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Abstract 

Surface electromyography (sEMG) measures skeletal muscle function by 

recording muscle activity from the surface of the skin. The technique can be 

used to diagnose neuromuscular diseases, and as an aid in rehabilitation, 

biomedical research, and human-computer interaction. A simulation model 

for sEMG data can assess decomposition algorithms and help develop new 

diagnostic tools. Such simulation models have previously not been available. 

We have written open-source code in Python to generate synthetic sEMG 

data. The code is publicly accessible via GitHub, an online platform for 

software development. The implemented model has multiple parameters that 

influence the artificially generated signal. The model was implemented with 

a bottom-up design, starting at a single muscle fibre and ending with the 

sEMG signal generated from up to hundreds of active motor units. The 

simulated signal can be recorded in potentially dozens of selectively 

positioned surface electrodes. The model’s foundation is mathematical 

equations found throughout the scientific literature surrounding motor 

control and biological signalling, e.g., action potential propagation, 

membrane current distribution, and motor unit recruitment. We assert that 

the model incorporates the most significant features for generating sEMG 

data. The synthetically generated data was decomposed to study the 

simulated motor unit action potentials. The presented model can be used as 

ground truth to assess the performance of decomposition algorithms for 

sEMG. The analysis of sEMG signals can provide valuable insights into 

muscle activity, contributing to our understanding of motor control and 

aiding the development of prosthetics and assistive technologies.  
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Sammanfattning 

Ytelektromyografi (sEMG) mäter skelettmuskelfunktionen genom att 

registrera muskelaktivitet från hudens yta. Tekniken kan användas för att 

diagnostisera neuromuskulära sjukdomar och som ett hjälpmedel vid 

rehabilitering, biomedicinsk forskning och för interaktion mellan människa 

och dator. En simuleringsmodell för sEMG-data kan bedöma 

avkodningsalgoritmer och hjälpa till att utveckla nya diagnostiska verktyg. 

Sådana simuleringsmodeller har tidigare inte varit tillgängliga. Vi har skrivit 

öppen källkod i Python för att generera syntetisk sEMG-data. Koden är 

tillgänglig via GitHub, en onlineplattform för mjukvaruutveckling. Den 

implementerade modellen har flera parametrar som påverkar den artificiellt 

genererade signalen. Modellen implementerades med en bottom-up-design, 

som börjar med en enda muskelfiber och slutar med sEMG-signalen 

genererad från upp till hundratals aktiva motoriska enheter. Den simulerade 

signalen kan registreras i potentiellt dussintals selektivt placerade 

ytelektroder. Modellens grund är matematiska ekvationer som finns i den 

vetenskapliga litteraturen kring motorisk kontroll och biologisk signalering, 

t.ex. aktionspotentialutbredning, membranströmfördelning och rekrytering 

av motoriska enheter. Vi hävdar att modellen innehåller de viktigaste 

funktionerna för att generera sEMG-data. Den syntetiskt genererade datan 

avkodades för att studera de simulerade motorenheternas aktionspotentialer. 

Den presenterade modellen kan användas som grundsanning för att bedöma 

prestandan av andra avkodningsalgoritmer för sEMG. Analysen av sEMG-

signaler kan ge värdefulla insikter om muskelaktivitet, vilket bidrar till vår 

förståelse av motorisk kontroll och bidrar till utvecklingen av proteser och 

hjälpmedelsteknologier.  
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Preface  
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List of Abbreviations 

AP Action potential 

EMG Electromyography 

MCD Membrane current distribution 

MU Motor unit 

MUAP Motor unit action potential 

NMJ Neuromuscular junction 

sEMG Surface electromyography 

STA Spike-triggered average 

 

Mathematical Notation 

𝐴𝑓 Average area of a single fibre 

𝐴𝑘 Area encompassed by each motor unit territory 

𝐴𝑚 Muscle cross-sectional area 

𝐸𝑚𝑎𝑥 Maximum excitation  

𝐹𝑅𝑘(𝑡) Firing rate response function 

𝐼𝑚 Membrane current distribution 

𝐾𝑎 Electrical conductivity ratio along and across the fibres 

𝑃𝐹𝑅1 Peak firing rate first motor unit 

𝑃𝑖  Tripole amplitude of the pole 𝑖 

𝑃𝑘  Peak twitch force for the motor unit 𝑘 

𝑃𝑡𝑜𝑡𝑎𝑙 number of fibres required to exert one unit of force  

𝑉𝑚 Membrane action potential 

𝑔𝑒 Excitatory gain 

𝑛𝑓𝑘 Number of fibres innervated by each motor unit 

𝑛𝑓𝑡𝑜𝑡𝑎𝑙 Total number of fibres in the muscle 

𝜎𝑟  Radial electrical conductivity 
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Φ𝑗 Potential on a plane skin surface at position (𝑥, 𝑧) for the fibre 𝑗 

𝐴 Constant to fit the action potential amplitude 

𝐵 Resting membrane potential 

𝐶 Proportionality constant to fit the current distribution amplitude 

𝐸(𝑡) Excitatory drive function 

𝑀𝐹𝑅 Minimum firing rate 

𝑃𝐹𝑅 Peak firing rate of the motor unit 

𝑃𝐹𝑅𝐷 Peak firing rate difference 

𝑅𝑃 Range of the peak twitch forces 

𝑅𝑅 Range of recruitment thresholds 

𝑅𝑇𝐸 Recruitment threshold excitation 

𝑎 Coefficient of recruitment threshold excitation assignment 

𝑏 Coefficient for twitch force 

𝑖 Pole index 

𝑗 Muscle fibre index 

𝑘 Current motor unit index 

𝑛 Number of motor units 

𝑥 Distance across the fibre 

𝑦 Depth of the fibre 

𝑧 Distance along the fibre 

𝜆 Scaling factor 

𝜕 Motor unit fibre density 
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Introduction 

All voluntary movement of the body entails neuronal signals transmitted 

from the motor cortex in the central nervous system. The signal is 

transmitted via motor neurons to the peripheral nervous system and the 

muscle fibres in skeletal muscle. A collection of muscle fibres and the 

innervating motor neuron is called a motor unit (MU). The neuronal signal 

sent to a MU is called the action potential (AP), which constitutes the basis 

of electrophysiological recordings, such as electromyography (EMG) 

(Moritani, Stegeman, & Merletti, 2004). EMG is used extensively as a 

diagnostic tool for neuromuscular disease and as a research tool for studying 

locomotion and motor control. When using sEMG, electrodes are placed on 

the skin surface, registering the cumulative electrical potential from up to 

thousands of fibres and many MUs. The electrical signal can be decoded into 

neural information using digital processing tools, called decomposition 

algorithms. The sEMG signal can be used to determine MU activation, 

control prosthetic devices, or as a basis for human-computer interaction 

(Holobar, Farina, & Zazula, 2016). 

