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Abstract

In mobile communications the demand for increased capacity and speeds is a
constant. 5G NR is the latest generation which is now seeing widespread adop-
tion. Crucial technologies like Massive MIMO and beamforming are enabled by
the use of large antenna arrays. While these arrays allow a 5G network to handle
larger amounts of data at higher speeds they do have drawbacks. Specifically,
the power requirements associated with using many large arrays are sizable.

Antenna selection is a potential solution to this problem, allowing the an-
tenna array to use only a subset of elements at off-peak times. Selecting the
most favorable beams for transmission and reception is an important step to-
wards achieving this goal. The aim of this thesis is therefore to apply machine
learning techniques to this problem in order to predict the locations of optimal
beams.

Throughout the testing process several machine learning models and ap-
proaches to solving the problem were explored. In each step of the process the
prediction accuracy was evaluated and improvements were made. Several of
the models displayed the ability to make accurate predictions, which will aid in
solving the antenna selection problem.

The highest accuracy was achieved when predicting one of two predefined
beam regions based on Precoding Matrix Indicator-values using a Deep Neural
Network model. This test yielded a prediction accuracy of 87.4%.
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Popular Science Summary

The fifth generation of mobile communications brings great improvements to
speed and capacity compared to its predecessors. While this may be a significant
advantage of 5G there are drawbacks like increased power consumption. Antenna
selection looks to be a promising solution to this problem.

A crucial part of any 5G system is the use of large antenna arrays consisting
of a large number of smaller antenna elements. These elements work together
and allow the capacity across a radio link to be multiplied.

Beamforming is an important technique enabled by the use of antenna ar-
rays. The phase and amplitude of a signal can be modified at each antenna
element in such a way that constructive interference is created and aimed in a
specific direction, also known as a beam. Using all antenna elements for this
process allows transmissions to be focused while reducing interference for re-
ceived signals. The downside of this is high power consumption. For this reason
this project works towards finding a way of using only a subset of the available
antennas. An important step towards achieving this goal is beam selection, or
selecting the best beams for a given signal.

This project has investigated ways of selecting the most suitable beams using
a variety of machine learning techniques. In a set of received beams the suit-
ability of each one can be determined based on amplitude, meaning the higher
the power the better the beam. The aim of this project is therefore to predict
which beams will have the highest power based on a variety of input variables.

Several approaches to the problem and machine learning models were tested
over the course of the thesis. The most promising results were achieved when
dividing the set of beams into predefined regions and predicting which has the
highest power beams. Making these predictions based on so PMI data, which
is used by the base station to enable multiple data streams, yielded the highest
accuracy.

In the future this work will have to be expanded upon to enable antenna
selection, however having a reliable way of selecting beams is a crucial step
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towards achieving this goal.
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CHAPTER 1

Introduction

1.1 Background and Motivation
Mobile communication technologies are an essential part of everyday life. Thanks
to the advancements made over the course of several decades staying connected
is more important, and easier, than ever. In recent years, LTE (Long-Term
Evolution) has become the standard for wireless communication used around
the world. However, as the needs for greater bandwidth and faster communica-
tions continue to grow the limitations of LTE have become increasingly evident.
The frequencies used in LTE are often insufficient to meet the high bandwidth
requirements of today.

5G NR is meant to address these issues. A higher bandwidth is achieved by
operating in a higher frequency range and through the use of a broader spectrum
larger amounts of data can be handled. Another important technology enabling
the use of NR are large antenna arrays consisting of several connected antennas
working together through massive MIMO, allowing for increased link capacity.
Beamforming is another crucial technology enabled by the antenna array which
allows transmissions to be directed while reducing the interference of received
signals.

While the large antenna arrays used in 5G NR provide many benefits, they
also consume a lot of power. Using all antennas to transmit and receive data at
all times is wasteful, especially when traffic load is low. Antenna selection has
the potential to be an effective solution to this problem. By using only a subset
of antennas at off-peak times power consumption could likely be reduced. An
important step towards achieving this goal is the selection of beams received by
the antenna array. That is the focus of this thesis.
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1.2 Thesis objectives
The original purpose of this thesis was to develop an antenna selection algorithm
utilizing machine learning. Testing this algorithm in a simulation or real world
environment was another aim. However, the focus shifted when investigating the
problem of beam selection. Throughout the thesis several different approaches
to this problem had to be tested while their viability had to be evaluated. For
this reason solving the beam selection problem through the use of machine
learning became the main focus of the thesis.

1.2.1 Main questions
• Q1: Is it possible to accurately predict a subset of beams to use using a

machine learning model?

• Q2: How should predictions be made and based on what input data?

• Q3: Which machine learning model yields the highest prediction accuracy?

During the testing process different approaches to making predictions were
tested and several machine learning models were evaluated. This was done
through an iterative process were issues with the current methodology were
assessed. Based on these assessments adjustments to the machine learning model
or testing approach were made.

1.2.2 Scope and limitations
As mentioned above the original aim of the thesis was to develop an antenna
selection algorithm and testing it, however this ended up being outside the scope
as a greater focus was placed on beam selection. This work done in this thesis
is limited to beam selection only.

There are a great number of machine learning techniques that could have
been investigated as possible means of performing beam selection. During the
thesis however, adjustments often had to be made to experiment methodology
in order to produce useful results. For this reason less focus was placed on
testing many different machine learning models. In this thesis testing is mainly
limited to two types of models, linear regression and deep neural networks. A
K-nearest neighbors approach was also tested briefly.

1.2.3 Tools used
All machine learning models, log parsing scripts and other scripts were imple-
mented using Python. Plots of data were created using the matplotlib library.
The frameworks used to implement the various ML-models used during this
thesis are detailed in the ’Machine Learning models’ section.
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1.3 Report structure
Initially, the literature study which was conducted is described and the results
of various related work is presented and discussed.

This report then provides an introduction to 5G NR and dives deeper into
the technology concepts required to understand this thesis. This is followed by
explanations of commonly used technical terms and the theory behind them.

The data used by the machine learning models tested is described in the
following section. Calculations made using this data are also presented.

This is followed by descriptions of the machine learning models used through-
out this thesis and the theory behind them. The frameworks used to implement
these models are also described.

As mentioned several iterations of testing methodology and ML-models are
present in this thesis. The details of each iteration and the models used during
each are described in the next section.

Results and the discussion of those results follow. Here the issues with each
iteration are also described in detail.

Finally conclusions and potential future work are presented.
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CHAPTER 2

Related work

Searching for and investigating other work closely related to this thesis was an
important process that helped focus the thesis work while also placing its results
in a broader context. Initially, the purpose of the literature study was to get a
better understanding of the massive MIMO and beamforming technologies used
in the 5G NR system. This was done by looking at a variety of sources, including
the research papers listed in this section. Later, papers related to different
antenna selection methods and their effectiveness were also investigated. Finally,
work focusing on using machine learning techniques for antenna selection was
reviewed in order see what approaches to the problem had previously been tried
and how effective they were.

2.1 Massive MIMO and Beamforming
Massive MIMO and Beamforming are well researched technologies which have
been proven effective and are used in 5G NR. Relevant technical details are
presented in the ’5G NR Overview’ chapter.

In "Massive MIMO for Next Generation Wireless Systems" Larsson et al.
[9] present an overview of key concepts in the massive MIMO technology. They
also evaluate contemporary research on the topic in order to draw conclusions
regarding the potential of the technology. It is concluded that massive MIMO
offers large improvements in terms of efficiency and reliability, making it optimal
for use in technologies beyond LTE, such as 5G.

Ali et al. [7] also provide an overview of massive MIMO in "Beamforming
techniques for massive MIMO systems in 5G: overview, classification, and trends
for future research". The main focus of the paper however, lies in beamforming
and investigating its benefits. A summary of the technology is provided while
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different beamforming techniques are evaluated. Finally, the authors present an
optimal method of beamforming which is achieved by combining several different
techniques.

The details of different beamforming techniques lie outside the scope of this
thesis, however the explanations of the key concepts behind the technology and
its benefits are highly relevant.

2.2 Antenna selection
The concept of using only a subset of antennas in a Massive MIMO system is one
that has been thoroughly investigated. Several different methods of achieving
this goal have been tested and evaluated.

Gao et al. [10] present and evaluate an antenna selection method based on
a branch-and-bound search algorithm where antenna elements are represented
in a search tree. This algorithm is then compared to using the entire antenna
array in a simulation environment. The testing shows that the antenna selection
algorithm is able to achieve similar performance compared to the baseline tests.
It is concluded that antenna selection is a promising and practical technology
for use in massive MIMO systems.

