
Trainable Region of Interest Prediction: Hard
Attention Framework for Hardware-Efficient

Event-Based Computer Vision Neural Networks
on Neuromorphic Processors

Cina Arjmand
cinaarjmand@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Mattias Borg, Liang Liu

Examiner: Erik Lind

December 15, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Neuromorphic processors are a promising new type of hardware for optimizing
neural network computation using biologically-inspired principles. They can effec-
tively leverage information sparsity such as in images from event-based cameras,
and are well-adapted to processing event-based data in an energy-efficient fashion.
However, neuromorphic processors struggle to process high resolution event-based
data due to the computational cost of high resolution processing. This work intro-
duces the Trainable Region of Interest Prediction (TRIP) framework for attaining
hardware-efficient processing of event-based vision on a neuromorphic processor.
TRIP uses active region-of-interest (ROI) generation to perform hard attention
by cropping selected regions of input images, automatically filtering out unnec-
essary information and learning to process only the most important information
in an image. TRIP is implemented on several neural networks tested on vari-
ous event-based datasets. It leverages extensive hardware-optimization to maxi-
mize efficiency with respects to hardware-related metrics such as power, memory
utilization, latency, number of network parameters, and area. The algorithm is
implemented and benchmarked on the SENECA neuromorphic processor. The
algorithms employing the TRIP framework exhibit intelligent ROI selection be-
havior and the capability to dynamically adjust ROI size and position to fit various
targets, while obtaining or in some cases improving over state-of-the-art accuracy.
Utilizing lower resolution input reduces the computation requirements of TRIP by
46× compared to state-of-the-art solutions. The embedded hardware implemen-
tation of TRIP more than doubles the speed and energy efficiency of classification
on the DVS Gesture recognition dataset compared to a baseline network, and gen-
erally outperforms other state-of-the-art neuromorphic processors benchmarked
using DVS Gesture.

i

ii

Popular Science Summary

Artificial intelligence (AI) is being pervasively adopted across all facets of life,
but one thing holding back the expansion of AI capabilities is its massive energy
requirements. Servers used to deliver AI services consume more electricity than
entire countries1, and the cost is felt not only in the wallets of companies but on
the planet as well. While the things that AI can do are extremely impressive, the
current cost of powering AI is simply unsustainable.

Humans are looking for ways to make more powerful AI systems fit on smaller
devices that consume less energy. Not only will this be cheaper for both the
planet and those paying for cloud servers, it will enable AI systems like robots and
self-driving cars to be faster, more sophisticated, and more effective. When an AI-
powered system like a self-driving car can perform its advanced object detection
and decision-making efficiently within the device itself, it does not have to send
huge amounts of data back and forth to a cloud server. Instead, it can operate
locally and be self-contained within itself. This is faster, potentially more energy
efficient, and eliminates the risk of sensitive data being leaked. Furthermore, the
less space and energy that an advanced AI takes up on a device, the more advanced
AI we can fit on a single device. Super energy-efficient AI can enable us to cram a
multitude of sophisticated functions into a single wearable or implantable device.
The brain of a robot will be able to fit even more neurons in it and still run on
the same battery. More efficient AI will enable a future that looks even more like
science fiction.

The challenge of making AI more efficient require re-thinking both the hard-
ware that we build to run it and the algorithms we design for the software. In
this thesis, an algorithm is implemented which mimics the way that human eyes
analyze a scene. Instead of taking in an entire scene at once (kind of like an in-
sect eye) as most computer vision AI does, the algorithm in this thesis figures out
where the most interesting place to look in a picture is, and then focuses only on
that part. This is called a hard attention algorithm, and doing this turns out to
be much more effective than doing it the insect way. Additionally, this algorithm
is implemented on a special type of hardware known as a neuromorphic processor,
which is inspired by how neurons in the human brain communicate with one an-
other. The reason why neuromorphic processors try to mimic the human brain is
the same reason why the algorithm tries to mimic human vision: the human brain

1https://doi.org/10.1016/j.joule.2023.09.004

iii

is simply incredibly energy efficient! Sure, AI might be able to beat you at a board
game. However, your brain only consumes as much power as a single lightbulb,
while the AI needs something like the electricity consumption of an entire house-
hold. For that reason, many researchers believe that there is something to learn
about how to make AI more energy-efficient by studying our own efficient and
intelligent brains. Naturally, computers and AI are very different from humans
and biological neurons, so human biology is not a blueprint but rather a source of
potential inspiration and ideas.

The hard attention algorithm used in this work is designed for maximizing the
efficiency of the algorithm on hardware. This means making it is as fast as possible
while requiring as little power, memory, and area as possible. The algorithm
itself drastically improves effectiveness over state-of-the-art solutions for computer
vision using a special kind of camera known as an event-based camera (the design
of which is also inspired by human vision in the interest of greater efficiency).
It utilizes a whole set of hardware optimization techniques, and is implemented
on a neuromorphic processor to produce an incredibly efficient computer vision
algorithm for detecting gestures performed by a human. When a person waves
their arms in front of the camera, the system automatically filters out information
from the most interesting region (usually the arm) to minimize the amount of
information that it needs to process. It automatically adjusts its own focus to
filter out irrelevant objects or to focus on bigger or smaller objects in the camera’s
view. It detects the gesture with high accuracy, high speed, and with minimal
memory and energy usage.

By overcoming the limitations typically faced by embedded AI, the solution
presented in this work offers potential solutions to many of the problems currently
faced in research. One of these is the high computational cost of processing high
resolution images, which makes it impossible for neuromorphic systems to pro-
cess data from event-based cameras with high resolution. High resolution data
is important to obtain high accuracy, but because of the current hardware ineffi-
ciencies, state-of-the-art solutions are forced to resort to low-resolution processing
instead. By focusing processing towards small, low-resolution areas, the hard at-
tention framework introduced in this thesis could be very useful for high resolution
processing of event-based data on neuromorphic systems.

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research goal . 2

2 Theory 5
2.1 SENECA Neuromorphic Processor 5
2.2 Event-based Vision . 6
2.3 Hard Attention . 7

3 Method 11
3.1 Trainable Region of Interest Prediction 11
3.2 Additional Hardware-aware Algorithm Optimizations 15
3.3 Datasets Used for Algorithm Benchmarking 16
3.4 Hardware Implementation and Benchmarking 18

4 Results and Discussion 21
4.1 DVS Gesture Dataset . 21
4.2 Marshalling Signals Dataset . 22
4.3 Synthetic N-MNIST-based Dataset 23
4.4 Hardware Implementation: Benchmarking Results 23

5 Outlook and Conclusion 27

References 29

v

vi

List of Figures

2.1 Overview of SENECA cores. Right: a collection of multiple SENECA
cores. Left: expanded image of one seneca core, containing RISC-V
controller, eight NPEs, and periphiral circuitry including memory and
network on chip (NoC). 7

2.2 The same scene recorded with (a) an RGB camera and (b) an event-
based camera. The event-based camera only produces an output when
light intensity changes, so the moving person is captured while the
stationary background is not. 8

3.1 Overview of TRIP framework showing the data processing steps from
input to output. Downsampled, low-resolution events are provided as
input to the ROI prediction network to produce ROI parameters. ROI
parameters are used by the ROI generation block to generate a low-
resolution cropped ROI for processing by the classificaiton network.
Ht is the output values of the ReLU RNN, and Pt is the output values
of processed events from timebin t. 12

4.1 Visualization of ROI receptive fields from three different gesture sam-
ples of the DVS Gesture dataset. The receptive field is visualized as
a yellow square superimposed above the event image. 22

4.2 ROI receptive field visualization for sample gestures of the Marshalling
Signals dataset performed from different camera distances. 23

