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Abstract

[Context] The agile approach to software development has led developers to
retain more project-specific knowledge. This, along with the software indus-
try’s higher turnover rate compared to other sectors, makes software projects
more susceptible to the abrupt loss of key personnel. [Objective] This project
investigates if the resilience to sudden loss of key developers differs in propri-
etary and open-source software projects. This is done through the introduction
of a new algorithm, expanding upon the current state-of-the-art Truck Factor
algorithm. [Method] The method comprises three phases. Phase one involves
reproducing the current state-of-the-art algorithm. In phase two, we introduce
five new algorithmic approaches and analyze advantageous configurations. In
phase three, we implement the most promising algorithm from phase two on
open-source and proprietary projects obtained from CodeScene’s data lake. [Re-
sults] Two of the proposed algorithms provided more accurate results on an or-
acle compared to the current state-of-the-art algorithm. Furthermore, no clear
difference between the Truck Factor distribution between proprietary and open-
source projects could be observed. However, a trend appears for both contexts:
when the number of developers increases, the relative Truck Factor decreases.
[Conclusion] The execution of the most promising algorithm found that open-
source and proprietary projects share similar characteristics regarding resilience
to the sudden loss of key personnel.

Keywords: Truck Factor, Bus Factor, repository mining, software metrics, knowledge
distribution, proprietary software development, open-source software development



2



Acknowledgements

I would like to thank:

• Markus Borg for your invaluable support throughout this thesis. I am truly grateful
for your assistance and guidance.

• Adam Tornhill for granting me the opportunity to conduct my thesis project at Code-
Scene. I am truly impressed by the remarkable company you have built.

• CodeScene for creating an inclusive environment where I felt like a part of the team.

• Jenny Godring Gullberg for her support and for enabling me to work at Handels-
banken alongside this master thesis.

• Rut Montero Vilar for her steadfast support over the last couple of years.

• Guilherme Avelino for his significant contributions to the field of Truck Factor algo-
rithms and for his support during the course of this thesis.

3



4



Contents

1 Introduction 7
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Definition of the Truck Factor . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The first TF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Subsequent research . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Validating TF algorithms . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Distribution of contribution in OSS . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Open-source development context . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 13
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Heuristics for file knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Commit-based heuristic . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 LoC-based heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 AVL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Validation oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Technical setup 19
3.1 State-of-the-art reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Data collection and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Replication package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Description of datasets 23
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Description of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Methodology 27
5.1 Phase 1: Implement TF algorithms . . . . . . . . . . . . . . . . . . . . . . . 28

5



CONTENTS

5.1.1 Step A: Setup AVL . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.2 Step B: Setup CodeScene’s approach . . . . . . . . . . . . . . . . . 28
5.1.3 Step C: Setup alternative TF algorithms . . . . . . . . . . . . . . . 29

5.2 Phase 2: Benchmark comparison . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Step A: Analyze file authorship . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Step B: Determine thresholds . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Step C: Compare TF algorithms . . . . . . . . . . . . . . . . . . . . 32

5.3 Phase 3: Comparing open-source and proprietary repositories . . . . . . . . 33
5.3.1 A: Compare TF results . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Results 35
6.1 Phase 1: Setup AVL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Phase 2: Identify thresholds and a favourable algorithm . . . . . . . . . . . 38

6.2.1 File authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.3 Summary thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Phase 3: Comparing open-source and proprietary repositories . . . . . . . . 46

7 Discussion 51
7.1 RQ1: Comparing TF algorithms . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 RQ2: Comparing TF values in OSS and proprietary contexts . . . . . . . . 52
7.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.1 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3.2 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3.3 External validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.4 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusion 55
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

Appendix A Detailed setup 63
A.1 TF Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 AVL Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Appendix B Detailed results 65
B.1 File Authorships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.2 Max File Authorships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6



Chapter 1

Introduction

This chapter begins by addressing the necessity for a Truck Factor algorithm, followed by
an exploration of the Truck Factor’s definition. Subsequently, it reviews findings from prior
research, examining various methods for assigning and categorizing knowledge to a file. The
chapter concludes by presenting the overarching aim of this thesis.

1.1 Background and motivation
Historically, traditional software development was built on the idea that a successful release
results from rigorous development processes. This includes intensive analysis, design and
documentation phases [20]. However, with the rising challenges of the 21st century, orga-
nizations had to more quickly adapt and respond to more frequent and major changes in
the business domain [6]. Traditional software development has therefore been challenged
in today’s world, and alternative organizational structures and development strategies have
proven to provide significant business benefits [20].

Traditional software development is keen to some common points of failure, often deriv-
ing from the relationship between the business domain and software development teams. To
battle these shortfalls, a more agile approach to software development has become increas-
ingly established [2].

Traditional software development emphasizes risk reduction through comprehensive doc-
umentation and analysis, whereas agile software development seeks to mitigate risk by quickly
adapting to dynamic environments [20, 32, 1]. Agile practices commonly include informal
communication with stakeholders, keeping more project information within the develop-
ment team (rather than in formal requirement documents), and fostering the emergence and
evolution of architectures [20, 1].

These factors collectively have increased organizations’ dependence on developers. Cou-
pled with the software industry’s elevated turnover rate in comparison to other sectors [21,
22], software projects are particularly vulnerable to the abrupt departure of key personnel.
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1. Introduction

This thesis aims to support organizations, both in open-source and proprietary contexts,
in identifying and assessing the risks linked to dependency on a limited number of developers
through the introduction of a novel algorithm. Furthermore, the thesis aims to examine
whether this risk observed in open-source projects extends to proprietary projects.

1.2 Definition of the Truck Factor
The Truck factor (TF) is a term used in software management to define a measurement of
how vulnerable a project is to a sudden loss of its key members. Specifically, it refers to
the hypothetical question: "What would happen if a key member got hit by a truck?" The
term accesses the risk of a project based on the number of key individuals who have critical
knowledge or skills. Ricca et al. [23] lift that the TF could be used to quantify how well
distributed the knowledge and responsibilities are among the members of a project, and an
indicator of how expensive it is to replace a team member in a project [24]. A higher TF,
compared to the team size, indicates a higher project resilience where the project would be
more likely to function if a key member were lost. Conversely, a lower TF would indicate
a higher project risk due to heavy reliance on specific individuals. The term has also been
referred to as the “truck factor problem” [19], “TF developers detachment” [3] and “Bus factor”
[19].

1.3 Previous work
This chapter discusses the history of truck factor algorithms, different implementations of
various algorithms, validations of the AVL algorithm, and definitions of file authorship.

1.3.1 The first TF algorithm
Zazworka et al. pioneered an algorithm for TF computation through mining version control
system data [32]. This algorithm laid the groundwork for subsequent advancements, operat-
ing on two fundamental principles. Firstly, any developers who have done a commit to a file
are assumed to possess total knowledge of the file. Secondly, a project would be at serious
risk if the remaining developers’ joint knowledge covers less than a threshold of files.

The algorithm functions by iteratively removing all possible sets of developers and cal-
culating the remaining knowledge. The algorithm stops when the knowledge coverage is
beyond a given threshold, and the TF is the number of iterations. An example of the algo-
rithm is presented in Figure 1.1. With the knowledge threshold set to 70%, 50%, and 20%, the
TF estimation would be 0, 1, and 2, respectively.

Ricca et al. conducted additional research to validate Zazworka et al.’s work [24]. They
assessed the algorithm on 37 open-source projects with various threshold configurations. The
algorithm showed potential, notwithstanding its simplistic inherent assumption that every
developer who interacted with a certain file would possess equal knowledge of it. However,
the algorithm showed scaling issues, especially in projects where the number of committers
was greater than 30 individuals. In these projects, the computational time was measured in
days rather than minutes.
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1.3 Previous work

Figure 1.1: An example of Zazworka et al.’s algorithm, plus signs im-
ply remaining knowledge about a file. On the contrary, a minus sign
implies that all knowledge of a file has been lost.

Ricca et al. [24] advocated that a more precise algorithm should be developed by con-
sidering that developers with a substantial number of commits are more likely to possess a
greater depth of knowledge about the corresponding file, as opposed to a developer who has
contributed far fewer commits.

1.3.2 Subsequent research
The CST algorithm presented by Cosentino et al. [10] builds upon Zazworka et al.’s algorithm.
In contrast to relying on the percentage of files without knowledge, this algorithm determines
the TF by considering the number of developers with sufficient understanding of the entire
project to sustain development.

The algorithm estimates the TF by identifying developers with a knowledge score exceed-
ing 100%/N, where N is the number of developers who have made a commit to the artifact.
The knowledge score is derived from the average file-knowledge for a system. Cosentino et
al. introduce four distinct metrics for computing file knowledge in a system, namely:

• Last change takes it all: The developer who committed the latest change is assigned to
have 100% knowledge about the code in that file.

• Multiple changes equally considered: The knowledge about the code is assumed to be
connected with the number of commits a developer has done. Thereby, the assigned
knowledge per commit to a file is 100%

#Commits

• Non-consecutive changes: Same as Multiple changes equally considered, but the knowledge
about a file is split according to the number of non-consecutive commits by a user to
a file.

• Weighted non-consecutive changes: This metric takes into account the time aspect of a
commit. Commits closer in time get a higher knowledge % than commits further back
in time.

The RIG algorithm developed by Riby et al. [25] adapts algorithms used for financial
risk assessment in the financial sector to software development projects. By taking a more
statistical approach, and by using the loss distribution, expected loss, knowledge at risk, and
expected shortfall, Monte Carlo simulations are run with a randomly selected developer who
leaves. The simulation aims to indicate how bad a loss would be, and how probable it is to
occur. Through this data, the TF is determined.
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1. Introduction

The AVL algorithm proposed by Avelino et al. [4] follows the same principle as Zazworka
et al., but diverges in its methodology. Instead of assessing a commit to total knowledge of a
file, AVL relies on degree-of-authorship calculations, derived from Fritz et al. [13], to identify
one or multiple developers as authors of a file. The algorithm proposes that a project would
be at serious risk if 50% of the project’s files were left without one or more authors. For
TF calculation, the algorithm employs a greedy approach, iteratively removing the developer
responsible for the most files. The TF is determined by the number of iterations until at least
50% of the project’s files lack an assigned author.

Jabrayilzade et al. [19] enhanced the algorithm proposed by Avelino et al. by incorporat-
ing additional parameters into the Degree-of-Authorship (DOA) metrics. These parameters
include contribution decay, code reviews, and time spent in meetings.

The algorithms introduced by Avelino et al. [4], Jabrayilzade et al. [19], Zazworka et
al. [32], and Cosentino et al. [10] treat the significance of files equally. Haratian et al. [16]
investigated the impact of incorporating file significance into the algorithms proposed by
Avelino et al. and Jabrayilzade et al. They assigned weights to files based on the number of
dependencies, and found that this addition improved the performance of both algorithms.

Our literature search suggests that the field of algorithms for estimating the TF is still in
its early stages, with Avelino’s work being a standout contribution. Subsequent algorithms,
building on Avelino et al., have introduced additional metrics to improve models and better
capture the knowledge within a development team. However, to the best of our knowledge,
no peer-reviewed paper has utilized Lines of Code as a heuristic for assigning file-knowledge
to a given developer. I.e. a large chunk of contributed source code to a file is worth, in
terms of knowledge, more than a small, contrary to the existing algorithms where solely the
commit-history assigns knowledge.

1.3.3 Validating TF algorithms
Proposing TF algorithms may be straightforward, but evaluating their accuracy presents a
more challenging task. Ferreira et al. [12] addressed this challenge by establishing a TF ora-
cle, consisting of 35 open-source projects. The oracle was constructed through survey-based
research, building on the work conducted by Avelino et al. [4]. Ferreira et al. compared three
different algorithms—AVL [4], RIG [25], and CST [10] and concluded that the AVL algo-
rithm developed by Avelino et al. [4] exhibited the best accuracy. They also determined that
a feasible threshold for identifying TF developers with the AVL algorithm is 50% of aban-
doned files. In this thesis, we use the AVL algorithm (with the 50% setting) as a benchmark
for comparison. A detailed description of the AVL algorithm follows in Section 2.3.

