o e 2K

Driving Development

MASTER’S THESIS%2023

Resilience: Analyzing Truck
Factors across Proprietary and
4 Open-Source Projects

3 Andreas Karlsson

| . Il
— ISSN 1650-2884 | \ i
LU-CS-EX: 2023-53 |7

DEPARTMENT OF COMPUTER SC:jNCE
: LTH | LUND UNIVERSITY







EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-53

Driving Development Resilience:
Analyzing Truck Factors across Proprietary
and Open-Source Projects

Riskmedvetenhet: Analys av Truck Faktorn
i proprietira och 6ppna killkodsprojekt

Andreas Karlsson






Driving Development Resilience:
Analyzing Truck Factors across Proprietary
and Open-Source Projects

Andreas Karlsson

andreasjankarlsson@gmail.com

December 19, 2023

Master’s thesis work carried out at
the Department of Computer Science, Lund University.
Supervisors: Markus Borg, markus.borg@cs.1th.se
Adam Tornhill, adam. tornhill@codescene. com

Examiner: Per Runeson, per.runeson@cs.lth.se


mailto:andreasjankarlsson@gmail.com
mailto:markus.borg@cs.lth.se
mailto:adam.tornhill@codescene.com
mailto:per.runeson@cs.lth.se




Abstract

[Context] The agile approach to software development has led developers to
retain more project-specific knowledge. This, along with the software indus-
try’s higher turnover rate compared to other sectors, makes software projects
more susceptible to the abrupt loss of key personnel. [Objective] This project
investigates if the resilience to sudden loss of key developers differs in propri-
ctary and open-source software projects. This is done through the introduction
of a new algorithm, expanding upon the current state-of-the-art Truck Factor
algorithm. [Method] The method comprises three phases. Phase one involves
reproducing the current state-of-the-art algorithm. In phase two, we introduce
five new algorithmic approaches and analyze advantageous configurations. In
phase three, we implement the most promising a]gorithm from phase two on
open-source and proprietary projects obtained from CodeScene’s data lake. [Re-
sults] Two of the proposed algorithms provided more accurate results on an or-
acle compared to the current state-of-the-art algorithm. Furthermore, no clear
difference between the Truck Factor distribution between proprietary and open-
source projects could be observed. However, a trend appears for both contexts:
when the number of developers increases, the relative Truck Factor decreases.
[Conclusion]| The execution of the most promising algorithm found that open-
source and proprietary projects share similar characteristics regarding resilience
to the sudden loss of key personnel.

Keywords: Truck Factor, Bus Factor, repository mining, software metrics, knowledge

distribution, proprictary software development, open-source SOftWQI'C dCVClOmel’lt






Acknowledgements

[ would like to thank:

+ Markus Borg for your invaluable support throughout this thesis. I am truly grateful
for your assistance and guidance.

+ Adam Tornhill for granting me the opportunity to conduct my thesis project at Code-
Scene. I am truly impressed by the remarkable company you have buil.

« CodeScene for creating an inclusive environment where I felt like a part of the team.

+ Jenny Godring Gullberg for her support and for enabling me to work at Handels-
banken alongside this master thesis.

+ Rut Montero Vilar for her steadfast support over the last couple of years.

+ Guilherme Avelino for his significant contributions to the field of Truck Factor algo-
rithms and for his support during the course of this thesis.







Contents

(I Introduction|
[1.1 Backeround and motivation| . . . . . .. .. ...
2 Defimidon of the Truck Factod .« . . . o o o oo
[[3 Previousworkl . . . . . . .
13.1  The first TF algorithm| .........................
132 Subsequentresearch| . . ... ... oo L
(.3.3  Validating TF algorithms| . . . ... ... ... .00 00
(L4 Distribution of contributionin OSSl . . . . . . .. ... oL
(L5  Open-source development context| . . . . . ... ... ... ... .. ...
) esearch approach|. . . . . . . .
1.6 R h app h
|2 Backgroungl
D1 Defimitions . . . . o o o
[2.2  Heuristics for file knowledg ..........................
221 Commic-based heuriscidl . . . . . ... ...
222  ToC-based heuristid . . ... ... ... ...
23  AVLalgorichm|. . . . ... ... oo
R4 Validadonoracldl. . . . . . . ..
3  Technical setu
p
.1 State-of-the-art reproduction|. . . . . .. ... oo 000
|§.2 Data collection and analysis|. . . . .. ... .00 00000000
3.3 Replication package| . . . . . . .
p p g

4 Description of datasets|

2

[> Methodologyl|

Bl

Phase 1: Implement TF algorithms|

O 0 o Co NI N

13
13
14
14
15
16
17

23
23
23

27




CONTENTS

5.1.1  Step A:Setup AVL| . . . . ..o oo
512 Step B: Setup CodeScene’s approach| . .. ... ... ... .

E.1.3 Step C: Setup alternative TF algorichms| . . . . .. ... . ..
[5.2  Phase 2: Benchmark comparison| . . . . ... ... o 000
(.21 Step A: Analyze file authorship| . . . .. ... .. .
5.2.2  Step B: Determine thresholds| . . . . .. .. ... ...
5.2.3  Step C: Compare TF algorithms|. . . . . ... ... ... ..

[5.3  Phase 3: Comparing open-source and proprietary repositories

5.3.1 A: Compare TFresules| . . .. ..o o000

6 Results

6.1  Phase 1: Setup AVL algorichm| . . . .. ... ..o o000
6.2 Phase 2: Identify thresholds and a favourable algorichm| . . . .. . .|
6.2.1  Fileauthorship| . . . .. ... oo oo
6.22  Benchmarkingl . ... ... ... 00000000000
6.23  Summary thresholds| . . . . ... ... o000

[6.3  Phase 3: Comparing open-source and proprietary repositories

[Z_Discussion|

7.1 RQI: Comparing TF algorichms| . . .. .. ... ... ... ..

|7.2 RQ?2: Comparing TF values in OSS and proprietary contexts

73 Threatscovalidicyl . . . . .. .. .. L
E.3.1 Internal validiey] . . .. ..o o000 o
ES.Z Construct validity] . . . ... ... Lo
E.3,3 External validiey| . . .. ..o oo oo
734  Reliabilicy]. . . ... .. o

Bibliography

[Appendix A Detailed setup]

lAppendix B Detailed results|

B File Authorships . . .. ..o oo
B2 Max File Auchorships| . . . ... ... ... .

35
35
38
38
39
45

51
51
52
52
53
53
54
54

55
55
56

57

63
63
64




Chapter 1

Introduction

This Chapter begins by addressing the necessity for a Truck Factor a]gorithm, followed by
an exploration of the Truck Factor’s definition. Subsequently, it reviews findings from prior
research, examining various methods for assigning and categorizing knowledge to a file. The
chapter concludes by presenting the overarching aim of this thesis.

1.1 Background and motivation

Historically, traditional software development was built on the idea that a successful release
results from rigorous development processes. This includes intensive analysis, design and
documentation phases [20]. However, with the rising cha]]enges of the 21st century, orga-
nizations had to more quickly adapt and respond to more frequent and major changes in
the business domain [6]. Traditional software development has therefore been challenged
in today’s world, and alternative organizational structures and development strategies have
proven to provide significant business benefits [20].

Traditional software development is keen to some common points of failure, often deriv-
ing from the relationship between the business domain and software development teams. To
battle these shortfalls, a more agile approach to software development has become increas-
ingly established [2].

Traditional software development emphasizes risk reduction through comprehensive doc-
umentation and analysis, whereas agile software development seeks to mitigate risk by quickly
adapting to dynamic environments [20] 32, [I]. Agile practices commonly include informal
communication with stakeholders, keeping more project information within the develop-
ment team (rather than in formal requirement documents), and fostering the emergence and
evolution of architectures [20] 1.

These factors collectively have increased organizations’ dependence on developers. Cou-
pled with the software industry’s elevated turnover rate in comparison to other sectors [21]
22]], software projects are particularly vulnerable to the abrupt departure of key personnel.




1. INTRODUCTION

This thesis aims to support organizations, both in open-source and proprietary contexts,
in identifying and assessing the risks linked to dependency on a limited number of developers
through the introduction of a novel algorithm. Furthermore, the thesis aims to examine
whether this risk observed in open-source projects extends to proprietary projects.

1.2 Definition of the Truck Factor

The Truck factor (TF) is a term used in software management to define a measurement of
how vulnerable a project is to a sudden loss of its key members. Specifically, it refers to
the hypothetical question: "What would happen if a key member got hit by a truck?" The
term accesses the risk of a project based on the number of key individuals who have critical
knowledge or skills. Ricca et al. [23] lift that the TF could be used to quantify how well
distributed the knowledge and responsibilities are among the members of a project, and an
indicator of how expensive it is to replace a team member in a project [24]. A higher TF,
Compared to the team size, indicates a higher project resilience where the project would be
more likely to function if a key member were lost. Conversely, a lower TF would indicate
a higher project risk due to heavy reliance on specific individuals. The term has also been
referred to as the “truck factor problem” [19], “TF developers detachment” [3] and “Bus factor”
[19].

1.3 Previous work

This chapter discusses the history of truck factor algorithms, different implementations of
various algorithms, validations of the AVL algorithm, and definitions of file authorship.

1.3.1 The first TF algorithm

Zazworka et al. pioneered an algorithm for TF computation through mining version control
system data [32]. This algorithm laid the groundwork for subsequent advancements, operat-
ing on two fundamental principles. Firstly, any developers who have done a commit to a file
are assumed to possess total knowledge of the file. Secondly, a project would be at serious
risk if the remaining developers’ joint knowledge covers less than a threshold of files.

The algorithm functions by iteratively removing all possible sets of developers and cal-
culating the remaining knowledge. The algorithm stops when the knowledge coverage is
beyond a given threshold, and the TF is the number of iterations. An example of the algo-
rithm is presented in Figure|L.1] With the knowledge threshold set to 70%, 50%, and 20%, the
TF estimation would be 0, 1, and 2, respectively.

Ricca et al. conducted additional research to validate Zazworka et al’s work [24]. They
assessed the algorithm on 37 open-source projects with various threshold configurations. The
algorithm showed potential, notwithstanding its simplistic inherent assumption that every
developer who interacted with a certain file would possess equal knowledge of it. However,
the algorithm showed scaling issues, especially in projects where the number of committers
was greater than 30 individuals. In these projects, the computational time was measured in
days rather than minutes.

8



1.3 PREVIOUS WORK

Number of missing developers
0 1 2 3
File Developer Set {} {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
File1 {A,B} + + + + - + + -
File2 {B} + + - + = +
File3 {AB,C} + + + + + + + -
Coverage (%) 100 100 66 100 33 100 66 0
Min (%) 100 66 33 0

Figure 1.1: An example of Zazworka et al’s algorithm, plus signs im-
ply remaining knowledge about a file. On the contrary, a minus sign
implies that all knowledge of a file has been lost.

Ricca et al. [24] advocated that a more precise algorithm should be developed by con-
sidering that developers with a substantial number of commits are more likely to possess a
greater depth of knowledge about the corresponding file, as opposed to a developer who has
contributed far fewer commits.

1.3.2 Subsequent research

The CST algorithm presented by Cosentino et al. [10] builds upon Zazworka et al’s algorithm.
In contrast to relying on the percentage of files without knowledge, this algorithm determines
the TF by considering the number of developers with sufficient understanding of the entire
project to sustain development.

The algorithm estimates the TF by identifying developers with a knowledge score exceed-
ing 100%/N, where N is the number of developers who have made a commit to the artifact.
The knowledge score is derived from the average file-knowledge for a system. Cosentino et
al. introduce four distinct metrics for computing file knowledge in a system, namely:

« Last change takes it all: The developer who committed the latest change is assigned to
have 100% knowledge about the code in that file.

« Multiple changes equally considered: The knowledge about the code is assumed to be

connected with the number of commits a developer has done. Thereby, the assigned
100%

knowledge per commit to a file is pro—

« Non-consecutive changes: Same as Multiple changes equally considered, but the knowledge
about a file is split according to the number of non-consecutive commits by a user to

a file.

+ Weighted non-consecutive changes: This metric takes into account the time aspect of a
commit. Commits closer in time get a higher knowledge % than commits further back
in time.

The RIG algorithm developed by Riby et al. [25] adapts algorithms used for financial
risk assessment in the financial sector to software development projects. By taking a more
statistical approach, and by using the loss distribution, expected loss, knowledge at risk, and
expected shortfall, Monte Carlo simulations are run with a randomly selected developer who
leaves. The simulation aims to indicate how bad a loss would be, and how probable it is to
occur. Through this data, the TF is determined.

9



1. INTRODUCTION

The AVL algorithm proposed by Avelino et al. [4] follows the same principle as Zazworka
et al., but diverges in its methodology. Instead of assessing a commit to total knowledge of a
file, AVL relies on degree-of-authorship calculations, derived from Fritz ecal. [13], to identify
one or multiple developers as authors of a file. The algorithm proposes that a project would
be at serious risk if 50% of the project’s files were left without one or more authors. For
TF calculation, the algorithm employs a greedy approach, iteratively removing the developer
responsible for the most files. The TF is determined by the number of iterations until at least
50% of the project’s files lack an assigned author.

Jabrayilzade et al. [19] enhanced the algorithm proposed by Avelino et al. by incorporat-
ing additional parameters into the Degree-of-Authorship (DOA) metrics. These parameters
include contribution decay, code reviews, and time spent in meetings.

The algorithms introduced by Avelino et al. [4], Jabrayilzade et al. [19], Zazworka et
al. [32], and Cosentino et al. [10] treat the significance of files equally. Haratian et al. [16]
investigated the impact of incorporating file significance into the algorithms proposed by
Avelino et al. and Jabrayilzade et al. They assigned weights to files based on the number of
dependencies, and found that this addition improved the performance of both algorithms.

Our literature search suggests that the field of algorithms for estimating the TF is still in
its early stages, with Avelino’s work being a standout contribution. Subsequent algorichms,
building on Avelino et al.,, have introduced additional metrics to improve models and better
capture the knowledge within a development team. However, to the best of our knowledge,
no peer-reviewed paper has utilized Lines of Code as a heuristic for assigning file-knowledge
to a given developer. Le. a large chunk of contributed source code to a file is worth, in
terms of knowledge, more than a small, contrary to the existing algorithms where solely the
commit-history assigns knowledge.

1.3.3 Validating TF algorithms

Proposing TF algorithms may be straightforward, but evaluating their accuracy presents a
more challenging task. Ferreira et al. [12] addressed this challenge by establishing a TF ora-
cle, consisting of 35 open-source projects. The oracle was constructed through survey-based
research, building on the work conducted by Avelino et al. [4]. Ferreira et al. compared three
different algorithms—AVL [4], RIG [25], and CST [I0] and concluded that the AVL algo-
rithm developed by Avelino et al. [4] exhibited the best accuracy. They also determined that
a feasible threshold for identifying TF developers with the AVL algorithm is 50% of aban-
doned files. In this thesis, we use the AVL algorithm (with the 50% setting) as a benchmark
for comparison. A detailed description of the AVL algorithm follows in Section

1.4 Distribution of contribution in OSS

Within the Open Source community, the term Core Developers refers to those developers who
play a prominent role in the advancement and upkeep of a software project [31]. Yamashita et
al. [31] investigated how well Open Source development follows the Pareto principle, i.e. 20%
of the developers are responsible for 80% the contributed code, by analyzing 2,496 GitHub
repositories. They defined the core developers to be the group of developers accountable for
the majority of contributions, encompassing up to 80% of a project’s codebase. The results

10



1.5 OPEN-SOURCE DEVELOPMENT CONTEXT

Table 1.1: The percentage of core developers in Yamashita et al’s pa-
per [31]. Commit-based heuristics quantify core developers based on
the number of commits they have made, while LoC-based heuristics
rely on the number of lines of code.