4.3 ROI visualization on three different N-MNIST samples (left to right:
digit 7, digit 3, and digit 0). 24

4.4 Overview of per-core utilization of TRIP implementation, including
latency, memory usage, and energy of each core. 25

vii

viii

List of Tables

4.1 Performance comparison of TRIP against other state-of-the-art solu-
tions on DVS Gesture dataset. 22

4.2 Performance comparison of TRIP against state-of-the-art networks on
the Marshalling Signals dataset. 23

4.3 Performance comparison of TRIP against baseline networks on the
synthetic N-MNIST dataset. 24

4.4 Comparison of TRIP and SENECA baseline with state-of-the-art neu-
romorphic implementations on DVS Gesture dataset. 25

ix

x

Chapter 1
Introduction

Artifical neural networks trained by deep learning have enabled artificial intel-
ligence (AI) systems to reach the point of near-human, human, or superhuman
performance across all manner of tasks. They are deployed in autonomous driving
systems, in language models that analyze and generate text, in wearable smart
devices, in neural implants, in aerial and underwater robots, in warehouses to
move boxes, in our homes to vacuum our floors, and in countless other facets of
life. As the rate of AI adoption increases, and AI systems powered by neural net-
works grow more ubiquitous and entrenched in society, certain limitations of these
systems also grow ever more apparent.

1.1 Motivation

The impressive capabilities of AI systems require staggering amounts of computa-
tions to be performed. These computations translate to large amounts of power
consumed by the hardware on which neural networks run, usually in data cen-
ters accessed via cloud services. Cloud computing allows advanced AI to be used
within a system such as a self-driving car while offloading the computations to a
remote server. For the car to use its AI, requests are sent back and forth between
the car and a neural network located on a processor somewhere far away from
the actual car. This way, car designers need not consider the limitations of the
car itself when selecting hardware to power the neural network. If not for cloud
servers, a robot vacuum cleaner would have to carry specialized hardware which
might drain its battery faster, complicate product design, impact manufacturing
considerations, and likely exacerbate the development of an efficient form factor.
Therefore, offloading computations to the cloud is convenient, since the current
bulky, energy-expensive state of neural network computation makes nimble AI
deployment difficult to achieve locally, on the devices themselves.

However, there are several reasons why researchers and companies alike are
seeking ways to move AI off the cloud, and embed it within entirely self-contained
devices. This is known as edge computing, where neural networks are computed
locally "on the edge" rather than "on the cloud". First, the transfer of large
amounts of data back and forth from the cloud is highly costly in terms of energy.
Second, sending data has a huge impact on the speed of a system. In fact, for
computer vision applications, it is often the main latency bottleneck affecting the

1

2 Introduction

speed at which a neural network can perform inference. Thirdly, reliance on data
transfer and storage opens up privacy concerns. A significant amount of companies
at some point fall victim to data breaches or attacks, which exposes potentially
sensitive data of its users. Another important consideration particularly relevant
for companies delivering AI-powered solutions is the cost of either running or
renting cloud services. Data centers are very expensive to run, and the cost of
renting cloud services can easily dominate operating costs if not carefully managed.

If AI systems can be designed to be more hardware-efficient than they are
today, they could be run locally on devices without needing to send any data back
and forth to the cloud. This would avoid the risk of sensitive data exposure and
increase the speed at which AI can operate. It would remove the cost/operating
overhead of cloud services. It has the potential to make systems more energy
efficient than what they are today, which opens up greater possibilities for how
complicated a single system can get.

Edge AI applications today are limited by how efficient algorithms and hard-
ware are when running together. The challenge of making AI algorithms run
efficiently on hardware necessitates making improvements and design consider-
ations in both software design and the hardware design. Importantly, software
must be designed to run efficiently on a given hardware in order to best leverage
that hardware’s capabilities. Equally importantly, design of hardware must be in-
formed by how the design can most efficiently accelerate the algorithms that need
to be run on it. Therefore, hardware design and software design must inform and
be informed by one another. They must be developed and optimized together in
order to achieve hardware-efficient algorithms and thereby hardware-efficient AI
systems.

1.2 Research goal

This thesis work explores methods of making deep learning neural networks more
hardware-efficient, i.e. faster and less area-, memory- and energy-consuming to
run on a processor. In particular, this work deals with a combination of three
different paradigms being used in edge AI research and industry: 1) neuromorphic
computing, 2) event-based vision, and 3) hard attention algorithms.

Neuromorphic processors are a specialized form of hardware designed to opti-
mize neural network computations by performing in-memory computation. This
work uses the SENECA digital neuromorphic processor developed by researchers
at IMEC.

Event-based vision is visual processing performed using event-based cameras:
an alternative technology to RGB cameras. Event-based cameras are developed to
be more energy efficient than RGB by using less information to represent a scene
or object.

Hard attention algorithms are used to train computer vision neural networks
to automatically select a small region(s) of an image that are important for under-
standing a scene; the important region is then cropped in order to limit the amount
of information that the network needs to process. It allows the computational cost
of image processing to be reduced due to the smaller dimension of data being pro-

Introduction 3

cessed. Neuromorphic processors, in-memory computing, SENECA, event-based
vision, and hard attention algorithms are explained in further detail in the next
chapter.

Hard attention algorithms are proven to be able to reduce the computational
cost of image processing. In particular, they enable high resolution processing
which is beneficial for high classification accuracy without a prohibitive increase
in processing requirements. However, little to no work exists that seeks to combine
hard attention methods with event-based vision and neuromorphic processing in
order to leverage the combined hardware efficiency of all three paradigms together.
For limited neuromorphic systems, the hardware cost of processing high-resolution
input is oftentimes prohibitively high [29] as evidenced by the lack of state-of-the-
art processors that can perform high resolution processing efficiently. As such,
neuromorphic processors cannot leverage the high resolution event-based data that
is currently available from state-of-the-art event camera technology.

The goal of this thesis work can be summarized in two parts: 1) to develop a
novel design of a hard attention framework with the goal of maximizing the hard-
ware efficiency of a neural network performing classification on event-based images.
2) to realize a neuromorphic hardware implementation of said network with im-
proved efficiency over state-of-the-art through hardware-software co-optimization.

The framework developed in this thesis in order to meet this goal is called
TRIP: Trainable Region of Interest Prediction, and is described in further detail
in Chapter 3. Chapter 3 also contains details of the methods used to develop and
benchmark the framework on different datasets and in the hardware implementa-
tion. Chapter 4 details the results of experiments and benchmarking, and Chapter
5 provides an outlook on future directions for expanding the work outlined within
the previous chapters.

4 Introduction

Chapter 2
Theory

2.1 SENECA Neuromorphic Processor

SENECA is a Scalable Energy-efficient NEuromorphic Computer Architecture [33].
A neuromorphic architecture differs from the type of computer architectures used
in most computing devices. The computers and processors that are currently
used for computing neural networks are based on what is called von-Neumann
architecture. For example, a graphics processing unit (GPU) which is the most
commonly used hardware for AI, is an example of a von-Neumann architecture.
In a von-Neumann architecture, memory and computation are separated. To per-
form multiplication using neural network weights, for instance, the correct weight
has to be loaded from the memory into the computation. Once the result of the
multiplication is computed, the output value must be stored back in the memory
as the updated neuron state. The movement of data from memory to comput-
ing and vice versa is the main bottleneck in von-Neumann processing which lim-
its processing speed and energy efficiency. Neuromorphic architectures typically
mitigate this issue by co-localizing computing and memory through so-called in-
memory computing: by performing computation directly on the memory storing
a neuron state, the state is updated directly without need for data movement. In
practice, true co-localization of memory and computation is difficult to realize in
digital architectures since memory and computation is always defined by separate
circuits. Analog solutions based on memristor crossbar arrays enable "true" in-
memory computations, but digital neuromorphic solutions technically implement
near-memory computation by minimizing the transfer overhead between memory
and computation as much as possible through design and layout considerations.

