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Abstract 

Barnviken in Malmö has persistently encountered challenges associated with elevated concentrations of 

Escherichia coli (E. coli) without a discernible source of contamination. A notable concentration peak 

has been identified at the outflow of the stream traversing Hammer's Park, prompting speculation 

regarding the stream's potential role as the origin of the contamination. In order to investigate this 

hypothesis, sampling of E. coli concentrations was conducted at various points along the stream during 

the spring and summer of 2023. Two models were developed to analyze the spring and summer samples 

separately, employing the linear mixed model. Water temperature and rainfall were incorporated as 

explanatory variables to ascertain whether elevated concentrations could be attributed to weather factors. 

The spring model yielded statistically significant estimates for both water temperature and rainfall, 

affirming their impact on E. coli concentrations. Conversely, the summer model, optimized for improved 

fit, excluded rainfall as a parameter, with water temperature failing to attain statistical significance. The 

discerned disparity in results led to the conclusion that factors influencing contamination during the 

summer differ from those present in the spring. Postulated explanations encompass potential leakages 

from proximate sanitary facilities, heightened pollution from nearby camping sites, or increased 

presence of seagulls in the vicinity.  
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1. Introduction 

Big bathing places in Sweden are registered as EU-bathing sites and must be controlled regularly to 

protect public health according to the EU Bathing Water Directive. Bathing sites that have an average 

of more than 200 bathers per day are considered as EU-bathing site, but places with less bathers still 

have the option to be registered as such. During the bathing seasons, the county administrative boards 

are responsible to test and inform the public about the water qualities according to EU-directives 

(Swedish Agency Marine and Water Management, 2018). The current EU-directive 2006/7/EC does not 

specify any guideline on individual samples, instead the water should be evaluated by samples taken 

over the last four years. When analysing individual samples, the Swedish Agency for Marine and Water 

Management indicates that assessments should be done according to the EU-directive 1976/160/EEG. 

The concentration is measured in colony-forming unit (cfu) per 100 mL, which means that the number 

of bacteria that is viable and able to form colonies in a 100 mL sample is measured. EU-directive 

1976/160/EEG states that a Escherichia coli (E. coli) concentration under or equal to 100 cfu/100 mL is 

suitable, between 200 and 1000 cfu/100 mL is suitable with remarks, and above 1000 cfu/100 mL is not 

suitable (Swedish Agency for Marine and Water Management, 2013). If water is deemed suitable with 

remarks, the county is not required to advise against bathing. However, water quality should be 

monitored to detect any worsening of contamination. When bathing water is deemed not suitable, the 

county administrative boards are must inform the public about the dissuasion, and the cause of the 

contamination should be investigated (Swedish Agency for Marine and Water Management, 2022). 

E. coli is a common bacterium, found in the intestines of both humans and animals. Even though E. coli 

is mostly considered harmless, it is a large and diverse group of bacteria with some strains causing 

illness. Common symptoms of E. coli infection are stomach cramps, diarrhea and vomiting (public 

health agency of sweden, 2015) (Center for Disease Control and Prevention, 2014). The testing for the 

presence of E. coli in bathing water aims to determine whether the water has been contaminated with 

faecal matter, originating from sources such as animal waste, sewage water, or runoff following rainfall. 

The presence of E. coli is also an indication that other harmful bacteria, viruses, and parasites might be 

present (beaches.ie, 2023). 

High concentrations of E. coli have been a problem in Barnviken, Malmö over decades. While other 

bathing places in Malmö do not seem to have a contamination problem, this has been an occurring 

problem in Barnviken without any lead to why that might be (Westerberg, 2018). In a study from 2022 

it was found that there was an unusually high E. coli concentration in Barnviken at the outlet of the 

Hammer’s stream. Runoff from the stream could be the possible source of contamination. The 

contamination of the stream could be a consequence of overflow incidents, sewage pipe leakage, and 

animals habituating the vicinity. For this study, samples taken from the stream during the spring and the 

summer were analysed with weather factors to statistically test if there is a connection between the two. 

To test this, a linear mixed model was created where weather factors were used as explanatory variables 

for the E. coli concentration. We aimed to determine whether weather played a role as a contributing 

factor in contamination. In cases where the model lacks significance, it hints at the involvement of an 

alternative source contributing to the contamination (Dwite, 2023). 

Previous models depicting how the growth and survival of E. coli are related to different factors have 

been developed. Wolska et al. (2022) found that some survival factors include temperatures, solar 

insolation, hydrologic conditions, water chemistry, nutrient conditions, suspended and settled solids, and 

land-use practices. Wolska et al. also list animal usage of the water as a contributing factor. Pets, such 

as dogs and birds, especially seagulls, are carriers of E. coli and can be a cause of contamination. This 

was also stated by Palazón et al (2017). The ground around the water area can be contaminated by birds 

living in the area or by precipitation and rainfall can then be expected to contribute to the E. coli 

concentration through runoff of the faeces. Both these articles found that rainfall was a major contributor 

to high E. coli contamination in bathing water.  
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2. Sampling and Data 
2.1 Sampling 

All data, except the rainfall, were obtained from the rapport Internship Project: Investigation of Fecal 

Contamination in the Hammar´s stream in Malmö, Barnviken (Dwite, 2023). Samples were collected 

once a week during week 17 to 22 and between week 27 and 32 in the year 2023. All samples were taken 

in the stream running through Hammer’s Park in Malmö and every week the samples were collected 

from the same locations in the stream. The exact locations and the labelling numbers can be seen in 

Figure 1. Originally, only locations 1 through 7, excluding 3.5 and 5.5, were sampled. Location 5.5 was 

added during week 18 and location 3.5 and 8 was added during week 19. Therefore, these locations are 

missing some measurements. The water temperature was also measured at each location during the 

sampling. During the summer, there were no samples collected in locations 2 and 3.5 (Dwite, 2023). 

 

Figure 1: A satellite picture over Barnviken and Hammar’s stream in Malmö. The red markers show the locations, labelled 

with the location number, where the samples were collected.  

At each location, triplicates of a 100 mL water sample were collected. The samples were then analysed 

using the Colilert-18/Quanti-Tray method, which is a well-known method for determining the cfu 

concentration of E. coli. This method follows the ISO standard specified as ISO 9308-2:2012. The 

principle is that most E. coli strains can produce an enzyme called β-glucuronidase. This enzyme is used 

to metabolize a substance called MUG, and the result of the metabolization is a fluorescent end-product. 