1.4 Distribution of contribution in OSS
Within the Open Source community, the term Core Developers refers to those developers who
play a prominent role in the advancement and upkeep of a software project [31]. Yamashita et
al. [31] investigated how well Open Source development follows the Pareto principle, i.e. 20%
of the developers are responsible for 80% the contributed code, by analyzing 2,496 GitHub
repositories. They defined the core developers to be the group of developers accountable for
the majority of contributions, encompassing up to 80% of a project’s codebase. The results
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1.5 Open-source development context

Table 1.1: The percentage of core developers in Yamashita et al.’s pa-
per [31]. Commit-based heuristics quantify core developers based on
the number of commits they have made, while LoC-based heuristics
rely on the number of lines of code.

Heuristic Proportion of Core Developers
0%-10% 10%-30% 30%-100%

Commit-Based 26% 47% 27%
LoC-based 58% 37% 5%

of the paper are accumulated in Table 1.1, and concludes that the Pareto principle is not
generally applicable to open-source projects. A large portion up to a majority, depending
on heuristic, of projects have a proportion of Core developers of less than 10%. Thereby, the
paper indicates that open-source systems tend to have a low TF.

1.5 Open-source development context

Open-source software development builds on asynchronous collaboration among decentral-
ized developers. In the early days of the development methodology, it challenged the way
of building systems by demanding full transparency on both the source code, but also the
governance of the project [9]. In recent years, there has been a growing focus on the open-
source approach [11, 9]. Despite the absence of traditional project plans and requirements
documents in open-source projects, this methodology has gained increased attention for its
effectiveness in software maintenance, code reusability, and the delivery of higher-quality
projects. Notably, complex systems like Linux [9] serve as a compelling example, demon-
strating the success and viability of this development methodology.

A part of its initial popularity was due to the motivation of its contributors. Within
Open source a driving factor is that a developer needs something specific to be done [9], and
the motivation to contribute is then further reinforced when a contribution is adopted and
used by other developers. This is contrary to proprietary projects, where the contributions
are predefined by requirements documents.

Open-source projects have thrived under the influence of enthusiasts and amateurs for
the majority of their existence [27]. However, there has been a swift adoption of these sys-
tems by companies. As of 2018, 80% of organizations rely on open-source systems [18]. Con-
sequently, more businesses are actively engaging in open-source communities. Notably, some
organizations have emerged as significant contributors, even assuming the role of principal
contributors, underscoring the increasing influence of businesses in shaping and advancing
open-source projects [14, 27]. Therefore, we believe that the distribution of Truck Factors
between open-source and the proprietary contexts could prove to have similar characteris-
tics.

11



1. Introduction

1.6 Research approach
The primary goal of this thesis project is to establish the foundation for an upcoming TF
algorithm to be incorporated into CodeScene’s product range. This project unfolds in three
key steps. Firstly, we implement various novel TF algorithms, including the state-of-the-art
AVL algorithm. The validation of our AVL implementation involves reproducing analyses
conducted on open-source repositories by Avelino et al. [4]. Secondly, we assess the accuracy
of these algorithms using Ferreira’s Oracle dataset [12]. Throughout this evaluation, we ex-
plore how fine-tuning thresholds contribute to more precise TF scores. Lastly, we apply the
most accurate TF algorithms to two new datasets, one open-source and one closed-source
anonymously extracted from CodeScene’s customers.

Two research questions guide our discussions:

• RQ1) How do our novel TF algorithms compare to the state-of-the-art AVL algorithm?

• RQ2) To what extent does the distribution of TF of open-source GitHub projects gen-
eralize to proprietary projects?

12



Chapter 2

Background

This chapter introduces key findings from prior research and establishes definitions and
heuristics that are employed throughout the thesis. Furthermore, it provides a detailed de-
scription of the AVL algorithm presented by Avelino et al. [4]. Finally, the chapter presents
the dataset designated as the TF oracle.

2.1 Definitions
This section introduces definitions that will be used throughout the thesis. According to
Avelino et al. [4], a file author is defined as a developer capable of maintaining a file from the
most recent system snapshot onwards. This includes developers who created the file and/or
those who made significant contributions to a file after its initial creation. In other words, a
file could have more than one author. This thesis adopts this authorship definition.

Borg et al. [7] examined the correlation between developers’ project experience, file own-
ership, and the resolution times of issues. File ownership was determined by the proportion
of a developer’s commits to a file, categorized on an ordinal scale: marginal ownership (<0.1),
minor ownership (0.1-0.49), major ownership (0.5-0.9), and dominant ownership (>0.9). The
paper concluded that current industry practices result in projects with many dominant and
marginal owners, the opposite objective of collective code ownership. This thesis adopts
these ownership definitions to enable a more fine-granular description of ownership on a
file-level.

CodeScene is a proprietary code analysis tool that offers a palette of analyses. The tool de-
fines a file’s primary owner as the developer who has contributed at least 50% of a file’s current
lines of code. The CodeScene solution uses a complex implementation to track developers’
contributions and ownership during the lifetime of a project. The solution is substantially
more complex than the naive methods presented in previous academic tools, for example re-
garding tracking developer name changes and supporting pair programming configurations.
In this project, we build on CodeScene’s primary owner calculations to calculate TF scores

13



2. Background

as a second benchmark for comparison.
CodeScene’s tools can also identify the number of active developer a project has. This data

is used in the thesis to comprehend how the Truck Factor relates to the current developers
of a project.

All algorithms utilized in this thesis employ greedy approaches to determine the Truck
Factor. In each iteration, one developer is excluded, and consequently, if a file no longer has
an assigned author, it is considered orphaned.

To summarize, we use the following definitions in this thesis:

• Owner A developer who has existing contributions to a file.

• Author A developer knowledgeable enough to maintain and further develop a file.

• Orphaned file A file which no longer has any authors.

• Primary Owner CodeScene’s definition of a developer who owns 50% or more of the
file’s LoC.

• Active developers CodeScene’s term for developers who made commits to the project
in the last three months.

2.2 Heuristics for file knowledge
This section presents two fundamental heuristics in file authorship calculations. A more
advanced third approach is presented together with the AVL algorithm.

2.2.1 Commit-based heuristic
The Commit-based heuristic assigns file-knowledge based on the number of touches a devel-
oper has done to a file, regardless of the size of the touch. The commit information can be
obtained from version control systems such as git and be leveraged for further analyzes.

A majority of the algorithms discussed in Subsection 1.3.2 employ the Commit-based
heuristic to utilize commit information for calculating the Truck Factor, each employing
distinct implementation approaches.

The distinct advantages of Commit-based heuristics, when compared to LoC-based al-
ternatives discussed in Subsection 2.2.2, lie in their consideration of a project’s history rather
than solely on the artefact’s current state. This means that these heuristics are more resilient
to refactoring activities [5]. Consequently, they can capture “hidden” knowledge that may no
longer be represented in the current artifact as lines of code.

A limitation of this heuristic is that it does not consider the size or context of each com-
mit. For instance, renaming a method in one file could trigger multiple changes in other
files that call the renamed method. Consequently, the heuristic could yield a false positive
contribution to files used by the previously mentioned algorithms since the commits are not
weighted by context. Borg et al. [7] examined the file-ownership distribution in 39 propri-
etary systems by analyzing commit data. The results revealed that developers often modify
files for which they have either minimal or dominant ownership, as illustrated in Figure
2.1. This implies that depending solely on commit-based metrics may overstate a developer’s

14



2.2 Heuristics for file knowledge

Figure 2.1: The ownership distribution when modifying files,
adapted from Borg et al. [7]. The x-axis represents the relative own-
ership by a developer to a file, while the y-axis shows the frequency
of such occurrences.

contributions. This is because having only a minimal ownership stake in a file does not nec-
essarily demonstrate that these developers could effectively maintain and enhance the files if
the main authors were to leave the project suddenly.

2.2.2 LoC-based heuristic
The LoC-based approach identifies a developer’s contribution to a project based on the cur-
rent lines of code in a given artifact.

This heuristic offers a notable advantage by placing greater emphasis on the size of each
developer’s contribution. It effectively mitigates the issue of false positives for developers
with small ownerships, as these are overshadowed by the substantial volume of other code.
However, it is crucial to acknowledge that contributions like refactoring activities by other
developers can elevate the risk of suppressing existing code knowledge, potentially resulting
in false negatives [5].

No Truck Factor algorithms have been presented that utilize the LoC-heuristic. Taking
inspiration from Avelino et al.’s algorithm [4], this thesis defines an author in a manner akin
to Avelino et al. Specifically, the authors of an artifact’s file are the developers who own more
than a set threshold of the file’s lines of code. This is with the exception of the algorithm
that leverages primary-author data generated from CodeScene’s analysis tools. In this case,
the primary author is seen as the only author of the file.

15



2. Background

2.3 AVL algorithm
The AVL algorithm, developed by Avelino et al. [4], determines the Truck Factor by pro-
gressively eliminating the developer who is author of the most number of files until half of
the system’s files do not have an author. The algorithm does this by mapping the system’s
git-log to a Degree-of-authorship (DOA) metric for each file and developer combination. The
algorithm follows five distinct phases.

Phase I, Filter source files: Source code files that are not of interest for the analysis should
be discarded. Examples of these files are documentation, images, and third-party libraries.
The algorithm does this by employing the Ruby library Linguist 1 and by filtering files ex-
plicitly listed in an ignore file.

Phase II, handling developer aliases: Developers may sometimes have multiple aliases due
to their association with various GitHub accounts. The AVL algorithm addresses this issue in
two steps. Firstly, the algorithm maps the developers’ email addresses with their respective
aliases. Secondly, it consolidates similar developer aliases by considering them identical if
their Levenshtein distance is less than one. In other words, the algorithm considers two
aliases to be the same if they differ by at most one character through insertion, deletion, or
substitution. To exemplify, the aliases "developer" and "d3veloper" would be identified as the
same developer since it only takes one substitution (3↔ e) to make the aliases equal.

Phase III, Trace change history: The AVL algorithm traces the history of the system’s files
by analyzing the log history. For each change, the algorithm extracts the file’s path, and the
developer who committed the change, and categorizes the change into one of three categories:
file addition, file modification, or file rename.

Phase IV, Defining authors: The AVL algorithm defines the authors of a file as the de-
velopers who have both 1) an absolute DOA greater than 3.293 and 2) a normalized DOA
greater than 0.75. The DOA metric were formulated by Fritz et al. [13] and are determined
by the functions:

DOAabsolute(md, fp) = a + b ∗ FA(md , fp) + c ∗ DL(md, fp) + d ∗ ln(1 + AC(md, fp))

Where:

• DOAabsolute(md, fp), the DOA for a developer md for file fp

• FA,First authorship , if developer md created the file fp, then FA=1, else FA=0.

• DL, Number of deliveries how many commits the developer md has done the a file fp.

• AC, Number of acceptance, the number of commits to the file fp made by any developer
other than developer md .

• a,b,c,d, parameters derived from Fritz et al. [13], Respectively: 3.293, 1.098, 0.164, -
0.321.

1https://github.com/github-linguist/linguist
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For each file, fp, the DOAnormalized is set to be 1 for the developer, mMaxDOA, with the
highest absolute DOAabsolute. Hence, the developers’ DOAnormalized are calculated as:

DOAnormalized(md, fp) =
DOAabsolute(md, fp)

DOAabsolute(mMaxDOA, fp)

The usage of the DOA metric entails that a file can have multiple authors. Thereby taking
into account scenarios where a codebase has a higher degree of knowledge distribution.

Phase V, Estimate Truck Factor: Using the information obtained from previous phases,
the algorithm proceeds to iteratively eliminate the developer who, in each iteration, is the
author of the most files. This process continues until half of the system’s files no longer have
any associated author. The Truck factor is the number of iterations, and the AVL algorithm
outputs both the Truck Factor as well as the developers who are part of this set of developers.

Note that the Truck Factor tool has undergone updates since its first commit on July 11,
2015. The tool has three releases, v.1.0 September 12, 2015, v1.1 April 13, 2016, and the
latest v.1.2 released April 12, 2018 a.

