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1 Abstract

As the amount of high dimensional data becomes increasingly accessible and
common, the need for reliable methods to combat problems such as overfitting
and multicollinearity increases. Models need to be able to manage large data
sets where predictor variables often outnumber the amount of observations. In
this study the frequentist and Bayesian framework is tested against each other
based on three different simulated situations. One where the amount of predictor
variables greatly outnumber the observations, one where the simulated data has
a high correlation between variables and one where a situation is created where
the coefficients to be estimated are known beforehand. This enables comparisons
between true values and estimated values. Three different approaches are used
from both of the statistical frameworks. The frequentist models consist of Ridge
regression, least absolute shrinkage and selection operator (LASSO) regression
as well as the combined model Elastic net regression. The Bayesian models
consist of three regressions with different prior beliefs regarding the coefficients’
probability distributions. The Normal distribution, the Cauchy distribution and
the Horseshoe distribution were chosen in this thesis. To compare the different
frameworks, different loss functions have been used such as predictability on new
data, amount of explained variance and the amount of unnecessary predictor
variables the model successfully regularizes. The results of the study show that
the Bayesian Horseshoe model has the greatest overall performance regarding
predictability, variable selection and parameter estimation. The LASSO regres-
sion performs better variable selection on highly correlated data than all of the
other models. The frequentist models are also more easily computed if compu-
tational power or time is a limited resource, in the other cases the Horseshoe
model is to prefer.
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2 Introduction

2.1 Background

The widespread use of digital devices in today’s digital era has led to a large
increase in the amount of data generated. This growth is not only due to the
expanding population but also due to the growing volume of multimedia. Often
referred to as Big data, the data market is a billion - dollar industry who serves
as a crucial component over multiple sectors (Manyika et al. 2010).

By analyzing historical data one can better understand the present and some-
times even predict the future. In order to forecast future events one method
is to create predictive models. Predictive models is trained on past data and
consist of one or multiple explanatory variables. As handling data is costly it is
therefore important to choose the right data to analyze and select the most rele-
vant explanatory variables. It is important to not include too many explanatory
variables in the model, as this can lead to overfitting. Overfitting often occurs
when the model is fitted too precisely to the training data, meaning it will in-
clude too many variables and become complex. Complex models often lead to
worse predictions on new unseen data as the model is not generalized enough
(Zhang et al. 2018).

2.2 Purpose

The aim of this thesis is to test already existing regularization and variable se-
lection methods on different sets of high dimensional data. By testing different
statistical methods on the same sets of data it is possible to make comparisons
between the models. The methods that will be evaluated in this thesis are
LASSO (Robert Tibshirani 1996), Ridge (E. Hoerl and W. Kennard 1970) and
Elastic net (Zou and Trevor Hastie 2005) as well as Bayesian regression with
three different prior distributions: Normal, Cauchy and Horseshoe. The per-
formance of the different models will be evaluated based on loss functions as
mean squared error (MSE), mean absolute error (MAE), R-squared (R2) and
the amount of non-zero coefficients the models produce. The results gained from
this thesis can assist future decisions when choosing models in high dimensional
settings. High dimensional data sets are often complicated and create several
difficulties as mentioned in the background. This thesis aims to show which
methods combat these difficulties in the most efficient way based on computa-
tional restraints, predictability, regularization and parameter estimation.
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3 Methods

3.1 Regression

Regression is a statistical method that explores the relationship between vari-
ables, aiming to reveal patterns, predicting outcomes and unveiling underlying
associations within data sets. One of the most basic and fundamental regression
techniques is linear regression, modeling the relationship between a dependent
variable and one or multiple independent variables. In simple linear regression,
the relationship is mathematically expressed as (James et al. 2021):

Y = β0 + β1x1 + ε. (1)

In this model, Y represents the dependent variable. The term β0 is the model’s
intercept, essentially the value of Y when x1 is zero. The slope of the line is
given by β1, which is the average increase or decrease in Y for every one-unit
change in xi (James et al, 2023). As a linear model can not capture the data
perfectly, an error term ε is included, where

ε ∼ N (0, σ2). (2)

The values of the coefficients are determined by the least square estimator (LSE)
which sets the value of the coefficients that minimizes the residual sum of squares
(RSS), mathematically expressed as:

βLSE = argmin

n∑
i=1

(yi − β0 − β1xi)
2. (3)

The goal is to set the coefficients so that the linear model is as close to the data
as possible. While simple linear regression determines the value of Y based on
one independent variable, multiple linear regression uses multiple independent
variables and is mathematically expressed as (James et al. 2021):

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε. (4)

The difference is therefore that the linear model now includes more explanatory
variables. In the same way, LSE determines the values of the coefficients, trying
to minimize the residual square of sums expressed as:

βLSE = argmin

n∑
i=1

(yi − β0 −
p∑

j=1

(βjxij))
2. (5)

Here, βj represents the average change in Y for every xj , where p > 0 while
keeping all other coefficients constant. The model’s intercept β0 is then given
when all xj are set to 0.
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3.2 Bias-variance tradeoff

When predicting new values the complexity of the model is an important factor
when valuing accuracy. Low model complexity often implies underfitting which
means that explanatory variables that explain relevant properties within the
response variable are left out, resulting in poor predictions. On the other hand
high model complexity often encourages overfitting which implies poor gener-
alization to new data which also results in less accurate predictions. Figure 1
shows the tradeoff between model complexity and its resulting consequences.
Including all variables within a data set equals zero bias as all available infor-
mation is used. Selecting variables from all available variables introduces bias
as not all information is utilized. The total error is in theory minimized when
a combination of both is used (Fortmann-Roe 2012).

