
MASTER’S THESIS 2024

Camera Calibration for
Alignment of a Real World
Setup to a Simulated
Environment
Ludwig Jakobsson, Oskar Larsson

ISSN 1650-2884
LU-CS-EX: 2024-01

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-01

Camera Calibration for Alignment of a
Real World Setup to a Simulated

Environment

Kamerakalibrering för justering av en
verklig miljö till en simulerad miljö

Ludwig Jakobsson, Oskar Larsson

Camera Calibration for Alignment of a
Real World Setup to a Simulated

Environment

(Ensuring Consistency and Accuracy in Sim2Real Alignment)

Ludwig Jakobsson
ludwig.jakobsson.560@student.lu.se

Oskar Larsson
oskar.larsson.671@student.lu.se

January 8, 2024

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors:
Main Supervisor, Alexander Dürr, alexander.durr@cs.lth.se

Co-Supervisor, Volker Krueger, volker.krueger@cs.lth.se

Examiner: Elin Anna Topp, elin anna.topp@cs.lth.se

mailto:ludwig.jakobsson.560@student.lu.se
mailto:oskar.larsson.671@student.lu.se
mailto:alexander.durr@cs.lth.se
mailto:volker.krueger@cs.lth.se
mailto:elin anna.topp@cs.lth.se

Abstract

This thesis investigates camera calibration for use in computer vision sys-
tems. The intended use case is camera alignment between a simulated environ-
ment and a real-world setup to facilitate sim2real learning. This is a two-step
process, intrinsic and extrinsic calibration. In both cases, the effects of several
factors are investigated. These include image/pose count, rotational variation,
and distance. Included is also a proposal for a method to verify the calibration re-
sults in the form of a pick-and-place task with HSV object detection. The camera
calibration is performed using a ChArUco calibration board, a camera attached
to the robot’s end-effector, and two external cameras, one ceiling-mounted and
one in front of the robot, facing the workbench.

Keywords: MSc, Sim2Real Alignment, Computer Vision, Reinforcement Learning, Robotics,
ArUco, ROS, Image Analysis

2

Acknowledgements

First, we would like to thank our supervisor Alexander for the project, the regular feedback,
and the consistent support provided throughout this project. We would also like to thank our
examiner Elin for their continued patience throughout the project. For his valuable input on
report writing, we would like to thank Volker. Lastly, a thank you to Josefin and Pontus for
their early input on camera calibration and ROS.

3

4

Contents

1 Introduction 9
1.1 Motivation / The Problem . 9
1.2 Related Work . 10
1.3 Contribution . 11
1.4 Research Questions . 11

1.4.1 Method . 12
1.4.2 Outline . 12

2 Theory 13
2.1 Representing poses in 3D space . 13

2.1.1 Coordinate System . 13
2.1.2 Translation . 13
2.1.3 Rotation . 14
2.1.4 Transform Matrix . 16
2.1.5 Transforming Coordinate Systems 17

2.2 Robotics . 17
2.2.1 Robot Arms . 17
2.2.2 Robot Operating System (ROS) . 18
2.2.3 Transform Frames . 19
2.2.4 Unified Robot Description Format 20
2.2.5 Inverse Kinematics . 21
2.2.6 MoveIt . 21

2.3 Image Analysis . 22
2.3.1 ArUco Markers . 22
2.3.2 ChArUco board . 22
2.3.3 HSV Object Detection . 23

2.4 Computer Vision . 24
2.4.1 Coordinate Systems . 24
2.4.2 Intrinsic Matrix . 25
2.4.3 Extrinsic Matrix . 27

5

CONTENTS

2.4.4 Pixel to Camera Coordinate . 27
2.5 Calibration Techniques . 28

2.5.1 Intrinsic Calibration . 28
2.5.2 Extrinsic Calibration . 28

2.6 Open CV . 32
2.7 Aligning the real environment to the simulated environment 32

2.7.1 Robot Learning Benchmark (RLBench) 32

3 Method 33
3.1 Intrinsic Camera Calibration . 34
3.2 Extrinsic Camera Calibration . 34

3.2.1 Eye In hand . 34
3.2.2 Eye To hand . 34

3.3 Verification . 35
3.3.1 Pick and Place . 35
3.3.2 ArUco Centre Pinpoint . 36

3.4 How to use the System . 36
3.4.1 Intrinsic Calibration . 38
3.4.2 Extrinsic Calibration . 38
3.4.3 Pick and Place Verification . 39
3.4.4 ArUco Centre Pinpoint Verification 40

4 Experiments 41
4.1 Experimental Setup . 41

4.1.1 Hardware and Software . 41
4.1.2 Workspace . 42

4.2 Experiments: Intrinsic Calibration . 43
4.2.1 Image Count and Initial Guess . 44
4.2.2 Distance to Target . 45

4.3 Experiments: Eye In Hand Calibration . 45
4.3.1 Pose Count . 46
4.3.2 Static End Effector . 46
4.3.3 Sliding Window Mean . 47
4.3.4 Reproducibility . 47

4.4 Experiments: Eye To Hand Calibration . 48
4.4.1 Pose Count . 48
4.4.2 Position Shift . 49
4.4.3 Sliding Window Mean . 49

4.5 Dynamic Calibration . 50
4.5.1 Comparison . 50

4.6 Experiments: Verification . 51
4.6.1 Pick and Place . 51
4.6.2 ArUco centre pinpoint . 52

6

CONTENTS

5 Results 53

5.1 Intrinsic Calibration . 53

5.1.1 Image Count and Initial Guess . 53

5.1.2 Distance to Target . 59

5.2 Extrinsic Calibration . 64

5.2.1 Eye in Hand . 64

5.2.2 Eye to hand . 72

5.3 Verification . 83

5.3.1 Pick & Place Verification . 83

5.3.2 ArUco Centre Pinpoint Verification 84

6 Discussion & Conclusions 87

6.1 Intrinsic Camera Calibration . 87

6.2 Extrinsic Camera Calibration . 88

6.2.1 Eye In Hand . 88

6.2.2 Eye To Hand . 88

6.2.3 Dynamic . 89

6.3 Verification . 89

6.4 Comparison to related work . 92

6.5 Answer to questions . 92

6.6 Limitations of our approach . 93

6.7 Future work . 93

References 95

7

CONTENTS

Workload Distribution: The work of this thesis was split equally and has been con-
ducted through a hybrid approach, combining remote collaboration and on-site testing of the
robot. The code was divided into segments, which were distributed evenly and implemented
both individually and together. These segments were then applied, tested, and merged into
the system together, ensuring all the code was reviewed. The results of the merged segments
were analysed and discussed and future design choices were taken. The same approach was
taken when preparing the report, with segments written individually and then reviewed by
the other author. Graphs and tables were produced by Oskar and illustrations by Ludwig.

8

Chapter 1

Introduction

1.1 Motivation / The Problem

Figure 1.1: Aligning a real setup environment to simulated environ-
ment

Aligning simulation to reality (sim2real)
To make robots useful they need to know how to do things. One way of teaching them is
to use reinforcement learning (RL), a method that involves simulating an environment and
learning from the actions taken within it. While humans might need just a few attempts to
master a task, an RL Model often requires up to thousands of trials to achieve the same level
of proficiency [36]. Performing these learning attempts using the real robot would take a
couple of seconds or minutes for each try. Such a large amount of learning trials required
for a task would result in a lot of wear and tear on the machine and, depending on the task,
weeks, months or years of learning.

9

1. Introduction

To avoid this problem one could move the learning process to a simulated environment,
a place where each try could be sped up and performed in a fraction of the real time, while
also removing mechanical damage. For this to work, the real-world setup and the simulated
environment need to be accurately aligned with one another to be able to successfully transfer
the learned behaviour from simulation to reality.

General Calibration Problem

A more general problem exists in the field of robotics, where camera feedback plays a crucial
role in solving tasks. One of the main reasons for using cameras is to accurately determine the
position of the objects required to solve the task. This can be achieved using various image
analysis techniques and depth sensors. However, these methods only provide the position
with respect to the camera’s coordinate system.

Therefore, it is essential to translate the position from the camera’s coordinate frame to
the robot’s coordinate frame to successfully solve tasks, for example, assembly, opening doors
or picking up milk cartridges.

In this report, we will explore how to perform both of these by determining the camera’s
position in relation to the robot in a real-world setting as a way of mimicking a simulated
setup.

1.2 Related Work
The field of computer vision (CV) and calibration has been an active area of research for
several decades. The ability to extract meaningful information from images and videos to
control robots is crucial for a wide range of applications, including manufacturing, assembly,
and inspection.

In recent years, there has been a growing interest in using robots in collaborative envi-
ronments where they work alongside humans. This has led to the development of new robot
platforms such as the Franka Emika Panda [7], and KUKA iiwa [14], which are designed to
be lightweight, safe, and easy to use. However, to make these robots more autonomous, more
sensors are added. One of the challenges of using these robots in collaborative environments
is the need for precisely calibrated cameras used for visual perception. Calibration is required
to get an accurate description and feedback from the world that the robot bases its behaviour
on.

A Deep Learning-Based Hand-eye Calibration

A possible approach for calibrating the camera in relation to the robot is a deep learning-
based approach to find the unknown geometric transformation between a robot’s base and
an external camera [2]. This can be done by training a deep learning-based regression model
to estimate the unknown transformation assuming that the robot and intrinsic camera cal-
ibration are known. The RGB and depth images of a camera are fed into a neural network
which outputs the estimated extrinsic parameters of the camera.

10

1.3 Contribution

Continuous hand-eye calibration using 3D points
Two of the usual approaches for solving the calibration problem are a mathematical formu-
lation of the problem which provides high accuracy and a self-calibration approach that uses
feature matching which reduces accuracy but removes the need for a calibration object. A
third method is to base the calibration on translation only which results in that the calibra-
tion object can be reduced to a single 3D point making it a flexible solution for continuous
hand-eye calibration [11].

1.3 Contribution
• Development of a platform-agnostic camera calibration system : We present the de-

sign and implementation of a versatile camera-robot calibration system for performing
intrinsic and extrinsic calibration across different robotic platforms and cameras. The
main goal of the system is to facilitate sim2real alignment while also providing a tool
to help solve more general tasks, such as object picking.

• Enhancement of calibration quality: The research gives insight into what contributes
to good results and explores ways to improve the quality, performance and robustness
of the camera calibration.

• Guide for camera calibration: The thesis also aims to be a guide for understanding
and using the built system and use it. It also provides a real-world test application of
"pick and place" with coloured cubes and a "pinpoint" test to showcase the use of the
calibration system

1.4 Research Questions
At the onset of the project, the goal was to facilitate sim2real learning by aligning a real-world
setup to a simulated environment and assessing the quality with a reinforcement learning
model. During the project, this was scaled back to more closely investigate camera calibration
and how to verify such estimates.

Research Questions (RQ)
• RQ1: What would be a suitable method for camera calibration in the context of sim2real

alignment?

• RQ2: How can the results of such a calibration be verified?

• RQ3: Which factors affect the quality of the calibration process?

Constraints
• Re-implementation of calibration algorithms, we will apply existing algorithms to

build a working system for calibration.

11

1. Introduction

• For this project, alignment will consist of being able to position cameras in specified
locations without addressing the alignment of the camera lens or field of view.

• The system will be developed to be platform agnostic but will only be tested on the
Franka Emika Panda robot [7] and the Intel Real-Sense cameras [20] due to time limi-
tations.

1.4.1 Method
The methodology used for this project is inspired by the design science principles of problem
conceptualisation, solution design, and validation [26]. These are principles that adhere well
to our development of a camera calibration system and a broad overview of how they are
applied is presented below.

• Problem conceptualisation by research.

– Literature and background study about robotics and computer vision.

– Explore alternatives for intrinsic and extrinsic camera calibration.

• Solution design by building a camera calibration system with the following aims

– Facilitate sim2real alignment

– Support general camera calibration

– Be platform agnostic

– Easy to use

• Validation by evaluation of the built system by.

– Verify calibration with a "pick and place" and "pinpoint" test, together with sim2real
alignment.

– Evaluate it by finding methods that determine the accuracy and robustness of the
calibration by sim2real alignment.

1.4.2 Outline
Chapter 2 presents the theory, concepts, and tools needed to understand the implementation
and results of this thesis. In chapter 3, we present a three-step approach for building the
system and verifying it, along with an overview of the implementation. Chapter 4 explains
the specific experiments that were carried out for evaluation, and chapter 5 presents the
results of those experiments. In chapter 6, the conclusions and reflections of those results are
presented, along with answers to the research questions, limitations of the project and ideas
for future work.

12

Chapter 2

Theory

2.1 Representing poses in 3D space
The goal of this section is to understand the transformations of points between different
frames of reference. This includes navigating in three-dimensional space, finding the trans-
lation and rotation of a pose, understanding their representations, and performing transfor-
mations between various reference frames.

2.1.1 Coordinate System
In order to describe the position and orientation, also known as the pose of an object, we
define a set of axes and a reference point. The reference point describes the pose of an object
in relation to another, with the world usually being treated as the primary frame of reference
and providing a global coordinate system for the whole scene.

2.1.2 Translation
Translation is described as a three-dimensional vector (x, y, z), representing the position of
the object along each corresponding axis in the three-dimensional coordinate system.

In figure 2.1 we observe the position of bench B from the world frame W as the row vector
BW = (x, y, z). Alternatively, the world could be seen from the reference frame of B as WB.
Assume BW = (1, 2, 3), then WB would be the inverse, resulting in WB = (−1,−2,−3).