Through email exchanges with Avelino, the distinctions between the versions were clari-
fied. In Version 1.0, the tool did not incorporate native support for alias handling. Instead,
this task was carried out manually, with the mapping added to a file that the tool later uti-
lized as input. In subsequent releases, this functionality is already embedded in the tool.
These versions also possess the capability to exclude authors associated with minor file
authorships, consequently mitigating the impact of a long-tail distribution of knowledge.
The algorithm achieves this by excluding developers who have authored less than 10% of
the total files.

ahttps://github.com/aserg-ufmg/Truck-Factor/releases

2.4 Validation oracle
Validating the results from truck factor analyses is an acknowledged challenge. In this section,
we introduce the best available oracle presented in previous work.

In Avelino et al.’s study, the AVL algorithm was applied to analyze 133 open-source sys-
tems [4]. To validate their findings, the authors conducted a survey-based investigation, con-
sisting of 114 questionnaires tailored to individual systems, and subsequently posted them on
the respective GitHub pages. The study addressed, among others, the following questions:

1. Do developers agree that the top-ranked authors are the main developers of their
projects?

2. Do developers agree that their project will be in trouble if they lose the developers
responding for its truck factor?

Of the 114 surveys, Avelino et al. successfully obtained responses for 62 systems. The re-
sponses to the survey’s questions one and two were categorized as Agree, Partially, Disagree,
and Unclear, and the results are provided in Table 2.1.
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Table 2.1: Results of Avelino et al.[4] survey

Question Agree Partially Disagree Unclear
1 31 (50%) 18 (29%) 9 (15%) 4 (6%)
2 24 (39%) 6 (10%) 27 (43%) 5 (8%)

Ferreira et al. [12] subsequently conducted a comparative study to validate three different
algorithms for estimating a project’s Truck Factor, including the AVL algorithm. Expanding
upon the surveys created by Avelino et al. [4], they introduced additional GitHub projects.
Their study refined the survey responses into an oracle, comprising 35 GitHub repositories.
The oracle was established based on results where the communities reached a consensus that
the presented Truck Factor was correct. This dataset is regarded as the best available for
benchmarking Truck Factor algorithms.
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Chapter 3

Technical setup

This chapter presents details of the practical implementation work needed to reproduce
state-of-the-art results. We also explain how we collect the datasets used in this work. Finally,
we present a replication package to let others validate and build on our work.

3.1 State-of-the-art reproduction
As a first step, we seek to reproduce the results from the current state-of-the-art in TF cal-
culations. This means rerunning the AVL algorithm used by Avelino et al. [4] and Ferreira et
al. [12]. While an implementation of the AVL algorithm is available on GitHub, reproducing
[15] the same results as in the original publications requires additional work.

To achieve this, a new shell script was developed, capable of cloning GitHub repositories
and reconstructing the artifact by checking out the nearest commit following a specified date.
The script performs these tasks automatically, relying on data from a given input file.

A subset of 59 GitHub repositories was cloned from Avelino et al.’s paper, selected based
on the estimated Truck Factor information available on the authors’ webpage1. Since the
paper’s publication in 2016, additional commits have been submitted to these repositories.
Therefore, to verify their results, the version control systems need to be synchronized to
the state they were in when Avelino et al. conducted their research. Contact with Avelino
was initiated, and necessary files containing the date of the last commit were shared. Subse-
quently, the repositories are checked out to a commit on the specified days.

The artifacts from Ferreira et al.’s work [12] are reconstructed by cloning the repository
and checking out commits near a specific date. The paper utilized a subset of repositories
from Avelino et al. [4] in addition to their own research. While the paper doesn’t specify the
exact commit or date, it mentions checking out the subset from Avelino et al.’s repositories
to a date in August 2015 and the rest in September 2016. Attempts to contact Ferreira for

1http://aserg.labsoft.dcc.ufmg.br/truckfactor/survey.html
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more detailed information about the artifacts have been unsuccessful. Therefore, the subset
of repositories mentioned in Avelino’s paper was checked out to a commit on August 15,
2015, and the remaining repositories were checked out to a commit on September 15, 2016.
Information about the repositories, GitHub links, commit-id, and dates can be found in the
Appendix at Tables A.2 and A.1. Descriptions of the datasets can be found in Chapter 4.

The thesis employed two versions of the AVL algorithm: Version v1.02 and v1.23. These
versions were downloaded from GitHub, and new scripts were developed to automate the
analysis of repositories. In the original research, Avelino et al. utilized the algorithm with
various configuration files, managing GitHub username aliases, and excluding specific files
from the analysis. These configuration files, shared by Avelino upon request, were also used
in this study.

3.2 Data collection and analysis
Our work involves running various TF algorithms on four different datasets. We refer to the
datasets as 1) TF Oracle, 2) AVL OSS, 3) CS OSS, and 4) CS Prop. The characteristics of the
four datasets are described in Chapter 4. A prerequisite to run AVL is the commit-logs from
the version control system. For the upcoming proposed algorithms, a completed CodeScene
analysis is required.

The repositories of TF Oracle and AVL OSS were cloned and checked out locally and
the commit-logs were acquired through the AVL algorithm. For the CodeScene analyses, we
develop a custom script to initiate and configure the analysis for all these projects, leveraging
the CodeScene on-prem server’s API functionalities.

Data for both proprietary and open-source projects within CodeScene’s customer port-
folio, i.e CS OSS and CS Prop , are obtained through queries to CodeScene’s cloud servers.
This process strictly adheres to CodeScene’s terms and conditions, defining the acceptable
use of data to ensure compliance with privacy and business confidentiality standards. En-
cryption is applied to all data containing identifiable information about users, customers,
files, and/or systems.

3.3 Replication package
To enable future replications of our work, we open-sourced a new Java project. The system
follows the design in Figure 3.1. The system uses mappers to map data from the various
datasets described in Chapter 4 to FileListDO, FileDO, and CSAuthorsDO objects. The
source code can be found at 4.

The purpose of the class FileDO is to store information about a file’s current authorship
and the contributions of different developers in terms of lines of code. The class provides
several methods, with the primary method being the ability to determine if a file has an
author based on the state of the developer set in the Developers class and the fixed threshold
in the static class Thresholds.

2https://github.com/aserg-ufmg/Truck-Factor/releases/tag/v1.0
3https://github.com/aserg-ufmg/Truck-Factor/releases/tag/v1.2
4https://github.com/codescene-research/truck_factor
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3.3 Replication package

Figure 3.1: A simplified overview of the system’s component struc-
ture.

The primary purpose of the FileListDO class is to store information about a project’s var-
ious files and offer methods for calculating the truck factor. Additionally, the class provides
methods, among others, for adding authorship to files and gathering general information
about the files within the class.

The CSAuthorDO class is employed for estimating the Truck Factor based on primary-
author data generated by CodeScene’s analyses. This class utilizes a linked list to store the
number of files each developer is the primary owner of. The class also supports methods for
calculating the Truck Factor for the given data input.

To dynamically change the values of various thresholds, the static class Thresholds was
implemented. This class is used for setting and retrieving the different thresholds that the
FileDO and CSAuthorsDO classes utilize. This provides the flexibility to dynamically adjust
the thresholds, as used in Section 6.2 for tuning.
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Chapter 4

Description of datasets

This chapter provides an overview of the datasets used in the thesis. It begins by presenting
the datasets, followed by a detailed description of each dataset.

4.1 Datasets
This chapter describes the four datasets used in this study. The term source files refers to the
set of files that are part of the project’s source code, i.e. files such as images, documentation,
etc. are ignored.

• TF Oracle. 35 repositories, checked out to dates in 2015 and 2016, used by Ferreira et
al. [12].

• AVL OSS. 59 repositories, checked out to dates in 2015, analyzed by Avelino et al. [5].

• CS OSS. 195 repositories collected as part of this project. The data was sampled from
CodeScene’s datalake. We applied a filter to only include projects with at least 100
files, 100 commits, and between 1 and 50 active developers.

• CS Prop 102 closed-source repositories sampled from CodeScene customers from pro-
prietary projects. Filtered with the same strategy as CS OSS.

4.2 Description of datasets
In Table 4.1, descriptive statistics for the four datasets are presented. Notably, the TF Oracle
and AVL OSS datasets exhibit similar mean values, with approximately 200 developers, 20
active developers, 740 source files, and 3,700 commits on average. In contrast, the CSS OS
and CS Prop datasets diverge. Remarkably, the mean number of files in these datasets is
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Table 4.1: Descriptive statistics of the datasets containing informa-
tion about the datasets, with mean and standard deviation in paren-
thesis.

Oracle AVL CS OSS CS Prop
Mean developers (StD) 227 (335) 193 (205) 125 (251) 43.2 (86)
Mean active developers (StD) 19.7 (43.8) 23.0 (34.5) 8.5 (10.1) 7.5 (7.5)
Mean source-code files (StD) 723 (1,021) 765 (1,032) 1,227 (2,984) 2,850 (16,367)
Mean commits (StD) 3,757 (6,969) 3,707 (5,217) 3,908 (9,328) 3,670 (6,225)

greater, with averages of 1,227 for CS OSS and 2,850 for CS Prop. Particularly noteworthy is
that the average number of active developers in these sets is approximately 8, suggesting that
a relatively small number of developers are responsible for managing a larger volume of files.

In Figure 4.1, the distribution of authors across repositories in the four datasets is pre-
sented, with a logarithmic scale on the x-axis. The TF Oracle and AVL OSS datasets showcase
similar characteristics, with their maximum frequency observed at around 200 developers.
The CodeScene OSS dataset displays a relatively even distribution, featuring a local maxi-
mum near 120 developers. Conversely, the CodeScene Prop dataset shows a distinct peak in
the [3-5] developers range, beyond which the frequency stagnates. Notably, compared to the
other datasets, CodeScene Prop features a significantly lower number of developers (note the
different scale on the x-axis).

Figure 4.2 outlines the distribution of active authors across repositories in the four datasets.
The TF Oracle, AVL OSS, and CodeScene Prop datasets depict tendencies toward a normal
distribution, AVL OSS reaching its maximum at [9-10] active developers, TF Oracle att [7-8]
active developers and CodeScene Prop at [4-5] active developers. The CodeScene OSS dataset
peaks at [1-2] active developers, while TF Oracle has its maximum at [4-7]. The CodeScene
OSS dataset has tendencies to an exponential distribution.

In Figure 4.3, the distribution of source files for repositories in the four datasets is de-
picted. All datasets exhibit tendencies to follow a normal distribution, with TF Oracle peak-
ing at 200, AVL OSS at 100, and both CodeScene OSS and CodeScene Prop. at 1,000 source
files.

In Figure 4.4, the distribution of commits for repositories in the four datasets is illus-
trated. All datasets exhibit indications of conforming to a normal distribution, with a peak
frequency of around 1,000 commits, except for CodeScene Prop, where the maximum is ob-
served in the [2,000-3,000] commits range.

Figure 4.5 illustrates the top-10 programming languages in the datasets. Across all datasets,
Java, PHP, Python, JavaScript, and C++ are consistently prominent.
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Figure 4.1: Distribution of developers in the four datasets.

Figure 4.2: Distribution of active developers in the four datasets.

Figure 4.3: Distribution of files in the four datasets.

Figure 4.4: Distribution of commits in the four datasets.
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(a) Ferreira oracle (b) Avelino

(c) CodeScene OSS (d) CodeScene Prop

Figure 4.5: Top-10 programming languages in the datasets.
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Chapter 5

Methodology

This project involves practical engineering work followed by empirical evaluations, adher-
ing to ACM SIGSOFT Empirical Standards for Software Engineering for benchmarking and
repository mining, respectively. Figure 5.1 shows an overview of the three phases in this project.
The figure shows how the project uses the four different datasets described in Chapter 4.

Figure 5.1: Overview of the method.

Phase 1 concerns development work to implement TF algorithms. We re-implement the
AVL algorithm, develop a method for TF calculations using CodeScene’s primary owner, and
implement four additional TF algorithms. Using terminology proposed by Jesus et al.1. [15],
we reproduce the AVL results on the AVL OSS dataset. Thus, we validate the accuracy of

1In this thesis, Reproduce is used to signify achieving results similar or equal to those presented in papers,
employing the same or similar algorithms, configurations, and artifacts. In contrast, Replicate is employed when
seeking similar or improved outcomes with new or different setups.
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our implementations.
Phase 2 concerns benchmarking as described by Hasselbring [17]. A benchmark is “a

study in which a software system is assessed using a standard tool (i.e. a benchmark) for
competitively evaluating and comparing methods, techniques or systems according to spe-
cific characteristics such as performance, dependability, or security” [29]. In this work, we
compare the six TF algorithms from Phase 1 on the OSS Oracle dataset. Also, we tune the
thresholds for each algorithm to optimize the results. This threshold calibration responds to
multiple calls from previous work [32, 28, 4] where thresholds were either arbitrarily set or
proved challenging to establish. Output from Phase 2 provides answers for RQ1.