Figure 1: (Image citation: Fortmann-Roe 2012). Bias-variance tradeoff based on
model complexity

There are several different techniques to introduce bias in order to lower variance
when predicting values. In this thesis regularization methods have been used in
order to perform variable selection or shrinkage. For high dimensional data this
is crucial as variance increases as model complexity increases. Zero bias in this
case implies a model based on regular multiple linear regression with a great
risk of overfitting the model.

3.3 Ridge

Ridge regularization, first introduced by Hoerl and Kennard in 1970, is a type of
regularization technique that is applied to linear regression. This combination
is called Ridge regression which is a continuous process that is able to include
all predictor variables for a model and aims to minimize the following objective
function:

βRidge = argmin


n∑

i=1

(yi − β0 −
p∑

j=1

(βjxij))
2 + λ

p∑
j=1

β2
j

 (6)

Which can also be written as:
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βridge = RSS + λ

p∑
j=1

β2
j . (7)

Unlike classic linear regression, Ridge regression introduces some bias by adding
a penalty term, denoted as “λ

∑
β2
j ” from equation 6. The penalty term is a

form of regularization which shrinks less influential coefficients towards zero. As
with linear regression the model still tries to minimize RSS, but will shrink some
coefficients with its penalty term, often referred to as the L2 penalty. Ridge will
strive to shrink as much of the coefficients as possible without increasing the
RSS too much. This will lead to a simpler model that does not worsen the fit of
the line which could help manage problems like multicollinearity. This will help
reduce models’ overfitting, which occurs when models are too tailored to the
training data. Avoiding overfitting is important as this will give a more general
model that often performs better on new unseen data.

The amount of penalty that will be included is controlled by the value of λ.
When λ is large, the penalty term will have a big impact, increasing the shrink-
age of the coefficients. This means that when λ = 0 there will be no penalty
term included, meaning the model will only perform ordinary LSE. However,
Ridge does not set coefficients to exactly zero, meaning it will not perform vari-
able selection. This can be a problem when dealing with high dimensional data,
as Ridge won’t eliminate coefficients that might seem unnecessary for the model
(E. Hoerl and W. Kennard 1970).

3.4 LASSO

Least absolute shrinkage and selection operator, often referred to as LASSO, is
a regularization technique first introduced by Robert Tibshirani in 1996. It is
mathematically expressed as:

βlasso = argmin


n∑

i=1

(yi − β0 −
p∑

j=1

(βjxij))
2 + λ

p∑
j=1

|βj |

 (8)

which can also be written as:

βlasso = RSS + λ

p∑
j=1

|βj |. (9)

As with Ridge regression, βlasso is a vector of estimated coefficients, β0 repre-
sents the intercepts, and λ

∑
|βj | is a penalty term for the model otherwise called

L1. LASSO also works as a regularization technique as it shrinks coefficients.
The difference is that LASSO can set coefficients to exactly zero, meaning it
can also be used for variable selection. Variable selection is an important tech-
nique to use when handling large data sets, as this can cope with overfitting
by removing variables that are less important for the model. By incorporating
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LASSO when creating prediction models, only the most influential coefficients
will be included, and the rest set to zero. This leads to simpler models that
are more generalized. As with Ridge regression, the value of λ will determine
the amount of penalty that will be used. The value of λ can take any value
from 0 to infinity, where the optimal value is found through cross-validation.
When dealing with highly correlated data, LASSO tends to favor one of the
correlated variables and removes the rest, which can lead to the loss of valuable
information for the model. Another disadvantage LASSO has is that it can only
select as many coefficients as there are observations, which becomes problematic
when coping with high-dimensional data with more variables than observations
(Robert Tibshirani 1996).

