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Abstract

Surface albedo estimations from remote sensing are invaluable for energy balance descrip-
tions in climate research. The aim of this work is to evaluate the possibility of using
Sentinel-2 satellite data to get the total albedo of a small, vegetated area. In this thesis,
a simple machine learning model is created to convert simulated Sentinel-2 reflectance
measurements to surface albedo.

The Forest Reflectance and Transmission model is used to simulate the reflectance
behaviour of a pine forest and a field vegetation stand. The angular behaviour was
analysed, and it was found that the directional reflectances at near-nadir view angles
are typically lower than the hemispherical reflectance, though this effect also depends on
the solar angle. As a result, it is important to include angular modelling in the albedo
estimations. Next, a direct- estimation and narrow-to-broadband linear regression model
were trained with FRT simulated reflectance data. The ability to predict albedo from
the FRT data was high, with r2 > 0.94 for the direct estimation and r2 > 0.999 for
the narrow-to-broadband model. Finally, the models for the pine forest and field were
compared and found to be distinctly different.

In conclusion, it is important to include angular modelling in albedo estimations.
The regression models presented in this thesis perform well for the simulated vegetation
stands. Moreover, it is valuable to train separate models for different land use classes.
With some further improvements, the regression models for Sentinel-2 data have potential
for accurate evaluation of surface albedo at a fine spatial resolution.
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Introduction

1.1 Research problem

Remote sensing and satellite data have been invaluable for monitoring the Earth in recent
years [1, 2]. Surface albedo is a quantification of the reflectivity of the surface for solar
radiation. This reflectivity depends on the land cover. It is an important factor in Earth
system modelling and climate change studies. A higher albedo means that more light
is reflected by the earth’s surface. As a result, areas with high albedo experience less
warming of the surface and the surrounding air. A high global surface reflectance thus
decreases the energy that is used to heat the Earth system [3]. In the interest of decreasing
the accelerated global warming then, a high global albedo is desired.

In response to the warming climate, vegetation in the arctics has increased productiv-
ity. As a result, snow in high latitude areas is masked by protruding plants, and the albedo
of the regions is decreased. This decline of albedo causes a feedback loop that can cause
warming in these areas to be amplified [4,5]. Additional positive feedback comes through
changes in evapotranspiration in the tropics, the carbon balance and ocean albedo [1, 6].

The vegetation plays a critical role in these processes, since land usage impacts the
albedo directly. Choosing to change the land usage or vegetation is a way to influence the
albedo. Before doing this, the effects on the ecosystem should be studied thoroughly [7].
Also, it is critical to know the effects on the surface albedo of changing the vegetation.

We are interested in surface albedo estimates both on a large scale and more local
scale. A common way of gathering surface albedo is through Earth observation satellites,
both on a large [8] and a local scale [9] scale, by a variety of satellite systems.

Satellites measure the surface reflectance under a specific view angle. Because of
anisotropies in almost any natural surface, the reflectance of a typical surface depends on
the angle of the incoming light, as well as the angle under which the reflected radiation
is measured [10, 11]. To make an accurate estimate of the total reflected radiation, the
geometrical distribution needs to be considered. A conversion has to be applied to obtain
the reflectance in all directions from the directional measurements.

Besides this geometrical consideration, the narrowband satellite measurements also
need to be converted to a broadband albedo. The satellite sensors measure the reflectances
for specific wavelength bands, but for energy balance considerations, one is interested in
the reflection over the whole wavelength spectrum. As not all wavelengths are reflected
equally, a transformation has to be applied to get an estimate for the total albedo.
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1.2 Aim

The aim of this work is to evaluate the possibility of using Sentinel-2 satellite data to
obtain the total albedo of a small, vegetated area. This is realised by creating a simple
machine learning model to convert the Sentinel-2 reflectances to surface albedo. Instead
of using actual data, the model will be developed based on reflectance modelling of the
surface through the Forest Transmittance and Reflectance (FRT) model by Kuusk and
Nilson [12, 13]. The focus is on developing a model for specific locations and situations,
and evaluating its uncertainties.

Models to get surface albedo from satellite data have already been developed for
various satellite systems. An overview of research on this topic until 2015 is given by
Qu et al. [14]. Most notable is the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument of the Terra and Aqua NASA satellites [15]. A model for converting
its directional, narrowband reflection measurements to a hemispherical, broadband albedo
was developed by Strahler et al. [11]. A more recent example is the albedo estimation
for the Landsat system [16]. An overview of the estimation methods for Landsats various
generations is given by He et al. [17].

A downside of these remote sensing systems mentioned previously is their spatial
resolution. Especially the MODIS instrument has a relatively coarse spatial resolution.
The MODIS wavelength bands with the finest spatial resolution are able to discern areas
of 250 m [15]. Landsat has a spatial resolution of 30 m in its multispectral bands, 15 m
in the panchromatic band [16].

For the analysis of patchy landscape, with many smaller areas of different vegetation,
a fine spatial resolution is required for better measurement accuracy [18]. The Sentinel-
2 satellite constellation provides measurements with high spatial resolution in thirteen
sensor bands. Four of the bands have a 10-metre spatial resolution, six have a 20 meter
and three have a 60-metre spatial resolution [19].

Preliminary results from Li et al. [20] show that improving the spatial resolution of
the albedo data has a positive influence on the accuracy of the albedo measurements in
smaller areas. Their results from the Sentinel-2A satellite were compared with those of
MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS). When setting the
satellite results against local surface albedo measurements with a pyranometer, the error
in finer resolution albedo products was decreased compared to those of courser resolution
albedo products.

The area that pyranometers measure is in the range of several meters to several scores
of meters [10]. As a result, there is a mismatch between the courser albedo products
from for example MODIS and the measurements used to validate these products, making
validation difficult. The finer resolution albedo products that Sentinel-2 could possibly
provide, are better able to resolve the same spatial details, making them valuable for
validation.

The albedo estimation models developed for a satellite system, such as MODIS and
Landsat, are not simply transferrable to other systems. One reason for this is a differing
range of angles under which surfaces are scanned [21]. Additionally, the wavelengths of
the sensor bands do not generally coincide.

Specifically for Sentinel-2, algorithms for albedo estimation have been proposed by Li
et al. [20] and Bonafoni [22]. The model from Li et al. is a regression model, trained
with radiative transfer simulations of various surface types. Bonafoni uses a theoretical
weighting of the sensor bands based on incoming solar irradiance. Both these models are
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developed for a broad range of cases. While Li considers snow-covered surfaces separately
from snow-free surfaces, neither work makes a distinction in the albedo estimations for
different vegetation types. Since different vegetation types have different spectral signa-
tures, it may lead to more accurate albedo predictions when a conversion model is tailored
for a specific vegetation type. The existing models also don’t take the solar- and view
angles into account.

1.3 Overview

In this thesis, we aspire to evaluate our surface albedo estimations from simulated Sentinel-
2 satellite reflectance data. First, some background information on remote sensing and the
reflectance of vegetation is given. Then, the methods used in this research are explained.

The research problem is split into four parts. The surface reflectance is modelled with
the Forest Transmittance and Reflectance (FRT) model by Kuusk and Nilson [12,13], and
its results are used for calculations and analysis in every part.

1. First, the behaviour of the reflectance is investigated. The variation of the monochro-
matic reflectance for different view- and solar angles is described. Additionally, the
reflectance at different wavelengths is analysed. This part of the analysis is done to
learn the impact of the geometry and the wavelengths on the albedo.

2. The second aim is to evaluate the legitimacy of the Lambertian approximation. In
this approximation, the light reflected by a surface is completely diffuse. If this is a
valid assumption, no angular modelling is required for albedo estimations.

3. Next, two simple machine learning models are created to predict the surface albedo
from Sentinel-2 reflectances. Instead of using satellite data, the models are developed
based on theoretically modelled reflectances from the FRT model for a specific type
of vegetation. The models are valid under the assumption of a constant solar angle,
as well as under fixed atmospheric conditions. The predictions from the regression
models are compared to each other, as well as to predictions from the models by Li
et al. and Bonafoni.

4. As the last sub-aim, the impact of different vegetation types on the albedo estimation
is investigated. Specifically, two types of vegetation are considered: a pine forest
and an open field.

The results from these four sub aims are presented and discussed. Finally, the conclu-
sions and the outlook of this work are given.
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2

Theory

2.1 Principles of remote sensing

Remote sensing is gathering information about something from a distance. In most appli-
cations, this information gathering is the measuring of physical characteristics. Remote
sensing relies on the detection of emitted and reflected electromagnetic radiation [23].
Mostly, it is used to monitor the Earth’s surface, and this is what this thesis will focus on
as well. However, in principle remote sensing systems can be, and are, applied to observe
many other targets.

A remote sensing system consists of several components working together, with first
and foremost the data acquisition system. This includes the sensor and the platform
on which the sensor is mounted. This platform can be on the Earth’s surface, but is
frequently airborne or spaceborne. Common examples of such platforms respectively are
towers, aircrafts or satellites [10].

Remote sensing systems can be divided into active and passive, based on their work-
ing principles. A passive sensor will detect either the natural radiation emitted by the
observed object, or the radiation reflected by the object. On the other hand, an active
sensor will send out its own electromagnetic radiation towards the object and will then
detect the reflected or backscattered radiation.

It is useful to understand some basic terms and concepts of satellites in general. After
this, the specifications of the Sentinel-2 satellites can be discussed further to understand
the motivation of using its data for estimating the albedo of different vegetation types.

2.1.1 Satellites

Satellites are frequently used in remote sensing of the Earth system. Their purposes can
vary greatly, but a few common uses for satellites are geopositioning, weather- and climate
monitoring and assessing land use.

Satellite orbits

There are many satellites going around the Earth at the moment. Many of these are
constantly gathering information about the part of the surface within their view. The
type of satellite and its orbit depend on the purpose of the satellite. One commonly used
orbit is the geostationary orbit. In this orbit, the satellite stays over one specific longitude
at the equation. These satellites need to fly at an altitude of 35786 km or very close to
this.
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Another common orbit type is the polar orbit. Satellites in this orbit fly over the poles.
They can cross from one pole to the other at different longitudes every new orbit. In this
way, these satellites in polar orbit can observe the entire surface of the earth. Most polar
orbiting satellites are also sun-synchronous, meaning that they always pass over a specific
spot on the surface at the same local time. These satellites have an altitude around 800
km, which is lower than that of the geostationary satellites.

Resolution

Considering the resolution of satellites, often the spatial resolution comes to mind. De-
pending on applications, different types of resolution are also important.

The spatial resolution is given by the land area covered by one ”pixel” of the data.
The finer the spatial resolution, the more details of the land cover can be discerned. The
spectral resolution describes which radiation wavelengths are detected, and how wide the
detection bands are. The radiometric resolution is determined by the data width of a
measurement. A higher radiometric resolution means that the sensor readings will be
stored with a higher number of digits. With sufficiently accurate sensors, this results in
a higher precision of the measured quantity. Another factor in the radiometric resolution
is the Signal to Noise Ratio (SNR), which is preferably high [19].