Phase 3 concerns repository mining [8] followed by running TF algorithms. We use Code-
Scene to collect one dataset of OSS repositories and another dataset for proprietary reposi-
tories. Comparing the TF scores let us answer RQ2.

5.1 Phase 1: Implement TF algorithms
This section details the implementation of the AVL algorithm and introduces five new alter-
native algorithms for determining the Truck Factor in a project. While drawing inspiration
from the AVL algorithm, these proposed algorithms adopt different approaches to deter-
mine when a system is at serious risk. In contrast to the AVL algorithm, which depends
on commit-based heuristics, as discussed in Subsection 2.2.1, the newly proposed algorithms
employ LoC-based heuristics, as outlined in Subsection 2.2.2.

We remind the reader about our definitions in Section 2.1, i.e., any developer who has
existing LoC in a file is an owner (marginal, minor, major, or dominant) whereas developers
who are capable maintainers of the file are referred to as authors. In CodeScene, a developer
is the primary owner of a file if she has contributed at least 50% of the LoC. Finally, a file is
orphaned if it no longer has any author.

5.1.1 Step A: Setup AVL
The AVL algorithm is used as a benchmarking algorithm which alternative algorithms could
be compared against. To ensure that this thesis uses the same Algorithm as in the paper [4],
the correct installation of the algorithm is verified by running it against the AVL OSS dataset
presented in Chapter 4.

The different versions of Avelino’s algorithm are each executed with two different sets of
configurations. The V1.0 version is run with, and without, the configuration files provided
by Avelino. The V1.2 tool is run without any configuration files and the minimum fraction of
total file authorship threshold is set to Avelino’s default settings, 0.00 and 0.10 respectively.

For each execution, information about each project’s TF value is stored. Afterward, we
compare all the results to determine which version and setup of the algorithm comes closest
to reproducing the results obtained by Avelino et al. [4].

5.1.2 Step B: Setup CodeScene’s approach
CodeScene currently conducts advanced analyses to determine the number of files for which
the developers in a project is the primary owner. The initial proposed algorithm utilizes this
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information by iteratively eliminating the developer who is the primary owner of most files.
The algorithm terminates when the number of files without a primary-owner falls below a
predefined threshold, the Truck Factor value is determined by the number of iterations.

Figure 5.2 shows a running example of this algorithm, which we call ALGOCS . The
figure illustrates an example repository containing 20 files developed by four developers (A-
D), with LoC contributions reflected by the order (top to bottom). A file has the same color
as a developer if the developer is the primary owner, white files have no owner. The threshold
of files without an author is set to 50%.

Figure 5.2: A running example of ALGOCS

5.1.3 Step C: Setup alternative TF algorithms
In this subsection, we start by listing our newly proposed algorithms along with brief sum-
maries. Then, we delve into why these algorithms were created. All these algorithms use a
greedy approach to estimate the Truck Factor. In each iteration, we increase the Truck Factor
by one, and the developer who is the author of the most files is removed.

ALGO1 Developers who contributed at least X% of LoC in a file are authors. The truck hits
when Y% of files are orphaned.

ALGO2 Same as ALGO1, but developers who are an author to less than 50% / #active developers
of the project’s total number of files are immediately discarded.

ALGO3 Same as ALGO1, but terminates when Y% of the files which initially had at least one
author are orphaned.

ALGO4 The single developer who contributed the maximum number of LoC to a file is the
author. The truck hits when Y% of files are orphaned.
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Figure 5.3 shows a running example of ALGO 1-4. The figure illustrates an example
repository containing 20 files authored by four developers (A-D). Each file has been touched
by 1-4 developers, with LoC contributions reflected by the order (top to bottom). A file has
the same color as a developer if the X% threshold has been exceeded, i.e., white files have no
author, except for ALGO4.

Figure 5.3: A running example of ALGO 1-4.

ALGO1 : The first proposed algorithm tries to replicate the first version of the AVL
algorithm but utilizes a LoC heuristic instead of a commit-based heuristic. The algorithm
defines the authors of a file as the set of developers who have contributed more than a fixed
% of a file’s LoC.

The algorithm iteratively removes the developer who is the author of the most files until
a set % threshold of files are without an author, i.e., orphaned. The number of iterations is
the truck factor estimation.

In cases with systems with a relatively high knowledge distribution, i.e., systems where
many files do not have ownership exceeding the threshold of being an author, the algorithm
would likely provide a Truck Factor estimation below the actual value. In extreme cases,
where the knowledge distribution is equally distributed among many developers, the truck
factor estimation could be zero. The AVL algorithm handles this issue by normalizing the
Degree-of-Authorship. Thereby enabling several developers to be the authors of a file. To
replicate this in a LoC-based heuristic would imply setting a lower threshold for being an
author of a file.

Due to the logic of the algorithm, we believe that the best estimations would be given
in systems where the knowledge distribution would be reasonably low. I.e., most of the files
would have one single author.

ALGO2 attempts to replicate the v1.2 version of the AVL algorithm by extending ALGO1
with the functionality to exclude developers who are authors of a relatively small number of
files. In the v1.2 version of AVL, the threshold is set to 10%. However, this fixed value is likely
to result in faulty truck factor estimation in projects with a large number of active develop-
ers. Hence, we have implemented a feature where ALGO2 instead discards developers who
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are the author of less than 50%/#active developers of a project’s files. We anticipate that
the algorithm will share similar advantages and drawbacks as ALGO1 .

ALGO3 : The third proposed algorithm builds on the assumption that files with a higher
distribution of knowledge should affect the truck factor estimation less than those with a
lower distribution. Similar to ALGO1 and ALGO2 , the authors of a file are defined as the
developers who have contributed more than a specified percentage threshold of a file’s LoC.

The algorithm begins by establishing the number of files with at least one author. Sub-
sequently, it iteratively removes the developer who authored the most files in each iteration.
The algorithm terminates when a specified percentage threshold of the initially identified
files with at least one author becomes orphaned. The count of iterations provides the truck
factor estimation.

We recognize the potential for inaccuracies in the algorithm, particularly in scenarios
where file authorship is widely distributed in a project, and only a minority of the files have
ownership levels surpassing the authorship threshold. In such extreme cases, the algorithm
is likely to produce a truck factor estimation that is lower than expected.

ALGO4 : The fourth algorithm takes a trivial approach to estimating the Truck Factor by
assuming that a file only has one author, and the author is the developer who has contributed
the most LoC.

The algorithm estimates the Truck Factor by mapping each developer to the number of
files they are the author of. The algorithm then follows the logic of previously mentioned
algorithms by iteratively removing the developer who is the primary owner of the greatest
number of files until a given threshold of files is missing an author.

5.2 Phase 2: Benchmark comparison
This subchapter investigates threshold values that yield the most accurate truck factor es-
timations. It begins by analyzing the file ownership characteristics of software projects in
both OSS and proprietary contexts. Subsequently, the algorithms are benchmarked against
AVL on the TF oracle to pinpoint thresholds that result in accurate values. Ultimately, the
algorithm with the thresholds that yields the best result will be selected for Phase 3.

5.2.1 Step A: Analyze file authorship
The distribution of file ownership is of interest in establishing reality-based thresholds for
being an author of a file. Borg et al.’s paper [7] concluded that the number of contributions to
a file, in a commit-based heuristic, follows a distinct U pattern. We aim to undertake similar
investigations, exploring what patterns emerge when using LoC-based heuristics.

A new Python script was developed to visualize authorship distribution, utilizing both
the OSS and proprietary datasets queried from CodeScene’s servers. The script generates bar
plots for each file, depicting authorship percentages. Five graphs were created for each dataset
to explore the impact of the number of active developers on authorship characteristics.

Subsequently, the script is extended to plot the maximum authorship value for each file.
Again, five graphs were constructed for each dataset to analyze the influence of the number
of active developers on these maximum authorship values.
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5.2.2 Step B: Determine thresholds

The insights provided in Subsection 5.2.1 suggest that a meaningful threshold for considering
a developer as an author of a file falls within the range of 20% to 100%. To more precisely
identify this threshold and determine the threshold for how many files can be orphaned
before the truck hits, an investigation into the performance of the proposed algorithms with
various thresholds was conducted.

To evaluate the impact of different thresholds on the outcomes of the proposed algo-
rithms, a tuning suite was implemented into the Java project. For each algorithm, a grid
search2 was performed to provide fairness [17] for all configuration combination, thereby all
possible threshold settings were executed. In each iteration, key metrics such as the num-
ber of correctly estimated Truck Factor values, the mean absolute Truck Factor differences,
and the mean squared differences compared to Ferreira’s oracle were recorded and stored.
These metrics were then used to compare the algorithms’ performance compared to the ones
generated by AVL.

ALGO1 , ALGO2 , and ALGO3 were run 10,000 times each. In each run, the thresholds
for orphaned files and the LoC threshold for a developer to qualify as an author were adjusted.
The adjustment ranged from 0.00 to 1.00 with each increment being 0.01.

ALGO4 and ALGOCS were evaluated in a similar manner. Since the algorithms only
depend on the threshold of orphaned files, 100 iterations were executed where the thresholds
range from 0.00 to 1.00 and each increment was 0.01.

To ensure the benchmark relevance and verifiability, the measurements obtained were
leveraged to identify regions of interest through the creation of heatmaps for ALGO1, ALGO2,
and ALGO3. ALGOCS and ALGO4 were plotted to line graphs. To address the influence of
noise in the measurements, an averaging technique was applied. Each point in the grid search
was averaged with nearby points within an equidistant distance of less than 0.02 units. This
averaging strategy aimed to mitigate variations and enhance the clarity of trends in the data.

5.2.3 Step C: Compare TF algorithms

The heatmaps and line graphs produced in Subsection 5.2.2 were examined to identify regions
of interest, reflecting thresholds where accurate TF estimations were consistently observed.
Once identified, the threshold settings and the performance metrics for all algorithms were
compiled into a table.

The performances of the algorithms were compared, and an evaluation was conducted
to determine which algorithm to use in Phase 3. The selection of the algorithm was based
on considerations such as performance correctness, mean absolute error, and mean squared
error.

2https://en.wikipedia.org/wiki/Hyperparameter_optimization
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5.3 Phase 3: Comparing open-source and
proprietary repositories

This subchapter examines the representation of the Truck Factor distribution in proprietary
and open-source projects. By utilizing the CS Prop and CS OSS datasets.

5.3.1 A: Compare TF results
To characterize the distribution of the Truck Factor in the context of modern development,
encompassing various organizational sizes and language usage, the 195 open-source reposito-
ries in the CS OSS dataset and the 102 proprietary repositories in CS Prop were subjected
to analysis using ALGO1. The criterion ’to be an author of a file’ was set to 30%, while re-
maining files without an author’ was set to 50%. These specific thresholds were determined
to yield the most reliable Truck Factor estimations, as detailed in Subsection 6.2.3.

The results were collected and processed, culminating in the generation of six graphs.
These graphs depict the frequency of TF values, the frequency of relative TF obtained by
dividing the absolute TF by the project’s number of active developers, and two box-and-
whisker plots illustrating the relative and absolute TF values in comparison to the number
of active developers.
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Chapter 6

Results

This chapter unveils the results obtained from the three phases outlined in the methodology
chapter. Firstly, it presents the findings from the AVL replication; secondly, it delves into
authorship on a file-level. Following that, the results of the benchmarking process for the
proposed algorithms are discussed, culminating in the selection of the most promising algo-
rithm. Subsequently, this chosen algorithm is evaluated on both open-source and proprietary
repositories extracted from CodeScene’s customers.