3.5 Elastic net

Elastic net is a regularization method that was first introduced in 2005 by Zou
and Hastie (Zou and Trevor Hastie 2005). Elastic net works as a combination
of LASSO and Ridge regression, incorporating both models’ penalty terms and
is mathematically expressed as:

βnet = argmin


n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

(α|βj |+ (1− α)β2
j )

 . (10)

In this equation, the parameter α decides how much of the L1 and L2 penalty
that should be included. When α = 1, the elastic net model will be equivalent
to LASSO as only the L1 penalty will be included. When α = 0, this shifts,
meaning only the L2 penalty will be included, and the model will behave like
a Ridge regression. When α is between zero and one, Elastic net will com-
bine both penalties, taking advantage of both the L1 and L2 penalty terms.
The complementary approach of Elastic Net can address the limitation of one
penalty term through the other. One major issue for Ridge regression is over-
fitting, which the penalty term from LASSO can solve by shrinking coefficients
to zero, eliminating them from the model. Elastic net can also tackle the chal-
lenge with multicollinearity that LASSO struggles with as the L2 penalty from
the Ridge component can group strongly correlated variables and assign them
similar coefficients (Zou and Trevor Hastie 2005).
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Figure 2: (Image citation: Zou and Trevor Hastie 2005). Geometric shape of bound-
aries for coefficients for Ridge, LASSO and Elastic net

Figure 2 illustrates the geometric constraints for LASSO, Ridge and Elastic net
on regression coefficients. The geometric shapes are the boundaries where the
coefficients must reside. As LASSO and Elastic net has corners it can set the
coefficients to exactly zero, which Ridge can not due to its geometric shape of
a circle.

3.6 Cross validation

Cross validation is a statistical technique that is used when developing predic-
tive models. The objective is to create a model, trained on some specific data,
that makes accurate predictions for future outcomes. Cross validation means
that you split a data set into k-subgroups. The predictive model is trained on
some specific subgroup and is then tested on another subgroup to evaluate its
performance. This is repeated for different subgroups, meaning multiple predic-
tive models are created and tested. The best model is then selected based on the
lowest mean square error. This method is used for the frequentist regressions
that have been presented, it is performed automatically with ten folds when
fitting a general linear model in the R package glmnet (Friedman, Tibshirani,
and Hastie 2010).
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Figure 3: Example of k-folded cross-validation, created in R

Figure 3 illustrates an example of K-folded cross-validation. Each model, one for
every stack, is trained on the k-1 subgroups (marked blue) and then evaluated on
the remaining group (marked red). This systematic approach results in a robust
model selection in order to ensure the model’s effectiveness. Here k represents
the amount of subgroups the data is split into.
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3.7 Bayesian regression

The frequentist framework that was presented earlier differs from the Bayesian
framework. In Ridge, Elastic net and LASSO an important assumption is that
there exists a true value for all point estimates, in this case βj . The estimation
of the parameters will however differ depending on what data that is observed,
this signifies the random aspect of the framework. The Bayesian perspective
handles coefficient estimation in a slightly different way, instead of assuming a
true value for the parameters one assumes that all parameters are random and
follow a probability distribution. This distribution signifies the random aspect
of the method and is based on the data that is observed, this data is considered
fixed. This alternate way of estimating parameters creates the opportunity to
update coefficients’ distributions as more data is collected or as stronger prior
beliefs about the coefficients distributions are gained (Muth, Oravecz, and J.
Gabry 2018). The Bayesian framework is based on Bayes theorem which follows
as:

P (θ|y) = P (y|θ)× P (θ)

P (y)
. (11)

The posterior distribution is the objective of Bayesian models and is represented
on the left side of the equation. It signifies the distribution of coefficients, condi-
tioned on the response variable. In simpler terms, it represents the distribution
of β values based on the observed data. To calculate this, Bayes theorem can
be utilized where the posterior distribution is equal to the probability of the
observed data conditioned on the parameters multiplied by the distribution of
the coefficients divided by the distribution of the observed data. The denomina-
tor is in practice a scaling constant that ensures that the posterior distribution
when integrated equals one. Since the constant does not change the shape of
the distribution it is often removed from the calculations which results in the
posterior distribution being proportional to the right side of equation 11 rather
than equal to as seen below:

P (θ|y) ∝ P (y|θ)× P (θ). (12)

The probability of the observed data conditioned on the coefficients is in turn
proportional to the likelihood of the data being observed, given the coefficients
are known:

P (y|θ) ∝ L(θ) (13)

The likelihood function can then be utilized after some minor algebraic reasoning
(Gelman et al. 2021):

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε (14)

by rearranging the terms in the multiple regression we find that:

ε = y − β0 − β1x1 − β2x2 − . . .− βpxp (15)
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by assuming that the error term is normally distributed the likelihood function
can then be expressed as:

L(θ) =

n∏
i=1

1√
2πσ2

exp

(
− (yi − β0 − β1xi1 − . . .− βpxip)

2

2σ2

)
. (16)

To utilize the likelihood function the distribution of the coefficients P (θ) must
be known, this is were the frequentist and Bayesian frameworks differ the most.
Based on prior beliefs or knowledge the distribution of the β coefficients are
assumed to be known. This is called the prior distribution and can follow any
probability distribution for any value of β. This is then utilized in the likelihood
function and in the prior distribution that is the distribution of the coefficients
in order to obtain the posterior distribution. The prior distributions that have
been used in this thesis give name to the different models, the Normal model,
the Cauchy model and the Horseshoe model:

P (θ1) ∼ N (µ = 0, σ = 1) (17)

P (θ2) ∼ Cauchy(x0 = 0, γ = 0.5) (18)

P (θ3) ∼ Horseshoe(τ = 1). (19)

The posterior distribution is therefore different for all three models and produce
different coefficient estimates, predictability and sparsity results for different
data sets. The three different prior distributions are similar but have differing
amounts of density both centered around zero and in the tails of the distribution
which can be seen in figure 4 below. The Horseshoe distribution have more
density around its tails encouraging values significantly different from zero to
have larger values which can be a relevant property when encouraging sparsity
in predictor variables (Carvalho, Polson, and Scott 2010).