This thesis presents a multiple-parameter model for synthetic sEMG data. 

Synthetically generated sEMG data can be used to develop diagnostic tools 

and progress the field of neuromuscular research (Farina, Mesin, Martina, & 

Merletti, 2004). The modelled data may also be used as ground truth when 

evaluating the performance of decomposition algorithms for EMG signal 

processing. Similar models have been described in the scientific literature 

but are not publicly available (Merletti, Lo Conte, Avignone, & 

Guglielminotti, 1999). We aim to contribute to the advancement of sEMG 

research, increase the availability of research-related code, and promote 

open-science, with a publicly available simulation model for sEMG data. 

The purpose of the project was to develop our Python programming ability 

and deepen our understanding of bio-signal processing and modelling. The 

goal of the project was to provide the source code to the research field. The 

code is intended to be further developed by its users and has a modular 

design. The modules are based on relevant sEMG elements. 

This thesis includes background theory, project methodology, code 

implementation, results, a self-critical discussion, and literature references. 
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Theory  

Motor Control  

The AP is an electrical phenomenon in the nervous system that enables 

information transmission. It is the fundamental unit of communication 

between neurons (electrically excitable cells). The AP represents the rapid 

and temporary changes in electrical potential across a neuron’s cell 

membrane. Signalling in the nervous system utilizes changes in frequency 

to code information. Muscle contractions are enabled by electrical and 

chemical activity transmitted from the central nervous system (cortex), via 

the spinal cord to the peripheral nervous system, and finally, to the skeletal 

muscles. The signal originates from the motor cortex and is transmitted via 

a motor nerve, toward the muscle tissue. At the distal end, the nerve branches 

out to individual motor neurons, innervating individual muscle fibres. The 

point of connection between a motor neuron and a muscle fibre is called the 

neuromuscular junction (NMJ) (Moritani, Stegeman, & Merletti, 2004). 

Figure 1 illustrates the connection between the cortex in the central nervous 

system, the spinal cord in the peripheral nervous system, and the skeletal 

muscle biceps brachii. Additionally, a schematic of the MU is displayed with 

the organization of muscle fibres, the innervating motor neuron, and the 

connection point known as the NMJ. 

 

Figure 1. Schematic drawing over motor control pathways from the cortex (brain), via a 

motor nerve in the spinal cord, to the individual fibres within skeletal muscle. 

  



11 

  

Current Distribution and Action Potential  

When an AP reaches the NMJ, the neurotransmitter acetylcholine (a 

signalling molecule) is released. The neurotransmitter binds to ligand-gated 

receptors on the muscle fibre, triggering cell membrane depolarization. The 

depolarized muscle fibre contracts as the AP propagates along the fibre. The 

signal often propagates in two opposing directions since the NMJ sits 

somewhere along the length of the muscle fibre (Moritani, Stegeman, & 

Merletti, 2004). Figure 2 illustrates how the signal propagates inside a fibre. 

The muscle fibre is displayed as a grey cylinder, with the AP illustrated as a 

black wave moving in opposing directions along the z-axis (depolarization 

front). The AP is surrounded by regions where the fibre is at rest. At the 

centre of the fibre sits the NMJ, which is innervated by a motor neuron 

originating in the central nervous system. The depolarization of the fibre 

membrane starts at the NMJ and moves outward. 

 

Figure 2. Schematic drawing of the action potential, Vm(z), propagating along a fibre, 

surrounded by regions with the fibre at rest. The direction of the membrane current 

distribution, Im, is indicated by arrows, and the neuromuscular junction is positioned in 

the centre of the fibre. 
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The membrane current distribution (MCD), 𝐼𝑚, and the AP, 𝑉𝑚, of skeletal 

muscle have been mathematically modelled by (Merletti, Lo Conte, 

Avignone, & Guglielminotti, 1999) according to the equations: 

         𝐼𝑚 = 𝐶
𝑑2𝑉𝑚(𝑧)

𝑑𝑧2
= 𝐶𝐴𝜆2(𝜆𝑧)[6 − 6𝜆𝑧 + (𝜆𝑧)2]𝑒−𝜆𝑧      (1) 

           𝑉𝑚(𝑧) = 𝐴(𝜆𝑧)3𝑒−𝜆𝑧 − 𝐵                        (2) 

where 𝐴 denotes a constant to fit the amplitude, 𝐵 denotes the resting 

membrane potential, 𝜆 is a scaling factor expressed in 𝑚𝑚−1, 𝐶 is a 

proportionality constant, and 𝑧 denotes the distance along the fibre. The 

MCD given by (1) has the shape of a tripole, indicated by the vertical lines 

P1, P2, and P3 in Figure 3. The figure displays the normalized MCD with 

the associated tripole lines and the membrane AP of the muscle fibre. 

 

Figure 3. Change in membrane current distribution (top) and action potential amplitude 

(bottom) along the distance of a muscle fibre. Poles P1, P2, and P3 in the membrane 

current distribution indicate the tripole shape. 

