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Abstract

The Hawkes process, also referred to as a self-exciting point process, is a class
of point processes where the intensity is conditioned on previous events. More
specifically, an event occurrence excites the process, temporarily increasing the
probability of more events occurring. One application of Hawkes processes is to
model occurrences of crimes, such as burglaries or shootings. The present thesis
attempts to apply the theory of Hawkes processes to shooting occurrences in
Sweden, by exploring whether a temporal Hawkes process model is suitable to
model shooting occurrences in the Police regions of Stockholm, Väst (West) and
Syd (South). The results indicate that although there is reason to believe that
shooting occurrences in the regions exhibit self-exciting tendencies, a temporal
Hawkes process model with time invariant parameters is not adequate. The
present thesis suggests that the reason for this lie in the parameters not being
constant over time. Furthermore, based on previous research it is likely that a
spatial component is needed to adequately capture the underlying process.

Keywords: Point processes, stochastic processes, statistics, conditional intensity,
crime, shootings
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Conventions and abbreviations

N0 Set of natural numbers with zero, i.e. {0, 1, 2, . . . }

E Expectation

P Probability

H History

λ Intensity

Λ Compensator

f Probability density function

F Cumulative distribution function

O Big order

Uni Uniform distribution

Exp Exponential distribution

CDF Cumulative distribution function

ECDF Empirical distribution function

PDF Probability density function

Q-Q Quantile-quantile
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1 Introduction

When performing statistical analysis on crime data, there are multiple ap-
proaches that can be considered. According to Reinhart and Greenhouse (2018),
some of the more common methods include: identifying crime ’hot-spots’, study-
ing near-repeat effects or performing regression analysis focusing on leading in-
dicators or local risk factors. However, another promising method that has
received attention in the last decade is to model crime using a Hawkes process.

The Hawkes process, also known as a self-exciting point process, is defined
by Hawkes (1971) as a type of point process wherein occurrences in the past
determine the intensity of current occurrences, with the intensity decaying with
time in accordance with some function. It can be used to create statistical
models for the occurrences of many disparate phenomena, with some examples
being earthquakes, trade orders, bank defaults and gang violence (Laub, Lee &
Taimre 2021:7). The commonality for all of these occurrences lies in all of them
exhibiting self-exciting tendencies; i.e. an event occurring increases the chance
of more occurrences during some period after the initial occurrence.

The aim of this bachelor thesis is to determine whether a Hawkes process
is suitable to model shooting occurrences in Sweden. This will be achieved by
first conducting a simulation study in order to determine a good estimation
procedure. Following this, model estimations will be made based on real data
of shooting occurrence times from the three police regions of Stockholm, Syd
(South) and Väst (West).

As previously stated, the Hawkes process has emerged as a new promising
method of statistical analysis on crime data and has thus far been utilized to
model, among others, burglaries (Mohler et al. 2011, Reinhart and Greenhouse
2018), mass shootings (Boyd & Molnyeux 2021) and gang-related violent crimes
(Park et al. 2021). However, as of yet, it has seen little application on Swedish
or even European data. A Hawkes process model of shooting occurrences in
Sweden could therefore serve to increase the understanding of the statistical
backgrounds of shootings in Sweden.

The organization of this thesis is as follows: after the introduction, a back-
ground chapter will follow wherein a description of the Hawkes-process and
summary of research of relevance to the present thesis will be given. After
the background chapter, a chapter detailing the present study itself and its re-
sults will follow. The chapter thereafter will further discuss the results and the
potential reasons behind them. The concluding chapter will summarize the re-
sults and conclusions of the present thesis, as well as give some suggestions for
potential avenues for future research.
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2 Background

The aim of this chapter is to provide an overview of the Hawkes process as well
as an outline of previous research of relevance to the present thesis. However,
in order to properly explain the Hawkes process it is necessary to have an
understanding of point process and in particular of the Poisson process. An
overview of fundamental concepts relating to point processes and the Poisson
process will thus be provided as well.

2.1 Point-processes

Point processes are a class of stochastic processes ”whose realizations consist
of point events in time or space”(Cox & Isham 1980:0). According to Cox &
Isham (1980:1) , point processes have a large variety of applications, with some
examples being the study of the time sequence of radioactive emissions, the
sequence of dates for disasters, road traffic studies and operational research.
Consider a store where customers can arrive at any time the store is open. If
we propose that the event of a customer arriving follows some kind of stochastic
process we can regard the series of arrival times as series of random variables,
giving us the point process which we define as

Definition 1 (Laub, Lee & Taimre 2021:7) If a sequence of random
variables T = {t1, t2, ...}, taking values in [0,∞), has P (0 ≤ t1 ≤ t2 ≤
...) = 1, and the number of points in a bounded region is almost surely
finite, then T is a (simple) point process.

Also of interest is the concept of the time between events, the inter-arrival time,
which can be defined as

Definition 2 (Bas 2019:9) Consider the point process T = {t0, t1, ..., tn},
where tn is the arrival time of the nth event. Then

τ1 = t1 − t0

τ2 = t2 − t1

· · ·

τn = tn − tn−1

are the 1st, 2nd, · · · , nth inter-arrival time for the point process T and
τ = τ0, τ1, ..., τn is a stochastic process with the random variables denoting
the inter-arrival times.

Note that: tn = τ1 + τ2 + · · ·+ τn
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Finally, instead of considering the sequence of variables (arrival times), we
may instead focus on the number of arrivals, i.e. the count, which brings us to
the counting process:

Definition 3 (Laub, Lee & Taimre 2021:7) A counting process is a
stochastic processN(t) : t ≥ 0 taking values in N0 that satisfiesN(0) = 0, is
almost surely finite and is a right-continuous step function with increments
of size +1. Further, denote by (H(t) : t ≥ 0) the history of the arrivals
up to time t. (Strictly speaking H(·) is a filtration, that is, an increasing
sequence of σ-algebras.)

As apparent from the above definitions, one might consider the point-process,
the set of inter-arrival times, and the counting process to be three different
realisations of the same underlying process, where the point process is defined
as the total time until arrival n, the counting process as total number of arrivals
until time t, and the inter-arrival time as the time between the nth and (n−1)th
arrival. According to (Laub, Lee & Taimre 2021:11) one may characterise a point
process by specifying the distribution function of the next arrival conditional
on the past, defining the following conditional CDF (also referred to as the
conditional arrival function), and joint PDF.