Homogeneous Coordinates
To be able to move an object, a solution would be to add the desired translation to its coor-
dinate vector. For example, if we want to move the bench in figure 2.1 to the world origin,
we could calculate the new position as BW − (x, y, z) = (0, 0, 0). However, direct addition

13

2. Theory

Figure 2.1: The figure shows a three-dimensional coordinate system
with World W being the frame of reference, Bench B being repre-
sented as the coordinate vector BW = (x, y, z)world .

or subtraction for translation would lead to the loss of linearity. This non-linearity makes us
loose the convenient property of being able to chain multiple transformations together using
multiplication.

To address this problem, we introduce the concept of homogeneous coordinates. To con-
vert our Cartesian coordinate to homogeneous coordinates, we simply append a "1" at the end
of the vector, adding an extra dimension. Applying this conversion to Bw will result in the
new vector B̄w = (x, y, z, 1). This new coordinate representation allows us to utilise matrix
multiplication for translating our objects. This is done by taking the identity matrix I and
appending the desired translation to the last column of I , resulting in the transformation
matrix T . The transformation matrix is then multiplied with the homogeneous coordinate
to obtain the new position of the object.

1 0 0 −x
0 1 0 −y
0 0 1 −z
0 0 0 1

x
y
z
1

 =

xnew
ynew
znew
1

 =

0
0
0
1

 (2.1)

To convert the new position back to Cartesian coordinates the vector is normalised by di-
viding each element by the last element in the vector and then omitting it. Since T preserves
linearity, we can then chain multiple transforms together by matrix multiplication to get one
transform that represents them all [23].

So far we have looked at a way of describing the translation of an object in a three-
dimensional coordinate system. Now we will look at how to describe the rotation of an
object.

2.1.3 Rotation
There are multiple ways of describing the rotation of an object in a three-dimensional coor-
dinate system, all with their advantages and drawbacks.

14

2.1 Representing poses in 3D space

Euler Angles
Euler Angles = [roll, pitch, yaw] = [rx, ry, rz] (2.2)

Euler angles are usually represented as the three-dimensional vector 2.2. The rotation of
the object is described by first doing a rotation on the x axis (roll), followed by a rotation on
the y axis (pitch) and lastly a rotation on the z axis (yaw). These three rotations together de-
fine the object’s final orientation. This notation offers a simple and intuitive representation
of the orientation, making it easy to use and interpret [3].

Rotation Matrix

Rotation Matrix =

r11 r12 r13
r21 r22 r23
r31 r32 r33

The rows in the matrix describe the rotation of each axis separately relative to the original

orientation. It poses several important properties: all rows and columns are orthogonal unit
vectors and the volume is always preserved during rotation since the determinant is always
1. Additionally, the transpose of the matrix is equal to its inverse, simplifying multiplica-
tion operations. Rotations can also be combined by multiplying the matrices, allowing for a
sequence of rotations [22].

Axis-Angle Rotation Vector
Rotation Vector = [rx, ry, rz]

Each element in the vector describes the angle of rotation around each respective axis. This
notation is also known as the axis-angle representation. The rotation of the angles is per-
formed at the same time, compared to Euler angles (roll, pitch, yaw) which are performed
sequentially. The main benefit of this rotation vector format is that it is very intuitive to
understand and interpret each value in the vector since it is a single rotation along the axis.
Other benefits are its compactness and being more straightforward for interpolating than a
matrix, making it useful in motion planning.

Quaternion
Quaternion = a + bi + c j + dk (2.3)

i2 = j2 = k2 = i jk = −1 (2.4)

Compared to the other representations of rotation, quaternions take advantage of com-
plex numbers to explain the rotation of an object. It is a four dimensional representation
defined by equation 2.3, where a, b, c, and d are real numbers, and i, j, k are complex num-
bers that satisfy equation 2.4.

One key benefit of quaternions is their ability to preserve the order of rotations, similar
to Euler angles. However, Euler angles are susceptible to Gimbal lock, a phenomenon where
two axes align, causing a loss of one degree of freedom (DOF). This is something quaternions

15

2. Theory

inherently avoid with their representation, providing smooth interpolation between states
at all times.

These properties, together with its compact representation in comparison the rotation
matrix and its numerical stability make it widely used in robotics. The quaternion is com-
monly represented as the vector [x, y, z, w], with w being the scalar and x, y, z as the
imaginary components [33][10].

All results and findings are presented as quaternions, but every representation was used
at some point during the project due to specific requirements from third-party packages.

2.1.4 Transform Matrix
Now that we have ways to describe both the translation and rotation of an object, we can
put them together to describe the pose of an object with a transformation matrix.

(
R t
0 1

)
=

r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz
0 0 0 1

 (2.5)

With both a translation and rotation part, the transformation matrix is capable of de-
scribing changes in both translation and rotation for a point as seen in figure 2.2. With the
use of homogeneous coordinates, like in section 2.1.2, the vector can simply be multiplied
with the transformation matrix to obtain the new position. Like the transform matrix de-
scribed in 2.1.2, the linearity is kept with matrix multiplication giving it the ability to chain
multiple transformations together, resulting in a new transformation matrix representing all
the transforms.

As seen in equation 2.5 the pose of an object can be defined as a 4x4 matrix consisting of
a rotation part R and a translation part t. With R being the 3x3 rotation matrix, see section
2.1.3, and t the 3x1 translation vector, see section 2.1.2, then padded with 0s and a 1.

16

2.2 Robotics

Figure 2.2: The figure shows Bench B with R being a 3x3 matrix de-
scribing the rotation and t being a 3x1 vector describing the trans-
lation. Together with padding, they make a 4x4 transformation ma-
trix describing the pose of B with World W as a reference point.

2.1.5 Transforming Coordinate Systems
An important part of understanding and navigating in three-dimensional space is moving
between different frames of reference. From figure 2.3, assume the following transformations
are known:

World to Robot = RTW

Robot to Marker = MTR

Then by applying the properties of transformation matrices, see section 2.1.4, we can
express the marker with the world as frame of reference.

World to Marker = MTW .

By using matrix multiplication and making sure the order of transforms follows the path,
the resulting transformation will look like

RTW
MTR =

MTW .

Using these operations we are finally able to traverse the three-dimensional coordinate sys-
tem.

2.2 Robotics
The goal of this section is to find the transform eeTb between the robot base b and the end-
effector ee. For this we need to know the kinematics of the arm, how they move and how to
operate and receive feedback from them.

2.2.1 Robot Arms
The most common type of robotic arms are very similar to the ones of humans, comprising
solid links ln connected by joints jn that can freely rotate. The number of joints is determined

17

2. Theory

Figure 2.3: Coordinate system with World and Robot as a possi-
ble frame of reference for Marker M . The transforms between the
points are represented as: RTW , MTR and MTW

by the degrees of freedom needed for the task, with revolute joints providing rotational free-
dom, prismatic joints providing linear freedom and spherical joints providing multiple de-
grees of freedom [24]. At the end of each arm, there is usually an end-effector ee or gripper
allowing the robot to interact with the task environment. Like the human arm, a robotic arm
needs a solid base to operate from, typically defined as base b and can have the same frame
of reference as world w. The lifting power and precision of the arm are determined by the
stiffness of the links, the strength of the motors and the control algorithms [25].

2.2.2 Robot Operating System (ROS)
To avoid reinventing the wheel one can use the Robot Operating System (ROS), to control
robots and provide a shared platform to make it easier for them to work together. It is an
open-source framework, with a large collection of software libraries and tools to ease devel-
opment of robots [4]. Here are some of the most important features of ROS [5]:

• Nodes, the framework of ROS is built around nodes. Nodes are modular units of com-
putation, that represent the various components of the robotic system. The compo-
nents are things like sensors, actuators or algorithms, each to control a single task,
much like functions in programming.

• roscore is the main system used to connect the different nodes and allow for com-
munication between them.

• rospackage, ROS projects are structured by an array of packages, each package usu-
ally containing scripts for nodes and launch files with parameters.

• Topics are open channels that are accessible by all the nodes, allowing transfer of data.
A node can publish to a topic to send out data and subscribe to a topic to receive data.

• Actions & Services are used to request a node to do something. Services are used to
perform the request synchronously with feedback on the request. Actions are used to

18

2.2 Robotics

Figure 2.4: A depiction of a robotic arm with its joints, links and
end-effector.

perform the request asynchronously, while sending progress of the request and allowing
for preemption.

• ROS CLI is the interface used to control all parts of ROS. It is used to run nodes, view
available topics, services and actions and manage all the packages.

• RViz is a visualisation tool for viewing everything from the robot system in 3D to
available messages and topics.

• Programming languages, ROS provides support for both C++ and Python

2.2.3 Transform Frames
As seen in section 2.1.1, keeping track of poses with different frames of reference is a messy
process. To ease this process, a transform frame (tf) library was developed [8].

To be able to explain the movement of the robot arms, each actuator is represented as a
transform frame. A transform frame consists of:

• Timestamp, the time at which the frame was in that pose.

• Frame name, name of the frame.

• Parent frame, the reference frame for the pose.

• Translation vector, the three-dimensional space coordinates of the frame in relation
to its parent frame.

• Rotation vector, described as a quaternion, see section 2.3, in relation to its parent
frame.

[8]

19

2. Theory

Transform Frame Tree
Connecting multiple Transform Frames together, (as shown in Figure 2.5) creates a Trans-
form Frame tree (TF Tree). By following a path in the TF tree, it is possible to determine
the pose of a frame with respect to the starting frame of the path by utilising the coordinate
transformation as shown in section 2.1.5. The transform frame system has become a conve-
nient and essential component of the ROS system to access and view frames from different
frames of reference [8].

Figure 2.5: A depiction of a transform tree, representing a robot arm
from figure 2.4 with its links, joints, end-effector and an attached
wrist camera, as well as external cameras (front and top). Each cam-
era also detects a cube from its point of view.

End-Effector Pose
Finding the pose of the end-effector then results in utilising the coordinate transformations
in section 2.1.5 and traversing a TF tree.

j1Tb ∗
j2T j1 ∗ ... ∗

jnT jn−1 ∗
eeT jn =

eeTb (2.6)

2.2.4 Unified Robot Description Format
The Unified Robot Description Format (URDF), describes the geometry of a robot, including
the physical components, joints and links, and their movement about another. Like the TF
tree, see section 2.2.3, and also partly being the source of building the TF tree, it describes the
robot system using a tree structure to explain the physical parameters, how each part of the
robot is connected and what is attached (to) where. Additionally, URDF utilises tags to spec-
ify things like visual parameters for simulation, collision behaviour, and inertia for physics
calculations. The URDF helps facilitate collision checking and dynamic path planning as
well as translating the joint parameters to transform frames, see section 2.2.3 [21].

20

2.2 Robotics

2.2.5 Inverse Kinematics

Figure 2.6: A depiction of a robot arm with the same transform be-
tween base and end-effector eeT i

b =
eeT j

b but with different joint
states (j i

1, j
i
2, ..., j

i
n) ̸= (j j

1 , j
j
2 , ..., j

j
n).

There are two ways to view the movement of the end-effector of a robotic arm to a desired
pose: 1) by following a path (forward kinematics) and 2) by setting a goal and figuring out a
path to reach that pose (inverse kinematics).

Forward kinematics involves setting each joint of the arm j1, j2, ..., jn to specific values,
translating it to transform frames, see section 2.2.4, and then chaining the transformations
from the base to the end-effector together, as shown in section 2.2.3.

Inverse kinematics (IK), on the other hand, works the other way around. It starts with
setting a goal pose for the end-effector and calculates the joint combination required to reach
that pose.

The space of available joint states for each pose is determined by the DOF of the ma-
nipulator. To be able to reach an arbitrary pose in a three-dimensional workspace, 6-DOF
is needed, i.e. translation in x, y, z and rotation around the axes roll, pitch, yaw. Fewer DOF
could result in the pose being unreachable, and more DOF will result in an infinite number
of joint states to represent the desired pose, while a non-redundant amount of DOF results
in a unique solution [15].

There are two ways to solve for the joint parameters: analytical and approximate. For
robotic systems with more than 6 DOF, approximate is the preferred method. The most
common approach for solving it approximately is using the Jacobian inverse technique [16].

2.2.6 MoveIt
To avoid reinventing the wheel and solving the inverse kinematic problem ourselves, we used
the open-source framework MoveIt [17] for easy manipulations in robotics. It provides sup-
port for collision detection, inverse kinematics, see section 2.2.5, motion planning and ma-
nipulation of individual actuators and grippers by utilising the URDF information, see sec-
tion 2.2.4. It is widely adopted in the robotics community and includes support for many
different robots, see section 2.2.1, and integration with ROS, see section 2.2.2.

21

2. Theory

2.3 Image Analysis
The goal of this section is to explore various markers used to find the pixel coordinates (u, v)
representative of the marker in an image.

2.3.1 ArUco Markers

Figure 2.7: ArUco Marker representing the id 0 in the set DICT_4x4,
meaning that the marker is 4x4 tiles excluding the border.

ArUco (Augmented Reality University of Cordoba) [18] markers are fiducial markers
belonging to predetermined sets with unique patterns and known size properties, see figure
2.7 [9]. The unique patterns allow for the identification of a marker’s pixel coordinates, p =
(u, v), via image segmentation. Having acquired said coordinates, they can be used along
with the camera intrinsics, see section 2.4.2, and the known size properties to determine the
transform between the camera and ArUco.