Heuristic Proportion of Core Deve]opers
0%-10% | 10%-30% | 30%-100%

Commit-Based | 26% 47% 27%

LoC-based 58% 37% 5%

of the paper are accumulated in Table and concludes that the Pareto princip]e is not
generally applicable to open-source projects. A large portion up to a majority, depending
on heuristic, of projects have a proportion of Core developers of less than 10%. Thereby, the
paper indicates that open-source systems tend to have a low TF.

1.5 Open-source development context

Open-source software development builds on asynchronous collaboration among decentral-
ized developers. In the early days of the development methodology, it challenged the way
of building systems by demanding full transparency on both the source code, but also the
governance of the project [9]. In recent years, there has been a growing focus on the open-
source approach [1], 9]. Despite the absence of traditional project plans and requirements
documents in open-source projects, this methodology has gained increased actention for its
effectiveness in software maintenance, code reusability, and the delivery of higher-quality
projects. Notably, complex systems like Linux [9] serve as a compelling example, demon-
strating the success and viability of this development methodology.

A part of its initial popularity was due to the motivation of its contributors. Within
Open source a driving factor is that a developer needs something specific to be done [9], and
the motivation to contribute is then further reinforced when a contribution is adopted and
used by other developers. This is contrary to proprietary projects, where the contributions
are predefined by requirements documents.

Open-source projects have thrived under the influence of enthusiasts and amateurs for
the majority of their existence [27]. However, there has been a swift adoption of these sys-
tems by companies. As of 2018, 80% ofxorganizations re]y on open-source systems [18]. Con-
sequently, more businesses are actively engaging in open-source communities. Notably, some
organizations have emerged as significant contributors, even assuming the role of principal
contributors, underscoring the increasing influence of businesses in shaping and advancing
open-source projects [14, 27]. Therefore, we believe that the distribution of Truck Factors
between open-source and the proprietary contexts could prove to have similar characteris-

tics.

11



1. INTRODUCTION

1.6 Research approach

The primary goal of this thesis project is to establish the foundation for an upcoming TF
algorithm to be incorporated into CodeScene’s product range. This project unfolds in three
key steps. Firstly, we implement various novel TF algorithms, including the state-of-the-art
AVL algorithm. The validation of our AVL implementation involves reproducing analyses
conducted on open-source repositories by Avelino et al. [4]. Secondly, we assess the accuracy
of these algorithms using Ferreira’s Oracle dataset [12]. Throughout this evaluation, we ex-
plore how fine-tuning thresholds contribute to more precise TF scores. Lastly, we apply the
most accurate TF algorithms to two new datasets, one open-source and one closed-source
anonymous]y extracted from CodeScene’s customers.
Two research questions guide our discussions:

+ RQ1) How do our novel TF algorithms compare to the state-of-the-art AVL algorithm?

+ RQ2) To what extent does the distribution of TF of open-source GitHub projects gen-
cralize to proprietary projects?

12



Chapter 2
Background

This chapter introduces key findings from prior research and establishes definitions and
heuristics that are employed throughout the thesis. Furthermore, it provides a detailed de-
scription of the AVL algorithm presented by Avelino et al. [4]. Finally, the chapter presents
the dataset designated as the TF oracle.

2.1 Definitions

This section introduces definitions that will be used throughout the thesis. According to
Avelino et al. [4], a file author is defined as a developer capable of maintaining a file from the
most recent system snapshot onwards. This includes developers who created the file and/or
those who made significant contributions to a file after its initial creation. In other words, a
file could have more than one author. This thesis adopts this authorship definition.

Borg et al. [7] examined the correlation between developers’ project experience, file own-
ership, and the resolution times of issues. File ownership was determined by the proportion
of a developer’s commits to a file, categorized on an ordinal scale: marginal ownership (<0.1),
minor ownership (0.1-0.49), major ownership (0.5-0.9), and dominant ownership (>0.9). The
paper concluded that current industry practices result in projects with many dominant and
marginal owners, the opposite objective of collective code ownership. This thesis adopts
these ownership definitions to enable a more fine-granular description of ownership on a
file-level.

CodeScene is a proprietary code ana]ysis tool that offers a pa]ette ofzmalyses. The tool de-
fines a file’s primary owner as the developer who has contributed at least 50% of a file’s current
lines of code. The CodeScene solution uses a complex implementation to track developers’
contributions and ownership during the lifetime of a project. The solution is substantially
more complex than the naive methods presented in previous academic tools, for example re-
garding tracking developer name changes and supporting pair programming configurations.
In this project, we build on CodeScene’s primary owner calculations to calculate TF scores

13



2. BACKGROUND

as a second benchmark for comparison.

CodeScene’s tools can also identify the number of active developer a project has. This data
is used in the thesis to comprehend how the Truck Factor relates to the current developers
of a project.

All algorithms utilized in this thesis employ greedy approaches to determine the Truck
Factor. In each iteration, one developer is excluded, and consequently, if a file no longer has
an assigned author, it is considered orphaned.

To summarize, we use the fo]]owing definitions in this thesis:

+ Owner A developer who has existing contributions to a file.
« Author A developer knowledgeable enough to maintain and further develop a file.
« Orphaned file A file which no longer has any authors.

+ Primary Owner CodeScene’s definition of a developer who owns 50% or more of the

file’s LoC.

+ Active developers CodeScene’s term for developers who made commits to the project
in the last three months.

2.2 Heuristics for file knowledge

This section presents two fundamental heuristics in file authorship calculacions. A more
advanced third approach is presented together with the AVL algorithm.

2.2.1 Commit-based heuristic

The Commit-based heuristic assigns file-knowledge based on the number of touches a devel-
oper has done to a file, regardless of the size of the touch. The commit information can be
obtained from version control systems such as git and be leveraged for further analyzes.

A majority of the algorithms discussed in Subsection employ the Commit-based
heuristic to utilize commit information for calculating the Truck Factor, each employing
distinct implementation approaches.

The distinct advantages of Commit-based heuristics, when compared to LoC-based al-
ternatives discussed in Subsectionm lie in their consideration of a project’s history rather
than solely on the artefact’s current state. This means that these heuristics are more resilient
to refactoring activities [5]. Consequently, they can capture “hidden” knowledge that may no
longer be represented in the current artifact as lines of code.

A limitation of this heuristic is that it does not consider the size or context of each com-
mit. For instance, renaming a method in one file could trigger multiple changes in other
files that call the renamed method. Consequently, the heuristic could yield a false positive
contribution to files used by the previously mentioned algorithms since the commits are not
weighted by context. Borg et al. [7] examined the file-ownership distribution in 39 propri-
ctary systems by analyzing commit data. The results revealed that developers often modify
files for which they have either minimal or dominant ownership, as illustrated in Figure

This implies that depending solely on commit-based metrics may overstate a developer’s

14



2.2 HEURISTICS FOR FILE KNOWLEDGE

8000

6000
2
E
E
[=]
& 4000

2000 III

D |||||IIII|IIIIII||
00 02 04 06 08 10

File ownership at time of commit

Figure 2.1: The ownership distribution when modifying files,
adapted from Borg et al. [7]. The x-axis represents the relative own-
ership by a developer toa ﬁle, while the y-axis shows the frequency

O{: such occurrences.

contributions. This is because having only a minimal ownership stake in a file does not nec-
essarily demonstrate that these developers could effectively maintain and enhance the files if
the main authors were to leave the project suddenly.

2.2.2 LoC-based heuristic

The LoC-based approach identifies a developer’s contribution to a project based on the cur-
rent lines of code in a given artifact.

This heuristic offers a notable advantage by placing greater emphasis on the size of each
developer’s contribution. It effectively mitigates the issue of false positives for developers
with small ownerships, as these are overshadowed by the substantial volume of other code.
However, it is crucial to acknowledge that contributions like refactoring activities by other
developers can elevate the risk of suppressing existing code knowledge, potentially resulting
in false negatives [5].

No Truck Factor algorithms have been presented that utilize the LoC-heuristic. Taking
inspiration from Avelino et als algorithm [4], this thesis defines an author in a manner akin
to Avelino et al. Specifically, the authors of an artifact’s file are the developers who own more
than a set threshold of the file’s lines of code. This is with the exception of the algorithm
that leverages primary-author data generated from CodeScene’s analysis tools. In this case,
the primary author is seen as the only author of the file.

15



2. BACKGROUND

2.3 AVL algorithm

The AVL algorithm, developed by Avelino et al. [4], determines the Truck Factor by pro-
gressively eliminating the developer who is author of the most number of files uncil half of
the system’s files do not have an author. The algorithm does this by mapping the system’s
git-log to a Degree-of-authorship (DOA) metric for each file and developer combination. The
algorithm follows five distinct phases.

Phase I, Filter source files: Source code files that are not of interest for the analysis should
be discarded. Examples of these files are documentation, images, and third-party libraries.
The algorithm does this by employing the Ruby library Linguist EI and by filtering files ex-
plicitly listed in an ignore file.

Phase I1, handling developer aliases: Developers may sometimes have multiple aliases due
to their association with various GitHub accounts. The AVL algorithm addresses this issue in
two steps. Firstly, the algorithm maps the developers’ email addresses with their respective
aliases. Secondly, it consolidates similar developer aliases by considering them identical if
their Levenshtein distance is less than one. In other words, the algorithm considers two
aliases to be the same if they differ by ac most one character through insertion, deletion, or
substitution. To exemplify, the aliases "developer” and "d3veloper” would be identified as the
same developer since it only takes one substitution (3 & ¢) to make the aliases equal.

Phase III, Trace change history: The AVL algorithm traces the history of the system’s files
by analyzing the log history. For each change, the algorithm extracts the file’s path, and the
developer who committed the change, and categorizes the change into one of three categories:
file addition, file modification, or file rename.

Phase IV, Defining authors: The AVL algorithm defines the authors of a file as the de-
velopers who have both 1) an absolute DOA greater than 3.293 and 2) a normalized DOA
greater than 0.75. The DOA metric were formulated by Fritz et al. [13] and are determined
by the functions:

DOA spsolute(Mg, fp) = a + b+ FA(my, f,) + ¢ * DL(my, f,) + d * In(1 + AC(mg, f;,))
Where:

+ DOA spsolute (Mg, £, the DOA for a developer my for file f),

« FA,First authorship | if developer m, created the file f,,, then FA=1, else FA=O0.

« DL, Number of deliveries how many commits the developer m, has done the a file f,.

« AC, Number of acceptance, the number of commits to the file f, made by any developer
other than developer my.

+ ab,c,d, parameters derived from Fritz et al. [13], Respectively: 3.293, 1.098, 0.164, -
0.321.

"https://github.com/github-linguist/linguist

16


https://github.com/github-linguist/linguist

2.4 VALIDATION ORACLE

For cach file, f,, the DOAormalized is set to be 1 for the developer, maaxpoa, with the
highest absolute DOA spso1ure- Hence, the developers' DOAormalized are calculated as:
DOAabso]ute(mda fp)

DOA ized (1M ’f =
normali ed( d P) DOAabsolute(mMaXDOA’fP)

The usage of the DOA metric entails that a file can have multiple authors. Thereby taking
into account scenarios where a codebase has a higher degree of knowledge distribution.

Phase V, Estimate Truck Factor: Using the information obtained from previous phases,
the a]gorithm proceeds to iteratively eliminate the developer who, in each iteration, is the
author of the most files. This process continues until half of the system’s files no longer have
any associated author. The Truck factor is the number of iterations, and the AVL algorithm
outputs both the Truck Factor as well as the developers who are part of this set of developers.

Note that the Truck Factor tool has undergone updates since its first commit on July 11,
2015. The tool has three releases, v.1.0 September 12, 2015, v1.1 April 13, 2016, and the
latest v.1.2 released April 12 2018ﬂ

Through email exchanges with Avelino, the distinctions between the versions were clari-
fied. In Version 1.0, the tool did not incorporate native support for alias handling. Instead,
this task was carried out manually, with the mapping added to a file that the tool later uti-
lized as input. In subsequent releases, this functionality is already embedded in the tool.
These versions also possess the capability to exclude authors associated with minor file
authorships, consequently mitigating the impact of a long-tail distribution of knowledge.
The algorithm achieves this by excluding developers who have authored less than 10% of
the total files.

“https://github.com/aserg-ufmg/Truck-Factor/releases

2.4 Validation oracle

Validating the results from truck factor analyses is an acknowledged challenge. In this section,
we introduce the best available oracle presented in previous work.

In Avelino et al’s study, the AVL algorithm was applied to analyze 133 open-source sys-
tems [4]. To validate cheir findings, the authors conducted a survey-based investigation, con-
sisting of 114 questionnaires tailored to individual systems, and subsequently posted them on
the respective GitHub pages. The study addressed, among others, the following questions:

1. Do developers agree that the top-ranked authors are the main developers of their
projects?

2. Do developers agree that their project will be in trouble if they lose the developers
responding for its truck factor?

Of the 114 surveys, Avelino et al. successfully obtained responses for 62 systems. The re-
sponses to the survey’s questions one and two were categorized as Agree, Partially, Disagree,

and Unclear, and the results are provided in Table

17


https://github.com/aserg-ufmg/Truck-Factor/releases

2. BACKGROUND

Table 2.1: Results of Avelino et al.[4] survey

Question | Agree Partially | Disagree | Unclear
1 31 (50%) | 18 (29%) | 9 (15%) 4 (6%)
2 24 (39%) | 6 (10%) | 27 (43%) | 5(8%)

Ferreira et al. [12] subsequently conducted a comparative study to validate three different
algorithms for estimating a project’s Truck Factor, including the AVL algorithm. Expanding
upon the surveys created by Avelino et al. [4], they introduced additional GitHub projects.
Their study refined the survey responses into an oracle, comprising 35 GitHub repositories.
The oracle was established based on results where the communities reached a consensus that
the presented Truck Factor was correct. This dataset is regarded as the best available for
benchmarking Truck Factor algorithms.

18



Chapter 3

Technical setup

This chapter presents details of the practical implementation work needed to reproduce
state-of-the-art results. We also explain how we collect the datasets used in this work. Finally,
we present a replication package to let others validate and build on our work.

3.1 State-of-the-art reproduction

As a first step, we seek to reproduce the results from the current state-of-the-art in TF cal-
culations. This means rerunning the AVL algorithm used by Avelino et al. [4] and Ferreira et
al. [12]. While an implementation of the AVL algorithm is available on GitHub, reproducing
[15] the same results as in the original publications requires additional work.

To achieve this, a new shell script was developed, capable of cloning GitHub repositories
and reconstructing the artifact by Checking out the nearest commit fb]]owing a speciﬁed date.
The script performs these tasks automatically, relying on data from a given input file.

A subset of 59 GitHub repositories was cloned from Avelino et als paper, selected based
on the estimated Truck Factor information available on the authors’ Webpageﬂ Since the
paper’s publication in 2016, additional commits have been submitted to these repositories.
Therefore, to verify their results, the version control systems need to be synchronized to
the state they were in when Avelino et al. conducted their research. Contact with Avelino
was initiated, and necessary files containing the date of the last commit were shared. Subse-
quent]y, the repositories are checked out to a commit on the speciﬁed days.

The artifacts from Ferreira et al’s work [12] are reconstructed by C](ming the repository
and checking out commits near a specific date. The paper utilized a subset of repositories
from Avelino et al. [4] in addition to their own research. While the paper doesn’t specify the
exact commit or date, it mentions checking out the subset from Avelino et al’s repositories
to a date in August 2015 and the rest in September 2016. Attempts to contact Ferreira for

"http://aserg.labsoft.dcc.ufmg.br/truckfactor/survey.html

19


http://aserg.labsoft.dcc.ufmg.br/truckfactor/survey.html

3. TECHNICAL SETUP

more detailed information about the artifacts have been unsuccessful. Therefore, the subset
of repositories mentioned in Avelino’s paper was checked out to a commit on August 15,
2015, and the remaining repositories were checked out to a commit on September 15, 2016.
Information about the repositories, GitHub links, commit-id, and dates can be found in the
Appendix at Tables and Descriptions of the datasets can be found in Chapter

The thesis employed two versions of the AVL algorithm: Version vl.(ﬂ and vl.Zﬂ These
versions were downloaded from GitHub, and new scripts were developed to automate the
analysis of repositories. In the original research, Avelino et al. utilized the algorithm with
various configuration files, managing GitHub username aliases, and excluding specific files
from the analysis. These configuration files, shared by Avelino upon request, were also used
in this study.