F (t|H(u))) =

∫ t

u

P (Tk+1 ∈ [s, s+ ds]|H(u)) ds =

∫ t

u

f(s|H(u)) ds (1)

f(t1, t2, ..., tk) =

k∏
i=1

f(ti|H(ti−1)) (2)

However, as it is rather cumbersome to have to continually specify that the
functions are conditional on H(·) it is customary to denote this by a superscript
asterisk (Laub, Lee & Taimre 2021:11). F (t|H(u))) will thus be abbreviated as
F ∗ and f(t|H(u))) as f∗ .

As the conditional arrival distribution is difficult to work with, it is gener-
ally more common to characterise a point process by its conditional intensity
function(Laub, Lee & Taimre 2021:11-12).

Definition 4 (Laub, Lee & Taimre 2021:11-12) Consider a counting
process N(·) with associated histories H(·). If a (non-negative) function
λ∗(t) exists such that

λ∗(t) = lim
h↓0

E[N(t+ h)−N(t)|H(t)]

h
(3)

which only relies on information of N(·) in the past (that is, λ∗(t) is H(t)-
measurable), then it is called the conditional intensity function of N(·).

7



Also of importance is the integrated conditional intensity function, which is
utilized in parameter estimation and evaluating goodness-of fit. It is defined as

Definition 5 (Laub, Lee & Taimre 2021:13) For a counting process
N(·) the non-decreasing function

Λ(t) =

∫ t

0

λ∗(s) ds (4)

is called the compensator of the counting process.

2.2 The Poisson Process

Having defined the point process we will now move to discuss the perhaps defin-
ing example of one, the Poisson process. As previously stated, the Poisson
process is of particular importance among all the point processes. More specif-
ically, it can be said to play a similar role to that of the normal distribution
in the study of random variables, while at the same time being perhaps the
simplest point process (Cox & Isham 1980:45). There are several ways to define
the Poisson process but three common equivalent ways to define it are: via its
intensity function λ(t):

Definition 6 (Gut 2009:221-222) A Poisson process is a counting pro-
cess {N(t), t ≥ 0} with independent, stationary, Poisson-distributed incre-
ments. Also N(0) = 0. In other words,

1. N(0) = 0

2. the increments {N(tk) −N(tk−1), 1 ≤ k ≤ n} are independent ran-
dom variables for all 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn and all n;

3. There exists λ > 0 such that

N(t+ s)−N(s) ∈ Po(λ(t− s)), for 0 ≤ s ≤ t

The constant λ i called the intensity (or rate), of the process.

Note that by the law of large numbers N(t)/t
p−→ λ as t → ∞, meaning that the

intensity measures the frequency or density of events (Gut 2009:222).
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Another equivalent definition of the Poisson process is through its incre-
ments:

Definition 7 (Ross 2014:314) The counting process {N(t), t ≥ 0} is
said to be a Poisson process having rate λ, λ > 0, if

1. N(0) = 0

2. The process has stationary and independent increments

3. P [(N(h) = 1] = λh+ o(h)

4. P [N(h) ≥ 2] = o(h)

Finally, one may define the Poisson process by the distribution of its inter-arrival
times:

Definition 8 (Gut 2009:231) Let {N(t), t ≥ 0} be a counting process
with N(0) = 0, let t1 be the time of the first occurrence, and let tk be the
time between the (k−1)th and the kth occurrences for k ≥ 2. If {tk, k ≥ 1},
are independent Exp1(θ)-distributed random variables for some θ > 0, then
N(t) is a Poisson process with intensity λ = θ−1.

The basic Poisson process that has been thus defined is also sometimes referred
to as the homogeneous Poisson process, due to the fact that its intensity is
constant. However, when the we allow the intensity to be a function of t, we
get the inhomogeneous Poisson process, which is defined as:

Definition 9 (Gut 2009:231) The counting process {N(t), t ≥ 0} is
said to be a inhomogeneous Poisson process with intensity function λ(t),
t ≥ 0, if

1. N(0) = 0

2. {N(t), t ≥ 0} has independent increments

3. P [N(t+ h)−N(t) ≥ 2] = o(h)

4. P [N(t+ h)−N(t) = 1] = λ(t)h+ o(h)

As can be seen from the above definition, the homogeneous Poisson process
differs from the homogeneous in that it does not have stationary increments.

1PDF: f(x) = 1
θ
e−x/θ
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2.3 The Hawkes process

Now that sufficient concepts relating to point processes have been defined we
will move on to the point process model that is the subject of this thesis, the
Hawkes process,

2.3.1 Definition

As stated in the introduction, the Hawkes process is named after its originator
Alan G. Hawkes (1971:84), who described a self-exciting process wherein ”the
current intensity of events is determined by events in the past”, referring to it
as a self-exciting point process with conditional intensity function

λ∗(t) = µ+

∫ t

−∞
g(t− u) dN(u) (5)

Recall the definition of the intensity function, in Definition 4. A self-exciting
point process is then a process wherein an arrival causes the conditional intensity
function to increase (Laub et al. 2015). Subsequently, the function g, needs to
be strictly positive in order for excitation to occur, while also decaying in order
to avoid an exploding process. While Hawkes (1971) only considered the case of
excitation one may naturally also consider the case of a self-inhibiting process,
wherein an arrival causes the conditional intensity to decrease (Laub, Lee &
Taimre 2021:111). We thus define the Hawkes-process as

Definition 10 (Laub, Lee & Taimre 2021:16) A simple point process
with conditional intensity function

λ∗(t) = µ+

∫ t

0

g(t− u) dN(u) (6)

with background rate µ > 0 and excitation function (or kernel) g(·) ̸= 02 is
a Hawkes process.

Furthermore if we let {t1, t2, ...} represent the observed sequence of past occur-
rences we get the equivalent form for the conditional intensity function

λ∗(t) = µ+
∑
ti<t

g(t− ti) (7)

Note that while µ is often assumed to be constant it might also itself be a
function of t which turns equation (7) into the following

λ∗(t) = µ(t) +
∑
ti<t

g(t− ti) (8)

2In the case of g(·) = 0, the process is a homogeneous Poisson process
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2.3.2 The excitation function

Having now defined the Hawkes process we will proceed to describe some com-
mon choices for its excitation function. The exponential kernel is the most
common and is also the shape that was originally considered by Hawkes (1971).
With exponential decay the excitation function is defined as

g(t) = αe−βt (9)

with α > 0 representing the increase in intensity after an arrival and β >
0 representing the subsequent rate of exponential decay. This gives us the
following conditional intensity function

λ∗(t) = µ+

∫ t

0

αeβ(t−u) dN(u) = µ+
∑
ti<t

αe−β(t−ti) (10)

another common choice for Hawkes processes is the power law kernel defined as

g(t) =
k

(c+ t)P
(11)

and is a commonly used for aftershock models for earthquakes (Laub, Lee &
Taimre 2021:17)

