is an image I

HR.
Being a direct improvement of the SRGAN, the ESRGAN works fundamentally as de-

scribed above. To improve the results, the architecture of the generator was adjusted. Batch
Normalisation (BN), a popular method for normalising values before they are passed to the
activation function [��], normalises the values to a zero mean, reducing the size of the scalars,
and by doing so, simpli�es the computations in the network. The method is used to reduce
the training time and improve the stability during training [��]. However, though empirical
testing by the authors, using BN in the ESRGAN network lead to unwanted artifacts and in-
creased training time, and was thus removed. A Residual-in-Residual Dense Block (RDDB),
a multi-level residual network with dense connections is also introduced by the authors and
added to the network [��].

The discriminator was changed to determine the quality of the upscaled image I
SR, and

output a value of how closely it resembled the image I
HR, rather than outputting a probability.

Adjustments were also done in the calculation of the perceptual loss [��], which quanti�es
the similarities between two images.

2.1.4 Style transfer
Style transfer, or more correctly, neural style transfer (NST) was introduced in ���� by Leon
Gatsy et al. [�]. The algorithm takes a content image, and a style image, and produces a
combined image using the two. Figure �.� shows an example of this.

The way style transfer work is by exploiting the way deep convolutional neural networks
(ConvNet or CNN) function. As explained in section �.�.�, a ConvNet starts by learning local
information about an image in the early layers of the network, gradually the representation
becomes more complex, and bigger puzzle pieces of the image are learned. In the later layers,
the network learns the the full structure of the image, which also is referred to as global
information. In the case of style transfer, this relates to the actual content of the image.
By combining the trained weights of the later layers (i.e., the data making up the content
of the image, representing it’s lines, shapes and structure), with the trained weights of the
early layers (i.e., the data making up the style, colours, and details), a network capable of
combining this into a single image can be constructed [�].
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Figure �.�: A style image (Burning Oil Well at Night, by James
Hamilton) to the left, combined with the content image (by Piet
Mondrian) in the middle, resulted in new image to the right.

2.2 Data
The data used to train the discriminator in the GAN all came from the dataset provided with
the report DELAUNAY: a dataset of abstract art for psychophysical and machine learning research
[�]. Primarily the art by Piet Mondrian, Ellsworth Kelly, San Francis, Franz Kline, Richard Paul
Lohse, and Robert Delunay were used. The dataset is created to be a middle ground between
real objects and arti�cial patterns, making it ideal for the task of creating abstract art.
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Discussion

The experimental process of making the prototype is described in section �.�. Section �.� is
an analysis of the �nished prototype, and of what improvements could be made.

3.1 Experimental progression
The goals for this thesis has been of an experimental nature. It was only after the initial lit-
erature study that generative models, and GANs, were considered. Generative adversarial
networks seemed promising as they could be trained once, then used repeatedly to gener-
ate unique images. However, these models are notoriously sensitive to badly tuned hyper-
parameters. Many hundred of hours were spent training and experimenting with models
that then turned out to be completely unusable for generation.

3.1.1 Single model approach

The�rst approachwas to directly from theGAN, later referred to as the base image generator,
generate the �nal artwork. Upscaling the model to generate higher resolution images proved
to be very di�cult. The training time per batch of images increased exponentially with every
incremental size step. Already at ���x��� pixels, the system could no longer �nish an epoch
of training as it ran out of RAM. As an experiment, a powerful cloud computer with ���GB
of RAM was rented to run the same code. Even this computer could not train the ���x���
model before running out of memory. The average training times mentioned are presented
in table �.�.
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Size (px) Time (laptop) Time (cloud)
��x�� ��s �s
��x�� �m ��s ��s
���x��� ��m �m
���x��� OVERFLOW ��m
���x��� OVERFLOW OVERFLOW

Table �.�: Training time for early GAN model. (average processing
time per image batch.)

3.1.2 Style transfer upscale approach
Inspired by projects described in chapter �.�—instead of directly generating high resolution
images from the generator, a smaller image was created to then instead be upscaled to a high
resolution.

Downsizing an image is a much easier task than upscaling. The higher resolution image
contains more data than it’s lower resolution counterpart, as more pixel values are saved to
represent the image. By shrinking an image, data is removed from the original image as the
number of pixels decrease.

Upscaling an image works like shrinking and image, but in reverse. As the number of
pixels increase, more data has to be added to create the new representation of the image.