3.2 Data collection and analysis

Our work involves running various TF algorithms on four different datasets. We refer to the
datasets as 1) TF Oracle, 2) AVL OSS, 3) CS OSS, and 4) CS Prop. The characteristics of the
four datasets are described in Chapter A prerequisite to run AVL is the commit-logs from
the version control system. For the upcoming proposed algorithms, a completed CodeScene
analysis is required.

The repositories of TF Oracle and AVL OSS were cloned and checked out locally and
the commit-logs were acquired through the AVL algorithm. For the CodeScene analyses, we
develop a custom script to initiate and configure the analysis for all these projects, leveraging
the CodeScene on-prem server’s API functionalities.

Data for both proprietary and open-source projects within CodeScene’s customer port-
folio, i.e CS OSS and CS Prop , are obtained through queries to CodeScene’s cloud servers.
This process strictly adheres to CodeScene’s terms and conditions, defining the acceptable
use of data to ensure compliance with privacy and business confidentiality standards. En-
cryption is applied to all data containing identifiable information about users, customers,
files, and/or systems.

3.3 Replication package

To enable future replications of our work, we open-sourced a new Java project. The system
follows the design in Figure The system uses mappers to map data from the various
datasets described in Chapter || to FileListDO, FileDO, and CSAuthorsDO objects. The
source code can be found ac [l

The purpose of the class FileDO is to store information about a file’s current authorship
and the contributions of different developers in terms of lines of code. The class provides
several methods, with the primary method being the ability to determine if a file has an
author based on the state of the developer set in the Developers class and the fixed threshold
in the static class Thresholds.

"https://github.com/aserg-ufmg/Truck-Factor/releases/tag/v1.0
Shttps://github.com/aserg-ufmg/Truck-Factor/releases/tag/vl.2
*https://github.com/codescene-research/truck_factor

20


https://github.com/aserg-ufmg/Truck-Factor/releases/tag/v1.0
https://github.com/aserg-ufmg/Truck-Factor/releases/tag/v1.2
https://github.com/codescene-research/truck_factor

3.3 REPLICATION PACKAGE

Datasets Mappers System
on-prem
————————— == v
| <<Static>> <<Statics>
: | OnPremMapper Develapers Thresholds
| - [ Developers: authorshipThreshald :
| | Set<String> Double
| | +mapEntities(filePaths:Map): k _ .
| | Map<String, FileListDO> g!nrﬂillr:ngAmhorsTnresho\d.
2 = +mapCSAuthors(filePaths:Map): 1
Map<String, CSAuthorsDO=
1
Cloud
| -
: /—\\ | FileListDO EileDO
| xl]p_e'n—-/ ! ! Authorship: Map<String,
| source ! Doubles
| ! <<Stalic>>
| ~ | CloudMapper +TFAlgorithms:Int LinesOiCode: Map<String,
| | Double=
I e
| N ! +mapEnitites(filePath:string):
| — [ Map<5tring, FileListDO=> CSAuthorsDO
| . |
| Proprietary I primaryDeveloperFiles:
| S | LinkedList<Integer>
| |
___________ +TFAlgorithm:Int

Figure 3.1: A simpliﬁed overview of the system’s component struc-
ture.

The primary purpose of the FileListDO class is to store information about a project’s var-
ious files and offer methods for calculating the truck factor. Additionally, the class provides
methods, among others, for adding authorship to files and gathering general information
about the files within the class.

The CSAuthorDO class is employed for estimating the Truck Factor based on primary-
author data generated by CodeScene’s analyses. This class utilizes a linked list to store the
number of files each developer is the primary owner of. The class also supports methods for
calculating the Truck Factor for the given data input.

To dynamically change the values of various thresholds, the static class Thresholds was
implemented. This class is used for setting and retrieving the different thresholds that cthe
FileDO and CSAuthorsDO classes utilize. This provides the flexibility to dynamically adjust
the thresholds, as used in Sectionfor tuning.

21



3. TECHNICAL SETUP

22



Chapter 4

Description of datasets

This chapter provides an overview of the datasets used in the thesis. It begins by presenting
the datasets, followed by a detailed description of each dataset.

4.1 Datasets

This chapter describes the four datasets used in this study. The term source files refers to the
set of files that are part of the project’s source code, i.e. files such as images, documentation,
etc. are ignored.

+ TF Oracle. 35 repositories, checked out to dates in 2015 and 2016, used by Ferreira et
al. [12]).

« AVL OSS. 59 repositories, checked out to dates in 2015, analyzed by Avelino et al. [5].

+ CS OS8S. 195 repositories collected as part of this project. The data was sampled from
CodeScene’s datalake. We applied a filter to only include projects with at least 100
files, 100 commits, and between 1 and 50 active developers.

« CS Prop 102 closed-source repositories samp]ed from CodeScene customers from pro-
prietary projects. Filtered with the same strategy as CS OSS.

4.2 Description of datasets

In Table descriptive statistics for the four datasets are presented. Notably, the TF Oracle
and AVL OSS datasets exhibit similar mean values, with approximately 200 developers, 20
active developers, 740 source files, and 3,700 commits on average. In contrast, the CSS OS
and CS Prop datasets diverge. Remarkably, the mean number of files in these datasets is

23



4. DESCRIPTION OF DATASETS

Table 4.1: Descriptive statistics of the datasets containing informa-
tion about the datasets, with mean and standard deviation in paren-

thesis.
Oracle AVL CS 0SS CS Prop
Mean developers (StD) 227 (335) 193 (205) 125 (251) 43.2 (86)
Mean active developers (StD) | 19.7 (43.8) 23.0 (34.5) 8.5(10.1) 7.5(7.5)
Mean source-code files (StD) | 723 (1,021) 765 (1,032) | 1,227 (2,984) | 2,850 (16,367)
Mean commits (StD) 37757 (6.969) | 3.707 (5.217) | 3.908 (9.328) | 3.670 (6.225)

greater, with averages of 1,227 for CS OSS and 2,850 for CS Prop. Particularly noteworthy is
that the average number of active developers in these sets is approximately 8, suggesting that
a relatively small number of developers are responsible for managing a larger volume of files.

In Figure the distribution of authors across repositories in the four datasets is pre-
sented, with a logarithmic scale on the x-axis. The TF Oracle and AVL OSS datasets showcase
similar characteristics, with their maximum frequency observed at around 200 developers.
The CodeScene OSS dataset displays a relatively even distribution, featuring a local maxi-
mum near 120 developers. Conversely, the CodeScene Prop dataset shows a distinct peak in
the [3-5] developers range, beyond which the frequency stagnates. Notably, compared to the
other datasets, CodeScene Prop features a significantly lower number of developers (note the
different scale on the x-axis).

Figureoutlines the distribution of active authors across repositories in the four datasets.
The TF Oracle, AVL OSS, and CodeScene Prop datasets depict tendencies toward a normal
distribution, AVL OSS reaching its maximum at [9-10] active developers, TF Oracle att [7-8]
active developers and CodeScene Prop at [4-5] active developers. The CodeScene OSS dataset
peaks at [1-2] active developers, while TF Oracle has its maximum at [4-7]. The CodeScene
OSS dataset has tendencies to an exponential distribution.

In Figure the distribution of source files for repositories in the four datasets is de-
picted. All datasets exhibit tendencies to follow a normal distribution, with TF Oracle peak-
ing at 200, AVL OSS at 100, and both CodeScene OSS and CodeScene Prop. at 1,000 source
files.

In Figure the distribution of commits for repositories in the four datasets is illus-
trated. All datasets exhibit indications of conforming to a normal distribution, with a peak
frequency of around 1,000 commits, except for CodeScene Prop, where the maximum is ob-
served in the [2,000-3,000] commits range.

Figurei]lustrates the top-10 programming languages in the datasets. Across all datasets,
Java, PHP, Python, JavaScript, and C++ are consistently prominent.

24



Percent

4.2 DESCRIPTION OF DATASETS

TF Oracle AVL 0SS CS 0ss CS Prop
25 25
25
2 20 15 20
g1 e g10 g 1
210 €10 & £10
5
5 5 5
[1 = [
(iDO 10! 102 103 104 (iOO 10t 102 10° 104 900 10t 102 103 104 QOD 10t 102 10°
Number of Developers Number of Developers Number of Developers Number of Developers
Figure 4.1: Distribution of developers in the four datasets.
TF Oracle AVL 0SS CS 0SS CS Prop
30 20 30
307
15
£20 £20) z 220
8 g 810 8
o I} o o
& & 4 &
10 10 10
5 ‘
900 10t 102 10° (iOO 10t 102 10° 900 10! 102 qO“ 10! 102 103
Number of Active Developers Number of Active Developers Number of Active Developers Number of Active Developers
Figure 4.2: Distribution of active developers in the four dacasets.
TF Oracle 30 AVL 0SS CS 0SS CS Prop
30 2 25
gmr E gw gw
& & & &
10 10 10
5
5
qOU 102 104 10° 900 10? 104 106 900 102 104 106 QOO 102 104 108
Number of Source Files Number of Source Files Number of Source Files Number of Source Files
Figure 4.3: Distribution of files in the four datasets.
TF OSS AVL 0SS CS 0ss CS Prop
25+
30 20
20 15
= o =15
20 £15- 510 g
L =4 2
&10 g g1
10 I
5! ° 5
900 102 104 108 QO" 102 10* 10° qOQ 102 104 10° qO“ 102 104 108
Number of Commits Number of Commits Number of Commits

Number of Commits

Figure 4.4: Distribution of commits in the four datasets.

25



4. DESCRIPTION OF DATASETS

TF Oracle
0.15
0.10
0.05
0.00 > w A‘ o o
N X .
\,o_\\ Q\z\\é\oq}io (G X \;é’o)é\q
) RY D
¥ o
Language

(a) Ferreira oracle

CS 0SS
0.15
0.10
0.05
0.00
\,o\\’b (JQ x :\\Q (}8 0(\‘28 00

Language

(c) CodeScene OSS

AVL OSS

' C.& 5 &
Q§Q ‘28\\90 6éQOxx Q," Q\Q X
M
&
Language
(b) Avelino
CS Prop
0.10

0.05

0.00
% O @ X NI
C > (\Q (\Q ‘z\ x O- 0 \\
\ fo <« C °’~\ ‘l—
/\~\Q
Language

(d) CodeScene Prop

Figure 4.5: Top—lO programming 1anguages in the dacasets.

26



Chapter 5
Methodology

This project involves practical engineering work followed by empirical evaluations, adher-
ing to ACM SIGSOFT Empirical Standards for Software Engineering for benchmarking and
repository mining, respectively. Figure[5.1|shows an overview of the three phases in this project.

The figure shows how the project uses the four different datasets described in Chapter

1 2 3

Implement TF algorithms Benchmark comparison Comparing OSS/Prop.
A.
Implement A. Analyze .
AL fie A. Compare
authorship .~‘ ose m® | CodeScene 0SS
o — Prop.
Implement B TF o
cs Determine results
AVLOSS troshalds | oracle
C. Develop
ALGO 14 CodeScene Prop

o d 4

Reproduction of RQ1. Comparisons RQ2. Comparing open-source
AVL results against state-of-the-art and proprietary repositories

Figure 5.1: Overview of the method.

Phase 1 concerns development work to implement TF algorithms. We re-implement the
AVL algorithm, develop a method for TF calculations using CodeScene’s primary owner, and
implement four additional TF algorithms. Using terminology proposed by Jesus et alﬂ (151,
we reproduce the AVL results on the AVL OSS dataset. Thus, we validate the accuracy of

'In this thesis, Reproduce is used to signify achieving results similar or equal to those presented in papers,
employing the same or similar algorithms, configurations, and artifacts. In contrast, Replicate is employed when
secking similar or improved outcomes with new or different setups.

27



5. METHODOLOGY

our implementations.

Phase 2 concerns benchmarking as described by Hasselbring [17]. A benchmark is “a
study in which a software system is assessed using a standard tool (i.e. a benchmark) for
competitively evaluating and comparing methods, techniques or systems according to spe-
cific characteristics such as performance, dependability, or security” [29]. In this work, we
compare the six TF algorithms from Phase 1 on the OSS Oracle dataset. Also, we tune the
thresholds for each a]gorithm to optimize the results. This threshold calibration responds to
multiple calls from previous work [32] 28, 4] where thresholds were either arbitrarily set or
proved challenging to establish. Output from Phase 2 provides answers for RQ1.

Phase 3 concerns repository mining [8] followed by running TF algorithms. We use Code-
Scene to collect one dataset of OSS repositories and another dataset for proprietary reposi-
tories. Comparing the TF scores let us answer RQ2.

5.1 Phase 1: Implement TF algorithms

This section details the implementation of the AVL algorithm and introduces five new alter-
native algorithms for determining the Truck Factor in a project. While drawing inspiration
from the AVL algorithm, these proposed algorithms adopt different approaches to deter-
mine when a system is at serious risk. In contrast to the AVL algorithm, which depends
on commit-based heuristics, as discussed in Subsection the newly proposed algorithms
employ LoC-based heuristics, as outlined in Subsection m

We remind the reader about our definitions in Section i.e., any developer who has
existing LoC in a file is an owner (marginal, minor, major, or dominant) whereas developers
who are capable maintainers of the file are referred to as authors. In CodeScene, a developer
is the primary owner of a file if she has contributed at least 50% of the LoC. Finally, a file is
orphaned if it no longer has any author.

5.1.1 Step A: Setup AVL

The AVL algorithm is used as a benchmarking algorithm which alternative algorithms could
be compared against. To ensure that this thesis uses the same Algorithm as in the paper [4],
the correct installation of the algorithm is verified by running it against the AVL OSS dataset
presented in Chapter

The different versions of Avelino’s algorithm are each executed with two different sets of
configurations. The V1.0 version is run with, and without, the configuration files provided
by Avelino. The V1.2 tool is run without any configuration files and the minimum fraction of
total file authorship threshold is set to Avelino’s default sectings, 0.00 and 0.10 respectively.

For each execution, information about each project’s TF value is stored. Afterward, we
compare all the results to determine which version and setup of the algorithm comes closest
to reproducing the results obtained by Avelino et al. [4].

5.1.2 Step B: Setup CodeScene’s approach

CodeScene currently conducts advanced analyses to determine the number of files for which
the developers in a project is the primary owner. The initial proposed algorithm utilizes this

28



5.1 PHASE 1: IMPLEMENT TF ALGORITHMS

information by iteratively eliminating the developer who is the primary owner of most files.
The algorithm terminates when the number of files without a primary-owner falls below a
predefined threshold, the Truck Factor value is determined by the number of iterations.

Figure shows a running example of this algorithm, which we call ALGOCS . The
figure illustrates an example repository containing 20 files developed by four developers (A-
D), with LoC contributions reflected by the order (top to botrom). A file has the same color
as a developer if the developer is the primary owner, white files have no owner. The threshold
of files without an author is set to 50%.

Example: 20 files, X = 50%

©
>
>
>
L3S
omP
oo P

ALGOCS

Iteration 0: 12 files have an primary owner.

Iteration 1: Remove Dev A => {f1,f2 f3,f16,f17} become
[ fa] [ 13 orphaned.

2 : 8/20 files have an primary owner => The TF is 1!

©
o}
®
ow
»
>ow
»om

f11 f12
c

16| f17

(@)

PO
o>
‘mn
om

A file has the same color as a developer if the developer is the primary owner,
white files have ne author.