2.3.2 ChArUco board
A ChArUco (Chess ArUco) board consists of ArUco markers embedded within a checker-
board, see figure 2.8. This setup allows for more points with known properties and easier
detection due to each ArUco marker being surrounded by black squares [28]. Additionally,
each ArUco being detected individually within the board means that the board can still be
detected while partially occluded.

Finding the ChArUco board is done by interpolating the corners between the found
ArUco markers and calculating the position of the upper left corner from the known param-
eters of the board.

22

2.3 Image Analysis

Figure 2.8: ChArUco, 8x11, ArUco DICT_4x4

2.3.3 HSV Object Detection

HSV Colour Space

The HSV colour space is a way to represent colours using a set of three quantities called hue,
saturation and value (HSV) [34]. As can be seen in figure 2.9, the hue is cyclical, meaning
that passing over the maximum value is equivalent to starting over from zero. Saturation
governs how much white is mixed into the colour, with lower values being more white. Value
performs the same role but for brightness.

Image Masking

An image mask is a two-dimensional matrix, sharing the same shape as the original image,
with values constrained to being one or zero. Each such value represents a pixel in the original
image, which when combined will yield a new image. In this image, only the pixels which
corresponded to a one in the mask will be kept from the original image, and the pixels with
a zero will be black.

This technique can be utilised in combination with HSV colour values to create a mask
which only keeps pixels which correspond to specific HSV values. This space can be widened
by providing a range of HSV values to keep, rather than just a single value.

Merely applying an HSV filter to an image can result in a noisy image if there are indi-
vidual pixels which correspond to the provided HSV range. To combat this, morphological
transformations [29] can be applied. This is done by convolving the binary image mask with
a kernel.

23

2. Theory

Figure 2.9: The HSV colour space. Image source:
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png

2.4 Computer Vision
The goal of this section is to find the transform tTC between the camera C and the target
t. Using the pixel coordinate of the target (u, v) found in section 2.3. This is done by using
computer vision techniques to extract three-dimensional data from images and finding the
intrinsic and extrinsic calibration parameters of the camera.

2.4.1 Coordinate Systems
In computer vision, there are four commonly used coordinate systems. How the systems
relate to each other can be seen in figure 2.10.

1. World coordinates (x, y, z)W , a three-dimensional Cartesian coordinate system, usually
used as the main frame of reference in a scene.

2. Camera coordinates (x, y, z)C , a three-dimensional Cartesian coordinate system rep-
resenting points from the camera’s frame of reference. The z axis of the camera usually
points straight out of the camera lens (camera principal axis).

3. Image coordinates (x, y)i , a two-dimensional coordinate system representing a projec-
tion of the camera coordinates onto a plane, as seen in figure 2.10. The centre point
(0, 0) of the image plane is usually on the camera’s principal axis.

4. Pixel coordinates, (u, v), a discrete two-dimensional coordinate system representing
the pixel values of the image, usually with (0, 0) in the upper left corner of the image.

24

2.4 Computer Vision

Figure 2.10: Shows target point P from the World coordinate system
W and Camera coordinate system C, and the projection onto the
point pi in the image plane i, as well as the corresponding point pp in
the pixel coordinate system p and f representing the distance from
the camera origin to the centre of the image plane on the cameras z
axis.

2.4.2 Intrinsic Matrix
The intrinsic matrix explains the internal parameters of the camera. With the matrix K ,
mapping the camera coordinate to the image plane and then transforms it to a pixel coordi-
nate as seen in figure 2.11. The intrinsic matrix is defined by equation 2.7 and the remapping
is done by multiplying K with the camera point P = (x, y, z)C to receive the homogeneous
pixel point pph = (u, v,w), which can then be converted to the pixel point pp = (u, v) like
described in the end of section 2.1.2 about homogeneous coordinates.

K =

 fx 0 cx
0 fy cy
0 0 1

 (2.7)

The intrinsic values are represented by a matrix K and vector D. Equation 2.7 describes
K , where fx and fy are the focal lengths along the x- and y-axes while cx and cy are the
coordinates of the centre point along selfsame axes.

Parameters:

1. Focal length (fx, fy), in a perfect camera fx and fy are the same but lens distortion,
none-square pixels in sensors and variability in manufacturing always result in some
error margin between the two axes. If one were to look at figure 2.11 and imagine the
image plane sliding along the zc axis, keeping the image plane size the same, one can
see that the further away the plane is (increased focal length) the bigger the object will

25

2. Theory

be in the picture and the closer the plane is to the centre (decrease focal length) the
smaller the object will be.

2. Principal centre point (cx, cy), describes the offset between the pixel coordinate origin
(u, v) = (0, 0) and the pixel coordinates that represent where the camera coordinate
system’s principal axis (z-axis) intersects the image plane at a distance of f .

Figure 2.11: A depiction of the intrinsic matrix transform, trans-
forming a camera point to a pixel point.

Together with the intrinsic camera matrix, a distortion vector, equation 2.8, is often used
to combat lens distortion. The distortion will be individual to each camera lens. [12]

D =
(
k1 k2 p1 p2 k3

)
(2.8)

Equation 2.8 describes the vector D, representing the distortion coefficients of the camera
lens. The distortion coefficients represent two types of distortion.

1. Radial Distortion Coefficients (k1, k2, k3), parameters that represent the amount of
radial distortion made by the camera lens, causing straight lines to look bent (fish-eye
effect).

2. Tangential Distortion Coefficients (p1, p2), parameters that represent the amount of
misalignment between the lens and the image plane, causing images to look skewed,
tilted, closer or further away than they are.

There are different ways of removing distortion from an image, like iterating over each
pixel and remapping it, cropping the image or interpolating. Finding the intrinsic matrix
and distortion parameters will be explored in section 2.5.1 [37] [31]

26

2.4 Computer Vision

2.4.3 Extrinsic Matrix
The extrinsic matrix, equation 2.9, consists of the rotation matrix R and translation matrix
t for the camera, which describe the pose of the camera in relation to the World coordinate
system as seen in figure 2.12. Whenever the position of the camera changes, the extrinsic
matrix also changes [12].

[Rt] =

r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 (2.9)

Figure 2.12: A depiction of the extrinsic matrix transform, trans-
forming a world point to a camera point.

To convert a point P = (x, y, z)W from the world frame to the camera frame, the extrinsic
matrix is simply converted to a transformation matrix, like in section 2.1.4, and multiplied
with the homogeneous coordinate of P. Finding the extrinsic matrix will be explored in
section 2.5.2

2.4.4 Pixel to Camera Coordinate
Since the camera-to-image plane transformation loses the depth data of the point, we can
not go the other way around using the same technique. To solve this we need another way
to get the depth together with the pixel coordinate. The depth of a point can be computed
using a reference point with a known size, like the ArUco marker, see section 2.3.1, or using
a depth sensor.

27

2. Theory

Parameters

fx, fy = intrinsic focal lengths
cx, cy = intrinsic image centre points

zC = depth
(u, v) = pixel coordinate

Equations

xC =
u − cx

fx
· zC (2.10)

yC =
v − cy

fy
· zC (2.11)

zC = zC (2.12)

2.5 Calibration Techniques
In this section, we will look at techniques for finding the intrinsic parameters and for apply-
ing the transformation eeTb from the section about robotics (section 2.2) and the transfor-
mation tTC from the section about computer vision (section 2.4) to perform both intrinsic
and extrinsic camera calibration, thus finding the transform CTb between the robot base b
and the camera C.

There are several possible ways to estimate the values in equation 2.7-2.9. Below, we give
a brief overview of the methods used in this project.

2.5.1 Intrinsic Calibration
The intrinsic calibration used in this project is known as Zhang’s method [37], and can be
performed by the following process:

• Collect calibration images. Images are collected with a calibration board with known
properties, like the ChArUco board, see section 2.3.2.

• Detect corners. The internal corner pixel coordinates of the calibration board are
collected.

• Transform to Camera coordinates. Detected corners are then transformed into three-
dimensional camera coordinates.

• Parameter estimation. The intrinsic parameters are then estimated with numerical
techniques that match the pixels to camera coordinates.

2.5.2 Extrinsic Calibration
There are two cases of extrinsic calibration, eye-in-hand where we want find the camera C
to end-effector ee transform eeTC and eye-to-hand where we find the camera C to robot

28

2.5 Calibration Techniques

base b transform bTC . In both of the cases the goal is to find a fixed transform, that doesn’t
change whenever the robot moves, either in relation to the end-effector as in eye-in-hand or
in relation to world as in eye-to-hand.

Eye-in-hand

• Known transforms

– A = eeTb, base b to end-effector ee coordinate frame, found in section 2.2.3.

– B = CTt , target t to camera C coordinate frame, found in section 2.4.4.

• Unknown transforms

– X = CTee, end-effector ee to camera C coordinate frame.

– Y = tTb, base b to target t coordinate frame.

We can describe the system as AX = Y B which is shown in figure 2.13. The equation
AX = Y B shows two paths from the base to the camera, either through the end-effector as
in AX or through the target as in Y B. The four transforms form a closed loop and solving for
either X or Y will result in finding the subsequent one by combining the transforms in the
right order. It is worth noting that swapping the origin and destination of all transforms is
allowed, and will result in the resulting transform also changing the origin and destination.

Figure 2.13: The eye-in-hand calibration problem setup of with
known transforms A and B and the unknown X and Y .

29

2. Theory

To find X we can observe the arm in multiple poses as is shown in figure 2.14 and 2.15.
We choose two different poses i and j and let the different poses of the end-effector between
state i and j be the transform A1 while the transform of the camera between the states is
defined as B1.

Assuming that the camera is screwed on tightly to the end-effector and the base of the
robot and the target do not move, we can set up the following equations 2.13 - 2.24 from the
corresponding figure 2.14

AiXBi = Y (2.13)

A jXB j = Y (2.14)

AiXBi = A jXB j (2.15)

A−1
j AiXBi = A jXB j B−1

i (2.16)

A1X = XB1 (2.17)

· · ·

AnX = XBn (2.18)

By collecting multiple transform pairs of A and B we can then create an equation system
of AnX = XBn and then solve for X to find the target calibration.

Figure 2.14: The robot arm observed in the two states i (faded) and
j with the transforms required to solve for the eye-in-hand calibra-
tion.

30

2.5 Calibration Techniques

Eye-to-hand
To solve for the eye-to-hand problem we can reorder the transformations to the ones in figure
2.15 and solve for Y instead and find the camera to base transform.

Figure 2.15: The robot arm observed in the two states i (faded) and
j with the transforms required to solve for the eye-to-hand calibra-
tion.

BiY Ai = X (2.19)

B jY A j = X (2.20)

BiY Ai = B jY A j (2.21)

B−1
j BiY = Y A j A−1

i (2.22)

B1Y = Y A1 (2.23)

· · ·

BnY = Y An (2.24)

Results in BY = Y A which is the same as solving AX = XB.

31

2. Theory

Solving AX=XB
For this problem, there exist two main categories of solutions. Separable solutions, where
the rotation is estimated before the translation and simultaneous solutions, where they are
estimated at the same time. In this project, three separable solutions, herein referred to as
Tsai [32], Park[19] and Horaud [13], and two simultaneous solutions, herein referred to as
Andreff [1] and Daniilidis[6], were used off the shelf via their OpenCV implementations
[30].

2.6 Open CV
Open Computer Vision (Open CV) is an open-source framework that provides implementa-
tions of common computer vision, see section 2.4, and image analysis algorithms, see section
2.3, as well as support for ArUco markers, see section 2.3.1, and ChArUco boards, see sec-
tion 2.3.2, and calibration, see section 2.5. OpenCV is supported on most platforms and is
regularly updated [30].

2.7 Aligning the real environment to the sim-
ulated environment

Normally one would align the simulated environment with the real environment, instead of
the other way around like we aim to do. The reason for doing so is to provide an option to
move standardised simulated learning environments to reality. The standardised environ-
ments would make machine learning models easier to explore, benchmark and tune, before
deploying them to reality.

Aligning a real-world workspace with a simulated environment is also a fundamental
part of transferring knowledge from a reinforcement learning model to a physical robot.
Having a good alignment eases the knowledge the model needs about error correction of the
tasks being performed. The scope of aligning the set-ups includes having the actuators in the
workspace positioned correctly in both the real set-up and the simulated environment.

2.7.1 Robot Learning Benchmark (RLBench)
RLBench is an open-source platform for facilitating and evaluating robot learning algo-
rithms. It provides a diverse set of tasks, covering challenges like manipulation, perception
and control. The platform offers a standardised and accessible framework for checking the
performance and robustness of various learning techniques making it a valuable resource for
researchers and practitioners [27].

32

Chapter 3

Method / Implementation

In order to align the real-world setup with the simulated environment, several calibration
steps are required, see figure 3.1. In this section, we will outline each step and alternative
approaches.

Figure 3.1: Figure shows the work process in a flowchart. The process
consists of three parts. 1) Intrinsic calibration, 2) Extrinsic calibra-
tion and 3) Verification

33

3. Method

3.1 Intrinsic Camera Calibration
When performing intrinsic calibration we utilise Zhang’s method, see section 2.5.1, as it is
implemented in OpenCV, see section 2.6. We do this by collecting several images containing
a calibration target with known properties, see section 2.3.2, in varying angles and positions.
Having calculated the camera matrix, see section 2.5.1, this is then stored along with the image
resolution and a name as a JSON file [35] for later use in extrinsic calibration and verification
steps.