6.1 Phase 1: Setup AVL algorithm
The results of the reproduction [15] procedure for the installation of AVL are presented in
Table 6.1. For some repositories, the Truck Factor differs by one developer. However, in
all cases, the list of developers included in the Truck Factor calculations was a subset of
the developers from Avelino’s data. The differences are believed to originate from slightly
different configurations for the algorithm. When Avelino et al. conducted their research,
they utilized the v.1.0 version of the algorithm along with specific configuration files designed
for managing ignored files and alias handling. However, due to the elapsed time since the
completion of Avelino et al.’s work, it is possible that we have slightly different files.

For the repositories Faker, monolog, and Homebrew-cask the different setups had the
greatest differences. For Faker and monolog, the Truck Factor was correct for all algorithms
except v.1.2 with the threshold of minimum owned files set at 0.10. Judging by the responses
of Avelino’s surveys 12, the value of the v.1.2 version with the 0.1 setting seems to be a more
correct estimation of the Truck Factor.

For the repository resque, all of the instances resulted in the wrong Truck Factor value. In
addition, the output of the algorithms assigned a single developer (Chris W.) to be the author

1https://github.com/fzaninotto/Faker/issues/656
2https://github.com/Seldaek/monolog/issues/626
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of 61,67% of the systems files, instead of 23% stated in Issue 13173. The underlying reason for
this has not been identified.

For Homebrew-cask the v.1.2 algorithm with the min-threshold setting set to 0.10 pro-
vided the best estimates. We believe that when Avelino conducted his research, he manually
added files which would be ignored, and hence, a lower Truck Factor was achieved. The files
handed over by Avelino did not have any information about Homebrew-cask. Hence, we be-
lieve that these errors derive from missing information in the ignore-files file. Since the v.1.2
algorithm has the ability to filter out developers whose contribution is less than a threshold
of the total files, small contributions are ignored. Judging by these results, it appears that the
threshold minimizes the need to manually set up which files of a system should be ignored.

Of all of the versions, v.1.2 with the min-threshold set to 10% provided the results closest
to Avelino et al [4]. Hence, this version and configuration will be the algorithm we will
continue using for the remainder of this thesis.

Table 6.1: The different AVL versions’ results on Avelino’s validation
suite. Results are presented as recorded TF with the difference from
Avelino et al.[4] in parantesis. Each column represents a certain con-
figuration of the algorithm. The v.1.0-with files were run with con-
figuration files retrieved by contact with Avelino. The min-threshold
configuration discards developers who are authors to fewer than a %
of the repository’s total files.

Repository TF v.1.0: no-
files

v.1.0:
with files

v.1.2:
min-
threshold
= 0.1

v.1.2:
min-
threshold
= 0.0

fzaninotto/Faker 23 23(0) 23(0) 5(-18) 23(0)
fog/fog 12 12(0) 12(0) 12(0) 12(0)
saltstack/salt 11 11(0) 11(0) 11(0) 11(0)
Seldaek/monolog 11 11(0) 11(0) 2(-9) 11(0)
joomla/joomla-cms 7 7(0) 7(0) 7(0) 7(0)
scikit-learn/scikit-learn 7 8(1) 8(1) 8(1) 8(1)
chef/chef 6 5(-1) 5(-1) 5(-1) 5(-1)
emberjs/ember.js 6 5(-1) 5(-1) 5(-1) 5(-1)
resque/resque 6 1(-5) 1(-5) 1(-5) 1(-5)
spotify/luigi 6 6(0) 6(0) 6(0) 6(0)
ipython/ipython 4 4(0) 4(0) 4(0) 4(0)
jquery/jquery 4 4(0) 4(0) 4(0) 4(0)
bitcoin/bitcoin 3 3(0) 3(0) 4(1) 4(1)
yiisoft/yii2 3 0(-3) 0(-3) 3(0) 3(0)
clojure/clojure 2 2(0) 2(0) 2(0) 2(0)
composer/composer 2 2(0) 2(0) 2(0) 2(0)
elasticsearch/elasticsearch 2 2(0) 2(0) 2(0) 2(0)
elasticsearch/logstash 2 2(0) 2(0) 2(0) 2(0)

3https://github.com/resque/resque/issues/1317
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excilys/androidannotations 2 2(0) 2(0) 2(0) 2(0)
facebook/osquery 2 2(0) 2(0) 2(0) 2(0)
FriendsOfPHP/PHP-CS-Fixer 2 2(0) 2(0) 2(0) 2(0)
github/linguist 2 2(0) 2(0) 2(0) 2(0)
jadejs/jade 2 2(0) 2(0) 2(0) 2(0)
JohnLangford/vowpal_wabbit 2 2(0) 2(0) 2(0) 2(0)
libgdx/libgdx 2 2(0) 2(0) 2(0) 2(0)
meskyanichi/backup 2 2(0) 2(0) 2(0) 2(0)
netty/netty 2 2(0) 2(0) 2(0) 2(0)
openframeworks/openFrameworks 2 2(0) 2(0) 2(0) 2(0)
Respect/Validation 2 2(0) 2(0) 2(0) 2(0)
sampsyo/beets 2 3(1) 3(1) 3(1) 3(1)
SFTtech/openage 2 2(0) 2(0) 2(0) 2(0)
strongloop/express 2 1(-1) 1(-1) 1(-1) 1(-1)
xetorthio/jedis 2 2(0) 2(0) 2(0) 2(0)
atom/atom-shell 1 1(0) 1(0) 1(0) 1(0)
bjorn/tiled 1 1(0) 1(0) 1(0) 1(0)
bumptech/glide 1 0(-1) 0(-1) 0(-1) 0(-1)
caskroom/homebrew-cask 1 53(52) 53(52) 1(0) 53(52)
celluloid/celluloid 1 1(0) 1(0) 1(0) 1(0)
dropwizard/dropwizard 1 1(0) 1(0) 1(0) 1(0)
dropwizard/metrics 1 1(0) 1(0) 1(0) 1(0)
getsentry/sentry 1 1(0) 1(0) 1(0) 1(0)
github/android 1 1(0) 1(0) 1(0) 1(0)
gruntjs/grunt 1 1(0) 1(0) 1(0) 1(0)
janl/mustache.js 1 1(0) 1(0) 1(0) 1(0)
jrburke/requirejs 1 1(0) 1(0) 1(0) 1(0)
justinfrench/formtastic 1 1(0) 1(0) 1(0) 1(0)
kivy/kivy 1 1(0) 1(0) 1(0) 1(0)
Leaflet/Leaflet 1 1(0) 1(0) 1(0) 1(0)
less/less.js 1 2(1) 2(1) 2(1) 2(1)
mailpile/Mailpile 1 2(1) 2(1) 2(1) 2(1)
mbostock/d3 1 1(0) 1(0) 1(0) 1(0)
powerline/powerline 1 1(0) 1(0) 1(0) 1(0)
puphpet/puphpet 1 0(-1) 0(-1) 0(-1) 0(-1)
ratchetphp/Ratchet 1 1(0) 1(0) 1(0) 1(0)
ReactiveX/RxJava 1 1(0) 1(0) 1(0) 1(0)
sandstorm-io/capnproto 1 1(0) 1(0) 1(0) 1(0)
sebastianbergmann/phpunit 1 1(0) 1(0) 1(0) 1(0)
silexphp/Silex 1 1(0) 1(0) 1(0) 1(0)
thoughtbot/paperclip 1 0(-1) 0(-1) 1(0) 1(0)
wp-cli/wp-cli 1 1(0) 1(0) 1(0) 1(0)
Tot correct 47 47 47 48
Percentage correct 78% 78% 78% 80%
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Mean Absolute diff 1,17 1,17 0,70 1,12
Mean Squared diff 45,8 45,8 7,33 45,65

6.2 Phase 2: Identify thresholds and a favourable
algorithm

This section lifts findings regarding the distribution of file authorship and the threshold’s
effect on the algorithms’ performances.

6.2.1 File authorship
The distribution of file ownership displays a distinct U-shaped pattern in both the OSS and
proprietary datasets. However, in OSS projects, it is more common for files to have a larger
number of smaller contributions, while in proprietary systems, it is more prevalent for files
to have larger contributions as seen in Figure 6.1.

(a) Open-source: 1-
50 active developers

(b) Proprietary: 1-50
active developers

Figure 6.1: The distribution of file ownership in the OSS and pro-
prietary datasets queried from CodeScene

The distribution of maximum file ownership indicates that files are commonly devel-
oped by a single developer, particularly in proprietary systems, as illustrated in Figure 6.2.
Although the distribution is wider in OSS projects, it is rare for a file to have a maximum
ownership of less than 50%.

These findings suggest that the majority of a file’s LoC is typically written by a single
developer. However, the distribution also reveals a portion of files with an ownership be-
tween 0.20 and 0.50. This suggests that developers contributing within or greater than this
range could potentially be considered as part of the set of authors for a given file. This is
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(a) Open-source: 1-
50 active developers

(b) Proprietary: 1-50
active developers

Figure 6.2: The distribution of maximum file ownership in the OSS
and proprietary datasets queried from CodeScene.

grounded in the assumption that developers contributing within this ownership range are,
at the very least, familiar with the file. Graphs containing more information about the var-
ious distributions with higher granularity can be found in the Appendix at Figures B.1 and
B.2.

6.2.2 Benchmarking

In this Subsection, the heatmaps with accumulated results presents thresholds which entails
better metrics than AVL. The mean squared error is visualized in green, the mean absolute
difference in red, and the percentage of correct TF estimations in blue. The subsection uses
the convention (Fraction of LoC to be a file author, Fraction of authored files when truck
hits) to describe the positions for the heatmaps’ results.

The AVL algorithm’s results serve as a benchmark for evaluating the proposed algorithms.
AVL estimated the truck factor correctly for 19 of the 35 (54%) repositories in the TF Oracle,
with a mean absolute difference of 0.86 and a mean squared difference of 4.23.

ALGO1’s results from the grid search are visualized in Figures 6.5 and 6.3. The heatmap
visualized in Figure 6.3 hints two regions witch configuration settings could entail a better
performance than AVL on all recorded metrics. These regions are identified to be in the
proximity (0.30,0.50) and (0.75,0.29). Detailed metrics for these points are provided in Table
6.2.
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Figure 6.3: Threshold configurations for which ALGO1 outper-
forms AVL. Regions where the three colors overlap are deemed to
be of the most interest.

ALGO2’s threshold analysis are presented in Figure 6.5 and 6.4. The algorithm does
not have any regions that provide a lower Mean absolute error or Mean squared error than
AVL. However, the algorithm presents a greater percentage of correctly estimated TF values
compared to AVL, at the region in the proximity of (0.64,0.34).

Figure 6.4: Threshold configurations for which ALGO2 outper-
forms AVL on the recorded metrics.
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(a) ALGO1 : MAE. (b) ALGO2 : MAE.

(c) ALGO1 : MSE. (d) ALGO2 : MSE.

(e) ALGO1 : Mean
correct %

(f) ALGO2 : Mean
correct %

Figure 6.5: Results of the ALGO1 and ALGO2 threshold analysis. In
the figures for mean absolute truck factor errors and mean squared
truck factor error, the values have been capped at 4.0 and 20.0, re-
spectively, for visualization purposes.

The analysis results of ALGO3 are presented in Figures 6.7 and 6.6. The two regions in
proximity to (0.36,0.52) and (0.70,0.49) are of interest. This due to the overlapping in the
heatmap at Figure 6.6
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Figure 6.6: Threshold configurations for which ALGO3 outper-
forms AVL.
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(a) ALGO3 : MAE. (b) ALGO3 : MSE.

(c) ALGO3 : Mean
correct %.

Figure 6.7: Results of ALGO3 threshold analysis. In the figures for
mean absolute truck factor difference and mean squared truck factor
error, the values have been capped at 4.0 and 20.0, respectively, for
visualization purposes.

The results from ALGO4 are presented in Figure 6.8. The most beneficiary threshold
configurations for each evaluations metric are (0.36),(0.39), and (0.58), respectively. More
detailed results are presented in Table 6.2.
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(a) ALGO4 : MAE. (b) ALGOCS : MAE.

(c) ALGO4 : MSE. (d) ALGOCS : MSE.

(e) ALGO4 : Mean
correct %.

(f) ALGOCS : Mean
correct %.

Figure 6.8: Results of ALGO4 and ALGOCS threshold analysis. The
figures display the Mean Absolute Error (MAE), Mean Square Error
(MSE), and the percentage of correct TF estimations. Depending on
the threshold of remaining files with at least one author.