Figure 5.2: A running examp]e of ALGOCS

5.1.3 Step C: Setup alternative TF algorithms

In this subsection, we start by listing our newly proposed algorithms along with brief sum-
maries. Then, we delve into why these algorithms were created. All these algorithms use a
greedy approach to estimate the Truck Factor. In each iteration, we increase the Truck Factor
by one, and the developer who is the author of the most files is removed.

ALGO1 Developers who contributed at least X% of LoC in a file are authors. The truck hits
when Y% of files are orphaned.

ALGO2  Same as ALGO1, but developers who are an author to less than 50% / #active developers
of the project’s total number of files are immediately discarded.

ALGO3  Same as ALGOI, but terminates when Y% of the files which initially had at least one
author are orphaned.

ALGO4 The single developer who contributed the maximum number of LoC to a file is the
author. The truck hits when Y% of files are orphaned.

29



5. METHODOLOGY

Figure shows a running example of ALGO 1-4. The figure illustrates an example
repository containing 20 files authored by four developers (A-D). Each file has been touched
by 1-4 developers, with LoC contributions reflected by the order (top to bottom). A file has
the same color as a developer if the X% threshold has been exceeded, i.c., white files have no

author, except for ALGOA4.

ALGO1
Example: 20 files, X = 50%, Y=60% Iteration 1: Remove Dev A => {f1,f2,f3,f16,f17} become orphaned.
12 files have at least one author 7/20 files have an author => The truck hits! TF=1.
ALGO2
fl 2 A" 5 Developer D is discarded => the file authored by Dev D becomes
@ A A A g ; orphaned, ie. {f13} => 11 files have an author.
L Iteration 1: Remove Dev A => {f1, f2, f3, f16, f17} become
orphaned.
| Bﬁ s e Buo 6/20 files have at least one author => The truck hits! TF=1.
@ B |¢® c c ¢

ALGO3

All white files are disregarded, i.e. {f4, f5, f8, f9, 10, f12, f14, f15}.

=
=S
‘ 8

>m @ >
| &
‘ n>ﬁ‘ ‘

=
=

c c 0'15 Iteration 1: Remove Dev A => {f1, f2, 3, f16, f17} become
@ C A A B orphaned.
7/12 files have at least one author => Keep going.
- - Iteration 2: Remove Dev C =>{f11, f18, f19, f20} become
. D A c orphaned.
A g ¢ A 3/12 files have an author => The truck hits! TF=2
ALGO4
Iteration 1: Remove Dev A => {f1,f2,f3,f4,f5,f14,f16,f17} become
A file has the same color as a developer if the Y% threshold has been exceeded, i.e., orphaned

white files have no author. For ALGO4, the author is identified as the developer whose

) iy N ! 12/20 files have at least one author => Keep going.
alias corresponds to the first entry in the file

Iteration 2: Remove Dev C => {f11, f12, 15, f18, f19, f20} become
orphaned
6/20 files have at least one author => The truck hits! TF=2

Figure 5.3: A running example of ALGO 1-4.

ALGOL1 : The first proposed algorithm tries to replicate the first version of the AVL
algorithm but utilizes a LoC heuristic instead of a commit-based heuristic. The algorithm
defines the authors of a file as the set of developers who have contributed more than a fixed
% of a file’s LoC.

The algorithm iteratively removes the developer who is the author of the most files until
a set % threshold of files are without an author, i.c., orphaned. The number of iterations is
the truck factor estimation.

In cases with systems with a relatively high knowledge distribution, i.c., systems where
many files do not have ownership exceeding the threshold of being an author, the algorithm
would 1ikely provide a Truck Factor estimation below the actual value. In extreme cases,
where the knowledge distribution is equally distributed among many developers, the truck
factor estimation could be zero. The AVL algorithm handles this issue by normalizing the
Degree-of-Authorship. Thereby enabling several developers to be the authors of a file. To
replicate this in a LoC-based heuristic would imply setting a lower threshold for being an
author of a file.

Due to the 10gic of the a]gorithm, we believe that the best estimations would be given
in systems where the knowledge distribution would be reasonably low. Le., most of the files
would have one single author.

ALGO?2 attempts to replicate the v1.2 version of the AVL algorithm by extending ALGO1
with the functionality to exclude developers who are authors of a relatively small number of
files. In the v1.2 version of AVL, the threshold is set to 10%. However, this fixed value is likely
to result in faulty truck factor estimation in projects with a large number of active develop-
ers. Hence, we have implemented a feature where ALGO?2 instead discards developers who

30



5.2 PHASE 2: BENCHMARK COMPARISON

are the author of less than 50%/#active developers of a project’s files. We anticipate that
the algorithm will share similar advantages and drawbacks as ALGO1 .

ALGO3: The third proposed algorithm builds on the assumption that files with a higher
distribution of knowledge should affect the truck factor estimation less than those with a
lower distribution. Similar to ALGO1 and ALGO?2 , the authors of a file are defined as the
developers who have contributed more than a specified percentage threshold of a file’s LoC.

The a]gorithm begins by establishing the number of files with at least one author. Sub-
sequently, it iteratively removes the developer who authored the most files in each iteration.
The algorithm terminates when a specified percentage threshold of the initially identified
files with at least one author becomes orphaned. The count of iterations provides the truck
factor estimation.

We recognize the potential for inaccuracies in the algorichm, particularly in scenarios
where file authorship is widely distributed in a project, and only a minority of the files have
ownership levels surpassing the authorship threshold. In such extreme cases, the aigorithm
is likely to produce a truck factor estimation that is lower than expected.

ALGO4 : The fourth algorithm takes a trivial approach to estimating the Truck Factor by
assuming that a file only has one author, and the author is the developer who has contributed
the most LoC.

The algorithm estimates the Truck Factor by mapping cach developer to the number of
files they are the author of. The algorithm then follows the logic of previously mentioned
algorithms by iteratively removing the developer who is the primary owner of the greatest
number of files until a given threshold of files is missing an author.

5.2 Phase 2: Benchmark comparison

This subchapter investigates threshold values that yield the most accurate truck factor es-
timations. It begins by anaiyzing the file ownership characteristics of software projects in
both OSS and proprietary contexts. Subsequently, the algorithms are benchmarked against
AVL on the TF oracle to pinpoint thresholds that result in accurate values. Ultimately, the
algorithm with the thresholds that yields the best resule will be selected for Phase 3.

5.2.1 Step A: Analyze file authorship

The distribution of file ownership is of interest in establishing reality—based thresholds for
being an author of a file. Borg et al’s paper [7] concluded that the number of contributions to
a file, in a commit-based heuristic, follows a distinct U pattern. We aim to undertake similar
investigations, exploring what patterns emerge when using LoC-based heuristics.

A new Python script was developed to visualize authorship distribution, utilizing both
the OSS and proprietary datasets queried from CodeScene’s servers. The script generates bar
plots for each file, depicting authorship percentages. Five graphs were created for each dataset
to exp]ore the impact of the number of active deveiopers on authorship characteristics.

Subsequently, the script is extended to plot the maximum authorship value for each file.
Again, five graphs were constructed for each dataset to analyze the influence of the number
of active developers on these maximum authorship values.

31



5. METHODOLOGY

5.2.2 Step B: Determine thresholds

The insights provided in Subsectionsuggest that a meaningful threshold for considering
a developer as an author of a file falls within the range of 20% to 100%. To more precisely
identify this threshold and determine the threshold for how many files can be orphaned
before the truck hits, an investigation into the performance of the proposed algorithms with
various thresholds was conducted.

To evaluate the impact of different thresholds on the outcomes of the proposed algo-
rithms, a tuning suite was implemented into the Java project. For each algorithm, a grid
searc was performed to provide fairness [17] for all configuration combination, thereby all
possible threshold settings were executed. In each iteration, key metrics such as the num-
ber of correctly estimated Truck Factor values, the mean absolute Truck Factor differences,
and the mean squared differences compared to Ferreira’s oracle were recorded and stored.
These metrics were then used to compare the algorithms’ performance compared to the ones
generated by AVL.

ALGO1, ALGO?2 , and ALGO3 were run 10,000 times each. In each run, the thresholds
for orphaned files and the LoC threshold for a developer to qualify as an author were adjusted.
The adjustment ranged from 0.00 to 1.00 with each increment being 0.01.

ALGO4 and ALGOCS were evaluated in a similar manner. Since the algorithms only
depend on the threshold of orphaned files, 100 iterations were executed where the thresholds
range from 0.00 to 1.00 and each increment was 0.01.

To ensure the benchmark relevance and verifiability, the measurements obtained were
leveraged to identify regions of interest through the creation of heatmaps for ALGO1, ALGO2,
and ALGO3. ALGOCS and ALGO4 were plotted to line graphs. To address the influence of
noise in the measurements, an averaging teehnique was app]ied. Each pointin the grid search
was averaged with nearby points within an equidistant distance of less than 0.02 units. This
averaging strategy aimed to mitigate variations and enhance the clarity of trends in the data.

5.2.3 Step C: Compare TF algorithms

The heatmaps and line graphs produced in Subsectionwere examined to identify regions
of interest, reflecting thresholds where accurate TF estimations were consistently observed.
Once identified, the threshold settings and the performance metrics for all algorithms were
compiled into a table.

The performances of the algorithms were compared, and an evaluation was conducted
to determine which a]gorithm to use in Phase 3. The selection of the algorithm was based
on considerations such as performance correctness, mean absolute error, and mean squared
CTTOT.

"https://en.wikipedia.org/wiki/Hyperparameter_optimization

32


https://en.wikipedia.org/wiki/Hyperparameter_optimization

5.3 PHASE 3: COMPARING OPEN-SOURCE AND PROPRIETARY REPOSITORIES

5.3 Phase 3: Comparing open-source and
proprietary repositories

This subchapter examines the representation of the Truck Factor distribution in proprietary
and open-source projects. By utilizing the CS Prop and CS OSS datasets.

5.3.1 A: Compare TF results

To characterize the distribution of the Truck Factor in the context of modern development,
encompassing various organizational sizes and languagc usage, the 195 open-source reposito-
ries in the CS OSS dataset and the 102 proprietary repositories in CS Prop were subjected
to zmalysis using ALGOL. The criterion 'to be an author of a file’ was set to 30%, while re-
maining files without an author’ was set to 50%. These specific thresholds were determined
to yield the most reliable Truck Factor estimations, as detailed in Subscctionm

The resules were collected and processed, culminating in the generation of six graphs.
These graphs depict the frequency of TF values, the frequency of relative TF obtained by
dividing the absolute TF by the project’s number of active developers, and two box-and-
whisker plots illustrating the relative and absolute TF values in comparison to the number
of active developers.

33



5. METHODOLOGY

34



Chapter 6

Results

This chapter unveils the results obtained from the three phases outlined in the methodology
chapter. Firstly, it presents the findings from the AVL replication; secondly, it delves into
authorship on a file-level. Following that, the results of the benchmarking process for the
proposed algorithms are discussed, culminating in the selection of the most promising algo-
rithm. Subsequently, this chosen algorithm is evaluated on both open-source and proprietary
repositories extracted from CodeScene’s customers.

6.1 Phase 1: Setup AVL algorithm

The resules of the reproducrion [T5] procedure for the installation of AVL are presented in
Table For some repositories, the Truck Factor differs by one developer. However, in
all cases, the list of developers included in the Truck Factor calculations was a subset of
the developers from Avelino’s data. The differences are believed to originate from slightly
different configurations for the algorichm. When Avelino et al. conducted their research,
they utilized the v.1.0 version of the algorithm along with specific configuration files designed
for managing ignored files and alias handling. However, due to the elapsed time since the
completion of Avelino et al’s work, it is possible that we have slightly different files.

For the repositories Faker, monolog, and Homebrew-cask the different setups had the
greatest differences. For Faker and monolog, the Truck Factor was correct for all algorithms
except v.1.2 with the threshold of minimum owned files set at 0.10. Judging by the responses
of Avelino’s surveys Eﬂ the value of the v.1.2 version with the 0.1 setting seems to be a more
correct estimation of the Truck Factor.

For the repository resque, all of the instances resulted in the wrong Truck Factor value. In
addition, the output of the algorithms assigned a single developer (Chris W.) to be the author

"https://github.com/fzaninotto/Faker/issues/656
"https://github.com/Seldaek/monolog/issues/626

35


https://github.com/fzaninotto/Faker/issues/656
https://github.com/Seldaek/monolog/issues/626

6. RESULTS

of 61,67% of the systems files, instead of 23% stated in Issue 1317E| The underlying reason for
this has not been identified.

For Homebrew-cask the v.1.2 algorithm with the min-threshold setting set to 0.10 pro-
vided the best estimates. We believe that when Avelino conducted his research, he manually
added files which would be ignored, and hence, a lower Truck Factor was achieved. The files
handed over by Avelino did not have any information about Homebrew-cask. Hence, we be-
lieve that these errors derive from missing information in the ignore-files file. Since the v.1.2
algorithm has the ability to filter out developers whose contribution is less than a threshold
of the total files, small contributions are ignored. Judging by these results, it appears that the
threshold minimizes the need to manually set up which files of a system should be ignored.

Of all of the versions, v.1.2 with the min-threshold set to 10% provided the resules closest
to Avelino et al [4]. Hence, this version and configuration will be the algorithm we will
continue using for the remainder of this thesis.

Table 6.1: The different AVL versions’ results on Avelino’s validation
suite. Results are presented as recorded TF with the difference from
Avelino et al.[4] in parantesis. Each column represents a certain con-
figuration of the algorithm. The v.1.0-with files were run with con-
figuration files retrieved by contact with Avelino. The min-threshold
configuration discards developers who are authors to fewer than a %
of the repository’s total files.