Another antenna selection algorithm is presented by Siljak et al. [11]. The
authors present a method for use in distributed massive MIMO systems. An
algorithm based on petri nets in which antenna elements are divided into groups
is evaluated. These elements are then allowed to move between between these
groups. The proposed algorithm is compared to other selection methods and
shows comparable performance, however the novel solution excels in scenarios
where a large number of users are present.

Wu et al. [19] compare two different antenna selection algorithms and eval-
uate their respective performance. An optimal but complex algorithm is com-
pared to one with reduced computational complexity in a simulation environ-
ment. These simulations show that a channel capacity close to that of the
optimal algorithm can be achieved with the simpler algorithm.

While antenna selection algorithms based on techniques other than machine
learning are not evaluated in this thesis the results of the studies above are still
interesting. It is clear that antenna selection is a viable concept and that a
variety of approaches to the problem are possible.

2.3 Antenna selection using machine learning
Performing antenna selection using machine learning techniques is an alternative
solution which has also been investigated previously. Yu et al. [22] propose a so-
lution based on multi-label learning where a deep neural network is implemented
to predict a subset of antenna elements. Tests are conducted in a simulation
environment where the ML-based algorithm is compared to more traditional an-
tenna selection scheme. The results show that using a machine learning model
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yielded comparable capacity across the radio link while decreasing computation
time.

Deep neural networks are also investigated by Meenu Khurana [14]. An an-
tenna selection scheme for vehicle-based MIMO systems is proposed and eval-
uated. This scheme is implemented using a convolutional deep neural network
and compared to a more conventional algorithm. In simulations this DNN-model
was also shown to achieve higher capacity while decreasing delays.

A different machine learning approach which is also based on neural networks
is presented by Vu et al. [21]. In this paper the algorithms examined handle
both antenna selection and power allocation, leading to higher computational
complexity for traditional algorithms. By employing a machine learning based
approach this complexity can be vastly reduced. This was verified during testing
as the ML algorithm reduced execution time while maintaining 90% of the
traditional algorithm’s performance.

While power allocation lies outside the scope of this thesis it is interesting
to note that the machine learning approach has been shown to produce similar
performance compared to other algorithms.

Another study supporting the viability of a deep neural network approach
was conducted by Zhong et al. [23]. Similarly to previously mentioned stud-
ies, a DNN model is implemented and used to predict antenna elements. The
performance of this model is then compared to that of a conventional antenna
selection algorithm as well as no antenna selection. While similar performance
was achieved with the two antenna selection algorithms using the DNN model
yielded a large increase in channel capacity when compared to using no antenna
selection.

The approaches to the antenna selection problem and the design of the ma-
chine learning models tested during this thesis differ from those used in the
work discussed above. However, prior evidence of antenna selection using ma-
chine learning being viable is important context. It is also interesting to note
that using Deep Neural Networks yielded good results in several studies. This
is part of the reason why the DNN was one of the models investigated during
this thesis.
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CHAPTER 3

5G NR Overview

This chapter provides a short overview of the 5G new radio concept and dives
deeper into some of the aspects most relevant to this thesis.

3.1 Introduction to 5G NR
The fifth generation of mobile communication technology has been in develop-
ment for several years, however more recently the technology is seeing widespread
adoption. As with its predecessors a 5G network is a cellular one, meaning ge-
ographical areas are divided into "cells" served by at least one base station.
Compared to LTE, 5G features a much broader frequency spectrum, allowing
for an increase in speeds while increasing the amount of data that can poten-
tially be handled by the network [6]. The efficient use of spectral resources in
a 5G NR network is achieved through the use of multiple antenna technologies,
namely multi-user massive MIMO.

3.2 Massive MIMO
Massive MIMO is a technology that is crucial to the 5G NR system. Regular
MIMO (multiple input, multiple output), a method that is commonly used in
radio, works by using multiple transmission and receiving antennas. This way
multipath propagation can be exploited, allowing the capacity of the radio link
to be multiplied through spatial multiplexing. Massive MIMO is an extension of
this concept that increases the number of antennas drastically. This is what the
"massive" part of the name refers to. By expanding the antenna array spectral
efficiency is increased, meaning more users can be serviced at any given time
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[18]. Coverage is also improved as a stronger and more reliable signal can be
provided.

3.2.1 The antenna array

Figure 3.1: Illustration of an antenna array containing 128 cross polarized an-
tenna elements. [8]

The large antenna array is an important part of massive MIMO. A total
of 64 antennas are present in the array used to collect data during this thesis.
The illustration in figure 3.1 depicts an array of 128 elements, however the
concept remains the same. The antenna elements in the array used for testing
are arranged in a grid consisting of 8 columns and 4 rows. In each grid slot two
cross-polarized antennas are located, giving a total of 64 elements. Antenna
cross-polarization helps reduce interference for received signals.

3.3 Beamforming
Beamforming is a crucial technique used in 5G NR for the purpose of focusing
transmitted signals to a specific location while improving the signal-to-noise
ratio of received signals. This is done by combining the elements of the antenna
array in such a way that constructive interference is experienced by signals at
a certain angle while others experience destructive interference. For example,
when transmitting a signal, the directionality can be altered by controlling the
phase and amplitude of the signal at each antenna element to create a desired
interference pattern. Similarly, when receiving, data from all elements can be
combined such that the desired pattern is observed.
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3.3.1 Beam space vs antenna space
Data handled during this thesis consists of beams received by the base station
antenna array. This means that each beam consists of data received from all
antennas which has been combined to achieve the desired directionality. In
other words, beam space data is created through the combining of antenna space
data. As there are 64 antenna elements in the array beams from a total of 64
directions will be received at any given time. Some of these will see constructive
interference while others will be destructive. The purpose of this thesis is to
exploit this fact and attempt to predict where within the range of beams the
highest amplitude can be found.
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CHAPTER 4

Relevent technical terms

4.1 SRS Channel Estimates
An integral aspect of communication between a base station and a UE are
sounding reference signals (SRS). Such a reference signal is transmitted by the
UE in the uplink direction and contains the information needed for the base
station to estimate the quality of the channel. The channel state information
(CSI) which is estimated is comprised of a channel quality indicator (CQI), rank
indicator (RI) and precoding matrix indicator (PMI).

The SRS is an orthogonal frequency division multiplexing (OFDM)-signal,
meaning that one stream of information is sent across several subcarriers placed
within close proximity of each other.

The SRS channel estimation data used in this thesis is downsampled and
collected in groups of 64 values, representing each of the 64 directions. Details
of the SRS signals handled in this thesis are presented in the "Data" section.
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4.2 PMI

Figure 4.1: Illustration showing how PMI values correspond to distance from
and angle to the base station. Source: Ericsson

PMI, or precoding matrix indicator is essentially a recommendation from a
UE of which precoding matrix should be used for transmission. Precoding is a
process by which multi-layer transmission is enabled. This is done through the
application of one of several predefined matrices. PMI is therefore comprised of
index values indicating which precoding matrix should be selected. Specifically,
the PMI data handled during this thesis contains two indices. As shown in
figure 4.1 these values also correspond to physical location, with the first index
indicating the angle and the second indicating distance from the base station.
These properties are exploited during this thesis for the purpose of making
predictions for beam selection.
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CHAPTER 5

Data

In this chapter the data collected to train the machine learning models is de-
scribed. The calculation of beam power, which is the main metric used for beam
selection, is also described. An overview of the system in which the data is used
is also presented.

The process of collecting the input data used throughout this thesis was
handled by employees at Ericsson. This work therefore lies outside the scope of
this thesis, however a brief description of the collection methodology is provided
below.

The work done in this thesis instead focuses on investigating which data sets
to use, how to transform that data and how to integrate it into a beam selection
system.

5.1 The datasets collected
Over the course of this thesis several datasets were collected. These are stored
in log files which are interpreted by a log parsing script. During data collection
signals sent from a UE to a base station were recorded. Various movement pat-
terns were used during this process to bring some variation to the collected data.
A total of four logs of various sizes were used throughout the testing process.
The initial log file used, AndreAroundGarage.log, contains only SRS-data and is
used as input for the models used in the initial experiments conducted. Subse-
quent logs contain PMI data interspersed among the SRS data previously used.
These files are named SRS_and_PMI.log, PMI_SRS_around_watertower.log
and PMI_SRS_around_garage.log and are used during later tests.
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5.2 The log file
Each row of data within the log file is associated with a timestamp which can
be used as an identifier. Lines of SRS data also contain a value to identify the
specific grouping of down sampled channel estimations. The SRS data in the file
is spread across four transmission layers, however to simplify data interpretation
only data from the first layer (layer 0) was included in testing.