3.2 Extrinsic Camera Calibration
3.2.1 Eye In hand

Figure 3.2: Figure shows the calibration target transform eeTc = X ,
the transform between the camera c and robot end-effector ee.

Eye-in-hand extrinsic calibration is performed by relying on the OpenCV implementa-
tions solving the AX = XB matrix equation, see section 2.5.2. For eye-in-hand specifically,
this is done by having a wrist-mounted camera on the robot move around a stationary cali-
bration target, see figure 3.2. During this process, the world-to-end-effector transform along
with the respective camera-to-calibration target transform are collected for each pose. These
poses are then fed through the OpenCV implementations. The results of each implementa-
tion and the mean value thereof are stored for verification.

3.2.2 Eye To hand
AX=XB
The first method for performing eye-to-hand calibration relies on the OpenCV implemen-
tations solving the AX = XB matrix equation, see section 2.5.2. A calibration target is fixed

34

3.3 Verification

Figure 3.3: Figure shows the calibration target ctopTb, the transform
between the robot base b and the camera attached in the ceiling ctop
and c f rontTb, the transform between the robot base b and the front
camera c f ront .

to the robot arm, which proceeds to take several poses with the calibration target in view of
a static external camera, see figure 3.3. As was the case in section 3.2.1, the results of each
implementation listed in section 2.5.2 and the mean value thereof are saved and stored for
verification.

Dynamic Calibration
We suggest a dynamic approach as an alternative method for eye-to-hand calibration. This
requires a calibrated wrist-mounted camera, with which a calibration target is located in the
world coordinate frame. Selfsame calibration target is then also located by the static external
camera to be calibrated, thus allowing the location of the static camera to be found in the
world frame via the TF-Tree, see section 2.2.3. This approach provides instant calibration
results and ongoing feedback on any changes made to the camera’s placement.

3.3 Verification

3.3.1 Pick and Place
To verify the extrinsic and intrinsic calibration, a pick-and-place implementation was ap-
plied. Coloured cubes are detected in the camera images, see section 2.3.3, and transferred to
the world coordinate system by means of the camera matrix and the estimated pose of the

35

3. Method

camera. One cube is then picked up and placed on top of the other. This is done with two
different setups, one with and one without taking the cube measurements into account.

This provides a binary quality metric (success or failure), the granularity of which is de-
pendent on the size of the object being picked and placed. Provided the extrinsic calibration
estimate is the only source of error, being able to successfully pick and place an object in the
correct positions would mean that the extrinsic calibration estimate is wrong by at most the
size of the object being picked and placed.

3.3.2 ArUco Centre Pinpoint
This is an alternate method for verifying the estimates generated by camera calibration. Sim-
ilar to the approach detailed in section 3.3.1, an object is identified in the camera’s image and
the robot arm is directed to move towards it. However, in this case, the object is an ArUco
marker (see section 2.3.1), which eliminates the need for HSV detection to determine the
target’s position.

Once the centre point of the ArUco marker is determined by traversing the TF tree (see
section 2.2.3), the robot arm is directed to move to those coordinates. The difference between
the estimated centre point provided by the camera and the actual centre point can then be
measured to calculate the error. This error can be used to manually adjust the calibration
results. With the adjusted values, the verification process can be repeated until satisfactory
results are obtained.

3.4 How to use the System
Below we have listed the intended steps to follow when using the system. The main tools
used are the OpenCV library cv2, see section 2.6, and the ROS libraries tf (Transform) and
MoveIt, see section 2.2.2. A full rundown can be found in the flowchart depicted in figure
3.4.

36

3.4 How to use the System

Figure 3.4: Figure shows a brief overview of the intended system
usage, with the larger boxes under a topic describing essential pa-
rameters, outputs and steps for the topic.

37

3. Method

3.4.1 Intrinsic Calibration
An overview of the intrinsic calibration implementation can be seen in figure 3.5. In essence,
the method follows the steps explained below:

1. Collect images. Collecting n number of images of the calibration board, using the GUI.

2. Intrinsic calibration. The intrinsic calibration, see section 4.2, is done by using the
method cv2.calibrateCameraCharuco().

3. Save parameters. The resulting intrinsic matrix is saved in a JSON file.

Figure 3.5: Figure shows an overview of the ROS structure of the
intrinsic calibration. The grey boxes represent rospackages, the
headline of each box is the source and the larger bottom text is the
main content type

3.4.2 Extrinsic Calibration
An overview of the extrinsic calibration implementation structure can be seen in figure 3.6.
The implementation of the extrinsic camera calibration can be broken down into six steps:

1. Find Camera to Target Transform, tTC .

2. (a) Finding pixel coordinates of ChArUco board , see section 2.3.2, using cv2.detectMarkers()

(b) Transform pixel coordinate to 3D pose, see section 2.4.4,
using cv2.estimatePoseCharucoBoard()

3. Find Robot Base to End-Effector Transform, eeTb. Find the base to end-effector trans-
form, see section 2.2.3, using the TF Tree, see section 2.2.3, and tf.lookUpTransform()

4. Collect transforms. Collecting n number of sample transforms of the tT i
C and eeT i

b
pair, using the GUI, with n ≥ 3.

38

3.4 How to use the System

Figure 3.6: Figure shows an overview of the ROS structure of the
extrinsic calibration. The grey boxes represent rospackages, the
headline of each box the source and the larger bottom text the main
content type

5. Extrinsic Calibration, CTW . The external camera calibration, see section 2.5.2, is per-
formed with the n transforms of tT i

C and eeT i
b using cv2.calibrateHandEye() to

get the transform CTW

6. Publish and Save Result. The resulting camera pose CTW is then broadcasted as a
transform frame, see section 2.2.3, onto the TF topic and saved in a JSON file.

7. Verify results using either pick & place or ArUco centre pinpoint verification.

3.4.3 Pick and Place Verification
An overview of the Pick and Place verification implementation can be seen in figure 3.7.
Below is an outline for the workflow:

1. Select a colour by clicking on the object in the GUI and adjusting the selected colour
segment with the sliders until a stable mask is produced. The HSV detection, see
section 2.3.3, is implemented with cv2 by masking the image with upper and lower
values, fill and noise reduction functions. After that, the centre point of the segment
is selected as the pixel coordinate p = (u, v) for the object.

2. Save pick-up cube colour by pressing [u]pp.

3. Redo step 1 for the intended placement cube.

4. Save put-down cube colour by pressing [d]own.

5. Pixel to Camera coordinate, the pixel point p is then converted to a camera coordinate
PC for both cubes by using equations 2.10-2.12, found in section 2.4.4. The value for zc
is gained by reading the depth camera value for p.

39

3. Method

Figure 3.7: Figure shows an overview of the ROS structure of
the Pick and Place implementation. The grey boxes represent
rospackages, the headline of each box is the source and the larger
bottom text is the main content type

6. The pick and place, is then performed by using inverse kinematics, see section 2.2.5,
implemented by the moveit package. The arm is moved to the pick-up cube, grasps
it, and moves to the put-down cube where it is released.

7. Observe whether or not the cube was correctly picked and placed.

3.4.4 ArUco Centre Pinpoint Verification
1. Place an ArUco marker well in view of the calibrated camera.

2. Grip a pointy object (e.g. a pen) with the robot gripper and measure the offset between
the robot tool-centre-point and the tip. Supply this offset for the z-value when starting
the object_finder node.

3. Press [a] to toggle ArUco mode.

4. Optionally check ArUcoTworld by pressing [w] to ensure the coordinate is safe.

5. Move to coordinates by pressing [m].

6. Measure pinpointed location offset from ArUco centre.

40

Chapter 4

Experiments

We apply our method to a concrete setup. We have RLBench, see section 2.7.1, as a simulator
and since this is a benchmark, it is better to align the real setup to the simulation, than the
simulation to the real setup. In this case, we want to align the camera streams, which in turn
means accurate positioning of the external cameras and the wrist-mounted camera. In this
section, we describe the setup and the experiments we conducted to provide answers to our
research questions.

4.1 Experimental Setup
4.1.1 Hardware and Software
The following hardware and software specification was used throughout all experiments.

• Hardware

– Franka Emika Panda Robot Arm

– Cameras

* Intel® RealSense™ Depth Camera D435
* Intel® RealSense™ Depth Camera D455

– ChArUco Boards

* Large (9x14), square size 40mm, ArUco_size 31mm, DICT_5x5_1000
* Medium (18x29), square size 10mm, ArUco_size 8mm, DICT_5x5_1000
* Small (7x10), square size 12mm, ArUco_size 8mm, DICT_4x4_50

• Software Infrastructure

– ROS

41

4. Experiments

– RViz

– OpenCV 4.6

– RLBench

– Python 3.8

• Python Libraries

– pandas v2.0.1
– numpy v1.24
– opencv-contrib-python v4.6
– seaborn v0.12.2
– pyrealsense2
– scipy v1.10.1

4.1.2 Workspace

Figure 4.1: Figure shows a depiction of the workspace setup with the
"RealSense" cameras, coloured cubes and the "Franka Emika Panda"
robot arm.

The workspace consists of a Franka Emika Panda robotic arm installed on a table. A D435
camera is attached to the robot end effector, and two D455 cameras are situated directly in
front of the camera at an elevated position and above the robot base mount. An illustration
of the workspace is provided in figure 4.1 and a photograph in figure 4.2.

When conducting a pick-and-place verification session, differently coloured cubes are
placed arbitrarily in view of the camera being tested.

42

4.2 Experiments: Intrinsic Calibration

Figure 4.2: Figure shows the actual workspace setup with the
"RealSense" cameras (Wrist, Front, Top), coloured cubes and the
"Franka Emika Panda" robot arm.

4.2 Experiments: Intrinsic Calibration
Following the method in section 3.1, we conducted experiments where the following param-
eters were varied.

• Image Count

• Factory settings as an initial guess

• Distance to the calibration target

In an effort to provide a meaningful interpretation of the data and assess the quality of the
obtained intrinsic calibration parameters, they were compared with the factory settings, see
table 4.1. The intention is that examining how the computed parameters deviate from the
factory settings will provide an indication of how a specific experimental parameter affects
the calibration process.

Requirements for experiments:

• roscore running

43

4. Experiments

• A publishing camera topic

• Large ChArUco board

• Wrist-mounted D435 camera

Table 4.1: The factory settings for the wrist mounted D435 camera.

Parameter Value (pixels)

f x 616.68

f y 617.031

cx 314.182

cy 249.473

k1 0.0

k2 0.0

p1 0.0

p2 0.0

k3 0.0

4.2.1 Image Count and Initial Guess
The OpenCV implementation for intrinsic calibration allows for the utilisation of an initial
guess for the camera matrix and distortion values. By collecting an image set consisting of 24
varied images we can use the same data set to investigate both the effect of image count and
how the inclusion of an initial guess affects the calibration results. The values for intrinsic
parameters provided by the manufacturer serve as the initial guess.

• Steps:

1. The intrinsic calibration node was launched like so:

roslaunch camera_calibration
intrinsic.launch
config:=intrinsic_experiment

2. The calibration target was placed well in view of the camera, and an image was
collected.

3. The relation between the calibration target and the camera was changed by mov-
ing the end effector.

4. The above step was repeated 24 times while ensuring that the calibration target
appeared in different areas of the camera image and at different angles.

5. The calibration results for calibration while using and not using an initial guess
were calculated and compared.

44

4.3 Experiments: Eye In Hand Calibration

4.2.2 Distance to Target
In this experiment, the effect of distance to the calibration marker was investigated. A set
of five images were captured for long (70cm) and short (40cm) distances respectively to see
how it affects the resulting camera matrix.

• Steps:

1. The intrinsic calibration node was launched like so:

roslaunch camera_calibration
intrinsic.launch
config:=intrinsic_experiment

2. The robot arm end effector was placed at a distance approximately 70 centimetres
above the table, with the camera pointing straight down where it was kept static.

3. The calibration target was placed well in view of the camera, and an image was
collected.

4. The calibration target was moved to a new pose and a new image was collected.
5. The above step was repeated nine times while ensuring that the calibration target

appeared in different areas of the camera image and at different angles.
6. The above process was repeated with the height of the end effector adjusted to

approximately 40 centimetres.
7. The calibration results for high and low positions were calculated and compared.

4.3 Experiments: Eye In Hand Calibration
Following the methods in section 3.2.1, we conducted experiments where the following fac-
tors were investigated.

• Pose Count

• Static End Effector

• Sliding Window Mean of the transform tTc

• Reproducibility

Requirements for experiments:

• roscore running

• A publishing camera topic

• Large ChArUco board

• Wrist-mounted D435 camera

45

4. Experiments

4.3.1 Pose Count
In this experiment, we look at calibration results for a different number of sample sizes. This
is done by collecting 20 transformations and comparing the calibration results for each new
sample added.

We seek to investigate whether or not the calibration converges to a specific value over
time, and how many poses such convergence would require.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_wrist

2. The calibration target was placed on the workspace, well in view of the camera,
and an image was collected.

3. The arm with the wrist camera was moved to a new pose and a new image was
collected.

4. Above step was repeated 20 times while ensuring that the images covered differ-
ent views of the calibration target and poses of the end-effector.

4.3.2 Static End Effector
In this experiment, we look at the difference between changing the translation of the wrist
camera, while trying to keep the rotation fixed in comparison to changing the rotation of
every collected transform. The resulting translation values are compared to a hand-measured
baseline value as a reference value.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_wrist

2. The calibration target was placed on the workspace, well in view of the camera,
and an image was collected.

3. The arm with the wrist camera was moved to a new pose, ensuring the robot end
effector was not rotated, and a new image was collected.