Repository TF | v.1.0: no- | v.1.0: v.1.2: v.1.2:
files with files | min- min-
threshold | threshold

=0.1 =0.0

fzaninotto/Faker 23 23(0) 23(0) 5(-18) 23(0)

fog/fog 12 12(0) 12(0) 12(0) 12(0)
saltstack/salt 11 11(0) 11(0) 11(0) 11(0)
Seldaek/monolog 11 11(0) 11(0) 2(-9) 11(0)
joomla/joomla-cms 7 7(0) 7(0) 7(0) 7(0)
scikit-learn/scikit-learn 7 8(1) 8(1) 8(1) 8(1)
chet/chef 6 5(-1) 5(-1) 5(-1) 5(-1)
emberjs/ember.js 6 5(-1) 5(-1) 5(-1) 5(-1)
resque/resque 6 1(-5) 1(-5) 1(-5) 1(-5)
spotify/luigi 6 6(0) 6(0) 6(0) 6(0)
ipython/ipython 4 4(0) 4(0) 4(0) 4(0)
jquery/jquery 4 4(0) 4(0) 4(0) 4(0)
bitcoin/bitcoin 3 3(0) 3(0) 4(1) 4(1)
yiisoft/yii2 3 0(-3) 0(-3) 3(0) 3(0)
clojure/clojure 2 2(0) 2(0) 2(0) 2(0)
composer/composer 2 2(0) 2(0) 2(0) 2(0)
elasticsearch/elasticsearch 2 2(0) 2(0) 2(0) 2(0)
clasticsearch/logstash 2 2(0) 2(0) 2(0) 2(0)

Shttps://github.com/resque/resque/issues/1317

36


https://github.com/resque/resque/issues/1317

6.1 PHASE 1: SETUP AVL ALGORITHM

excilys/androidannotations 2 2(0) 2(0) 2(0) 2(0)
facebook/osquery 2 2(0) 2(0) 2(0) 2(0)
FriendsOfPHP/PHP-CS-Fixer 2 2(0) 2(0) 2(0) 2(0)
github/linguist 2 2(0) 2(0) 2(0) 2(0)
jadejs/jade 2 2(0) 2(0) 2(0) 2(0)
JohnLangford/vowpal_wabbit 2 2(0) 2(0) 2(0) 2(0)
1ibgdx/]ibgdx 2 2(0) 2(0) 2(0) 2(0)
meskyanichi/backup 2 2(0) 2(0) 2(0) 2(0)
netty/netty 2 2(0) 2(0) 2(0) 2(0)
openframeworks/openFrameworks| 2 2(0) 2(0) 2(0) 2(0)
Respect/Validation 2 2(0) 2(0) 2(0) 2(0)
sampsyo/beets 2 3(1) 3(1) 3(1) 3(1)
SFTtech/openage 2 2(0) 2(0) 2(0) 2(0)
strongloop/express 2 1(-1) 1(-1) 1(-1) 1(-1)
xetorthio/jedis 2 2(0) 2(0) 2(0) 2(0)
atom/atom-shell 1 1(0) 1(0) 1(0) 1(0)
bjorn/tiled 1 1(0) 1(0) 1(0) 1(0)
bumptech/glide 1 0(-1) 0(-1) 0(-1) 0(-1)
caskroom/homebrew-cask 1 53(52 53(52 1(0) 53(52
celluloid/celluloid 1 1(0) 1(0) 1(0) 1(0)
dropwizard/dropwizard 1 1(0) 1(0) 1(0) 1(0)
dropwizard/metrics 1 1(0) 1(0) 1(0) 1(0)
getsentry/sentry 1 1(0) 1(0) 1(0) 1(0)
github/android 1 1(0) 1(0) 1(0) 1(0)
gruntjs/grunt 1 1(0) 1(0) 1(0) 1(0)
janl/mustache.js 1 1(0) 1(0) 1(0) 1(0)
jrburke/requirejs 1 1(0) 1(0) 1(0) 1(0)
justinfrench/formtastic 1 1(0) 1(0) 1(0) 1(0)
kivy/kivy 1 1(0) 1(0) 1(0) 1(0)
Leaflet/Leaflet 1 1(0) 1(0) 1(0) 1(0)
less/less.js 1 2(1) 2(1) 2(1) 2(1)
mailpile/Mailpile 1 2(1) 2(1) 2(1) 2(1)
mbostock/d3 1 1(0) 1(0) 1(0) 1(0)
powerline/powerline 1 1(0) 1(0) 1(0) 1(0)
puphpet/puphpet 1 0(-1) 0(-1) 0(-1) 0(-1)
ratchetphp/Ratchet 1 1(0) 1(0) 1(0) 1(0)
ReactiveX/RxJava 1 1(0) 1(0) 1(0) 1(0)
sandstorm-io/capnproto 1 1(0) 1(0) 1(0) 1(0)
sebastianbergmann/phpunit 1 1(0) 1(0) 1(0) 1(0)
silexphp/Silex 1 1(0) 1(0) 1(0) 1(0)
thoughtbot/paperclip 1 0(-1) 0(-1) 1(0) 1(0)
wp-cli/wp-cli 1 1(0) 1(0) 1(0) 1(0)
Tot correct 47 47 47 48
Percentage correct 78% 78% 78% 80%

37




6. RESULTS

Mean Absolute diff

1,17

1,17

0,70

1,12

458

4538

733

45,65

Mean Squared diff

6.2 Phase 2: Identify thresholds and a favourable
algorithm

This section lifts findings regarding the distribution of file authorship and the threshold’s
effect on the algorithms’ performances.

6.2.1 File authorship

The distribution of file ownership displays a distinct U-shaped pattern in both the OSS and
proprietary datasets. However, in OSS projects, it is more common for files to have a larger
number of smaller contributions, while in proprietary systems, it is more preva]ent for files

to have larger contributions as seen in F igure

40 509

IS
S

w
S

Percentage
Percentage

~
=3

10
101

1 — 1
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Ownership percentage Ownership percentage

(b) Proprietary: 1-50
active developers

(a) Open-source: 1-
50 active developers

Figure 6.1: The distribution of file ownership in the OSS and pro-
prietary datasets queried from CodeScene

The distribution of maximum file ownership indicates that files are commonly devel-
oped by a sing]e developer, particu]arly in proprietary systems, as illustrated in Figure
Although the distribution is wider in OSS projects, it is rare for a file to have a maximum
ownership of less than 50%.

These findings suggest that the majority of a file’s LoC is typically written by a single
developer. However, the distribution also reveals a portion of files with an ownership be-
tween 0.20 and 0.50. This suggests that developers contributing within or greater than this
range could potentially be considered as part of the set of authors for a given file. This is

38



6.2 PHASE 2: IDENTIFY THRESHOLDS AND A FAVOURABLE ALGORITHM

60 4

@
3

50

~
S

w =) ~

3 S 3

w
S

Percentage
-~
8

Percentage

N

S}
w
S

N
S}

,_.
5]

00 02 0.4 0.6 0.8 10 0.0 02 04 0.6 0.8 10

o

Ownership percentage Ownership percentage
(a) Open-source: 1- (b) Proprietary: 1-50
50 active developers active developers

Figure 6.2: The distribution of maximum file ownership in the OSS
and proprietary datasets queried from CodeScene.

grounded in the assumption that developers contributing within this ownership range are,
at the very least, familiar with the file. Graphs containing more information about the var-
ious distributions with higher granularity can be found in the Appendix at Figures [B.1and
B2l

6.2.2 Benchmarking

In this Subsection, the heatmaps with accumulated results presents thresholds which entails
better metrics than AVL. The mean squared error is visualized in green, the mean absolute
difference in red, and the percentage of correct TF estimations in blue. The subsection uses
the convention (Fraction of LoC to be a file author, Fraction of authored files when truck
hits) to describe the positions for the heatmaps’ results.

The AVL algorithm’s results serve as a benchmark for evaluating the proposed algorithms.
AVL estimated the truck factor correctly for 19 of the 35 (54%) repositories in the TF Oracle,
with a mean absolute difference of 0.86 and a mean squared difference of 4.23.

ALGOT’s results from the grid search are visualized in F igures and The heatmap
visualized in Figure hints two regions witch configuration settings could entail a better
performance than AVL on all recorded metrics. These regions are identified to be in the
proximity (0.30,0.50) and (0.75,0.29). Detailed metrics for these points are provided in Table
6.2)

39



6. RESULTS

Accumulated results for ALGO1

-42
(%]
B2
= 0.62
x -40
Y - 085
= 2
+ =
c -3.8 M =
] N 2 £
< 5 T 0.60 £
2 s 0ge s
w0 - 0. =
2 ek = £
L= g : o
B g 5 5
7] Z 3 S
2 34 § S 058
=] e a =]
< 3 0.83 ¢ o
3 = 2 ]
5 32 = i
g
o ]
c | a
5 0.56
5 3.0 0.82
m
.
w
2.8

Figure 6.3: Threshold configurations for which ALGO1 outper-
forms AVL. Regions where the three colors overlap are deemed to
be of the most interest.

ALGO2’s threshold analysis are presented in Figure and The algorithm does
not have any regions that provide a lower Mean absolute error or Mean squared error than
AVL. However, the algorithm presents a greater percentage of correctly estimated TF values
compared to AVL, at the region in the proximity of (0.64,0.34).

Accumulated results for ALGO2

-0.100 -0.100

0.92 - 0.59

088 - -0.075 - 0.075
0.84 -

-0.050 - 0.050 058 &

-0.025 -0.025

0.57
-0.000

0.44 -

0.4 -
0.36 - -0.025
0.32 -

0.24 - —0.050 -0.050

0.000

—0.025 -0.56

Mean squared TF error
Mean absolute TF difference
Percentage of correct TF estimati

0.16 - -0.55
0.12 - = -0.075 -0.075
e,

Fraction of authored files when truck hits
Y
=]
i

—0.100 —0.100

Figure 6.4: Threshold configurations for which ALGO2 outper-
forms AVL on the recorded metrics.

40



6.2 PHASE 2: IDENTIFY THRESHOLDS AND A FAVOURABLE ALGORITHM

Mean absolute error for ALGOL. Mean absolute error for ALGO2.

-40

35 -35

w
o

Mean absolute TF difference
i
w
°

~
o

N
°
~
o
Mean absolute TF difference

Fraction of authored files when truck hits
~
>

Fraction of authored files when truck hits

(a) ALGO1: MAE. (b) ALGO2 : MAE.
Mean squared error error for ALGO1. Mean squared error error for ALGO2.

-20 -20

Fraction of authored files when truck hits
Mean squared TF error

Fraction of authored files when truck hits
Mean squared TF error

00 T r ot

.............................
S

(¢) ALGO1 : MSE. (d) ALGO2 : MSE.

Percentage of correct TF estimations for ALGO1. Percentage of correct TF estimations for ALGO2.

o

o
o
o

°

kY
o
=

°
w

°
Y

|
° °
I W

Percentage of correct TF estimations

Fraction of authored files when truck hits
Percentage of correct TF estimations
Fraction of authored files when truck hits

author

.
o,

afil

™

raction of LoC to b

(e) ALGO1 : Mean (Hh ALGO2 : Mean

correct % correct %

Figure 6.5: Results of the ALGO1 and ALGO2 threshold analysis. In
the figures for mean absolute truck factor errors and mean squared
truck factor error, the values have been capped at 4.0 and 20.0, re-
spectively, for visualization purposes.

The analysis results of ALGO3 are presented in Figures and The two regions in
proximity to (0.36,0.52) and (0.70,0.49) are of interest. This due to the overlapping in the

heatmap at Figure

41



6. RESULTS

Accumulated results for ALGO3

SUOIIEWISS 41 1931100 Jo ahejuadiad

o o o
o 0 '2]
S =] S
\

w©

l

=
i

22UaU3YIP 41 FINjosqe uespy
< ™ ] —
b b b b
(=} (=} (=} (=}
,

Joula 41 pasenbs ueaw
(=]

-0.85
0.80

-4.00
-3.75

5 5 0 5

2 0 7 5 2

m m o [ o
|

n
M
|

- ZED

«©
=
o
Fraction of LoC to be a file author

©FTe
k3 m 0
(=} [=J=)
SNnJ} UsayMm s3Iy paioyine

Threshold configurations for which ALGO3 outper-

Figure 6.6

forms AVL.

42



6.2 PHASE 2: IDENTIFY THRESHOLDS AND A FAVOURABLE ALGORITHM

Mean absolute error for ALGO3. Mean squared error error for ALGO3.

-35

w
o

Mean absolute TF difference
|
5

Mean squared TF error

Seccsss65%s
Fraction of LoC to be a file author

(a) ALGO3: MAE. (b) ALGO3: MSE.

Percentage of correct TF estimations for ALGO3.

° o ° °
N w S o

Percentage of correct TF estimations

°
2

(c) ALGO3 : Mean

correct %.

Figure 6.7: Results of ALGO3 threshold analysis. In the ﬁgures for
mean absolute truck factor difference and mean squared truck factor
error, the values have been capped at 4.0 and 20.0, respectively, for
visualization purposes.

The resules from ALGO4 are presented in Figure The most beneficiary threshold
configurations for cach evaluations metric are (0.36),(0.39), and (0.58), respectively. More

detailed results are presented in Table

43



6. RESULTS

Average mean of absoulte differencs

2500

2000

1500

1000

Average mean of squared error

8
S

Average percentage of correct TF estimations

ALGO4 ALGOCS

Average mean of absoulte differencs

02 04 06 08 1.0 00 02 04 06 08 1.0
Fraction of LoC to be a file author Fraction of LoC to be a file author
(a) ALGO4 : MAE. (b) ALGOCS : MAE.
ALGO4 ALGOCS

@ B B 8 8
8 8 8 8 3
8 8 8 8 8

Average mean of squared error

3
g
3

500
0
02 04 06 08 1.0 00 02 04 06 08 10
Fraction of LoC to be a file author Fraction of LoC to be a file author
(c) ALGO4 : MSE. (d) ALGOCS : MSE.
ALGO4 ALGOCS
08
2
£ 05
E
g
L»:L 04
3
s 03
g
H
S 02
8
]
z 01
02 04 06 08 1.0 00 02 04 06 08 1.0
Fraction of LoC to be a file author Fraction of LoC to be a file author
(e) ALGO4 : Mean () ALGOCS : Mean
correct %. correct %.

Figure 6.8: Results of ALGO4 and ALGOCS threshold analysis. The
figures display the Mean Absolute Error (MAE), Mean Square Error
(MSE), and the percentage of correct TF estimations. Depending on
the threshold of remaining files with at least one author.

As shown in Figure ALGOCS ’s most favorable results are identified at the threshold
configurations at the points (0.63),(0.52), and (0.44), respectively. More details of the metrics
are presented in Table

44



6.2 PHASE 2: IDENTIFY THRESHOLDS AND A FAVOURABLE ALGORITHM

6.2.3 Summary thresholds

Table 6.2: Accuracy of the five algorithms on the oracle dataset. Each
value is averaged by the points in proximity of 0.02 Euclidian dis-
tances. Cells high]ighted in green have a better result than AVL.

Algorithm | Position Eukledian average
% Correct | Mean absolute error | Mean square error

AVL - 0.54 0.86 423
ALGO1 (0.30,0.50) | 0.55 0.85 417
ALGO1 (0.75,0.29) | 0.61 0.84 423
ALGO?2 (0.64,0.34) | 0.59 1.33 9.96
ALGO3 (0.36,0.52) | 0.54 0.83 4.72
ALGO3 (0.70,0.49) | 0.57 0.83 421
ALGO4 (_._,0.36) 0.52 0.95 3.76
ALGO4 (_._,0.39) 0.54 0.88 4.00
ALGO4 (_._,0.58) 0.63 1.10 7,24
ALGOCS | (_._,0.63) 0.60 1.05 6.72
ALGOCS | (_._,0.52) 0.55 0.87 493
ALGOCS | (_._,0.44) 0.50 1.04 437

The results in Figure suggest that practical thresholds for all of the proposed algo-
rithms are achievable. For all of the algorithms, except ALGO2 , the threshold for orphaned
files before the truck hits is in the interval [29%, 50%|, which is supported in our findings pre-
sented in Subscction This threshold interval also includes the threshold set by Avelino
et al.[4].

The accumulated results of the threshold analysis are shown in Table ALGOI1 and
ALGO3 had configuration settings which resulted more favourable TF metrics compared
to AVL. Both of the algorithms presented similar results. however, of the two algorichms,
ALGO1 , with the settings (0.30,0.50) was deemed to be the most feasible algorithm for
Phase 3. This decision was founded on the findings in Subsection and for its lower
Mean square error.

As discussed in Section Avelino et al. [4] defines an author as a developer who is
capable of maintaining a file from the most recent system snapshot onwards. ALGOT’s
authorship-threshold of 0.30 indicates that this definitely is the case.

45



6. RESULTS

6.3 Phase 3: Comparing open-source and
proprietary repositories

The distribution of Truck Factors for the two datasets are are displayed in Figure Both
CS OSS and CSS Prop demonstrate a right-skewed TF distribution where the open-source
dataset’s tail is comparatively less pronounced. The distribution indicates that projects gen-
erally tend to have a low truck factor. It is noteworthy that the distribution of TF results
does not align with the distributions of active developers, as presented in Chapter This
suggests that, overall, the TF is generally much lower than the number of active developers.

TF distribution in Open-source projects TF distribution in Proprietary projects

50
40
30

60
20

40
10

20

.-__ . .-—
1 2 3 4 5 6 1 2 3 4 5 6
F F

Frequency
Frequency

0
8 9 17 7

(a) CS OSS (b) CS Prop

Figure 6.9: The frequency of TF values in Proprietary and Open-
source projects.

The relative TF were obtained by dividing the TF value by the number of active develop-
ers in each project, thereby a relative TF closer to 1, or greater, is desirable. The distributions
of the relative TF for each dataset are illustrated in Figures|6.10a and [6.10bl Notably, both
datasets include entries with a relative TF exceeding 1. This indicates that these projects have
successfully established a high degree of knowledge distribution. For projects that have not
surpassed a relative TF of one, the majority fall within the range of 0.0 to 0.5.

