
MASTER’S THESIS 2024

Optimizing Soak Test Reviews:
A Comparative Study of Deep
Learning Architectures
Hugo Bläckberg

ISSN 1650-2884
LU-CS-EX: 2024-02

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: ����-��

Optimizing Soak Test Reviews: A
Comparative Study of Deep Learning

Architectures

Optimering av Soak Test-granskning: en
jämförande studie av

djupinlärningsarkitekturer

Hugo Bläckberg

Optimizing Soak Test Reviews: A
Comparative Study of Deep Learning

Architectures

Hugo Bläckberg
hu3266bl-s@student.lu.se

January ��, ����

Master’s thesis work carried out at Neo�j Sweden AB.

Supervisors: Patrik Edén, patrik.eden@cec.lu.se
Gustav Lindroth, gustav.lindroth@neo4j.com

Eric Sporre, eric.sporre@neo4j.com

Examiner: Markus Borg, markus.borg@cs.lth.se

mailto:hu3266bl-s@student.lu.se
mailto:patrik.eden@cec.lu.se
mailto:gustav.lindroth@neo4j.com
mailto:eric.sporre@neo4j.com
mailto:markus.borg@cs.lth.se

Abstract

Soak testing, a subset of system testing, aims to assess the long-term health of a
system by running for an extended duration, such as several days. Soak testing
aims to expose any performance degradations that occur over a longer time than
other forms of system testing would. The manual review of results from a soak
test makes it a time-consuming process. Investigating whether machine learning
can be applied to identify anomalies in the results could reduce the time spent on
review. We explored di�erent deep learning architectures for this purpose, in-
cluding long short-termmemory autoencoders, transformers, and convolutional
neural networks. The long short-term memory autoencoder and transformer
classify anomalies based on reconstruction loss and a threshold value. In compar-
ison, the convolutional neural network and transformer-encoder were trained
with target labels. All models performed subpar, with low accuracies, except the
convolutional neural network with a balanced accuracy of ��% on the test set.
Consequently, we propose a �d convolutional neural network model that, with
a high degree of accuracy, can classify a sub-sequence concerning a soak test as
non-anomalous or anomalous.

Keywords: Machine learning, Anomaly detection, LSTM, Transformer, CNN, Soak test-
ing, Graph Database

�

Acknowledgements

First and foremost I would like to thank my supervisor at LTH, Patrik Edén, for all the
challenging and rewarding discussions. My work has greatly bene�ted from them, as much
as I have enjoyed them. I would also like to extend my gratitude to Markus Borg for taking
on the role of examiner.

Thank you to everyone at Neo�j for giving me the opportunity to write my thesis, espe-
cially Eric Sporre and Gustav Lindroth for welcoming me to the team and helping me tackle
di�cult topics related to my work.

Lastly I would like to thank my partner, Kathinka, for keeping me sane, and my parents,
tasked with proofreading a topic totally foreign to them.

�

�

Contents

� Introduction �
�.� Background . �
�.� Research Objective . �

�.�.� Research Questions . �
�.� Scienti�c contribution . �
�.� Related work . �

� Soak Testing ��
�.� The Neo�j Graph Database . ��

�.�.� Autonomous Clustering . ��
�.�.� Raft Protocol . ��

�.� Administrative test . ��

� Anomaly Detection and Machine Learning ��
�.� Arti�cial Neural Networks . ��

�.�.� Perceptron . ��
�.�.� Neural Network . ��
�.�.� Recurrent Neural Network . ��
�.�.� Long Short-Term Memory . ��
�.�.� Convolutional Neural Network . ��
�.�.� Transformer Architecture . ��

�.� Learning approaches . ��
�.�.� Supervised Learning . ��
�.�.� Unsupervised Learning . ��

�.� Time Series Anomaly Detection . ��
�.�.� Unsupervised Classi�cation . ��
�.�.� Supervised Classi�cation . ��
�.�.� Classi�cation Evaluation Metrics ��

�

CONTENTS

� Method ��
�.� Metrics Selection . ��
�.� Data Gathering . ��
�.� Data Formatting . ��

�.�.� Dimensionality Reduction . ��
�.�.� Transformations . ��
�.�.� Normalization . ��
�.�.� Labeling . ��

�.� Creating the datasets . ��
�.� Anomaly detection . ��

�.�.� LSTM Autoencoder . ��
�.�.� Transformer . ��

�.� Classi�cation . ��
�.�.� Transformer-Encoder . ��
�.�.� CNN . ��

� Result ��
�.� Anomaly Detection . ��
�.� Classi�cation . ��

� Discussion ��

� Conclusion ��

References ��

Appendix A Supporting tables ��

�

Chapter �

Introduction

1.1 Background
System testing is an integral part of the software development life-cycle, used to understand
the workings of the system as a whole. It serves as an evaluation to ensure that the system
meets speci�ed requirements and functions as expected. This is in contrast to testing that
targets smaller individual areas, such as unit or functional testing. System testing is used at
the end of the life-cycle to solidify a release after all other tests have concluded [�].

Neo�j is a graph database and software as a service provider that use system testing in their
release process to catch problems with their products and services that only become apparent
in an all-encompassing setting. One focus of system testing is on their graph database named
after the company. This is to ensure scalability, that it performs without problems when the
volume of data and user interactions increase. A subset of system testing that Neo�j utilize
for their database is soak testing. Soak testing intends to target the long-term health of a
system by running for a longer duration, such as several days. The soak tests aim to expose
any performance degradations that happen over longer time than what other forms of system
testing would. These degradations include memory leaks, increased garbage collection or any
other problems in the system [�][�].