The SRS data in the log files contains information on how to modulate the I
and Q phases of the sine wave, known as I/Q data. Within any group of channel
estimates are 64 beams, each of which is represented by a 32 bit word where
the first 16 bits represent the I phase and the last 16 represent the Q phase.
By calculating the two’s complement of these binary values the actual value of
the phases can be retrieved. The log parsing script handles the interpretation
of I/Q data and uses it to calculate beam power.

Figure 5.1: Visualization indicating how SRS data is formatted in the log files
used during this thesis.

The structure of the relevant SRS data in the log file can be seen in figure
5.1, showing an example group of 64 I/Q values. In this visual representation
every ’a’ represents a hexadecimal datapoint with the format 0xAAAAAAAA.
These are converted to binary format in order to make the calculations described
above easier. The 64 values in the SRS data group are spread across 4 lines in
the log file. In addition to this the transmission layer is also indicated, allowing
the log parser to filter out unwanted data.

5.3 Beam power
In the machine learning models used during this thesis beam power, or amplitude
was the main metric used to determine which region should be selected for a
given input. As the name suggests the beam power is a measurement indicating
strength of a beam. The objective of the thesis is to select a subset of the
antenna array given an input of 64 beams. Therefore, selecting a region based
on where the strongest beams are located within the beam range was seen as a
reasonable approach. The idea is that at a late stage the bit error rate could
be minimized by including only strong beams. For a given beam within an SRS
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channel estimate group the beam power can be calculated using the following
formula:

P = H(b) ∗H ′(b)

where P is the beam power, H(b) is the complex I/Q value retrieved from
the log file and H ′(b) is its complex conjugate. Beam power calculation is also
handled by the log parsing script.

5.4 Beam regions
To eventually achieve the goal of only activating a subset of antennas at any
given time a decision has to be made of which beams within the 64 beam range
to use. In other words, a subset of beams has to be selected. The beam range
is therefore divided into regions during several tests. The beam power values
calculated are the metric by which a region is selected. During the classification
problems investigated in this thesis each region is assigned an index which is
used by the log parser to label input data.

5.5 PMI data
Three of the log files used include PMI data. Similarly to the SRS data each
row of PMI values is associated with a time stamp, separate from any other
data. In this row the two PMI index values are stored. The log parser reads
these values and maps the following SRS rows to this PMI pair until new PMI
values are encountered. This process is then repeated.

Figure 5.2: Visualization indicating how PMI data is formatted in the log files
used during this thesis.

The formatting of the relevant PMI data in the log file is visualized in figure
5.2. An array containing three values is used, but only the first two of these are
used in this thesis as they represent the PMI index values.

5.6 System overview
The various types of data collected during this thesis are used in a system where
a machine learning model is trained and used to make beam region predictions.
A brief overview of this system is provided in this section. More detailed de-
scriptions of testing steps, machine learning models and results are provided in
subsequent chapters.
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Figure 5.3: Overview of the system in which PMI data is used to make beam
region predictions. Source: Ericsson

SRS Channel Estimate data and PMI index values are received from the
base station receiver as show in figure 5.3. The machine learning model is
trained using this data according to the methods described in the ’Experiment
iterations’ chapter. After training predictions can be made based on new input
data to produce a beam region decision. The selected region is then fed back to
the base station for use in its controller. The details of channel state reception,
CQI reception, the antenna/beam controller and the base station antenna/radio
lie outside the scope of this thesis. Their functions are therefore not described
in this report.
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CHAPTER 6

Machine Learning models

Evaluating different machine learning models and configuring these with appro-
priate parameters is one of the main areas of work in this thesis. Deciding which
models to evaluate was included in this process.

Explanations of crucial machine learning terms used throughout this thesis
are included in this chapter. In addition to this, the machine learning models
implemented and used during the testing process are described as well as the
reasons they were selected. The frameworks and their features which were used
to implement them are also explained.

6.1 Machine learning terms

6.1.1 Loss
Loss is essentially a measurement of the quality of a models prediction. A perfect
prediction would have a loss of 0 and the higher the loss of a single prediction
the worse it is. The aim when training a machine learning model is to minimize
this value. Loss can be calculated in many different ways according to one of
several loss functions. What function is optimal depends on which model is used
[20]. Throughout this thesis several different loss functions were tested for each
model, and whichever gave the best result was selected. The different functions
used are described below.

Mean absolute error

The mean absolute loss function is a very simple loss function to compute, but
it can be applied in a lot of cases. It calculates the difference between the
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output value predicted by the model and the actual label value according to the
following formula [20]:

MAE =
1

N

N∑
i=1

|Ypredi − Ylabeli|

where N is the number of values predicted, Ypred is the prediction and Ylabel

is the label value. MAE is the mean absolute error.

Categorical and binary crossentropy

Another loss function used in some tests is the categorical crossentropy loss func-
tion. Crossentropy essentially measures the the difference between two proba-
bility distributions [3] and is calculated according to the following formula:

H(P,Q) = −
∑
x∈X

p(x) log q(x)

where P and Q are two probabilty distributions. In a prediction task, the
target distribution P for a certain input is known as the label is known. In
other words, if an input is present in the training dataset its label is certain.
The goal of the model is to approximate the probability distribution Q which
indicated the probability of each class label for a given input [3]. The goal is to
minimize the crossentropy when training the model. Categorical crossentropy
is a loss function for a multi-class classification task while binary crossentropy
is used for binary classification. Crossentropy loss functions are commonly used
for multilabel classification tasks [16].

6.1.2 Activation functions
An activation function is a function which is applied to weighted inputs in
a neural network node. The purpose of the activation function is to aid the
network in understanding complex pattern in the input data [13]. The most
ability to add non-linearity to a network is a crucial feature of the function.

There are many different activation functions which can be used in a network.
Below are explanations of the ones used in this thesis.

Linear activation

A linear activation can more accurately be referred to as "no activation" [1].
A node using linear activation does not do anything to the weighted input it
receives, it simply passes it to the next node. Linear activation is utilized in the
linear regression models used during testing.
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Rectified linear unit activation

f(x) = max(0, x)

The rectified linear unit activation, or ReLU function introduces an element
of non-linearity to a neural network[1]. It does so by outputting the input
received by the node if that input is positive, however it outputs 0.0 if it is
negative. This means that neurons in a layer with a ReLU activation function
will only be activated if their input is positive. Therefore the ReLU activation
function is more computationally efficient compared to some other activation
functions where all nodes are activated at all times. For these reasons the
rectified linear unit activation function has become the default choice for many
neural networks, and it is commonly used in the models tested during this thesis.

Sigmoid activation

The sigmoid activation function is one of the most commonly encountered in
neural networks. A defining feature of the sigmoid function is that it provides
a smooth gradient, meaning sudden jumps in output values are less likely to
occur [1]. For this reason it is commonly used in the ouput layer of a neural
network. The formula for the sigmoid activation function is as follows:

f(x) =
1

1 + e−x

where x is the neuron’s input. The larger the value of x the closer the output
will be to 1.0. The opposite is true for negative inputs where the output will
converge to 0.0.

6.2 Machine learning models used
Two main machine learning models were used throughout the tests conducted
during this thesis. Linear regression and Deep neural networks are the main
model types whose viabilities were investigated. In the final experiment a K-
nearest neighbors method was also evaluated.

The linear regression model was selected as an initial starting point on which
to build. Linear regression is a simple model which is easy to implement and
could therefore be used to quickly obtain inital results.

Deep Neural Networks are more complex models which can be applied to
a variety of scenarios, such as the classification problems enctountered in this
thesis. As a DNN provides more opportunities for configuration and customiza-
tion, creating potential for higher prediction accuracies. For this reason the
DNN was selected for evaluation alongside linear regression.

Finally, a KNN-classifier was briefly tested for comparison with the other
models. KNN is a simple and commonly used model that can be applied to
classification problems, which is why it was selected.
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6.2.1 Linear regression model
Linear regression is a supervised learning method, meaning it requires labeled
datasets to train on. It works by attempting to fit a linear regression line to a
set of training data points in such a manner that the average loss is minimized.
The prediction of the trained linear regression model is calculated according to
the following formula:

y = c+

N∑
i=1

mixi

where y is the prediction, c is a constant mi is a coefficient determined during
the training process and xi is input feature i. N is the number of input features.

Figure 6.1: Visualization of an example linear regression model with a single
input feature used for binary classification.

A simple linear regression model with a single input feature is visualized in
figure 6.1. Here, a regression line has been fitted to a set of data points labeled
either ’0’ or ’1’. When a linear regression model is used for classification tasks
the predicted class can be obtained by rounding the model’s prediction to the
nearest integer. This is the method used during this thesis.