Finally, the temporal resolution describes how often the satellite repeats its measure-
ments in the same location. This can be important if one wants to monitor changes over
time. For geostationary satellites this might be arbitrarily high, since it is stationary
about one part of the land. However, for satellites that pass over a target once and then
have to fly a whole orbit in order to return and make the next measurement, this is not
so.

2.1.2 Sentinel-2

In this thesis, the measurements from Sentinel-2, specifically those above the south of
Sweden, are simulated. The purpose of this is developing a model to estimate albedo
based on Sentinel-2 data. The Sentinel-2 satellite constellation from the European Space
Agency is a system that provides data at fine spatial resolution. It is currently made up
by 2 satellites, Sentinel-2A(S2A) and Sentinel-2B(S2B). They move in the same polar,
sun-synchronous orbit, at an altitude of 786 kilometres. They have a phase difference of
180◦, meaning that the two satellites are located on opposite sides of the orbit. Because
of this, the passover frequency of the combined system is doubled [19].

MultiSpectral Instrument

The measurement system responsible for the light intensity detection is the MultiSpectral
Instrument (MSI) developed by Astrium SAS (now Airbus Defense and Space). The
incoming light beam is split using a beam-splitter, to separately focus the Visible and
Near-Infra-Red (VNIR) and the Short Wave Infra-Red (SWIR) bands.

The Field of View (FOV) of the MSI instrument is 20.6◦. This is achieved by having
12 detectors placed in the focal plane in a staggered formation. This FOV means that the
measurements are performed between a zenith angle of -11.3◦ and 11.3◦, perpendicular
to the propagation direction of the satellite. Because of this, the instrument is able to
scan a 290 km wide swatch on the surface of the Earth. With this so-called push broom
sensor design, the satellite does not have to vary the scanning direction of the sensor while
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flying over, as is required with a whisk broom sensor design. Because of this, the time for
scanning one pixel is increased, and the sensor obtains a stronger intensity signal [19,24].

Sentinel-2 resolution

The MSI on Sentinel-2 has 13 different spectral bands for which the light intensity is
measured. The wavelengths and the spatial resolution of the sensor bands of the Sentinel-
2 satellites are given in Figure 2.1. The different bands have 3 possible spatial resolutions.
Sensor bands 2, 3, 4 and 8, all located in the VNIR have the finest spatial resolution, of
10 m. Of these, bands 2, 3 and 4 lie in the visible spectrum and 8 in the NIR. Together
with bands 11 and 12 in the SWIR, which have a spatial resolution of 20 m, they measure
a large part of the solar spectrum. Additionally, there are four other bands with a special
resolution of 20 m, located in the VNIR, and three bands with a spatial resolution of 60
m. These last three bands are mainly used for cloud detection (band 10) and atmospheric
corrections [19]. The exact wavelength ranges of the bands vary up to several nanometres.
For the exact wavelength specifications of the bands for the two satellites, see Appendix
A.

Figure 2.1: The spatial resolution and wavelength domain of the 13 Sentinel-2 bands. Image
acquired from ESA [25]

.

The radiometric resolution of the MSI is 12-bit, meaning that 4096 different light
intensity values can be registered by the sensors. The SNR varies for the different sensors
[19]. For SNR specifications, again refer to Appendix A. When combining the 2A and 2B
satellites, the maximum temporal resolution is 5 days.

Sentinel-2 data

The data from the two Sentinel-2 satellites can be obtained at several processing lev-
els [19]. In the Level-0 processing, which happens in real-time, the data is consolidated
and metadata is appended. In Level-1 data processing, the data is decompressed and
radiometric and geometric corrections are applied. The Level-1 processing is split up in
Level-1A, 1B and 1C. At level 1C the data has undergone spatial registration and or-
thorectification. Briefly, spatial registration involves aligning the pixels in the reflectance
data with the correct locations on the ground. Orthorectification is done to correct the
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distortion from sensor tilt and elevation differences1 [26].
At Level-1C, the data is ready for handling by the average user. The reflectances

for each sensor band at the Top Of the Atmosphere (TOA) are given, and the data is
registered on a geographic coordinate system. The data is supplied with metadata such
as the time and the angles at which the measurements were made.

Further processing is done at Level-2A. This processing mainly contains atmospheric
corrections and gives the user information about the atmospheric conditions at the time
and location of the data acquisition. The main output here are the reflectances at the
bottom of the atmosphere (BOA) and maps with the optical depth and water vapour.

The data at level 1B, 1C and 2A is publicly accessible, where 1B is only for expert
users. The data can be freely accessed via the Copernicus Data Space Ecosystem [27], or
various other satellite data hubs.

2.2 Reflectance

Reflectance can roughly be described as the ratio of the reflected radiant flux and the
incoming radiant flux on a surface. When talking about the reflectance of a natural
surface such as a forest, it is important to keep in mind that this is not a constant value,
but that the reflectance is anisotropic [28]. The reflectance is dependent on the angle
under which the light comes in, as well as the outgoing angle. The flux of reflected energy
is, generally speaking, not equally divided over the whole hemisphere. Similarly, the
reflectance of a surface depends on the wavelength of the light.

Relevant geometry

The location of the satellite and the sun relative to each other and the surface of the
Earth are an important factor in reflectance measurements. This section provides a brief
introduction on relevant geometrical terms.

In Figure 2.2, the situation is visualised schematically. Here, the yellow dot is a
representation of the sun2, and the angle under which its beam reaches the Earth’s surface.
The green dot similarly shows the location of the satellite, and the grey area is the tangent
plane to the surface of the Earth at the measured location (0,0,0).

To describe the location of either object in a fixed reference system, we make use of
the zenith angles θ and azimuth angles φ. If the zenith angle θ = 0◦, the angle is said to
be nadir, pointing directly downward. The angles corresponding to the sun’s location are
the solar angles and are denoted with the subscript ’s’3. The angles corresponding to the
satellite are supplied with the subscript ’v’, for view angle.

When considering a point at the Earth’s surface, the zenith angles are generally clear,
since our reference system has the z-axis pointing up orthogonally from the surface of the
Earth. For some purposes, only the relative azimuthal angle φr, between the sun and
the satellite is considered. For describing the angular dependence of the reflectance, this
is sufficient under the assumption that the surface within the spatial resolution of the
satellite does not present any extreme directionality.

1For more details on types of data corrections in remote sensing, the reader is referred to the book on
remote sensing and image processing by Schowengerdt [26]

2Since the sun is not so close to the Earth surface, the radial component of its location is not to scale.
The dots in the illustration are meant to visualise the angular component of the light beams.

3Take care that this subscript should not be taken as being the ’s’ from satellite.
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Figure 2.2: The relevant angles used to describe the geometry of the satellite and the sun. The
yellow dot represents the sun angle and the green dot represents the satellite angle.

2.2.1 Spectral irradiance

When measuring the surface reflection on the Earth, the incident radiant flux is the solar
irradiance. The TOA solar irradiance spectrum is shown in Figure 2.3, and compared to
the spectrum of a black-body at T = 6000K [29].

Figure 2.3: Solar irradiance spectrum from a black-body, at the top of the atmosphere (TOA)
and at the Earth’s surface (BOA). Acquired from Tempfli et al. [29].

The BOA irradiance is also shown. The intensity of this spectrum is decreased because
of interaction with the atmosphere. The molecules, particulates and aerosols cause scat-
tering of the incoming (and also the reflected) light. This effect is more prevalent for the
shorter wavelengths in the spectrum [30]. Additionally, the electromagnetic radiation is
partly absorbed by various molecules in the atmosphere. Some of the molecules with the
highest absorption are ozone (O3), water vapour (H2O) and carbon dioxide (CO2) [29].
In Figure 2.4, the transmission coefficient for the solar wavelength spectrum is given. Big
dips can be seen corresponding to absorption by certain molecules. In between these
dips, the transmission is high. These high transmission ranges are referred to as atmo-
spheric transmission windows, and typically sensors detect radiation in these wavelength
ranges [31].
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Figure 2.4: Transmittance spectrum through the atmosphere. Atmospheric windows of high
transmittance can be seen in between low transmittance regions caused by molecular absorption.
Acquired from Smith [32].

Figure 2.5: Reflectance spectrum for different types of vegetation. Acquired from Smith [32]

2.2.2 Surface reflection

Different surface covers absorb and reflect light of different wavelengths. Their reflectance
spectrum depends on three main factors [30]. These are the biochemical composition, the
structure and the moisture content of the surface. A combination of these factors gives
every material its own spectral signature. This signature is the reflectance factor plotted
over the wavelength. In Figure 2.5 the spectral signature of various types of surface
cover is shown. Some wavelengths with high atmospheric absorption can be recognised
in this spectrum when comparing Figures 2.4 and 2.5. They can be seen as drops in the
reflectance rate, such as the ones just before 1000 nm or around 1400 nm.

Because different vegetation types display a distinct difference in their spectral signa-
tures, the reflection spectra of land surfaces can be used to classify land cover or monitor
vegetation health through remote sensing [33].

Different factors influence different parts of the spectrum. The visible wavelengths are
impacted by, for example, concentrations of pigment, chlorophyll and iron. Examples of
factors that influence the near-infrared (NIR) wavelengths are cell structure and canopy
structure. Higher wavelengths are impacted among others by moisture content and plant
stress.

In the reflectance of vegetation, one typically sees a steep increase in the reflectance
spectrum when increasing the wavelength from the red band to the NIR range. This
range of wavelengths with rapid change is called the red edge and is useful in determining
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chlorophyll and nitrogen concentration in the vegetation, as well as plant stress4 [34, 35].
Another characteristic of the surface reflectance is the hotspot effect. When looking

at the geometry of the reflection, the principal (solar) plane is defined as the plane that
contains both the surface normal and the sun. If the satellite is located somewhere in this
plane, φr = 0◦. In this plane, around θv = −θs, the reflectance has a peak. The hotspot
is this angle where the reflectance is increased.

2.2.3 Bidirectional Reflectance Distribution Function

For a completely smooth surface, the light of a single incoming ray will be reflected in
only one direction. Merely measuring the reflected light in this view angle will then give
the total reflected radiant flux.

On the other hand, for a completely diffuse surface, the light of a single incoming ray
is instead reflected equally in every direction. Such an ideally diffuse surface is called
a Lambertian surface. For a Lambertian surface it is sufficient to measure the intensity
of the reflected light in one direction. Lambert’s cosine law [36] then states that the
measured intensity is only dependent on the cosine of the zenith angle.

I = I0 cos θ (2.1)

Here, I is the measured intensity at zenith angle θ and I0 is the intensity at θ = 0.
The factor cos θ is a result from the decreased solid angle when an area is viewed from
a non-nadir zenith angle (Figure 2.6). In this case then, the reflectance only needs to be
measured at one angle to get the hemispherical reflectance.

Figure 2.6: Lambert’s cosine law. The measured intensity depends only on cos θ for a completely
diffuse surface.