Figure 4: Prior distributions probability density functions
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In order to obtain an estimate of the posterior distribution Markov Chain Monte
Carlo (MCMC) sampling is performed. This is done since integrating over all
coefficients create a very complex high dimensional problem as the amount of
predictor variables increases. Using the MCMC method relatively high accu-
racy can be obtained when estimating the posterior distribution. Different algo-
rithms are used when sampling to ensure efficiency, in the R packages rstan and
brms the No-U-Turn Sampler is used which effectively explores the posterior
probability distribution by tuning its parameters automatically (Bürkner 2017;
Stan-Development-Team 2023).

The MCMC method starts with a chain that randomly moves through the pa-
rameter space in the posterior distribution. The next move that the chain
chooses is based on different weights and probabilities that are out of the scope
of this bachelors thesis. In this thesis four independent chains are used to gain
an understanding of the probability distribution at hand, all chains start in
different areas of the parameter space and converge at the same probability dis-
tribution if the sampling is done correctly. In order to gain accurate estimates
the first half of the samplings are regarded as a warm-up phase and are disre-
garded for the parameters estimations. In this thesis 2000-3000 iterations are
performed where the first 1000-1500 samples are discarded as warm-up samples
while the second half of the iterations are considered part of the posterior dis-
tribution. To check if the correct posterior distribution has been estimated the
package rstan calculates a type of loss function called R̂ (Gelman et al. 2021).

R̂ =

√
Var(θ|y)

W
(20)

The numerator is the variance of the estimated posterior distribution condi-
tioned on the observed data, the denominator is the average of all the Markov
chains’ variances. R̂ calculates the ratio of within chain variance and between
chain variance. If the chains converge to the same posterior distribution the
square root of the ratio equals to one. A common criteria is to increase the
amount of iterations if the R̂ value is above 1.1, in all tests where Bayesian
models have been used the mean of R̂ hat has not exceeded 1.1 which indicates
that all chains have successfully converged to the same posterior distribution
(Gelman et al. 2021).

In order to perform predictions on new data, N samples from the posterior dis-
tribution are taken in order to test many parameter values for the new predictor
variables. The parameter values are then used in the regular regression equation
in order to predict the new values for the response variable based on the new
values for the predictor variables:

β̂k = (β̂1, β̂2, . . . , β̂N ) (21)

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp + ε̂. (22)
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This process generates a distribution of response variable values for each βj

since every β on its own is a vector of sampled values from its own distribution.
In order to compare predictability with frequentist models that generate point
estimates a simple mean is calculated for each distribution of response variables.
This approach enables comparability since the same loss functions can be used
on all models (Gelman et al. 2021).

Lastly samples from the computed posterior distributions can be plotted against
the actual data that has been observed in order to check if the model fit the data
well enough to make relevant predictions. If the variance between the different
samples and the real data is low predictions and inference can be performed
with higher certainty that the model capture the response variables variance
effectively. This can be seen during the results section and was performed by
using the bayesplot package in R (Gabry and Mahr 2022).

3.8 Loss functions

Several different loss functions have been used in order to check the different
models predictability and ability to select variables, the functions are expressed
mathematically below before the actual values for the loss functions are pre-
sented.

MAE =
1

n

n∑
i=1

|yi − ŷi|. (23)

Equation 23 calculates the mean absolute error between new data from the
testing data set and the predicted data from the model which gives less bias to
outliers than the mean squared error that will be presented shortly. A small
value indicates that the predictions are successful since the predicted value is
close to the observed value.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (24)

Mean squared error is similar to mean absolute error but creates a bias towards
larger differences between observed values and predicted values since the dif-
ference is squared. MSE is therefore efficient when wanting to punish outliers
more than smaller values since the loss function represents outliers with more
weight. A small value indicates that the model can successfully predict new
values relatively well.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
. (25)

The ratio of the mean squared error and total variance in the response variable
is also a way of measuring predictability. A value close to one indicates that the
model fit is successful and that it predicts values with small variance.
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Non-zero coefficients =

p∑
i=1

I(βi ̸= 0). (26)

This calculates the amount of β coefficients that are non-zero where p equals
the amount of predictor variables. For a model such as Ridge regression where
no coefficients are set to exactly zero this equals to the amount of predictor
variables in the data. For the Bayesian models the approach is slightly adjusted,
since the model’s coefficients are based on continuous probability distributions,
coefficients that are smaller than 0.01 are set to zero when counting them in
order to enable comparisons between the different frameworks.
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4 Data

In this study the data was simulated using various R packages and functions.
This implies total control over the experiment design and makes comparisons
between models less complicated and also enables very specific situations to
be tested. Three different sets of data were generated with different proper-
ties which all models then were trained and tested on. The packages used are
referenced below all at once since citing them for each function would deem
excessive (Gabry and Mahr 2022; Qiu and Joe 2023; Wickham, François, et al.
2023; DeBruine 2023; Stan-Development-Team 2023; Wickham, Vaughan, and
Girlich 2023; Wickham 2016).