4. Above step was repeated 10 times while ensuring that the images covered differ-
ent views of the calibration target.

5. A set of 10 images was collected while ensuring variation in robot end effector
rotation.

46

4.3 Experiments: Eye In Hand Calibration

6. The target pose for the wrist-mounted camera was calculated for the set with and
without rotation for comparison.

4.3.3 Sliding Window Mean
In this experiment, we investigate how the calibration result is affected by introducing addi-
tional stability to the camera −→ target transform by using the mean value of the last 30 pose
estimations contra only using the latest one. The resulting translation values are compared
to a hand-measured baseline value as a reference value.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_wrist_window_30

roslaunch camera_calibration
extrinsic.launch
config=cam_wrist_window_1

2. The calibration target was placed on the workspace, well in view of the camera,
and an image was collected.

3. The arm with the wrist camera was moved to a new pose and a new image was
collected while averaging the last 30 poses.

4. Above step was repeated 10 times while ensuring that the images covered differ-
ent views of the calibration target and poses of the end-effector.

5. Another set was collected, using the same poses but without the averaging.

6. The target pose for the wrist-mounted camera was calculated with and without
the smoothing effect and results were compared.

4.3.4 Reproducibility
In this experiment, we look at the stability of the result by reproducing the same calibration
three times. This is done twice, once with identical robot poses and once with varied robot
poses.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_wrist

47

4. Experiments

2. The calibration target was placed on the workspace.

3. A set of five joint states was saved.

4. The arm was moved between each joint state, collecting an image at each state.

5. Calibration was performed, and the results were noted. The above step was re-
peated two more times.

6. A second set of calibrations is performed by moving the robot end effector by
hand to each of the five states.

4.4 Experiments: Eye To Hand Calibration
Following the methods in section 3.2.2, we conducted experiments where the following pa-
rameters were investigated.

• Image count

• Position-Shift

• Sliding Window Mean of the transform tTc

Requirements for experiments:

• roscore running

• A publishing camera topic

• Small ChArUco board attached to 57cm long stick

• Two D455 camera mounted in front of and above the robot arm

4.4.1 Pose Count
In this experiment, we look at calibration quality for a different number of sample sizes. This
is done by collecting 20 transformations for the front camera and comparing the calibration
results for each new sample added. For the top camera, the pose count is 10.

We seek to investigate whether or not the calibration converges to a specific value over
time, and how many poses such convergence would require.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_front

2. The stick with the calibration target was gripped by the robot, well in view of
the camera, and an image was collected.

48

4.4 Experiments: Eye To Hand Calibration

3. The arm with the calibration target was moved to a new pose and a new image
was collected.

4. Above step was repeated 20 times for the front camera and 13 for the top camera,
while ensuring that the images covered different views of the calibration target
and poses of the end-effector.

5. The target pose for the wrist-mounted camera was calculated for each sample
size.

4.4.2 Position Shift
In this experiment, we investigate how a known shift in translation is reflected in the cali-
bration results by moving the front camera 20 cm towards the robot base link (from 155 cm
to 135 cm) and comparing the results for the two positions.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_front

2. The stick with the calibration target was gripped by the robot, well in view of
the camera, and an image was collected.

3. The arm with the wrist camera was moved to a new pose and a new image was
collected.

4. Above step was repeated 10 times while ensuring that the images covered differ-
ent views of the calibration target and poses of the end-effector.

5. The front camera was moved 20cm closer to the robot base link, and the process
repeated.

6. The target pose for the front camera was calibrated and compared for the two
positions.

4.4.3 Sliding Window Mean
In this experiment, we investigate how the calibration result is affected by introducing ad-
ditional stability to the camera −→ target transform by using the mean value of the last 30
pose estimations contra only using the latest one.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_front_window_30

49

4. Experiments

roslaunch camera_calibration
extrinsic.launch
config=cam_front_window_1

2. The stick with the calibration target was gripped by the robot, well in view of
the camera, and an image was collected.

3. The arm with the wrist camera was moved to a new pose and a new image was
collected while averaging the last 30 poses.

4. Above step was repeated 10 times while ensuring that the images covered differ-
ent views of the calibration target and poses of the end-effector.

5. Another set was collected, using the same poses but without the averaging.

6. The target pose for the wrist-mounted camera was calculated with and without
the smoothing effect and results were compared.

4.5 Dynamic Calibration
4.5.1 Comparison
In this experiment, we look at how the dynamic calibration method compares to the standard
eye-to-hand calibration, see section 4.4, with 10 images.

• Steps:

1. The extrinsic calibration node was launched like so:

roslaunch camera_calibration
extrinsic.launch
config=cam_front

2. The calibration target was placed tilted visible towards the front camera, in a
place also visible to the wrist camera.

3. The estimated pose of the front camera was calculated.

4. The robot arm was moved to a new position while keeping the calibration target
in view.

5. The above step was repeated five times, and an average was calculated.

50

4.6 Experiments: Verification

4.6 Experiments: Verification
4.6.1 Pick and Place
In this experiment, we seek to verify the camera calibration by attempting to pick up a
coloured cube and place it back down on top of another coloured cube 3.3.1. This is done in
two versions, first without an offset for the cube measurements and once with an offset of
half of the cube’s side length.

• Requirements for experiments:

– roscore running

– A publishing camera topic

– Colored cubes

– Wrist mounted D435 camera/ Front or Top D455 Camera

– Pose estimation from 4.3 for the separate cameras

– Intrinsic matrix from 4.2 for the separate cameras

• Steps:

1. The object node was launched like so:

roslaunch object_finder hsv_cubes.launch

2. The coloured cubes were placed randomly on the workspace, well in view of the
camera.

3. In the GUI a cube was selected for pick-up, ensuring that the cube was detected
properly.

4. The above step was repeated for the placement cube.

5. Above step was repeated 10 times for the wrist camera and 5 times for the front
and top cameras, with random positions of the cubes every time.

6. Above steps were repeated with an offset of half of the cube’s side length for the
front and top cameras.

51

4. Experiments

4.6.2 ArUco centre pinpoint
This experiment verifies camera calibration by having the robot grasp a sharp object in its
tool-centre-point, thus aligned with the z-axis thereof, and moving the point of said object
to the estimated centre of a printed ArUco marker, see section 3.3.2. The error provided is
then used to adjust the camera estimates, which are then reevaluated.

• Requirements:

– roscore running

– A publishing camera topic

– An ArUco marker

– Wrist mounted D435 camera / Front D455 Camera / Top D455 Camera

– An intrinsic and extrinsic estimate for the camera to be verified

• Steps:

1. The object node was launched like so:

roslaunch object_finder hsv_cubes.launch

2. The ArUco marker is placed in view of the camera.

3. ArUco detection mode was entered.

4. ArUco centre point estimate was examined.

5. Estimate was deemed to be a safe coordinate, and the arm was moved to said
point.

6. Adjustments were made based on the error.

52

Chapter 5

Results

Herein we present the results of our experiments. The results are visualised in graphs and
tables, with further more in-depth discussion following in chapter 6.

5.1 Intrinsic Calibration

5.1.1 Image Count and Initial Guess
In this section, we display graphs portraying how the calibrated intrinsic and distortion pa-
rameters, see section 2.4.2, vary over a set of 24 images. Each figure contains three curves,
one using no initial guess for the parameters, one using the factory settings as an initial guess
and lastly the factory settings themselves. The factory settings serve as our ground truth, but
what we seek to investigate is how the curves change over the image set and how using and
not using an initial guess affects the calibration. The results were produced by following the
steps laid out in section 4.2.1.

After only five images the calibrated values when using an initial guess align with those
not using an initial guess. This indicates that using or not using an initial guess is a non-factor
as long as the image set is not very small.

Figures 5.1 and 5.2 show the focal length along the x and y axes respectively. In both cases,
the calibrated values quickly, after five images, align with each other and plateau.

Figures 5.3 and 5.4 show the image centre point along the x and y axes respectively. We
see a similar pattern to that seen in 5.1 and 5.2, with a plateau forming between the five and
ten image count.

The distortion parameters, figures 5.5 through 5.9, also follow this trend of guess contra
no guess not mattering past the first five images. We do see an interesting point around
images 18-19, where a shift or spike can be observed. The most likely reasons for this spike
are noise in the data or a previously unseen view of the calibration target. This far into the
image set the previous is more likely than the latter.

53

5. Results

This tendency to plateau between five and ten images indicates that there is no need to
collect an excessive number of images and that 10 to 20 should suffice.

Figure 5.1: Calibration results for the intrinsic parameter f x.

54

5.1 Intrinsic Calibration

Figure 5.2: Calibration results for the intrinsic parameter f y.

Figure 5.3: Calibration results for the intrinsic parameter cx.

55

5. Results

Figure 5.4: Calibration results for the intrinsic parameter cy.

Figure 5.5: Calibration results for the distortion parameter k1.

56

5.1 Intrinsic Calibration

Figure 5.6: Calibration results for the distortion parameter k2.

Figure 5.7: Calibration results for the distortion parameter p1.

57

5. Results

Figure 5.8: Calibration results for the distortion parameter p2.

Figure 5.9: Calibration results for the distortion parameter k3.

58

5.1 Intrinsic Calibration

5.1.2 Distance to Target
Figures 5.10-5.18 showcase how the calibrated intrinsic and distortion parameters vary over a
set of ten images for three different image sets. The first image set is taken at a fixed distance
of 70 centimetres from the calibration target, the second at 40 centimetres and the third is
randomly merged from the two previous sets. The details of this acquisition can be seen in
section 4.2.2. The factory settings for the parameters are included in each graph to serve as
our ground truth.

Figures 5.10-5.13 show the set of images taken from 70 centimetres trending closer to the
factory settings than those in the 40-centimetre set. However, in figures 5.10 and 5.11 the
third set, featuring a random subset of near and far images, trends closer still. Provided the
factory settings are correct, this indicates that using images taken too close to the calibration
target is ill-advised.

The distortion parameter graphs, figures 5.14-5.18 are far more mixed, meaning that it is
difficult to draw a definite conclusion from the data. It is noteworthy that the combined line
trends closer to the "far away" line for the parameters k1, k2 and k3, despite being created
from an equal number of near and far away images.

Figure 5.10: Calibration results for the intrinsic parameter f x.

59

5. Results

Figure 5.11: Calibration results for the intrinsic parameter f y.

Figure 5.12: Calibration results for the intrinsic parameter cx.

60

5.1 Intrinsic Calibration

Figure 5.13: Calibration results for the intrinsic parameter cy.

Figure 5.14: Calibration results for the distortion parameter k1.

61

5. Results

Figure 5.15: Calibration results for the distortion parameter k2.

Figure 5.16: Calibration results for the distortion parameter p1.

62

5.1 Intrinsic Calibration

Figure 5.17: Calibration results for the distortion parameter p2.

Figure 5.18: Calibration results for the distortion parameter k3.

63

5. Results

5.2 Extrinsic Calibration
5.2.1 Eye in Hand
Static End Effector
In tables 5.1 and 5.2 we can see how varying contra not varying the rotation of the robot end
effector affects the resulting calibration when performing eye-in-hand calibration. The cal-
ibrated values are compared to hand-measured values which serve to provide a baseline. In
both cases, the rotation values are closely aligned with the baseline. With regard to transla-
tion, the difference is more pronounced. Table 5.1 shows that only moving the end effector
in a plane causes large shifts from the baseline along both the x and y axes. These shifts are
not seen when varying the rotation, see table 5.2, indicating that this is an important factor
for accurate results.

Table 5.1: Extrinsic calibration results when not varying the rotation of the end effector, with
δ being the absolute distance between calibration results and the hand-measured
baseline.

Version Translation (m) Rotation (quaternions)

Hand
measured

x 0.035 rx 0

ry 0y -0.04
rz 0.7071068

z 0.07 rw 0.7071068

Along plane

x -0.18909 rx -0.013466

ry 0.029904y -0.090834
rz 0.69595

z 0.065904 rw 0.71734

δ

x 0.22409 rx 0.013466

ry 0.029904y 0.050834
rz 0.011157

z 0.0040960 rw 0.010233

64

5.2 Extrinsic Calibration

Table 5.2: Extrinsic calibration results when varying the rotation of the end effector, with
δ being the absolute distance between calibration results and the hand-measured
baseline.

Version Translation (m) Rotation (quaternions)

Hand
measured

x 0.035 rx 0

ry 0y -0.04
rz 0.7071068

z 0.07 rw 0.7071068

Varied rotation

x 0.031839 rx 0.0046064

ry 0.0057965y -0.036249
rz 0.69465

z 0.063206 rw 0.71931

δ

x 0.0031610 rx 0.0046064

ry 0.0057965y 0.0037510
rz 0.012457

z 0.0067940 rw 0.012203

Repeat Calibrations
In tables 5.3 and 5.4 we see the results of a set of three calibrations using the same poses,
in order to investigate consistency. The poses used in table 5.3 have identical joint states
across all three calibration series. We can see that using such identical joint states yields
results which only vary at a sub-millimetre level. The poses used in table 5.4 do not have
identical joint states, but rather the robot end effector was moved by hand to positions and
rotations which sought to mimic those used in table 5.3. The results thereof show a variance
at a millimetre level, meaning that it stands to reason that when given similar input data the
system will yield deterministic results.

Table 5.3: Results for repeat extrinsic calibrations using identical poses, with σ being the
standard deviation of calibration results.