2.3.3 Stationarity

When describing the stationarity requirements of a Hawkes process it is gener-
ally simpler to view it as a branching process, also referred to as the immigration-
birth representation. Laub, Lee & Taimre (2021:18) explains the representation
by likening it to a country where inhabitants can arrive as immigrants or by
birth. The arrival of immigrants forms a homogeneous Poisson process with
rate λ. Furthermore, each immigrant has the potential of generating births,
whose arrivals in turn follow an inhomogeneous Poisson process. By viewing
the Hawkes process as a branching process we can utilize the branching ratio
n∗ which represents the expected number of births generated by an immigrant
(Laub, Lee & Taimre 2021:18-19). It is defined as

n∗ =

∫ ∞

0

g(t) dt . (12)

The branching ratio is important in that it determines the stability of the
Hawkes process. Specifically the stationarity requirement for a Hawkes pro-
cess is n∗ ∈ (0, 1).3 In the case of the exponential kernel the branching ratio
is

n∗ =

∫ ∞

0

αe−βt dt =
α

β
(13)

For an Hawkes process with exponential kernel to be stationary it is thus nec-
essary that α < β.

3For proof, see Laub, Lee & Taimre 2021:18-25
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2.3.4 Extensions of Hawkes process models

Having now described some important characteristics of the Hawkes process we
will conclude the section with a brief description of some common extensions.
While the process as described by Hawkes (1971) only applied to temporal
Hawkes processes many phenomena also exhibit self-exciting tendencies in the
spatial dimension. In order to correctly capture the self-exciting behaviour of
many processes it is thus necessary to extend the model to include a spatial
component. The resulting spatio-temporal Hawkes process has the following
conditional intensity function

λ∗(s, t) = µ(s) +
∑
i:ti<t

g(s− si, t− ti), (14)

where {s1, s2, . . . , sn} denotes the spatial location of the arrivals (Reinhart
2018). Some applications for spatio-temporal Hawkes processes will be described
in the next section. Another important extension of the Hawkes process is the
marked Hawkes process4, wherein features of the arrivals other than their obser-
vation times (or locations in the spatio-temporal case) are included. A typical
example is including the observed magnitudes as marks when modelling earth-
quake arrivals (Reinhart 2018). Methods for parameter inference and evaluating
goodness-of-fit are given in the methodology section 3.3.

4There are many types of marked point process models and they are thus not a feature
specific to Hawkes processes. See Cox & Isham 1980:132-142 for a detailed explanation of
marked point processes.
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2.4 Previous studies

The following section consists of an overview of previous studies involving Hawkes
processes, with focus on those utilizing crime data. In addition, a brief summary
of two previous studies on crime data in Sweden is included.

As explained in the introduction, the Hawkes process was first described in
Hawkes 1971, then referred to as a self-exciting process, a name that is still used
today. It has since then seen a variety of applications. Reinhart (2018) sug-
gests that four major applications of Hawkes processes are: earthquake models,
crime forecasting, epidemic infection forecasting, and events on networks. In
the present thesis only the first two will be described, and in case of earthquake
models only briefly. It is therefore suggested to peruse Reinhart 2018 for a more
in-depth view.

Due to the clustering behaviour of earthquake occurrences with main shocks
followed by aftershocks, they were from early on (e.g. Adamopoulos 1976) sug-
gested as a potential application for Hawkes processes. However, the most im-
portant contribution is the Epidemic Type Aftershock-Sequences (ETAS) model
formulated by Ogata (1988,1996), which models the conditional intensity of af-
tershock activity of magnitude M0 and larger as:

λ∗(t) = µ+
∑
ti<t

K0

(t− ti + c)p
· eα(Mi−M0) (15)

where the parameters K0, α, c and p are constants. This initial temporal model
was subsequently expanded to also include a spatial component, which gives us
the spatio-temporal ETAS model (See Ogata 1996, 1999). The ETAS model
for aftershocks has been further developed throughout the decades and has
been an important influence on modelling self-exciting processes even outside of
seismology (Reinhart 2018).

As with earthquakes, crime exhibits many characteristics that makes mod-
elling it as some form of self-exciting process intuitive. It has been observed that
there is a phenomenon of repeat victimization, wherein victims of crimes have
a high risk of being victimized again, and that this risk is the greatest in the
immediate period after victimization (Farrell 1995). This repeat victimization
risk has also been observed to be ”contagious”, where for example houses in the
near vicinity of a burglarized house have an increased risk of also being burglar-
ized. This ”contagiousness” is known as the near-repeat hypothesis (Townsley,
Homel & Chaseling 2003). Similarly, Ratcliffe & Rengert (2008), studied the
spatio-temporal patterns of shootings in Philadelphia and found that shootings
occurring as part of a lovers triangle and disputes during illegal activities car-
ried an elevated risk of retaliating shootings from the victim or someone close
to them occurring nearby in a week or two after the initial shooting, i.e. near
repeats. Furthermore, it has also been shown that places that have a high risk of
crime, i.e. hot-spots, can be divided into chronic hot-spots that always carry an
elevated risk, and temporary hot-spots which persist for only a shorter period as
a result of a flare-up (Gorr & Lee 2015). The near-repeat effects, as well as the
possible division of the process into a chronic background part and a temporary
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flare up part are all characteristics that would suggest the Hawkes process as a
potential model for modelling crime occurrences.

Mohler et al. (2011) observed these above mentioned characteristics and
noted that the resulting clustering patterns were similar to that of seismologi-
cal events. They (2011) therefore utilized the extended spatio-temporal ETAS
model to construct a self-exciting model of Los Angeles residential burglaries,
opting to utilize non-parametric methods to avoid having to specify the under-
lying parametric structure. Trough this study, Mohler et al. (2011) were able
to show that the seismological approach may also be used on crime data. In
Mohler 2014, a parametric approach with added leading indicator events to the
model is instead utilized to estimate a mixed self-exciting point process model
of gun crime in Chicago. With this model Mohler (2014) was able to generate
predictive hot-spot maps that were more accurate than traditional methods.
Reinhart and Greenhouse (2018) further extended Mohler’s (2014) model, opt-
ing to also include spatial covariates. They (2018) noted that statistical models
of crime focusing purely on either the spatial or temporal aspects have a ten-
dency of confounding, noting that this problem can also be extended to other
self-exciting processes.

Finally, Park et al. (2021) estimated a Hawkes process model for gang-
related violent crimes in Los Angeles, also including spatial covariates, but opt-
ing for a non-parametric method to estimate the background rate. By separat-
ing the events into those affected by the Gang Reduction Youth Development
(GRYD)-program and those not affected they were able to evaluate the pro-
gram’s effect on the retaliation rate. This shows that the Hawkes process model
has the potential to be utilized in many different ways in crime modelling, and
is thus not simply a new method for generating predictive hot spot maps.