However, for a more natural surface, this is not possible. For such surfaces, the
reflectance in every view angle description is described by the bidirectional reflectance
distribution function (BRDF). The BRDF is the fraction of the incoming energy from the
incident angle that is reflected in the view angle, and is mathematically defined as [10]

fr(θi, φi; θr, φr;λ) =
dLr(θi, φi; θr, φr;λ)

dEi(θi, φi;λ)
. (2.2)

Here, dEi is the increment of spectral irradiance at the angle (θi, φi). It is given per
unit solid angle and per unit area surface area. dLr is the increment of reflected spectral

4Since this small area of the wavelength spectrum is of interest for monitoring vegetation, satellites
often have sensor bands specifically in this range. Sentinel-2 in particular has three 20 m resolution
wavelength bands in this range (see Figure 2.1)
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radiance at (θr, φr). The angles (θi, φi) and (θr, φr) correspond to the solar and view angles
(φs, θs) and (φv, θv) defined previously. All the terms in this expression are dependent on
the wavelength λ, but this is often omitted as an explicit argument in the expression.

The BRDF is determined only by the surface properties of the measurement location,
like the land surface structure and the spatial distribution of vegetation. Additionally, the
BRDF is influenced by the optical properties of the surface components and by shadows
[11]. The measurement conditions do not play a role in the definition of the function.

For an ideal surface, all the incoming energy is divided equally over the hemisphere
upon reflection. The fraction of the light reflected in direction (θr, φr), so the BRDF, is
then just the constant 1

π
.

In practice, various physicals quantities based on the BRDF are used to describe
the reflectivity of natural terrain. The reflectance, ρ, is defined as the ratio of the re-
flected radiant flux to the irradiance and has a value between 0 and 1. Strictly, this is
a monochromatic quantity, but in practice it is measured for some (small) wavelength
intervals.

Albedo is a quantity very similar to reflectance. It is defined as the ratio between
the reflected and the incoming energy. It differs from the reflectance in that it is usually
taken over a wavelength range, instead of it being a monochromatic value. Commonly
used terms are for example visible light albedo or short wave albedo.

Relative physical quantities

Additionally, there exist physical quantities that describe the reflectance under a specific
geometry of both the incident and the observation rays [10, 37]. In Figure 2.7, some
possible cases are visualised.

Figure 2.7: Different geometries of incoming (yellow) and reflected (green) radiance. a. Direc-
tionally incoming flux. b. Diffuse incoming flux. c. Hemispherical incoming flux. A combina-
tion of directional and diffuse flux. d. Directionally reflected flux. e. Hemispherical reflected
flux.

The incident light (yellow in Figure 2.7) can be taken as either completely direc-
tional(2.7a), completely diffuse(2.7b), or a combination of this (2.7c). The reflected light
(green) can either be measured in a specific direction (2.7d) or over the whole hemisphere
(2.7e).

The term directional light is used to designate a parallel beam coming from (or going
in) a single direction. From a technical standpoint, reflectance measurements will never
be completely directional, since a non-zero area is required to do the detection. Similarly,
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natural light sources are also not point sources. In these practical situations, directional
radiance is replaced by a conical radiance [37]. For measuring the outgoing radiance, a
viewing solid angle is specified instead of an infinitesimal one. This solid angle corresponds
to the instantaneous FOV of the sensor5, and should be considered in case it is large [10].

Next, the most important reflectances are described.

Hemispherical-directional reflectance
The hemispherical-directional reflectance (HDR) is the ratio of the reflected radiant flux
in direction (θr, φr) to the incoming radiant flux. Here, the incoming flux is considered
to be that of the whole hemisphere, both direct and diffuse (Figure 2.7c and 2.7e). The
reflectances that are given by the Sentinel-2 satellite data are expressed as HDRs.

The definition of this value in terms of the BRDF is given by Nicodemus, Richmond
and Hsia [39], who have introduced the conventions for the various reflectances and re-
flectance factors.

HDR = dρ(θi, θr, 2π; θr, φr) =
dΩr

π

∫
fr(θi, φi; θr, φr)dΩi (2.3)

=
dΩr

π

∫ 2π

0

∫ π
2

0

fr(θi, φi; θr, φr) cos θi sin θidθidφi (2.4)

Here dΩ is the projected solid angle increment, dΩ = cos θ sin θdθdφ. For a hemispher-
ical surface, Ω =

∫
dΩ = π, in units of steradian. Note that here the sin θi comes from the

Jacobian for spherical integration, while cos θi is the same factor as was seen in Lambert’s
cosine law (Figure 2.6).

Directional-hemispherical reflectance
The directional-hemispherical reflectance (DHR) gives the ratio of reflected radiant flux
over the hemisphere to the directionally incoming radiant flux. It is obtained by integrat-
ing the BRDF over all viewing angles.

DHR = ρ(θi, φi; 2π) =
dΦr(θi, φi; 2π)

dΦi(θi, φi)
(2.5)

=

∫ 2π

0

∫ π/2

0

fr(θi, φi; θr, φr) sin θr cos θrdθrdφr (2.6)

The DHR describes the reflection for the situation when combining Figure 2.7a and
2.7e. It corresponds to the monochromatic black-sky albedo (BSA). BSA represents the
reflection for the case without particles in the atmosphere. In this case, the incoming
sunlight is not scattered and will just travel in a straight path. Looking up at the sky,
every direction would be dark, except for the one direction where the light is coming from.

Diffuse hemispherical-hemispherical reflectance
For the diffuse bihemispherical reflectance (BHR diff), the incoming light is considered to
be completely diffuse, coming equally from every direction. The BHR diff is the fraction
of the diffuse incoming flux that is reflected over the hemisphere. It is obtained by
integrating the DHR over all incident angles.

5The instantaneous FOV differs from the FOV of a satellite, in that it concerns the FOV of the
individual sensors within the measuring instrument. It is also considered a measure for spatial resolution
[38].
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BHR diff = ρ(2π; 2π) =
dΦr(2π; 2π)

dΦi(2π)
(2.7)

=

∫ 2π

0

∫ π/2

0

ρ(θi, φi; 2π) sin θi cos θidθidφi (2.8)

This quantity describes the reflection for the situation when combining Figure 2.7b
and 2.7e. It corresponds to the monochromatic white-sky albedo (WSA). WSA represents
the case where all wavelengths of the incoming light are maximally scattered. From the
ground it would appear that the light is coming equally from every direction, and the sky
would look white.

2.2.4 Albedo

To approximate the realistic illumination, often a combination of BSA and WSA is taken
[10]. The so-called monochromatic blue-sky albedo, or bihemispherical reflectance (BHR)
can be expressed as

BHR = dDHR(θs, φs; 2π) + (1 − d)BHR diff(2π; 2π) (2.9)

Here, d is the fractional amount of the direct radiant flux and is a factor used to describe
the atmospheric conditions [37].

d =
I

I +D
=

I

Li
, (2.10)

where I is the direct downwelling flux, D is the diffuse downwelling flux and Li is the
total downwelling flux. The downwelling flux is, in general, dependent on wavelength and
sun angle, so d is also for a single wavelength and angle.

Alternatively, the BHR can be expressed in terms of the BRDF [39].

BHR = ρ(2π; 2π) =
1

π

∫ ∫
fr(θi, φi; θr, φr)dΩrdΩi (2.11)

In this expression, we can use the definition for the HDR (equation 2.3) to express the
BHR as an integral of the hemispherical-directional reflectance.

ρ(2π; 2π) =

∫ [
1

π

∫
fr(θi, φi; θr, φr)dΩi

]
dΩr (2.12)

=

∫
dρ(θi, φi, 2π; θr, φr) (2.13)

This last expression shows that the bihemispherical reflectance can also be obtained
from integrating the hemispherical-directional reflectance factor.

The above expressions for the BHR give the monochromatic reflectance. In practice,
the albedo is desired for certain wavelength ranges. This albedo can be acquired by
integrating over the wavelength spectrum, weighted by the incoming radiation flux [10].

A(θs,Λ) =

∫
Λ
Li(θs, λ)α(θs, λ)dλ∫

Λ
Li(θs, λ)dλ

(2.14)
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Here A(θs,Λ) is the albedo for a wavelength range Λ, a sun zenith angle θs. Li(θs, λ)
is the incident radiant flux under sun angle θs and of wavelength λ and α(θs, λ) is the
corresponding monochromatic albedo. For blue-sky albedo, α = BHR.

When considering the albedo over a short range of wavelengths, such as the reflectance
measured by a single sensor band in a satellite, we speak of narrowband albedo. If a larger
wavelength range is considered, such as the SWIR or the whole solar spectrum, we speak
of broadband albedo.

2.2.5 FRT model

In this thesis, the reflectance of the vegetation is modelled with the Forest Reflectance
and Transmittance (FRT) model. This model was developed by Andres Kuusk and Tiit
Nilson in 2000. [12, 13]. It includes several steps to describe the complex process of light
absorption by, reflection on and transmission through vegetation. The model has been
tested through a comparison with empirical data [13,40]. It has also previously been used
in research comparing modelled and observed reflectance data [41,42].

Model components

The FRT model includes a geometrical model of the trees in different vegetation layers.
The tree crowns are described as either ellipsoids, cones or a combination of cones and
cylinders. The tree crowns have a uniform distribution of branches and leaves. The
ground vegetation consists of a homogeneous layer.

To obtain the reflectance and transmission coefficients of the leafs, the PROSPECT
model by Jacquemoud and Baret [43] or the LIBERTY model by Dawson et al. [44] can be
used. These are both radiative transfer models for the optical properties of leaves. The ab-
sorption of a leaf depends on its chemical composition, such as chlorophyll concentration,
and its internal structure.

After entering the atmosphere, the incoming light is usually not reflected once on a
leaf and then sent outwards in a straight trajectory. Instead, the light is often scattered,
transmitted and reflected multiple times by particles in the atmosphere and the multiple
layers in the vegetation. Both the first order, single scattering, and the multiple scattering
are considered in the FRT model.

The FRT model includes radiative transfer modeling. The 6S atmospheric radiative
transfer model by Vermote et al. [45] is used to calculate the incident diffuse and direct
fluxes I and Q. Parameters used by the 6S model to calculate the diffuse part of the
radiation include the percentage of aerosol components and horizontal visibility.

FRT model output

To run the FRT model, an input file is required in which specific parameters about the
different vegetation layers in the tree stand are specified. Additionally, parameters about
the atmospheric conditions, the solar- and view angles and the wavelength are included
in this file. An example input file is given in Appendix B.1. For more specifics on the
FRT model, the reader is referred to the FRT User Guide [46].

The output of the model is the hemispherical-directional reflectance (HDR), where the
incoming light is a combination of direct and diffuse sunlight. The output is dependent
on the zenith angles of the sun and the satellite, θs and θv, as well as the azimuthal angle
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between the two, φr, and the wavelength λ. The range for which the model runs is limited
to wavelengths of 400 nm to 2400 nm.

The reflectance that is given by the model is calculated at the top of the canopy (TOC)
of the vegetation. No atmospheric corrections have been applied to the outgoing radiant
fluxes. The results are thus equivalent to the bottom of atmosphere bihemispherical
reflectance (BHR).

2.3 Estimation of albedo

The estimation of surface albedo from satellite measurements can roughly be done in two
different ways [14]. The reflectances obtained from the satellite sensors are directional
and narrowband, and need to be converted to a hemispherical and broadband reflectance.