6.2.2 Deep Neural Network
All neural networks are constructed using several layers. Each of these layers is
made up of one or several nodes, also referred to as neurons or perceptrons. Each
node has one or more weighted inputs, an activation function which is applied,
and one or several outputs [2]. Through the training process the optimal weights
throughout the network are determined.

Every network has an input layer consisting of the same number of nodes
as the number of input features. The output layer similarly consists of several
nodes corresponding to the number of outputs. Between these a regular neural
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network has one hidden layer containing several nodes. In each node a pre-
determined activation function is applied and weights are adjusted during the
training process.

Figure 6.2: Illustration of a deep neural network with two layers.[17]

A deep neural network includes two or more hidden layers, as illustrated in
figure 6.2. In each layer the output y is determined by multiplying weights wi

with inputs xi and applying an activation function f . As most of the classifica-
tion problems in this thesis have a relatively small number of inputs and outputs
only two hidden layers were used in all DNN models tested. A rule-of-thumb
for creating deep neural networks is that the number of nodes in a hidden layer
should be somewhere between the number of input nodes and the number of
output nodes [15]. This rule was followed when designing the networks used in
this thesis.

6.2.3 K-nearest neighbors classifier
The K-nearest neighbors, or KNN algorithm was tested in one of the later test it-
erations. KNN is a simple but commonly used supervised algorithm. It classifies
an input by comparing it to a known labeled dataset. The algorithm calculates
the distance between the input and the surrounding data points. Classification
is done by evaluating the k nearest neighboring points and selecting the most
common label [12].
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Figure 6.3: Visualisation of a simple KNN binary classifier with two input fea-
tures.

The K-nearest neighbors classifier is visualized in figure 6.3. A number of
labeled data points belonging to one of two classes are related to a new data
point which is classified according to the method described above.

6.2.4 Inputs and outputs
Throughout this thesis the approach to the beam selection problem evolves and
is iterated upon. For this reason the input features used by the model described
above and their outputs vary from experiment to experiment. Generally speak-
ing however, an array of input values is received by each model. The length
of this array varies depending on the type of input data used. In classification
tasks the output consists of a single value indicating the predicted label, while
in other experiments several output values are predicted. The details of each
model used and their input and output formats are described in the ’Experiment
iterations’ section.

6.3 The Keras API
All linear regression and DNN models used in this thesis were implemented
using the Keras API. It provides a Python framework for interaction with Ten-
sorFlow, a commonly used machine learning library. The features of Keras most
commonly used during this thesis are described below.

6.3.1 Normalization
Feature normalization was used in models used during testing. This means that
all input features are translated into the range [0, 1], meaning all inputs will
have the same scale. This is a helpful technique for some models, especially
when the input data distribution is unknown [5].
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6.3.2 Dense layer
The Dense layer is the Keras implementation of a regular connected neural net-
work layer. Hidden layer and output layers are implemented using this feature in
this thesis. Two important arguments required by the dense layer is the number
of nodes within the layer and which activation function should be applied.

6.3.3 The Adam optimizer
The optimizer is the algorithm used to adjust the weights of a neural network
during the training process. There are several algorithms that can be used for
this purpose, however one of the most commonly used is the Adam optimizer.
The Adam optimization algorithm uses stochastic gradient descent to arrive at
an ideal set of weights [4].

Learning rate

An important argument used by the optimizer is the learning rate. This param-
eter governs the rate at which the model updates weights during the training
process. Should this value be too small the model may not update weights
properly and never achieve a high prediction accuracy. Inversely, should the
value be to high the model may over correct resulting is accuracy swings during
training.

6.4 SciKit Learn
SciKit learn is a Python machine learning library which was used to implement
the K-nearest neighbors algorithm during this thesis. The KNN classifier can
be easily implemented using the preexisting KNeighborsClassifier model where
the value of k can be changed as desired.
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CHAPTER 7

Experiment iterations

Over the course of this thesis a number of different approaches to the beam
selection problem were tested. This was done in order to answer the second
research question regarding how to make predictions. Included in this is testing
the machine learning models described in the previous chapter in order to answer
the third question. Question 1 is answered by evaluating the results of these
tests. Designing the experiments, conducting them and evaluating their results
represents the bulk of the work done in this thesis.

On several occasions the result of an experiment would reveal flaws in the
methodology used, meaning adjustments often had to be made in order to get
a useful result.

In this section the different approaches that were used over the course of the
thesis are described. Input data and labeling are described and the machine
learning models used to make various predictions are explained.

The results of these experiments will be presented in the "Results and Discus-
sion" section. Discussion of the results and potential issues with each approach
are also found under "Results and Discussion".

7.1 Experiment 1: SRS Channel Estimates
In the initial experiment the SRS Channel Estimates from the
AndreAroundGarage.log file were used to generate the input data for the ma-
chine learning model. For each of the 64 beams in layer 0 of each channel esti-
mate group the beam power was calculated using the method described above.
These values were also plotted using a bar chart to visualize how beam power
varies over the entire range. The indices of the amplitude peaks for each group
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in the dataset were also plotted to evaluate the representativeness of the col-
lected data. An array containing the beam power values for any given group of
channel estimation data was used as input for the model.

In order to label this data two predefined beam regions were used, creating
a binary classification problem. From the 64 beams these fixed regions were
created, contiguously within the beam array. This mean that the first 32 values
of the beam array make up the first region, while the rest makes up the second.
These regions were labeled as ’0’ and ’1’ respectively

7.1.1 Machine Learning Models
Linear regression

A linear regression model was selected as a starting point for this experiment. As
previously mentioned, this model attempts to find a linear relationship between
the input variables, in this case the beam power values, and the index of the
best beam region.

Layer Type Nodes Activation function

1 Normalization - -
2 Dense 1 Linear

Table 7.1: The structure of the linear regression model used in the first experi-
ment.

The linear regression model was implemented using the Keras API and was
structured as shown in table 7.1. An initial normalization layer was used to
independently normalize the input features. Secondly, a ’Dense’-layer containing
a single unit in order to generate one output value was added. Here the linear
activation function is applied in order to produce a result.

Variable Value

Learning rate 0.0001
Batch size 100

Nbr of epochs 100
Loss function mean_absolute_error

Table 7.2: The parameters used when training the linear regression model.

The parameters used to train the model were as shown in table 7.2. A ’mean
absolute error’-loss function was used for evaluating the prediction accuracy of
the linear regression model. Different values for learning rate, batch size and
number of epochs were tried and evaluated in all experiments to determine
which give the best prediction accuracy. A learning rate of 0.0001, batch size of
100 and fitting the model over 100 epochs gave the best result in the end and
these values were thus chosen for this experiment.
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Binary classification using a DNN

The second model used in the initial experiment was a Deep Neural Network
(DNN). As described in the ’Machine Learning Models’ section, a Deep Neural
Network is created by placing several hidden layers between the inputs and the
output of the model. Each of these layers stores and evaluates the significance of
its different inputs. This information is then used as input for the next hidden
layer. Each layer consists of several nodes, each of which takes into account the
weighted outputs of the previous layer and generates outputs using an activation
function.

Layer Type Nodes Activation function

1 Normalization - -
2 Dense 64 ReLU
3 Dense 64 ReLU
4 Dense 1 Sigmoid

Table 7.3: The structure of the DNN model used in the first experiment.

Like the linear regression model, the DNN-model was implemented using the
Keras API. Table 7.3 shows the structure. A normalization layer is again initially
used for feature normalization. Second, two hidden layers make up the neural
network. Each of these has 64 inputs and contains 64 nodes where a Rectified
Linear activation function (ReLU) is applied. These layers are implemented
using the Dense-layers present in the Keras API Finally, an output layer with
a single node and a sigmoid activation function was used.

Variable Value

Learning rate 0.0001
Batch size 100

Nbr of epochs 100
Loss function binary_crossentropy

Table 7.4: The parameters used when training the DNN model.

Table 7.4 show the parameters used when fitting the model. A ’binary
crossentropy’-loss function was used in this iteration of the experiment. A learn-
ing rate of 0.0001 and batch size of 100 were selected and the model fitting was
run for 100 epochs.

Input data

The models in the first experiment were trained using the AndreAroundGarage.log
file containing only SRS data. This means a total of 64 beam power values were
used as input to predictr a single output class. After labeling the data was
randomized and divided into training and testing data using an 80-20 split.
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7.2 Experiment 2: Using PMI to predict top beams
The second experiment differs significantly from the initial one as beam power
is no longer used as input for the machine learning model. Instead, PMI-data
is used to predict where the beams with the highest power are located within
the beam range.