In von-Neumann architectures such as GPUs, multiple GPU cores perform
processing in parallel using the same shared data memory between cores, and there
is no direct data transfer from core to core. This limits scalability; adding more
cores is prevented by the data transfer bottleneck between shared memory and
cores imposed by the limited memory bandwidth. Where the SENECA processor
architecture differs is that each core contains its own data memory, and data
is transfered between cores by implementing sequential processing blocks across
multiple cores. This allows arbitrary scaling not limited by memory bandwidth
[33]. In this way, SENECA circumvents the memory bottleneck of von Neumann
systems by implementing a form of near-memory computing on the architectural

5

6 Theory

level.

2.1.1 Event-based Processing

SENECA is a flexible and reconfigurable processor architecture which can im-
plement various algorithms for neural network computing. In this work, neural
networks on SENECA are implemented using integrate and fire neurons. In inte-
grate and fire, the process of updating the neurons of a neural network is divided
into two steps: 1) integrate and 2) fire. In integrate, incoming input to a neuron
is used to update the neuron’s state/memory potential. The fire step only occurs
once the memory potential of the neuron exceeds a pre-defined threshold value,
upon which the neuron fires one output signal. The output signal is called an
event or a spike. Because a neuron is only updated when it receives an event(s),
and neurons only produce events when it is time for them to fire, the integrate and
fire model is an example of an event-based processing system. The advantage of
using an event-based system is that only non-zero events are propagated through
the neural layers. In non-event-based systems, all neuron states must be computed
at each timestep even for neurons with no activity. By only computing non-zero
events, an event-based system can perform less computations when updating neu-
ron states. The number of non-zero events processed by a system is measured
using the metric effective multiply-and-accumulate operations (effective MACs).
A higher number of effective MACs directly translates to a greater hardware uti-
lization as a result of more memory and energy being consumed for processing
[32]. The ratio of effective MACs to overall size of a network is a measure of the
activation density of a network. A network with a low number of effective MACs
in relation to its size is said to have low activation density or high activation spar-
sity. The higher the sparsity in an event-based system, the less events have to
be processed and the less computations have to be performed. The event-based
system in this work encodes events using an adress-event representation (AER),
in which each event is made up of a digital signal containing the magnitude of the
event and the address of the source neuron that produced the event.

2.1.2 SENECA Architecture

SENECA consists of multiple cores. The architecture is scalable in the sense that
it can be expanded to an arbitrary number of cores. Each core contains eight
SIMD Neuron Processing Elements (NPEs). The NPEs are configured by a RISC-
V controller which also manages input/output of events to and from the core,
and address decoding/encoding. The RISC-V programs each NPE with the same
microkernel, and the NPEs execute the same microkernel on 8 adjacent memory
addresses at once.

2.2 Event-based Vision

In an event-based camera, each pixel independently and asynchronously produces
an output proportional to the change of brightness at that pixel [10]. Because the

Theory 7

Figure 2.1: Overview of SENECA cores. Right: a collection of
multiple SENECA cores. Left: expanded image of one seneca
core, containing RISC-V controller, eight NPEs, and periphiral
circuitry including memory and network on chip (NoC).

event-based camera only responds to changes in brightness, stationary or unchang-
ing objects in the camera’s field of view do not produce any output, see Figure
2.2. As a result, an event-based camera produces less information than an RGB
camera because information from the background or from non-active regions is fil-
tered out [6]. Assuming that the camera is only interested in objects that are not
stationary/unchanging, the event-based camera is a more efficient way of process-
ing important information about a scene since less pixels need to be processed. In
particular, an event-based system is capable of leveraging the information sparsity
in an event-based image to reduce the number of computations it has to perform
during processing [36, 24].

An event-based image has two output channels, one for negative polarity and
one for positive polarity, reflecting either an increase or decrease in relative bright-
ness. Event-based images can be binary (magnitude of an event is always one) or
graded. Graded events can represent arbitrary magnitudes of brightness as the
event value which is sent in the AER format.

2.3 Hard Attention

Hard attention is the name given to top-down methods of selectively processing
cropped regions of an input image [13]. They belong to a class of methods known as
attention methods, in which different parts of an input are given different weighted
values to represent their relative importance or saliency. High priority or attention
is directed towards the most important or salient regions. In soft attention, the

8 Theory

(a) RGB camera.

(b) Event-based camera.

Figure 2.2: The same scene recorded with (a) an RGB camera
and (b) an event-based camera. The event-based camera only
produces an output when light intensity changes, so the moving
person is captured while the stationary background is not.

entirety of the input dimension is processed in order to map the saliency of every
data point. In hard attention, only a part of the input which is deemed important
enough is ever selected for further processing while the rest is simply not processed
at all.

The challenge in hard attention is finding a reliable strategy for determining
a region of interest (ROI) without knowing a priori where the ROI will be. Early
methods for saliency detection in computer vision focused on low-level image fea-
tures such as differences in pixel brightness to make informed guesses about where
important information might be [16]. The earliest top-down strategies attempted
to frame the problem of saliency detection as a problem of selecting the right ac-
tion of cropping, i.e. "deciding where to look" [20]. This idea was expanded upon
through models that used reinforcement learning to define actions based on placing
a limited bandwidth sensor on various locations across an input image. Through
reinforcement learning, the agent placing the sensor is trained using a reward pro-
portional to the likelihood of correctly classifying the image based on the input
from the selected region. The recurrent attention model (RAM) utilizes recurrent
neural networks to maintain an integrated history of previous predictions, in order
to iteratively refine predictions over time based on data from previous attempts

Theory 9

[23]. Many other reinforcement learning models elaborate these concepts using
increasingly sophisticated architectures and various tasks [3, 8, 27], including hard
attention models for video footage [5] and for extremely high-resolution images
containing small ROIs [19].

Hard attention algorithms have multiple beneficial properties. First and fore-
most, reducing the input size that needs to be processed by later network layers
drastically reduces the number of computations that need be performed by the
network, resulting in a more efficient algorithm. Using higher resolution input
resolution improves accuracy on classification tasks, but computational cost in-
creases quadratically when using convolutional networks [31, 27]. Furthermore, it
has been shown that in cases where an input image has a low ROI-to-image ratio,
classification accuracy can be degraded as a result [19]. Using hard attention can
improve accuracy by filtering out unnecessary information that can interfere with
classification [23, 12, 3]. Hard attention also offers a natural interpretability of
neural networks’ decision-making process, as by visualizing the ROI used by the
network one can interpret what information was used by the network in its decision
[8]. Additionally, hard attention methods have been shown to provide resistance
against adverserial noise attacks [34, 11, 21].

Reinforcement learning (RL) is a well-suited method for training neural net-
works that need to make decisions by selecting actions, such as deciding where to
crop an input image. RL methods are very effective at accurate ROI prediction,
but they are difficult to train due to the complexity of RL training. These training
complexities also translate to difficulties in embedded hardware implementation,
due to the difficulty of applying hardware-aware optimization techniques to rein-
forcement learning models. The reason why most models rely on reinforcement
learning is due to a lack of an effective differentiable mechanism for ROI selection.
If the ROI selection is not differentiable, as is the case in all the existing RL hard
attention models, then the entire model is not end-to-end differentiable and thus
not trainable using the much simpler backpropagation algorithm commonly used
in machine learning.