To comprehend the correlation between the absolute and relative Truck Factors in com-
parison with the number of active developers in the two datasets, the data were visualized
by two box-and-whisker plots generated by the Python Seaborn library. These plots are visu-
alized in Figures and The data were also grouped by context and interval of active
developers. This data is represented in Tables and

Our findings suggest that there is not a substantial difference between the two datasets,
as seen by the box-and-whisker plots and the tables. However, a consistent trend is appar-
ent in both datasets; as the number of active developers increases, the relative TF generally

decreases.

46



6.3 PHASE 3: COMPARING OPEN-SOURCE AND PROPRIETARY REPOSITORIES

Relative TF distribution in Open-source projects

=) =)
iy N
3 S

Percentage of projects
o
3

0.05 “ ‘|
||I il

0.0 05 1.0 15

20 25 3.0 35

TF/#active developers

(a) CS OSS

]
4.0

Percentage of projects
o o o o o o
g 8 8 3 & =

o
9
N

. |||||‘.‘ 1 ‘ |
0.0 05 1

Relative TF distribution in Proprietary projects

0

II |
1.5

TF/#active developers

(b) CS prop

Figure 6.10: The frequency of relative TF values in Proprietary and

Open-source projects.

Table 6.3: The relative TF for the proprietary and open-source

projects. Categorized in intervals by the number of active devel-

opers.
Average relative TF (StD)

#Active developers | 1 2-5 6-10 11-20 21-50

Open—source 1.16 (0.64) | 0.55(0.32) | 0.33(0.18) | 0.15(0.09) | 0.13 (0.11)

Proprietary 1.27 (0.65) | 0.67 (0.41) | 0.33(0.15) | 0.26 (0.13) | 0.17 (0.08)

Table 6.4: The TF for the proprietary and open-source projects. Cat-

egorized in intervals by number of active developers.

Average TF (StD)
#Active developers | 1 2-5 6-10 11-20 21-50
Open-source 1.16 (0.64) | 1.43(0.84) | 2.34 (1.35) | 2.06 (1.14) | 3.86 (3.40)
Proprietary 1.27 (0.65) | 1.93 (1.00) | 2.04 (1.00) | 3.42 (1.80) | 4.67 (2.25)

47



6. RESULTS

4.0

35

3.0

25

20

Relative TF

15

1.0

0.5

0.0

Relative TF for Open-source and Proprietary projects

. Context
I Open-source
I Proprietary
® Open-source
® Proprietary
""i.,!. _"--_i_--t . "
0 5 10 15 20 25 30 35 40 45 50

Active Developers

Figure 6.11: Comparison between relative TF values in proprietary
and open-source systems.

48



6.3 PHASE 3: COMPARING OPEN-SOURCE AND PROPRIETARY REPOSITORIES

14

12

10

TF Values for Open-source and Proprietary projects

25

| W S

Context
I Open-source
I Proprietary

® Open-source
® Proprietary

0 5 10 15 20 25 30 35 40 45

Active Developers

Figure 6.12: Comparison between TF values in proprietary and
open-source systems.

49



6. RESULTS

50



Chapter 7

Discussion

This chapter addresses the research questions, starting with a discussion on RQ1, followed
by an exploration of RQ2. Finally, potential threats to validity are considered.

7.1 RQ1l: Comparing TF algorithms

Among the various algorithms considered, ALGO1 achieved the best resules in the Truck
Factor benchmark, surpassing all values obtained by the state-of-the-art algorithm proposed
by Avelino et al. [4]. Consequently, the algorithm was chosen for phase 3. The selected
threshold value of 30% is deemed appropriate, i.c., a developer must have contributed at
least 30% of the LoC to qualify as an author of a file. The score ensures that the developer
has been previously active with the file — beyond minor bug fixes or renaming activities,
indicating a profound knowledge about the file and thereby fulfilling the criteria for being
able to maintain and further develop the file. In combination with setting the other threshold
value to 50%, i.c., the system is at risk when 50% of the files that previously had at least one
author are orphaned, ALGO1 outperforms AVL on the TF oracle.

ALGO?2, capturing the gist of the AVL v.1.2 by incorporating the functionality of neglect-
ing developers who is author to a fraction of a project’s files, yielded poor results compared
to AVL v.1.2. This discovery was unexpected, since the performance between AVL v.1.0 and
v.1.2 had clear difference when running on the AVL OSS dataset. Avelino introduced the
feature in v.1.2 to exclude deve]opers in open-source projects that had authorship distribu-
tions with long tails. This thesis did not investigate whether the TF Oracle dataset shares
this characteristic. But, the results from ALGO2 suggest that this feature did not provide a
better performance.

In comparison to all the algorithms assessed, ALGOCS yielded the least accurate results.
However, the examination of threshold analysis, as detailed in Subsection surprisingly
revealed that relatively naive Truck Factor algorithms can provide reasonably accurate esti-
mations. Notably, ALGO4 emerged as particularly effective, accurately estimating the Truck

51



7. DISCUSSION

Factor correctly for 65% of the projects.

7.2 RQ2: Comparing TF values in OSS and
proprietary contexts

Previous research presented in Sectionhas utilized OSS projects to analyze Truck Factors
for various repositories, likely due to their accessibility. This thesis extends previous research
by also evaluating the TF distribution in proprietary projects. Sectiondemonstrated that
there is no substantial difference between the relative and absolute TF in proprietary and
OSS contexts.

In the introduction at Section the topic of corporate increased influence in OSS com-
munities was discussed. Our findings could signify the shift in OSS communities from being
developed primarily by enthusiasts and amateurs to a scenario where employed developers
at corporations play a more prominent role [14}27]. Nonetheless, these findings support that
OSS and proprietary projects share similar distributions of TF.

The presented data also indicates that 1arger organizations tend to have a lower relative
TEF. Organizations with 21-50 active developers exhibit an average relative Truck Factor of
0.13 for open-source projects and 0.17 for proprietary projects. The numbers suggest that the
knowledge and expertise required to maintain and further develop the project are concen-
trated to a relatively few individuals.

The results presented in Subsection align with the conclusions drawn by Borg et al.
[7], emphasizing that industry practices lead to mainly dominant and marginal owners on a
file-level in proprietary systems. Our findings extend this observation by highlighting that
these practices are not exclusive to proprietary projects but are also prevalent in open-source
projects. Our added observation with the relative TF suggests that collaborative knowledge
sharing isnot just limited to a file-level, but a projectasa whole. This implies that the survival
of software projects hinges on relatively few developers.

Avelino et al.[3] concluded that 19% of the 1,932 researched open-source projects have
experienced being hit by a truck, with 41% of the affected projects managing to survive. The
survivals were attributed to their communities’ ability to attract new core contributors. In a
proprietary context, where the aspiration is for all deve]opers to be core contributors, this is
not a desirable approach. Hence, in proprietary projects, more focus on knowledge sharing
could entail a lower risk of being hit by the truck.

7.3 Threats to validity

In this chapter, we review the Validity of our ﬁndings, fbcusing on four dimensions: Internal
validity, construct validity, external validity, and reliability [26]. The aspect of internal va-
lidity explores factors that could have influenced our results. Construct validity represents
the degree to which the operational measures used in research align with the intended ob-
jectives, i.e., how well our method answers the research questions. External validity assesses
the generalizability of our findings and reliability examines the extent to which our results
depend on us as researchers.

52



7.3 THREATS TO VALIDITY

7.3.1 Internal validity

The thesis has used a newer version of the AVL algorithm than the one proposed in Avelino
et al’s paper [4] to establish a baseline. To ensure that the newer version works similarly to
the one utilized in the original paper, contact was initiated with Avelino. However, which
version of the AVL algorithm Ferreira et al. [12] utilized when AVL was concluded as state-
of-the-art has not been identified. We have tried to get in touch with Ferreira, but to no avail.
Therefore, it is a risk that our algorithms were benchmarked against another version of the
algorithm than the one used in the paper.

During the tuning process, only the v1.2 version of the AVL algorithm with default set-
tings was utilized. Tuning this algorithm similarly to our newly proposed algorithms would
maybe not yield resules where ALGO1 and ALGO3 outperforms AVL. The main reason why
this has not been done is time limitations.

To establish the most precise algorithm, metrics such as mean absolute error and mean
square error were used. The usage of these metrics was to identify the algorithm that provided
results closest to the TF Oracle. However, these metrics did not measure the weight of the
TF differences. In practice, the difference between estimating a TF of 22 compared to 24 is
not as critical as a difference between TF 1 and 3. Considering an additional weighted error
metric could have changed the outcome of Phase 2, and resulted in another algorithm and/or
different configuration settings.

This thesis heavily relies on the TF Oracle introduced in Ferreira et al’s work [12]. Efforts
have been made to replicate the artifacts used in the paper. However, the absence of infor-
mation regarding the specific commits to which the repositories were checked out makes it
likely that this paper may not have used the exact same artifacts. Despite attempts to contact
Ferreira for clarification, no successful communication was established.

In summary, all of these factors could have an impact on which a]gorithm we decided to

use in Phase 3 and thus both affecting RQ1 and RQ2.

7.3.2 Construct validity

This thesis main construct is the TFE. It refers to the number of key team members who, if
they were to be hit by a proverbia] truck (i.e., leave the project sudden]y due to unforeseen
circumstances), would signiﬁcantly impact the project’s progress and success. This constructs
description is vague where significant impact is not defined. While the term ’significant
impact’ lacks a precise definition in the construct, this paper sheds light on a noteworthy
observation: project files are commonly developed by a single developer. The potential loss
of key developers can noticeably impede progress, particularly when considering that, on
average, 58% of a developer’s time is dedicated to understanding existing code [30]. Taking
into account the additional time required to integrate new developers into a file, module, or
system, we assert that the truck factor TF does not undermine the validity of this thesis.

The TF oracle is the construct we use for true TF scores. However, its validity can be
questioned. The TF Oracle relies on individuals’ responses to a questionnaire and not real
events. Therefore, the tuning phases presented in this thesis could have been tuned to an
inaccurate state which does not represent when a project has been "hit’.

The algorithm utilizes contributed LoC as the only metric to determine a developer’s
knowledge about a file. In reality, a developer might be familiar with a file even if they have

53



7. DISCUSSION

not made any changes to it, simply by working in its vicinity. Consequently, a potential
author in reality could be a developer who has not made any direct changes to a file. In
contrast to Jabrayilzade et al. [19], our thesis has not taken this into consideration.

7.3.3 External validity

As of our knowledge, the dataset used as the Oracle is currently the best publicly available.
However, the Oracle used for the tuning only included 35 repositories. Consequently, the
reliability of the algorichm’s thresholds may not be optimal. This is why the analysis of the
file ownership distribution was conducted.

To establish the TF discributions in the different development contexts, ALGO1 was
run on 102 proprietary and 195 open-source projects of different sizes and using different
programming languages. These datasets were queried from CodeScene’s customers and could
thereby be biased. Given CodeScene’s role as a provider of codebase analysis tools, their
customers and thereby the collected data may not comprehensively capture the diversity of
projects in the broader reality.

The distribution of active developers in both sets is skewed towards relatively small val-
ues, averaging 7.5 for CS Prop and 8.5 for CS OSS. This suggests that our results might not
generalize to projects with a higher number of active developers. This could impact the va-
lidity of the TF trend, which we investigate in RQ2. However, in the interval [1-8] active
developers, we believe that our findings support that open-source and proprietary projects
tend to share similar characteristics of the distribution of TF.

This thesis has had the approach to establish one algorithm that could handle all projects,
no matter the languages used, the size of the organization or in which context it was devel-
oped. The thesis has, therefore, not delved into the topic of whether the algorithm should
treat these aspects differently. Our findings have shown that, in general, the distribution of
Truck Factors is similar among proprietary and open-source projects. However, the paper
has not explored the distribution based on other aspects.

We have not delved into the importance of specific files or modules. There could be
modules in a system that are critical and require specific expertise, i.c. a relatively few files
could entail that the Truck Factor should be less than the one provided by the algorichm.
Therefore, we consider that our algorithm could be used to provide an organization with
insights, but without claiming that the TF is the definitive truth.

7.3.4 Reliability

The source code, which we have utilized together with the data, has been open-sourced and
is available on GitHub. Therefore, anyone can scrutinize our results — supporting the relia-
bility of our work.

Initially, contact with Avelino was established, and we received configuration files for
the v1.0 version of the AVL algorithm. Our GitHub repository does not contain those files.
However, since the v1.2 version of the AVL algorithm was used instead, which did not use
these configuration files, and the artifact’s commit id is presented, the artifacts and the results
should be possible to recreate.

54



Chapter 8

Conclusion

This chapter o ers the conclusion to the researc question posed in this thesis. itionally,
This ch ffers th | th h t d in this th Add 11
potential directions for further research are presented.

8.1 Conclusion

The primary goal of this thesis is to lay the groundwork for the integration of a new Truck
Factor algorithm into CodeScene’s product range. The proposed a]gorithm has then been run
on 297 repositories in both open-source and proprietary projects to identify to which extent
the distribution of Truck Factors in open source-projects generalize to proprietary systems.

This thesis has presented five novel algorithms for estimating TF for repositories, utiliz-
ing Lines of Code as heuristic. Of the algorithms, ALGO1 presented the most accurate results
on the TF Oracle presented by Ferreira et al.[12] with the configurations; to be an author of
a file set to 30% and remaining files without an author set to 50%. These thresholds were
established through a file authorship analysis and by benchmarking it against the current
state-of-the-art algorithm proposed by Avelino et al. [4].

ALGO1 was run on 195 open-source projects and 102 projects mined from CodeScene’s
data lake. The findings proposed that the distribution between the two different contexts
are similar, and that the more active developers a project has, the lower the relative Truck
Factor tends to be.

Our findings highlight that the knowledge distribution in both open-source and pro-
prietary projects could be improved to establish an organization that is more robust to the
sudden loss of developers.

55



8. CONCLUSION

8.2 Future Work

We believe that using additional metrics could provide an algorithm that better models the
true knowledge within a software project. In the introduction of this thesis, papers published
by Jaybrazilade et al. [19] and Haratian et al. [16] were presented, both of which contributes
valuable insights.

Jaybrazilade et al. enhanced the AVL algorithm by incorporating additional metrics into
the DOA equation, considering factors such as knowledge decay over time, the number of
code reviews, and time spent in file-related meetings. Due to constraints such as data accessi-
bility, time limitations, and the papers’ lack of external validation, this specific approach was
not investigated. Nonetheless, we believe that integrating these metrics could improve our
proposed algorithm, offering a more accurate model of project knowledge and consequently
yielding more realistic truck factor values.

The algorithms presented in this thesis have adopted Avelino et al’s [4] naive approach,
treating all files as equally important. However, real-world software projects often involve
modules with varying importance based on business impacts. Additionally, the complexity
of maintaining files can differ based on their dependencies. Files with numerous reverse de-
pendencies are likely to have a higher level of complexity, making the system more vulnerable
if the authors of these files were to abruptly leave the project. Haratian et al. [16] expanded
the AVL algorithm by incorporating a weighting mechanism for files based on their depen-
dency degrees. We propose further research to explore integrating this functionality into the
algorithm presented in this thesis.

In the realm of Truck Factor algorithms, there is a consensus that an algorithm capable of
deterministically establishing the Truck Factor for a repository would be valuable. However,
pinpointing when a repository is actually "hit" poses a challenge, and there is a scarcity of
empirical studies on this matter. The primary reference in this thesis, Ferreira er al. [12],
heavily relies on surveys and consensus rather than real events. Therefore, we advocate for
further research to be conducted in this area to enhance our understanding and develop
algorithms grounded in real-world occurrences.

56



Bibliography

1]

2]

3]

[5]

(7]

(8]

Ashley Aitken and Vishnu Ilango. A comparative analysis of traditional software engi-
neering and agile software development. In 2013 46th Hawaii International Conference on
System Sciences, pages 4751-4760, 2013.