Calibration
number

Translation (m) Rotation (quaternions)

1

x 0.029693 rx 0.010709

ry 0.0065737y -0.037034
rz 0.69301

z 0.062277 rw 0.72082

65

5. Results

Table 5.3: Results for repeat extrinsic calibrations using identical poses, with σ being the
standard deviation of calibration results. (Continued)

2

x 0.029649 rx 0.010698

ry 0.0066157y -0.037073
rz 0.69293

z 0.062266 rw 0.72090

3

x 0.029468 rx 0.010919

ry 0.0066677y -0.036932
rz 0.69303

z 0.062233 rw 0.72080

σ

x 0.000097366 rx 0.00010169

ry 0.000038447y 0.000059447
rz 0.000043205

z 0.000018696 rw 0.000043205

Table 5.4: Results for repeat extrinsic calibrations using non-identical poses, with σ being
the standard deviation of calibration results.

Calibration
number

Translation (m) Rotation (quaternions)

1

x 0.030732 rx 0.0088218

ry 0.0028619y -0.034494
rz 0.69391

z 0.064493 rw 0.72000

2

x 0.032384 rx 0.011220

ry 0.0044303y -0.031342
rz 0.69417

z 0.067536 rw 0.71971

3

x 0.031646 rx 0.0093004

ry 0.0070461y -0.035569
rz 0.69434

z 0.065195 rw 0.71955

σ

x 0.00067570 rx 0.0010363

ry 0.0017259y 0.0017937
rz 0.00017682

z 0.0013009 rw 0.00018624

66

5.2 Extrinsic Calibration

Sliding Window Mean of the camera to target transform
The results found in table 5.5 reflect the effect of smoothening the camera −→ target trans-
form. This is done by using a sliding window to calculate the mean value thereof, contra
relying on the newest singular value. The resulting difference between the two approaches
is very small, indicating that this is a non-factor and that the transformation between the
camera and ChArUco board can be considered stable.

Table 5.5: Extrinsic calibration results with and without a sliding window mean, with δ being
the absolute distance between calibration results.

Window Size Translation (m) Rotation (quaternions)

1

x 0.029706 rx 0.0073148

ry 0.0055223y -0.035097
rz 0.69278

z 0.065835 rw 0.72109

30

x 0.029673 rx 0.0073256

ry 0.0056041y -0.035111
rz 0.69276

z 0.065808 rw 0.72111

δ

x 0.000033 rx 0.0000108

ry 0.0000818y 0.000014
rz 0.00002

z 0.000027 rw 0.00002

Pose Count
Figures 5.19-5.25 show how the wrist camera extrinsic calibration results vary over a set of 20
poses for each of the five calibration methods used.

The general tendency is for the first three poses to produce a very scattered result, which
quickly converges and plateaus, at a centimetre level, within five to ten poses. However,
at a millimetre level, there is a continued shift throughout the series of poses. This means
that while it is highly recommended to use more than the required three poses, using a large
number of poses seemingly does not provide a singular outcome. Rather it will continue to
shift slightly with each new pose added.

Several of the graphs, figures 5.19, 5.20 and 5.23, show a sudden shift between poses 17
and 18, with smaller shifts between poses 18 and 20. Though not certain, this sudden shift
so late in the series could be explained by noise in the data. Such noise is usually caused by
a pose where the transform between the ChArUco board and the camera was not properly
calculated.

Figure 5.21 shows the method dubbed "Andreff" producing very different results than the
other four methods for the z translation during the first 15 poses. This is not an uncommon
occurrence and is not specific to this method. We do not have a verified explanation for this
but with the information gained regarding reproducibility in tables 5.3 and 5.4 we can say that

67

5. Results

the outcomes are deterministic. This means that this specific data is seemingly considered
noisy with regards to "Andreff" when calculating the z translation.

Figure 5.19: The estimated X-translation for ee −→ camera.

Figure 5.20: The estimated Y-translation for ee −→ camera.

68

5.2 Extrinsic Calibration

Figure 5.21: The estimated Z-translation for ee −→ camera.

Figure 5.22: The estimated X-rotation for ee −→ camera.

69

5. Results

Figure 5.23: The estimated Y-rotation for ee −→ camera.

Figure 5.24: The estimated Z-rotation for ee −→ camera.

70

5.2 Extrinsic Calibration

Figure 5.25: The estimated W-rotation for ee −→ camera.

71

5. Results

5.2.2 Eye to hand
Pose Count - Front Camera
Figures 5.26-5.32 show how the front camera extrinsic calibration results vary over a set of
20 poses for each of the five calibration methods used.

The most striking feature of these graphs is the large initial spread when using only the
three required poses, solidifying the conclusion that using more than three poses is highly
recommended.

Concerning translation, figures 5.26-5.28, we see a clear tendency towards plateaus after
the fourth pose. These plateaus are however broken up at poses 6, 19 and 20. Much like
in the case of eye-in-hand calibration, the likely culprit for these spreading events is noise
and bad data. This indicates that merely adding more data does not necessitate more stable
calibration results, but that the entire process needs to be carefully monitored throughout.

Regarding rotation, the x and y rotation graphs, figures 5.29 and 5.30, follow the same
trend seen for the translation. However, the z and w rotation graphs, figures 5.31 and 5.32,
seem to be forming a mirrored inclination up and down respectively. More data would be
needed to see if this trend would plateau at a later stage.

Figure 5.26: The estimated X-translation for world −→ camera.

72

5.2 Extrinsic Calibration

Figure 5.27: The estimated Y-translation for world −→ camera.

Figure 5.28: The estimated Z-translation for world −→ camera.

73

5. Results

Figure 5.29: The estimated X-rotation for world −→ camera.

Figure 5.30: The estimated Y-rotation for world −→ camera.

74

5.2 Extrinsic Calibration

Figure 5.31: The estimated Z-rotation for world −→ camera.

Figure 5.32: The estimated W-rotation for world −→ camera.

75

5. Results

Pose Count - Top Camera
Figures 5.33-5.39 show how the top camera extrinsic calibration results vary over a set of 10
poses for each of the five calibration methods used.

Here we see how very different the results obtained can be depending on which imple-
mentation is used. Regarding translation, the two simultaneous solutions (dubbed "Andreff"
and "Daniilidis") provide results which conflict with the separable solutions (dubbed "Tsai",
"Park" and "Horaud"). Meanwhile, "Tsai" is a consistent outlier with regard to rotation.

It is noteworthy that none of the rotation graphs, figures 5.36-5.39 plateau to the same
degree as was seen for the wrist or front cameras. This could be due to the series containing
fewer poses than those two cameras, indicating that 10 poses could be too few.

However, we do see a similar plateauing effect as was seen for the wrist and front cameras
for the translation, even though the methods may not be in agreement as to where those
plateaus should be. This further enforces the conclusion that it is important to monitor the
calibration process and be mindful of the quality of the data collected, rather than aiming
for as many poses as possible.

Figure 5.33: The estimated X-translation for world −→ camera.

76

5.2 Extrinsic Calibration

Figure 5.34: The estimated Y-translation for world −→ camera.

Figure 5.35: The estimated Z-translation for world −→ camera.

77

5. Results

Figure 5.36: The estimated X-rotation for world −→ camera.

Figure 5.37: The estimated Y-rotation for world −→ camera.

78

5.2 Extrinsic Calibration

Figure 5.38: The estimated Z-rotation for world −→ camera.

Figure 5.39: The estimated W-rotation for world −→ camera.

79

5. Results

Position Shift
The results in table 5.6 were obtained when performing an extrinsic calibration before and
after a known shift in location along a single space axis, namely the x axis. The expected
result would be for the new calibration estimate to be shifted minimally (close to zero) along
the y and z axes while being shifted −0.2 metres along the x axis. The result is similar to
this expectation, with a shift of 3 millimetres along the y and z axes and a −0.1966 metre
shift along the x axis. This means that our calibration system correctly reflects changes in the
real-world setup with an error of 3.4 millimetres, provided the shift was exactly 0.2 metres.

Table 5.6: Extrinsic calibration before and after shifting the camera 20 cm closer to the robot
base link along the x-axis, with δ being the absolute distance between calibration
results.

Position Translation (m) Rotation (quaternions)

Before Shift

x 1.5572 rx 0.59735

ry 0.59064y 0.0078588
rz -0.37846

z 0.79304 rw -0.38871

After Shift

x 1.3606 rx 0.59669

ry 0.58960y 0.010794
rz -0.38004

z 0.78998 rw -0.38974

δ

x 0.19660 rx 0.00066

ry 0.00104y 0.0029352
rz 0.00158

z 0.00306 rw 0.00103

Sliding Window Mean of the camera to target transform
These results reflect the effect of smoothening the camera −→ target transform. This is done
by using a sliding window to calculate the mean value thereof, contra relying on the newest
singular value. Much like in the case of eye-in-hand calibration, the resulting difference be-
tween the two approaches is very small. This further enforces that this is a non-factor, even
when using a smaller ChArUco board, and that the transformation between the camera and
ChArUco board can be considered stable.

80

5.2 Extrinsic Calibration

Table 5.7: Extrinsic calibration results with and without a sliding window, with δ being the
absolute distance between calibration results.

Window Size Translation (m) Rotation (quaternions)

1

x 1.5758 rx 0.59547

ry 0.59360y 0.0098020
rz -0.37577

z 0.79920 rw -0.38968

30

x 1.5747 rx 0.59468

ry 0.59415y 0.0072503
rz -0.37364

z 0.79891 rw -0.39209

δ

x 0.0011 rx 0.00079

ry 0.00055y 0.0025517
rz 0.00213

z 0.00029 rw 0.00147

Dynamic Comparison
Table 5.8 displays the difference between calibrating by solving AX = XB and our proposed
dynamic calibration approach. The camera being calibrated is the front camera, and it was
not moved between calibrations.

The results show a difference in output between the two approaches, out of which the
shifts along the y and z axes are of most concern. Here we see a difference of 1.6 and 2.7
centimetres respectively, which is a far greater degree of error than has been seen throughout
the other experiments. This means that our dynamic estimate method would need more work
and investigation to be reliable for precision calibration.

Table 5.8: Extrinsic calibration results using the dynamic approach contra solving AX = XB,
with δ being the absolute distance between calibration results.

Method Translation (m) Rotation (quaternions)

Solving
AX = XB

x 1.5572 rx 0.59735

ry 0.59064y 0.0078588
rz -0.37846

z 0.79304 rw -0.38871

Dynamic
Estimate

x 1.5530 rx 0.58971

ry 0.59092y 0.023936
rz -0.38495

z 0.76595 rw -0.39353

81

5. Results

Table 5.8: Extrinsic calibration results using the dynamic approach contra solving AX = XB,
with δ being the absolute distance between calibration results. (Continued)

δ

x 0.0042 rx 0.00764

ry 0.00028y 0.016077
rz 0.00376

z 0.02709 rw 0.00482

Sensitivity to Bad Data
Figure 5.40 shows an extrinsic calibration series that highlights the sensitivity of the process
by showcasing a final pose that consistently produces noise in the calibration results.

Figure 5.40: The estimated X-translation for world −→ camera.

82

5.3 Verification

5.3 Verification
5.3.1 Pick & Place Verification
Below are two tables reflecting the results when performing verification by using the pick
and place method. Table 5.9 reflects the attempt without taking cube geometry into account,
unlike table 5.10 which does include an offset equal to half of the width of the cube.

While the wrist-mounted camera manages a 100% success rate, it is evident that the front
and top cameras struggle without taking the cube’s geometry into account and introducing
offsets. Introducing these offsets improves the success rate to 90% for the front camera and
60% for the top camera.

Table 5.9: Verifying the calibration with a pick and place task without offsets for cube ge-
ometry.

Camera position Successful Failed Total

Wrist 10 0 10

Front 0 5 5

Top 0 5 5

Table 5.10: Verifying the calibration with a pick and place task with offsets for cube geom-
etry.

Camera position Successful Failed Total

Wrist 10 0 10

Front 9 1 10

Top 6 4 10

83

5. Results

5.3.2 ArUco Centre Pinpoint Verification
Figures 5.41-5.43 show the results when verifying a set of extrinsic camera calibration esti-
mates with the ArUco centre pinpoint method. For the front and top cameras, two images
are provided, one using the calibrated values and one using adjusted values based on the
verification results.

Using the calibrated camera position for the wrist, the robot pinpoints a centre location
ca. 2 millimetres shifted along the positive x axis from the actual centre. Due to this small
error, no correction pass was carried out. This is largely due to the fact that outstanding error
sources could equally well account for the remaining error.

Figure 5.41: ArUco centre pinpoint using the wrist camera. The
ArUco is 10 cm across, with each tile being 1.43 cm wide.

When verifying the calibrated front camera position, the robot pinpoints a centre location
which is shifted 1.4 centimetres along the negative x axis from the actual centre. Using this
information, the estimated location of the camera was shifted 1.4 centimetres away from
the robot base, yielding a result where the centre was shifted ca. 3 millimetres along the
positive axis. Much like in the case of the wrist camera, this error could equally well be due
to outstanding sources.

84

5.3 Verification

(a) Using cali-
brated value.

(b) Using ad-
justed value.

Figure 5.42: ArUco centre pinpoint for front camera.