That the product is fluorescent means that it will emit light when exposed to UV-light. The emitted light 

can then be measured and is proportional to amount of E. coli in the sample. The enzyme β-

glucuronidase is almost exclusively produced by E. coli, making the method very specific for detecting 

the bacterium (Dwite, 2023) (Moberg, 1985). The average concentrations of the triplicates were 

calculated and used as a dependent variable in the model.  

The data for rainfall was collected from the Swedish Meteorological and Hydrological Institute’s 

(SMHI) website. The data used provided the amount of rain that had occurred during a specific day. The 

measurements were taken at SMHI’s weather station called Malmö A and it was assumed that the same 

amount of rainfall had occurred at every location in the stream. The total rainfall that had occurred seven 

days before the sample and up to the sampling day was added up and used as a parameter. The seven 

days were used since the samples were usually taken every seventh day (SMHI, 2023).  

2.2 Data 

Figure 2 shows the average E. coli concentration that was measured at each location on every sampling 

date during the spring. The black lines are the error bars that were calculated from the triplicates that 

were selected for each sampling. Figure 3 displays the same type of data but for the samples collected 

during the summer.  
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Figure 2: Bar chart over the average E. coli concentration that was measured at each location during the spring. On the y-axis 

is the average E. coli concentration in cfu/100 mL and the x-axis is the date the sample was collected. The bars’ colours represent 

from what location the sample was collected. What location each colour represents are shown to the right. The black lines in 

the graph symbolize the error bars, indicating one standard deviation from the average value. The average and the standard 

deviation were calculated from the sampling triplicates that were collected.   

 
Figure 3: Bar chart over the average E. coli concentration that was measured at each location during the summer. On the y-axis 

is the average E. coli concentration in cfu/100 mL and the x-axis is the date the sample was collected. The bars’ colours represent 

from what location the sample was collected. What location each colour represents are shown to the right. The black lines in 
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the graph symbolize the error bars, indicating one standard deviation from the average value. The average and the standard 

deviation were calculated from the sampling triplicates that were collected. 

As mentioned in Handling outliers, the values outside of the IQR were deemed as outliers and were 

modified by Winsorization to the highest value inside the IQR. Figure 4 and Figure 5 show the average 

E. coli concentration in the same way as in Figure 2 and Figure 3, but after Winsorization was 

performed. Figure 4 shows the data for the spring and Figure 5 for the summer. The error bars are no 

longer displayed since the standard deviation could not be calculated for the Winsorizated values.  

 

Figure 4: Bar chart over the average E. coli concentration that was measured at each location during the spring and after 

Winsorization. On the y-axis is the average E. coli concentration in cfu/100 mL and the x-axis is the date the sample was 

collected. The bars’ colour represents from what location the sample was collected. What location each colour represents are 

shown to the right. 
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Figure 5: Bar chart over the average E. coli concentration that was measured at each location during the summer and after 

Winsorization. On the y-axis is the average E. coli concentration in cfu/100 mL and the x-axis is the date the sample was 

collected. The bars’ colour represents from what location the sample was collected. What location each colour represents are 

shown to the right. 

On 2023-04-24, the first sampling day during the spring, no data for the water temperature was collected. 

The values for this data were instead imputed by using the mice package in R. The values that were 

imputed by the model is displayed in Table 1. 

Table 1: The values of the imputed water temperatures. The table shows what value was imputed in each location.  

Location  1 2 3 4 5 6 7 

Imputed Water Temperature (℃) 11.8 12.5 11.6 12.1 11.6 12.7 12.7 

In Figure 6, the measured water temperatures at each location are shown for every sampling date during 

the spring. Figure 7 instead, shows the data for the water temperature that was collected during the 

summer in the same way.  
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Figure 6: Bar chart that shows the measured water temperature at each location on every sampling date during the spring. On 

the y-axis is the water temperature in ℃ and the x-axis is the date the sample was collected. The bars’ colours represent from 

what location the sample was collected. What location each colour represents are shown to the right. 

 

Figure 7: Bar chart that shows the measured water temperature at each location on every sampling date during the summer. On 

the y-axis is the water temperature in ℃ and the x-axis is the date the sample was collected. The bars’ colours represent from 

what location the sample was collected. What location each colour represents are shown to the right. 
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Figure 8 and Figure 9 show the total rainfall that occurred during the seven days prior to when the 

samples were taken. The dots in the graph represent the amount of rain. Figure 8 shows the data for the 

spring and Figure 9 the data for the summer. Note that the rainfall is never 0 during the summer. This 

will later be discussed as a reason to why the spring model were showed rainfall as a significant 

parameter and the summer model did not.  

 

Figure 8: Time series plot over the rainfall during the spring. The y-axis is the rainfall in mm and the x-axis are the dates the 

samples were collected. The blue dots are the total rainfall that occurred on the seven days prior to when the samples were 

collected. The lines are not actual values but are instead there to help see how the rainfall changed between weeks.  

 

Figure 9: Time series plot over the rainfall during the summer. The y-axis is the rainfall in mm and the x-axis are the dates the 

samples were collected. The blue dots are the total rainfall that occurred on the seven days prior to when the samples were 

collected. The lines are not actual values but are instead there to help see how the rainfall changed between weeks.  
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2. Method 
2.1 The Linear Mixed Model 

In the data for this study, the samples are divided into groups depending on which location they were 

taken. These types of datasets are called hierarchical data and is characterized by that it involves 

organizing observations into nested groups or levels, enabling the analysis of patterns within and 

between these levels. There are many ways that one can deal with analysing hierarchical data. One way 

would be to aggregate the data. Instead of using all the dependent data in a group one could aggregate 

it by taking the average of the data. This would result in data that now is independent. The problem with 

this approach is that we lose a lot of valuable datapoints. At an aggregated level, there will only be as 

many data points as there are groups. Another approach would be to analyse each unit by itself. For 

example, one could run a separate linear regression for each unit. Although this approach is possible, 

the problem is that it creates a lot of models and none of them take advantage of the data in the other 

groups. The linear mixed model can be seen as a model that is in between the two approaches stated 

above. The individual linear regressions of units have many estimates but is “noisy” and the aggregate 

approach is less noisy, but we lose a lot of data points (UCLA: Statistical Consulting Group, 2021) 

In this study, the linear mixed model was used to find a relationship between E. coli concentration and 

weather factors. The linear mixed model is named after the fact that the model is linear in the parameters, 

and that there is a mix of fixed and random effects in the explanatory variables. The fixed effects are 

associated with the explanatory variables of the model. These explanatory variables can be either values 

of continuous range or categorical factors. The fixed effects are viewed as unknown constant parameters 

that are related to the explanatory variables. By estimating the parameters, the relationship between the 

explanatory variables and the observations can be obtained. When the levels of a factor are not of 

intrinsic interest, the effect of that factor is modelled as a random effect. It is evident that there might be 

a variability between the different levels but the effect that the levels have on the observations is not of 

interest. The effects from the levels are then, instead of treated as parameters, represented by random 

unobserved variables which are assumed to follow a normal distribution. (West, et al., 2007).  