4.1 High dimensional data

The first data set was created by sampling 1000x3000 observations from a Nor-
mal distribution with expected value zero and standard deviation equal to one,
this was created in matrix form. To create a dependency in the response variable
a new vector was created where every value was equal to the sum of the first
ten predictor variables, this was summed row wise plus a normally distributed
error term with expected value zero and standard deviation one expressed as:

Y1 = X1,1 +X1,2 +X1,3 + · · ·+X1,10 + ϵ

...

Yn = Xn,1 +Xn,2 +Xn,3 + · · ·+Xn,10 + ϵ.

This was done in order to replicate a realistic situation more accurately. The
dependency created in the response variable allows for control in the experiment
and ensures that the models regularization can be checked and compared. An
optimal model would therefore set non-zero β coefficients to the first ten vari-
ables and assign all other 2990 variables exactly to zero or very close to zero.
This would indicate that the dependency in the response variable is captured
by said model. Apart from the variable selection aspect, predictability was also
tested for each model. 70% of the data was sampled randomly and used to train
the models while the remaining 30% of the data was used to test the models effi-
ciency in regards to prediction. The predictability was then calculated through
three different loss functions which was presented in the methods section.

4.2 Highly correlated data

The second set of data was generated to replicate a situation with high corre-
lation. A 500x500 correlation matrix was created with 0.8 as assigned values
except for the diagonal elements which represents the correlation between the
same element which therefore have the value one assigned. This matrix was
then used when generating 500x500 samples from a multivariate Normal distri-
bution with expected value zero and the correlation matrix as standard devia-
tion. This allowed for normally distributed data to be generated with pair wise
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correlations of around 0.8 which indicates a high positive relationship between
variables. This was created through the function mvrnorm which is included
in the package MASS (Venables and Ripley 2002). The row wise sum of the
first ten predictor variables were equal to the response variables of the data as
in the high dimensional case. The data was then split into training data which
accounted for 70% of the simulated data and the remaining 30% of the data was
used for testing in order to evaluate predictability on new data for each of the
models.

4.3 Data generated from known β coefficients

The third data set was created in a different way, firstly a matrix with 200x200
normally distributed samples was created with expected value zero and standard
deviation one. Then a vector with 200 β coefficients was created where the first
100 values were equal to three and the remaining 100 values were equal to zero.
The response variable was then generated by multiplying the β coefficients to
each normally distributed predictor variable creating a weighted sum where
the first half of the coefficients had value three and the other half of the sum
was weighted by the value zero. A noise term which was normally distributed
with expected value zero and standard deviation one was also added to each
element in order to represent a more realistic situation, otherwise the response
variable would only depend on the first half of the predictor variables. This
was conducted in order to test the different models’ accuracy when estimating
β coefficients since the simulated situation is created to know the true values
of the coefficients. Since all values for β are known, loss functions can be used
to test how close the estimated coefficient is to the true value. This allows for
testing the accuracy relatively easily for each of the six different models.
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5 Results

5.1 High dimensional data

Figure 5: Frequentist results, highlighted areas show from top to bottom the results
from Ridge, Elastic net and LASSO

Firstly the results from the high dimensional data set are to be presented. The
frequentist linear regressions with different regularization methods begin this
section and are followed by the Bayesian regressions. In figure 5, when the
value for α equals zero the frequentist regression that is performed is the earlier
presented Ridge regression. The table as well as the graph show that mean
square error decreases as α increases, this also applies to mean absolute error.
The value of α that minimizes both MSE and MAE is 0.95 which is a combina-
tion of both penalty terms in Ridge and LASSO regression which was presented
as Elastic net regression previously. The Elastic net model is greatly dominated
by its LASSO component but still outperforms the pure LASSO model where α
equals one. An obvious consequence of the minimized MSE value is the maxi-
mized value for R2 which also is located in the Elastic net model. The properties
of the different models can be seen by the amount of non-zero coefficients that
the models produce.

Ridge sets no variables to exactly zero by default which can be seen by its
3000 variables that all are above or below zero. However the model sets greater
values for the first ten variables and values close to zero for the remainder of the
variables. This indicates that the model has picked up the created dependency in
the response variable successfully. The Elastic net model that performs the best
sets 66 predictor variables to non-zero values and the remaining 2934 variables
to exactly zero which is typical of the LASSO component of the model. Lastly
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the LASSO model encourages the least amount of non-zero coefficients with a
count of 48 variables and therefore successfully eliminates 2952 random noise
terms. Both Elastic net and LASSO sets larger values for the first ten predictor
variables which indicates that all three models capture the dependency structure
that was simulated.