The first way to do this is in steps, following the diagram in Figure 2.8. If the data
obtained from the satellite is the TOA reflectance, it is first converted to the surface
reflectance by applying atmospheric corrections. The data at that point is still only in
the view direction and needs to be converted to a hemispherical reflectance in the next
step. In the following, this step will be referred to as BRDF (angular) modelling or
directional-to-hemispherical conversion. Finally, the broadband albedo is obtained from
the collection of narrowband albedos. This stepwise processing method has been the
traditional way of obtaining the albedo [14].

Alternatively, the conversion can also be done by a so-called direct estimation model.
Here, the BRDF modelling and the narrow-to-broadband conversion are combined in one
step. The BOA data is directly used to estimate the broadband albedo. The advantage
of this type of model compared to the step by step processing is that the errors of the
different models are not accumulated over the steps [47]. Examples of this type of model
are the one for MODIS developed by Liang, Strahler and Walthall [47, 48], and the one
for Landsat presented by Zhang et al. [49].

Both the models developed to perform the individual conversion steps and the direct-
estimation models are usually dependent on the satellite system. One of the reasons
for this is that various sensors measure the TOA reflectance in a different field of view.
Similarly, the spectral bands vary between satellite systems.

Figure 2.8: Processing of satellite measurement at the top of the atmosphere (TOA) to obtain
broadband albedo.
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3

Methods

The goal of this research is to create a machine learning model that can be used to
predict surface albedo for a specific type of vegetation. The model takes the bottom of
the atmosphere (BOA) Sentinel-2 reflectance data for several MSI sensor bands as input.
The model is trained for two different vegetation types and these cases are compared to
each other. The work needed to achieve this can be split in three parts:

1. Analysing the reflectance of a vegetation stand for different angles and wavelengths.

2. Calculating the surface albedo and simulated satellite data to use as training data.

3. Training and validation of the regression model.

The linear regression model takes the reflectance coefficients for every MSI sensor
band as input parameters. These reflectances are measured under one specific view zenith
angle θv and as such give the reflectance coefficient for one specific angle, and a narrow
wavelength band. The desired output is the total reflectance at the Earth’s surface.

3.1 Scope and assumptions

In developing the model, some assumptions and simplifications have to be made. The
model is developed with a focus on the area of south Sweden with regard to the satellite
specifications. Additionally, only two specific types of vegetation are considered. Though
these simplifications are necessary to keep the research manageable, the reader should
keep them in mind.

The first simplification is that the regression model is trained specifically for one solar
zenith angle, θs = 59◦ This angle was chosen because throughout the year, it is the average
solar angle at 10:30 in the morning, in south Sweden. The time 10:30 was chosen, as this
is the approximate time Sentinel-2 passes over this area.

The relative azimuthal angle was fixed at φr = 65◦ for similar reasons. Inspection
of Sentinel-2 data for the south of Sweden showed that a typical φr is somewhere in the
range of 50-70◦. The reason for φr not being close to zero is the interference of the hotspot
and the satellite shadow in the principal plane [10].

Only one specific case of atmospheric conditions is considered in the simulations.
In this case, the sky conditions are clear, with a high visibility. Such conditions are
desirable for accurate surface reflectance measurements. The input parameters for the 6S
atmospheric radiative transfer modelling are given in Appendix B.2.
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3.2 Calculating reflectances

The backbone of this research project is the FRT model introduced in the previous section.
It is a Fortran computer program. We wrote a program in Python 3.7 to do the data
analysis and model training. A function supplies the FRT model with an input file and
executes it.

3.2.1 FRT model

In the FRT input file, all information about the vegetation stand and the atmospheric
conditions is supplied. For the purpose of the initial analysis, these parameters were kept
according to the example file from the FRT user guide. This file describes the Järvelsja
Pine stand in Estonia, and the parameters were validated through empirical data [13].
The input file can be found in Appendix B.1. The input file also contains information on
the geometry in the form of θs, φr and θv. The last input parameter is the wavelength
for which the reflectance factor will be calculated. This output is the hemispherical-
directional reflectance (HDR) and is also denoted as dρ(θs, φr, θv, λ).

The model is able to take wavelengths in the 400 nm - 2400 nm range. In Figure
3.1 the ASTM Standard Extraterrestrial Spectrum Reference is plotted. This is a zero
airmass solar reference spectrum developed in the year 2000 by the National Renewable
Energy Laboratory [50]. It gives the TOA incoming solar power, per area, per wavelength
unit and is given in units of W/m2/µm.

The FRT wavelength range corresponds to the shaded area in Figure 3.1. Applying
a trapezoidal numeric integration on the ASTM data tells us that the FRT wavelength
range covers 89% of the incoming TOA solar irradiance. For the transmitted and re-
flected spectrum, this percentage is somewhat different. Ozone, for instance, has a high
absorbance in the ultraviolet part of the spectrum (220-320 nm) [10] and decreases the
irradiance that actually reaches the surface of the Earth. According to Francois et al. [51],
the leaf reflectance is negligible for wavelengths over 2500 nm.

Figure 3.1: The top of atmosphere (TOA) solar irradiance spectrum. The shaded area indicates
the wavelengths included in the FRT model. Data: ASTM Standard Extraterrestrial Spectrum
Reference [50]

Another limitation in the FRT model appears for the high view zenith angles. Any θv
below 90◦ is allowed as input for the model, but angles close to 90◦ are not recommended
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[46]. The model will be less accurate for the higher zenith angles, though the magnitude
of the inaccuracies is unknown.

3.2.2 Angular dependence

We first use the FRT model to look at the reflectance coefficient in different view direc-
tions. To evaluate the angular dependence of the reflectance, the model was run for a
wavelength of 830 nm. This wavelength corresponds to the central wavelength of MSI
band 8, which detects the surface reflectance in the NIR part of the wavelength spec-
trum [52]. While the solar zenith angle and the relative azimuthal angle are fixed, the
reflectance is calculated for the view zenith angle of −90◦ < θv < 90◦. Two different solar
zenith angles θs = 37◦, 59◦, as well as 4 different relative azimuthal angles, are evaluated
to study the angular dependence of the HDR.

3.2.3 Wavelength dependence

Next, the FRT model is used to calculate the HDR for all view angles (−90◦ < θv <
90◦, 0◦ ≤ φr ≤ 180◦) and wavelengths (400nm ≤ λ ≤ 2400nm). The bi-hemispherical
reflectance (BHR) is calculated by integrating the HDR over all angles in the hemisphere,
as per equation 2.13:

α(θs, λ) = BHR =

∫
dρ(θi, φi, 2π; θr, φr)

For the whole wavelength spectrum, the reflectance factor is integrated in this manner.
The result is the reflectance spectrum of the pine forest. This spectrum is calculated for
θs = 37◦, 59◦.

3.2.4 Broadband hemispherical albedo

From the reflectance spectrum, the broadband hemispherical albedo can be calculated,
using equation 2.14:

A(θs,Λ) =

∫
Λ
Li(θs, λ)α(θs, λ)dλ∫

Λ
Li(θs, λ)dλ

.

The wavelength range we integrate over is 400-2400 nm, and the irradiance Li used is
the Standard Extraterrestial Spectrum Reference in Figure 3.1. The result is the simulated
surface albedo for solar angle θs and the simulated vegetation stand.

3.2.5 Integration steps

The integrals mentioned in the previous sections are performed numerically, with use of
the trapezoidal rule. The impact of the step size on the albedo estimation was evaluated
for the different integrals. We do this in order to pick a balanced step size, with the
purpose of keeping computing time and data storage manageable, without impacting the
precision of the results.

Here, the integration over the zenith angle is from 0◦ to 90◦ with an integration step
of 1◦. This step size was also decreased to 0.5◦, and the difference was evaluated. An
increment of 1◦ gave a hemispherical broadband albedo of A = 0.01511496, an increment
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of 0.5◦ gave A = 0.01511440, which is a relative difference of 10−5. Considering all other
inaccuracies, we may conclude from this that taking steps of 1◦ is sufficient.

For the integration over the azimuth angle, steps of 5◦ were used to integrate from 0◦

tot 360◦. Taking steps of 5◦ instead of 1◦ was evaluated to impact the total reflectance
by 0.03% in the case of the Järvelsja Pine stand with a tree density of 1.0 trees/m2.
The numeric integration over the wavelength spectrum is done from 400 nm to 2400 nm
in steps of 20 nm. Increasing the wavelength step size from 10 nm to 20 nm on top of
increasing the angular step to 5◦ impacts the final results by 0.5%. The steps of 5◦ and
20 nm were deemed sufficient, considering that other inaccuracies, like the FRT model
performance at high view zenith angles, would outweigh these errors of less than 1%.

Figure 3.2 shows a comparison of the wavelength spectrum for some considered step
sizes. The graphs in this figure are completely overlapping, indicating that the results are
virtually the same for the step sizes considered.

Figure 3.2: Reflectance spectrum with different integration steps for the Järvelsja Pine with tree
density = 1.0 trees/m2.

3.3 Lambertian surface approximation

The measurement from the satellite is a hemispherical-directional albedo. To get the
hemispherical-hemispherical albedo, one ideally wants to integrate over all possible view
angles, as is described in the previous section. This is not possible for estimating the
albedo from satellite data, because the satellite measures the reflectance only for one
view angle per time. For Sentinel-2 data, this angle is within the narrow 22.6◦ FOV.

To get an estimate for the hemispherical-hemispherical albedo at each wavelength,
the Lambertian approximation is used. In this approximation, the HDR is assumed to be
equal in every direction. In this case, the bihemispherical reflectance is simply the HDR
in the view direction.

The reflectance spectra obtained with and without the Lambertian approximation are
compared, to evaluate the impact of making this assumption. Additionally, the broadband
albedo obtained for these cases by integrating the spectra is calculated. The Lambertian
approximation is evaluated for five different θv, to span the range of Sentinel-2’s FOV.
This process is performed for both θs = 37◦ and 59◦, to evaluate validity of the Lambertian
approximation for different solar angles.
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3.4 Albedo estimation from Sentinel-2

The method for estimating the albedo from Sentinel-2 data is through setting up and
training a linear regression model to do direct estimation from the bottom of atmosphere
(BOA) satellite data. The regression model takes the equation

A =
N∑
B=1

wBρB(ΛB) + w0. (3.1)

The broadband albedo A is calculated by taking the sum over the selected sensor
bands of the MSI instrument. The narrowband reflectance for every band is calculated
over the wavelength range ΛB. wB are the regression coefficients applied to every band
after training of the model. The constant w0 is trained similarly.

The wavelength bands considered in the model are bands 2, 3, 4 and 8, 11 and 12.
The bands are illustrated in Figure 2.1 and the wavelengths are given in Appendix A.
The first four are the 10-meter spatial resolution bands located in the VNIR. Bands 11
and 12 (20-meter resolution) are added to describe the SWIR part of the spectrum.

Figure 3.3: Process diagram of creating the training data for the regression model.