Moving on to studies focusing on Sweden, the Hawkes process has as of
yet not been applied to Swedish crime data. There are, however, some studies
focusing on near-repeat effects. Sturup et al. (2018) analysed shootings in
the cities of Stockholm, Gothenborg and Malmö during the period of 2011 -
2015 and found that near-repeat patterns could be observed in all three cities,
noting that the pattern was stronger in Stockholm and Malmö, and weaker
in Gothenborg. Similarly, Sturup, Gerell & Rostami (2020) conducted a near-
repeat study of hand grenade detonations and shootings together. They found
that hand grenade detonations exhibited similar near-repeat patterns to that of
shootings, but that no improvements to the near-repeat analysis of shootings
were made by adding the hand grenade detonations to the model. They (2020)
note that this suggests that although both crimes are heavily connected to
criminal groups, they only partially share spatio-temporal patterns.
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3 Study

3.1 Purpose

The purpose of this study is to evaluate whether a temporal Hawkes Process
model can be utilized to model shooting occurrences in Sweden. The research
question are as follows:

1. Is a temporal Hawkes process a suitable model for shooting occurrences
in Sweden

2. Are the parameters constant or do they vary with time?

3. How does the appropriateness of the model and its resulting estimations
differ between different Police regions?

3.2 Data

The data for the present study consist of confirmed shootings in Sweden during
the period of January 1st 20185 until September 2nd 2023. According to the
Swedish Police6 ”a confirmed shooting is an incident wherein projectiles have
been discharged from a firearm, and tangible evidence thereof is discernible
in the form of bullets, casings or damage to materials or individuals arising
from the discharge. Alternatively, there must be more than one independent
eyewitness to the shooting. Moreover, the shooting must be deemed unlawful
and not obviously accidental.”

The information provided about each confirmed shooting are as follows: Ref-
erence number, date of incident, number of deaths, number of wounded, police
region, police district (or local police district), and geographical coordinates in
SWEREF 997 rounded to approximately 100 meters. The total number of in-
cidents recorded amounted to 3807. However, incidents with several plaintiffs
were recorded as multiple incidents with the same reference number. As these
incidents should be considered to be the same shooting they were combined,
resulting in a total of 2397 incidents. Table 1, on the following page, displays
some descriptive statistics for Sweden as a whole, as well as for the three most
populous police regions8 of Stockholm, Väst (West) and Syd (South).

5The actual data set includes shootings from 2016 but according to the former police
commissioner Lars Ojelind the data is considered to be of lower quality before 2018 (SVT, no
date) and it was therefore excluded.

6Polisen, no date-a
7See Lantmäteriet, no date
8See Polisen no date-b for a description of the organization of the Swedish police, including

its police regions.
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Table 1: Shooting occurences in Sweden

Days between shootings

Region N. of shootings Mean St.d Min Max

Sweden 2088 1.00 1.12 0 11
Stockholm 725 2.89 2.98 0 21
Väst 279 7.45 8.27 0 51
Syd 422 4.95 5.82 0 35

As explained in 2.4, there are intuitive reasons to use Hawkes processes to
model shooting occurrences, in that retaliating shootings in the period shortly
after the initial occurrence results in the arrivals following a clustering pattern.

Figure 1, below, displays the arrival times of shootings in each of the three
police regions, during the period of June to December 2021. As can be seen all
regions seem to display a tendency of clustering, an indication that a Hawkes
process might be an appropriate model for the arrivals.

Figure 1: Arrival times of shooting occurrences during June-December 2021, by
police region

It is also of relevance to ascertain whether the arrivals seem to follow some
kind of underlying trend. Figure 2, 3, and 4, on the following pages, display the
observed shooting occurrences aggregated by month, weekday and year for the
three police regions. Note that the 2023 data was excluded as it would otherwise
skew the monthly data due to it not including the whole year.
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Figure 2: Shooting occurrences in the Stockholm police region 2018-2022, by week-
day, month and year

Figure 3: Shooting occurrences in the Väst police region 2018-2022, by weekday,
month and year
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Figure 4: Shooting occurrences in the Syd police region 2018-2022, by weekday,
month and year

As can be seen, all of the regions seem to display an underlying seasonal
trend, with more shootings occurring during the warmer months. Furthermore
it is clear that the numbers of shootings per year is not constant, with Stockholm
in particular showing a clear spike in 2020. Finally the regions all have differing
patterns when it comes to day of the week.

3.3 Methodology

The following section provides a brief overview of the statistical methods that
will be utilized in the study. Statistical analysis was performed in R version
4.3.2. The packages that were utilized are described in the bibliography.

3.3.1 Estimation methods

Maximum Likelihood: Maximum likelihood is one of the most widely used
methods for parameter inference in frequentist statistics. It is beyond the scope
of the present thesis to provide a rigorous explanation of the theory under-
pinning maximum likelihood estimation, but generally it relies on numerically
maximizing the log-likelihood function9. While Bayesian methods are becom-
ing increasingly more common for inference on Hawkes processes (particularly in
the multivariate case), the frequentist approach of parameter estimations using

9See Millar 2011 for a detailed overview of the theory and practise of inference with max-
imum likelihood.
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maximum likelihood is still the most popular approach. The likelihood function
for the temporal Hawkes process is derived from that of a simple point process,
which is given by the following theorem

Theorem 1 (Laub, Lee & Taimre 2021:38) LetN(·) be a simple point
process with conditional intensity λ∗(·), and compensator Λ(·). If we ob-
serve all arrival times over the time period [0, T ], denoted {t1, . . . , tn(T )},
then the likelihood function L for N(·) is

L =

n(T )∏
i=1

λ∗(ti)

 e−Λ(t) (16)

and the log-likelihood is of the form

ℓ =

n(T )∑
i=1

log (λ∗(ti))− Λ(T ) (17)

In the case of a Hawkes process with exponential kernel, the likelihood function
is then given by Equation (18), below

ℓ =

n∑
i=1

log

µ+ α

i−1∑
j=1

e−β(ti−tj)

− µT − α

β

n(t)∑
i=1

[
1− e−β(T−ti)

]
(18)

This equation is problematic as it has a complexity of O(n(T )2). It can
however be simplified to a complexity of O(n(T )), if a recursive approach is
utilized (Laub, Lee & Taimre 2021:41).