The Deep Recurrent Attention Writer (DRAW) utilizes a differentiable ROI
generation mechanism using Gaussian kernels [12]. Scalar output values of a neu-
ron layer are translated into the center location and distance between the mean
values of a N ×N grid of Gaussian kernels. By controlling the distance between
the mean points of the Gaussian functions in the set of Gaussian kernels, the ROI
generation can control the size of its "receptive field", i.e. what portion of the
input image it takes as input to its downsampling, without changing the output
resolution of the ROI. This downsampling operation which is capable of controlling
the size of the region being downsampled is effectively a differentiable cropping
operation. Neuromorphic DRAW (N-DRAW) uses this cropping technique with
a recurrent neural network to predict ROIs on event-based image datasets with
the goal of improving accuracy by selectively processing the most important in-
formation in an image [4]. This is the only other known work which applies hard
attention to event-based images. The target of N-DRAW is not to minimize hard-
ware usage, but rather to improve accuracy on a number of synthetic event-based
datasets. This goal of TRIP is to go further, developing a more sophisticated model
for maximum hardware efficiency and high performance on real and challenging

10 Theory

datasets. Additionally, this work targets a real embedded hardware implementa-
tion with its own challenges.

Chapter 3
Method

Achieving the goal of this work necessitates development of software algorithm and
hardware implementation in tandem: performing co-optimization of software with
respects to hardware performance and vice versa. In order to develop an algorithm
with the target of improving hardware efficiency, it is essential to understand and
measure the implications of algorithm design choices in terms of their effect on
hardware metrics such as latency, computational complexity, number of computa-
tions, and power consumption. This chapter introduces the Trainable Region of
Interest Prediction framework and describes the multiple hardware-optimizations
that were made to the algorithm prior to implementation, the methods employed
to realize an efficient hardware implementation, and the benchmarking procedures.

3.1 Trainable Region of Interest Prediction

The solution developed in this thesis work has been named Trainable Region of
Interest Prediction (TRIP). It is a hard attention framework designed to maxi-
mize hardware efficiency by implementing hard attention to reduce input resolution
during image processing, and to do so with minimal latency and computation over-
head. It is developed and optimized for event-based processing on neuromorphic
hardware.

The processing pipeline is divided into three steps: 1) ROI prediction, 2) ROI
generation, and 3) classification. An overview of the TRIP framework is visualized
in Figure 3.1.

The ROI prediction is the initial step in the framework pipeline. A down-
sampled, low-resolution version of the full-resolution input image is provided as
input to the ROI prediction network. The ROI prediction network consists of a
neural network which outputs three neuron states. These neuron states are used
to encode the center location and receptive field of a region of interest (ROI) on
the full-resolution input image. A fixed resolution, cropped ROI is generated using
the receptive field as input in the ROI generation step. The low-resolution ROI is
then provided as input to the classification step, which consists of another neural
network that performs classification on the ROI. The entire pipeline is differen-
tiable and trained end-to-end using backpropagation and a standard cross-entropy
loss function.

11

12 Method

Figure 3.1: Overview of TRIP framework showing the data process-
ing steps from input to output. Downsampled, low-resolution
events are provided as input to the ROI prediction network to
produce ROI parameters. ROI parameters are used by the ROI
generation block to generate a low-resolution cropped ROI for
processing by the classificaiton network. Ht is the output val-
ues of the ReLU RNN, and Pt is the output values of processed
events from timebin t.

Method 13

3.1.1 ROI Prediction Using Truncated Gaussian Kernels

The specific architecture of the ROI prediction may vary from task to task, but it
sequentially processes the downsampled 16× 16 input with multiple neural layers,
the last of which contains three neurons. The scalar value output of these three
neurons are referred to as the ROI parameters. They are used to define the loca-
tion and width of the receptive field, i.e. what portion of the input image will be
used as input for the ROI generation. Depending on the ROI generation method
used, the parameters are decoded differently. In this work, two ROI generation
method are mainly utilized: 1) truncated Gaussian kernels and 2) dynamic average
pooling. During the initial training of the TRIP network, the truncated Gaussian
kernels are used. Since the Gaussian kernels are differentiable with smooth gra-
dients, they enable effective training by ensuring fast and reliable convergence on
high classification accuracy. Once the model is trained to high accuracy, the ROI
generation method can be substituted for a more hardware-friendly dynamic av-
erage pooling operation that is faster and cheaper to compute in the embedded
hardware implementation.

When utilizing truncated Gaussian kernels, the three ROI parameters ĝx, ĝy, δ̂
are processed in the ROI generation:

gx =
A

2
· (tanh(ĝx) + 1) (3.1)

gy =
B

2
· (tanh(ĝy) + 1) (3.2)

δ = S · (sigmoid(δ̂) + 1) (3.3)

to produce (gx, gy) which encode the center coordinates of the grid of N × N
Gaussian kernels that constitute the Receptive field. The equations result in the
center coordinates intializing in the center of the input image width and height
A and B when ĝx, ĝy are equal to zero. As ĝx, ĝy increase in magnitude, the
output coordinates (gx, gy) can span across the entire input dimension. The stride
parameter δ allows control of the distance between each of the N × N Gaussian
kernels in the grid, thereby controlling the distance between sampling points in
the downsampling operation. In this manner, it is possible to control the scope
of the receptive field at the input without changing the output size of the ROI
generation, i.e. the ROI dimension remains fixed at N ×N . The scalar value δ̂ is
multiplied by a scaling factor S to enable more rapid and dynamic adaptation of
receptive field size.

The position of each Gaussian kernel in the N×N grid is defined by computing
the mean value in the x-dimension µi

x of a Gaussian function centered at each point
in the grid:

µi
x = gx + (i− N

2
− 0.5) · δ, i ∈ [0, N − 1] (3.4)

The mean y-position µj
y is computed in the same way, and i and j describe

the column and row of the Gaussian kernel within the N ×N grid.

14 Method

Using the computed position, the truncated Gaussian kernel’s weight on col-
umn i for pixels n in the x-dimension F i

x[n] (y-dimension weight is computed
similarly) is defined:

F i
x[n] =

{
exp(

(n−µi
x)

2

2σ) for n ∈ [µi
x − θ

2 , µi
x + θ

2]

0 otherwise
(3.5)

The variance σ of the Gaussian function is a pre-defined and fixed value. The
parameter θ determines where the Gaussian distribution is truncated. In this case
θ is equal to 10, which means the Gaussian kernel is computed for the nearest
10× 10 neighboring pixels of each of the N ×N points.

With the truncated Gaussian kernel weights in both the x- and y- dimensions
Fx and Fy computed, the value at each output coordinate i, j of the N ×N × 2
ROI (third dimension with size 2 is for the 2 polarity channels of the event image)
v(xi,yj) is computed,

v(xi,yj) = Fi
x · I · Fj

y (3.6)

where I is one channel of the full resolution input event image. The computa-
tion is repeated for both channels of the input image.

3.1.2 Dynamic Average Pooling

As mentioned, the Gaussian kernels provide fast convergence during training due
to differentiability and smooth gradient. Utilizing a different smooth function
in place of the Gaussian function also provides the same benefits, such as the
product of two complementary error functions. However, the downside of the
Gaussian kernel is that it is expensive in terms of the computations that have to
be performed in hardware, due to the exponential function and multiplications
involved. Furthermore, the Gaussian kernels in the grid have the possibility of
overlapping, which means that a given input event may need to be processed more
than once in the manner described in the previous section.