3.4.1 Training data

For training the regression model, a training dataset is needed. This training dataset
has to consist of input- and output data for the regression. The input data is a set of
narrowband reflectances that are measured by the individual Sentinel-2 detectors. The
output data is the corresponding hemispherical broadband albedo.

Many data points are needed to train the regression model. The process of creating
the training data for one data point is described in Figure 3.3. First, the FRT model is
run to obtain the BOA reflectance factor for every view angle and wavelength, with the
step sizes indicated before. Throughout all model runs, θs is fixed to 59◦.

The level-2A data product from Sentinel-2 is the reflectance factor at the bottom of
the atmosphere, for angles (θv, φv). These angles and the solar angles are specified in the
metadata, so that all relevant angles can be determined. No actual Sentinel-2 data was
used in training the model. We are working with a theoretical model to estimate the
surface albedo, and the input data used to train the model is the simulated satellite data.

To get this simulated satellite data, the reflectance factor for the view angle of the
satellite is extracted from the total set. The relative azimuthal angle was continuously
taken to be φr = 65◦. The average reflectance was determined for the wavelengths within
the sensor band.
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The hemispherical albedo is calculated through the same process as described be-
fore. The reflectance factor is integrated over the hemisphere and subsequently over the
wavelength spectrum, weighted by the solar irradiance.

Varying input parameters

The different data points in the training data are obtained by running the FRT model for
a set of different conditions. No general rule for the required amount of training data to
train regression models exists. However, a lower bound, specifically for linear regression
models, seems to be 10 times the amount of trainable coefficients [53]. Often more data
than this is needed in practical situations. As the model has 7 weights, it requires upwards
of 70 data points. In order to get this training data, the FRT model is run for different
’cases’.

These cases are created by changing some parameters in the FRT input file. The input
file contains many parameters describing the physical and chemical properties of the trees
in the stand. A more detailed description of the parameter selection is given in Appendix
C.

The four chosen parameters are varied more closely around the original values in the
input file for the Järvelsja Pine stand. This is done in order to stay within a scenario of
a physical forest stand, whilst creating enough variation in the reflectance to train the
regression model. The ranges of the varied parameters are shown in Table 3.1.

Table 3.1: Variation of input parameters within training data for pine forest

Parameter Minimum Maximum
Stand density (trees/m2) 0.6 1.2
Crown radius (m) 0.5 3
Leaf weight per area (g/m2) 140 170
Chlorophyll per leaf weight (%) 0.4 0.7
View zenith angle (◦) -11 11

In addition to varying the FRT input files, a second way to obtain more training data
is used. To reflect that the satellite measurements happen at any view angle within the
Sentinel-2 FOV, θv is varied over five values within this range. Since the hemispherical
albedo is not dependent on view angle, the output data does not change for these different
angles. However, the reflectance measured by the MSI does depend on view angle, and
as such the input data is different. The result is five data points for FRT input file that
have different simulated satellite data, but the same simulated albedo.

Eventually, all cases are given a number ID and the model is run to compute the
simulated satellite data and the simulated albedo for every case. For the pine forest
stand, a total number of 720 cases are evaluated.

3.4.2 Regression model

The actual regression training is done following the steps in the diagram in Figure 3.4.
The training data is merged so that the simulated satellite data and albedo for the same
case are linked. Then, the data is split at an approximate 80/20 ratio. 80% of the data
is used to train the model, while 20% remains to test the model.

As a future step, the regression coefficients obtained could then be used to obtain the
surface albedo from the Sentinel-2 BOA reflectances. Since this has not yet been done in
this work, this part appears dashed in Figure 3.4.
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Figure 3.4: Process of training the regression model. The dashed part of the schema indicates
future work.

Validation

The testing of the model is performed using a 5-fold randomized cross-validation. 20% of
the data is randomly selected and saved for testing, while the remaining data is used to
train the model. The coefficient of determination r2 and the mean squared error (MSE)
are determined for this split. This is then done for a total of 5 different random splits,
and the mean and standard deviation of the r2 and MSE values are given1.

Narrow-to-broadband model

After developing the direct estimation model, it is compared to a narrow-to-broadband
model. This narrow-to-broadband model omits the BRDF angular modelling step in
the albedo estimation (Figure 2.8). The model is also a linear regression model trained
and tested similarly to the direct-estimation model. The difference is that the input
parameters are not the directional reflectances obtained from satellite measurements, but
instead the simulated bihemispherical reflectance. The regression coefficients from this
model represent the narrow-to-broadband conversion.

If the Lambertian approximation is a reasonable assumption to make, angular mod-
elling is not necessary. In this case, it is sufficient to use the narrow-to-broadband model
on the satellite data directly. However, in this thesis, the narrow-to-broadband model is
trained and tested solely on bihemispherical reflectance data. Still, if the two models are
similar, this would indicate the Lambertian approximation to be valid.

3.4.3 Comparison to literature

The model is also compared to two models for Sentinel-2 albedo estimations from litera-
ture. The two sets of regression coefficients obtained from research by Bonafoni [22] and
Li et al. [20] are for the narrow-to-broadband conversion specifically.

The parameters obtained from Bonafoni are obtained by a theoretically based weight-
ing of the sensor bands. The same sensor bands are used by Bonafoni and in this thesis.
The solar spectrum is divided up in wavelength ranges surrounding the MSI bands. The
bands are weighted based on the solar irradiance within their wavelength range. Applying
this model to Sentinel-2 data requires the assumption of a Lambertian surface.

1For more information about cross-validation, the reader is referred to Pattern Recognition and Ma-
chine Learning by Bishop [54].
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Li et al. presents a trained regression model based on radiative transfer simulations
and spectral reflectances for a whole range of different surfaces. Distinction of surface
type is only made between snow-covered and snow-free surface. This paper uses sensor
band 8A instead of sensor band 8, but otherwise the same MSI bands are used.

3.5 Comparison of vegetation

Finally, a second regression model is trained for a different vegetation type. The results for
the pine forest stand are compared to a vegetation with very little trees. This ’field’ has
a density in the upper layer of 0.0001 trees per square meter. To create the training data
set, the Leaf Area Index (LAI), the leaf weight per area and the chlorophyll concentration
in the ground vegetation are varied. Table 3.2 gives the bounds of these parameters in
the training data. Including the varying θv, 235 data points are obtained to train the
regression model for the field stand.

Table 3.2: Variation of input parameters within training data for field

Parameter Minimum Maximum
Leaf Area Index 0.1 0.7
Leaf weight per area (g/m2) 70 100
Chlorophyll per leaf weight (%) 0.3 0.5
Zenith angle (◦) -11 11

For the field stand, all the same steps are executed as for the pine stand. Finally, the
regression models trained for the pine forest and the field are applied to a data set of the
other type. From this, different characteristics of the two models can be evaluated.
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4

Results

4.1 FRT model results

We are interested in the nature of the output of the FRT model and its dependence on
several parameters. In this section, the reflectance is considered for different angles and
wavelengths. In all these cases, the reflectance is evaluated using the FRT model with
the Järvelsja Pine stand input file.

4.1.1 Angular dependence

The first important part of the geometry that influences the reflectance, is the view zenith
angle θv. To evaluate its influence, the reflectance was plotted as a function of θv in Figure
4.1. This was done for a solar zenith angle of θs = 37◦, as well as θs = 59◦. The wavelength
is set to λ = 830 nm. Also, the simulations are run in the principle solar plane, so φr = 0◦.

Figure 4.1: The change in the reflectance coefficient for different view zenith angles in the solar
principal plane. The angular spectrum is shown for solar zenith angles of 37◦ and 59◦.

In the graph we see that the reflectance has a peak at the zenith angle opposite to
the solar zenith angle. This is the location of the hotspot. Towards a zenith angle of 0◦,
the reflectance slopes down quickly. If θv is on the same side of the surface as the sun,
the reflectance remains low. At view angles close to 90◦ or −90◦, we see a kink, with the
reflectance dropping quickly as the detector approaches the surface.
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Comparing the two different θs, we see that besides the displacement of the peak to
−θs, the peak height also differs. For θs = 59◦, the maximum reflectance is higher. This
graph also has a higher reflectance on average, indicating that the reflectance is higher if
the sun is lower on the horizon.

The relative azimuthal angle between the sun and the satellite also influences the
reflectance. Figure 4.2 shows the reflectance for different relative azimuthal angles φr.
Here, θs = 59◦ and λ = 830 nm.

We see that in the principal solar plane (φr = 0◦), the reflectance is highest. Also, the
hotspot is clearly recognisable here. For higher relative angles, the overall reflectance de-
creases and the hotspot becomes less recognisable. For φr = 90◦, the shape is symmetrical,
and the lowest reflectance occurs for θv = 0◦.

Figure 4.2: The change in the reflectance coefficient for different view zenith angles, with θs =
59◦. The angular spectrum is shown for four relative azimuthal angles.

4.1.2 Wavelength dependence

The bihemispherical reflectance (BHR) is obtained by integrating over the view angles.
Figure 4.3 shows the bihemispherical reflectance spectrum of the Järvelsja Pine stand,
with θs = 59◦. The purple line gives the reflectance obtained from the FRT data.

At the low wavelength end of the spectrum, starting with violet light, there is a
low reflectance. Within the visible light spectrum (380-750 nm), the graph has a small
peak around the green-yellow wavelengths (500-600 nm) [55]. At the edge of the visible
spectrum and the Near Infrared (NIR), the reflectance increases rapidly. Aside from two
dips, the reflectance stays high until a wavelength of around 1400 nm. There is another
increase in reflectance between 1500 nm and 1900 nm.

In the same graph, the reflected radiance is plotted. This is a multiplication of the
reflectance and the incoming solar irradiance, and indicates how much each wavelength
contributes to the total reflected energy.

Comparing the reflected radiance with the reflectance, it can be seen that the impact
of the visible light is increased. Also, the near-infrared radiation with the shortest wave-
lengths is very high. The reflected radiance decreases for longer wavelengths. At the high
wavelength edge of the calculated wavelength spectrum, the reflected radiance approaches
zero. However, it is noticeable that at 400 nm the radiance is not yet near zero.
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Figure 4.3: Purple line, left axis: The reflectance coefficient for different wavelengths in the
solar spectrum. Blue line, right axis: The reflected radiance, calculated using the ASTM
Standard Extraterrestrial Spectrum Reference [50].

4.1.3 Satellite measurements

The satellite data at level 2A contains BOA reflectances for all its sensor bands separately
[19]. These are measured under a view zenith angle in the field of view of −11.3◦ to 11.3◦.
The satellite reflectance (HDR) measurements at nadir, θv = 0◦ are simulated from the
FRT data. For each sensor band, the simulated measurements are shown as bars in the
spectrum in Figure 4.4a. The bihemispherical reflectance spectrum for this case is also
plotted.

In Figure 4.4b, the narrowband albedo is shown for the satellite wavelength bands.
Here it is calculated from the bihemispherical reflectance (BHR) in the respective bands,
instead of from the HDR at nadir. Comparing the two figures shows that the simulated
satellite reflectance measurements at nadir are lower than the actual narrowband albedo
for the sensor bands.