The expression for a linear regression model can be seen in Equation 1, where y is a vector of 

observations, X is a matrix of known explanatory variables, β is a vector of unknown regression 

coefficients and ϵ is a vector of errors (Jiang & Nguyen, 2021). 

𝑦 = 𝑋𝛽 + ϵ (1) 

In this model the regression coefficients are said to be fixed, meaning they are constant for the entire 

population. However, when observations correlate with each other it makes more sense to assume that 

the coefficients are random parameters (Jiang & Nguyen, 2021). In this study, the different observations 

from the same locations can be assumed to correlate therefore making the linear mixed model a better 

fit for the data than linear regression. 

The general model for a linear mixed model for the given unit i can be expressed as in Equation 2. In 

the equation, yi is a vector of observations, Xi is a matrix of known explanatory variables, β is a column 

vector of unknown regression coefficients, also called fixed effects, Zi is a design matrix for the random 

effects and the units, αi is a vector of random effects and ϵi is a vector of residuals for yi that are not 

explained by Xiβ + Ziαi (UCLA: Statistical Consulting Group, 2021) (Jiang & Nguyen, 2021). 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝛼𝑖 + 𝜖𝑖 (2) 

Let us define an index t that represents the time point an observation was taken and a second index i that 

represents the unit the observation was taken from. Then t (t = 1, …, ni), where ni is the number of 

observations in unit i (i=1, …, m), where m is the number of units. The data contains p number of 
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explanatory variables X (X(1), …X(p)) each of which is associated with the fixed effects β1, …, βp. Each 

β parameter represents the effect a one-unit change in the associated X explanatory variables has on y, 

assuming that all other explanatory variables are constant. For the explanatory variables, X(1), …, X(p) 

the terms Xt,i
(1), …, Xt,i

(p) each represent the t:th observed explanatory variables for unit i. The data also 

contains q number of explanatory variables Z (Z(1), …, Z(q)) which are associated with the random effects 

u1,i, …, uq,i that are specific to the unit i. ϵt,i represents the residual for the t observation from unit i (West, 

et al., 2007). 

 In Equation 2, yi is a ni × 1 vector of all observed values in unit i, where N is the total number of 

observations, that is, all observations from every unit. The yi vector can be written as in Equation 3. 

𝑦𝑖 = (

𝑦1,𝑖
𝑦2,𝑖
⋮
𝑦𝑛𝑖,𝑖

) (3) 

Xi in Equation 2 is an ni × p matrix of all known values of the explanatory variables in group i.  The 

matrix can be written as in Equation 4. If the model includes an intercept term, then all values in the 

first column would be equal to 1.  

𝑋𝑖 =

(

  
 

𝑋1,𝑖
(1) 𝑋1,𝑖

(2)
⋯ 𝑋1,𝑖

(𝑝)

𝑋2,𝑖
(1) 𝑋2,𝑖

(2)
⋯ 𝑋2,𝑖

(𝑝)

⋮

𝑋𝑛𝑖,𝑖
(1)

⋮

𝑋𝑛𝑖,𝑖
(2)

⋱
⋯

⋮

𝑋𝑛𝑖,𝑖
(𝑝)
)

  
 

(4) 

In Equation 2, β is a p × 1 column vector of the unknown fixed effect regression coefficients. It can be 

expressed as in Equation 5. 

𝛽 = (

𝛽1
𝛽2
⋮
𝛽𝑝

) (5) 

Much like the Xi matrix, the Zi matrix also represent known values of the observed explanatory variables 

in group i. The difference is that they are the explanatory variables for the random effects. The Zi matrix 

is an ni × q matrix and can be expressed as in Equation 6. 

𝑍𝑖 =

(

  
 

𝑍1,𝑖
(1) 𝑍1,𝑖

(2)
⋯ 𝑍1,𝑖

(𝑞)

𝑍2,𝑖
(1) 𝑍2,𝑖

(2)
⋯ 𝑍2,𝑖

(𝑞)

 ⋮

𝑍𝑛𝑖,𝑖
(1)

⋮

𝑍𝑛𝑖,𝑖
(2)

⋱ ⋮

… 𝑍𝑛𝑖,𝑖
(𝑞)
)

  
 

(6) 

The αi vector in Equation 2 is a q × 1 vector that represent the random effects for each covariate in Zi. 

The ui vector can be expressed as in Equation 7. According to the model assumptions, the random effects 

should follow a normal distribution with mean 0 and a variance-covariance matrix D, αi ~ N(0, D). The 

D matrix is represented in Equation 8. The diagonal from right to left is the variance of each random 

effect in ui. The rest of the elements are the explanatory variables between two random effects. Since 

there are q number of random effects, D is a q × q matrix.  
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𝛼𝑖 = (

𝛼1,𝑖
𝛼2,𝑖 

⋮
𝛼𝑞,𝑖

) (7) 

𝐷 = 𝑉𝑎𝑟(𝛼𝑖) =

(

 
 

𝑉𝑎𝑟(𝛼1𝑖) 𝑐𝑜𝑣(𝛼1𝑖, 𝛼2𝑖) ⋯ 𝑐𝑜𝑣(𝛼1𝑖, 𝛼𝑞𝑖)

𝑐𝑜𝑣(𝛼1𝑖, 𝛼2𝑖) 𝑉𝑎𝑟(𝛼2𝑖) ⋯ 𝑐𝑜𝑣(𝛼2𝑖, 𝛼𝑞𝑖)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝛼1𝑖, 𝛼𝑞𝑖) 𝑐𝑜𝑣(𝛼2𝑖, 𝛼𝑞𝑖) ⋯ 𝑉𝑎𝑟(𝛼𝑞𝑖) )

 
 

(8) 

ϵi in Equation 2 is an ni × 1 vector of residuals associated with a specific observation and is shown in 

Equation 9. The residuals of observations within the same group can be correlated with each other. 

This is a trait of the linear mixed model that is not allowed the standard linear model. Like αi, the 

residuals are assumed to follow a normal distribution. Again, the mean is 0 but has a positive definite 

symmetric covariance matrix, Ri. The Ri matrix is represented in Equation 10. It also assumed that 

residuals of different groups are independent from each other. The αi vectors and ϵi vectors are also 

assumed to be independent (West, et al., 2007) (UCLA: Statistical Consulting Group, 2021) (Jiang & 

Nguyen, 2021).  