In order to retain the desirable characteristics of the truncated Gaussian ker-
nels - namely the ability to define and control receptive field width - while reduc-
ing the computational cost and complexity of ROI generation, a dynamic average
pooling (DAP) operation is utilized. The dynamic average pooling resembles a
standard, non-overlapping, average pooling operation, but with a non-static (dy-
namic) kernel size to ensure fixed output resolution. The kernel size is computed
based on the width of the receptive field, which in the x−dimension (and similarly
for the y−dimension) is defined by the maximum and minimum coordinates xmax

and xmin,

xmax = gx + (
N

2
− 0.5) · δ + θ

2
(3.7)

xmin = gx − (
N

2
+ 0.5) · δ − θ

2
(3.8)

computed using the same decoded scalar values as in equations 3.1, 3.2, and
3.3. The kernel size kDAP is then defined,

Method 15

kDAP = (xmax − xmin)/N. (3.9)

Because of the θ × θ truncation of the Gaussian kernels, the DAP receptive
field is the same as when using truncated Gaussian kernels. This enables a network
pre-trained with the truncated Gaussian kernels be fine-tuned with the DAP by
freezing the parameters of the ROI prediction network and re-training the clas-
sification network on the new DAP-generated ROI. This fine-tuning procedure
fully recovers any accuracy loss caused by the substitution of the ROI generation
method.

3.2 Additional Hardware-aware Algorithm Optimizations

The use of truncated Gaussian kernels and DAP for ROI generation is motivated
by the goal of maximizing the hardware efficiency of the algorithm. However, sev-
eral other optimizations were also performed during algorithm development. The
TRIP algorithm was optimized through sparsity-aware training, gradual layer-by-
layer quantization-aware training, and parallelization of the subnetworks. These
methods are described in detail in the following subsections.

3.2.1 Sparsity-aware Training

In an event-based processor, the number of computations is directly related to
the number of events processed by each layer. By reducing the number of events,
the number of computations and thereby the latency and energy can be reduced.
Each event corresponds to an activation of a layer, i.e. the number of activations
corresponds to the number of non-zero values in the output of the activation
function of a layer. It is possible to train a network to minimize its activations
using sparsity-aware training. An L1 regularization loss term proportional to the
sum of the number of activations al in a layer l, for all L layers of a network,

L1 = wL ·
l∑
L

wl · al (3.10)

is weighted using layer-wise and overall weights wl and wL and added to the
cross-entropy loss function used for classification [39]. This way, the network is
incetivized to minimize its activations while obtaining high classification accuracy.

3.2.2 Quantization-aware Training

Weights and biases of neural network layers occupy memory on a processor. In the
case of the SENECA neuromorphic processor the width of each parameter is 16
bits, and weights and biases are encoded using the brainfloat16 format. However,
a layer with a large size such as a 576 × 256 FC layer will require 2.4 Mbit of
memory to store its weights in 16 bit format, which exceeds SENECA’s 2 Mbit
capacity. As such, it is necessary to employ weight quantization to reduce the
memory size occupied by each layer.

16 Method

A 16 bit value can be quantized to a 4 bit integer value by using a shared
power-of-two scaling factor. For a given layer, a shared scaling factor s is computed
based on the distribution of the weights. Each 16 bit value is converted to the
4 bit integer which when multiplied by 2s is nearest to its original value. The
advantage of using this method is that weights can be stored using only the 4 bit
integer values, added together during integration, and only multiplied in the firing
step once integration is completed. The shared term occupies only one space in
memory and is only multiplied once per neuron in the firing step. This reduces
the memory utilization by 4× with only minimal loss in precision. It also has the
added benefit of speeding up integration due to the lower number of bits used in
the addition operations.

Quantizing all of the layers at once is very likely to cause significant accuracy
loss. To avoid this issue, gradual, layer-by-layer quantization can be employed.
Using this method, the parameters of the first layer of the network is quantized and
fixed (i.e. not updated during training). Then the remaining layers in the network
are fine-tuned (trained) on the output of the quantized layer until the accuracy
loss has been recovered. Then, the next layer after the first one is quantized and
fixed, and the process is repeated using the remaining layers. This is repeated
step-by-step until each layer in the network is quantized. This process allows for
full quantization with minimal accuracy loss.

3.2.3 Parallelization

In order to improve the latency of the algorithm, the ROI prediction step can be
parallelized with the ROI generation and classification steps. By performing ROI
generation and classification on the previous timestep’s ROI prediction output, the
latency can be almost halved since the ROI generation and classification do not
need to wait for the ROI prediction to finish before processing. This means the
ROI prediction processes the timebin of timestep t + 1 while the ROI generation
and classification processes the timebin of timestep t. Although the information
reaching the ROI generation and classification is one timestep out of sync with the
ROI prediction, it was verified that this did not result in any accuracy loss. This
is likely due to the fact that the latency of the hardware implementation is small
in relation to the speed at which the ROI changes.

3.3 Datasets Used for Algorithm Benchmarking

In order to benchmark the algorithm performance in a way which allows for com-
parison with other reported methods in literature, the network architecture de-
signed in this step is trained and tested on various datasets widely adopted in the
research field. For the task of event-based classification, we selected one of the most
commonly used datasets: DVS Gesture [2]. Because it is widely used in event-based
vision research, it enables benchmarking against many other algorithms. Further-
more, DVS Gesture has also been used to benchmark multiple state-of-the-art
neuromorphic processors such as Intel Loihi [7] and IBM TrueNorth [1]. There-
fore, using DVS Gesture not only enables benchmarking of the TRIP algorithm,
but also enables benchmarking of the hardware implementation on neuromorphic

Method 17

hardware against comparable state-of-the-art solutions. Another property of the
gesture recognition dataset which makes it beneficial for testing the TRIP method
is that gesture recognition inherently contains a low ROI-to-image ratio, since
a gesture is typically performed by one or more body parts while areas like the
head, body, or background are not involved. This makes the problem of gesture
recognition well-suited for a hard attention approach.

Other widely used event-based datasets are either very similar to DVS Ges-
ture, i.e. also gesture recognition datasets with similar number of classes and
resolutions, or synthetically generated by displaying RGB datasets like MNIST or
Caltech101 in front of an event-based camera. Real (i.e. not synthetically gener-
ated from non-event-based datasets) datasets are more accurately representative of
real world applications of event-based vision, and using two very similar datasets
is not highly informative. For these reasons, the second dataset selected for bench-
marking the algorithm is the Marshalling Signals dataset [25], which is interesting
for the task of testing ROI prediction since it contains samples recorded at mul-
tiple different distances. This will allow analysis of the ROI prediction’s ability
to adjust to informative regions that vary in size across samples. Additionally,
Marshalling Signals is a higher resolution dataset which makes it interesting for
studying the computational cost reduction of hard attention.

The third dataset used for benchmarking is synthetically generated and spe-
cially constructed to test the TRIP solution. In order to analyze the effect of visual
noise on the ROI prediction, a special high resolution, noisy dataset is constructed
based on the neuromorphic MNIST (N-MNIST) [26] dataset.

3.3.1 DVS Gesture Dataset and Training Details

DVS Gesture is a dataset recorded using a 128 × 128 resolution DVS128 event-
based camera. The dataset contains recordings of different people performing
various hand and arm gestures such as rolling their arms in front of them, waving
one of their hands, playing air drums, or waving their arms in circular motions.
There are 11 gesture classes in total, and the dataset consists of 1176 training
samples and 288 testing samples.

Events were collected into 32 timebins per sample using the SpikingJelly pre-
processing package [9] which constructs timebins/frames with a roughly equal
number of events per frame. Additionally, the training dataset was augmented
by peforming random rotation, scaling, and spatial translation of each sample.
Each sample is downsampled to 16× 16 using maxpooling before being fed to the
first network layer.

The ROI prediction network consists of a three-layer CNN with increasing
channel sizes 32, 64, and 128. Each convolutional layer has a kernel size of 3, a
zero-padding of 1, and is followed by a maxpooling layer, a batch normalization
layer, and a ReLU activation function. The CNN is followed by a ReLU RNN
with size 256 and a fully connected (FC) layer with 3 neurons. The classification
network consists of a two-layer CNN with identical parameters to the first two
layers of the ROI predicition network. This is followed by two FC layers with sizes
256 and 11.