Figure 4.4: a. Comparison of the theoretical reflectance spectrum and the estimated satellite
measurements. The theoretical reflectance uses integration over the hemisphere. The satellite
measurements assume a nadir view zenith angle. b. The sensor measurements if they would
measure the hemispherical reflectance.
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4.2 Lambertian approximation

To approximate the bihemispherical reflectance from the satellite measurements, it is pos-
sible to use the Lambertian approximation, where the reflectance is equal in all directions.
Here we evaluate the validity of this method.

The view angle can vary anywhere between ±11.3◦, which is a narrow, near-nadir
range. A selection of 5 angles within this range is made. For every case, the reflectance
is evaluated over the wavelength spectrum and plotted in Figure 4.5. In this figure, also
the theoretical reflection coefficient, obtained from integrating over all view angles on the
hemisphere, is plotted. This is done for both θs = 37◦ and θs = 59◦ and can be found in
Figures 4.5a and 4.5b, respectively.

Figure 4.5: Comparison of reflectance over the solar wavelength spectrum between hemispherical
integration of FRT results and taking the Lambertian approximation for a solar zenith angle of
a. θs = 37◦ and b. θs = 59◦. The view zenith angle is varied between -11◦ and 11◦

The first plot shows that under the Lambertian approximation, the spectrum keeps
roughly the same shape. For θs = 37◦, the approximation at higher view zenith angles,
θv = 5◦ and θv = 11◦ seems fairly accurate. For lower θv, the approximation gives
gradually lower reflection coefficients. It also shows that between wavelengths of 750 nm
and 1350 nm, the Lambertian approximation estimates the reflectance to be lower than
the hemispherical reflectance for almost all θv. For the lowest wavelengths, below 500
nm, this also seems to be the case. However, for the other wavelengths, this shift is
not so clear. Here, the hemispherical spectrum seems to lie in the middle of the set of
Lambertian spectra.

Comparingly, Figure 4.5b shows a much bigger difference between the simulated hemi-
spherical reflectance and the approximated ones. All the spectra from the Lambertian
approximations lie under the hemispherical spectrum, over the whole wavelength range.
The difference is also larger. The theoretical albedo is higher for θs = 59◦ than for
θs = 37◦. In contrast, the reflectances based on the Lambertian approximation are lower
for the θs.

To describe how far the Lambertian approximations deviate from the simulated hemi-
spherical albedo, the relative error is calculated for θs = 37◦ and θs = 59◦. The differences
are presented in respectively Figure 4.6a and Figure4.6b. Here the relative error is un-
derstood to be

∆ =
ρsim − ρLam

ρsim
∗ 100%. (4.1)

The error for the lower solar zenith angle is up to 20% of the bihemispherical re-
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flectance. For θs = 59◦, the error is higher. When taking θv = −11◦, the error varies
around the 25%, while θv = 11◦ has an error up to 40%. In every graph we see that the
relative error is lower for the parts of the wavelength spectrum where the reflectance is
high. The absolute error in this part of the spectrum is still larger.

Figure 4.6: The relative error of the Lambertian approximation for a solar zenith angle of a.
θs = 37◦ and b. θs = 59◦. The view zenith angle is varied between -11◦ and 11◦.

The relative errors shown in Figure 4.6 give the inaccuracy of the Lambertian ap-
proximation, at each wavelength within the spectrum. To find the impact on the surface
albedo, the broadband albedo is computed both with and without taking the Lambertian
approximation.

The simulated broadband albedo for θs = 37◦ is A = 0.1050. For θs = 59◦, the surface
albedo is A = 0.1145. We notice a slightly higher reflectance for the lower sun position.

In Table 4.1, the percentage error in the broadband hemispherical albedo is given
for the different Lambertian approximations. It shows that for θs = 37◦, taking the
Lambertian approximation gives a 0-10% error in the albedo estimate. For θs = 59◦, the
error lies in the range of 20-30%. It must be noted that in all cases, except for θs = 37◦

and θv = −11◦, the Lambertian approximation results in an albedo estimate lower than
the simulated value.
Table 4.1: Error percentage in the hemispherical broadband albedo for different Lambertian ap-
proximations.

θv −11◦ −5◦ 0◦ 5◦ 11◦

Error (%) for θs = 37◦ 2.3 0.6 3.3 6.2 9.6
Error (%) for θs = 59◦ 20.4 23.3 25.3 26.7 28.0

4.3 Linear regression models

4.3.1 Direct estimation

The surface albedo is estimated with a linear regression model. This regression model
obeys equation 3.1

A =
N∑
B=1

wBρB(ΛB) + w0.

The direct estimation model is trained with the FRT data from the pine forest stands.
A weight is obtained for the reflectance in every wavelength band, as well as a constant
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w0. The set of regression coefficients obtained for this pine forest model can be found in
the wp row in Table 4.2.

It must be noted that the data was split into training and test data randomly. Different
splits of training and test data give somewhat varying weights. All the tables and figures
with regression results contain the weights and plots obtained with an arbitrary selection
of training and test data. Appendix D shows some examples of coefficients obtained for
different training data selection.

The coefficients wp vary a lot in size. The weights for wavelength band 2, 3 and 4 are
large, while band 8 has a relatively small coefficient. It is also noteworthy that several
coefficients are negative.

Table 4.2: The direct estimation regression coefficients for the different wavelength bands. The
weights for a pine forest stand (wp) and a field are given (wf ).

Band 2 Band 3 Band 4 Band 8 Band 11 Band 12 Constant
wp 72.3105 -29.2303 -13.5841 0.3903 2.3373 -5.1862 -0.1086
wf 0.2168 0.2455 0.2285 0.3169 -0.3479 0.9778 0.0686

To investigate how good the model is in predicting the albedo, the regression predic-
tions are compared to the simulated surface albedo for the test dataset. This performance
analysis method is based on the MODIS model analysis performed by Liang, Strahler and
Walthall [48]. The predicted albedo is obtained by applying the regression weights to
narrowband reflectances of each sensor in the test data. The simulated albedo is calcu-
lated from the FRT simulations and the full integrals over the hemisphere and wavelength
spectrum.

Figure 4.7a shows how the predicted albedo compares to the simulated albedo. The
line y = x is plotted to show the ideal predictions. A linear fit with a slope of 0.956 is
plotted to show the trend in the predictions. The graph also shows a larger spread in the
predicted values for the test data with higher simulated albedo.

Again note that the plot and values are for a single split of training and test data.
Calculating the same model with different training and test sets, the graph also shows
somewhat different behaviour.

A behaviour that is recurring throughout the figures, is that we see a stack of vertical
data points with the same simulated albedo. Even though their simulated albedo is
exactly the same, the predicted albedo varies, especially at the higher simulated albedos.
These different predicted albedos correspond to the different θv in the training data.

Using cross-validation, the coefficient of determination r2 is calculated for different
splits of training and test data. The mean r2 obtained in this way is r2 = 0.946 with a
standard deviation of σr2 = 0.00456. Similarly, the average Mean Squared Error (MSE)
in the albedo predictions is determined to be MSE = 2.44 ∗ 10−5.

4.3.2 Narrow-to-broadband

The direct estimation regression model contains both the directional-to-hemispherical and
the narrow-to-broadband behaviour. Now we build a regression model that only describes
the narrow-to-broadband conversion. The input values in the training data are altered
to the bihemspherical reflectance (BHR) for the wavelength bands. Note that this is a
theoretical approach to isolate one part of the model, and this is not a practical thing to
do, as the satellite data remains directional. This model can only be directly applied to
the satellite data if the Lambertian approximation is valid.
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Figure 4.7: The relation between the predicted broadband albedo values and the simulated broad-
band albedo for the test set. The trend of the predictions are plotted by a linear fit, and the line
y = x shows the ideal predictions. a. Direct estimation predictions. b. Narrow-to-broadband
predictions.

The narrow-to-broadband regression coefficients wphem are found in Table 4.3. Again,
this is for a single split of training and test data. Comparing the coefficients in this case to
the regression coefficients for the direct estimation model, it stands out that their absolute
values are much lower. The coefficients are also closer together and fewer are negative.

Table 4.3: The narrow-to-broadband regression coefficients for the different wavelength bands.
The weights are given for a pine forest (wphem) and a field (wfhem). The weights as presented
by Bonafoni [22] and Li et al. [20] are given by wB and wL, respectively.

Band 2 Band 3 Band 4 Band 8 Band 8A Band 11 Band 12 Constant
wphem -0.2464 0.3396 0.1427 0.3795 - 0.0831 0.1351 0.00002
wB 0.2266 0.1236 0.1573 0.3417 - 0.1170 0.0338 -
wL 0.2688 0.0362 0.1501 - 0.3045 0.1644 0.0356 -0.0049
wfhem 0.1097 0.1155 0.2322 0.3226 - 0.3324 -0.2014 -0.0074

The predicted albedo from the narrow-to-broadband model is plotted against the sim-
ulated albedo. The graph in Figure 4.7b shows the result for one split of training and test
data. The predicted values are close to the simulated values, with the data almost lying
on the y = x line. The slope of the fit through the predicted points is 1.001.

Comparing the spread of the data to that in Figure 4.7a, the vertical spread caused
by the different zenith angles is not visible.

Cross-validation is also used for the narrow-to-broadband model. The mean coefficient
of determination r2 is 0.999996 with a standard deviation of 2.55∗10−6. The average Mean
Squared Error (MSE) is 1.66 ∗ 10−9. The predictions of only the narrow-to-broadband
component of the model are better than those from the direct estimation model.

4.3.3 Comparison to literature

The performance of the regression models is compared to that of models found in earlier
research. This is done by creating predictions for the dataset created with the FRT model.
In Figure 4.8, surface albedos are predicted for vegetation stands in the test data, using
the weights from Bonafoni [22] and Li et al. [20]. They are compared to the simulated
FRT surface albedos for the corresponding stands.
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The Bonafoni and Li model coefficients are given in Table 4.3, as wB and wL, respec-
tively. Note here that the model created by Li uses MSI band 8A instead of band 8, but in
the predictions the weight has been applied to the band 8 reflectance. The central wave-
length of band 8A is shifted up by about 30 nm, and the bandwidth is much narrower.
Refer to Figure 2.1 and Appendix A for a full comparison between the two bands.

Figure 4.8: The relation between the predicted broadband albedo values and the simulated broad-
band albedo. Predictions of the models are compared to those with model coefficients from Bona-
foni [22] and Li [20]. a. The direct estimation model is trained and tested with FRT data
from varying θv. b. The narrow-to-broadband model is trained and tested with bihemispherical
reflectances from integrated FRT data.

The regression model used in Figure 4.8a is the direct estimation model, including
simulated satellite measurements at different θv. In Figure 4.8b, the regression model for
narrow-to-broadband conversion is used.

The coefficients from literature describe the Sentinel-2 narrow-to-broadband conver-
sion for a general surface. They do not include the BRDF conversion3 [20, 22]. As such,
the models from literature are comparable to the narrow-to-broadband regression model.

The direct estimation model can be compared to a combination of the Lambertian
approximation for the angular step and the narrow-to-broadband conversions from liter-
ature. This comparison is included to visualise the difference between the two regression
models.