To inject this missing data, style transfer [�] was used to upscale the base images. Figure
�.� shows an early ���x��� pixel base image upscaled to a ���x��� pixel image using style
transfer. This method was successful for the �rst couple of iterations but unable to process
any larger images.

Figure �.�: Style transfer used to upscale a base image. The left
image is a ���x��� base image, and the right image is the upscaled
���x��� image.

To still utilise the successful ��� to ��� upscaling method, a new upscaling method was
tested. When an image was upscaled to ���x��� pixels, it was then split up into four ���x���
sub-images and upscaled again. This was repeated until it a desirable size was reached. The

��



�.� A������� �� ��������� ������������

sub-images were then put back together to create a big upscaled image. This method is pre-
sented in �gure �.�. A grid of where the images were put back together were visible in all the
upscaled images. Di�erent methods to mitigate this were all unsuccessful, such as generating
overlapping borders that are then blended together for a smoother transition.

Figure �.�: A grid of style transfer used to upscale the same image as
in �gure �.�. The left image shows the grid of upscaled sub-images,
and the right image shows a �nished ����x���� image.

3.1.3 ESRGAN upscale approach
As upscaling proved to be a highly challenging task, with multiple reports focusing on this
task alone [��], ESRGAN was built into the pipeline. To still take advantage of the upscaling
process discussed in section �.�.�, it was added as an intermediate step between the base
image generation and the ESRGAN upscaling. Figure �.� shows a base image generated by
the Mondrian model to the left, three style images in the middle, and the style transferred
and upscaled �nished ����x���� images to the right. The style images are by, from top to
bottom, Georges Valmier, Piet Mondrian, and James Hamilton, all of whose artwork is in the
public domain.

The style transfer step made the variation su�er, as every �nished generated image re-
sembled the style image too much. Because of this, and to keep the focus on the GAN, and
the base image generation, it was removed from the �nal prototype.

3.2 Analysis of prototype improvements
Since its release in ����, the original GAN architecture has inspired many researches to at-
tempt improving the stability of the network and the generated results. The twomost promi-
nent improvements are the StyleGAN by Nvidia [��], and the VQGAN [�].

StyleGAN, introduced in ����, replaces the regular GAN generator’s latent space input z

with a learnable constant, and removes the input layer all together. Inspired by style transfer,
it then samples the “style” from a latent vector (rather than an image) an injects it into every
layer of the discriminator and generator [��].
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Figure �.�: An example of a base image with style transfer and up-
scaling by ESRGAN applied.

TheVQGAN, introduced in ����, learns what the authors refer to as a codebook of image
features. These features are the details of the image, together representing the full images. By
having the discriminator predict these blocks of the generated image rather than the entire
image, enables a less rigid design with realistic images built from realistic image details [�].

Using either one of these architectures over the default GAN would have reduced the
heavy dependency on a separate upscaling model.

The datasets used to train the models were also far too small. Most of the training and
�ne-tuning of the hyperparameters were done on the Piet Mondrian dataset. This dataset
only contained ��� images, which in the �eld of machine learning is very few.

Some attempts on training a model on the full DELAUNAY dataset were made. The
large variety in the images combined with the small set of samples led to poor results, an
unexplained wa�e shape appeared in most of the base images, see �gure �.�. Using the VQ-
GAN architecture would likely instead have bene�ted from this as many details, such as
similar brush strokes, would have been learned as a codebook encoding.

Figure �.�: The recurring wa�e shape in generated DELAUNAY
dataset images.
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3.3 Ethical and legal aspects
Many state-of-the-art image generators have recently fallen under scrutiny for using copy-
righted material in their training data without consent from the original artist. In January
����, the �rst lawsuit against AI generated art was �led [�]. This lawsuit mainly focuses on
Stable Di�usion by Stable AI, DreamUp by DeviantArt, andMidjourney by Midjourney inc, but
the purpose of it is rather to de�ne the rules regarding the legality of computer generated art.
This may in turn require a clear de�nition of what constitutes as ‘inspiration’ for a computer
system. As a result of the legal implications of building an art generator is actively discussed,
the prototype of this thesis was trained using copyright-free material.

Copyrightedmaterial is not the only ethical issue to be considered. With the general rule-
of-thumb in machine learning that more data is better, the perpetual hunt for more data has
led to datasets being created by simply ’scraping the internet of everything available’ [��].
These publicly available datasets do not only contain copyrighted and personal material, but
also discriminatory and stereotypical material with a strong negative racial and gender bias
[�]. In art generation, this may seem like an insigni�cant problem, barely worthy of any
attention, but as generative systems continuously improve, so does their ability to visualise
the bias on which they’re trained, and in turn, further propagate this unwanted inequity.