As explained in 2.3, the Hawkes process is a counting process model on a
continuous measure. However, in the case of real life count data, the actual
event times are often not available, with the data instead being collected into
bins of fixed sizes (such as hours, days, or months), which is also the case for
the data used in the present thesis. As a consequence, estimation procedures of
point processes are no longer applicable. One way to handle this is to ”scram-
ble” the data, i.e to add some noise, typically by adding a random simulations
from the Uniform distribution to each arrival time in order to ”scramble” their
position in the bins (Cheysson & Lang 2023, Meyer, Elias & Höhle 2021). The
resulting arrival times are then sorted from smallest to largest, upon which
maximum-likelihood estimation is performed as if the data was originally con-
tinuous. However, this naturally assumes that bin-positions of the occurrences
prior to binning were uniformly distributed, which may not actually be the case.
The ramifications of this will be further discussed in Chapter 4.
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Whittle likelihood While the above estimation procedure is one method
to deal with the problem of binned arrival times, another method proposed by
Cheysson and Lang (2022) is to utilize log-spectral, or Whittle, likelihood. They
found that for an Hawkes process with exponential kernel and small bin sizes,
Whittle likelihood estimation fared almost as well as the MLE from continuous
data.

Sliding Windows: The sliding window technique is an algorithm wherein
a ordered sequences of events (such as a count sequence or time series) are
categorized into active and expired elements. The window of the sliding window
consist of the currently active elements. Operations are performed on the active
elements after which the window is slid along the line, expanding to include the
next expired element, and in the case of a window with fixed size discarding
the last active element in the previous window (Braverman 2007). While there
are existing estimation methods for estimating time-variant Hawkes parameters
they come with the caveat that they require an a priori assumption about their
underlying function. By utilizing a sliding window approach and treating the
parameters as constant we are able to capture the time-variant nature of the
parameters without depending on prior assumptions. This approach is utilized
in Godoy et al. 2016, where simple local likelihood estimation is used to estimate
time variant Hawkes parameters. While their approach utilizes weights to create
truly smooth windows, due to having to rely on already existing estimation
packages, the present thesis will solely utilize overlapping windows, where each
window is estimated as if it were an independent process.

3.3.2 Goodness-of-fit

Poisson transformation: The most important tool in determining the goodness-
of-fit of an estimated Hawkes process is to transform it to an unit rate Poisson
process using the compensator defined in Definition 5 and the random time
change theorem, which is defined as follows:

Theorem 2 (Laub, Lee & Taimre 2021:79) Let {t1, t2, . . . , tk} be a re-
alisation over time [0, T ] from a point process with conditional intensity
function λ∗(·). If λ∗(·) is positive over [0, T ] and Λ(T ) < ∞ almost surely,
then the transformed points {Λ(t1),Λ(t2), . . . ,Λ(tk)} form a Poisson pro-
cess with unit rate.

Thus, by utilizing the compensator to transform the estimated process into
a Poisson process, we can ascertain the goodness of fit using the same method
as with a Poisson process.
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Kolmogorov-Smirnov test: The Kolmogorov-Smirnov (KS) test is a test
commonly used to test whether a sample is derived from a specific parametric
distribution F with the following null and alternative hypotheses (Massey 1951):

• H0 : Sample belongs to F

• HA : Sample does not belong to F

In addition to the KS-test, graphical comparisons between the ECDF and CDF
will also be utilized.

Ljung-Box test: The Ljung-Box (LB) test is a goodness-of-fit test for whether
time series observation are autocorrelated at the mth lag. The null and alter-
native hypotheses are as follows:

• H0 : The observations are independent

• HA : The observations exhibit auto-correlation

In the present thesis, the LB-test is mainly used to test for independent inter-
arrival times in a suspected Poisson process. See Ljung & Box 1978 for a more
detailed explanation of the test.

3.4 Results

3.4.1 Simulation Study

Before estimating parameters from the actual data of shooting occurrences, a
simulation study was conducted in order to compare different methods for esti-
mation. The simulation study consists of three parts: In the first part Hawkes
processes are generated and then estimated using maximum likelihood estima-
tion. In the next part, the resulting simulations are binned and estimations are
made based upon that binned data using the methods discussed in 3.3. Finally,
in the last part a sliding window approach is explored in order to determine
whether it can be used to estimate time variant parameters.

As mentioned above, the first part of the simulation study consisted of esti-
mating the parameters of simulated Hawkes processes using maximum likelihood
estimation. 100 simulations were generated from two different Hawkes process
with exponential kernel, H1 and H2, with parameters {µ, α, β} = {0.36, 0.5, 1.2}
and {µ, α, β} = {0.7, 0.1, 0.8}. The maximum time horizon for the simulation
was set to 2000. A 95% confidence interval for the resulting parameter estima-
tions for each simulation are plotted in Figure 5 and Figure 6, on the following
page.

21



Figure 5: A 95% confidence interval for parameter estimations from 100 simulations
of H1

Figure 6: A 95% confidence interval for parameter estimations from 100 simulations
of H2
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Table 2: MLE Estimations from H1 & H2

Parameter Coverage St.d Mean Bias

H1
µ 94% 0.0231 -0.0004
α 97% 0.0583 -0.0014
β 94% 0.1833 -0.0253

H2
µ 91% 0.0463 0.0021
α 87% 0.0489 -0.0005
β 85% 0.9910 -0.1616

Table 2, above, describes descriptive statistics regarding the parameter es-
timations. The estimations from H1 generally show low bias and coverage is
close to what one would expect. In the case of H2, however, coverage and bias
is generally worse, which most likely stems from α being smaller. Since the
Hawkes process approaches a Poisson process when α approaches 0, it is nat-
ural that the estimation procedure becomes more difficult when α is small. In
particular the algorithm were sometimes unable to generate standard errors for
β when α was estimated to be very close to 0. This is once again not very
surprising as the existence of β depends on α being non-zero. As can be seen in
6, some confidence intervals for α also go below 0, which would make the pro-
cess self-inhibiting rather than self-exciting. However, as the algorithms used
for estimating the parameters do not actually allow for estimations less than 0,
we ought to not consider these as actual confidence interval boundaries. Also
note that while some confidence intervals for β in the same figure also go below
0, such a process would have an exponentially increasing intensity and would
therefore explode.