S. W. Ambler. IBM agilicy@ scale™: Become as agile as you can be. 1BM Global Services,
New York, USA, 2010.

Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander Sere-
brenik. On the Abandonment and Survival of Open Source Projects: An Empirical
Investigation. In Proc. of the International Symposium on Empirical Software Engineering
and Measurement, pages 1-12, 2019.

Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. A Novel
Approach for Estimating Truck Factors. In Proc. of the 24th International Conference on
Program Comprehension, pages 1-10, 2016.

Guilherme Avelino, Marco Valente, Andre Hora, and Leonardo Passos. Measuring and
analyzing code authorship in 1 + 118 open source projects. Science of Computer Program-
ming, 176, Mar. 2019.

Barry Bochm. Making a difference in the software century. Computer, 41(3):32-38, 2008.

Markus Borg, Adam Tornhill, and Enys Mones. U owns the code that changes and how
marginal owners resolve issues slower in low-quality source code. In Proceedings of the
27th International Conference on Evaluation and Assessment in Software Engineering, EASE
23, page 368-377, New York, NY, USA, 2023. Association for Computing Machinery.

Preetha Chatterjee, Tushar Sharma, and Paul Ralph. Empirical standards for repository
mining. In Proceedings of the 19th International Conference on Mining Software Repositories,
MSR 22, page 142-143, New York, NY, USA, 2022. Association for Computing Machin-

Cry.

57



BIBLIOGRAPHY

9]

[10]

[11]

[13]

[14]

[15]

[18]

[19]

[20]

D. Cooper, K.-J. Stol, and A. Oram. The innersource approach to innovation and soft-
ware development. In Adopting InnerSource, chapter 1. O'Reilly Media, Inc, Sebastopol,
CA, USA, 2018,

Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. Assessing the bus
factor of Git repositories. In 2015 I[EEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 499-503, March 2015. ISSN: 1534-5351.

Henry Edison, Noel Carroll, Lorraine Morgan, and Kieran Conboy. Inner source soft-
ware development: Current thinking and an agenda for future research. Journal of Sys-

tems and Software, 163:110520, 2020.

Mivian Ferreira, Thais Mombach, Marco Tulio Valente, and Kecia Ferreira. Algorithms
for estimating truck factors: a comparative study. Software Quality Journal, 27(4):1583-
1617, December 2019.

Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily Hill.

Degree-of-knowledge: Modeling a developer’s knowledge of code. ACM Trans. Softw.
Eng. Methodol., 23(2), Apr 2014.

Jesus Gonzalez-Barahona and Gregorio Robles. Trends in free, libre, open source soft-
ware communities: From volunteers to companies. it - Information Technology, 55, 10

2013.

Jesus M. Gonzalez-Barahona and Gregorio Robles. Revisiting the reproducibility of em-
pirical software engineering studies based on data retrieved from development reposi-

tories. Information and Software Technology, 164:107318, 2023.

Vahid Haratian, Mikhail Evtikhiev, Pouria Derakhshanfar, Eray Tiiziin, and Vladimir
Kovalenko. Bfsig: Leveraging file significance in bus factor estimation. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, pages 1926-1936, 2023.

Wilhelm Hasselbring. Benchmarking as empirical standard in software engineering re-
search. In Proceedings of the 25th International Confercnce on Evaluation and Assessment in
Software Engineering, EASE 21, page 365-372, New York, NY, USA, 2021. Association
for Computing Machinery.

Lawrence Hecht and Libby Clark Clark. Survey: Open source programs are a best prac-
tice among large companies. https://thenewstack.io/survey-open-source-programs-are-
a-best-practice-among-large-companies/, Jun 2021. Accessed on 2023-09-15.

Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tiiziin, and Vladimir Kovalenko. Bus factor
in practice. In Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP 22, page 97-106, New York, NY, USA, 2022.
Association for Computing Machinery.

Oualid Ktata and Ghislain Lévesque. Agile development: Issues and avenues requiring
a substantial enhancement of the business perspective in large projects. In Proceedings
of the 2nd Canadian Conference on Computer Science and Software Engineering, C3S2E 09,
page 59-66, New York, NY, USA, 2009. Association for Computing Machinery.

58



BIBLIOGRAPHY

(1]

22]

(23]

[24]

25]

[26]

(27]

28]

[29]

[30]

[31]

Greg Lewis and Joseph Sorongon. Industries with the highest (and lowest) turnover
rates. hteps://www.linkedin.com/business/talent/blog/talent-strategy/industries-with-
the-highest-turnover-rates, Aug 2022. Accessed on 2023-11-15.

Paul Petrone. See the industries with the highest turnover (and why it’'s so
high). hteps://www.linkedin.com/business/learning/blog/learner-engagement/see-the-
industries-with-the-highest-turnover-and-why-it-s-so-hi, Mar 2018.

Filippo Ricca and Alessandro Marchetto. Are Heroes common in FLOSS projects? In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Soﬁ:ware Engineering
and Measurement, ESEM 10, pages 1-4, New York, NY, USA, September 2010. Associa-
tion for Computing Machinery.

Filippo Ricca, Alessandro Marchetto, and Marco Torchiano. On the Difficulty of Com-
puting the Truck Factor. In Danilo Caivano, Markku Oivo, Maria Teresa Baldassarre,
and Giuseppe Visaggio, editors, Product-Focused Software Process Improvement, Lecture

Notes in Computer Science, pages 337-351, Berlin, Heidelberg, 2011. Springer.

Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus. Quantifying
and mitigating turnover-induced knowledge loss: case studies of chrome and a project at
avaya. In Proceedings of the 38th International Conference on Software Engineering, ICSE '16,
pages 1006-1016, New York, NY, USA, 2016. Association for Computing Machinery.

Per Runeson and Martin Host.  Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131-164, Apr 2009.

Diomidis Spinellis and Vaggelis Giannikas. Organizational adoption of open source

software. Journal of Systems and Software, 85:666-682, 03 2012.

Marco Torchiano, Filippo Ricca, and Alessandro Marchetto. Is my project’s truck factor
low? theoretical and empirical considerations about the truck factor threshold. In Pro-
ceedings of the 2nd International Workshop on Emerging Trends in Software Metrics, WETSoM
11, pages 12-18, New York, NY, USA, 2011. Association for Computing Machinery.

Joakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L. Hen-
ning, and Paul Cao. How to build a benchmark. In Proceedings of the 6ch ACM/SPEC
International Conference on Performance Engineering, ICPE ’15, page 333-336, New York,
NY, USA, 2015. Association for Computing Machinery.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shanping
Li. Measuring Program Comprehension: A Large-Scale Field Study with Professionals.
IEEE Transactions on Software Engineering, 44(10):951-976, 2018.

K. Yamashita, Y. Kamei, N. Ubayashi, S. McIntosh, and A.E. Hassan. Revisiting the
applicability of the pareto principle to core development teams in open source software
projects. In International Workshop on Principles of Software Evolution (IWPSE), volume
30-Aug-2015, pages 46-55 — 55, (1)Kyushu University, 2015.

Nico Zazworka, Kai Stapel, Eric Knauss, Forrest Shull, Victor R. Basili, and Kurt Schnei-
der. Are Developers Complying with the Process: An XP Study. In Proceedings of the

59



BIBLIOGRAPHY

2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measure-
ment, ESEM 10, pages 1-10, New York, NY, USA, September 2010. Association for
Computing Machinery.

60



Appendices

61






Appendix A

Detailed setup

A.1 TF Oracle

Repository

GitHub Link

Commit-id

Date of commit

Alexreisner/geocoder
androidannotations/androidannotations
Atom/atom-shell
Bjorn/tiled
Cantino/huginn
Capistrano/capistrano
capnproto/capnproto
Celluloid/celluloid
chef/chef’

D3/d3

Deis/deis
Dropwizard/metrics
Facebook/osquery
Gruntjs/grunt
Ipython/ipython
Junit-team/junic4
Kennethreitz/requests
Leaflet/leaflec

Less R
Mailpile/Mailpile
Netty/netty

nicolasgramlich/AndEngine

Powerline/powerline
Puphpet/puphpet
ReactiveX/Rx]Java

Requ /rcqui rejs

Respect/Validation
Ruby-grape/grape
Salestack/sale

ss
S h/openage
Symfony/symfony
Thoughtbot/paperclip

Tornadoweb/tornado

heeps://github.com/Alexreisner/geocoder.git

heeps://github.com/androidannotations/androidannotations.git

heeps://github.com/Acom/atom-shell.gic
heeps://github.com/Bjorn/tiled.gic
heeps://github.com/Cantino/huginn.gic
heeps://github.com/Capistrano/capistrano.git
heeps://github.com/capnproto/capnproto.git
heeps://github.com/Celluloid/celluloid.gic
heeps://github.com/chef/chef.git
heeps://github.com/D3/d3.gic
heeps://github.com/Deis/deis.git
heeps://github.com/Dropwizard/metrics.gic
heeps://github.com/Facebook/osquery.git
heeps://github.com/Gruntjs/grunt.gic
heeps://github.com/Ipython/ipython.git
heeps://github.com/Junit-team/junit4.gic
heeps://github.com/Kennethreitz/requests.git
heeps://github.com/Leaflet/leaflet.gic
heeps://github.com/Less/I git
heeps://github.com/Mailpile/Mailpile.git

heeps://github.com/Netty/nerty.git
heeps://github.com/nico
heeps://github.com/Pall
heeps://github.com/Powerline/powerline.git

git

heeps://github.com/Puphpet/puphpet.git
heeps://github.com/ReactiveX/Rx]Java.git

heeps://github.com/Requi X
heeps://github.com/Respect/ wtion.git
heeps://github.com/Ruby-, ape.git
heeps://github.com/Salescack/sale.gic
heeps://github.com/sa git
heeps://github.com/SFTtech/openage. git
heeps://github.com/Symfony/symfony.git
heeps://github.com/Thoughtbot/paperclip.git

heeps://github.com/Tornadoweb/tornado.git

mlich/AndEngine.git

a6¢c40b094€2£07577210d870etbba8b35¢9b62f
b1e1903307d143b22£985d61c8b8e552d9c 1291
€296f6daa27fc54a8204ebb3ecd5d104d3e74696
£7e77d2¢554ecd79153tbb4a03ef6dd05364be51
d40a372¢8357¢1dd57ab5de4c95¢7e87a5d44f5¢
bf45cbafe5¢£396933c81£334bdbe8c6d32a38¢2
21e7b91ecbfda217265bcbb1ef92b70976813f5
35374b2a0cd20da9¢332cd74cab8d1de941ect6b
bacb2ff93ccc2e14a0b721988¢241a1d07£70795
5528388d728315fd50f11ca5ab944b01296¢4681
€5£349dd9tb09022993ad74758b3bbf038d44d23
3da5¢88729¢b4d08c¢914c6dd231a4eb7b97¢0936
43cf5f120a¢7731e2780e45¢078dd0c04d 10fObf
2ddec56192ba6599cd3aeb0dc812f54cfe83c07b
£2d072¢9£357dcec0001f1aa2fe88c6494¢5dd1f
41d44734f41aba0ct6ba5a11{F5d32(Fed 155027
5524472cc76ea00d64181505f1fbb7f93f11cc2b
96d33b3a15¢8168b2a2¢850d334275bcc002dfa9
19dc9e78b9abebfcf7ac13561£205b680949012
2eebd5b604¢737698ab64¢2867¢65684249120bb
75af257a62ab328edeceed59b636d85910ba934c¢
85387a522¢0494595ab79£5430b5bf5f5a8575b3
270355abdcaa8f20ad6e7dd39f69279859a7055¢
11c1e07b1220453120602aatd250ae2ctcbdf007
060192945a357682¢511466b8d6a4c9a344aa3d
adfabec8fb740fc873ece843736246742fdaba7c
51d005fd962d57d5434a579£81£22bf51cdth0a0
007¢37b57067341¢33c¢b9697887a£21£833f9189
220c345df19602¢431ac780abeb98dbb24293395
¢34c6b992feccbbb1a26fablb5c137¢b7192fb3d
dct09265a0cc5006bba82d1c3e4d46d7134d7896
£4199f4738¢6¢039H16837c7atc44519d65736
017¢88b6a152679¢9c811d5ebed47ab68efc60e5
47b540d5bc3f1dalf789d2bf421adaeb3cfofed6
6¢96¢7781bd0073de5964f49298241b81a7aal5a

2015-08-14
2016-09-09
2015-08-14
2015-08-13
2016-09-14
2016-09-09
2015-08-14
2015-08-13
2015-08-13
2016-09-12
2016-09-14
2015-08-03
2015-08-14
2015-05-28
2015-08-12
2016-07-18
2016-09-14
2015-08-11

2015-07-25
2015-08-12
2015-08-15
2013-12-11

2016-09-14
2015-08-08
2015-08-11

2015-08-12
2016-09-05
2015-01-30
2016-09-14
2015-08-15
2016-03-04
2015-08-14
2016-09-15
2015-08-03
2015-08-10

Table A.1: Commits used for Ferreira’s TF oracle [12].

63



A. DETAILED SETUP

A.2 AVL Dataset

fzaninotto/Faker

heeps://github.com/fzaninotto/Faker.gic

9625956¢£3946a36b75fdc91e41bb125682a2f39

2015-02-23

Leaflet/Leaflec
mailpile/Mailpile

ratchetphp/Ratchet
ReactiveX/RxJava
5ilcxphp/$ilcx
Respect/Validation
github/android
cxcilys/nndmid;mnmntinns
atom/atom-shell
meskyanichi/backup
sampsyo/beets
bitcoin/bitcoin
sandstorm-io/capnproto
celluloid/celluloid
chef/chef
c]ojurc/c]ojurc
composer/composer
mbostock/d3
dropwizard/dropwi zard
elasticsearch/elasticsearch
cnlbcrjs/cmhcr.js
strongloop/express
fog/fog
justinﬁcnch/ﬂ\rmmstic
bump[ech/glide
gruntjs/grunt
caskroom/homebrew-cask
Homebrew/homebrew
ipython/ipy[lmn

jadcj >/| ade
xetorthio/jedis

]'oom] A/] oomla-cms
]'qucry/jqucry

l(ivy/ l(iv)‘

less/less.js

libgdx/]ibgdx
githuh/linguist
clasticsearch/logstash
spotify/luigi
dropwizard/metrics
Seldack/monolog
janl/mus[achc.js
netty/netty

SFTtech/openage
facebook/osquery
thoughtbot/paperclip
sebastianbergmann/phpunit
powcrlinc/powcr] ine
puphpet/puphpet

rails/rails

jrburke/requirejs
resque/resque

salestack/sale
scikit-learn/scikit-learn
getsentry/sentry

bjorn/tiled
JohnLangford/vowpal,,abbit
wp/cli/wp/cli

yiisoft/yii2

FriendsOfPHP/PHP-CS-Fixer

open f‘ramcworks/opm'l Frameworks

heeps://github.com/Leaflet/Leaflet.git
h[tps://gi[hub.com/muilpilc/l\’lailpile.gi[
heeps://github.com/FriendsOfPHP/PHP-CS-Fixer.git
heeps://github.com/ratchetphp/Ratchet.git
heeps://github.com/ReactiveX/Rx]ava.git
https://gi[hub.com/silcxphp/Silcx.git
heeps://github.com/Respect/Validation.git
heeps://github.com/github/android.git
https://gitlmb.com/cxcilys/nndmid;\nnnmtinns.git
https://gi[hub.com/atum/atom/shcll.gi[
heeps://github.com/meskyanichi/backup.git
heeps://github.com/sampsyo/beets.git

https://gi thub.com/bitcoin/bi tcoin.git
h[[ps://gi[hub.com/sands[orm/iu/cz\pnpmto.gi[
heeps://github.com/celluloid/celluloid.git
heeps://github.com/chef/chef.git

h t[ps://gi thub.com/c]ojure/clojurc.git
heeps://github.com/composer/composer.git
heeps://github.com/mbostock/d3.git
heeps://github.com/dropwizard/dropwizard.gic
heeps://github.com/clasticsearch/elasticsearch.git
git
heeps://github.com/strongloop/express. git
heeps://github.com/fog/fog.git
https://github.com/justin f‘i‘cnch/ﬂwmtﬂstic.git

https://gi[]mb.com/cmbcr]' s/ember.