As shown in Figure 6.8, ALGOCS ’s most favorable results are identified at the threshold
configurations at the points (0.63),(0.52), and (0.44), respectively. More details of the metrics
are presented in Table 6.2
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6.2.3 Summary thresholds

Table 6.2: Accuracy of the five algorithms on the oracle dataset. Each
value is averaged by the points in proximity of 0.02 Euclidian dis-
tances. Cells highlighted in green have a better result than AVL.

Algorithm Position
Eukledian average

% Correct Mean absolute error Mean square error
AVL - 0.54 0.86 4.23
ALGO1 (0.30,0.50) 0.55 0.85 4.17
ALGO1 (0.75,0.29) 0.61 0.84 4.23
ALGO2 (0.64,0.34) 0.59 1.33 9.96
ALGO3 (0.36,0.52) 0.54 0.83 4.72
ALGO3 (0.70,0.49) 0.57 0.83 4.21
ALGO4 (_._,0.36) 0.52 0.95 3.76
ALGO4 (_._,0.39) 0.54 0.88 4.00
ALGO4 (_._,0.58) 0.63 1.10 7,24
ALGOCS (_._,0.63) 0.60 1.05 6.72
ALGOCS (_._,0.52) 0.55 0.87 4.93
ALGOCS (_._,0.44) 0.50 1.04 4.37

The results in Figure 6.2 suggest that practical thresholds for all of the proposed algo-
rithms are achievable. For all of the algorithms, except ALGO2 , the threshold for orphaned
files before the truck hits is in the interval [29%, 50%], which is supported in our findings pre-
sented in Subsection 6.2.1. This threshold interval also includes the threshold set by Avelino
et al.[4].

The accumulated results of the threshold analysis are shown in Table 6.2. ALGO1 and
ALGO3 had configuration settings which resulted more favourable TF metrics compared
to AVL. Both of the algorithms presented similar results. however, of the two algorithms,
ALGO1 , with the settings (0.30,0.50) was deemed to be the most feasible algorithm for
Phase 3. This decision was founded on the findings in Subsection 6.2.1, and for its lower
Mean square error.

As discussed in Section 2.1, Avelino et al. [4] defines an author as a developer who is
capable of maintaining a file from the most recent system snapshot onwards. ALGO1’s
authorship-threshold of 0.30 indicates that this definitely is the case.
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6.3 Phase 3: Comparing open-source and
proprietary repositories

The distribution of Truck Factors for the two datasets are are displayed in Figure 6.9. Both
CS OSS and CSS Prop demonstrate a right-skewed TF distribution where the open-source
dataset’s tail is comparatively less pronounced. The distribution indicates that projects gen-
erally tend to have a low truck factor. It is noteworthy that the distribution of TF results
does not align with the distributions of active developers, as presented in Chapter 4. This
suggests that, overall, the TF is generally much lower than the number of active developers.

(a) CS OSS (b) CS Prop

Figure 6.9: The frequency of TF values in Proprietary and Open-
source projects.

The relative TF were obtained by dividing the TF value by the number of active develop-
ers in each project, thereby a relative TF closer to 1, or greater, is desirable. The distributions
of the relative TF for each dataset are illustrated in Figures 6.10a and 6.10b. Notably, both
datasets include entries with a relative TF exceeding 1. This indicates that these projects have
successfully established a high degree of knowledge distribution. For projects that have not
surpassed a relative TF of one, the majority fall within the range of 0.0 to 0.5.

To comprehend the correlation between the absolute and relative Truck Factors in com-
parison with the number of active developers in the two datasets, the data were visualized
by two box-and-whisker plots generated by the Python Seaborn library. These plots are visu-
alized in Figures 6.11 and 6.12. The data were also grouped by context and interval of active
developers. This data is represented in Tables 6.3 and 6.4.

Our findings suggest that there is not a substantial difference between the two datasets,
as seen by the box-and-whisker plots and the tables. However, a consistent trend is appar-
ent in both datasets; as the number of active developers increases, the relative TF generally
decreases.
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(a) CS OSS (b) CS prop

Figure 6.10: The frequency of relative TF values in Proprietary and
Open-source projects.

Table 6.3: The relative TF for the proprietary and open-source
projects. Categorized in intervals by the number of active devel-
opers.

Average relative TF (StD)
#Active developers 1 2-5 6-10 11-20 21-50
Open-source 1.16 (0.64) 0.55 (0.32) 0.33 (0.18) 0.15 (0.09) 0.13 (0.11)
Proprietary 1.27 (0.65) 0.67 (0.41) 0.33 (0.15) 0.26 (0.13) 0.17 (0.08)

Table 6.4: The TF for the proprietary and open-source projects. Cat-
egorized in intervals by number of active developers.

Average TF (StD)
#Active developers 1 2-5 6-10 11-20 21-50
Open-source 1.16 (0.64) 1.43 (0.84) 2.34 (1.35) 2.06 (1.14) 3.86 (3.40)
Proprietary 1.27 (0.65) 1.93 (1.00) 2.04 (1.00) 3.42 (1.80) 4.67 (2.25)
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Figure 6.11: Comparison between relative TF values in proprietary
and open-source systems.
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Figure 6.12: Comparison between TF values in proprietary and
open-source systems.
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Chapter 7

Discussion

This chapter addresses the research questions, starting with a discussion on RQ1, followed
by an exploration of RQ2. Finally, potential threats to validity are considered.

7.1 RQ1: Comparing TF algorithms
Among the various algorithms considered, ALGO1 achieved the best results in the Truck
Factor benchmark, surpassing all values obtained by the state-of-the-art algorithm proposed
by Avelino et al. [4]. Consequently, the algorithm was chosen for phase 3. The selected
threshold value of 30% is deemed appropriate, i.e., a developer must have contributed at
least 30% of the LoC to qualify as an author of a file. The score ensures that the developer
has been previously active with the file — beyond minor bug fixes or renaming activities,
indicating a profound knowledge about the file and thereby fulfilling the criteria for being
able to maintain and further develop the file. In combination with setting the other threshold
value to 50%, i.e., the system is at risk when 50% of the files that previously had at least one
author are orphaned, ALGO1 outperforms AVL on the TF oracle.

ALGO2, capturing the gist of the AVL v.1.2 by incorporating the functionality of neglect-
ing developers who is author to a fraction of a project’s files, yielded poor results compared
to AVL v.1.2. This discovery was unexpected, since the performance between AVL v.1.0 and
v.1.2 had clear difference when running on the AVL OSS dataset. Avelino introduced the
feature in v.1.2 to exclude developers in open-source projects that had authorship distribu-
tions with long tails. This thesis did not investigate whether the TF Oracle dataset shares
this characteristic. But, the results from ALGO2 suggest that this feature did not provide a
better performance.

In comparison to all the algorithms assessed, ALGOCS yielded the least accurate results.
However, the examination of threshold analysis, as detailed in Subsection 6.2, surprisingly
revealed that relatively naive Truck Factor algorithms can provide reasonably accurate esti-
mations. Notably, ALGO4 emerged as particularly effective, accurately estimating the Truck
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Factor correctly for 65% of the projects.

7.2 RQ2: Comparing TF values in OSS and
proprietary contexts

Previous research presented in Section 1.3 has utilized OSS projects to analyze Truck Factors
for various repositories, likely due to their accessibility. This thesis extends previous research
by also evaluating the TF distribution in proprietary projects. Section 6.3 demonstrated that
there is no substantial difference between the relative and absolute TF in proprietary and
OSS contexts.

In the introduction at Section 1.5, the topic of corporate increased influence in OSS com-
munities was discussed. Our findings could signify the shift in OSS communities from being
developed primarily by enthusiasts and amateurs to a scenario where employed developers
at corporations play a more prominent role [14, 27]. Nonetheless, these findings support that
OSS and proprietary projects share similar distributions of TF.

The presented data also indicates that larger organizations tend to have a lower relative
TF. Organizations with 21-50 active developers exhibit an average relative Truck Factor of
0.13 for open-source projects and 0.17 for proprietary projects. The numbers suggest that the
knowledge and expertise required to maintain and further develop the project are concen-
trated to a relatively few individuals.

The results presented in Subsection 6.2.1 align with the conclusions drawn by Borg et al.
[7], emphasizing that industry practices lead to mainly dominant and marginal owners on a
file-level in proprietary systems. Our findings extend this observation by highlighting that
these practices are not exclusive to proprietary projects but are also prevalent in open-source
projects. Our added observation with the relative TF suggests that collaborative knowledge
sharing is not just limited to a file-level, but a project as a whole. This implies that the survival
of software projects hinges on relatively few developers.

Avelino et al.[3] concluded that 19% of the 1,932 researched open-source projects have
experienced being hit by a truck, with 41% of the affected projects managing to survive. The
survivals were attributed to their communities’ ability to attract new core contributors. In a
proprietary context, where the aspiration is for all developers to be core contributors, this is
not a desirable approach. Hence, in proprietary projects, more focus on knowledge sharing
could entail a lower risk of being hit by the truck.

7.3 Threats to validity
In this chapter, we review the validity of our findings, focusing on four dimensions: Internal
validity, construct validity, external validity, and reliability [26]. The aspect of internal va-
lidity explores factors that could have influenced our results. Construct validity represents
the degree to which the operational measures used in research align with the intended ob-
jectives, i.e., how well our method answers the research questions. External validity assesses
the generalizability of our findings and reliability examines the extent to which our results
depend on us as researchers.
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7.3.1 Internal validity
The thesis has used a newer version of the AVL algorithm than the one proposed in Avelino
et al.’s paper [4] to establish a baseline. To ensure that the newer version works similarly to
the one utilized in the original paper, contact was initiated with Avelino. However, which
version of the AVL algorithm Ferreira et al. [12] utilized when AVL was concluded as state-
of-the-art has not been identified. We have tried to get in touch with Ferreira, but to no avail.
Therefore, it is a risk that our algorithms were benchmarked against another version of the
algorithm than the one used in the paper.

During the tuning process, only the v1.2 version of the AVL algorithm with default set-
tings was utilized. Tuning this algorithm similarly to our newly proposed algorithms would
maybe not yield results where ALGO1 and ALGO3 outperforms AVL. The main reason why
this has not been done is time limitations.

To establish the most precise algorithm, metrics such as mean absolute error and mean
square error were used. The usage of these metrics was to identify the algorithm that provided
results closest to the TF Oracle. However, these metrics did not measure the weight of the
TF differences. In practice, the difference between estimating a TF of 22 compared to 24 is
not as critical as a difference between TF 1 and 3. Considering an additional weighted error
metric could have changed the outcome of Phase 2, and resulted in another algorithm and/or
different configuration settings.

This thesis heavily relies on the TF Oracle introduced in Ferreira et al.’s work [12]. Efforts
have been made to replicate the artifacts used in the paper. However, the absence of infor-
mation regarding the specific commits to which the repositories were checked out makes it
likely that this paper may not have used the exact same artifacts. Despite attempts to contact
Ferreira for clarification, no successful communication was established.

In summary, all of these factors could have an impact on which algorithm we decided to
use in Phase 3 and thus both affecting RQ1 and RQ2.

7.3.2 Construct validity
This thesis main construct is the TF. It refers to the number of key team members who, if
they were to be hit by a proverbial truck (i.e., leave the project suddenly due to unforeseen
circumstances), would significantly impact the project’s progress and success. This constructs
description is vague where significant impact is not defined. While the term ’significant
impact’ lacks a precise definition in the construct, this paper sheds light on a noteworthy
observation: project files are commonly developed by a single developer. The potential loss
of key developers can noticeably impede progress, particularly when considering that, on
average, 58% of a developer’s time is dedicated to understanding existing code [30]. Taking
into account the additional time required to integrate new developers into a file, module, or
system, we assert that the truck factor TF does not undermine the validity of this thesis.

The TF oracle is the construct we use for true TF scores. However, its validity can be
questioned. The TF Oracle relies on individuals’ responses to a questionnaire and not real
events. Therefore, the tuning phases presented in this thesis could have been tuned to an
inaccurate state which does not represent when a project has been ’hit’.