The tripole shape is the result of sequential opening and closing of voltage-

sensitive ion channels in the muscle fibre membrane. The channels give rise 

to the mechanism by which the AP propagates (Huxley, 1974). The duration 

of a muscle AP is approximately 5 𝑚𝑠 and the conduction velocity along the 

muscle fibre is roughly 4 − 5 𝑚/𝑠 (Merletti, Lo Conte, Avignone, & 

Guglielminotti, 1999). 
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Signal Propagation 

Once the AP has been generated, at the NMJ, it propagates along the length 

of the fibre, until it reaches the end of the muscle (tendon). The electrical 

potential is also transmitted through the surrounding tissue, eventually 

reaching the surface of the skin. At the skin surface, the electrical signal may 

be recorded with sEMG. The potential, (Φ), measured on a plane skin 

surface at position (𝑥, 𝑧), has been described by (Merletti, Lo Conte, 

Avignone, & Guglielminotti, 1999) according to the equation: 

            Φ𝑗(𝑥, 𝑧) =  
1

2𝜋𝜎𝑟
∑

𝑃𝑖

√((𝑥−𝑥𝑖)2+𝑦𝑖
2)𝐾𝑎+(𝑧−𝑧𝑖)2

6
𝑖=1  (3) 

where 𝑗 is the muscle fibre index, 𝑃𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is the amplitude of the tripole, 

𝜎𝑟 denotes the radial electrical conductivity, 𝐾𝑎 is the electrical conductivity 

ratio along the fibres and across the fibres, and 𝑦𝑖 denotes the depth of the 

fibre. Equation 3 was combined with the cylindrical shape of the volume 

conductor, described by (Farina, Mesin, Martina, & Merletti, 2004). This 

means the plane skin surface instead has a cylindrical shape and positions 

on the skin surface (𝑥, 𝑧), are determined by applying the law of cosines. 

Motor Unit Recruitment  

The sum of all simultaneous APs, from each fibre in one MU, is called the 

motor unit action potential (MUAP). The sum of all MUAPs from a specific 

unit is known as a MU signal.  The sum of all MU signals is the entire 

electrical activity of a muscle. The number of recruited MUs is dependent 

on muscle contraction level. A stronger voluntary muscle contraction will 

result in greater MU recruitment and increased firing frequencies. The early 

recruited MUs innervate fewer muscle fibres and thus generate less 

contraction force. The later recruited MUs innervate more muscle fibres and 

have larger cell bodies. Thus, they can generate a larger contraction force. 

The relationship between MU size and recruitment is known as Henneman’s 

size principle (Henneman, Somjen, & Carpenter, 1965). The early recruited 

MUs are typically firing at the maximum frequency, while the last recruits 

have the lowest firing frequency. The characteristics of MUs are, in this 

work, dependent on several parameters, such as peak twitch force (𝑃𝑘), the 

number of fibres innervated by each MU (𝑛𝑓𝑘), and the area encompassed 

by each MU territory (𝐴𝑘). The following equations have been described by 

(Fuglevand, Winter, & Palta, 1993) and are used to determine the number of 

innervating muscle fibres and the cross-sectional area of a MU: 
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   𝑃𝑘 =  𝑒𝑏∙𝑘     (4) 

  𝑏 =
ln (𝑅𝑃)

𝑛
      (5) 

              𝑛𝑓𝑡𝑜𝑡𝑎𝑙 =  
𝐴𝑚

𝐴𝑓
                          (6) 

                             𝑃𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑃𝑘
𝑛
𝑖=1                     (7) 

        𝑛𝑓𝑘 = (𝑛𝑓𝑡𝑜𝑡𝑎𝑙/𝑃𝑡𝑜𝑡𝑎𝑙) ∙ 𝑃𝑘   (8) 

𝐴𝑘 =
𝑛𝑓𝑘

𝜕
                         (9) 

where 𝑏 denotes a coefficient for twitch force, 𝑅𝑃 is the range of twitch 

forces, 𝑛𝑓𝑡𝑜𝑡𝑎𝑙  denotes the total number of fibres in the muscle, 𝐴𝑚 is the 

cross-sectional area of the muscle, 𝐴𝑓 represents the average area of a single 

fibre, 𝑃𝑡𝑜𝑡𝑎𝑙 represents the number of fibres required to exert one unit of 

force (1 unit force ≈ twitch force of smallest MU), 𝜕 denotes the MU fibre 

density, 𝑛 is the number of MUs, and 𝑘 denotes the current MU index. The 

same authors (Fuglevand, Winter, & Palta, 1993) have also described the 

MU recruitment model in great detail. They outline several MU features 

which influence the recruitment order: recruitment threshold excitation 

(𝑅𝑇𝐸), peak firing rate (𝑃𝐹𝑅), maximum excitation (𝐸𝑚𝑎𝑥), and the firing 

rate response (𝐹𝑅𝑘(𝑡)). The following equations describe the intricate 

mathematical synergy of these features: 

𝑅𝑇𝐸𝑘 =  𝑒𝑎∙𝑘  (10) 

 𝑎 =
ln (𝑅𝑅)

𝑛
   (11) 

       𝑃𝐹𝑅𝑘 = 𝑃𝐹𝑅1 − 𝑃𝐹𝑅𝐷 ∙
𝑅𝑇𝐸𝑘

𝑅𝑇𝐸𝑛
  (12) 

        𝐸𝑚𝑎𝑥 = 𝑅𝑇𝐸𝑛 + 
𝑃𝐹𝑅𝑛− 𝑀𝐹𝑅

𝑔𝑒
   (13) 

                 𝐹𝑅𝑘(𝑡) =  𝑔𝑒 ∙ (𝐸(𝑡) − 𝑅𝑇𝐸𝑘) + 𝑀𝐹𝑅    𝐸(𝑡) ≥ 𝑅𝑇𝐸𝑘      (14) 

where 𝑃𝐹𝑅𝐷 denotes the peak firing rate difference, 𝑀𝐹𝑅 is the minimum 

firing rate, 𝑔𝑒 is the excitatory gain, 𝑎 represents a coefficient for the 

assignment of recruitment threshold excitation, 𝑅𝑅 is the range of 

recruitment thresholds, 𝑛 is the total number of MUs, 𝑡 denotes time, 𝐸(𝑡) 

is the excitatory drive function, and 𝑘 denotes the current MU index. 
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The muscle, MUs, and individual muscle fibres are all modelled as 

cylinders. This relates to the model described by (Farina, Mesin, Martina, & 

Merletti, 2004), and it resembles anatomical structure. However, MUs are 

functional units, distinct from the anatomical structure of the muscle itself. 

Every MU’s cross-sectional area 𝐴𝑖 is modelled as a circle, with MU radius 

𝑟𝑖. Figure 4 illustrates a schematic drawing of fibre organisation inside the 

MUs and MU organisation inside the muscle.  Also, it displays a two-

dimensional cross-section of the muscle and the neural firing patterns of 

three recruited MUs. 