The PMI-data is extracted from the log file which is structured as follows:
A line containing the relevant PMI values is followed by a varying number of
lines containing the SRS data. This is described in detail in the ’Data’ section.
The PMI-data corresponds to all following SRS data until a new PMI-line is
encountered. The use of PMI-data as an input means that all models in the
second experiment take an array of two index values as input while the number
of outputs varies.

7.2.1 Predicting the entire range
During this experiment several ways of labeling the PMI data and predicting
beam power peaks were tested. In the initial iteration, an attempt was made to
predict the beam power for each of the 64 beams in the range. The locations of
the desired number of top peaks could then potentially be identified from the
predicted range. A list of 64 beam power values was therefore used to label the
corresponding PMI data.

7.2.2 Predicting the index of beam power peaks
In the second iteration of this experiment the PMI data was instead used to
predict where the beam power peaks would be located within the range of
beams. This means that the model predicts the indices of the top beams instead
of predicting the actual beam power values. The input PMI data used to train
the model was therefore labeled using a list of indices, sorted in numerical order.

7.2.3 Machine learning models
In the second experiment a Deep Neural Network (DNN) model was again used.
The principle of this model was the same as in the first experiment, creating
several hidden layers to evaluate features and improve prediction accuracy. Each
iteration of the experiment used somewhat different models.

Predicting the entire range

When predicting an entire range of beam power values one output is needed for
each index, meaning that the first iteration of the DNN model has 64 outputs
as seen in table 7.5. As the PMI data consists of only two values this is the
length of the input vector.

Feature normalization is again used to make sure all features stay withing
the same range. This is followed by two hidden layers, implemented using the
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Layer Type Nodes Activation function

1 Normalization - -
2 Dense 32 ReLU
3 Dense 64 ReLU
4 Dense 64 Sigmoid

Table 7.5: The structure of the DNN model used to predict the entire beam
range in the second experiment.

Dense-layer in Keras. These consist of 32 and 64 nodes respectively and use a
Rectified Linear activation function (ReLU). Finally, an output Dense-layer is
used with 64 nodes and a sigmoid activation function.

7.2.4 Predicting the index of beam power peaks

Layer Type Nodes Activation function

1 Normalization - -
2 Dense 4-8 ReLU
3 Dense 4-8 ReLU
4 Dense 4-8 Sigmoid

Table 7.6: The structure of the DNN model used to predict the indices of the
beam power peaks in the second experiment.

When predicting the indices of beam power peaks instead of the entire range
the model changes somewhat. Its structure is shown in table 7.6. The output
vector only needs to have the length of the desired number of predicted peak
locations. Output lengths of 8 and 4 were tested in this iteration of the experi-
ment.

The model is similar to before. A normalization layer is followed by two
hidden layers consisting of the same number of nodes as the output vector
length (8 or 4) using a ReLU activation function. An output layer consisting of
the desired number of output nodes with a sigmoid activation function is finally
applied.

Variable Value

Learning rate 0.001
Batch size 10

Nbr of epochs 100
Loss function categorical_crossentropy

Table 7.7: The parameters used when training the DNN model in the second
experiment.
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Several parameter combinations were tested when building this model, but
the best accuracy was yielded using the values in table 7.7. Both of the DNN-
models use a learning rate of 0.001, batch size of 10 and are both trained over
100 epochs. A categorical cross entropy loss function was used as it is a better
choice for cases where several values need to be predicted.

7.3 Experiment 3: Using PMI to predict one of
two static regions

Experiment 3 has a similar objective to the first. Instead of trying to make
the more complex predictions from experiment two, the problem is reduced to
one of binary classification. The entire 64 beam range is again split into two
predefined sections with the first 32 beams, or one polarization, as the first and
the final 32 as the second. The objective is to predict, for a given PMI input
pair, which of the two beam regions should be selected.

The input PMI data is labeled with the index of the appropriate region,
either a 1 or a 0. Which region is best suited is determined using the SRS data
also present in the log. The beam power is calculated for each of the 64 beams
in the range and then the amplitudes of the top 8 highest power beams for each
region are summarized. Whichever region has the highest sum is selected as the
label. The models in the third experiment take the same two inputs as in the
previous experiment wile only predicting a single output class.

7.3.1 Machine learning model
Linear regression

First, a linear regression model was tested for the case when PMI data is used
for binary classification. This is to make a similar comparison to experiment 1
where two models were tested.

Layer Type Nodes Activation function

1 Normalization - -
2 Dense 1 Linear

Table 7.8: The structure of the linear regression model used to predict predefined
regions in the third experiment.

The original linear regression model is once again used, however with only
two inputs instead of 64. A normalization of the input features is followed by a
single node which applies a linear activation function, as seen in table 7.8.

This linear regression model also uses the same parameters as before (see
table 7.9). A learning rate of 0.0001, batch size of 100 are used and the model
is trained over 100 epochs. To evaluate results and improve the model a mean
absolute error loss function is used.
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Variable Value

Learning rate 0.0001
Batch size 100

Nbr of epochs 100
Loss function mean_absolute_error

Table 7.9: The parameters used when training the linear regression model in
the third experiment.

Deep Neural Network

A Deep Neural Network (DNN) model similar to the ones from the previous
experiments is also used in the third experiment.

Layer Type Nodes Activation function

1 Normalization - -
2 Dense 2 ReLU
3 Dense 2 ReLU
4 Dense 1 Sigmoid

Table 7.10: The structure of the DNN model used to predict predefined regions
in the third experiment.

As the intended prediction only consists of a single index only one output
value is required (see table 7.10). All input features are again normalized using
an initial normalization layer. This is followed by two hidden layers with two
nodes each and ReLU activation functions. The final Dense layer applies a
sigmoid activation function and produces a single output.

Variable Value

Learning rate 0.001
Batch size 10

Nbr of epochs 100
Loss function mean_absolute_error

Table 7.11: The parameters used when training the DNN model in the third
experiment.

The best prediction accuracy for this model was achieved with a learning rate
of 0.001 and a batch size of 100, as shown in table 7.11. Model fitting occurred
over 100 epochs. In this experiment a mean absolute error loss function was
again used.
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7.4 Experiment 4: Using PMI to predict one of
four static regions

In the final experiment attempts are made to use the model from the previous
scenario in a more useful context. Utilizing only one fourth of the beam array
could potentially lead to even greater energy savings compared to if half of it is
used. The goal of this experiment is therefore to investigate whether the DNN
model can predict the appropriate beam region when the beam array is split in
four instead of two.

In a similar manner to before the PMI input data is labeled with a beam
region index, however these are now in the range of 0-3. Labeling is done in the
same way as in the previous experiment with the top 8 beams of each region
being summarized and compared to determine the label. The number of inputs
and outputs of each ML-model remains the same as in the third experiment.

7.4.1 Machine learning models
Deep Neural Network

Layer Type Nodes Activation function

1 Normalization - -
2 Dense 2 ReLU
3 Dense 2 ReLU
4 Dense 1 Sigmoid

Table 7.12: The structure of the DNN model used to predict predefined regions
in the fourth experiment.

The Deep Neural Network (DNN) model present in experiment 3 was ap-
plied to this problem as well. Its structure remains the same, consisting of a
normalization layer, two hidden layers with ReLU activation functions, and a
final output with sigmoid activation (see table 7.12).

Variable Value

Learning rate 0.001
Batch size 10

Nbr of epochs 100
Loss function mean_absolute_error

Table 7.13: The parameters used when training the DNN model in the fourth
experiment.

The same parameters were also used for this experiment, as shown in table
7.13. A learning rate of 0.001, batch size of 100 and 100 epochs gave the best
accuracy. The loss function used was ’mean_absolute_error’.
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K-nearest neighbors

For comparison of the results achieved using the DNN model another classifi-
cation method was also tried in the fourth experiment, namely the K-nearest
neighbors algorithm.

K-nearest neighbors classification makes a prediction by looking at the k
labeled data points that are the shortest distance from the input. The most
common label among these neighbors is selected as the class for the input data.

Parameter Value

k 5, 10, 100
weights uniform

algorithm auto

Table 7.14: The parameters used for the K-nearest neighbors classifier in the
fourth experiment.

This algorithm was implemented using the KNeighborsClassifier module
from the Scikit-learn python library. Three different values for k were tested;
5, 10 and 100 (see table 7.14). All other parameters were set to their default
values. Most importantly, uniform weights were used, meaning all neighboring
data point were weighted equally. The algorithm used to compute the nearest
neighbors was set to ’auto’, meaning that a search algorithm was selected based
on the inputs given. The KNN classifier works of the same dataset as the DNN
model, meaning it takes two input features and produces a single output.