The entire network is trained for 1000 epochs using backpropagation, cross-

18 Method

entropy loss, a learning rate of 0.0001, and an Adam optimizer.

3.3.2 Marshalling Signals Dataset and Training Details

The Marshalling Signals dataset is developed by IMEC in 2022. It is a gesture
recognition dataset with 346 × 224 resolution and contains gestures being per-
formed at eight different distances from the camera. As a result, the size of the
person performing the gesture in comparison to the overall size of the frame can
be significantly smaller or bigger from sample to sample. The dataset contains 10
classes, 11,040 training samples, and 930 testing samples. Each sample is recorded
at one of eight evenly spaced distances between 1.5 and 4.5 m from the camera.
Each sample is collected in a single 960 ms timebin. The network used is the same
as the one used for DVS Gesture. Because of the higher resolution of the dataset,
the intial maxpooling downsample results in a 43×28 input resolution to the ROI
prediction network. The network is trained for 25 epochs with a learning rate of
0.0001 and an Adam optimizer.

3.3.3 N-MNIST-based Synthetic Dataset and Training Details

N-MNIST is a handwritten digit recognition dataset generated by recording the
MNIST dataset [18] with an event-based camera. It contains 60,000 training sam-
ples and 10,000 testing samples with a 34×34 resolution. The dataset used in this
benchmarking experiment was generated by placing N-MNIST digits on randomly
selected x, y-coordinates of an empty 128 × 128 event image. The digits are also
randomly scaled by a factor between 1 and 2, and structured noise is added to
the image by randomly sampling eight random 8 × 8 crops from eight randomly
selected digits in the dataset. The crops are placed in random locations across
the image. The network used is similar to the ones used with DVS Gesture and
Marshalling Signals datasets, but with only two layers in each CNN (the last layer
removed).

Baseline networks used for comparison were constructed using the same num-
ber of layers as TRIP. The baseline networks do not implement hard attention,
and are used to compare the added effect of using hard attention against a similar
non-attention network. The baselines were tested using inputs downsampled to
different resolutions, 16 × 16, 32 × 32, and 64 × 64, and TRIP was tested using
16×16, 32×32. The networks consist of four subsequent convolutional layers with
increasing channel dimensions 16, 32, 64, 128, followed by a size 128 (for 16× 16
input) or size 512 (for 32× 32 input) RNN and two FC layers. The networks are
trained for five epochs with a learning rate of 0.0006 and an Adam optimizer.

3.4 Hardware Implementation and Benchmarking

The TRIP network described in section 3.3.1 was implemented on the SENECA
neuromorphic processor using the software development kit (SDK) of the SENECA
platform to program the RISC-V controller and NPE microkernels in C. The im-
plementation was simulated using a full, gate-level simulation of the entire elabo-
rated SENECA chip. Latency measurements, memory utilization, and area were

Method 19

extracted from the simulation and elaboration results. The power utilized by each
core was measured using Cadence Joules, and the energy computed using the
latency and power of each core.

3.4.1 Event-CNNs

The entire network is fully event-based, and convolutional layers are implemented
as depth-first event-CNNs. The event-CNN performs convolution, maxpooling,
and batch normalization before activation in order to maximize sparsity in the
output. The events in the CNN are processed using depth-first scheduling, which
parses events in a pre-defined spacial order from top left to bottom right of the
input layer, allowing it to finish processing one point in X,Y space without hav-
ing to return in the same frame. This allows the convolutional layer to update
states and fire more rapidly, and for subsequent layers to immediately consume the
produced events. This results in lower latency and greater parallelization due to
events being produced faster, and also less memory utilization since the memory
can be released when the convolution moves from one spatial location to another.

3.4.2 Event-grouping

The weight quantization procedure described in section 3.2.2 is combined with
event-grouping to maximize efficiency. Since 4-bit quantization allows each word
in the memory to store four weights, four incoming events that share a destination
address can be processed at once while only reading one weight address. The four
events are combined into one so a neuron state is read only once and updated four
times. This results on average in a halving of the energy and latency per synaptic
operation. This works under the assumption that the timing between the group
events do not differ significantly enough to result in discrepancy when processed
simultaneously.

3.4.3 Baseline Network

In addition to TRIP, a baseline network was implemented in the same manner.
The baseline network is implemented in order to enable comparison against a net-
work with similar parameters as TRIP that does not use hard attention. The
baseline network consists of five sequential convolutional layers of increasing chan-
nel sizes 32, 64, 128, 128, and 128. The other parameters are the same as in
the convolutional layers of the TRIP network, including the order of maxpooling,
batchnormalization, and ReLU activation. The convolutional layers are followed
by a recurrent layer with size 256 and an FC layer with size 11. The input di-
mension to the network is 32 × 32, as a result of a maxpooling downsampling
operation of the full resolution input image. The same hardware-optimizations
applied to TRIP are also applied to the baseline, i.e. quantization-aware training,
sparsity-aware training, event-CNNs, depth-first convolution, and spike grouping.

20 Method

Chapter 4
Results and Discussion

4.1 DVS Gesture Dataset

The benchmarking results of TRIP on DVS Gesture compared to other state-of-
the-art methods from literature is shown in Table 4.1. The mean accuracy is similar
to other state of the art networks, between 97% and 98%. A difference of 0.3%
accuracy corresponds to only a single test sample, and therefore all models except
the simple LSTM in the first row have negligible difference in error. However,
TRIP requires 46× less computations than the other models to achieve the same
accuracy. TRIP also requires less parameters than all networks except ConvLIAF.
ConvLIAF utilizes LIAF blocks which require less number of parameters than
recurrent and convolutional blocks [35]. The ConvLIAF network has roughly half
the number of parameters as TRIP, but 65× more computations due to relying on
a higher input resolution. TRIPs ability to process lower input resolution allows
for simpler network architectures with less parameters to be used for the same
task when compared to similar convolutional and recurrent architectures.

A visualization of the receptive field used in TRIPs ROI generation is shown in
Figure 4.1. Across samples, TRIP locates the receptive field at the location where
the gesture is taking place. For instance, in the Left Hand Clockwise gesture, the
person performing the gesture is rotating their arm in a circular motion, and the
receptive field follows the motion of the arm. In the Right Hand Wave gesture, the
receptive field is focused on the right arm, moving slightly as the arm waves back
and forth. For stationary gestures such as the Arm Roll, the receptive field remains
stationary and fixed on the arms performing the gesture. These visualizations
suggest that the network is learning to focus its receptive field on the part of
the body performing the gesture, most likely because this is the most informative
region for classification.

21

22 Results and Discussion

Architecture Input Resolution Param Effective MACs Accuracy [%] Accuracy [%]
(Single Timebin) (mean ± std) (Maximum)

LSTM [14] 32×32 7.4M 3.9M – 86.8
AlexNet+LSTM[15] 128×128 8.3M 601.3M – 97.7
CNN+EGRU [30] 128×128 4.8M 80.6M 97.3± 0.4 97.8
ConvLIAF [35] 32×32 0.22M 113.3M – 97.6
TRIP (This work) 16×16+12×12 0.46M 1.75M 97.6 ± 0.5 98.6

Table 4.1: Performance comparison of TRIP against other state-of-
the-art solutions on DVS Gesture dataset.

Figure 4.1: Visualization of ROI receptive fields from three different
gesture samples of the DVS Gesture dataset. The receptive field
is visualized as a yellow square superimposed above the event
image.