 

Figure 4. Schematic of muscle fibre and MU organisation inside the muscle, a cross-

sectional display of significantly overlapping motor unit territories, and the neural firing 

patterns of the first three recruited motor units. 
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Electromyography 

EMG is a recording technique to measure skeletal muscle response from 

central nervous system stimulation. It registers the electrical activity 

generated in the muscle tissue. Intramuscular EMG requires a needle to 

penetrate the skin, measuring the electrical potential inside the muscle. 

These recordings are precise and very local, only recording the space around 

the tip of the needle. Contrary, sEMG measures the electrical potential after 

being transmitted through the muscle, fat, and skin layers on the surface of 

the skin. 

Isolating and sorting the APs originating from the same MU is highly 

relevant for EMG research, and it is accomplished by applying 

decomposition algorithms to the recorded signal. Clinically, EMG can be 

used to detect muscle abnormalities, diagnose muscular disorders, measure 

muscle activation, and determine MU recruitment. Post-processed EMG 

data can enable prosthetic control or be used as the basis for human-

computer interaction (Farina, Roberto, & Stegeman, Biophysics of the 

Generation of EMG Signals, 2004). 

Surface Electromyography 

sEMG is a non-invasive recording from the skin surface, registering the 

muscle activity from below the electrodes. The recorded signal is a 

summation of electrical activity generated by up to hundreds of MUs and 

thousands of fibres, firing simultaneously within a muscle, superimposing 

on one another. Clinical sEMG is typically performed with a recording 

duration of seconds, up to several minutes, and may be applied to muscles 

throughout the body. Comprehensive sEMG utilizes two-dimensional 

electrode arrays with varying shapes, sizes, and number of electrodes. These 

types of recordings are called high-density sEMG, referring to the closely 

packed electrodes in the array (Moritani, Stegeman, & Merletti, 2004). 

Analysing sEMG data may aid a physician when diagnosing muscle 

abnormalities, since recordings from healthy and diseased muscles differ. 

The elicited signal is also unique to a specific muscle and bodily movement. 

The recorded signal can be imagined as an activity map of the muscle. The 

level of contraction greatly affects the signal amplitude, as it will change the 

number of active MUs. The MU is considered the electrically generating 

entity in the context of sEMG, even though signals originate in individual 

fibres inside the MU (Farina, Roberto, & Stegeman, Biophysics of the 

Generation of EMG Signals, 2004). Figure 5 illustrates how sEMG may be 

used on the wrist. 
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Figure 5. Illustration of how a surface electromyogram may be placed on the wrist to 

record muscle activation. The signal is recorded with a 64-electrode array. Example 

signals are displayed for three electrodes. 

Surface Electromyogram Decomposition 

Decomposition of the sEMG signal is a process of decoding the signal into 

individual MU firing patterns. Decomposition can provide information 

about the firing times and APs of each MU, which in turn may give insight 

into muscle health or disease. Synthetic sEMG signals can be used as a tool 

for evaluating decomposition algorithms. By comparing the decomposed 

signal to the ground truth, the quality of the decomposition can be assessed. 

The MU firing patterns of synthetically generated data are known and can 

be compared to the decomposition output. Thus, decomposition may be used 

to evaluate the generated MUAPs (Holobar, Farina, & Zazula, 2016). The 

performance of the model and the quality of the generated data are outlined 

in the Evaluation section. The decomposition used for evaluation produces 

two sets of data for each MU: the decomposed neural firing pattern and the 

spike-triggered average (STA). Recall and precision of the decomposition 

may be calculated. The recall is determined by dividing the number of 

decomposed matched firings by the number of ground truth firings. The 

precision is determined by dividing the number of decomposed matched 

firings by the total number of decomposed firings. The STA provides a 

measure of the underlying MUAP by averaging by APs of the sEMG signal 

(Lundsberg, Björkman, Malešević, & Antfolk, 2022).  
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Method 

Implementation 

The project implementation was done using the Python programming 

language (version 3.11.5) (Foundation, 2023). All code was written in text 

editor Visual Studio Code (version 1.83) and the program has two 

dependencies: NumPy (version 1.26) and Matplotlib (version 3.8.2). The 

program follows object-oriented programming guidelines and consists of 

three classes: MotorUnit, SurfaceEMG, and SaveData. The first two classes 

are tied to the theoretical models of MUs and sEMG as described in the 

Theory section. The third class is used only for loading and saving the 

generated data. A table of all methods, for each class, is provided in the 

appendix. The simulation model was implemented modularly, with a 

bottom-up design. Figure 6 displays the general implementation structure of 

the code. 

 

Figure 6. Order of code implementation with a bottom-up design. 
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Module 1 – Membrane Current Distribution and Action Potential 

The first implemented module contained calculations of the MCD and AP. 

These two concepts established the bedrock of our program and were 

implemented in accordance with (Merletti, Lo Conte, Avignone, & 

Guglielminotti, 1999) as written in Equations 1 and 2. The tripole shape was 

determined by finding the centroid of each phase of the MCD. The phases 

are separated by a zero-crossing of the y-axis. The three poles (phases) are 

represented by the vertical lines P1, P2, and P3 in Figure 3. The output of 

the module was compared to the reference (Merletti, Lo Conte, Avignone, 

& Guglielminotti, 1999). 

Module 2 – Single Muscle Fibre 

The second implemented module contained code for a single muscle fibre. 