The algorithm utilizes contributed LoC as the only metric to determine a developer’s
knowledge about a file. In reality, a developer might be familiar with a file even if they have
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not made any changes to it, simply by working in its vicinity. Consequently, a potential
author in reality could be a developer who has not made any direct changes to a file. In
contrast to Jabrayilzade et al. [19], our thesis has not taken this into consideration.

7.3.3 External validity
As of our knowledge, the dataset used as the Oracle is currently the best publicly available.
However, the Oracle used for the tuning only included 35 repositories. Consequently, the
reliability of the algorithm’s thresholds may not be optimal. This is why the analysis of the
file ownership distribution was conducted.

To establish the TF distributions in the different development contexts, ALGO1 was
run on 102 proprietary and 195 open-source projects of different sizes and using different
programming languages. These datasets were queried from CodeScene’s customers and could
thereby be biased. Given CodeScene’s role as a provider of codebase analysis tools, their
customers and thereby the collected data may not comprehensively capture the diversity of
projects in the broader reality.

The distribution of active developers in both sets is skewed towards relatively small val-
ues, averaging 7.5 for CS Prop and 8.5 for CS OSS. This suggests that our results might not
generalize to projects with a higher number of active developers. This could impact the va-
lidity of the TF trend, which we investigate in RQ2. However, in the interval [1-8] active
developers, we believe that our findings support that open-source and proprietary projects
tend to share similar characteristics of the distribution of TF.

This thesis has had the approach to establish one algorithm that could handle all projects,
no matter the languages used, the size of the organization or in which context it was devel-
oped. The thesis has, therefore, not delved into the topic of whether the algorithm should
treat these aspects differently. Our findings have shown that, in general, the distribution of
Truck Factors is similar among proprietary and open-source projects. However, the paper
has not explored the distribution based on other aspects.

We have not delved into the importance of specific files or modules. There could be
modules in a system that are critical and require specific expertise, i.e. a relatively few files
could entail that the Truck Factor should be less than the one provided by the algorithm.
Therefore, we consider that our algorithm could be used to provide an organization with
insights, but without claiming that the TF is the definitive truth.

7.3.4 Reliability
The source code, which we have utilized together with the data, has been open-sourced and
is available on GitHub. Therefore, anyone can scrutinize our results — supporting the relia-
bility of our work.

Initially, contact with Avelino was established, and we received configuration files for
the v1.0 version of the AVL algorithm. Our GitHub repository does not contain those files.
However, since the v1.2 version of the AVL algorithm was used instead, which did not use
these configuration files, and the artifact’s commit id is presented, the artifacts and the results
should be possible to recreate.
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Chapter 8

Conclusion

This chapter offers the conclusion to the research question posed in this thesis. Additionally,
potential directions for further research are presented.

8.1 Conclusion

The primary goal of this thesis is to lay the groundwork for the integration of a new Truck
Factor algorithm into CodeScene’s product range. The proposed algorithm has then been run
on 297 repositories in both open-source and proprietary projects to identify to which extent
the distribution of Truck Factors in open source-projects generalize to proprietary systems.

This thesis has presented five novel algorithms for estimating TF for repositories, utiliz-
ing Lines of Code as heuristic. Of the algorithms, ALGO1 presented the most accurate results
on the TF Oracle presented by Ferreira et al.[12] with the configurations; to be an author of
a file set to 30% and remaining files without an author set to 50%. These thresholds were
established through a file authorship analysis and by benchmarking it against the current
state-of-the-art algorithm proposed by Avelino et al. [4].

ALGO1 was run on 195 open-source projects and 102 projects mined from CodeScene’s
data lake. The findings proposed that the distribution between the two different contexts
are similar, and that the more active developers a project has, the lower the relative Truck
Factor tends to be.

Our findings highlight that the knowledge distribution in both open-source and pro-
prietary projects could be improved to establish an organization that is more robust to the
sudden loss of developers.

55



8. Conclusion

8.2 Future Work
We believe that using additional metrics could provide an algorithm that better models the
true knowledge within a software project. In the introduction of this thesis, papers published
by Jaybrazilade et al. [19] and Haratian et al. [16] were presented, both of which contributes
valuable insights.

Jaybrazilade et al. enhanced the AVL algorithm by incorporating additional metrics into
the DOA equation, considering factors such as knowledge decay over time, the number of
code reviews, and time spent in file-related meetings. Due to constraints such as data accessi-
bility, time limitations, and the papers’ lack of external validation, this specific approach was
not investigated. Nonetheless, we believe that integrating these metrics could improve our
proposed algorithm, offering a more accurate model of project knowledge and consequently
yielding more realistic truck factor values.

The algorithms presented in this thesis have adopted Avelino et al.’s [4] naive approach,
treating all files as equally important. However, real-world software projects often involve
modules with varying importance based on business impacts. Additionally, the complexity
of maintaining files can differ based on their dependencies. Files with numerous reverse de-
pendencies are likely to have a higher level of complexity, making the system more vulnerable
if the authors of these files were to abruptly leave the project. Haratian et al. [16] expanded
the AVL algorithm by incorporating a weighting mechanism for files based on their depen-
dency degrees. We propose further research to explore integrating this functionality into the
algorithm presented in this thesis.

In the realm of Truck Factor algorithms, there is a consensus that an algorithm capable of
deterministically establishing the Truck Factor for a repository would be valuable. However,
pinpointing when a repository is actually "hit" poses a challenge, and there is a scarcity of
empirical studies on this matter. The primary reference in this thesis, Ferreira et al. [12],
heavily relies on surveys and consensus rather than real events. Therefore, we advocate for
further research to be conducted in this area to enhance our understanding and develop
algorithms grounded in real-world occurrences.
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Appendix A

Detailed setup

A.1 TF Oracle

Repository GitHub Link Commit-id Date of commit
Alexreisner/geocoder https://github.com/Alexreisner/geocoder.git a6cc40b094e2f07577a10d870efbba8b35c9b62f 2015-08-14
androidannotations/androidannotations https://github.com/androidannotations/androidannotations.git b1e1903307d143b22f985d61c8b8e552d9c1c291 2016-09-09
Atom/atom-shell https://github.com/Atom/atom-shell.git e296f6daa27fc54a8204ebb3ecd5d104d3e74696 2015-08-14
Bjorn/tiled https://github.com/Bjorn/tiled.git f7e77d2c554ecd79153fbb4a03ef6dd05364be51 2015-08-13
Cantino/huginn https://github.com/Cantino/huginn.git d40a372c8357e1dd57ab5de4c95c7e87a5d44f5e 2016-09-14
Capistrano/capistrano https://github.com/Capistrano/capistrano.git bf45cbafe5ef396933c81f334bdbc8c6d32a38c2 2016-09-09
capnproto/capnproto https://github.com/capnproto/capnproto.git 21e7b91ecbfda217265bcbb1ef92b7097f6813f5 2015-08-14
Celluloid/celluloid https://github.com/Celluloid/celluloid.git 35374b2a0cd20da9c332cd74cab8d1de941ecf6b 2015-08-13
chef/chef https://github.com/chef/chef.git bacb2ff93ccc2e14a0b721988e241a1d07f70795 2015-08-13
D3/d3 https://github.com/D3/d3.git 55a8388d728315fd50f11ca5ab944b01296e4681 2016-09-12
Deis/deis https://github.com/Deis/deis.git e5f349dd9fb090aa993ad74758b3bbf038d44d23 2016-09-14
Dropwizard/metrics https://github.com/Dropwizard/metrics.git 3da5c88729eb4d08c914c6dd231a4eb7b97e0936 2015-08-03
Facebook/osquery https://github.com/Facebook/osquery.git 43cf5f1a0ae7731e2780e45e078dd0c04d10f0bf 2015-08-14
Gruntjs/grunt https://github.com/Gruntjs/grunt.git 2ddec56192ba6599cd3aeb0dc812f54cfe83c07b 2015-05-28
Ipython/ipython https://github.com/Ipython/ipython.git f2d072e9f357dcee0001f1aa2fe88c6494e5dd1f 2015-08-12
Junit-team/junit4 https://github.com/Junit-team/junit4.git 41d44734f41aba0cf6ba5a11ff5d32ffed155027 2016-07-18
Kennethreitz/requests https://github.com/Kennethreitz/requests.git 5524472cc76ea00d64181505f1fbb7f93f11cc2b 2016-09-14
Leaflet/leaflet https://github.com/Leaflet/leaflet.git 96d33b3a15c8168b2a2c850d334275bcc002dfa9 2015-08-11
Less/less.js https://github.com/Less/less.js.git 19dc9e78b9abebfcf7ac13561f205b68094f9012 2015-07-25
Mailpile/Mailpile https://github.com/Mailpile/Mailpile.git 2eebd5b604e737698ab64e2867e65684249120bb 2015-08-12
Netty/netty https://github.com/Netty/netty.git 75af257a62ab328edeeeed59b636d85910ba934c 2015-08-15
nicolasgramlich/AndEngine https://github.com/nicolasgramlich/AndEngine.git 85387a522c0494595ab79f5430b5bf5f5a8575b3 2013-12-11
Pallets/flask https://github.com/Pallets/flask.git 270355abdcaa8f20ad6e7dd39f69279859a7055c 2016-09-14
Powerline/powerline https://github.com/Powerline/powerline.git 11c1e07b1220453120602aafd250ae2cfcbdf007 2015-08-08
Puphpet/puphpet https://github.com/Puphpet/puphpet.git 060192945a3576f8ae511466b8d6a4c9a344aa3d 2015-08-11
ReactiveX/RxJava https://github.com/ReactiveX/RxJava.git adfabec8fb740fc873ece843736246742fdaba7c 2015-08-12
Requirejs/requirejs https://github.com/Requirejs/requirejs.git 51d005fd962d57d5434a579f81f22bf51cdfb0a0 2016-09-05
Respect/Validation https://github.com/Respect/Validation.git 007e37b57067341c33cb9697887af21f833f9189 2015-01-30
Ruby-grape/grape https://github.com/Ruby-grape/grape.git 220c345dff9602e431ac780abcb98dbb24293395 2016-09-14
Saltstack/salt https://github.com/Saltstack/salt.git c34c6b992feccb6b1a26fab1b5c137eb7192fb3d 2015-08-15
Sass/sass https://github.com/sass/sass.git dcf09265a0cc5006bba82d1c3e4d46d7134d7896 2016-03-04
SFTtech/openage https://github.com/SFTtech/openage.git f4199f4738e6e039fff16837c7afc44519d65736 2015-08-14
Symfony/symfony https://github.com/Symfony/symfony.git 017e88b6a15a679e9c811d5ebcd47ab68efc60e5 2016-09-15
Thoughtbot/paperclip https://github.com/Thoughtbot/paperclip.git 47b540d5bc3f1da1f789d2bf421adaeb3cf6fcd6 2015-08-03
Tornadoweb/tornado https://github.com/Tornadoweb/tornado.git 6e96e7781bd0073de5964f49a98241b81a7aa15a 2015-08-10

Table A.1: Commits used for Ferreira’s TF oracle [12].
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A. Detailed setup