The topic of ethics related to machine learning is a big and important one. As Birhane
and Cummins [�] state in their report, when data is used that contains social and historical
stereotypes without a deep casual understanding, machine learning as a tool cannot be seen
as factual and void from any moral responsibility.
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Chapter �

Design

The architecture presented in this chapter is the result of the process further discussed in
chapter �.�. This chapter focuses on describing and motivating the details of the �nal art
generator prototype. As the GAN is the core of the prototype, and thesis, it’ll be described
in the most detail.

4.1 Overall architecture
The generative adversarial network (GAN) is the foundation of the system. After being
trained, the generator of the GAN generates a ���x��� pixel base image which is an image
derived from the training data fed to the GAN. The image is represented as a (�, ���, ���)
tensor, with every pixel being stored in three colour channels as a continuous variable in the
range [-�, �]. This image is then upscaled using a pretrained ESRGAN model. The described
architecture is visualised in �gure �.�.

Figure �.�: Architectural diagram of the prototype.
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4.2 Architecture design process
To tune the parameters of the base image generator, an experimental setup was built. The
goal was to �nd a numerical value representing the quality of a generated image. This value
could then be used to automatically optimise the hyper-parameters by iteratively adjusting
and comparing them to the quality score.

The generated base images were saved during training, along with their respective cal-
culated loss from both the generator and the discriminator. However, neither of the loss
functions could be used for the purpose of evaluation. As an example to prove this, two
models were trained on the same Mondrian dataset (sample images are displayed in �gure
�.�), but using di�erent hyper-parameters and architectures.

Figure �.�: A small sample of Mondrian training data.

Both networks were trained for ��� epochs, and generated similar results from the loss
functions. The discriminator loss for both the generated data and the training data oscillated
around �.�, and the generator loss in the range � and �. Despite the numerical similarities in
loss values, the�rst model generated the base images displayed in�gure �.�, and the improved
model generated the images in �gure �.�.

Figure �.�: A small sample of generated base images produced by
badly tuned model.

The colours and grid structure of the generated results displayed in �gure �.�more closely
resembles the Mondrian training data than the results in �gure �.�. Yet, based on the numer-
ical analysis of the loss functions, they’re equally as good.

Even within the same model, the loss functions proved to be insu�cient in the valuation
of the results. During training, the model that generated the good base images displayed in
�gure �.�, resulted in the loss function results visualised in diagram �.�. As shown in the
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Figure �.�: A small sample of good generated base images produced
by well tuned model.

Figure �.�: A line diagram of the calculated losses during training.

diagram, after only �� epochs the loss functions stabilises and produces similar values for the
rest of the training.

Sampled at a later epoch, as well as producing slightly lower loss values for both the
generator and discriminator, the images displayed in �gure �.� are subjectively worse repre-
sentations of the Mondrian dataset than those displayed in �gure �.�, but numerically better.

As a result of this observation, and due to no better metric being found, the tuning of
the hyper-parameters and design of the architecture had to be done though manual evalua-
tion of the results. Di�erent models using the same training data, but with di�erent hyper-
parameters were trained sequentially. To notice the results of the training, at least ��� epochs
had to be trained. Using the available hardware, this process took �-� hours per model, mak-
ing the feedback loops very slow.
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Figure �.�: A small sample of bad generated base images produced
by a well tuned model.

4.3 Base image generator
The generation of the base image is the most important step of the generative process. It’s at
this step the artwork is created. The subsequent steps are used to enhance the base image.

As described in chapter �.�.�. The binary cross-entropy is used as a loss function to train
both internal networks. This function compares the true or false labels of the input images
with the predicted results, and returns a scalar corresponding to the accuracy of the predic-
tions. As a higher value indicates more uncertainty, the training of both networks aims to
minimise this loss function.

A single training step, which occurs once for every image batch in every epoch, consists
of three sub-steps; training of the discriminator on real images, D(x) ! 1, training of the
discriminator on generated images, D(G(z))! 0, and training of the generator D(G(x))!
1. The sub-steps all have the same structure:

�. Load or generate a batch of images. Images are loaded from the training data when
the discriminator is trained on real images, otherwise a batch of images are generated
from the generator network, G(z).