The coefficients from literature have generally the same order of magnitude, compared
to each other. Comparing the coefficients from earlier work to those of wphem shows both
differences and similarities. The biggest difference is the fact that the parameter for MSI
band 2 is negative, though it does have the same order of magnitude. Band 12 from wphem
is also distinctively larger than its counterparts.

In Figure 4.8 we see that both models from literature estimate the albedo considerably
lower than its simulated value. The Li model, has even lower predictions than the Bonafoni
model. Also, the difference between predicted and simulated albedo is bigger in 4.8a,
where the angular step of the conversion is included. Another observation is that the
vertical spread of the different zenith angles in Figure 4.8a is more pronounced for the
Bonafoni and Li models than for the trained regression model.

The results from the narrow-to-broadband regression model are more comparable to

3Li et al. [20] did evaluate the performance of applying MODIS parameters for the BRDF character-
isation, but did not present any parameters to apply for Sentinel-2 data. As such it was chosen to only
use the narrow-to-broadband conversion presented in their work.
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the Bonafoni model than the Li model. The slopes of the fits in Figure 4.8b are 0.95
and 0.90 for Bonafoni and Li model respectively, while the trained regression model has a
slope of 1.00. The difference between the predictions of the three models becomes higher
for tree stands with a larger simulated albedo.

4.4 Comparison with different vegetation

4.4.1 Field model

In the previous section, the regression model that was trained using pine forest tree stands
was used. In this section, the results for a similar model, but trained using reflectances of
field stands, are presented. This is done for both the direct estimation and the narrow-
to-broadband model. The coefficients obtained for this type of vegetation can be found
as wf in Table 4.2 and wfhem in Table 4.3.

The weights for the direct estimation field model are all of similar order of magnitude.
Compared to the pine forest model, the coefficients are closer together. There are also
less negative weights for the field model. Wavelength band 12 has a larger coefficient than
the other bands.

The weights for the narrow-to-broadband field model are also of a similar magnitude.
Wavelength band 12 has the only negative coefficient. Compared to the other coefficients
in the table, the band 4 weight stands out as being somewhat higher, whilst the band 8
coefficient is very similar to that of the other models. The weights in wf are seemingly
slightly higher in magnitude than those in wfhem.

Cross-validation is used to evaluate the performance of the model. The mean coeffi-
cient of determination of the direct estimation field model is r2 = 0.966, with a standard
deviation of 0.00313. The average MSE is 1.30 ∗ 10−6. For the narrow-to-broadband field
model, these values are r2 = 0.99968, with σr2 = 0.000249 and MSE = 4.07 ∗ 10−9. The
narrow-to-broadband model is better at predicting the albedo than the direct estimation
model.

The model albedo predictions are compared to the simulated albedos in Figure 4.9.
Figure 4.9a shows the direct estimation estimates and Figure 4.9b shows the narrow-to-
broadband results.

Comparing the simulated surface albedo values for the open field data to those of the
pine forest, it is clear that the reflectance of the field is generally higher than that of the
pine forest. The range of different reflectances is also smaller for the field. In both figures,
the data points for the trained regression model do not vary far from the y = x line.

Just as for the pine data, the models from literature predict a lower albedo than the
simulated values for the field data. We also see that the Bonafoni model estimates the
albedo higher than the Li model.

4.4.2 Pine vs. field model

The performance of the direct estimation pine forest and field regression models on dif-
ferent situations are shown in Figure 4.10. The models trained for one specific vegetation
type. Their weights are then used to obtain albedo predictions for a different type of
vegetation.
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Figure 4.9: Albedo prediction for the open field regression model, compared to the models from
literature. a. The direct estimation models. b. The narrow-to-broadband models.

Plot 4.10a shows the predictions of the two regression models for a test dataset with
only pine forest reflectances. The predictions made with the field parameters wf are
generally too high. The graph shows that this overestimation is higher for lower simulated
albedo cases. The vertical spread from different θv also seems slightly bigger.

Plot 4.10b, on the other hand, shows the predictions of the two models on the open
field test data. If the simulated albedo is on the low end for a field, the predictions made
by the pine forest model are too low. If the simulated albedo is high on the other hand,
the pine model estimates are too high. The vertical spread for different θv is larger for
the pine model predictions than for the field model predictions.

Figure 4.10: Comparison of the pine forest regression model and the field regression model
predictions for a. Pine stand reflectance data and b. Open field reflectance data.
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5

Discussion

5.1 FRT model

In the angular plots a kink was observed near the extreme view zenith angles. A likely
cause for this behaviour is the inaccuracy of the FRT model for high θv. This behaviour
may have an impact on the bihemispherical albedo calculations. However, in practical
situations it is also difficult to determine the reflectance of forests at these angles.

The surface albedo is higher for the high θs case, and the reflectances change more
quickly with varying view angle. In earlier work, the higher angular dependence of the
reflectivity was observed for low sun altitudes [56]. This indicates the importance of the
sun zenith angle in BRDF modelling. To evaluate the angular behaviour

Looking at the wavelength spectrum in Figure 4.3, two dips can be seen in the 700-
1400 nm range. If we compare the wavelengths of these dips to the transmission spectrum
in Figure 2.4, they are most likely caused by atmospheric absorbance, specifically that of
water molecules.

The reflectance spectrum also shows that the reflected radiance is not zero for at the
lower edge of the plotted spectrum. Since the FRT model does not run for wavelengths
below 400 nm, it is not possible to take this contribution to the albedo into account.
However, most of the incident and reflected light is absorbed by ozone in the atmosphere
[10].

The simulated satellite measurements illustrated in Figure 4.4 show that the mea-
sured hemispherical-directional reflectance is generally lower than the bihemispherical
reflectance (BHR) that should be considered in albedo calculations. This difference can
be explained by the angular dependence of the reflectance. As illustrated in Figure 4.1,
the reflectance coefficient is highest at the hotspot. Around nadir however, where the
satellite measures the reflectance, the reflectance is much smaller. Typically then, the
satellite measurements give a reflectance lower than the BHR.

5.2 Lambertian approximation

For the Lambertian approximation we saw that the estimated reflectance spectrum was
generally lower than the BHR spectrum. Within the Sentinel-2 FOV, we also observe that
a lower θv, results in a higher reflectance. When looking at the angular dependence of the
reflectance, we can conclude that this is caused by the hotspot effect. For the lower view
zenith angles, the satellite is closer to the hotspot, so the detected reflectance is higher.
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The difference between the two solar angles can also be explained by angular depen-
dence of the reflectance. Since the satellite measures at near-nadir angles, taking the
Lambertian approximation will give an approximated BHR, that is lower than the actual
BHR. The effect is more extreme in the case of high solar zenith angles. This is because
for a higher θs, the hotspot is located further from nadir and the reflectance at low θv is
smaller.

The results indicate that the validity of taking a Lambertian approximation depends
on the solar- and the view zenith angle. From the relative errors in Table 4.1, it seems
that the approximation is not that good in many situations, especially for higher θs.
With extensive FRT modelling of additional geometries, it is possible to evaluate when
the approximation can be applied.

5.3 Linear regression models

5.3.1 Direct estimation model

Because a regression model is purely mathematically based, it is difficult to draw intuitive
physical conclusions from the regression weights. In principle, a high regression weight
indicates that the corresponding sensor band is important in the computation of surface
albedo. However, the bands are not independent, and this intercorrelation can cause
some weights to be overly high, whilst others are too low or even negative in order to
compensate [57].

The regression weights for the pine forest stand contain several negative values. This
can indicate that the albedo contributions from these bands are also included in other
bands [57]. This behaviour of the regression weights makes it difficult to draw conclusions
on the importance of the individual sensor bands in the albedo predictions.

The higher prediction spread observed for higher simulated albedo in Figure 4.7 is
possibly caused by the training data. There are more training data points in the 0.08-
0.11 albedo range than in the 0.15-0.18 range. As a result, the model might have picked up
a bias to cater more towards these lower albedo pine stands. If the realistic distribution
of surface albedo is similar to that of the training set, this is a positive result. If the
training set does not represent the realistic distribution of vegetation stands well, this can
have a negative influence on the model’s prediction accuracy. In this thesis, the realistic
distribution was not considered, so this might be a valuable modification.

5.3.2 Narrow-to-broadband model

The weights for the narrow-to-broadband regression model are mostly lower than for the
direct estimation model. In part, this can be explained by the input for the models. The
HDR measured by the satellite at near-nadir angles is generally lower than the BHR taken
as input for the narrow-to-broadband model. Since they still need to predict the same
surface albedo, they are expectedly somewhat higher. For wf and wfhem, this could be a
reasonable explanation for some of the differences. It is difficult to compare wp and wphem
because of the extreme values for some bands in wp. The cause for the behaviour of the
wp is uncertain. A tentative possibility is that the angular modelling of the pine forest
reflection causes a big correlation between some sensor bands, leaving band 2 to make the
prevalent contribution to the albedo.
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5.3.3 Comparison to literature

In Figure 4.8a., the spread between the data from the different zenith angles is more
apparent for the predictions made by the models from Li and Bonafoni. We suggest that
the training of the model using different zenith angles results in a decreased sensitivity
to the variations caused by measurements at different θv. This is the difference between
the direct estimation model, which contains some angular modelling, and the Lambertian
approximation combined with the narrow-to-broadband models from Bonafoni and Li.
These results again indicate that some type of BRDF modelling is desirable.

Overall, the models from literature do not match very well with the trained regression
model. The reason for differences lie in the way the models are developed. Li et al. also
trained a regression model. They used a different set of training data, which was obtained
from radiative transfer simulations of all surface types, excluding snow. The data used
by Li et. al also consists of a large collection of different solar- and view angles, and
atmospheric conditions. This is very different from the model presented in this thesis,
which was trained for a specific set of angles, atmospheric conditions and vegetation type.

Bonafoni determines its weights by computing the fraction of the solar radiation at
the surface for the surrounding wavelengths of each MSI band. This too is applicable for
a very general case. It also does not take any reflectance and absorption properties of the
atmosphere or the surface into account.

5.4 Comparison with different vegetation

The range of albedos considered for the field was narrow in comparison to that of the
pine forest. This could be attributed to the composition of the training data. For the
field, less training data was acquired, and input parameters were varied less. For a better
comparison, it would be useful to extend the field stand training data.

The results show that the predictions for the pine forest made with the field regression
model are all too high (Figure 4.10a). It is possible that the fraction of the total reflected
radiance that falls within the included MSI sensor bands is larger for pine forests than for
fields. This could be a result from differences in the spectral signatures. If this were the
case however, one would expect that the predictions by the pine forest model in Figure
4.10b would consistently underestimate the albedo.

5.5 General discussion & threats to validity

5.5.1 Training and test data

The regression coefficients obtained showed a noticeable variance with different selections
of training and test data. While the variance in the coefficient of determination for these
specific cases was not very high, it still indicates that the model is dependent on its
training data. This may be improved by creating a bigger set of training and test data.

In general, the amount, and quality of training data is a concern when considering
machine learning models. A model is only as good as the data used to train it, and this
needs to be kept in mind when drawing conclusions from the presented results. Especially
for the open field model, the training data set used is perhaps not extensive enough.