𝜖𝑖 = (

𝜖1,𝑖
𝜖2,𝑖
⋮
𝜖𝑛𝑖,𝑖

) (9) 

𝑅𝑖 = 𝑉𝑎𝑟(𝜖𝑖) =

(

 
 

𝑉𝑎𝑟(𝜖1𝑖) 𝑐𝑜𝑣(𝜖1𝑖, 𝜖2𝑖) ⋯ 𝑐𝑜𝑣(𝜖1𝑖, 𝜖𝑛𝑖𝑖)

𝑐𝑜𝑣(𝜖1𝑖, 𝜖2𝑖) 𝑉𝑎𝑟(𝜖2𝑖) ⋯ 𝑐𝑜𝑣(𝜖2𝑖, 𝜖𝑛𝑖𝑖)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝜖1𝑖, 𝜖𝑛𝑖𝑖) 𝑐𝑜𝑣(𝜖2𝑖, 𝜖𝑛𝑖𝑖) ⋯ 𝑉𝑎𝑟(𝜖𝑛𝑖𝑖) )

 
 

(10) 

In the linear mixed model, it is assumed that the random effects and errors have means of zero and finite 

variances. Both αi and ϵi are unobservable and it is assumed that they are uncorrelated. If we assume that 

all random effects, α, are independent and identically distributed (i.i.d.) with mean zero and a variance 

of σ2 and that the residuals also are i.i.d. and have a mean zero and a variance of τ2, then, since the 

random effects and the errors are uncorrelated, the correlation between two observations between the 

same unit can be expressed as in Equation 11 and two observations from different units are uncorrelated 

(Jiang & Nguyen, 2021). 

𝑟 =
𝜎2

(𝜎2 + 𝜏2)
(11) 

There are different ways the data can be structured when making a linear mixed model. The three types 

are clustered data, repeated-measures data, and longitudinal data. In clustered data, the dependent 

measure is measured only one time for each unit and the units are grouped together into clusters. For 

repeated-measures data, the dependent variable is measured more than once within the same group 

across levels of a repeated-measures factor. The factor could be time or an observation level within the 

unit. In longitudinal data the same unit is measured several times over a certain period. It can be hard to 

distinguish a data set from a repeated-measures data set and a longitudinal data set. However, when 

doing a linear mixed model this distinction is not essential. The only important feature is that the 

dependent variable is measured more than once. This is because the measurements within the same unit 

are likely to be correlated (West, et al., 2007).  

When creating a linear mixed model, a common turnout is singular fits. Singular fits, or singularity, 

means that the estimated variance-covariance matrices have reduced rank, indicating that certain aspects 
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of the matrix were precisely estimated as zero. In simpler terms, some dimensions are treated as if they 

have no impact in the estimation. This is especially common when dealing with a linear mixed model 

that uses a large number of explanatory variables (rdrr.io, 2023).  

2.2 Assessing Model Assumptions 

In a linear mixed model, it is assumed that both the random effects and the residuals follow a normal 

distribution (West, et al., 2007). A way of verifying a normal distribution is therefore required. In this 

study, residual plots, Q-Q plots and the Shapiro-Wilk normality test will be used.  

A residual plot is a plot where fitted values are plotted on the x-axis against residuals. The plot is used 

to identify problems with the model by examining patters, trends, and anomalies in the distribution of 

the data points. Problems that can be observed using a residual plot are heteroscedastic data, non-

linearity, and outliers within the data. The distribution of the data points should preferably be equally 

and randomly spaced around the x-axis (Glen, 2023a) 

A Q-Q plot, or Quantile-Quantile plot, is a scatterplot of two quantiles to test if the data comes from a 

certain distribution. If both sets used comes from the same distribution, the data points form a 45° line. 

If the data points deviate from the straight line, it can be assumed that they don’t follow the distribution. 

However, a Q-Q plot is only a visual tool and not a certainty of a data distribution (Ford, 2015). 

 The Shapiro-Wilk normality test is used to test if a sample follows a normal distribution, with mean µ 

and variance σ2. If we have a random sample X with n data points, X = {x1, x2, … xn}, we test if the 

sample follows a normal distribution, namely X ~ N(µ, σ2). The two hypotheses that we want to test are 

as follows:  

H0: X is normally distributed, X ~ N(µ, σ2). 

H1: X is not normally distributed. 

To perform the test, W is calculated according to Equation 12, where, x̄ is the mean value of X and ai are 

constants that are calculated from Equation 13. V represents the covariance matrix of the order statistics 

and m = (m1, m2, …, mn)
T represents the expected values of the order statistics, characterizing 

independent and identically distributed random variables that follow the standard normal distribution 

N(0, 1) (Ramachandran & Tsokos, 2021).  

𝑊 =
(∑ 𝑎𝑖

𝑛
𝑖=1 𝑥(𝑖))

2

∑ (𝑥𝑖 − �̅�)
2𝑛

𝑖=1

(12) 

(𝑎1, 𝑎2, … , 𝑎𝑛) =
𝑚𝑇𝑉−1

√𝑚𝑇𝑉−1𝑚
(13) 

2.3 Information Criteria 

When it comes to comparing the fits of different models, two widely used criteria are the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). These criteria are grounded 

in different assumptions and serve distinct purposes. AIC, rooted in information theory, aims to produce 

a probability distribution that exhibits the least divergence from the true distribution, making it well-

suited for model selection. On the other hand, BIC relies on large sample asymptotic approximation, 

making it especially useful in situations where sample size is substantial. In both cases, the goal is to 

identify the model with the lowest index, reflecting its ability to balance model complexity and fit to the 

data. AIC is defined as in Equation 14 and BIC is defined as in Equation 15. L is the likelihood, K the 

number of parameters in the model, and n is the number of observations (𝑛 =  ∑ 𝑛𝑖)
𝑚
𝑖   (Yang & Yang, 

2014) (Busemeyer & Diederich, 2014). 
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AIC = −2 log 𝐿 + 2𝐾 (14) 

𝐵𝐼𝐶 = −2 log 𝐿 + 𝐾 log𝑛 (15) 

2.4 Handling Influential Values 

All observations used to estimate a model have some kind of influence on the regression parameters. 