A.2 AVL Dataset

fzaninotto/Faker https://github.com/fzaninotto/Faker.git 9625956ef3946a36b75fdc91e41bb12568aa2f39 2015-02-23
Leaflet/Leaflet https://github.com/Leaflet/Leaflet.git a8f8f28911e5fa85d1afc677e2562066d5600b28 2015-02-21
mailpile/Mailpile https://github.com/mailpile/Mailpile.git 97143a2971b00cf6340f19371d13b11fbdc468e4 2015-02-24
FriendsOfPHP/PHP-CS-Fixer https://github.com/FriendsOfPHP/PHP-CS-Fixer.git f0cb37452e8c8a4bc38d2c5a228b393f8b72ab33 2015-02-25
ratchetphp/Ratchet https://github.com/ratchetphp/Ratchet.git 21fbef177389ea7d573e774cb0b854701ea09db0 2015-01-25
ReactiveX/RxJava https://github.com/ReactiveX/RxJava.git 4778d00d517c667b6b234189d70ff36e1e4ba924 2015-02-24
silexphp/Silex https://github.com/silexphp/Silex.git d1cd7c132ee4f96466782ceec206313009c59bad 2015-01-20
Respect/Validation https://github.com/Respect/Validation.git fa67f0b0301082e670fa4bf4f4df94da47744f66 2015-02-20
github/android https://github.com/github/android.git 59b0c285f165904ee4f944177ec89f92ee51929d 2015-02-24
excilys/androidannotations https://github.com/excilys/androidannotations.git 5ff1a1920e9b7b778b2cd116b070ad7b9ce835c2 2015-02-23
atom/atom-shell https://github.com/atom/atom-shell.git 72d6a13e9e5f33d4811e558a1699d6ed04b93294 2015-02-19
meskyanichi/backup https://github.com/meskyanichi/backup.git 98038e45cc9c849e4ccc385944d71ff8629abe3a 2015-01-14
sampsyo/beets https://github.com/sampsyo/beets.git ccbe9079718160a89a60a70fe6153028bba7b176 2015-02-24
bitcoin/bitcoin https://github.com/bitcoin/bitcoin.git 34e5015cd21e27c1bf635d92531afac93f553096 2015-02-21
sandstorm-io/capnproto https://github.com/sandstorm-io/capnproto.git 0e4ae5672fae3c8fc294340b1c4eaef13dc35174 2015-02-19
celluloid/celluloid https://github.com/celluloid/celluloid.git 6a5c9cd5791306e6c09afbb9be1e8a2d5512204d 2015-01-10
chef/chef https://github.com/chef/chef.git fd849a49e89994d39478a792d1fb1932cc04fa22 2015-02-20
clojure/clojure https://github.com/clojure/clojure.git 2e76c57d3b7672ce5eca096ed2059d9a1dd379d0 2015-01-14
composer/composer https://github.com/composer/composer.git 475c84d4b1632653b115a4846125f276119db259 2015-02-25
mbostock/d3 https://github.com/mbostock/d3.git 3abb00113662463e5c19eb87cd33f6d0ddc23bc0 2015-02-11
dropwizard/dropwizard https://github.com/dropwizard/dropwizard.git 071b8104c0cf788264594899386ea5bfbf28d910 2015-02-25
elasticsearch/elasticsearch https://github.com/elasticsearch/elasticsearch.git 82beae9c0c3ef181827a2b82b2d7145a50585cde 2015-02-25
emberjs/ember.js https://github.com/emberjs/ember.js.git 5d853cefaec16a58af72f380bbc927474eb88c63 2015-02-25
strongloop/express https://github.com/strongloop/express.git 51f960f2977566f8d671fc0e8154466a1b3d78ca 2015-02-23
fog/fog https://github.com/fog/fog.git 46cea6f66d4db9015b3d98f9397e1cb4763c616a 2015-02-25
justinfrench/formtastic https://github.com/justinfrench/formtastic.git 0de7941dfd37c1391452320696be7516a8782d9c 2015-01-08
bumptech/glide https://github.com/bumptech/glide.git 75599b7af05eeca1393c8f4267adb78e88e7821e 2023-10-10
gruntjs/grunt https://github.com/gruntjs/grunt.git f290002eb3cede1004dbaf783d2b7b19f5d61bd4 2015-02-24
caskroom/homebrew-cask https://github.com/caskroom/homebrew-cask.git 0151aeb0a96e7dbbda6d1fee71fd19239d01a370 2015-02-25
Homebrew/homebrew https://github.com/Homebrew/homebrew.git 6f67f419ed627df55129eb620a806979d48905ae 2015-02-25
ipython/ipython https://github.com/ipython/ipython.git 54ea57400290d71935ec3699bbc3da92cbf791fc 2015-02-23
jadejs/jade https://github.com/jadejs/jade.git a15ae6bb5795a5d33879db2c94aa26fbd5682b6f 2015-02-25
xetorthio/jedis https://github.com/xetorthio/jedis.git 00eefa4767f908a1f6bade33bfa329acdcdf875f 2015-02-22
joomla/joomla-cms https://github.com/joomla/joomla-cms.git 69d86cf14bdf036ec6c761b66257546ef8cc0c5b 2015-02-25
jquery/jquery https://github.com/jquery/jquery.git 2380028ec4a6a77401b867a51de26a3cb8e8d311 2015-02-17
kivy/kivy https://github.com/kivy/kivy.git 170fd047266315d642089ade4497dd446ecbcd43 2015-02-22
less/less.js https://github.com/less/less.js.git 7eab7e4d4d4de87d990d3301db65380b295c2f37 2015-02-25
libgdx/libgdx https://github.com/libgdx/libgdx.git 92e27b72e9af588e875e431a9cb3effb8fec5bc1 2015-02-23
github/linguist https://github.com/github/linguist.git 739b512ceef87f1255a2acb20e850e80f6d5f602 2015-02-25
elasticsearch/logstash https://github.com/elasticsearch/logstash.git 786d2d2c1aa3b8a4a2f6c703a54ce447fd6a2dc5 2015-02-19
spotify/luigi https://github.com/spotify/luigi.git 541f40810d4f9f87e146cb0259854231e0a5aa7c 2015-02-25
dropwizard/metrics https://github.com/dropwizard/metrics.git b22b8da49f735e7c43902583519e28695db0a9b7 2015-02-12
Seldaek/monolog https://github.com/Seldaek/monolog.git bba433ac380c47523fab495a1322368381df0996 2015-02-25
janl/mustache.js https://github.com/janl/mustache.js.git d4ba5a19d4d04b139bbf7840fe342bb43930aee3 2015-02-18
netty/netty https://github.com/netty/netty.git 237b393a8e7c7f1812ccf2c9510a205fe7772a8e 2015-02-24
openframeworks/openFrameworks https://github.com/openframeworks/openFrameworks.git 515b35e3d799be5af9eb06979819118ff78a9a13 2015-02-25
SFTtech/openage https://github.com/SFTtech/openage.git a0fe241d6beda5ba65cd8a9f06d70f4b74d3a862 2015-02-18
facebook/osquery https://github.com/facebook/osquery.git b9dbcb254584a52282c105a139025c2f2ac8dcd5 2015-02-25
thoughtbot/paperclip https://github.com/thoughtbot/paperclip.git 97c78efdce65b07c6425e76000f34f1909a257cb 2015-01-11
sebastianbergmann/phpunit https://github.com/sebastianbergmann/phpunit.git 7b9e68dfc2fccb6b167b09a605152b0f5fd6d871 2015-02-24
powerline/powerline https://github.com/powerline/powerline.git 3bf484de25cc77b0fc8f04e77f3993f4c1e939a8 2015-02-21
puphpet/puphpet https://github.com/puphpet/puphpet.git a4da7b71c5c80f8a1bfff6b29f8f6ac8f2b27233 2018-03-24
rails/rails https://github.com/rails/rails.git 71fc7892399bcb3ca24eff0a8f528e3bc8d7d82d 2015-02-25
jrburke/requirejs https://github.com/jrburke/requirejs.git 356dcd81f9982a01e6b27b4fe3a9b5494379e52a 2015-02-19
resque/resque https://github.com/resque/resque.git 04d40b00da45efb9194b9e4ab1fa485dde4f558e 2015-01-17
saltstack/salt https://github.com/saltstack/salt.git de441aba3503d904377a298696116567e70ce01e 2015-02-25
scikit-learn/scikit-learn https://github.com/scikit-learn/scikit-learn.git a92662672525618f7bf79f93044e57d4195828ac 2015-02-25
getsentry/sentry https://github.com/getsentry/sentry.git e188acb154ba1de130e8122d6c7025dc34f92157 2015-02-24
bjorn/tiled https://github.com/bjorn/tiled.git fd52c607fad1b300c347236d0eb1a41a46a135ff 2015-02-24
JohnLangford/vowpalwabbit https://github.com/JohnLangford/vowpalwabbit.git 1c6cb8065a86684558455f409d0133c0ac686ef4 2015-02-18
wp-cli/wp-cli https://github.com/wp-cli/wp-cli.git 0925413f215eb1ffecb80b278fb424ef8bf2f02b 2015-02-20
yiisoft/yii2 https://github.com/yiisoft/yii2.git 384607832f371acb20991c553e60dd29d7dfeb9e 2015-02-25

Table A.2: Exact commits in the AVL OSS dataset [5].
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Detailed results
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B. Detailed results

B.1 File Authorships

(a) Open-source: 1
active developer

(b) Proprietary: 1 ac-
tive developer

(c) Open-source: 2-4
active developers

(d) Proprietary:2-4
active developer
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B.1 File Authorships

(e) Open-source: 5-9
active developers

(f) Proprietary:5-9
active developer

(g) Open-source: 10-
24 active developers

(h) Proprietary:10-24
active developers
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B. Detailed results

(i) Open-source: 25-
50 active developers

(j) Proprietary:25-50
active developers

Figure B.1: The distribution of the file authorship among the
datasets for open-source and proprietary systems. The data is
queried from CodeScene’s customers’ projects.
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B.2 Max File Authorships

B.2 Max File Authorships

(a) Open-source: 1
active developer

(b) Proprietary: 1 ac-
tive developer

(c) Open-source: 2-4
active developers

(d) Proprietary:2-4
active developer
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B. Detailed results

(e) Open-source: 5-9
active developers

(f) Proprietary:5-9
active developer

(g) Open-source: 10-
24 active developers

(h) Proprietary:10-24
active developers
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B.2 Max File Authorships

(i) Open-source: 25-
50 active developers

(j) Proprietary:25-50
active developers

Figure B.2: The distribution of the maximum file authorship among
the datasets for open-source and proprietary systems. The data is
queried from CodeScene’s customers’ projects.
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Att bli påkörd av en buss

POPULÄRVETENSKAPLIG SAMMANFATTNING Andreas Karlsson

Hur skulle din organisation reagera om någon oväntat blev påkörd av en buss? Utöver
de personliga tragedierna väcker denna fråga tankar kring hur väl rustad organisationen
är för att hantera en plötslig förlust av personal. Har organisationen förmågan att
anpassa sig och fortsätta sin verksamhet?

Frågan om vad som händer med en organisation
när någon blir påkörd av en buss kan upplevas
överdriven. Men trots det så händer det att per-
sonal plötsligt lämnar sina roller och sina arbets-
platser. Detta innebär att organisationer behöver
ha kunskaper och verktyg för att få en överblick
och förståelse i hur beroende verksamheten är av
specifika individer.

Inom mjukvaruutveckling så finns mycket av
systemets kunskap inom varje utvecklare. Agila
arbetsmetoder har premierat mindre dokumenta-
tion och mer informella kontaktkanaler vilket har
medfört att organisationer har blivit mer beroende
av sina utvecklare. Tidigare forskning från öppna
källkodsprojekt har identifierat att många system
är byggda av relativt få utvecklare. Detta med-
för att utvecklignen av systemen kan möta svåra
problem om någon/några av dessa utvecklare plöt-
sligt skulle lämna projektet.

Mitt exjobb handlar om att ta fram en algo-
ritm som kan räkna ut Bussfaktorn i ett mjukvaru-
utvecklingsprojekt. Det vill säga en algoritm som
kan identifiera det maximala antal nyckelpersoner
som en organisation skulle klara av att plötsligt
tappa utan att projektet inte längre skulle kunna

gå att utveckla. Algoritmen är tänkt att användas
för att hjälpa organisationer att identifiera vilken
risk de har kopplat till plötsligt bortfall av utveck-
lare.

Den framtagna algoritmen användes på 195
öppna källkodsprojekt och 102 projekt hos företag
för att undersöka om fördelningen av Bussfaktor-
erna var ungefär lika stora i de två olika typerna av
projekt. Resultatet visade att de olika kontexter-
nas fördelningar av Bussfaktorn var likartade. Det
vill säga, att både öppna källkodsprojekt och pro-
prietära projekt är likartade om vilken inneboende
risk det finns i fall där utvecklare skulle lämna pro-
jekten.

Genom den framtagna algoritmen är tanken att
företaget CodeScene ska implementera denna i sitt
produktutbud. Detta skulle kunna hjälpa Code-
Scenes kunder att öka sin förståelse och möjlighet
att agera på potentiella risker som de eventuellt
inte var medvetna om tidigare, och på så sätt
minska de negativa påföljderna om någon anställd
abrupt skulle lämna organisationen. En konkret
åtgärd kan vara att en organisation arbetar mer
med att främja kunskapsfördelning för att uppnå
ett ökat delat kodägarskap.
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