Figure 6: Mean squared error for frequentist models

Figure 6 shows the decreasing MSE for increasing α and for which log λ that
minimizes the mean squared error for each model. To conclude the frequentist
models’ performance the results show that Ridge performs the worst based on
predictability and variable selection, Elastic net predicts values on new data
the best and LASSO outperforms the other two models based on regularizing
variables that contain no relevant information.

Figure 7: Bayesian results

Moving on to the Bayesian models with prior distributions Normal(0, 1), Cauchy(0,
0.5) and Horseshoe(0, 1) the results vary greatly between the Horseshoe model
compared to the other two models. In figure 7 the table shows that the Normal
model has the second smallest MSE (therefore second highest R2) and the high-
est MAE of all three models. The model manages to set higher values for the
first ten predictor variables, successfully discovering the simulated dependency.
The model does however perform regularization worse than the other models,
setting 834 coefficients to zero and keeping 2166 variables.
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Figure 8: Posterior distribution of Normal model

The posterior distribution in figure 8 shows that the sampled data from the
model resembles the observed data, the variance however is relatively high since
there are several samples from the 50 draws which does not fit the observed val-
ues very well. This is enforced by the high MSE value indicating poor predictive
performance. As stated earlier, Bayesian models are unable to set coefficients
to precisely zero, to combat this a small amount of bias was introduced in order
to create comparability between the frequentist and Bayesian frameworks by in-
cluding a threshold of 0.01 which equals coefficients to zero when counting the
amount of coefficients. This arbitrary threshold should be kept in mind when
interpreting these results. The Cauchy model has a slightly smaller MAE value
and slightly higher MSE value and performs regularization in the least effective
way setting 817 variables to zero and keeping 2183 coefficients in the model.
The model manages to capture the dependency and sets larger values for the
first ten predictor variables.

Figure 9: Posterior distribution of Cauchy model

The posterior distribution from the model with a Cauchy distributed prior dis-
tribution in figure 9 shows similar patterns as the posterior distribution from
the Normal model, high variance compared to the observed data which explains
the high MSE value. The Horseshoe model outperforms the other two Bayesian
models greatly by minimizing both MAE and MSE and therefore maximizing
R2. The model successfully sets larger values for the ten first variables and
sets 2969 variables to zero while keeping only 31 variables above the chosen
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threshold.

Figure 10: Posterior distribution of Horseshoe model

The posterior distribution shown in figure 10 illustrates a smaller variance com-
pared to the other two Bayesian models indicating a more successful fit. This
in turn explains the significantly smaller mean square error and mean absolute
error. The model also manages to outperform the Elastic net model by gaining
a smaller prediction error and successfully selecting fewer variables from the
large number of irrelevant variables than the LASSO model.
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5.2 Highly correlated data

Figure 11: Frequentist correlated results, highlighted areas show from top to bottom
the results from Ridge, Elastic net and LASSO

When analyzing the results from the highly correlated data set shown in figure
11 the Ridge model once again manages to capture the dependency in the first
ten variables but performs predictions on new data in a worse manner than the
remaining models. The model also keeps all variables in the data set based on the
same arguments as stated before. MAE and MSE are minimized as α increases
as in the earlier data set but this time the pure LASSO model outperforms
the different Elastic net models by a slight amount. Both models capture the
dependency in the first ten predictor variables and the LASSO model manages
to eliminate one more irrelevant variable than the best performing Elastic net
model where α equals 0.95. The Elastic net model sets 458 variables to zero
and keeps the remaining 42 variables in the model. The LASSO model sets 459
variables to zero and keeps the remaining 41 variables in the model. The results
show that the LASSO model outperforms the Elastic net model when data
is highly correlated, however by only a small amount. All frequentist models
perform relatively well since all values for R2 are above 95%.
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Figure 12: Mean squared error for frequentist models

Figure 12 shows as previously which value for log λ that minimizes MSE for
each model as well as MSE plotted against values for α which shows a similar
pattern where MSE decreases as α increases.

Figure 13: Bayesian correlated results

The Bayesian results in figure 13 show that the Normal model performs the
worst out of all three models, obtaining the highest value for MAE, MSE and
non-zero coefficients. The model does however capture the dependency in the
first ten variables but only manages to set 21 variables below the threshold.

Figure 14: Posterior distribution of Normal model

The posterior distribution in figure 14 of the Normal model shows a good fit
when sampling data and comparing it to the observed data. This results in a
lower MSE and MAE than the previous data set where higher variability could
be seen. The Cauchy model lowers the values for MAE and MSE slightly and
manages to set 26 variables below the threshold as well as capturing the depen-
dency in the response variable, a somewhat increased performance compared to
the Normal model. Both models obtain a relatively high R2 value which also
can be seen in the frequentist models.

22



Figure 15: Posterior distribution of Cauchy model

The posterior distribution of the Cauchy model in figure 15 exhibits the same
promising results as the Normal model showing small variance when compared
to the observed values. Lastly the Horseshoe model outperforms the other
Bayesian models again by minimizing both MAE, MSE and maximizing R2 at
around 98%. The model captures the dependency in the first ten predictor
variables and sets 398 variables below the threshold and 102 variables as non-
zero coefficients.