Input data

Both models were trained using the PMI_SRS_around_watertower.log file con-
taining both SRS and PMI data. The input data was randomized and divided
between training and testing using an 80-20 split. Predictions were made on
the randomized testing data.

An attempt was also made to use the PMI values from the
PMI_SRS_garage_top.log file as testing input data while still training the
model on the data from PMI_SRS_around_watertower.log. This was done to
determine whether the model would be accurate in a scenario where the input
data is not represented in the training dataset.
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CHAPTER 8

Results and Discussion

In this chapter the results of the experiments described in the previous section
are presented. The results are listed in the order that they were conducted and
are then discussed. Potential flaws in experiments are identified and examined
and the the modifications made in between experiments are explained.

accuracy =
nbrofcorrectpredictions

totalpredictions

The metric used to evaluate the viability of a machine learning model is
the prediction accuracy. The accuracy score is implemented in Keras and is
calculated by dividing the number of correct predictions by the total number of
testing data points. A prediction is correct if the predicted label matches the
label assigned to the PMI data point during the labeling process.

Another metric used to evaluate each model is loss. Loss is an indicator for
how far away from their predefined labels the predictions of the model are on
average. A model with a high loss value is therefore less accurate than one with
a low loss. The loss function used to calculate this value is the same one defined
when compiling the model.

Both of these metrics are obtained by running the evaluate() function from
Keras after the model has been trained for the specified number of epochs.

The results of the tests conducted during this thesis are presented in tables
containing the values for accuracy and loss achieved below. As input data is
always randomized before being split into training and testing datasets there will
always be some variation in prediction accuracy when training the model several
times. For this reason models were each trained ten times and the deviations in
accuracy and loss are included in the tables as well.

43



8.1 Plotting beam power

Figure 8.1: Beam power distribution for group nbr 68 at timestamp 2022-07-20
08:25:21.448061 in AndreAroundGarage.log.

Figure 8.2: Beam power distribution for group nbr 119 at timestamp 2022-07-20
08:31:37.212065 in AndreAroundGarage.log.
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Figure 8.3: Beam power distribution for group nbr 17 at timestamp 2022-07-20
09:02:02.360573 in AndreAroundGarage.log.

To visualize the the beam power range for a group of channel estimation
data a number of randomly selected groupss from the AndreAroundGarage.log
file were plotted (see figures 8.1, 8.2 and 8.3). A total of three groups from
three different timestamps were selected. These have the timestamps and group
numbers listed above.

In these example plots there are two clear main peaks within the range
the located in around the same two spots. This cpould potentially suggest
that the collected data doesn’t cover enough use cases. A dataset where peaks
are spread across the range could potentially be more useful. To analyze this
potential issue the indices of all the largest beam power peaks were extracted
and their respective number of occurrences were counted. These counts were
then plotted.
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Figure 8.4: Distribution of the highest amplitude peak for each group in An-
dreAroundGarage.log.

After parsing the data in the log file and calculating the beam power values
the peak locations were counted.

As we can see in figure 8.4 there is a clear pattern for where within the range
the amplitude peaks are located. Because of this pattern this particular data set
would not be optimal for non-binary classification. Should the range be split
into four regions two of them would not be represented in the training data.
This is why only binary classification is attempted in the first experiment. In
real world use cases with several UEs moving in different patterns would create
a more diverse data set. This is the reason why new, more representative data
is collected for the latter experiments.

8.2 Experiment 1: SRS Channel Estimates

8.2.1 Linear regression model

Metric Value

Accuracy 0.86± 0.01
Loss 0.16± 0.01

Table 8.1: Accuracy and loss achieved using a linear regression model with data
from AndreAroundGarage.log as input.

When making predictions using the linear regression model in the first ex-
periment an accuracy of about 86% is achieved with an average loss of about
0.16 (see table 8.1).
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8.2.2 Binary classification using a DNN

Metric Value

Accuracy 0.95± 0.01
Loss 0.16± 0.01

Table 8.2: Accuracy and loss achieved using a DNN model with data from
AndreAroundGarage.log as input.

In the case where a DNN-model model is used a higher accuracy is achieved,
as shown in table 8.2. When the Deep Neural Network is used 95% of predictions
are accurate, with an average loss of 0.05.

The DNN-model is clearly the better choice when the goal is to make accurate
predictions, although the linear regression model is still able to make predictions
with a relatively high degree of certainty.

The high performance achieved in this experiment is not unexpected. Per-
forming binary classification with a comparatively large number of inputs is a
relatively simple task. The occurrence of some incorrect predictions is likely
caused by the input data. As seen in figures (Insert reference) the two ampli-
tude peaks in the collected data are often of similar size and shape. This is a
result of the cross-polarized nature of the antenna array. Because of the simi-
larity between the two peaks it can be difficult for a model to determine which
classification should be applied to a given input. This is especially the case for
the linear regression model, which is the simpler of the two. Therefore, predic-
tion accuracy could potentially be improved by defining regions in a different
manner.

8.2.3 Issues with the experiment
After analyzing the results of this first experiment a number of issues were
identified which lead to this avenue of testing being abandoned.

There is not necessarily anything wrong with the results themselves. In fact,
as was demonstrated above, the accuracy achieved was very good. The major
issue is that the methodology used, and by extension the design of the machine
learning model, would not be especially useful in a real world scenario.

Compared to PMI-information, channel estimation data is recieved much
more frequently. This can be seen clearly in the SRS_and_PMI.log file. There
are commonly hundreds of estimation data point recorded between updates of
the PMI indices. This means that an approach where a region is predicted upon
each new channel estimation message would be very costly. This issue could be
remedied by only making predictions periodically, at a predefined interval.

The usefulness of training the machine learning model using SRS-data is
however still questionable. Calculating the optimal region directly would likely
be an easier approach. If a machine learning model is used, the entire range of
beam power values need to be calculated and fed to the model. Only then can
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a prediction be made. As we go through the trouble of calculating the entire
beam power range, it would be easier to just compare these values directly and
select a region based on the result. This makes any machine learning model
redundant.

Whether selecting a region directly in the manner described above or predict-
ing using the ML-model, the process of calculating beam power for the entire
range is a costly one. Even if predictions are only made periodically, using
resources for this purpose is wasteful.

Another issue with using channel estimation data is that it does not include
information about the physical location of the UE in the same way that PMI-
data would. While SRS contains a lot of other information that could potentially
be relevant to making a prediction, the location of the UE is highly relevant to
where within the beam range amplitude peaks will be located. This is yet
another reason why the decision was made to make predictions based on PMI
instead of channel estimates going forward.

8.3 Experiment 2: Using PMI to predict top beams

8.3.1 Plotting beam power peaks

Figure 8.5: Distribution of highest amplitude peak for each group in
SRS_and_PMI.log.

The distribution of amplitude peaks in SRS_and_PMI.log (see figure 8.5)
is similar to that of the first log file (see figure 8.4). The entire range is not well
represented, which may have an impact on the usefulness of the model in the
real world where a more diverse range of scenarios will be encountered. In later
experiments more representative log files are used.
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8.3.2 Predicting the entire range

Metric Value

Accuracy 0.0164± 0.002
Loss 143± 0.01

Table 8.3: Accuracy and loss achieved using a DNN model with data from
SRS_and_PMI.log as input.

The attempt to predict the entire range of beam power values using a DNN
model resulted in a prediction accuracy of 0.0164 and an average loss of 143, as
shown in table 8.3. These values were achieved when the model was compiled
using a categorical crossentropy loss function.

Obviously this result is very poor. The main reason for such a low accuracy
is most likely that the model is underfitted. One scenario in which underfitting
can occur is when the model has too few input features. This leads to the model
being unable to discern trends within the data causing large errors. It is a very
difficult task to predict 64 values based on just two inputs, and for that reason
accurate predictions can not be made.

There is no reason to attempt classification based on the predicted range.
Assigning a label based on the peaks given by the model would be fruitless as
the results are just too inaccurate.

8.3.3 Predicting the index of beam power peaks
To address the issues encountered when trying to predict the entire range the
number of output from the model had to be reduced. Predicting a small number
of indices for the highest amplitude beams seemed like a reasonable solution.
This way the number of values to predict could be reduced while still keeping
the most relevant data. Regions could then potentially be assigned based on
the locations of the predicted peaks.

Metric Value

Accuracy 6.2099e−04± 1e−04
Loss 1426± 100

Table 8.4: Accuracy and loss achieved using a DNN model with data from
SRS_and_PMI.log as input when trying to predict the top 8 beam indices.
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Metric Value

Accuracy 0.36± 0.03
Loss 669± 50

Table 8.5: Accuracy and loss achieved using a DNN model with data from
SRS_and_PMI.log as input when trying to predict the top 4 beam indices.