As discussed in the previous chapter, data of event times are often aggre-
gated to some unit, which causes problems when performing parameter esti-
mation. Consequently, two potential methods to handle this were proposed:
”scrambling” the data by adding uniform noise or estimating the parameters
by Whittle likelihood. In order to explore the efficiency of these two methods,
the resulting simulations of H1 and H2 above were aggregated into bins of size
1, representing ”days”. Following this, noise in the form of a Uni(0, 1) random
variable were added to each observation. The resulting arrival times were then
sorted and parameters estimated using the same method of maximum likelihood
estimation as above. Whittle likelihood estimation was also performed on the
binned event times without added noise. The resulting estimations from the
ML with noise procedure is shown in Figure 7 and 8, while the estimations from
Whittle likelihood are shown in Figure 9 and 10 on the following two pages.
Note, that the package hawkesbow used to perform Whittle likelihood estima-
tion does not provide standard errors. Confidence intervals could therefore only
be calculated for the parameters estimated with maximum likelihood.
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Figure 7: A 95% confidence interval for maximum likelihood parameter estimations
from 100 binned simulations of H1

Figure 8: A 95% confidence interval for maximum likelihood parameter estimations
from 100 binned simulations of H2
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Figure 9: Whittle likelihood parameter estimations from 100 binned simulations of
H1

Figure 10: Whittle likelihood parameter estimations from 100 binned simulations of
H1
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Table 3: ML Estimations from binned simulations of H1 & H2

Parameter Coverage St.d Mean Bias

H1
µ 95% 0.0229 0.0044
α 59% 0.0435 0.0756
β 65% 0.1173 0.1848

H2
µ 91% 0.0467 0.0041
α 84% 0.0418 0.0119
β 83% 0.6593 -0.0047

Table 4: Whittle likelihood estimations from binned simulations of H1 & H2

Parameter St.d Mean Bias

H1
µ 0.0628 -0.0188
α 0.0447 0.0942
β 0.4212 0.0047

H2
µ 0.1397 0.0309
α 0.0951 -0.0524
β 2.2918 -0.7481

Descriptive statistics regarding the estimations are provided in Table 3 and
4, above. Unsurprisingly, the mean bias is generally higher for the parameters
estimated from the binned data compared to those in Table 2. As for the two
different methods utilized, with the exception of β in H1, the mean bias is lower
for the estimations performed with maximum likelihood. Similarly the variance
is also lower for the maximum likelihood estimated parameters. Furthermore
returning to the figures, both methods seem to systematically underestimate
α for H1, with the maximum likelihood method also systematically underesti-
mating β in the same model. However, while the bias in the Whittle likelihood
looks less systematic for some parameters, many of the biased estimations are
very large, making the estimations from the Whittle method ultimately more
biased.

Finally, a sliding window approach was attempted in order to explore whether
it could be used to estimate time variant parameters, first from a continuous pro-
cess with maximum likelihood followed by a binned process, once again compar-
ing maximum likelihood with added noise and Whittle likelihood. 100 simula-
tions were run from which parameter estimations were made on sliding windows.
The simulated Hawkes process had the same values for {α, β} = {0.5, 1.2} as
H1. However, in contrast to H1 a time dependent intensity function was chosen
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where:

µ(t) = 0.15 + 0.1

(
1− cos

(
2π

0.5T
t

))
(19)

T refers to the maximum time horizon for the simulation which is as before
2000. As with the previous simulation procedures, 100 simulations were gener-
ated. However, instead of estimating the parameters from all data points in a
sample the estimation procedure was applied to a symmetric sliding window of
size 71. Rolling quantiles were then computed for the resulting estimates from
all samples.

Figure 11: Rolling quantiles of sliding window estimates from 100 simulations of a
Hawkes process with time variant µ

Figure 11 above show the resulting estimations (in gray), and respective
rolling quantiles of maximum likelihood estimations from 100 continuous simu-
lations. The sliding window approach is clearly able to capture the time variant
pattern of µ(t) while also keeping α and β approximately constant. The estima-
tions do however seem biased with the 2nd quartile being consistently situated
above the true value.

The resulting estimations from the binned simulations are shown in Figure
12 and 13, on the following page.

27



Figure 12: Rolling quantiles of sliding window estimates with maximum likelihood
with added noise from 100 binned simulations of a Hawkes process with time variant
µ

Figure 13: Rolling quantiles of sliding window estimates with Whittle likelihood
from 100 binned simulations of a Hawkes process with time variant µ

As with the previous part of the study, parameter estimations with maximum
likelihood with added noise seem to perform better than those using Whittle
likelihood. In particular, the latter has difficulty differentiating the parameters
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from one another, resulting in much of the variation in µ(t) being miss-attributed
to β. Furthermore, although the maximum likelihood estimations seem more
consistent, individual estimations may be very far from the true value. While the
sliding window estimations may on average be able to capture the time variant
effects reasonably well, it is likely that the estimation in any individual window
may be very far from the true value. Overall, the results of the simulation study
indicate that maximum likelihood with added noise generates more consistent
estimations than those generated with Whittle likelihood. As a consequence,
the estimations from real data in the next section will utilize the former method.

3.4.2 Shooting occurrences

In the following section, parameter estimation of Hawkes processses with an
exponential kernel will be made from data of shooting occurrences in the po-
lice regions of Stockholm, Väst and Syd, as explained in 3.2. The estimation
procedure is as follows: first we control for the case that the process might also
be described by a simple Poisson process. This is accomplished by three dif-
ferent methods: By comparing the empirical distribution function (henceforth,
ECDF) of the inter-arrival times to that of an exponential distribution function
with the mean inter-arrival time, τ̄ , as parameter, by performing a Kolmogorov-
Smirnov test with the same distribution as the null hypothesis and by testing
the assumption of independent inter-arrival times (see 2.2) with a Ljung-Box-
test. After controlling for the simple Poisson process, time invariant parameter
estimations will be performed using the whole data set for each region, with
the method of choice being maximum likelihood estimation with added noise,
described in 3.3. Goodness-of- fit for the model is then evaluated using methods
discussed in the same section. Finally, a sliding window approach, as performed
in 3.4.1, is utilized in order to estimate time variant parameters. The size of the
window is 71, as in the simulation study.

Stockholm As stated, the first region to be explored was the Stockholm re-
gion. Figure 14, on the following page, displays the ECDF of the inter-arrival
times in blue and the theoretical CDF of the exponential function previously
discussed, in red. As can be seen the two functions overlap quite heavily, making
it not unthinkable that the arrival times of the shootings might be following a
simple Poisson process.
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Figure 14: ECDF vs Hypothetical exponential CDF for Stockholm inter-arrival times

While the graphical analysis gave indications that the inter-arrival times
follow an exponential distribution, thus giving credence to the potential of the
arrival times following a simple Poisson process the same was not true for the
KS and LB tests. The tests resulted in p-values amounting to < 0.0001 and
0.025, respectively, meaning that the null hypotheses for both tests may be
rejected. There are thus indications that evaluating another model than the
simple Poisson process for the inter-arrival times may be worthwhile.