�. Create a vector of image labels. For the networks to successfully di�erentiate between
the generated and training images, labels are required. As suggested by Salimans et
al.[��], rather than using hard labels (i.e. � and �), smooth labels (i.e. �.� and �.�)
should be used to stabilise the system by injecting some uncertainty. For that reason,
the false labels are randomised in the range of [�.�, �.�] and true labels are of the range
[�.�, �.�]. As described in chapter �.�.�, rather than trying tomaximise the loss function
when training the generator, the labels can instead be �ipped for this step to enable
the usage of the default minimising features.

�. Classify the image batch using the discriminator. The batch of images are passed
through the discriminator to predict their class (i.e. generated or from the training
data). The discriminator returns the probability that the classi�ed image is real, where
�.� means that the discriminator is ���% sure that the image comes from the training
data, and �.� means it’s ���% sure it’s a generated image.

�. Calculate the loss using binary cross entropy. The generated labels, together with their
respective predictions are then used in the calculation of the binary cross entropy to
quantify how well the networks are doing.
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�. Calculate the gradient and update the weights. The gradients are calculated using the
Adam [��] optimiser, a slightly adjusted version of the gradient descent described in
chapter �.�. The weights are then updated throughout the network.

Amain disadvantage of training generative adversarial networks is it’s lack of an objective
functions able to track it’s progress [��, �]. As the two inner networks are competing with
each other, and the progress of one bene�ts both networks, there is no numerical thresh-
old indicating that the system has �nished training. Thus, training a GAN is mainly about
building a stable network that doesn’t crash.

A common error when generating images using GANs are checkerboard artifacts, these
occur when some pixels are processed more than others from overlapping kernels, and as a
result a noticeable grid is visible in the image. To avoid this, the kernel size has to be divisible
by the stride for both the generator and discriminator [�].

The input to the generator network is a tensor of shape (���, �, �) sampled from aGaussian
distribution. This input data is referred to as latent space, z. The dimension of ��� hold
no mathematical importance, but is by many considered the default value [��]. Since the
generator should generate an image of size ���x���, the output layer needs to output a tensor
of shape (�, ���, ���).

The discriminator takes an image as input. A (�, ���, ���) tensor represents the input
image to be classi�ed. As suggested by Radford et al. [��], in every layer of the discriminator,
batchnorm should be used to stabilise the model, and LeakyReLU as the activation function.
The structure needs to end with a sigmoid function. This allows for the model to transfer
the result to a probability in the range [�.�, �.�].

4.4 Single-image super-resolution
Due to the high demands on hardware when training an upscaling model, a pretrained ES-
RGAN model was imported. According to the ESRGAN report, the pretrained model was
trained using four ML specialised GPUs, NVIDIA Tesla V���. The model was also trained
for almost �.� million iterations [��].

Copyright-free images from datasets like DIV�K [�] were used to synthesise the low-
resolution images. The network was then trained to learn how to transfer the downscaled
details back to it’s upscaled version.

By feeding the model with the generated low resolution base images, it interpreted the
details of the generated image as something previously seen. With the assumption that the
base image is to be upscaled back to it’s original size, a new high resolution version of the
base image is generated.

4.5 Training data
In order tomore easily compare the results, to improve the hyperparameters and the architec-
ture, the Piet Mondrian subset of the DELAUNAY was mainly used during training. A sample
from this Mondrian subset is displayed in �gure �.�. When using regular supervised learn-
ing algorithms, the dataset is split into subsets for training, testing, and validation. Despite
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internally using a classi�cation algorithm, the GAN does not bene�t form having a separate
testing or validation set. For this reason, the entire dataset can be used to train the model.

Figure �.�: Samples from the Piet Mondrian training data.
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Results

In this chapter, the �nished architecture of the prototype will be presented, as well as gener-
ated images sampled from each step along the prototype pipeline.

5.1 Overall architecture
The �nal overall architecture of the prototype resulted in a two-step process. First a base
image is generated using the base image generator trained on a single artist (for this thesis,
all examples are from the Piet Mondrian model). The output of the trained generator model
is then passed to the pretrained upscaling model to produce the �nal images. A �gure of the
pipeline is displayed in �gure �.�.

Figure �.�: The two-step generation pipeline, from dataset to gen-
erated image.
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5.2 Base image generator
The �nal architecture of the generator is displayed in table �.�, and the discriminator in table
�.�. Using these models, and the dataset sampled in �gure �.�, a GAN was trained. A small
sample of generated ���x��� pixel base images are presented in image �.�.

Figure �.�: A sample of base images generated by the Mondrian
model.

As shown in table �.� and �.�, many of the �nal hyper-parameters, such as kernel size and
stride produced the best results following the theoretical recommendations [��, �].