4.2 Marshalling Signals Dataset

Table 4.2 shows the accuracy, number of parameters, and FLOPs of TRIP com-
pared to the previously reported results of ResNet18 and EfficientNet-B1. Since
[25] did not report activation sparsity or effective MACs, we use network floating
point operations (FLOPs) as the metric for computational cost, without consid-
ering activation sparsity. FLOPs measure the number of computations performed
by a network and is proportional to layer sizes and numbers. The TRIP network
has 18× less FLOPs than the best performing competitor EfficientNet-B1 while
slightly outpeforming in accuracy by 1%. Visualizing the ROI receptive field shows
the network’s capability to adjust the ROI size in response to different gestures’
distances, increasing or decreasing to match the size of the region encompassed by
the gesture in a given sample.

Results and Discussion 23

Figure 4.2: ROI receptive field visualization for sample gestures of
the Marshalling Signals dataset performed from different cam-
era distances.

Architecture Param FLOPs Accuracy [%]
ResNet18 [25] 11.7M 1810M 74.6
EfficientNet-B1 [25] 7.794M 690M 82.6
TRIP (This work) 4.13M 37.0M 83.6

Table 4.2: Performance comparison of TRIP against state-of-the-art
networks on the Marshalling Signals dataset.

4.3 Synthetic N-MNIST-based Dataset

The results in Table 4.3 show that TRIP allows network FLOPs to be reduced
from 32×32 to 16×16 without sacrificing accuracy. For the baseline network, this
reduction in resolution results in unacceptable accuracy loss (> 20%), while for
TRIP accuracy is only reduced by less than one percent. Additionally, the number
of FLOPs required to obtain 96% accuracy is nearly halved.

Visualization of the samples in Figure 4.3 shows the network is capable of con-
sistently focusing the receptive field on the digit even in the presence of structured
noise. This suggests the network is not merely being triggered by presence of ac-
tivity, but is in fact capable of discerning informative regions from uninformative
ones.

4.4 Hardware Implementation: Benchmarking Results

The hardware implementation of TRIP is compared with other neuromorphic hard-
ware implementations in Table 4.4. Since different works vary in whether they

24 Results and Discussion

Figure 4.3: ROI visualization on three different N-MNIST samples
(left to right: digit 7, digit 3, and digit 0).

Architecture Param FLOPs Accuracy [%]
(mean ± std)

Baseline (16x16) 0.31M 6.0M 71.8± 2.3
Baseline (32x32) 0.67M 24.4M 93.0± 0.6
Baseline (64x64) 0.67M 57.4M 96.2± 0.9
TRIP (16x16) 0.30M 16.0M 95.4 ± 0.4
TRIP (32x32) 0.65M 28.0M 96.1 ± 0.3

Table 4.3: Performance comparison of TRIP against baseline net-
works on the synthetic N-MNIST dataset.

report metrics for single or multiple timebins, TRIP and the SENECA baseline
are evaluated on both metrics to enable comparison against all of the reported
works. The TRIP implementation consumes less area and energy than all the
other reported solutions, while also decreasing the error by 50% or more. One
implementation outperforms TRIP in latency by 3 ms. This is a result of a very
high degree of network parallelism in the implementation, which sacrifices a large
amount of area (7× more than TRIP) in order to minimize latency. While the
Loihi implementation succeeds in reducing the latency significantly, this trade-off
limits the scalability of the solution, in particular for higher resolution inputs.

The baseline network on SENECA consumes less area than TRIP, due to
requiring one less core as a result of not including the DAP block and having one
less FC layer. However, the latency is 3× higher and energy 2.5× higher compared
to TRIP, due to larger input dimensions of the convolutional layers increasing the
number of events that have to be processed.

The memory utilization, energy, and latency of each individual core the TRIP
implementation is visualized in Figure 4.4. The figure also visualizes the paral-
lelization of the three components classification, ROI generation, and ROI predic-
tion. The most significant energy is consumed by the earlier convolutional layers
in either network, due to having the largest input dimensions and thereby the
largest number of events to process.

Results and Discussion 25

Single Timebin Multiple Timebins
Hardware Solutions Area Latency Einf Accuracy Latency Einf Accuracy

[mm2] [ms] [uJ] [%] [ms] [uJ] [%]
Loihi [7] SCNN [29] >8.20 11 – 89.6 – – –
Loihi [7] SCNN [22] 24.19 – – – 22.0 2731 96.2
TrueNorth [1] SCNN [2] 383.8 – – 91.8 104.6 18702 94.6
SENECA [33] Event-CNN 3.29 – – – 78.9 1069.2 97.3
SENECA [33] TRIP 4.23 2.7 35.86 91.1 25.8 430.32 98.3

Table 4.4: Comparison of TRIP and SENECA baseline with state-of-
the-art neuromorphic implementations on DVS Gesture dataset.

Figure 4.4: Overview of per-core utilization of TRIP implementa-
tion, including latency, memory usage, and energy of each core.

26 Results and Discussion

Chapter 5
Outlook and Conclusion

The TRIP framework was successfully applied to improving the hardware efficiency
of event-based classification on a neuromorphic processor. Compared to the higher
resolution baseline network, energy, latency, and accuracy could be improved. The
combined hardware-optimizations resulted in the implementation outperforming
state-of-the-art neuromorphic chips in all hardware metrics. The only exception
is one implementation that was able to achieve a minor improvement in latency
by using scaling-inhibitive and highly area-consuming parallelization techniques.
Algorithmic analysis revealed major efficiency improvements over state-of-the-art
baseline networks across multiple datasets, highlighting the effectiveness of the
TRIP approach to hard attention in both software and hardware. Through its
substantial efficiency improvements, TRIP delivers an effective method of enabling
high resolution processing on neuromorphic processors.

In the future, the method outlined in this work could be expanded and applied
to high resolution event-based object detection datasets. Currently the Prophesee
automotive dataset promises to enable efficient event-based sensing for applications
such as autonomous driving [28]. However, huge challenges with processing the
high resolution data limit the ability of networks to process the dataset. Difficulties
in both achieving high accuracy and limiting the computational cost are holding
back the devlopment of efficient systems that can leverage high resolution event-
based datasets. The TRIP framework offers a potential solution to both these
problems, but would need to be reworked for the object detection task.

Additionally, the observations made in this work can inform future develop-
ment of in-sensor processing capabilities for event-based cameras. Developers of
event-based cameras such as Prophesee are expanding to include increasingly so-
phisticated pre-processing on the visual front-end to improve the overall efficiency
of the entire system containing camera and processor hardware [37, 38, 17]. Framed
in this context, TRIP highlights the usefulness of in-sensor pre-processing capabil-
ities for average pooling operations and similar downsampling operations. Despite
maximized hardware optimization, the ROI generation step using dynamic aver-
age pooling still consumed significant latency and power. An integrated, in-sensor
pre-processing capability could increase the efficiency of this step and significantly
improve the overall efficiency of the entire pipeline.

27

28 Outlook and Conclusion

References

[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John
Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-
Joon Nam, et al. Truenorth: Design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip. IEEE transactions on computer-
aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

[2] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Gar-
reau, Marcela Mendoza, et al. A low power, fully event-based gesture recog-
nition system. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7243–7252, 2017.

[3] Jimmy Lei Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object
recognition with visual attention. International Conference on Learning Rep-
resentations, 32, 2015.

[4] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci.
Attention mechanisms for object recognition with event-based cameras. In
2019 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 1127–1136. IEEE, 2019.

[5] Yuning Chai. Patchwork: A patch-wise attention network for efficient ob-
ject detection and segmentation in video streams. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3415–3424,
2019.

[6] Gregory Cohen, Saeed Afshar, Garrick Orchard, Jonathan Tapson, Ryad
Benosman, and Andre van Schaik. Spatial and temporal downsampling in
event-based visual classification. IEEE Transactions on Neural Networks and
Learning Systems, 29(10):5030–5044, 2018.