Figure 16: Posterior distribution of Horseshoe model

The posterior distribution of the Horseshoe model in figure 16 shows an in-
creased variance from the sampled values compared to the other two models
which can be contradictory since the models’ loss functions perform with highest
rate of success. This is most likely due to the fact that the model shrinks many
predictor variables to zero which outweighs the small increase in variance. Be-
tween the frequentist and Bayesian models, the LASSO model performs variable
selection with highest efficiency and the Horseshoe model performs predictions
on new data with the highest efficiency, the results seem to differ between the
simulated data sets.
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5.3 Data generated from known β coefficients

Figure 17: Frequentist β estimation results, highlighted areas show from top to bottom
the results from Ridge, Elastic net (two models in this case) and LASSO

Lastly the results from the third data set are to be presented, mean square
errors and mean absolute errors have been calculated in order to compare the
different models accuracy in parameter estimation and can be seen in 17. The
MSE is calculated based on the β coefficients for each model and for each value
of α (for the frequentist models). This is then repeated for the MAE values in
order to compare the models since the test is constructed in a way where the
predicted value is compared to the true value. The difference with regular MSE
and MAE values in this case is that the loss functions calculated on β coefficients
measure accuracy in coefficient estimation instead of accuracy in predicting new
values for the response variable based on new data. In theory however both loss
functions measure the same thing, how well a model estimates a value compared
to its true value.

MSE =
1

p

p∑
i=1

(βi − β̂i)
2 (27)

MAE =
1

p

p∑
i=1

|βi − β̂i| (28)

Since the true values for the β coefficients are known, the models’ estimations of
the coefficients can be compared to each other and the scenario where a model
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performs perfectly. Since this section purely focuses on the models ability to
accurately estimate coefficients the earlier presented loss functions regarding
predictability has been ignored. The frequentist models estimate coefficients
with differing success, the Ridge regularization model is relatively far from the
true values of β with the highest calculated MSE and MAE indicating a poor
performance of estimating coefficients. The elastic net model that has great-
est accuracy in estimating coefficients is the one where α equals 0.05 and 0.10
both minimizing MSE and MAE respectively, this ratio of both penalty terms
performs the best of all the frequentist models and therefore estimate the coef-
ficients at highest accuracy. Lastly the LASSO model’s results show that it is
performing better than the Ridge model and worse than the Elastic net model
with optimized value for α. The LASSO model also sets the highest amount of
coefficients to zero, successfully setting 70 coefficients to zero, the optimal value
for non-zero coefficients would be 100 since half of the true values are non-zero.
To conclude the frequentist models’ coefficient estimations, the Elastic net mod-
els with α value 0.05 and 0.10 minimizes the error terms and has the best overall
accuracy when capturing the underlying β coefficients that were assigned when
simulating data.

Figure 18: Bayesian β estimation results

In the Bayesian framework figure 18 shows that the Normal model has the worst
accuracy of all the tested models estimating the coefficients in a poor manner
generating relatively high values for both MSE and MAE. The Cauchy model
improves the performance somewhat by lowering MSE and MAE and therefore
outperforming the Normal model, Ridge model and LASSO model except for
the LASSO model’s MAE value. Finally the Horseshoe model has the most effi-
cient estimates of coefficients when comparing the Bayesian models, successfully
minimizing both MSE and MAE. All models also fail to set approximately half
of the coefficients to zero, keeping all but three or four coefficients as non-zero.
To summarize the Bayesian results, the Horseshoe model performs the best,
capturing the underlying structure of the β values and therefore generating the
most accurate estimates. When comparing the two different frameworks the
frequentist Elastic net model minimizes the mean absolute error, the Horseshoe
model minimizes the mean squared error and the LASSO model regularizes the
highest amount of β coefficients with true value equal to zero.
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6 Discussion

There was no distinct model that performed the best on all data sets, however
there is clear evidence that the Elastic net, LASSO and Horseshoe models per-
form more efficiently than the other models. Regarding the high dimensional
data set the Elastic net model outperformed the other two frequentist models
regarding predictability while the LASSO model performed variable selection at
highest success. The Horseshoe model outperformed all Bayesian models as well
as the frequentist models regarding both predictability and regularizing random
noise variables. The Bayesian approach with this certain prior distribution for
β coefficients seems to be the most effective model. This applies to a situation
where data is approximately normally distributed, where there are more pre-
dictor variables than observations and where the majority of predictor variables
explain the variance in the response variable poorly.