This component was implemented by defining a length vector on which the 

AP and MCD could propagate. To complete the theoretical model of the 

fibre, the NMJ, fibre ends, conduction velocity, and electrical conductivities 

were defined. Additionally, a fibre depth was established, i.e. the distance to 

the fibre from the surface of the skin. Then, the signal propagation inside the 

fibre could be modelled as described by (Merletti, Lo Conte, Avignone, & 

Guglielminotti, 1999) in Equation 3. Simultaneously, the shape of the skin 

surface was modified from planar to cylindrical as described by (Farina, 

Mesin, Martina, & Merletti, 2004), meaning the electrical potential in 

electrode positions (𝑥, 𝑧), were determined by applying the law of cosines 

instead of the Pythagorean theorem. Additionally, a signal attenuation factor 

was added for signals propagating along the muscle fibres. This attenuation 

factor replaced the end of fibre phenomenon outlined by (Merletti, Lo Conte, 

Avignone, & Guglielminotti, 1999). The attenuating factor changed the 

denominator in the Equation 3 to the following: 

                √((𝑥 − 𝑥𝑖)2 + 𝑦𝑖
2)𝐾𝑎 + 𝑒0.09 ∙ |𝑧−𝑧𝑖|(𝑧 − 𝑧𝑖)2       (15) 

The attenuation factor was determined empirically by comparing the 

attenuation of the simulated signal to attenuation in real sEMG data.  
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Module 3 – Motor Unit  

The third module was a type of iterator. The module generated repetitions 

of the single fibres from module 2 and summed them up to simulate a MU. 

Muscle fibre positions were spread randomly inside a cylinder representing 

the MU. However, the individual fibres were implemented without any 

cross-sectional area. Instead, fibres were simulated as two-dimensional 

parallel lines inside the MU cylinder. The third module included no variation 

in MU size, radius, or fibre innervation level, even though these properties 

are linked to the MU. Instead, these features were introduced together with 

the recruitment model in module 4. Completing module 3 allowed for the 

generation of MUAPs. The output from the module was compared to the 

reference (Merletti, Lo Conte, Avignone, & Guglielminotti, 1999). 

Module 4 – Recruitment Model  

The fourth module to be implemented was the recruitment model for MUs. 

First, Equations 10-14 were implemented to simulate a population of MUs 

and calculate their respective firing times. Afterwards, Equations 4-9 were 

added to determine the radius and fibre innervation level of each MU. Figure 

11, in the Result section, shows the recruitment of MUs with their respective 

firing times. At this point, another cylinder was implemented to represent 

the entire muscle. The MUs were spread out randomly inside the muscle, in 

a similar fashion to fibres spread out inside the MUs. At this point, the 

volume conductor, i.e., the muscle itself, was completed. Figure 4, in the 

Theory section, illustrates the volume conductor as a muscle filled with 

MUs, and each MU filled up with muscle fibres. The output from the module 

was compared to the reference (Fuglevand, Winter, & Palta, 1993). 

Module 5 – Electrode Array  

The electrode array implementation was completed at this stage. A matrix 

of electrode positions was generated to simulate the recording sEMG array. 

The sum of all MUAPs, i.e., the original sEMG signal, was calculated in the 

defined electrode positions. The locations of the electrodes and the 

interelectrode distance are adjustable. The electrodes are simulated as a 

single point of detection. Afterward, simulated background Gaussian noise 

was added to the original signal. The sEMG signal with and without added 

noise is shown in Figure 10, in the Result section. The completion of this 

module enabled simulation of synthetic sEMG data. 

  



21 

  

Simulation and Evaluation of sEMG Data 

To simulate relevant data without defining parameters, a user can call any 

method inside any of the classes, as seen in Class and Method Structure in 

the Appendix. The methods are tied to theoretical elements of sEMG instead 

of the modules. Pre-defined default values may be used to simulate data, 

which enables a new user to bring about figures and data directly. The 

method will return objects or data relevant to the selected method, for 

instance: a MU, an amplitude, an array of muscle fibre potentials, or various 

plots. However, the user can adjust any of the available parameters by 

manually overwriting the default value. Manipulating the input parameters 

will naturally affect the output accordingly. All the functional parameters in 

the program are listed under Parameters in the Appendix. The methods, as 

well as the objects they generate, are intended to be familiar to researchers 

in the field of neurophysiology and neuroengineering. 

Decomposition of the sEMG signal decodes it into individual neural firing 

patterns, with their respective MUAPs. The quality of a new decomposition 

algorithm can be assessed by comparing the decomposed signal to the 

ground truth. However, by using an established decomposition algorithm, 

synthetically generated sEMG data may be evaluated. In the scenario of 

synthetic sEMG data, ground truth parameters are known, i.e., the number 

of simulated motor units, the simulated neural firing times, etc. 
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Result  

We have successfully implemented a model for synthetic sEMG data 

following the description in the Method section. A significant part of the 

project’s result is the source code itself, which is publicly available on 

GitHub (https://github.com/Josef-Djarf/sEMG-Sim). 

Simulations  

Figure 7 shows how a single MUAP propagates. Ten electrodes, located 20 

mm apart, record the MUAP at different times of the simulation. The 

electrode array sits above the NMJs, located closest to electrode number 2, 

determined by the early detection of the MUAP.  The figure replicates Fig. 

2 in Modelling of Surface Myoelectric Signals−Part I: Model 

Implementation, (Merletti, Lo Conte, Avignone, & Guglielminotti, 1999). 

Replication of their figure suggests accurate implementation of their model. 

 

Figure 7. Simulation of Fig. 2 from (Merletti, Lo Conte, Avignone, & Guglielminotti, 

1999), a motor unit action potential propagating and recorded in 10 electrode positions. 

https://github.com/Josef-Djarf/sEMG-Sim
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Figure 8 below displays the type of data a potential user may simulate. The 

plot contains the normalised sEMG signal generated from 100 MUs, as 

recorded by a 3x3-electrode array over 30 seconds. The parameter values 

used are presented in Tables 1 and 2. 

 

Figure 8. Normalised surface electromyogram data from 100 simulated MUs, recorded 

over 30 seconds, with a 3x3-electrode array. 

Figure 9 was simulated using the same parameter values as the simulation 

of Figure 8 but is recorded with only one electrode. The data in Figure 9 is 

not normalised. Zooming in on the data, as illustrated by the arrow, resolves 

the signal amplitude changes occurring on a millisecond scale and the noise 

oscillations occurring at the microsecond scale.  

Figure 10 contains the same simulation as Figure 9, but the original sEMG 

signal and the signal with added Gaussian noise have been colour-coded for 

illustration purposes. The added noise was generated with a signal-to-noise 

ratio of 3 dB. 
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Figure 9. Surface electromyogram signal (top), zoomed in signal (bottom). 