When attempting to predict the 8 beam indices corresponding to the 8 high-
est amplitude beams an accuracy of 6.2099e−04 was achieved with a loss of 1426
(see table 8.4). The same experiment yeilded an accuracy of 0.36 and loss of
669 when predicting only the top 4 values instead (see table 8.5).

The results of this experiment are clearly not very accurate. Making predic-
tions using this model in a real world scenario would not be especially useful.
The problem of the model being underfitted persists to an extent which has
an impact on performance. Another issue may be that a prediction will be
considered incorrect if an index is predicted close to the correct value, but not
exactly correct. In other words small variations in predictions can cause inac-
curacy to decrease. As can be seen in figure 8.5, amplitude peaks are not evenly
distributed for this particular log file. The peaks are concentrated on a small
number of indices with adjacent indices being underrepresented. This means
that making an accurate prediction as to the location of amplitude peaks is
extra important as an inaccurate prediction will be less useful in a real world
scenario.

Logically, underfitting would be less of an issue with a smaller number of
outputs. Evidence of this can be seen in table 8.5 where accuracy improves
significantly when going from 8 to 4 predicted indices. The issue of inaccuracy
caused by small deviations in predictions remains however, and the accuracy
achieved is still a lot lower than desired. This means that this iteration of the
model will also be ineffective when applied in the real world.

8.3.4 Issues with the experiment
As mentioned in the previous section underfitting and inaccuracy caused by
small variations in predictions are large problems with the models in experiment
2.

In addition to this a problem with the experiment is that when the log file is
parsed the amplitude peak data and corresponding PMI values are stored using
the JSON file format. A JSON file behaves in a similar manner to a python
dictionary in that it stores data in key-value pairs. This means that only one
example of a specific key can exist in a given file. The current log parsing
implementation pairs a label consisting of 4 or 8 values with a PMI-value pair
and inserts them into the JSON file. As a result of this a label of beam indices
will only appear once in the training data for the model. This causes large issues
as large amounts of repeating data will be excluded, impacting the accuracy of
predictions. This issue is remedied in experiments 3 and 4.
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8.4 Experiment 3: Using PMI to predict one of
two static regions

In the third experiment the issues encountered in the second experiment are
addressed. By simplifying the problem to a binary classification one, the prob-
lem of inaccuracies caused by small variations in predicted indices is resolved.
Reducing the number of outputs to just one also helps address the problem of
model underfitting.

In addition to this, the issues with the log parsing process present in exper-
iment 2 have been fixed. This was done by saving SRS and PMI data collected
from the log file in a .txt file instead of a JSON file. This way label-feature pairs
can have the same key and still be include in the training data. Repeating data
is now also included which affects the weighting process during model training
to make predictions more accurate.

8.4.1 Plotting beam power peaks
For the third experiment the SRS_and_PMI.log file was initially used. As was
discovered in the previous experiment (see figure 8.5) the beam power peaks
in this log are not equally distributed across the range. This is fine for binary
classification, but in the fourth experiment more representative data is needed.
In addition to this the amount of data in the log is relatively small, which
can have an impact on prediction accuracy. For this reason, another log file,
PMI_SRS_around_watertower was collected. In this experiment both logs
were tested. The peak amplitude distribution for the entire log was plotted.

Figure 8.6: Distribution of highest amplitude peak for each group in
PMI_SRS_around_watertower.log.
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As seen in figure 8.6 the amplitude peak distribution for the new log file is
much more even compared to the on seen in figure 8.5. There is still a clear
trend in the locations of the peaks, however more indices are represented.

8.4.2 Filtering of data
To improve upon the accuracy that was initially achieved in this experiment tests
were also made using filtered data. After parsing each log file there are many
examples of a PMI value pair being labeled with different labels depending on
the distribution of beam power across the beam range. This can have a negative
effect on prediction accuracy as features having several labels will "confuse" the
model during training. For this reason the input data was filtered by only
including data labeled with the dominant label. In other words, if there are 400
examples of the PMI pair ’14,4’ being labeled ’1’ and 200 examples of it being
labeled ’0’ only the data points labeled ’1’ will be included. Both unfiltered and
filtered log files were tested during this experiment.

8.4.3 Linear regression
A linear regression model was first tested for the sake of comparison with the
DNN model that was subsequently used. Both the old SRS_and_PMI.log
and new PMI_SRS_around_watertower.log files were tested, unfiltered and
filtered.

Unfiltered data

Metric Value

Accuracy 0.522± 0.03
Loss 0.468± 0.03

Table 8.6: Accuracy and loss achieved using a linear regression model with
unfiltered data from SRS_and_PMI.log as input.

Metric Value

Accuracy 0.531± 0.02
Loss 0.459± 0.02

Table 8.7: Accuracy and loss achieved using a linear regression model with
unfiltered data from PMI_SRS_around_watertower.log as input.

Using an unfiltered dataset the accuracy achieved is not very high. With the
two log files only 52% and 53% of predictions were correct respectively as seen
in tables 8.6 and 8.7. This is not especially surprising as having inputs labeled
differently will cause accuracy to decrease.
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Filtered data

Metric Value

Accuracy 0.709± 0.05
Loss 0.291± 0.05

Table 8.8: Accuracy and loss achieved using a linear regression model with
filtered data from SRS_and_PMI.log as input.

Metric Value

Accuracy 0.561± 0.02
Loss 0.447± 0.03

Table 8.9: Accuracy and loss achieved using a linear regression model with
filtered data from PMI_SRS_around_watertower.log as input.

In the case of using the linear regression model on filtered datasets a data
outlier can be seen. When using the smaller log file, accuracy increases to
around 71% as seen in table 8.8, however when running the same model on the
larger dataset accuracy drops to just 56% (see table 8.9). This is unexpected
as a larger training dataset would generally coincide with better predictions
being made. It is not entirely clear as to why this outlier appears. One po-
tential cause may be that the more equally distributed amplitude peaks in the
PMI_SRS_around_watertower.log makes it more difficult for a simple linear
model to determine a linear relationship between the PMI data and label.

8.4.4 Deep Neural Network
Unfiltered data

Metric Value

Accuracy 0.547± 0.02
Loss 0.454± 0.03

Table 8.10: Accuracy and loss achieved using a DNN model with unfiltered data
from SRS_and_PMI.log as input.
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Metric Value

Accuracy 0.558± 0.03
Loss 0.441± 0.03

Table 8.11: Accuracy and loss achieved using a DNN model with unfiltered data
from PMI_SRS_around_watertower.log as input.

Using the unfiltered data as input for the deep neural network model shows
a similar result as using it for the linear model. As seen in tables 8.10 and 8.11
accuracies of 55% and 56% are achieved respectively for the two log files. The
DNN gives a slightly better result than the linear model in this case, however
the issues caused by not filtering the data persist leading to decreased accuracy.

Filtered data

Metric Value

Accuracy 0.751± 0.05
Loss 0.264± 0.04

Table 8.12: Accuracy and loss achieved using a DNN model with filtered data
from SRS_and_PMI.log as input.

Metric Value

Accuracy 0.874± 0.02
Loss 0.132± 0.03

Table 8.13: Accuracy and loss achieved using a DNN model with filtered data
from PMI_SRS_around_watertower.log as input.

Using the deep neural network after filtering the data provides the most
promising result yet. Accuracies of 75% and 87% are achieved respectively for
the two log files (see tables 8.12 and 8.13). The DNN is better able to find and
quantify a relationship between PMI values and region index compared to the
linear model. Using a larger input dataset also improves accuracy in this case,
which is in line with what would be expected. The range of achieved prediction
accuracies is also tighter when using the larger log file, which is indicative of a
higher level of confidence and less variability.

8.5 Experiment 4: Using PMI to predict one of
four static regions

Dividing the antenna array into more than two regions could potentially be
beneficial and yield greater efficiency as an even smaller number of antennas
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could be activated at any given time. For this reason the fourth experiment
introduces two more classes to the classification problem described in experiment
3, dividing the beam range into 4 regions.

To evaluate and compare the results achieved using the DNN model a K-
nearest neighbors algorithm was also tried for classification of the data.

Models were tested using the PMI_SRS_around_watertower.log file used in
the previous experiment. Using this file is what enables non-binary classification
as its amplitude peaks are more evenly spread across the beam range. This
means that when the range is split into four regions they will all be represented
in the dataset. All data is filtered.

In addition to testing each model by splitting the input dataset into testing
and training data another approach was also tried. By using a separate dataset
for testing the behavior of the model when receiving data not present in the
training dataset can be evaluated. To produce this second input dataset the
PMI_SRS_garage_top.log file was used.