Table 5 below displays the parameter estimations for the time-invariant
Hawkes model. As can be seen the standard errors for both α and β are almost
the same (or in the case of β larger) than the estimations themselves. As a
consequence confidence intervals for α will include 0, meaning that the case of
a simple Poisson process cannot be discounted.

Table 5: Parameter estimations for the Stockholm region

Estimate Std. Error

µ 0.3282722 0.01822392
α 0.0745741 0.05927210
β 1.4317628 1.70787092

Having established that the parameter estimations are not the most indica-
tive of a Hawkes process, we move on to evaluate their goodness-of-fit. Plots of
the transformed inter-arrival times are displayed in Figure 15, on the following
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page. As can be seen there is a prominent gap in the bottom left between the
occurrence time of actual events and compensator. However the Q-Q-plot ad-
here rather well to the theoretical quantiles and no trend of auto-correlation is
visible.

Figure 15: Transformed inter-arrival plots of the time invariant Stockholm model

KS and LB tests of the transformed inter-arrival times resulted in p-values
of 0.5628 and 0.04455, respectively. Consequently, while the null hypothesis of
the transformed inter-arrival times being exponentially distributed can not be
rejected, there is a possibility of auto-correlation. The LB test is thus another
indication that a time invariant Hawkes process is not an appropriate model for
the Stockholm data.

Figure 16, 17, 18, on the following page, show sliding window estimations of
the parameters with rolling quantiles. Note that as the difference between the
minimum and maximum estimations were very large for some of the parameters,
parts of the estimations are not visible.
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Figure 16: Rolling quantiles of sliding window estimates of µ from the Stockholm
data

Figure 17: Rolling quantiles of sliding window estimates of α from the Stockholm
data

Figure 18: Rolling quantiles of sliding window estimates of β from the Stockholm
data
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Regarding the sliding window estimates, µ clearly shows signs of some sort
of seasonal or cyclical trend. Estimations for both α and β are more erratic
in comparison but also seem to possibly display some kind of cyclical pattern,
particularly in the case of α

Overall, these results indicate that the temporal Hawkes process might not
be an appropriate model for the Stockholm data.

Väst Turning now to Väst, we once again begin by evaluating whether the
arrival times might follow a simple Poisson process. Figure 19 show that, as
with the Stockholm data, it is not clear that the inter-arrival times are not
exponentially distributed, meaning that it is difficult to reject the hypothesis
of a simple Poisson process from just graphical analysis alone. However, unlike
the Stockholm data there is a prominent gap in the bottom left of the figure.

Figure 19: ECDF vs Hypothetical exponential CDF for Väst inter-arrival times

KS and LB tests resulted in p-values of < 0.0001 and 0.459, respectively.
While the KS test indicates that one should reject the hypothesis of exponen-
tially distributed inter-arrival times, it is contrary to Stockholm not possible to
reject the null hypothesis of them being independent.

Parameter estimations for a time invariant Hawkes model are described in
Table 6, on the next page.
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Table 6: Parameter estimations for the Väst region

Estimate Std. Error

µ 0.132014 0.008041673
α 0.582396 0.439390797
β 29.679715 20.111051228

As with Stockholm, the standard errors for α and β are once again large
enough to result in insignificant parameter estimations at the 5% level.

Plots for goodness-of-fit are shown in Figure 20, below. The actual events
seems to generally be above what one would expect from the compensator.
Furthermore, unlike Stockholm, the upper observed quantiles have a tendency to
drift away from the expected. However, there is still no sign of auto-correlation
visible.

Figure 20: Transformed inter-arrival plots of the time invariant Väst model

KS and LB tests on the transformed inter-arrival times resulted in p-values of
0.087 and 0.462, respectively. In contrast to Stockholm, neither null hypothesis
can thus be rejected. It is however notable that the test results are the opposite
of those of Stockholm where the larger p-value was that of the KS test.

Sliding window estimates for the parameters are shown in Figure 21, 22 and
23, on the following page.
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Figure 21: Rolling quantiles of sliding window estimates of µ from the Väst data

Figure 22: Rolling quantiles of sliding window estimates of α from the Väst data

Figure 23: Rolling quantiles of sliding window estimates of β from the Väst data
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In contrast to Stockholm, µ does not show signs of following a cyclical trend
during the observed time period. There is, however, clearly some kind of trend,
with the intensity following a concave shape. Estimates for α and β are not as
erratic as for Stockholm, with α in particular looking rather constant after day
500. β, however, shows large spikes in the beginning and end of the observation
period.

Overall, although the model has less issues than that of Stockholm, the
results still indicate that a temporal Hawkes model might not be suitable to
model the arrival times for Vast.

Syd Finally, Syd will be evaluated in the same way as Stockholm and Väst,
starting by evaluating whether the inter-arrival times can be described by a
simple Poisson process. Figure 24 below illustrates the ECDF and exponential
CDF for the inter-arrival times. In contrast to Stockholm and Väst, the ECDF
is clearly misaligned with the CDF providing a clear indication that the inter-
arrival times are not exponentially distributed.

Figure 24: ECDF vs Hypothetical exponential CDF for Syd inter-arrival times

KS and LB tests resulted in p-values of < 0.0001 and 0.3316. We can
therefore not reject the null hypothesis for the latter test, meaning that the
possibility of independent inter-arrival times cannot be rejected.

Parameter estimations for a time-invariant Hawkes model are described in
Table 7, on the next page.
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Unlike Stockholm and Väst, the resulting standard errors are not as large rel-
ative to the coefficients themselves, resulting in all parameters being significant
on a 5%-level.

Table 7: Parameter estimations for the Syd region

Estimate Std. Error

µ 0.1568974 0.01354471
α 0.1033079 0.03058870
β 0.4575279 0.15969960

Goodness-of-fit plots are shown in Figure 25, below. Actual Events and
Compensator show a gap in the middle but seem to otherwise follow each other
rather well. Similarly, theoretical and observed quantiles seem to mostly align,
although there is a visible bump around the third quantile.

Figure 25: Transformed inter-arrival plots of the time invariant Syd model

KS and LB tests on the transformed inter-arrival times resulted in p-values
of 0.896 and 0.909, respectively. The null hypothesis can thus not be rejected
for either test, meaning that the inter-arrival times may very well be indepen-
dent and exponentially distributed. We thus have indications that the Hawkes
process might be appropriate.

Sliding window estimates are displayed in Figure 26, 27 and 28, on the
following page.
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Figure 26: Rolling quantiles of sliding window estimates of µ from the Syd data

Figure 27: Rolling quantiles of sliding window estimates of α from the Syd data

Figure 28: Rolling quantiles of sliding window estimates of β from the Syd data

What particularly stands out is the large jump in the estimate for µ around
day 1250, given that such a jump was not visible in the yearly histogram in
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Figure 4. Furthermore, there are also indications that µ has some cyclical
tendencies, but it is hard to discern. Interestingly, however, a cyclical trend is
clearly visible in α, and to a lesser extent, β.