Figure �.�: A line diagram of the calculated losses during training.

The results of the loss function during training of the Mondrian model are presented in
the line diagram �.�. The diagram shows that the discriminator loss for both the training
and generated data is consistently lower than the generator loss. To compensate for the fact
that the discriminator is training faster than the generator, in every GAN training step, the
generator is trained twice for every one discriminator step. If the network is trained unevenly,
the generator gets less feedback due to not being able to fool the discriminator, and this in
turn leads to a growing gap. The diagram shows that the loss values stay consistent, and both
networks continue training.
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Table �.�: The structure of the generator, G(z).

Model Structure Input Kernel Output Parameters
Dimension (C, H, W) Stride/Padding Dimension (H, W) Dimension (C, H, W)

Input layer
ConvTranspose�d ���, �, � � / � �, � ����, �, � �,���,���

BatchNorm�d ����, �, � ����, �, � ����

LeakyReLU ����, �, � ����, �, �

Hidden layer �

ConvTranspose�d ����, �, � � / � �, � ����, �, � ��,���,���

BatchNorm�d ����, �, � ����, �, � ����

Dropout�d ����, �, � ����, �, �

LeakyReLU ����, �, � ����, �, �

Hidden layer �

ConvTranspose�d ����, �, � � / � �, � ���, ��, �� �,���,���

BatchNorm�d ���, ��, �� ���, ��, �� ����

Dropout�d ���, ��, �� ���, ��, ��

LeakyReLU ���, ��, �� ���, ��, ��

Hidden layer �

ConvTranspose�d ���, ��, �� � / � �, � ���, ��, �� �,���,���

BatchNorm�d ���, ��, �� ���, ��, �� ���

Dropout�d ���, ��, �� ���, ��, ��

LeakyReLU ���, ��, �� ���, ��, ��

Hidden layer �

ConvTranspose�d ���, ��, �� � / � �, � ���, ��, �� ���,���

BatchNorm�d ���, ��, �� ���, ��, �� ���

Dropout�d ���, ��, �� ���, ��, ��

LeakyReLU ���, ��, �� ���, ��, ��

Output layer ConvTranspose�d ���, ��, �� � / � �, � �, ���, ��� ����

Tanh �, ���, ��� �, ���, ���

5.3 Single-image super-resolution
To reach the target size, the generated base images passed through the ESRGAN model
twice—once to upscale the base image from ���x��� to ���x���, then again to upscale it
from ���x��� to ����x����. Some samples of �nished ����x���� images, upscaled using the
pretrained ESRGAN model, are presented in �gure �.�.

Figure �.�: Finished images inspired by Piet Mondrian.
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Table �.�: The structure of the discriminator, D(x).

Model Structure Input Kernel Output Parameters
Dimension (C, H, W) Stride/Padding Dimension (H, W) Dimension (C, H, W)

Input layer Conv�d �, ���, ��� � / � �, � ���, ��, �� ����

LeakyReLU ���, ��, �� ���, ��, ��

Hidden layer �
Conv�d ���, ��, �� � / � �, � ���, ��, �� ���,���

BatchNorm�d ���, ��, �� ���, ��, �� ���

LeakyReLU ���, ��, �� ���, ��, ��

Hidden layer �
Conv�d ���, ��, �� � / � �, � ���, ��, �� �,���,���

BatchNorm�d ���, ��, �� ���, ��, �� ����

LeakyReLU ���, ��, �� ���, ��, ��

Hidden layer �
Conv�d ���, ��, �� � / � �, � ����, �, � �,���,���

BatchNorm�d ����, �, � ����, �, � ����

LeakyReLU ����, �, � ����, �, �

Hidden layer �
Conv�d ����, �, � � / � �, � ����, �, � ��,���,���

BatchNorm�d ����, �, � ����, �, � ����

LeakyReLU ����, �, � ����, �, �

Output layer Conv�d ����, �, � � / � �, � �, �, � ��,���

Sigmoid �, �, � �, �, �
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Conclusion

In this chapter, the research questions stated in chapter � are concisely answered. Some ideas
of how to further improve the prototype are presented in the second sub-chapter.

6.1 Research questions answered
The following questions were presented in the �rst chapter as a foundation of the thesis, with
the purpose of answering them thought the making of the generator prototype.

RQ� What steps and technology are required to develop an abstract art generator?