The power of influence can indeed vary between observations. Some observations may have a stronger 

impact on the regression model than others depending on its relation to its fitted value. Some 

observations might have such an overly influence on the regression parameters that the choice to include 

or exclude them can alter the outcome of the model’s estimates. Influential observations cannot always 

be detected by analysing residuals. Outliers can be overly influential on the regression but that is not 

always the case. Since the influential observations pulls the regression line closer to itself, in some cases 

the influence is so strong that the regression line settles close enough to the observation for it to no 

longer be recognised as an outlier. A method for detecting influential observations is of the essence 

(Nieuwenhuis, et al., 2012). For this study, Cook’s distance was used to detect overly influential 

observations.  

Cook’s distance is calculated by assessing the impact on all the values in a regression model when the 

j:th observation is systematically removed from the model. The formula for calculating Cook’s distance 

is shown in Equation 16 where 𝐶𝑗 is the Cook’s distance, �̂� is the fitted values, �̂�(−𝑗) is the fitted values 

without observation j, K is the number of design parameters, excluding the intercept, and 𝑅𝑖
−1 is the 

inverse of the variance vector (Nieuwenhuis, et al., 2012).  

𝐶𝑗 =
1

𝐾 + 1
(�̂� − �̂�(−𝑗))

′
𝑅𝑖
−1(�̂� − �̂�(−𝑗)) (16) 

There is no threshold value for when an observation is considered too influential, but a rule of thumb is 

that for any value above 4/n, where n is the number of observations used in the model, the observations 

should be investigated (Nieuwenhuis, et al., 2012) (Altman & Krzywinski, 2016). After the influential 

observations have been identified, it is to be decided how the values should be dealt with. Altman and 

Krzywiniski (2016) suggest that for data with limited observations, more samples within the same 

population as the influential observation should be taken. When that is not a possibility, like in this study, 

the observations can instead be deleted, and the model re-evaluated.  

2.5 Handling Outliers 

Because the data have relatively few observations, it was important to handle the outliers since they 

would have a large influence on the model. For this study the outliers were handled by Winsorization, 

which is a strategy that can improve effectiveness and robustness of statistical interference. The 

downside to this is that is introduces a bias to the model. However, this bias is still less than it would be 

to just delete the outliers (Glen, 2023b). The outliers were identified by looking at values outside of the 

interquartile range (IQR) and then replacing them with the highest value of the observations inside of 

the IQR.  

2.6 Handling missing data 

During the first sampling period, there were seven samples, taken during the first sampling day of     

2023-04-24, that were missing a measurement for water temperature. New data for the temperature was 

generated by imputation by using the mice: Multivariate Imputation by Chained Equations (mice) 

package in R.  

The mice package is used to create multiple imputations for multivariate missing data. The incomplete 

variables are imputed by a method which is based on Fully Conditional Specification, where each 
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missing value is imputed by a separate imputation model (RDocumentation, 2023). The mice package 

can perform many different imputation methods, but for this study Predictive Mean Matching (PMM) 

was used. PMM is similar to the regression model in its approach, but instead of predicting missing 

values based solely on regression, it introduces randomness. For each missing value, it selects a value 

randomly from observed donor values. These donors are chosen from observations whose regression-

predicted values closely match the regression-predicted value for the missing data in the simulated 

regression model. PMM makes sure that the imputed values are reasonable which the regression method 

does not if the normality assumption is violated (UCLA: Statistical Consulting Group, 2021). When 

imputing the water temperatures, the donor values used were the air temperature that was measured, not 

only on the sampling day but, around the same timepoint the sample was collected.  

4. Modelling 
4.1 Spring Model 

The explanatory variables that will be used in the model are water temperature, rainfall, sampling date 

and location. It’s important to consider what explanatory variables that should be modelled as fixed 

effects and random effects. The observations are grouped by location which will therefore be modelled 

as a random effect. Both water temperature and rainfall were modelled as fixed effects. A fixed effect is 

assumed to have the same effect in all units. Figure 10 shows that the effect water temperature had on 

the concentration is similar in all locations. Figure 11 shows a similar trend for the rainfall. Modelling 

them as fixed effects is also necessary to be able to do predictions for the model. Because the data 

measured is longitudinal, the data explanatory variables can be modelled as either a fixed or random 

effect depending on the objective of the model. To address the variability of concentration between dates 

without specifically exploring the influence of time on concentration levels, the date was modelled as a 

random effect. 

 

Figure 10: Scatter plots on how the water temperature affects the E. coli concentration. The y-axis is the average E. coli 

concentration in cfu/100 mL and the x-axis is the water temperature in ℃. The figure is divided into ten different graphs 

where each represents one location. The black dots are data points for samples collected during the spring, and the blue lines 

are linear regression fits between water temperature and E. coli concentration.  
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Figure 11: Scatter plots on how the rainfall affects the E. coli concentration. The y-axis is the average E. coli concentration in 

cfu/100 mL and the x-axis is the rainfall in mm. The figure is divided into ten different graphs where each represents one 

location. The black dots are data points for samples collected during the spring, and the red lines are linear regression fits 

between rainfall and E. coli concentration. 

The two models that were considered are shown in Table 2. The difference between them is that Model 

A uses date as a random effect and Model B does not. Looking at AIC and BIC it shows that Model B 

is considered a better fit. This is probably because there is little variation between the locations for each 

date. Model B was used for later analyses.  

Table 2: The different models that were tested and what the explanatory variables was used in each model and if they were used 

as a fixed effect or random effect. The AIC and BIC values guide model selection by balancing fit and complexity. Model B 

was selected as the model with best fit since the AIC and BIC values were the lowest. 

Model Fixed effects Random effects AIC BIC 

A Water temperature + Rainfall Location + Date 612.6 624.4 

B Water temperature + Rainfall Location 610.6 620.4 

 

4.2 Summer Model 

The same explanatory variables were used for the summer model as in the spring model. Water 

temperature and rainfall were modelled as fixed effects and location and date as random effects. Figure 
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12 shows the effect water temperature had on the concentration and Figure 13 shows the effect of 

rainfall. Looking at both Figure 12 and 13, the parameters do not clearly have the same effect in each 

location. Compare this to Figure 10 and 11, where the effect was clear for both parameters. This may 

suggest that water temperature and rainfall would be better fitted as random effects. This is later 

indicated to be correct in Table 3. However, since the random effects are only representing variations 

between locations, they cannot be used to make predictions from the model. Therefore, is would be 

meaningless to model all explanatory variables as random effects since it would not yield a useful result. 

Water temperature and rainfall were therefore modelled as fixed effects, with the consideration that this 

might not be the best model for the data. Modelling one of them as a random effect was tested but gave 

a model that had a singular fit.  