  

Figure 10. Color-coded original surface electromyogram signal and signal with noise, 

zoomed in signal (bottom). 
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The simulations in Figures 8-10 were generated using the recruitment 

model. The recruitment of the MU pool followed a trapezoid excitatory drive 

function of 30 seconds. The function has three phases. First, it ramps up for 

5 seconds, then it remains static for 20 seconds, and finally, it ramps down 

for 5 seconds. The excitatory drive function had a maximum excitation level 

of 20 %, and contained a total of 100 MUs in the pool. The MU recruitment 

and firing times are illustrated below in Figure 11. The remaining parameter 

values for the model are presented in Tables 1 and 2. 

 

Figure 11. Recruitment and firing patterns of motor units following a 30 second trapezoid 

excitatory drive function, with maximum excitation level 20 %. 

The early recruited MUs are firing at the maximum frequency and contain 

the least muscle fibres, while the last recruits have the lowest firing 

frequency and contain the most muscle fibres. The model of recruitment is 

based on Equations 10-14. The first MUs also encompass the smallest 

territory, and the last recruits encompass the largest territory, following 

Henneman’s size principle. The relationship between MU number, size, 

generated peak twitch force, and the number of innervating fibres, is 

described by Equations 4-9. In Figure 11, the firing times of each MU is 

denoted by a coloured vertical line along the x-axis. The y-axis represents 

the MU number and excitatory drive level. 
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The parameters in Table 1 lists the values used to create the simulations 

above for the SurfaceEMG class. All parameters are set to their default value 

with the exception of parameters coloured in grey. Parameters come with 

the appropriate unit, but some parameters are unitless.  

Table 1. List of parameter values for SurfaceEMG class. 

SurfaceEMG 

Simulation time (s) 30 

Sampling rate (Hz) 10 000 

Excitatory drive function (s) [5 20 5] 

Maximum excitation level (%) 20 

Signal to noise ratio (dB) 3 

Signal amplitude offset (mV) 0 

Number of motor units in the motor pool 100 

Recruitment range (n.u.) 30 

Excitatory gain 1 

Minimum firing rate (Hz) 8 

Peak firing rate first MU (Hz) 35 

Peak firing rate difference of motor units (Hz) 10 

Inter-spike-interval coefficient of variation 0.15 

Twitch force range (n.u.) 100 

Motor unit density (fibres/mm2)  20 

Number of fibres in smallest MU 25 

Number of fibres in largest MU 2 725 

Muscle fibre diameter (mm) 0.046 

Muscle diameter (mm) 15 

Muscle depth (mm) 10 

Number of electrodes in z-axis 3 

Number of electrodes in x-axis 3 

Y-axis minimum plot limit  -1 

Y-axis maximum plot limit 1 
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The parameters in Table 2 lists the values used to create the simulations 

above for the MotorUnit class. All parameters are set to their default value 

with the exception of parameters coloured in grey. Parameters come with 

the appropriate unit, but some parameters are unitless. 

Table 2. List of parameter values for MotorUnit class. 

MotorUnit 

AP amplitude constant (V) 0.096 

Membrane resting potential (V) -0.090 

AP scaling factor (mm-1) 1 

AP proportionality constant 1 

AP plot length (mm) 20 

Muscle fibre length (mm) 210 

Conduction velocity (m/s) 4 

Ratio axial/radial conductivity  6 

Radial conductivity (S/m) 0.303 

Interelectrode spacing (mm) 10 

Number electrodes z-axis  3 

Number electrodes x-axis 3 

Electrode shift z-axis (mm) 165 

Neuromuscular junction position (mm) 90 

Fibre depth (y-axis) (mm) 10 

Fibre x-position (mm) 10 

Extermination zone width (mm) 10 

Innervation zone width (mm) 5 

Time fibre simulation (ms) 35 

Motor unit radius (mm) 1 

Number of fibres 100 

Motor unit depth (y-axis) (mm) 10 

Motor unit x-position (mm) 0 

Y-axis minimum plot limit  -1 

Y-axis maximum plot limit  1 

 

 

 

 

  



28 

  

Evaluation 

New data was simulated for the evaluation process. This time parameter 

values were adjusted to align with the decomposition algorithm, empirically 

testing different values to resemble previous experimentally collected sEMG 

data. The following parameter values were utilised: an 8x8-electrode array, 

50 MUs in the unit pool, 55 𝑚𝑚 muscle diameter, 30 𝑚𝑚 muscle depth, 

0.001 in the ratio between axial and radial conductivity, electrode shift z-

axis 75 𝑚𝑚, and conduction velocity for each MU varying between 4 −
6 𝑚/𝑠. The sampling rate was set to 10 000 𝐻𝑧, but the data was 

downsampled to 2000 𝐻𝑧 before decomposition. The remaining parameter 

values were set to default, as shown in Tables 1 and 2. The simulated sEMG 

data was decomposed using algorithms implemented in MATLAB (Inc., 

2023), since decomposition algorithms in Python are not available. The 

simulated data was exported to a MAT-file format. The decomposition 

algorithm employed is comprehensively described by (Lundsberg, 

Björkman, Malešević, & Antfolk, 2022). The decomposition produces two 

sets of data for each MU: the decomposed neural firing pattern and the signal 

STA. 

The number of individual firings was determined for both the decomposed 

signal and the ground truth. The second decomposed MU was selected for 

illustration since its firing pattern most accurately matched with ground truth 

MU firing pattern. The ground truth of the second MU contained 286 firings, 

while the decomposed correlate contained 849 firings. The decomposition 

overestimated the number of firings in the MU by ≈ 300 %. The recall of 

this estimation was ≈ 34 %, using a variation threshold 0.9/1 and a 

detection window of 5 𝑚𝑠, i.e., the duration of a muscle AP. The precision 

was calculated to ≈ 11%. 32/50 MUs in the pool were activated by the 

recruitment model. The decomposition algorithm estimated 4 out of those 

31 MUs. The estimated MUs contained on average 820 firings, while ground 

truth MUs contained 275. Figure 12 illustrates the firing pattern agreement 

of the second simulated MU to ground truth. 
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Figure 12. Decomposed firing pattern (blue) and ground truth firing pattern (green) of the 

second simulated motor unit. The red arrows indicate the zoomed in area (bottom). 