In the plots in sections 4.3 and 4.4 we can see the data is clustered in little groups
with similar albedo. Between the groups, few data points from the test set appear. This
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is most likely a result of the FRT input parameter selection.
Obtaining more training data is the main way to improve the model. For this project,

a balance had to be sought between amount of data on the one hand and runtime and
storage space constraints on the other hand. For reference, the amount of uncompressed
data stored over the course of this thesis comes to approximately 100GB. Future research
may be better suited to handle higher amounts of data and longer computational times.

A second improvement to the training data is to alter its composition. For maintain-
ability, only a specific number of important stand parameters in the FRT input file were
changed. Varying additional parameters could lead to a more continuous data set, as
opposed to the clustering apparent now. It would also be good to vary the parameters in
a way that better reflects the realistic stand distribution.

The use of the FRT model to create the training data also influences the results, as it
is a simplification of reality. Additionally, the FRT model displays some inaccuracies for
high view angles.

5.5.2 The regression model

Throughout this research the assumption θs = 59◦ was used, to describe the average solar
angle when Sentinel-2 passes over southern Sweden. Additionally, θr = 65◦ was taken.
However, it was also seen that solar angle has a significant impact on both the total
albedo and the reflection detected by the satellite. Similarly, the atmospheric conditions
have not been varied in the training of the model. Varying the contributions of direct and
diffuse light could have an interesting impact on the reflectance.

Since the regression model used is a linear regression model, only linear relations
can be described by the model [54]. Complicated systems, such as the reflectance of
forest may not be adequately described by a linear model. An indication towards this
is given by Liang et al. [48]. They show that for the MODIS and Multiangle Imaging
Spectroradiometer (MISR), second and third order polynomial regression models are more
successful in predicting the total land surface albedo. The performance of a neural network
was even better. Continuation of this research by training higher order regression models,
or alternative machine learning models is recommended.

5.5.3 Validation

The validation of the regression models is done through 5-fold cross-validation. The coef-
ficients of determination obtained in this way indicate that the model performs reasonably
well in predicting the test data. However, this does not necessarily mean the model will
perform well for practical situations, since the training data and test data are theoretical.

The second type of validation was done through a comparison with models from liter-
ature. The results from the Bonafoni and Li models differed significantly from our model
results. However, it is difficult to draw conclusions from this, as the models from literature
are developed for a more general case than the model presented in this thesis.

A useful way to validate the model further would be to use Sentinel-2 satellite data
in combination with surface albedo measurements from pyranometers at the surface. For
such validation, one needs to consider using the right vegetation type, solar- and view
angles, and atmospheric conditions. Doing this validation could give a better indication
about the model performance in reality, and is strongly recommended for future work.
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6

Conclusion & Outlook

One way to strive against climate change is to impact the surface albedo. This can be
done by altering land usage to maximise surface reflectance, but extensive knowledge of
the surface albedo for different land use is required. Throughout this thesis, the surface
albedo estimations from Sentinel-2 satellite data was investigated, using satellite data and
surface albedo simulated with the FRT model.

1. An analysis of the angular behaviour has shown distinctly different reflectance pat-
terns for different solar angles. It was found that the hemispherical-directional
reflectances (HDR) at the near-nadir view angles within the satellite FOV are gen-
erally lower than the bihemispherical reflectance (BHR).

2. In section 4.2, we determined that taking the Lambertian approximation as opposed
to integrating the HDR over the hemisphere has a significant impact on the surface
albedo calculations. For higher solar zenith angle θs, this error is larger. If θs = 37◦,
the error in the albedo ranges from 0-10%, depending on the view angle θv within
the range from −11◦ to 11◦. For θs = 59◦, this error has increased to 20-30% in
the same range of θv. The error is smallest for the lower view angle and biggest for
the higher θv. This effect is important if one considers using a narrow-to-broadband
model like that presented by Bonafoni, without performing any BRDF modelling.

3. A direct estimation regression model to predict surface albedo was successfully
trained for a pine forest and a field. The resulting models were evaluated using
cross-validation. The pine forest model has a mean coefficient of determination of
r2 = 0.946 and the field model has r2 = 0.966. These values indicate a good albedo
prediction for the FRT simulated vegetation stands.

The narrow-to-broadband regression model trained for the same vegetation stands
showed a higher prediction accuracy than the direct estimation model. The coef-
ficients of determination were r2 = 0.999996 and r2 = 0.99968, for the pine forest
and the field respectively.

The direct estimation model developed includes both angular modelling and narrow-
to-broadband conversion in one step. While this leads to less propagation of errors,
the regression coefficients obtained are less intuitive.

A recommendation for further research is to develop a directional-to-hemispherical
conversion model as well, solely doing the angular modelling step of the albedo
estimation. With such a model, the direct estimation method can quantitatively be
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compared to the stepwise albedo estimation methods. Another possibility would be
to use BRDF models developed for different satellites, like MODIS, and evaluate
the accuracy of applying those.

The model predictions were compared to the predictions of models from literature.
Specifically for the FRT simulated vegetation stands, both the models proposed by
Li et al. [20] and by Bonafoni [22] estimated the albedo lower than the simulated
albedo. Several factors may contribute to the difference between the model presented
here and those from earlier works.

The models in this thesis have been designed for a specific scope, which contains
defined vegetation types, solar angles and atmospheric conditions. The models
from literature are developed for a more general case. Hence, the different levels of
specificity make comparison difficult.

4. Section 4.4 shows a comparison between the pine forest and field model. The charac-
teristics of the two vegetation types that can be described by a linear model indeed
seem to differ. An interesting next step would be to add more types of vegetation,
such as deciduous or mixed forests. Additionally, other land cover types, such as
snow, bare ground or water, are valuable to model.

We conclude that the model presented in this thesis is a suitable way to compare the
reflectance patterns of different locations and situations. The main recommendation for
future work is to validate the model with the use of Sentinel-2 and pyranometer data.
Comparing this theory based model to practical data may give valuable insights. More-
over, this type of validation is needed before it can be used for actual albedo predictions
in practical situations.

A further recommendation is to investigate the impact of sky conditions. This model
may be a convenient way to explore the impact of different aerosol concentration and
visibility on the surface albedo. Additionally, the performance of the model may be
improved by increasing the amount of training data.

To summarize, we found that it is important to include angular modelling in albedo
estimations. When analysing a smaller surface area, for which Sentinel-2 data is suitable,
the results were highly dependent on the angles.

The regression models presented in this thesis perform well for the simulated vegetation
stands. Moreover, it is valuable to train separate models for different land use classes.
Both the comparison to literature and the comparison of the two vegetation types give
an indication towards this.

With the results obtained here, a step is taken towards better surface albedo esti-
mations on a smaller scale. The regression models require further development before
practical use, but have shown potential for the evaluation of surface albedo at a fine spa-
tial resolution. The Sentinel-2 satellite system is especially suitable for acquiring surface
albedo on a smaller scale, because of its fine spatial resolution.

As development of new satellite missions is continuously ongoing, the measurement
instruments that provide additional or more detailed spectral data will also appear. Com-
bined with continued development in albedo estimation algorithms across satellite sys-
tems, our ability to understand the surface energy balance will improve.
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Appendix A

Sentinel-2 supplementary
specifications

Figure A.1: The 10 m spatial resolution bands. From ESA [58]

.
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Figure A.2: The 20 m spatial resolution bands. From ESA [58]

.

Figure A.3: The 60 m spatial resolution bands. From ESA [58]

.
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Appendix B

FRT model

B.1 Input file
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B.2 Atmospheric parameters

Table B.1: Atmospheric parameters used for the 6S radiative transfer model

Parameter Value
Dust-like aerosol component (%) 0.80
Oceanic aerosol component (%) 0.17
Water-soluble aerosol component (%) 0.0
Soot aerosol component (%) 0.03
Optical thickness τ 550

aer 0.09
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Appendix C

Training data parameters

The FRT model is run for many different cases in order to get enough training data. To
create these cases, several parameters in the FRT input file are varied.

First it is decided which parameters have a big influence on the result, and should
thus be varied over. To do this, a selection of them are varied between certain bounds.
These bounds are based on some indicated minima and maxima given in the user manual
of the FRT model [46].

While changing individual parameters, the model is run and the reflectances are plot-
ted. From the figures, four of the more impactful parameters were chosen to be varied
to create the training data. In Figure C.1 we see the resulting figures for these four
parameters.

Three of the resulting factors were physical. These were the stand density, the crown
radius and the leaf weight per area. Besides this one chemical parameters was chosen,
which was the chlorophyll percentage of the leaf weight.

Notable from the chlorophyll graph, Figure C.1d, is that this parameter mainly im-
pacts the visible part of the spectrum. A higher chlorophyll concentration leads to more
absorption of red light, causing a greener appearance.

Finally, to create the training data, the four chosen parameters are varied more closely
around the original values in the input file for the Järvelsja Pine stand. This is done in
order to stay within a scenario of a physical forest stand, whilst creating enough variation
in the reflectance to train the regression model. The ranges of the varied parameters are
shown in Table 3.1.
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Figure C.1: Reflectance spectrum with different tree stand input parameters.
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Appendix D

Additional regression results

D.0.1 Direct estimation model

Table D.1: Regression coefficients wp

ID Band 2 Band 3 Band 4 Band 8 Band 11 Band 12 Constant
1 77.7521 -31.4720 -14.4436 0.3492 2.6958 -5.9654 -0.1183
2 75.4187 -30.4233 -14.3491 0.3656 2.5085 -5.4414 -0.1129
3 76.8428 -31.1393 -14.2788 0.3756 2.7608 -6.1590 -0.1203
4 72.3105 -29.2303 -13.5841 0.3903 2.3372 -5.1862 -0.1085

Table D.2: Regression coefficients wf

ID Band 2 Band 3 Band 4 Band 8 Band 11 Band 12 Constant
1 0.2168 0.2455 0.2284 0.3168 -0.3478 0.9777 0.0686
2 -0.0153 0.3592 0.2452 0.3351 -0.4064 1.0600 0.0682
3 0.2516 0.2162 0.2434 0.3292 -0.3857 1.0005 0.0695
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D.0.2 Narrow-to-broadband model

Table D.3: Regression coefficients wphem

ID Band 2 Band 3 Band 4 Band 8 Band 11 Band 12 Constant
1 -0.3106 0.3639 0.1593 0.3795 0.0853 0.1296 0.00002
2 -0.2987 0.3567 0.1582 0.3790 0.0894 0.1234 0.000001
3 -0.2976 0.3612 0.1485 0.3802 0.0802 0.1414 0.00004
4 -0.2463 0.3395 0.1426 0.3794 0.0830 0.1350 -0.00002

Table D.4: Regression coefficients wfhem

ID Band 2 Band 3 Band 4 Band 8 Band 11 Band 12 Constant
1 0.1096 0.1155 0.2322 0.3225 0.3323 -0.2013 -0.0073
2 0.0286 0.1559 0.2460 0.3256 0.3233 -0.1898 -0.0079
3 0.1095 0.1171 0.2290 0.3223 0.3251 -0.1904 -0.0067
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