In this thesis, an approach of how to build and train an art generator prototype is pre-
sented. Due to the di�culties of directly generating large images from the generative
model due to the huge working storage needed (more than ��� GB RAM), separating
the task of generation and upscaling proved to be a better solution. This resulted in
a two-step process. The �rst step being a generator designed to generate base images,
small images capturing the theme of an artist’s work. To �nalise the generation, the
base image is then passed to an ESRGAN model to be upscaled.

RQ� How can generative adversarial networks (GAN) be used to generate high de�nition
artwork?

Both steps of the presented two-step process, generation model and upscaling model,
are generative adversarial networks. The �rst GAN is trained to generate a new image
from the latent space, based on external training data fed to the internal discrimina-
tor. The second GAN is trained to transfer a downscaled image back to it’s original
size. These two GANs working together are then used to generate the high de�nition
artwork. Other methods, such as using VQGAN, or StyleGAN can also be used for
the task.
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RQ� How long does it take to generate a single image; is generating on-demand art feasible?

Once trained, both the generation network and upscaling network require very little
time to produce a new image, thus making on-demand generation easily achievable.
The time-consuming training of the models only has to be done once for every dataset.
The trained models are then saved and reusable for art generation.

6.2 Future work
Possible improvements to the prototype are presented below:

• Inspired by the style transfer upscaling method presented in chapter �.�, training art
style speci�c ESRGAN models could greatly improve the upscaling to look more real-
istic, as well as to avoid the usage of the controversial massive datasets.

• Rebuilding the GAN powered base image generator to instead use the VQGAN archi-
tecture could remove the constraint of only being able to generate abstract art, due to
limitations in the generator.

• Proposed early as a goal for the thesis—a �ltering network could be trained based on
feedback from the end-users. This network could then automatically �lter the subjec-
tively good results from the bad ones, as well as feeding the generator with subjective
feedback. This would however require a lot of data.
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Generering av abstrakt konst med hjälp

av artificiell intelligens (AI)

POPULÄRVETENSKAPLIG SAMMANFATTNING Henrik Norrman

Under de senaste åren har vi sett en explosion av AI-applikationer designade för
kreativa uppgifter som manusskrivande, musikskapande och konstgenerering. I detta
examensarbete presenteras en tvåstegsprocess för generering av abstrakt konst.

I takt med att hård- och mjukvara fortsätter
utvecklas tar AI också en allt större roll i våra liv.
Likt hur vi använder internet idag, tror många
forskare att vi i framtiden kommer använda AI-
verktyg i nästan varje del av vår vardag, både för
praktisk och kreativ hjälp. I detta examensarbete
utforskas hur en konstgenerator för abstrakt konst
kan byggas med hjälp av artificiella neuronnät.

För att förstå hur genereringen fungerar be-
höver man förstå hur ett GAN (generative
adversarial network) fungerar. GAN är en
maskininlärningsteknik från 2014 där två ar-
tificiella neuronnät tävlar mot varandra (ett
genereringsnätverk och ett klassificeringsnätverk).
Klassificeringsnätverket tränas som ett neuron-
nät för bildigenkänning på ett dataset med ab-
strakt konst. Detta nätverk har som uppgift att
svara på frågan: "Vad är sannolikheten att denna
bild är från mitt dataset (och inte genererad)?".
Genereringsnätverket tränas för att försöka lura
klassificeringsnätverket med bilderna den gener-
erar. Utan att se bilderna i träningssetet försöker
genereringsnätverket återskapa dessa med hjälp
av återkopplingen från klassificeringsnätverket.
Genererade bilder som lurar klassificeringsnätver-
ket byggs vidare på och förbättras. De åtta
bilderna visar hur en modell tränad på konst från
Piet Mondrian iterativ förbättras med träning.

Vid generering av större bilder blev arbetsbör-
dan för denna GAN-modell helt för stor. Både
träningstiden och arbetsminnets storlek eskaler-
ade till en ohanterbar storlek. Som lösning pre-
senteras slutligen en tvåstegsmodell: först gener-
eras en mindre basbild som tränas på att fånga
stilen av konstnärens konstverk, sedan skalas bas-
bilden upp till önskad storlek av en separat up-
pskalningsmodell. Ett diagram över konstgenera-
torn visas nedan.

Konstgeneratorn skapades som en grundläg-
gande bas för vidareutveckling till en mer kom-
plett generator, men också som en bas för vidare
utforskning av generativ AI. Tvåstegsprocessens
design ger möjlighet att implementera mellansteg
för förfining av den genererade basbilden innan
den slutförs av uppskalningen.
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