 

Figure 12: Scatter plots on how the water temperature affects the E. coli concentration. The y-axis is the average E. coli 

concentration in cfu/100 mL and the x-axis is the water temperature in ℃. The figure is divided into eight different graphs 

where each represents one location. The black dots are data points for samples collected during the summer, and the blue lines 

are linear regression fits between water temperature and E. coli concentration. 
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Figure 13: Scatter plots on how the rainfall affects the E. coli concentration. The y-axis is the average E. coli concentration in 

cfu/100 mL and the x-axis is the rainfall in mm. The figure is divided into eight different graphs where each represents one 

location. The black dots are data points for samples collected during the summer, and the red lines are linear regression fits 

between rainfall and E. coli concentration. 

Table 3 shows the result of the summer models. Looking at the values for AIC and BIC, Model C was 

the best model. However, Model C is modelled without fixed effects and has every explanatory variable 

as a random effect but as stated before, this model would not yield a useful model. Therefore, Model D 

was considered the best model according to the AIC and BIC values. The model does not have rainfall 

as a fixed effect like the spring model has. The reason for this model having a better fit than Model B, 

that was used for the spring model, might be that the rainfall seems to have a very little effect on the 

concentration during the summer (see Figure 13).  
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Table 3: The different models that were tested and what the explanatory variables was used in each model and if they were 

used as a fixed effect or random effect. The AIC and BIC values guide model selection by balancing fit and complexity. Model 

C was identified as having the best fit, however Model D was later used since Model C contains no fixed effect.  

Model Fixed effects Random effects AIC BIC 

Model A Water temperature + Rainfall Location + Date 671.3 682.5 

Model B Water temperature + Rainfall Location 670.5 679.9 

Model C - 
Water temperature + Rainfall + 

Location  
663.0 672.4 

Model D Water temperature Location 668.8 676.6 

5. Results 
5.1 Spring Model 

In the spring model, water temperature and rainfall were used as fixed effects. The results for estimating 

the coefficients can be seen in Table 4. The estimated value for water temperature was 12.62. The t-

value was 2.963 with a p-value of 0.00478, suggesting that water temperature is a significant predictor 

for the concentration. The estimated value for rainfall was 6.65, and the t-value was 2.579 with a p-value 

of 0.0134 pointing to statistical significance.  

Table 4: Estimates of the fixed effects in the spring model. The table shows the estimation of each fixed effect in the model, as 

well as a 95% confidence interval of that variable. The t-value and p-value come from performing a t-test on the fixed effects 

significance. Both variables were found to be statistically significant.  

Parameter Estimate 

95% confidence 

interval t-value p-value 
 

Water Temperature 12.62 4.07 – 21.12 2.963 0.00478  

Rainfall 6.65 1.45 – 11.83  2.579 0.0134  

The plots in Figure 14 show the marginal predictions for water temperature and in Figure 15, the 

marginal predictions for rainfall. The graphs are divided to display the model in each location. Note that 

the intercept is different in each location which is a result from the random effect in the model. 

Performing the Shapiro-Wilks normality test on the random effect gave W = 0.947 and a p-value of 

0.637, suggesting that the random effects follow a normal distribution which is a model assumption.  
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Figure 14: The predictions for water temperature during the spring. The plots show the relationship between water temperature 

and E. coli concentration in each location. The y-axis is the E. coli concentration in cfu/100 mL and the x-axis is the water 

temperature ℃. The black dots are data points. The blue lines are the model predictions, used to explain the concentration from 

water temperature. The blue ribbons signify the confidence intervals around the predicted values. Each plot has different 

intercepts, which is a result of random effects.  
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Figure 15: The predictions for rainfall during the spring. The plots show the relationship between rainfall and E. coli 

concentration in each location. The y-axis is the E. coli concentration in cfu/100 mL and the x-axis is the rainfall in mm. The 

black dots are data points. The red lines are the model predictions, used to explain the concentration from rainfall. The red 

ribbons signify the confidence intervals around the predicted values. Each plot has different intercepts, which is a result of 

random effects. 

In Figure 16a, the residual plot indicates the presence of heteroskedasticity since the residuals have a 

bigger variance for higher fitted values. This goes against one of the model assumptions that says that 

the residuals should be evenly and randomly distributed. Since the variance is bigger at higher values, 

it suggests that the model might not be less effective at predicting higher E. coli concentrations. The 

confidence intervals in Figure 14 and 15 might therefore not have correct coverage over the prediction.  

The same assumption can be identified when looking at the Q-Q plot in Figure 16b. The points in the 

plot follows the theoretical quantiles except, but higher values seems to deviate from the trend. The 

Shapiro-Wilk normality test provided W = 0.9645 and a p-value of 0.1158. The Null hypothesis can be 
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accepted, affirming that the residuals come from a normal distribution, even despite the 

heteroskedasticity.    

 

Figure 16: The residual plot and Q-Q-plot for the model. (a) The fitted values are plotted against the residuals to analyse the 

goodness of fit by noticing trends in the residual distribution. The residual appears to be heteroscedastic, having a bigger 

variance for higher values. The y-axis is the residuals, and the x-axis is the fitted value. The red line represents where the 

residual is zero and a well-fitted model would ideally have residuals evenly distributed around this line. (b)  The Q-Q quantiles 

of the dataset is plotted against the expected quantiles of a theoretical distribution. The y-axis is the sample quantiles, and the 

x-axis the theoretical quantiles. The diagonal line in a Q-Q plot represents an ideal match between observed and expected 

quantiles. 

Figure 17 shows Cook’s distances for all samples in the first model. The threshold value was calculated 

to 0.0755, and every value above that was identified as being overly influential and was analysed further. 

The sample ID:s of the observations identified as overly influential was 5, 10, 26 and 52. The values of 

these observations are displayed in Table 5.  

 

Figure 17: The graph shows every sample’s calculated Cook’s distance.  The y-axis is the Cook’s distance and on the x-axis 

are the sample ID:s. The black dots are the Cook’s distance for respective sample. The red line is the threshold value, where 

the values above are considered overly influential. All samples that have a value higher than the threshold value are labelled 

with their respective sample ID. 
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Table 5: The values of the samples that were found to be overly influential. The table shows each sample’s ID, date, location, 

average E. coli concentration, water temperature and rainfall.  

Sample

ID 

Sampling 

Date Location 

Average E. coli 

concentration    

(cfu/100 ml) 

Water 

temperature 

(Co) 

Rainfall 

(mm) 

5 2023-04-24 4 122.8 11.6 5.5 

10 2023-05-02 4 330.8 12.7 1.0 

26 2023-05-15 3.5 117.3 16.6 0.0 

52 2023-05-29 6 330.8 17.4 4.3 

 

5.2 Summer Model 

In the summer model, water temperature had an estimate of 18.86 which is higher than the estimate of 

spring model where it was 12.34. However, unlike the spring model, the t-value was 0.908 and the p-

value 0.369, meaning that the parameter is not statistically significant. This can also be seen in Figure 

12 where the water temperature seems to have different effects in each location, pointing to that there 

probably are not a true parameter for water temperature that can explain the concentration.   