Decomposed MU firings and the ground truth firings occurring 

simultaneously (< 5 𝑚𝑠) are assumed to be correlated, indicating they 

originate from the same MU. The decomposition algorithm overestimated 

the number of firings for each MU and did not identify all simulated MUs. 

Thus, the decomposed firing pattern contain firings from multiple simulated 

MUs. The overestimation is visible in the zoomed-in area in Figure 12, 

where there are 3 times as many decomposed firings as ground truth firings, 

visible as blue lines without a matching green line. 
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Figure 13. Spike-triggered average in 8x8-electrode array of the decomposed motor unit. 

The red circle indicates the spike-triggered average motor unit action potential shown in 

figure 15. 

 

Figure 14. Ground truth spike-triggered average in 8x8-electrode array of the second 

simulated motor unit. The red circle indicates the spike-triggered average motor unit 

action potential shown in figure 15. 
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The STA estimates the average MUAP shape by using the time stamps of 

the neural firing pattern. In Figure 13, the STA from the second simulated 

MU is displayed in the 8x8 electrode positions. The red circle in the figure 

indicates where the signal amplitude is the highest. The highest amplitude 

corresponds to the proximity between this electrode and the signal source 

(the NMJ). Conversely, the electrodes further away from the source exhibit 

lower amplitudes, since the signal attenuates as it propagates. Figure 14, 

illustrates the STA in the 8x8 electrode positions from the second simulated 

MU. This MU likely corresponds to the best estimated MU. 

 

Figure 15.  Decomposed spike-triggered average, with the largest amplitude, from the 

decomposed motor unit compared to the corresponding ground truth spike-triggered 

average, i.e., the second simulated motor unit. 

The STA provides insight into how neurons respond to specific events or 

triggers. In this context, the STA represents the average response to neural 

firings at each electrode position. The red circles in Figure 13 and 14 

indicate the signal enlarged and displayed below. Figure 15 shows a 

comparison between the decomposed STA and the ground truth STA. The 

signal, i.e., the MUAP, has the typical tripole shape, as expected of a real 

muscle contraction, reflecting the sequential opening and closing of voltage-

sensitive ion channels in the muscle fibre membrane (Vecchio, et al., 2020). 

The STA may help to identify and characterise the MUAPs. Displaying the 

STA in the 8x8-electrode array configuration sheds light on the temporal 

dynamics and attenuation of the AP within the muscle.  
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Discussion  

In this thesis, we implemented a sEMG simulation model based on 

mathematical equations described in the scientific literature. The 

implementation consisted of five modules. First, a mathematical description 

of the MCD and the AP. Second, a length vector resembling the single 

muscle fibre on which the signal could propagate. Third, an iterator to 

generate MUs by repeated simulations of fibres. Fourth, the MU recruitment 

model. Fifth, the electrode array. Completing the five modules allowed for 

sEMG data to be simulated. Afterwards, the generated data was evaluated 

using a decomposition algorithm. The five implemented modules match the 

outline of project objectives, written before the project started: 

(1) Implement a single muscle fibre AP 

(2) Implement a MUAP 

(3) Implement the signal volume conductor (the tissue layers) 

(4) Implement the surface electrode array to generate sEMG data 

(5) Evaluate the generated data 

Method descriptions and parameter explanations have been added to the 

code. Abbreviations were avoided and parameter names are closely tied to 

their theoretical underpinning to promote intelligibility. Additional 

comments were added throughout the code to help the reader follow the 

sequence of calculations, line by line. The code was written according to 

object-oriented guidelines. The project’s main goal, providing open-source 

code to the research field, has been reached. Our Python programming 

ability and understanding of bio-signal processing have improved, which 

was the purpose of this project. 

Adherence to the theoretical sources was validated several times throughout 

the project. After each module, the code was reviewed and the output was 

compared to the relevant literature source. A major contention in the project 

was the replication of Fig. 2 from Modeling of Surface Myoelectric 

Signals−Part I: Model Implementation, (Merletti, Lo Conte, Avignone, & 

Guglielminotti, 1999), resulting in Figure 7. The cited source does not 

provide any code or quantitative measure of their results, but the visual 

resemblance between the source figure and the modelled figure argues for 

correct interpretation and implementation. We accept the implementation as 

equivalent but lack conclusive evidence of identical reproduction.  

Supported by the theoretical adherence, we argue the data in Figures 8-10 

visually resembles experimental sEMG data. In terms of overall appearance, 

the synthetic data is indistinguishable from experimental sEMG data. Visual 
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appearance may not reflect accurate physiological modelling, but combining 

the qualitative (visual) and quantitative (decomposition) assessment 

strengthens the overall validation of the synthetically generated sEMG. 

Additionally, the distinctive tripole shape of the extracted MUAP, displayed 

in Figure 15, aligns well with the expected MUAP from a muscle contraction 

(Vecchio, et al., 2020) adding credibility to the physiological resemblance 

of the synthetic data. 

As described in the Evaluation section, the simulated data was assessed 

using a decomposition algorithm. However, the decomposition algorithm is 

limited in its accuracy and has an inherent variance threshold for adjusting 

sensitivity. The variance threshold determines the sEMG signal amplitude 

variation permitted for the identification of MUs. A larger variance threshold 

will allow greater fluctuation in the AP amplitudes from estimated MUs, and 

vice versa. Thus, the decomposition algorithm is not a perfect quantitative 

measure, instead it only indicates to what extent relevant sEMG features can 

be identified. With a lower variance threshold fewer motor units will be 

detected, but will be more accurately matched with ground truth. Also, 

adjusting the detection window for firing correspondence will greatly affect 

the recall and precision of the decomposition. We are critical to having 

multiple sensitivity thresholds when analysing data, since they may overlap 

on or even invalidate each other. We decomposed the simulated data mainly 

to highlight successful extraction of the neural firing pattern and an STA. It 

demonstrates that the simulated data indeed contains relevant sEMG 

features. The decomposition heavily overestimated the number of firings in 

each MU, from around 275 to more than 800 firings. This drastic 

overestimation could be explained by the fact that all simulated MUs are 

generated with the same MCD. The MCDs of real MUs are unique. Figure 

12 displays several decomposed estimated firings (blue lines) without origin 

in the ground truth firing pattern (green lines). The overestimated firings 

likely belong to one of the other 31 recruited MUs, but the algorithm has not 

identified these as separate. The algorithm could not distinguish all the MUs 

overlapping in the sEMG signal. We believe the synthetic data is missing 

intricate variations found in a real sEMG signals. The simulated data is 

constructed bottom-up from key components of sEMG, outlined by each 

module in the Method section, but is nonetheless fabricated. It is generated 

as a discrete signal, based on strictly specified parameter values. 