[7] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil
Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with
on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[8] Gamaleldin Elsayed, Simon Kornblith, and Quoc V Le. Saccader: Improving
accuracy of hard attention models for vision. Advances in Neural Information
Processing Systems, 32, 2019.

29

30 References

[9] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding
Chen, Liwei Huang, Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly:
An open-source machine learning infrastructure platform for spike-based in-
telligence. Science Advances, 9(40):eadi1480, 2023.

[10] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt,
Kostas Daniilidis, et al. Event-based vision: A survey. IEEE transactions on
pattern analysis and machine intelligence, 44(1):154–180, 2020.

[11] Jonathan M Gant, Andrzej Banburski, and Arturo Deza. Evaluating the
adversarial robustness of a foveated texture transform module in a cnn. In
SVRHM 2021 Workshop@ NeurIPS, 2021.

[12] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wier-
stra. Draw: A recurrent neural network for image generation. In International
conference on machine learning, pages 1462–1471. PMLR, 2015.

[13] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao
Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng,
and Shi-Min Hu. Attention mechanisms in computer vision: A survey. Com-
putational visual media, 8(3):331–368, 2022.

[14] Weihua He, YuJie Wu, Lei Deng, Guoqi Li, Haoyu Wang, Yang Tian, Wei
Ding, Wenhui Wang, and Yuan Xie. Comparing snns and rnns on neuromor-
phic vision datasets: Similarities and differences. Neural Networks, 132:108–
120, 2020.

[15] Simone Undri Innocenti, Federico Becattini, Federico Pernici, and Alberto
Del Bimbo. Temporal binary representation for event-based action recogni-
tion. In 2020 25th International Conference on Pattern Recognition (ICPR),
pages 10426–10432. IEEE, 2021.

[16] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for
rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(11):1254–1259, 1998.

[17] Xabier Iturbe, Nassim Abderrahmane, Jaume Abella, Sergi Alcaide, Eric
Beyne, Henri-Pierre Charles, Christelle Charpin-Nicolle, Lars Chittka,
Angélica Dávila, Arne Erdmann, et al. Nimbleai: Towards neuromorphic
sensing-processing 3d-integrated chips. In 2023 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2023.

[18] Daniel Keysers. Comparison and combination of state-of-the-art techniques
for handwritten character recognition: topping the mnist benchmark. arXiv
preprint arXiv:0710.2231, 2007.

[19] Fanjie Kong and Ricardo Henao. Efficient classification of very large images
with tiny objects. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2384–2394, 2022.

References 31

[20] Hugo Larochelle and Geoffrey E Hinton. Learning to combine foveal glimpses
with a third-order boltzmann machine. In J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 23. Curran Associates, Inc., 2010.

[21] Yan Luo, Xavier Boix, Gemma Roig, Tomaso Poggio, and Qi Zhao.
Foveation-based mechanisms alleviate adversarial examples. arXiv preprint
arXiv:1511.06292, 2015.

[22] Riccardo Massa, Alberto Marchisio, Maurizio Martina, and Muhammad
Shafique. An efficient spiking neural network for recognizing gestures with a
dvs camera on the loihi neuromorphic processor. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2020.

[23] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of
visual attention. Advances in neural information processing systems, 2014.

[24] Orlando Moreira, Amirreza Yousefzadeh, Fabian Chersi, Gokturk Cinserin,
Rik-Jan Zwartenkot, Ajay Kapoor, Peng Qiao, Peter Kievits, Mina Khoei,
Louis Rouillard, et al. Neuronflow: a neuromorphic processor architecture for
live ai applications. In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 840–845. IEEE, 2020.

[25] Leon Müller, Manolis Sifalakis, Sherif Eissa, Amirreza Yousefzadeh, Paul
Detterer, Sander Stuijk, and Federico Corradi. Aircraft marshaling signals
dataset of fmcw radar and event-based camera for sensor fusion. In 2023
IEEE Radar Conference (RadarConf23), pages 01–06. IEEE, 2023.

[26] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor.
Converting static image datasets to spiking neuromorphic datasets using sac-
cades. Frontiers in neuroscience, 9:437, 2015.

[27] Athanasios Papadopoulos, Pawel Korus, and Nasir Memon. Hard-attention
for scalable image classification. Advances in Neural Information Processing
Systems, 34:14694–14707, 2021.

[28] Etienne Perot, Pierre De Tournemire, Davide Nitti, Jonathan Masci, and
Amos Sironi. Learning to detect objects with a 1 megapixel event camera.
Advances in Neural Information Processing Systems, 33:16639–16652, 2020.

[29] Bodo Rueckauer, Connor Bybee, Ralf Goettsche, Yashwardhan Singh, Joyesh
Mishra, and Andreas Wild. Nxtf: An api and compiler for deep spiking
neural networks on intel loihi. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 18(3):1–22, 2022.

[30] Anand Subramoney, Khaleelulla Khan Nazeer, Mark Schöne, Christian Mayr,
and David Kappel. Efficient recurrent architectures through activity sparsity
and sparse back-propagation through time. In The Eleventh International
Conference on Learning Representations, 2023.

[31] M Tan. rethinking model scaling for convolutional neural networks. arxiv.
2019 doi: 10.48550. arXiv: 1905.11946, 2019.

32 References

[32] Guangzhi Tang, Ali Safa, Kevin Shidqi, Paul Detterer, Stefano Traferro,
Mario Konijnenburg, Manolis Sifalakis, Gert-Jan van Schaik, and Amirreza
Yousefzadeh. Open the box of digital neuromorphic processor: Towards effec-
tive algorithm-hardware co-design. In 2023 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5, 2023.

[33] Guangzhi Tang, Kanishkan Vadivel, Yingfu Xu, Refik Bilgic, Kevin Shidqi,
Paul Detterer, Stefano Traferro, Mario Konijnenburg, Manolis Sifalakis, Gert-
Jan van Schaik, et al. Seneca: building a fully digital neuromorphic processor,
design trade-offs and challenges. Frontiers in Neuroscience, 17, 2023.

[34] Manish Reddy Vuyyuru, Andrzej Banburski, Nishka Pant, and Tomaso Pog-
gio. Biologically inspired mechanisms for adversarial robustness. Advances in
Neural Information Processing Systems, 33:2135–2146, 2020.

[35] Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang.
Liaf-net: Leaky integrate and analog fire network for lightweight and effi-
cient spatiotemporal information processing. IEEE Transactions on Neural
Networks and Learning Systems, 33(11):6249–6262, 2022.

[36] Jason Yik, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson, An-
dreas G Andreou, Chiara Bartolozzi, Arindam Basu, Douwe den Blanken,
Petrut Bogdan, Sander Bohte, et al. Neurobench: Advancing neuromor-
phic computing through collaborative, fair and representative benchmarking.
arXiv preprint arXiv:2304.04640, 2023.

[37] Feichi Zhou and Yang Chai. Near-sensor and in-sensor computing. Nature
Electronics, 3(11):664–671, 2020.

[38] Yue Zhou, Jiawei Fu, Zirui Chen, Fuwei Zhuge, Yasai Wang, Jianmin Yan,
Sijie Ma, Lin Xu, Huanmei Yuan, Mansun Chan, et al. Computational event-
driven vision sensors for in-sensor spiking neural networks. Nature Electronics,
pages 1–9, 2023.

[39] Zeqi Zhu, Arash Pourtaherian, Luc Waeijen, Egor Bondarev, and Orlando
Moreira. Star: Sparse thresholded activation under partial-regularization for
activation sparsity exploration. In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pages 4554–
4563. IEEE, 2023.