Figure 8.7: Distribution of highest amplitude peak for each group in
PMI_SRS_garage_top.log.

The distribution in figure 8.7 shows that the beam power peaks in this log
file are less evenly distributed compared to the previous log file, shown in figure
8.6. This is not especially significant as the log is only being used for testing
and to determine the usefulness of the model in a real world scenario.
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8.5.1 Deep Neural Network

Metric Value

Accuracy 0.369± 0.02
Loss 0.756± 0.02

Table 8.14: Accuracy and loss achieved trying to predict 1 of 4 regions using
a DNN model with filtered data from PMI_SRS_around_watertower.log as
input.

After training the DNN model for 100 epochs an accuracy of 0.369 and loss
of 0.756 were achieved as shown in table 8.14. This is obviously much lower than
for the binary classification case, however the result is still an improvement on
random selection of regions.

Metric Value

Accuracy 0.292± 0.02
Loss 1.409± 0.03

Table 8.15: Accuracy achieved trying to predict 1 of 4 regions using a DNN
model with filtered data from PMI_SRS_garage_top.log as input.

As shown in table 8.15 and accuracy of 0.292 and loss of 1.409 were achieved
when the testing dataset was swapped from the PMI_SRS_around_watertower.log
file to the PMI_SRS_garage_top.log file. While this prediction accuracy is not
as high as in the first test (see figure 8.14) it is still a promising result as it is
within 8 percentage points of the original test. This suggests that it could be
viable to use a DNN for classification, even when it is given inputs not present
in the training data. Such scenarios are likely to occur in a real world use case.

The prediction accuracies of both these tests are nowhere close to an accept-
able value. It may be necessary to make predictions on other input features
in addition to the PMI values. This is further discussed in the ’Future work’
secrion.
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8.5.2 K-nearest neighbors
To help evaluate the results of the DNN model a K-nearest neighbor approach
was tried using the k-values 5, 10 and 100.

Metric k = 5 k = 10 k = 100

Accuracy 0.999 0.998 0.987

Table 8.16: Accuracy and loss achieved trying to predict 1 of 4 regions using
a DNN model with filtered data from PMI_SRS_around_watertower.log as
input.

As table 8.16 shows, no matter the k-value chosen an accuracy close to 100%
is achieved. This is due to the fact that the testing data largely contains the
same data points as the training data. As the K-nearest neighbors algorithm
classifies an input by looking at neighboring points, most of the neighbors will
have the same value. This leads to a near perfect prediction, however this result
is not especially useful in a real world scenario where you cannot count on the
PMI data sent by a given UE being present in the training data. To investigate
this further the PMI_SRS_garage_top.log file was parsed and tried as input.

Metric k = 5 k = 10 k = 100

Accuracy 0.192 0.149 0.143

Table 8.17: Accuracy and loss achieved trying to predict 1 of 4 regions using a
DNN model with filtered data from PMI_SRS_garage_top.log as input.

As seen in table 8.17 the accuracies achieved when using the data from
another log file as testing data is much lower. 0.192, 0.149 and 0.143 for k-
values 5, 10 and 100 respectively. This indicates that many of the PMI pairs
present in the first log are not present in this one. Therefore using the k-nearest
neighbors method may not be a suitable approach when many PMI-pairs are
not present in the training dataset.

When compared to the results achieved using a DNN, seen in table 8.15, the
DNN model appears more favorable. The deep neural network makes signifi-
cantly more accurate predictions based on previously unseen input data. For
this reason the DNN model is likely more appropriate for non-binary classifica-
tion.
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CHAPTER 9

Conclusions and Future Work

In this chapter any conclusions that can be drawn from the experiments above
will be presented and discussed. In addition to this potential future work on
this topic will be examined.

9.1 Conclusions
The overarching aim of this thesis was to investigate the possibility of using
machine learning techniques for the purpose of antenna selection. Approaching
this problem by making a prediction in the beam space was chosen as a good
starting method. Through the process of investigating this problem several
approaches were tested and their ability to accurately predict a region in the
beam space were evaluated.

9.1.1 Q1: Is it possible to accurately predict a subset of
beams to use using a machine learning model.

As shown, primarily in the third experiment, it is possible to accurately predict
a predefined beam region when the problem is reduced to one of binary classi-
fication. A prediction accuracy of 87.4% was achieved when using the larger of
the datasets as input to a DNN model.

9.1.2 Q2: How should predictions be made and based on
what input data?

Of the methods tested the first two did not show much promise. Using beam
power to predict a label which is also decided by calculating beam power is
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wasteful. In the second approach using PMI data to predict the indices of the
highest amplitude beams in the beam range was attempted. Due to the model
being underfitted when predicting a larger array of values based on just two
inputs the second experiment did not produce a satisfactory accuracy rate.

Overall however, using PMI data to make predictions did show promise.
In the final tests the problem was once again reduced to one of single label
classification, meaning the prediction of predefined beam regions. In the third
experiment binary classification based on PMI data was attempted and was
shown to be a viable solution. The prediction accuracy when using a Deep
Neural Network model was good.

Finally, classification when the beam range is split into four regions was
also attempted. For this case the current model architecture was shown to be
insufficient, with low prediction accuracies.

In the final experiment tests were also made using different datasets for
training and testing. Giving the model testing data that includes inputs it has
not yet encountered during training did have some impact on accuracy. This
impact was however not great, and the model was still able to make predictions
with better accuracy than randomly assigning labels. This is an indication that
using a DNN to predict based on PMI data may be part of a viable solution in
the non-binary classification case.

In conclusion, of the approaches tested, using a DNN model to make binary
predictions based on PMI input data yielded the highest accuracies throughout
the testing process.

9.1.3 Q3: Which machine learning model yields the high-
est prediction accuracy?

Although testing many different models did not end up being the main focus
of the thesis conclusions can still be drawn from the tests that were conducted.
The DNN models used consistently yielded higher prediction accuracies than
linear regression as they were better able to capture the relationships between
inputs and outputs.

The overall conclusion of the thesis is that predicting a predefined antenna
region based on PMI-data is a viable technique. If there are more than two
predefined regions other inputs may be needed to make an accurate prediction.
A Deep Neural Network appears to be viable model for classification in the
experiments conducted during this thesis.

9.2 Future work
The results of this thesis show that there is a lot of potential future work to do
to develop this concept further.

While using the PMI data for binary classification did show promise and
produced accurate results, this was not the case when trying to predict one of
four beam regions. It is likely that by only using PMI data the model may not
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be able to yield precise enough predictions. For this reason other inputs may
be needed to make non-binary classification viable. During the thesis using the
angle between the base station and UE as a parameter was discussed. Whether
this or other inputs are feasible options is a matter that could be evaluated and
tested in the future.

Adding more inputs to the model may also make it less prone to underfit-
ting. This could potentially open up the possibility of predicting the indices
of the highest amplitude beams, as was attempted in the second experiment.
Predicting which beams to include in a region dynamically could potentially
allow for greater efficiency, as it would be ensured that only the highest power
beams are selected. This is another avenue that could be explored in the future.
If classification is to be done using static regions other definitions than those
used during this thesis could be experimented with.

Related to this, labeling data in alternate ways could also be explored. As
the locations of beam power peaks can vary somewhat with time, taking into
account several groups of channel estimate values when labeling input data may
produce more representative and consistent results. Looking at several points
in time when making predictions is also an avenue that could be explored for
the same reasons.

9.2.1 Other ML models
In addition to adding more inputs other machine learning models may also
be tested. For the purpose of focusing the thesis on testing several different
approaches to the region prediction problem, and finding one that works well,
only two main machine learning models were tested. There are however many
other machine learning models that could be tested and may potentially provide
even more accurate results. The decision tree is a model that was discussed and
could be tried in the future.

When testing future models and deciding how to use these for antenna se-
lection there are also several aspects which will need to be investigated further.
At which interval predictions should be made is an important question that will
need resolving if the system is to be used in a real world application. Differ-
ent potential model inputs may be updated at different intervals, meaning that
making predictions each time some inputs are updated may be too costly. In
addition to this, the time it takes to make a prediction will depend on the com-
plexity of the model. These two factors and how they affect the broader system
must be investigated taken and into account when making real time predictions.

9.2.2 Antenna selection
There is also work to be done in order to achieve the main goal of solving the
antenna selection problem. The beam predictions currently made exist in the
beam space. In order to solve antenna selection the algorithm will have to be
extended in such a way that beam space predictions can be converted to the

60



antenna space. This problem will require future investigation and implemen-
tation. Any solution will also have to be tested in a simulation or real world
environment, as was the original intention of this thesis.
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