Experimentally recorded sEMG signals, on the other hand, are by nature 

continuous signals with infinitesimal resolution and variation, recorded at a 

certain sampling frequency.  
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Limitations 

The implemented model is based on equations and theoretical descriptions 

gathered from several independent sources. Therefore, the model is a 

synthesis of separate parts. Predictable and seamless synergy between the 

parts are assumptions about the model. The major assumptions about the 

code are: 

(1) The model’s parts synergise in a predictable manner 

(2) All APs are generated using the same MCD 

(3) The mechanism of tripole (MCD) generation is very simple 

(4) Single fibres are two-dimensional and parallelly oriented in a muscle  

(5) MU positions are randomly distributed in a muscle 

(6) MUs are activated strictly following the recruitment model 

(7) The volume conductor (muscle) is homogeneous. 

These assumptions naturally outline possible future improvements. Each 

assumption could be reduced, and eventually removed, by adding new code 

to the model, to counteract the assumption. Some of the possible 

improvements have been outlined previously, by the authors in cited 

literature (Farina, Mesin, Martina, & Merletti, 2004) (Merletti, Lo Conte, 

Avignone, & Guglielminotti, 1999). As mentioned in the Preface, two other 

projects shaped the early program design, using their previous code as a 

template. Using their code was the biggest benefit but also the largest 

setback in the project. It enabled a jump-start in the initial phase of the 

project, small sets of data could be generated right away which got the 

project moving forward. However, later on, after several weeks of 

programming, flaws in the early code surfaced. Major stumbling blocks 

arose as a consequence of adapting code from other authors, and fragments 

of the early code are still part of the program to date. Here lies room for 

future improvement, as it would be possible to re-write the entire project 

from start to end without using any other source code. We believe the 

program structure and performance would benefit from such a re-writing. 

For instance, the processing speed of our program could be greatly improved 

by avoiding some for-loops and replacing every Python-list with a NumPy 

array (Harris, Millman, Van Der Walt, & et al., 2020). The current version 

is limited in terms of processing speed. Since the project is published on 

GitHub, new collaborators are encouraged to develop the code. The bonus 

objective, the implementation of a graphical user interface, could provide a 

smoother user experience. 
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Another important limitation of the model are the ambiguous parameter 

domains and codomains. It is possible to generate data which is not 

theoretically feasible, e.g., incredibly long fibre lengths, or huge radii 

muscles. Domain and codomain values, i.e., the accepted input and output 

values, are not specified for the list of parameters. However, most 

parameters have a theoretically limited domain. Additionally, some 

parameters are much more sensitive than others and runtime errors may 

occur with theoretically sound parameter values, due to limited processing 

power. For instance, manipulating the scaling factor 𝜆, from Equations 1 and 

2, has reasonable consequences on the MCD and AP, but changes the final 

sEMG data in incompatible ways. Adding a framework for parameter 

domains and codomains could benefit users, preventing ineffective and 

illogical use of the model. This would require an investigation of the limits 

and influence of each parameter. 

Conclusion 

We have successfully implemented sEMG simulation model for synthetic 

data. The model comprises five modules, each aligned with the outlined 

objectives. The project achieved its primary goal and purpose, providing 

open-source code to the research field and developing our Python 

programming ability. Theoretical adherence has been validated multiple 

times by replicating key aspects of the cited literature and the decomposition 

algorithm output indicates the generated data contain relevant sEMG 

features. The model’s assumptions and limitations have been acknowledged, 

like synergy between parts and sensitivity to parameter changes. The 

presented model is intended to be further developed by its users and several 

examples for future improvement have been presented. We argue the 

project’s work contributes a valuable sEMG simulation tool to the research 

community.  
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Appendix  

Class and Method Structure 
 

 

SurfaceEMG __init__

simulate_recruitment_model

plot_recruitment_model

simulate_surface_emg

add_noise

plot_surface_emg_array_no_noise

plot_surface_emg_array

plot_one_electrode_surface_emg_no_noise

plot_one_electrode_surface_emg

__init__

get_tripole_amplitude

plot_current_distribution_action_potential

get_tripole_distance

simulate_fibre_action_potential

plot_fibre_action_potential

simulate_motor_unit

plot_motor_unit

__init__

save_output_data

open_and_load_saved_data

plot_saved_motor_unit

plot_saved_surface_emg_array_no_noise

plot_saved_surface_emg_array

plot_saved_one_electrode_surface_emg_no_noise

plot_saved_one_electrode_surface_emg

MotorUnit

SaveData
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Parameters 
 

SurfaceEMG MotorUnit 

Simulation time AP amplitude constant 

Sampling rate Membrane resting potential 

Excitatory drive function AP scaling factor 

Maximum excitation level AP proportionality constant 

Signal to noise ratio AP plot length 

Signal amplitude offset Muscle fibre length 

Number of motor units Conduction velocity 

Recruitment range Ratio axial-radial conductivity 

Excitatory gain Radial conductivity 

Minimum firing rate Inter electrode spacing 

Peak firing rate first MU Number of electrodes z-axis 

Peak firing rate difference Number of electrodes x-axis 

Inter-spike-interval coefficient Electrode shift z-axis 

Twitch force range Neuromuscular junction position 

Motor unit density Y-axis fibre position variation 

Smallest MU number of fibres X-axis fibre position variation 

Largest MU number of fibres Extermination zone width 

Muscle fibre diameter Innervation zone width 

Muscle diameter Time muscle fibre simulation 

Muscle depth Motor unit radius 

Number of electrodes z-axis Number of fibres 

Number of electrodes x-axis Motor unit y-position 

Y-axis plotting limit  Motor unit x-position 

X-axis plotting limit Y-axis plotting limit 

 X-axis plotting limit 

 