The plot in Figure 18 shows the model predictions for the E. coli concentration at different water 

temperature. The random effects were found to exhibit a normal distribution after doing a Shapiro-

Wilk normality test, where W = 0.856 and the p-value was 0.109. 
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Figure 18: The prediction marginal for water temperature during the summer. The plots show the relationship between water 

temperature and E. coli concentration in each location. The y-axis is the E. coli concentration in cfu/100 mL and the x-axis is 

the water temperature ℃. The black dots are data points. The blue lines are the model predictions, used to explain the 

concentration from water temperature. The blue ribbons signify the confidence intervals around the predicted values, showing 

the likely range of actual values. Each plots have different intercepts, which is a result of random effects. 

In Figure 19a, is the residual plot for the model. The residuals show a random and even distribution of 

residuals expect for four residuals. In Figure 19b the same observation can be seen again with the four 

residuals sticking out. The Shapiro-Wilk normality test gave W = 0.8796 and a p-value = 0.00017. The 

null hypothesis was rejected and there is no statistical evidence that the residuals followed a normal 

distribution. This was also evident when looking at Figure 19A and Figure 19B, where the four residual 

clearly disrupts the depart from the distribution. The values for the identified samples can be seen in 

Table 6. The values of these samples are discussed later in Model Assumptions and linearity 

assumptions.  
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Figure 19: The residual plot and Q-Q-plot for the model. (a) The fitted values are plotted against the residuals to analyse the 

goodness of fit by noticing trends in the residual distribution. There are four residuals that stand out well from the other points. 

These residuals are labelled with their sample ID:s. The y-axis is the residuals, and the x-axis is the fitted value. The red line 

represents where the residual is zero and a well-fitted model would ideally have residuals evenly distributed around this line. 

(b)  The Q-Q quantiles of the dataset are plotted against the expected quantiles of a theoretical distribution. The y-axis is the 

sample quantiles, and the x-axis the theoretical quantiles. The diagonal line in a Q-Q plot represents an ideal match between 

observed and expected quantiles. Four values stand out from the rest of the points and are labelled with their sample ID.  

Table 6: The values of the samples that were identified as outliers. The table shows each sample’s ID, date, location, average 

E. coli concentration, water temperature and rainfall. 

Sample 

ID 

Sampling 

Date Location 

Average E. coli 

concentration   

(cfu/100 mL) 

Water 

temperature 

(℃) 

Rainfall 

(mm) 

17 2023-07-17 6 895.9 18.7 40.0 

18 2023-07-17 5 895.9 19.1 40.0 

19 2023-07-17 5.5 895.9 19.3 40.0 

31 2023-07-24 8 895.9 18.8 47.4 

Cook’s distances for all observations for the second data in displayed in Figure 20. The threshold 

value was calculated to 0.0833. The two sample ID:s of the observations identified as overly 

influential were 15 and 19. Notice that 19 also is an outlier (Figure 19). The values for the identified 

samples can be seen in Table 7. 
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Figure 20: Cook’s distance. The y-axis is the Cook’s distance and on the x-axis are the sample ID:s. The black dots are the 

Cook’s distance for respective sample. The red line is the threshold value, where the values above are considered overly 

influential. All samples that have a value higher than the threshold value are labelled with their respective sample ID. 

 

Table 7: The values of the samples that were found to be overly influential. The table shows each sample’s ID, date, location, 

average E. coli concentration, water temperature and rainfall.  

Sample 

ID 

Sampling 

Date Location 

Average E. coli 

concentration   

(cfu/100 mL) 

Water 

temperature 

(℃) 

Rainfall 

(mm) 

15 2023-07-10 8 15.7 22.1 9.5 

19 2023-07-17 5.5 895.9 19.3 40.0 

 

6. Discussion 
6.1 Result Summary 

The spring model had estimated water temperature and rainfall to 12.62 respective 6.65. Both fixed 

effects were found to be statistically significant. The summer model estimated water temperature to 

18.86 but it was not statistically significant.  

6.2 Model Assumptions 
6.2.1 Spring Model 

The residuals were determined to be heteroskedastic (see Figure 16), meaning that the variance of the 

residuals was higher for larger fitted values. The result of this could be that the model is less accurate at 

making predictions at higher concentrations. Although heteroskedasticity was detected, no single 

observation could be assessed as an outlier. However, when studying influential values by calculating 

Cook’s distance, four observations were identified as being overly influential. The observations had 
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sample ID:s of 5, 10, 26 and 52. When looking further into the influence of the observations it was found 

that the samples 5, 10 has a negative influence on the water temperature parameter while sample 52 had 

a positive influence. The parameter for rainfall was negatively influenced by sample 26.  

Sample 5 was one of the observations that lacked a measurement for water temperature. The values for 

the water temperature on the 2023-04-24 were imputed as explained in section “Handling missing data”. 

Considering that the value for water temperature was imputed and that the observation is overly 

influential suggest that the imputed value may not be reliable. The other samples at the same location 

had a higher concentration at lower temperatures, suggesting that the imputed temperature was probably 

too high. Looking at sample 10, it had a higher concentration than other samples at the same location 

but with a lower temperature. Sample 10 had an original concentration above 2500 E. coli/100 ml but 

was decreased by Winzoring to better fit the model. The high concentration for sample 10 is most likely 

not a cause of weather effects and therefore it might not be an observation that is worth having when 

fitting the model. Sample 26 and 52 were higher than the other samples taken in the same locations, 

contributing to the influence of the parameters but nothing suggests that these measurements were 

abnormal like sample 10.  

The model was reconstructed by removing sample 5 and 10 and the new model results can be seen in 

Table 8. The model without both observation 5 and 10 gave estimates of the parameters that are similar 

to the original model, where the parameters were 12.34 and 6.25, but with a higher significance. This 

suggests that the model is a better fit when the influential values were removed. 

Table 8: Estimates of the fixed effects in the spring model overly influential values had been evaluated and the model after 

reestimation. The table shows the estimation of each fixed effect in the model. The t-value and p-value come from performing 

a t-test on the fixed effects significance. Both variables were found to be significant. 