The highly correlated data set creates similar results for the Bayesian models
but changes slightly for the frequentist models. The LASSO model minimizes
both MSE and MAE while also selecting the smallest amount of β coefficients
of all models, successfully performing variable selection in an effective way. The
Bayesian models with Normal and Cauchy distributed coefficients perform worse
than all frequentist models in predictability, the Horseshoe model however out-
performs the LASSO model when predicting new values by lowering both MSE
and MAE slightly. The Horseshoe model does however perform variable selec-
tion in a less effective way, the choice is therefore between simplicity and pre-
dictability when choosing between frequentist and Bayesian models in a highly
correlated setting. As mentioned earlier in the method section, LASSO often
performs with less success when multiple variables are highly correlated setting
correlated variables to zero while keeping one of the variables. In this case it
does not however set any of the ten first predictor variables to zero even though
the measured pair wise correlation is around 0.8 between the variables. The
constructed dependency in the response variable could therefore have such a
big impact that the model does not regularize the variables that explain the
variance in the response variable even though the pair wise correlation is high.
This works in favour of the LASSO model since important information is not
regularized and set to zero, explaining the low mean squared error.

Lastly the third data set results are to be analyzed. Two Elastic net mod-
els estimate β coefficients with the greatest accuracy compared to the Ridge
and LASSO models depending on which loss function one chooses to prioritize,
however both models have an α value with a difference of 0.05 indicating a
small LASSO component and a large Ridge component, both models are there-
fore in practice very similar. The LASSO model performs variable selection
with highest success as well which does not come as a surprise. The Horseshoe
model outperforms the other two Bayesian models once again and minimizes
MSE for all models tested, however the Elastic net models minimize MAE in a
more efficient way. The choice of model when valuing accurate estimates of β
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therefore depends on how much the presence of outliers affects the choice. MSE
squares the difference between the estimate and the true value, larger differences
therefore weigh more when squared indicating outliers and their effect on the
model. MAE only measures the absolute difference between the true value and
the estimated value while not giving outliers a larger weight in the loss func-
tion. The optimal model in this setting therefore depends on the data and how
larger deviants from the true value should be incorporated in the measurement
of estimation accuracy.

Figure 19: Tails of prior distributions probability density function

The Horseshoe models’ performance can be explained in figure 19 which is a
zoomed in part of figure 3 where the prior distributions tails are plotted against
each other. More probability mass exists further out in the tails of the distri-
bution and lesser mass is centered around zero. In practice this encourages β
coefficients that are important to be far from zero and β coefficients that ex-
plain a small amount of the variance in the response variable to be close to zero.
Comparing the tails of the distributions, the Normal distribution have more
mass around its mean which enables many coefficients to have a wider span of
values around zero even though they optimally would be centered closer to zero.
β coefficients with higher values have a smaller amount of probability mass than
the Horseshoe model and the Cauchy model which does not encourage sparsity.
The Cauchy distribution is similar in practice to the Normal distribution but
has a larger portion of its probability mass centered closer to zero while hav-
ing lower probability mass for higher values of xi. The amount of density in
the distributions tails seems to be the largest factor when Bayesian regression
models are applied to high dimensional data. This can be seen as the Horseshoe
model encourages the most sparsity when estimating β coefficients and therefore
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carries out more accurate predictions on new data.

To conclude the discussion, the Bayesian Horseshoe model shows promising
results regarding predictability, outperforming all other models when analyzing
mean squared error when predicting new response variable values based on new
data as well as estimating β coefficients. The Horseshoe model also regularize
the highest amount of noise terms in the first high dimensional data set. The
LASSO model regularizes the highest amount of irrelevant predictor variables
when data is highly correlated and minimizes the mean absolute value when
estimating β coefficients. The Horseshoe model therefore seems to be the most
versatile since it performs well on all three data sets. A con that should be
addressed is however the computational time for Bayesian models. The smaller
data sets regarding high correlation and β estimation are estimated relatively
efficiently but for larger data sets such as the high dimensional data set the
MCMC sampling method requires strong computational power in order to per-
form efficiently. For data sets even larger than the simulated data sets that were
tested in this thesis the frequentist models might be preferred in order to save
computational power and time.

7 Summary

This thesis has compared the frequentist framework with the Bayesian frame-
work by testing three different linear regression models from each framework.
Ridge, LASSO and Elastic net was tested against Bayesian regression with Nor-
mally distributed, Cauchy distributed and Horseshoe distributed prior distri-
butions. All six models have been evaluated by calculating four different loss
functions: mean square error, mean absolute error, R2 and the amount of non-
zero coefficients that the model saves. The models have been trained and tested
on three different sets of data, one where the predictor variables exceeds the
amount of observations causing a high dimensional setting, one where high cor-
relation is created through a correlation matrix and one where the true values of
the β coefficients are known, enabling comparisons between the estimated and
the true values between models. Different models perform with differing effi-
ciency depending on what data set that was analyzed. The Bayesian Horseshoe
model has the greatest performance overall when comparing predictability and
regularization largely due to its prior distributions probability density function.
If there are computational restraints the frequentist methods can be preferred,
in this case either the Elastic net or the LASSO model are to be chosen as they
outperform Ridge regression in all three tests. In high dimensional settings the
best choice would be an Elastic net model where several values for α are tested
and in a highly correlated setting a LASSO model would be preferred. These
are however results derived from purely simulated data and might not generalize
as well to real world data which should be kept in mind.
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