Overall, in comparison to Stockholm and Väst the temporal Hawkes model
seems to be a more suitable model for Syd. However, the sliding window esti-
mates showed clear indications that the parameters varied with time.

Taken together, the results for the three regions show that although all
regions showed some indications that their arrival times did not follow a simple
Poisson process, it is not necessarily the case that a temporal Hawkes model is
the most suitable model. Both the Stockholm and Väst region had insignificant
parameter estimates for α and β at the 5%-level , which would add credence to
the simple Poisson process. There were also problems with goodness-of-fit for
both regions. Syd, however, showed more promise, with significant parameters
and generally good results on goodness-of-fit plots and tests. However, as sliding
window estimates showed indications of time variant parameters for all regions,
one would ideally want to evaluate a inhomogeneous model as well before making
a verdict on the temporal Hawkes as a potential model.

39



4 Discussion

As shown in the previous chapter, there were notable differences in the appropri-
ateness of the temporal Hawkes process between the regions. In this chapter the
potential factors behind this, as well limitations of the model will be discussed.
Suggestions on how the model could be improved will also be given.

The present study showed that there were large differences in the parameter
estimations between the different police regions. This in itself is not necessarily
notable, given that the regions vary significantly in their populations. However,
the differences were not limited to the magnitude of the parameters themselves.
Where Stockholm and Syd had ECDF’s that did not notably differ from the
CDF of an exponential distribution, Syd showed clear abbreviations. Similarly,
while both Stockholm and Väst suffered from insignificant parameter estima-
tions for α and β, Syd did not. Given that Väst had the fewest shootings overall,
it is possible that the excitation factor α is very small and it could therefore be
theorized that the problems with the model for Väst stem from a small popula-
tion size. However, it is more difficult to argue the same for Stockholm. While
it is in theory possible that the shootings in Stockholm simply do not exhibit
self-exciting tendencies, given that near-repeat effects are well documented (in-
cluding in Stockholm), it does not seem very realistic. One problematic factor
could be the potential of edge effects affecting the model. Specifically, the fact
that the processes have been estimated as if they were regionally independent.
Given that it is not necessarily the case that the processes can be neatly delim-
ited into the same geographical area as the police regions, there is a possibility
that there are shootings missing from the estimation procedure that ought to
have been included. This risk would appear to be particularly high in the Stock-
holm region, given that it solely includes the city of Stockholm, excluding other
cities within commuter distance such as Södertälje and Uppsala. If there is
some covariance with Copenhagen, one could also surmise that Syd would have
similar problems. Furthermore, one cannot exclude the case that occurrences
could affect each other even in non-nearby Police regions. Consequently, to en-
sure correct specification of the processes one would ideally incorporate detailed
criminological knowledge of the networks and agents involved.

Another potential cause of errors is the estimation procedure, both due to
the estimation procedure itself and due to the added noise. According to Laub,
Lee & Taimre (2021:43), the maximum-likelihood estimation procedure is rather
sensitive for smaller samples, with many local optima. This was visible in the
simulation study in 3.4.1 even for the continuous process, where although the
mean bias was quite low, individual estimates could greatly differ from the
true value. Furthermore, by utilizing noise with a Uni(0, 1) distribution, we
operate under an assumption that the probability of a shooting occurring is
unaffected by the time of day. While I was unable to locate studies of the
average daily distribution of shootings in Sweden, studies from the US show
that shootings generally have a higher probability of occurring from late night
until early mornings, and are rarer during the middle of the day (Klerman et
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al. 2023).
Moving on to potential model improvements, large improvements could likely

be made by including spatial information. As discussed in 2.4, the occurrences
of crime tend to display not just temporal, but spatial patterns as well, such
as the aforementioned near-repeat effects and hot-spots. Indeed, all the studies
on crime data discussed in 2.4 utilized some type of spatio-temporal model.
By neglecting the spatial component and modelling the shooting occurrences
as purely a temporal process, it is thus very likely that important factors have
been ignored. An improved model would therefore estimate the parameters
of a spatio-temporal point process model while possibly also include spatial
covariates. In addition, it is reasonable to suspect that shootings resulting
in injuries and deaths could have a higher probability of causing retaliating
shootings. Given this, one could also potentially improve the model by including
any resulting causalities as marks. Furthermore, given that trends and cyclical
patterns were clearly present for all regions one would ideally take this into
account into the estimation procedure

Another potential limitation that is overall more difficult to handle is the
difficulty of estimating the process when the total amount of occurrences are
small. Foreign studies such as Mohler 2014 and Reinhart 2018 discussed in 2.4
were conducted on data sets with tens of thousands of occurrences. In contrast,
Stockholm, the region with the largest amount of occurrences, had just 725
occurrences in total. Furthermore it is questionable whether it is proper to view
the whole observation period as a single process. In Figure 2, 3 and 4 it was clear
that the total number of shootings varied between different years. . Moreover, as
shootings are not a natural stochastic process but rather the results of deliberate
actions from criminal agents, their motivations and strategies changing could
have important ramifications to the process as a whole. Overall, it is clear
that only evaluating the events by purely statistical methods without including
relevant criminological factors means that there is a possibility of the process
not being completely understood.
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5 Conclusion

The result of the study showed that although there are indications that shooting
occurrences in Sweden could be modeled using a Hawkes process, a purely tem-
poral homogeneous process is not adequate for any of the three regions included
in the present study. Given that occurrences of crime follow many spatial pat-
terns, it is not feasible to attempt to model the process without factoring that
in. Furthermore, ideally one would also attempt to incorporate criminological
factors in order to avoid miss-specifying the process.

Hawkes processes are one important toolbox in statistical analysis of crime
and has already shown to be able to generate improved hot-spot maps and eval-
uate intervention efforts. It is thus a promising new tool in crime prevention
and intervention. However, in the case of Sweden there is a dearth of research
into not just the application of Hawkes processes on crime data but quantitative
statistical analysis of crime overall. Given that gun violence is a salient issue
in Sweden it would be pertinent to ensure that the phenomena is better under-
stood from a statistical standpoint. Furthermore, given the great abundance
of registry data in Sweden, potential Swedish studies have the potential to not
just repeat results from the US but to also improve the model in novel ways.
For this reason, more research into Hawkes process models of shootings (and
possibly other crimes as well) in Sweden could have the potential to not just
improve the understanding of the statistical underpinnings of crime in Sweden,
but to generate new knowledge of statistical modelling of crime as a whole.
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