The top camera had the worst initial performance, locating a point 2.1 centimetres along
the positive x axis and 0.7 centimetres along the negative y axis. Using these values to shift
the estimation, a new centre was located 2 millimetres along the negative x axis and ca. 3-4
millimetres along the positive y axis. Again this error is small enough that the error may
stem from outstanding factors. Additionally, the top camera is located the furthest from the
ArUco, even though the ArUco was placed in an elevated position for this experiment. This
means that it struggles to correctly calculate the camera to ArUco transform when compared
to the other two cameras.

85

5. Results

(a) Using calibrated value. (b) Using ad-
justed value.

Figure 5.43: ArUco centre pinpoint for the top camera.

86

Chapter 6

Discussion & Conclusions

6.1 Intrinsic Camera Calibration
Figures 5.1 through 5.4 show that every intrinsic parameter converges after between five and
ten images. Thus, in order to obtain a camera matrix there is no need to collect an exorbitant
amount of images. This might not be true for the distortion parameters though, see figure
5.5 through 5.9. Here, a distinct shift can be seen between 15 and 20 images, even though
the scale of these parameters is small. Due to the abrupt nature of the shift, it could be that
the underlying cause is a bad data point. Such a data point could potentially contain fewer
located ChArUco corners, thus leading to a worse estimate being provided.

The same figures also show the difference between using and not using an initial guess.
A very clear pattern can be seen in these graphs. When not supplying an initial guess, the
first five images all produce wildly varying results and then converge to the same values as
with an initial guess. The reason for these first few images resulting in such varied outputs is
probably due to the first five images in this set being required to cover the entire image plane.
So while the result seems to converge to the same value for having and not having an initial
guess, supplying one can be preferable if you are constricted to a very small set of images.

Looking at how distance to the calibration target factors in, figures 5.10 through 5.18 show
a difference in the results obtained. It is hard to know with certainty that this is only caused
by the change in distance since changing the distance will also change the angle at which
the calibration target is viewed. Of note is that for the intrinsic parameters, the far away
image set trended closer to the factory settings than the near image set. For the distortion
parameters, the results are not so clear-cut and the best-performing image set varies between
each parameter.

In summary, it would be recommended to use enough images to cover the entire image
plane and ensure variation in the image set. We found this to be doable with 5 images. Due
to the observed sensitivity, it is important to gather high-quality images with many visible
corners (if using a ChArUco).

87

6. Discussion & Conclusions

6.2 Extrinsic Camera Calibration

6.2.1 Eye In Hand
According to the results in tables 5.3 and 5.4, we can say that the algorithms can consistently
provide the same results. Over a set of three calibrations using identical poses, we see stability
on a millimetre level with a standard deviation of no more than 9.7×10−5. When using non-
identical poses the results are still good, although not to the same degree. Here we see a
variation at the millimetre level, which is reflected by the higher standard deviation.

From figure 5.19 through figure 5.25 we can see that the calibration results generally do
not stabilise to a precise value regardless of the underlying implementation for solving the
AX = XB matrix equation. The algorithms all seem to fluctuate with each new pose added at
a millimetre level, meaning that it is not possible to conclude that there is a certain number
of poses which would yield better results.

Table 5.1 shows a marked difference in the results when not varying the rotation of the
end effector, thus moving it along a plane. This mainly affects the translation, but strongly
indicates that ensuring varied poses is of utmost importance for a good calibration result.

In an earlier version of the project, singular ArUco markers were employed instead of
ChArUco boards. During this time, the concept of smoothening the camera −→ target trans-
form was introduced due to a notable instability in the estimation on a frame-by-frame basis.
However, table 5.5 shows that this is mostly a non-factor when using ChArUco boards. The
observed difference in results when taking the mean of the latest 30 transforms, as compared
to using only the latest singular transform, is comparable to what is seen in table 5.4. This
can likely be attributed to the ChArUco board simply having more located points, leading
to greater stability.

6.2.2 Eye To Hand
It was assumed that extrinsic calibration for the eye-to-hand case would behave much like
the eye-in-hand counterpart. This is largely true, with a similar pattern of quick convergence
followed by a meandering plateau.

Figures 5.26 to 5.32 show a tendency for certain data points to produce a spreading effect,
see the 6th and 18th sample sizes in figure 5.27 and 5.28. A similar effect can be seen for the
eye-in-hand setup, see figure 5.21 in a vicinity around the 10th sample size, where the methods
dubbed "Andreff" and "Daniliidis" diverge. The probable reason for such occurrences is noise
in the data. We believe that the utilisation of a smaller ChArUco board combined with the
more constrained range of available poses when calibrating the front and top cameras gives
rise to such noise.

Where we do see a bigger difference is in figure 5.33 to 5.39. Here we see several algo-
rithms, Daniilidis and Andreff for translation and Tsai and Daniilidis for rotation, providing
markedly different results than the rest. It has generally been found that the top camera is
more difficult to calibrate, with a possible reason being the difficulty of obtaining good poses
with the robot arm.

Figure 5.40 shows a calibration series of the front camera, where the last value is a pose
which has been seen to produce bad data. Such a pose is reproducible and found when turning

88

6.3 Verification

the robot arm "upside down" by heavily contorting and rotating the robot joints. It is worth
noting that much like for the top camera, it is the method dubbed "Daniilidis" which reacts
most to this data point. We theorise that it is easier to obtain such poses when calibrating
the top camera, due to its location relative to the robot. This combined with the lack of
variety in poses, due to the same reason, could explain why the top camera is more difficult
to calibrate. This is also the reason only 10 images were used in the pose count experiment
for the top camera. Managing to collect 20 images for the top camera in a single dataset,
without introducing significant noise, proved challenging. Especially when combined with a
thread-related bug caused by OpenCV and matplotlib, which caused the application to crash
if left running for extended periods of time.

The results found in table 5.6 show that moving the camera a known distance will yield
good results. The intended change in X-translation was 20 centimetres, and the resulting
calibration was 3.4 millimetres short of this. Unfortunately, it is hard to say with certainty
where the fault lies. It is not guaranteed that the camera was moved exactly 20 centimetres,
due to the nature of the rig, and there is the uncertainty of both the pre- and post-shift
calibration results to consider.

Much like what was observed in the eye-in-hand case, table 5.7 shows that in spite of
using a smaller ChArUco board, applying a sliding window mean to the camera −→ target
transform does not provide markedly different results.

6.2.3 Dynamic
The results when comparing the proposed dynamic approach with results from solving the
AX = XB matrix equation, see table 5.8, show differences of 1.6 centimetres and 2.7 centime-
tres for the Y- and Z-translations respectively. Such a large difference essentially means that
it is not feasible to use this approach for its intended use case, that of making slight adjust-
ments without having to go through several extrinsic calibration cycles. It can however be
used to find roughly the correct position instead, thus forgoing the need to measure distances
to the robot manually for initial positioning.

The first potential reason for this offset would be the quality of the calibration results
for the wrist-mounted camera, intrinsic and extrinsic alike. This is due to the pivotal role
said calibration result plays when establishing the ChArUco board’s location in the world
frame. However, the good results obtained when verifying the wrist camera speaks against
this being the main issue, see tables 5.9, 5.10 and figure 5.41.

Furthermore, both the wrist-mounted camera and the camera to be calibrated must have
a good view of the ChArUco board, so as to acquire a good estimate for the transform there-
between. This seems to be a more likely reason for the offset, as the setup does not allow for
both cameras to have a direct, unslanted, view of the ChArUco simultaneously.

6.3 Verification
The pick and place verification method proved to be highly situational, as can be seen in
table 5.9. When used with the wrist-mounted camera, the robot managed to pick and place
the cube correctly 100% of the time. But the same can not be said for the front and top
cameras, where the robot failed every time before introducing offsets to account for the cube’s

89

6. Discussion & Conclusions

geometry, which improved the results to 90% and 60% respectively. As can be seen in figures
5.41 to 5.43, the issue does not seem to be the calibrated estimates. The front camera estimates
the centre point to be less than 1.5 cm off from the true centre, and the top camera estimates
it to be off by less than 3 cm.

A recurring issue for the top camera in particular, was it not being able to register the
cube with its depth sensor. As can be seen when comparing the infrared speckle patterns of
each respective camera, figure 6.1, 6.2 and 6.3, due to the distance and small size of the cube,
there are very few depth measuring points which actually hit the cube. This would lead to the
arm trying to pick up a cube "inside" the workspace table, forcing an emergency shutdown of
the arm. This was a problem for the front camera as well, but not to the same extent as the
top camera.

Moreover, the results in table 5.9 indicate a deficiency in our HSV-object detection. The
implementation picks the centre of the detected area as the x, y and z coordinates for the pick
and/or place action. This means that the front camera, which sees the cubes largely from the
side, would pick out coordinates on the very edge of the cube. To remedy this, offsets were
added for the front and top cameras with the assumption that coordinates would be picked
along the side of the cube. With these offsets in place, performance improved drastically, as
can be seen in table 5.10.

With all this in mind, the ArUcO centre pinpoint method then provides a far better
understanding of how well an extrinsic calibration estimate reflects the actual real-world
setup. However, there are a few outstanding sources of error with the approach in its current
incarnation. Firstly, the pen used is rather long, meaning that if it is not held completely
straight by the gripper there will be an error in the reading. Using a shorter object is therefore
advisable. Secondly, the ArUco used is not of the best quality. It was printed using a home
printer on normal paper and as is visible in the images it buckled slightly after some time of
usage.

Additionally, it can be difficult to verify the z axis translation. If the estimate is too far
above the ArUco, that can be measured. But if the estimate is below the ArUco, the pen will
either gently press into the ArUco or outright pierce it. This is difficult to quantify into a
measurement but still provides the knowledge that the estimate is wrong.

Lastly, while the ArUco centre pinpoint verification method works when verifying trans-
lation, the current implementation does not provide any information regarding the rotation
estimate. This could however be amended by exchanging the tool used for pinpointing with
something which reflects the estimated rotation by mimicking the axes of the ArUco instead
of a simple sharp object like the pencil used in our experiment.

90

6.3 Verification

Figure 6.1: The figure shows the infrared speckle pattern with which
depth data is collected by the top camera.

Figure 6.2: The figure shows the infrared speckle pattern with which
depth data is collected by the wrist camera.

Figure 6.3: The figure shows the infrared speckle pattern with which
depth data is collected by the front camera.

91

6. Discussion & Conclusions

6.4 Comparison to related work
The paper "A Deep Learning-Based Hand-eye Calibration" in related work 1.2 used the TSAI
[32] method as a baseline. The robot used was a Universal Robot (UR3) with a 0.1 millimetre
repeatability and a Stereolabs ZED camera placed in 24 different positions for training. The
baseline achieved a 1.039966529 millimetres mean and 0.4237020321 millimetres standard
deviation while their model achieved a 2.07 millimetres mean and 0.081 millimetres standard
deviation in position error.

In the other paper mentioned in related work "Continuous hand-eye calibration using
3D points" they achieved around 7 millimetres in position error in their real-world experi-
ment for the best method called "YQuatT" with a UR10 robot arm and Xtion RGB-D camera
mounted on a rack above the arm.

Compared to our position errors for the pinpoint test converted to Euclidean distance we
were able to get a 2 millimetres position error for the wrist-mounted camera. The front cam-
era achieved 14 millimetres at first and 3 millimetres after adjustment. The final top camera
achieved a 22 millimetre position error that could be adjusted down to 3.6 millimetres.

This suggests that the proposed hand-eye calibration system performs competitively with
existing methods, particularly following position adjustments. However, it is crucial to note
that further testing is necessary to ensure the reliability of these results.

6.5 Answer to questions
The questions we sought to answer with this project were:

• RQ1: What would be a suitable method for camera calibration in the context of sim2real
alignment?

• RQ2: How can the results of such estimates be verified?

• RQ3: Which factors affect the quality of the calibration process?

We have found that a combination of the dynamic approach for initial placement and
then repeatedly performing the extrinsic calibration by solving the AX = XB matrix equa-
tion with adjustments in between can be a suitable method for extrinsic camera calibration
in the context of sim2real alignment. This means that given a set of coordinates, you can
with the above schema place the camera in a correct pose in selfsame location. It has also
been shown that shifting a camera’s location will be correctly reflected by the calibration
methods, lending further credit to the approach.

Furthermore, the resulting estimates can be verified with the ArUco centre pinpoint
approach and further adjusted by acting on the results thereof. This proved to be a very
successful approach for the front camera, as can be seen in figure 5.42. The results for the
top camera also improved with adjustment, see figure 5.43, but the transform between the
camera and ArUco was unstable due to the distance therebetween. This could be remedied
with a larger ArUco. The wrist camera performed well enough that no adjustment pass was
conducted.

92

6.6 Limitations of our approach

We do not find the pick-and-place implementation using HSV-object detection to be a
favourable option for verification, due to its sensitivity to detection quality. Additionally,
the feedback provided by pick and place is far less actionable than that of the ArUco centre
pinpoint.

It was found that noise in the data can greatly affect the results of the calibration. There-
fore, ensuring good data by monitoring the progress during calibration is important. More-
over, collecting a varied data set by ensuring the robot arm and end effector have been suffi-
ciently moved is important. The above holds true for both intrinsic and extrinsic calibration.
A difference is observed with regard to data set size. It is inconclusive how important it is
to gather a large data set for extrinsic calibration since larger sets do not provide inherently
better results. However, one can confidently say that using more than the minimum three
poses required for the algorithms is advisable. Intrinsic calibration on the other hand can
generally be considered stable after 10 images, provided they are of good quality.

6.6 Limitations of our approach
The schema has only been tested on a single setup, meaning that it is uncertain how well it
would work on other cameras and robots. This means that our aim of a platform-agnostic
application is unverified.