Parameter Estimate t-value p-value 

Water 

temperature 
13.07 2.705 0.0096 

Rainfall 7.16 2.801 0.0078 

 

6.2.2 Summer Model 

In contrary to the spring model, when looking at the residual plot in Figure 19 four samples could be 

indicated as outliers. These samples had ID:s 17, 18, 19 and 31 and the values of these samples can be 

seen in Table 6. All these samples have the same measured E. coli concentration at 895.9 cfu/100 mL. 

The reason for this was that samples 18, 19 and 31 had concentrations outside of the IQR and was 

changed by Winsorization to the highest concentration inside of the IQR which was the concentration 

of sample 17. Looking at the sampling dates, samples 17, 18 and 19 were all taken during the same day 

and sample 31 was taken the next week. Another interesting point is that the samples taken on the 2023-

07-17 are located next to each other. Sample 31 was located at the mouth of the stream, and the high 

concentration, one week after the concentration was unusually high in the stream, could be a result of 

the stream flushing out E. coli into Barnviken which was theorized by Dwite (2023).  

Looking at sample 15 which was indicated as being overly influential by Cook’s distance, its values 

differed from the other samples taken during the same date. Sample 15 had a much higher water 

temperature than the other samples taken during the same day. Sample 15 had a temperature of 22.1 ℃ 

and the other samples taken during the same day had a temperature between 18.3-18.7 ℃, except the 
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sample in location 7 which had a temperature of 19.5 ℃. It’s hard to say whether this measurement is 

correct or not. Location 8, at which sample 15 was taken is located in Barnviken and not actually in the 

stream which could be reason for it having a higher temperature. However, the sample hade an 

exceptionally low E. coli concentration of just 15.7 cfu/100 mL, which is one of the lowest of all 

samples. The high temperature and low concentration is what has caused the sample to be overly 

influential.  

The summer model was reestimated after removing samples 15, 17, 18, 19 and 31. The new model 

estimated the water temperature parameter at 5.38. The t-value was 0.412 and the p-value 0.683. The 

new model is less significant than the original model where the p-value for the water temperature 

parameter was 0.369. Compare this to the spring model, whereby removing the outliers resulted in more 

significant estimates.  

6.3 Interpreting the Results 

The results provided two models that have some differences from each other. The prediction model for 

the spring model gave increments in E. coli concentration for increments of both water temperature and 

rainfall and both parameters were statistically significant (see Table 4). The assumption that the random 

effects follow a normal distribution was fulfilled. The residuals, however, were indicated as 

heteroscedastic.  

The prediction model for the summer model gave a similar yet different prediction. First of, the model 

had a better fit without including rainfall as a fixed effect, comparing that to the first model where 

rainfall was both included and found to be significant. The estimate for the water temperature gave a 

similar value to that of the first model, 18.86 compared to 12.34. However, the parameter was not found 

to be statistically significant. The residuals had a more even distribution than the spring model, but there 

were four samples that were indicated as outliers.  

In summary, the spring model showed a positive trend with the explanatory variables and by hypothesis 

tests of the parameters and studying model assumptions, it is reasonable to assume that the model could 

be able to make predictions in the future. The summer model also showed a positive trend but, but the 

parameter is not statistically significant. The model appeared inadequate for making additional 

predictions. So why does it appear that water temperature and rainfall can predict E. coli concentration 

during the spring but not in the summer? The reasons for the differences in the models will be discussed 

in the next sections. First, environmental causes will be discussed, meaning all reasons capable of 

explaining the differences in the models that are not related to statistics. In the section after that we will 

discuss limitations to the samples and the linear mixed model that could have affected the result.  

6.4 Rainfall as a Predictor 

It is unknown why rainfall was able to b a significant parameter for the spring model but was not even 

included in the summer model. However, some theories can be discussed. One reason could be that it 

simply rained too much. To assume that the E. coli concentration would continue to grow linearly with 

huge amounts of rainfall would be unreasonable. Looking at the models, rainfall seem to have an 

impact on the concentration for lower concentrations, but only up to a certain point. After that the 

linear effect of rainfall is no longer evident. But that is just an assumption. It could also be that the 

linear effect of rainfall continuous even for higher values but that it rained so much that concentration 

became diluted, increasing the amount of E. coli but not the overall concentration. This could be an 

explanation for why the rainfall does not seem to have any effect on the concentration at all in Figure 

13. It could also be that the large amount of rainfall caused the creek to flush out into the sea, taking 

the E. coli with it.  

Another possible explanation is that the quantity of rain may not be significant; rather, the crucial factor 

might be whether it rains at all. The first sampling period had two weeks where it did not rain, but the 
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second sampling period did not any dry periods, and rainfall was only significant in the first model. Rain 

can increase the concentration through sedimentation, bringing nutrients to the E. coli. However, it might 

be that the amount of rain does not result in a significant increase in sedimentation, leading to the 

parameter only showing significance when there are samples from both rainy and non-rainy periods. 

6.5 Environmental Reasons 

Referring to the article Investigation of Fecal Contamination in the Hammar´s stream in Malmö, 

Barnviken (2023), Dwita mentions that the high E. coli concentration might be a consequence of a 

leaking sewage pipe from a nearby toilet. This theory can also be backed up by the result from the 

models. Assuming that more people would use the toilet during the summer, which could be likely since 

it is located close to the beach, the leakage would have a bigger impact during the summer than the 

spring. Faecal contamination could be an explanation factor that would outweigh water temperature and 

rainfall, making the summer model futile. It is worth noting that, so far, no evidence has shown that 

there might be a leakage. It is simply something that could be further investigated.  

One reason could be the nearby camping called Malmö Camping & Feriecenter. It can also be assumed 

that the camping site is more populated during the summer season than during the spring. If that is true 

than pollution in the form of waste could be a reason for higher concentrations during the summer. This 

could also be an explanation for the difference between the models since waste could outweigh water 

temperature and rainfall as parameters. One reason could also be that the number of seagulls in the area 

increases, as before, contaminating the water and outweighing the other factors.  

6.6 Statistical Reasons 

The difference between the models could also be a consequence of the type of model used and the 

sampled data. A potential explanation might be that there are fewer data points for some locations during 

the first sampling period compared to the second one. Locations 3.5 and 8 had three measurements, and 

location 5.5 had five, while all other locations had six measurements during both sampling periods. 

Having fewer data points makes it so that the model can more easily find a pattern that fits all the points. 

On the contrary, the model cannot find a pattern when the number of data points increases. The first 

model might be able to provide significant parameters because the regression can easily fit all points. 

This might lead to overfitting, meaning that the model gives accurate predictions for the existing data 

but not when trying to use it for predictions on new data.  
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