ht[ps://gi[hub.com/bump[ech/glide.git
h[tps://gi[hub.com/gruntjs/grunt.git
heeps://github.com/caskroom/homebrew-cask.git
heeps://github.com/Homebrew/homebrew.git
https://gi[hub.com/ipythm"x/ipy[lmn.git
https://gi[hub.com/jadcjs/iudc.gi[
heeps://github.com/xetorthio/jedis.git
heeps://github.com/joomla/joomla-cms.gic
https://github.com/jqucry/j query.git
https://gi[hub.com/l{ivy/l(ivy.gi[
heeps://github.com/less/less.js.git
heeps://github.com/libgdx/libgdx.git
ht[ps://github.com/github/linguis[.git
h[tps://gi[hub.com/elzlsticsearch/logstash.gi[
heeps://github.com/spotify/luigi.git
heeps://github.com/dropwizard/metrics.git

h ttps://gi tlmb.com/Scld;\ek/mnnnlog.gi t
h[tps://gi[hub.com/janl/mus[achc.js. oit
heeps://github.com/netey/netey.gic
heeps://github.com/openframeworks/openFrameworks.git
heeps://github.com/SF Ttech/openage. git
heeps://github.com/facebook/osquery.git
heeps://github.com/thoughtbot/paperclip.git
heeps://github.com/sebastianbergmann/phpunit.git
h ttps://gi thub.com/powcrlinc/powcrl ine.git
heeps://github.com/puphpet/puphpet.git
https://gi[hub.com/rails/ruils.git
heeps://github.com/jrburke/requirejs.git
heeps://github.com/resque/resque.git

https://gi thub.com/salestack/sal r.git
h[tps://gi[hub.com/scikit/lczirn/scil(itzlc:lrn.git
heeps://github.com/getsentry/sentry.git
heeps://github.com/bjorn/tiled.git
https://gi[hub.com/‘]ohnLnngﬂn‘d/vowpalwabbit. git
https://gi[hub.com/wp/cli/wp/cli.git
heeps://github.com/yiisoft/yii2.git

a8£8£28911e5fa85d 1afc677¢2562066d5600b28
9714322971b00cf6340f19371d13b11fbdc468¢4
f0cbh37452¢8c8a4bc38d2¢5a228b393t8b72ab33
21fbef177389¢a7d573¢774cb0b854701ea09db0
4778d00d517¢667b6b234189d70fF36e1e4ba924
d1ed7¢132¢e4£96466782ceec206313009¢59bad
fa67f0b0301082¢670fa4bf4t4df94da47744t66
59b0c285f165904cc4£944177¢c89f92¢51929d
5ff1a1920e9b7b778b2cd116b070ad7b9ce835¢2
72d6a13e9¢5£33d4811¢55821699d6ed04193294
98038e45cc9c849e4ccc385944d71118629abe3a
ccbe9079718160a89260a70fe6153028bba7b176
34e5015c¢d21e27¢1bf635d92531afac93f553096
Oe4ae5672fac3c8fc294340blc4eact13de35174
6a5¢9¢d5791306e6¢09atbb9bele8a2d5512204d
fd849249¢89994d39478a792d1tb1932¢c04fa22
2e76¢57d3b7672ce5eca096ed2059d9aldd379d0
475¢84d4b1632653b11524846125f276119db259
3abb00113662463¢5¢19¢b87cd33f6d0ddc23bc0
071b8104c0cf788264594899386¢a5bfbf28d910
82beae9c0c3ef181827a2b82b2d7145a50585¢de
5d853cefaec16a58af72£380bbc927474eb88c63
51£960£2977566f8d671fc0e8154466a1b3d78ca
46¢ea6f66d4db9015b3d98f9397¢1cb4763c¢616a
0de7941dfd37¢1391452320696be7516a8782d9¢
75599b7af05eecal393c8f4267adb78e88e7821e
£290002¢b3cede1004dbaf783d2b7b19f5d61bd4
0151aeb0a96e7dbbda6d1fee71fd19239d01a370
6f67f419¢d627d£55129¢b620a806979d48905a¢
54¢a57400290d71935¢c3699bbc3da92cbf791fc
a152e6bb579525d33879db2c¢94aa26fbd5682b6f
00eefad767f908a1f6bade33bfa329acdcdf875F
69d86¢f14bdf036ec6c761b66257546¢f8cc0c5h
2380028ec426a77401b867a51de26a3cb8e8d311
170£d047266315d642089ade4497dd446ecbed43
7eab7e4d4d4de87d990d3301db65380b295¢2£37
92¢27b72¢9af588¢875¢431a9cb3effb8fec5bel
739b512ceef87f1255a2acb20e850e80f6d 5602
786d2d2c1aa3b8a4a2f6c703a54ce447td6a2dc5
541f40810d49£87¢146¢b0259854231e0a5aa7¢
b22b8da49f735¢7¢43902583519¢28695db0a9b7
bba433ac380c47523fab495a1322368381df0996
d4ba5a19d4d04b139bbf7840fe342bb43930ace3
237b393a8¢7¢7f1812¢cf2¢95102205fe7772a8¢
515b35¢3d799be5af9eb06979819118F78a9a13
a0fe241d6beda5ba65cd82906d70f4b74d3a862
b9dbcb254584a52282¢105a139025¢2f2ac8dcd5
97¢78efdce65b07¢6425¢76000£34£1909a257cb
7b9¢68dfc2fccb6b167b092605152b0f5fd6d871
3bf484de25cc77b0fc8f04e773993f4c1¢939a8
a4da7b71¢5c80f8a1bT6b298f6ac82b27233
71£c¢7892399bcb3ca24eft0a8f528¢3bc8d7d82d
356dcd81f9982a01e6b27b4fe3a9b5494379¢52a
04d40b00da45¢fh9194b9e4ab1fa485dde4f558¢
de441aba3503d904377a298696116567¢70ce0le
292662672525618f7bf79f93044¢57d4195828ac
¢188acb154balde130e8122d6c7025dc34£92157
fd52c¢607fad1b300c347236d0eb1a41a46a135(F
1c6cb8065a86684558455f409d0133c0ac686et4
0925413215¢b1ffech80b278b424¢f8bf202b
384607832f371acb20991¢553¢60dd29d7dfeb9e

2015-02-21
2015-02-24
2015-02-25
2015-01-25
2015-02-24
2015-01-20
2015-02-20
2015-02-24
2015-02-23
2015-02-19
2015-01-14
2015-02-24
2015-02-21
2015-02-19
2015-01-10
2015-02-20
2015-01-14
2015-02-25
2015-02-11

2015-02-25
2015-02-25
2015-02-25
2015-02-23
2015-02-25
2015-01-08
2023-10-10
2015-02-24
2015-02-25
2015-02-25
2015-02-23
2015-02-25
2015-02-22
2015-02-25
2015-02-17
2015-02-22
2015-02-25
2015-02-23
2015-02-25
2015-02-19
2015-02-25
2015-02-12
2015-02-25
2015-02-18
2015-02-24
2015-02-25
2015-02-18
2015-02-25
2015-01-11

2015-02-24
2015-02-21
2018-03-24
2015-02-25
2015-02-19
2015-01-17
2015-02-25
2015-02-25
2015-02-24
2015-02-24
2015-02-18
2015-02-20
2015-02-25

Table A.2: Exact commits in the AVL OSS dataset [5].

64




Appendix B

Detailed results

65



B. DETAILED RESULTS

B.1 File Authorships

70 60
60 504
50
404
GJ L]
&0 g
=4 c
g g1
4 ]
o 30 o
204
20
104
10
0 M- 0-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ownership percentage Ownership percentage
(a) Open-source: 1 (b) Proprietary: 1 ac-
active developer tive developer
35
354
30
304
25
254
& 5
g 2204
g g
&5 &
154
10 104
5 5
0 0-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ownership percentage Ownership percentage
(c) Open-source: 2-4 (d) Proprietary:2-4
active developers active developer

66



B.1 FILE AUTHORSHIPS

35

304

254

Percentage
N
S

-
=)

0.0

0.2 0.4 0.6 0.8
Ownership percentage

(e) Open-source: 5-9

active developers

50

404

Percentage
w
8

N
S}

0.2 0.4 0.6 0.8
Ownership percentage

(g) Open-source: 10-
24 active developers

Percentage

Percentage

304

0.2 0.4 0.6 0.8 10
Ownership percentage

(f)  Proprietary:5-9

active developer

254

204

=
&

=
1S

0.2 0.4 0.6 0.8 10
Ownership percentage

(h) Proprietary:10-24
active developers

67



B. DETAILED RESULTS

70+
50

Percentage
w
8
Percentage
IS w
& 3

N

S}
w
S

10

| a1 il .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6
Ownership percentage Ownership percentage
(i) Open-source: 25- (j) Proprietary:25-50
50 active developers active developers

Figure B.1: The distribution of the file authorship among the
datasets for open-source and proprictary systems. The data is

queried from CodeScene’s customers’ projects.

10

68




B.2 MAX FILE AUTHORSHIPS

B.2

Max File Authorships

801
o0
(]
o
O
£
3
5]
& 404
204
0
0.0 0.2 0.4 0.6 0.8 1.0
Ownership percentage
(a) Open-source: 1
active developer
o0
504
40
(]
o
©
£
(3
Y304
&
204
104
0 T T g
0.0 0.2 0.4 0.6 0.8 1.0

Ownership percentage

(¢c) Open-source: 2-4

active developers

80

70

v
S

Percentage
8

30
20
101
ol
00 02 04 06 0.8 10
Ownership percentage
(b) Proprietary: 1 ac-
tive developer
70
60
501
G401
©
1=
g
& 30
20
101
ol . -
0.0 02 04 06 0.8 1.0

Ownership percentage

(d) Proprietary:2-4

active deve]oper

69



B. DETAILED RESULTS

40
60
35
20 50
o 25 @ 40
g g
c c
g2 8
@ @ 30
o o
15
20
10
10
5
o 01— - -
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Ownership percentage Ownership percentage
(e) Open-source: 5-9 ()  Proprietary:5-9
active dCVﬁlOpCrS active developer
40
60
35
50
30
w25 o 401
g g
c =
[ Q
020 o
] @30
o o
15
20
10
10
5
ol 0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Ownership percentage Ownership percentage
(g) Open-source: 10- (h) Proprietary:10-24
24 active developers active developers

70



B.2 MAX FILE AUTHORSHIPS

Percentage

254
80
204
0
Q
154 g
£
5
5
& 4o
104
5 201
0- 0
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Ownership percentage Ownership percentage
(i) Open-source: 25- (j) Proprietary:25-50
50 active developers active developers

Figure B.2: The distribution of the maximum file authorship among
the datasets for open-source and proprietary systems. The data is
queried from CodeScene’s customers’ projects.

71



INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTERAD 2023-08-18

EXAMENSARBETE Driving Development Resilience:

Analyzing Truck Factors across Proprietary and Open-Source Projects

STUDENT Andreas Karlsson
HANDLEDARE Markus Borg (LTH)
EXAMINATOR Per Runeson (LTH)

Att bli pakord av en buss

POPULARVETENSKAPLIG SAMMANFATTNING Andreas Karlsson

Hur skulle din organisation reagera om ndgon ovantat blev pdkérd av en buss? Utdver
de personliga tragedierna vacker denna fraga tankar kring hur val rustad organisationen
ar for att hantera en plotslig forlust av personal. Har organisationen formagan att

anpassa sig och fortsatta sin verksamhet?

Fragan om vad som hédnder med en organisation
nar nagon blir pdkoérd av en buss kan upplevas
o6verdriven. Men trots det sa hénder det att per-
sonal plotsligt lamnar sina roller och sina arbets-
platser. Detta innebér att organisationer behdver
ha kunskaper och verktyg for att fa en Gverblick
och forstéelse i hur beroende verksamheten ar av
specifika individer.

Inom mjukvaruutveckling sa finns mycket av
systemets kunskap inom varje utvecklare. Agila
arbetsmetoder har premierat mindre dokumenta-
tion och mer informella kontaktkanaler vilket har
medfort att organisationer har blivit mer beroende
av sina utvecklare. Tidigare forskning fran 6ppna
kéllkodsprojekt har identifierat att manga system
ar byggda av relativt f& utvecklare. Detta med-
for att utvecklignen av systemen kan moéta svara
problem om nagon/nagra av dessa utvecklare plot-
sligt skulle lamna projektet.

Mitt exjobb handlar om att ta fram en algo-
ritm som kan rdkna ut Bussfaktorn i ett mjukvaru-
utvecklingsprojekt. Det vill sdga en algoritm som
kan identifiera det maximala antal nyckelpersoner
som en organisation skulle klara av att plotsligt
tappa utan att projektet inte léngre skulle kunna

gd att utveckla. Algoritmen ar tdnkt att anvandas
for att hjédlpa organisationer att identifiera vilken
risk de har kopplat till plotsligt bortfall av utveck-
lare.

Den framtagna algoritmen anvindes pa 195
Oppna kéallkodsprojekt och 102 projekt hos foretag
fér att understka om fordelningen av Bussfaktor-
erna var ungefar lika stora i de tva olika typerna av
projekt. Resultatet visade att de olika kontexter-
nas férdelningar av Bussfaktorn var likartade. Det
vill sdga, att bade 6ppna kéllkodsprojekt och pro-
prietéira projekt ar likartade om vilken inneboende
risk det finns i fall dar utvecklare skulle ldmna pro-
jekten.

Genom den framtagna algoritmen &r tanken att
foretaget CodeScene ska implementera denna i sitt
produktutbud. Detta skulle kunna hjilpa Code-
Scenes kunder att 6ka sin forstaelse och mojlighet
att agera pa potentiella risker som de eventuellt
inte var medvetna om tidigare, och pa sa séitt
minska de negativa paféljderna om nagon anstalld
abrupt skulle ldmna organisationen. En konkret
atgird kan vara att en organisation arbetar mer
med att frdmja kunskapsférdelning for att uppna
ett okat delat kodagarskap.



	Introduction
	Background and motivation
	Definition of the Truck Factor
	Previous work
	The first TF algorithm
	Subsequent research
	Validating TF algorithms

	Distribution of contribution in OSS
	Open-source development context
	Research approach

	Background
	Definitions
	Heuristics for file knowledge
	Commit-based heuristic
	LoC-based heuristic

	AVL algorithm
	Validation oracle

	Technical setup
	State-of-the-art reproduction
	Data collection and analysis
	Replication package

	Description of datasets
	Datasets
	Description of datasets

	Methodology
	Phase 1: Implement TF algorithms
	Step A: Setup AVL
	Step B: Setup CodeScene's approach
	Step C: Setup alternative TF algorithms

	Phase 2: Benchmark comparison
	Step A: Analyze file authorship
	Step B: Determine thresholds
	Step C: Compare TF algorithms

	Phase 3: Comparing open-source and proprietary repositories
	A: Compare TF results


	Results
	Phase 1: Setup AVL algorithm
	Phase 2: Identify thresholds and a favourable algorithm
	File authorship
	Benchmarking
	Summary thresholds

	Phase 3: Comparing open-source and proprietary repositories

	Discussion
	RQ1: Comparing TF algorithms
	RQ2: Comparing TF values in OSS and proprietary contexts
	Threats to validity
	Internal validity
	Construct validity
	External validity
	Reliability


	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendix Detailed setup
	TF Oracle
	AVL Dataset

	Appendix Detailed results
	File Authorships
	Max File Authorships