For the scope of this project, aligning the real-world setup to the simulated environment
has been constrained to being able to precisely locate cameras and verifying that a shift in lo-
cation is correctly reflected. This allows for the correct positioning of cameras in accordance
with their simulated counterparts, which were unfortunately not replicable with the hard-
ware and location available to us. Furthermore, true alignment requires more than precise
camera location replication, as there can be differences in field of view and camera intrinsics
which are not accounted for.

6.7 Future work
In order to properly align the real-world setup with the simulated environment, a way to
compare the two must be found. A first step could be an image comparison between the two
setups. Such an approach would seek to create identical images in both environments and
use the potential offset as an alignment indicator.

To facilitate calibration, a more usable application could be developed. Such an applica-
tion could allow for selective inclusion of gathered data, which would make it easier to see
how specific poses affect the resulting calibration.

Improving the dynamic approach could lead to speedy calibration of the static external
cameras, thus avoiding the tedious process of repeated calibrations when performing slight
adjustments to the camera’s location.

Finally, once the setup has been deemed to be aligned properly, an agent trained in sim-
ulation could be deployed and evaluated on the real-world setup.

93

6. Discussion & Conclusions

94

References

[1] N. Andreff, R. Horaud, and B. Espiau. On-line hand-eye calibration. Second International
Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062), 3-D Digital Imaging and
Modeling, 1999. Proceedings. Second International Conference on, pages 430 – 436, 1999.

[2] Ozan Bahadir, Jan Paul Siebert, and Gerardo Aragon-Camarasa. A deep learning-based
hand-eye calibration approach using a single reference point on a robot manipulator.
2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 1109–1114,
2022.

[3] Ilian Bonev. How is orientation in space represented with euler angles? https://www.
mecademic.com/academic_articles/space-orientation-euler-angles/.

[4] The ROS community. Robot operating system. https://www.ros.org/.

[5] The Constructsim. Ros basics. https://app.theconstructsim.com/courses/55.

[6] K. Daniilidis. Hand-eye calibration using dual quaternions. International Journal of
Robotics Research, 18(3):286 – 298, 1999.

[7] Franka Emika. Franka emika research. https://frankaemika.github.io/docs/
overview.html.

[8] Tully Foote. tf: The transform library. In Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on, Open-Source Software workshop, pages
1–6, April 2013.

[9] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez. Au-
tomatic generation and detection of highly reliable fiducial markers under occlusion.
Pattern Recognition, 47(6):2280–2292, 2014.

[10] Ben Eater Grant Sanderson. Visualizing quaternions. https://eater.net/
quaternions.

95

https://www.mecademic.com/academic_articles/space-orientation-euler-angles/
https://www.mecademic.com/academic_articles/space-orientation-euler-angles/
https://www.ros.org/
https://app.theconstructsim.com/courses/55
https://frankaemika.github.io/docs/overview.html
https://frankaemika.github.io/docs/overview.html
https://eater.net/quaternions
https://eater.net/quaternions

REFERENCES

[11] Bjarne Grossmann and Volker Krüger. Continuous hand-eye calibration using 3d points.
2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pages 311–318,
2017.

[12] Kenji Hata and Silvio Savarese. Cs231a course notes 1: Camera models. https://web.
stanford.edu/class/cs231a/course_notes/01-camera-models.pdf.

[13] Radu Horaud and Fadi Dornaika. Hand-eye calibration. International Journal of Robotics
Research, 14(3):195, 1995.

[14] KUKA. Kuka - lbr iiwa. https://www.kuka.com/en-de/products/
robot-systems/industrial-robots/lbr-iiwa.

[15] ROS Robotics Learning. Inverse kinematics. https://www.rosroboticslearning.
com/inverse-kinematics.

[16] ROS Robotics Learning. Jacobian. https://www.rosroboticslearning.com/
jacobian.

[17] MoveIt. Moveit motion planning framework. https://moveit.ros.org/.

[18] Sunita Nayak. Augmented reality using aruco markers
in opencv (c++ / python). https://learnopencv.com/
augmented-reality-using-aruco-markers-in-opencv-c-python/.

[19] F.C. Park and B.J. Martin. Robot sensor calibration: solving ax=xb on the euclidean
group. IEEE Transactions on Robotics and Automation, 10(5):717–721, 1994.

[20] Intel RealSense. Intel realsense cameras. https://www.intelrealsense.com/.

[21] Articulated Robotics. Getting ready for ros part 7: Describing a robot with urdf.
https://articulatedrobotics.xyz/ready-for-ros-7-urdf/.

[22] Articulated Robotics. Transformations part 3: 2d rotations. https://
articulatedrobotics.xyz/transformations-3-rotation_matrices_2d/.

[23] Articulated Robotics. Transformations part 4: Translations. https://
articulatedrobotics.xyz/4-translations/.

[24] Reach Robotics. ’degrees of freedom’ vs ’functions’ of
a robotic arm. https://reachrobotics.com/blog/
degrees-of-freedom-vs-functions-of-a-robotic-arm/.

[25] Universal Robots. Robotic arm design. https://www.universal-robots.com/in/
blog/robotic-arm-design/.

[26] Per Runeson, Emelie Engström, and Margaret-Anne Storey. The design science
paradigm as a frame for empirical software engineering. pages 127–147, 2020.

[27] stepjam. Rlbench: Robot learning benchmark. https://github.com/stepjam/
RLBench.

96

https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.rosroboticslearning.com/inverse-kinematics
https://www.rosroboticslearning.com/inverse-kinematics
https://www.rosroboticslearning.com/jacobian
https://www.rosroboticslearning.com/jacobian
https://moveit.ros.org/
https://learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/
https://learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/
https://www.intelrealsense.com/
https://articulatedrobotics.xyz/ready-for-ros-7-urdf/
https://articulatedrobotics.xyz/transformations-3-rotation_matrices_2d/
https://articulatedrobotics.xyz/transformations-3-rotation_matrices_2d/
https://articulatedrobotics.xyz/4-translations/
https://articulatedrobotics.xyz/4-translations/
https://reachrobotics.com/blog/degrees-of-freedom-vs-functions-of-a-robotic-arm/
https://reachrobotics.com/blog/degrees-of-freedom-vs-functions-of-a-robotic-arm/
https://www.universal-robots.com/in/blog/robotic-arm-design/
https://www.universal-robots.com/in/blog/robotic-arm-design/
https://github.com/stepjam/RLBench
https://github.com/stepjam/RLBench

REFERENCES

[28] OpenCV Team. Detection of charuco boards. https://docs.opencv.org/3.4/df/
d4a/tutorial_charuco_detection.html.

[29] OpenCV Team. Morphological transformations. https://docs.opencv.org/4.x/
d9/d61/tutorial_py_morphological_ops.html.

[30] OpenCV team. Open source computer vision library. https://opencv.org/.

[31] OpenCV Team. Opencv docs. https://docs.opencv.org/4.x/d9/d0c/group_
_calib3d.html#ga3207604e4b1a1758aa66acb6ed5aa65d.

[32] R.Y. Tsai and R.K. Lenz. A new technique for fully autonomous and efficient 3d robotics
hand/eye calibration. IEEE Transactions on Robotics and Automation, 5(3):345–358, 1989.

[33] Jeremiah van Oosten. Understanding quaternions. https://www.3dgep.com/
understanding-quaternions/.

[34] W3Schools. Colors hsl and hsla. https://www.w3schools.com/colors/colors_
hsl.asp.

[35] w3schools. What is json? https://www.w3schools.com/whatis/whatis_json.
asp.

[36] Xiaowei Xing and Dong Eui Chang. Deep reinforcement learning based robot arm
manipulation with efficient training data through simulation. 2019 19th International
Conference on Control, Automation and Systems (ICCAS), Control, Automation and Systems
(ICCAS), 2019 19th International Conference on, pages 112 – 116, 2019.

[37] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

97

https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://opencv.org/
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga3207604e4b1a1758aa66acb6ed5aa65d
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga3207604e4b1a1758aa66acb6ed5aa65d
https://www.3dgep.com/understanding-quaternions/
https://www.3dgep.com/understanding-quaternions/
https://www.w3schools.com/colors/colors_hsl.asp
https://www.w3schools.com/colors/colors_hsl.asp
https://www.w3schools.com/whatis/whatis_json.asp
https://www.w3schools.com/whatis/whatis_json.asp

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-08-24

EXAMENSARBETE Camera Calibration for Alignment of a Real World Setup to a Simulated Environment
STUDENTER Ludwig Jakobsson, Oskar Larsson
HANDLEDARE Alexander Dürr (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Kamerakalibrering för justering av en
verklig miljö till en simulerad miljö

POPULÄRVETENSKAPLIG SAMMANFATTNING Ludwig Jakobsson, Oskar Larsson

Användandet av Reinforcement Learning för att träna robotar är allt mer vanligt för
att utföra uppgifter av allehanda slag. Detta arbete har skapat ett kalibreringssystem
för att enklare kunna matcha den simulerade träningsmiljön med verkligheten.

Idag hanterar robotar många repetitiva
tillverkningsprocesser. Den ökade proces-
sorkraften under de senaste åren har kraftigt
accelererat möjligheten till användning av bild-
analys och förstärkningsinlärning (Reinforcement
Learning) för att lära robotarna att utföra sina
uppgifter. För att undvika mekaniskt slitage och
långa träningsperioder har träningen flyttats till
en simulerad miljö som efterliknar den verkliga.
Den simulerade miljön möjliggör att inlärningen
kortas ner markant. För att säkerställa att
träningen sker på rätt uppgifter är det viktigt att
de båda miljöerna överensstämmer.

I vårat examensarbete har vi byggt ett kali-
breringssystem för kameror som kan användas för
att matcha en verklig miljö med en simulerad, men
även för att underlätta mer generella uppgifter
som att öppna dörrar och plocka upp mjölk-
paket. Systemet strävar efter att vara platforms-
agnostiskt och fungera med olika kameror och
robot armar. Systemet kalibreras genom att låta
roboten hålla i ett kalibreringsbräde, som även
syns i kameran, och relationen mellan roboten,
brädet och kameran används för att estimera re-
lationen mellan roboten och kameran.

Systemet verifieras med ett "plocka och släpp"
test för att se om allt var rätt kalibrerat, samt
ett test där robotens ändverktyg flyttas till en

markörs centerpunkt. För att se vad som gav
ett bra kalibreringsresultat, utfördes experiment
med olika typer av data för att utforska hur det
skulle kunna förbättras. Exempel på sådana data
typer är: varierat avstånd mellan kamera och kali-
breringsbrädet, hur pass varierade robotens ställ-
ningar var samt hur resultatet påverkas av att
utjämna det avlästa förhållandet mellan kamera
och kalibreringsbräda.

Fig. 1: Justering av en verklig miljö, för att
matcha en simulerad.

Under projektets gång blev det tydligt att det
vore väldigt omständigt att efterlikna den simuler-
ade miljön med repeterade kalibreringar, så vi
utvecklade ett alternativt system för att få snab-
bare återkoppling. Detta system använder en
färdigkalibrerad kamera för att uppskatta en an-
nan kameras plats med hjälp av ett kalibrerings-
bräde. Metoden behöver dock vidareutvecklas för
att se praktisk användning.

	Introduction
	Motivation / The Problem
	Related Work
	Contribution
	Research Questions
	Method
	Outline

	Theory
	Representing poses in 3D space
	Coordinate System
	Translation
	Rotation
	Transform Matrix
	Transforming Coordinate Systems

	Robotics
	Robot Arms
	Robot Operating System (ROS)
	Transform Frames
	Unified Robot Description Format
	Inverse Kinematics
	MoveIt

	Image Analysis
	ArUco Markers
	ChArUco board
	HSV Object Detection

	Computer Vision
	Coordinate Systems
	Intrinsic Matrix
	Extrinsic Matrix
	Pixel to Camera Coordinate

	Calibration Techniques
	Intrinsic Calibration
	Extrinsic Calibration

	Open CV
	Aligning the real environment to the simulated environment
	Robot Learning Benchmark (RLBench)

	Method
	Intrinsic Camera Calibration
	Extrinsic Camera Calibration
	Eye In hand
	Eye To hand

	Verification
	Pick and Place
	ArUco Centre Pinpoint

	How to use the System
	Intrinsic Calibration
	Extrinsic Calibration
	Pick and Place Verification
	ArUco Centre Pinpoint Verification

	Experiments
	Experimental Setup
	Hardware and Software
	Workspace

	Experiments: Intrinsic Calibration
	Image Count and Initial Guess
	Distance to Target

	Experiments: Eye In Hand Calibration
	Pose Count
	Static End Effector
	Sliding Window Mean
	Reproducibility

	Experiments: Eye To Hand Calibration
	Pose Count
	Position Shift
	Sliding Window Mean

	Dynamic Calibration
	Comparison

	Experiments: Verification
	Pick and Place
	ArUco centre pinpoint

	Results
	Intrinsic Calibration
	Image Count and Initial Guess
	Distance to Target

	Extrinsic Calibration
	Eye in Hand
	Eye to hand

	Verification
	Pick & Place Verification
	ArUco Centre Pinpoint Verification

	Discussion & Conclusions
	Intrinsic Camera Calibration
	Extrinsic Camera Calibration
	Eye In Hand
	Eye To Hand
	Dynamic

	Verification
	Comparison to related work
	Answer to questions
	Limitations of our approach
	Future work

	References