When a soak test is running the database outputs metrics for di�erent events and processes
related to how it is operating that are useful for debugging purposes. These processes and
events include hardware related ones such as memory or cpu usage but also ones such as the
total number of queries at a given moment. The veri�cation process for these system tests
is currently done manually. This involves looking at the metrics produced by the database
to ensure that the database performed as expected throughout the test run. The veri�cation
process requires that the inspector has an understanding of all the processes that occur in the
database. The inherit nature of system testing entails that the requirements are fuzzier com-

�

�. I�����������

pared to for example unit testing that give undisputed results. This added nuance to system
testing of the database requires the ability to weigh di�erent results in contrast to others,
ultimately with respect to the performance of the system as a whole. This is something that
human brains are very good at and where available algorithms fall short.

With the rise of machine learning and recent advances in neural networks it seems that we
are improving on creating models that imitate the human brain. An e�ort is therefore justi-
�ed to explore how well machine learning, speci�cally deep learning architectures, can meet
the requirements concerning veri�cation in system testing. The e�ort to automate this area
would bring bene�ts such as relieving developers from extensive manual veri�cation and
could also increase the quality of veri�cation as seen in areas such as medical imaging where
machine learning algorithms performs at least as well as humans [�].

1.2 Research Objective
The objective of this thesis is to investigate howmachine learning can be utilized to facilitate
the veri�cation process of the results from a soak test. This includes outright classifying a
test as having passed or failed or receive feedback regarding behaviour that is anomalous.
The e�ort was conducted through collection of metrics data from soak tests, identifying
metrics relevant during a manual inspection in regards to classi�cation as well as exploring,
evaluating and comparing di�erent deep learning architectures for the purpose previously
stated. Evaluation of said architectures was conducted through measures such as sensitivity,
speci�city and accuracy related to classifying sub-sequences of soak tests as anomalous or part
of a failing test. There exist multiple variations of soak tests at Neo�j that simulate di�erent
environments the database face in production. We limit our research by only investigating
one of these: administrative soak tests.

1.2.1 Research Questions
With our research objective as a basis we formulated the following research questions:

RQ�: How well does the amount of anomalies detected in unsupervised analyses correlate
with the need for further manual scrutiny?

RQ�: Do the anomalies detected help identify where in the time series that suspicious be-
haviours occured?

The research question above also extends into a further reaching one, namely:

RQ�: How accurately can a model classify if the results from a soak test constitute a pass
or a fail based on the available data?

1.3 Scientific contribution
This thesis seeks to expand the knowledge for anomaly detection on operational data gen-
erated from system testing. Speci�cally it evaluates di�erent state-of-the-art approaches to

�

�.� R������ ����

deep learning, that are prevalent in other areas, on operational data from a graph database.
We propose a model utilizing a �D convolutional neural network to, with a high degree of
accuracy, classify system tests of a graph database on the basis of a pass or fail.

1.4 Related work
A previously conducted master’s thesis at Neo�j [�] touched the same topics in identifying
anomalies in time series data relating to the database in an operational state. The authors
focused on trying to predict that the database was at risk of fault intolerance before it hap-
pened. They investigated if Histogram-based Outlier Score (HBOS) and an LSTM Autoen-
coder could be used for their purposes and compared the two. Although the authors were
unsuccessful in their e�ort they lay out improvements to the data gathering that this thesis
has from the start. The authors gathered data not from a controlled environment but from
a real-life production environment. They state that future work should rather gather data
in a controlled environment that is reproducible and therefore balanced. The data gathered
within our project, i.e. each soak test run, posses the property that the environment that it
is created within as well as the soak test itself are identical each run.

Another paper that employed the LSTM Autoencoder on time series approach is [�]. The
authors achieved a high accuracy on detecting anomalous time series. The paper therefore
serves as a good foundation for us when considering how to proceed with items such as de-
ciding on a threshold value for our reconstruction loss.

The authors in [�] conducted a survey of popular deep learning architectures commonly used
within areas such as computer vision, natural language processing and machine translation
for the purpose of classi�cation. The authors make the case for why �D Convolutional Neu-
ral Networks (CNN) can be applied to multivariate time series in a compelling way, which
is described in subsection �.�.�. Other attempts on using CNNs for multivariate time series
include [�][�][��]. This leads us to apply this type of architecture in this thesis.

With the recent rise in research on Transformers and in essence Attention-based models the
authors in [��] demonstrate how Transformer models can be applied to anomaly detection
on multivariate time series. They lay out a technique that is similar to anomaly detection us-
ing autoencoders where the model reconstructs the sequence and an anomaly is detected by
comparing the reconstruction error to a threshold decided upon. The training and validation
data only contained non-anomalous sequences which entails in their opinion that the model
learned the latent space of normal heartbeats. This is an interesting approach since one could
argue that the training- and validation data could also include anomalous sequences and that
the purpose of the autoencoder would then be to distinguish these outliers from the rest. We
therefore tried both approaches.

The authors in [��] provide a review on how anomaly detection using deep learning architec-
tures is applied in the industry which o�ers inspiration for the various approaches our work
can take on. They also o�er guidelines for appropriate model selection as well as how to go
about training that can aid us.

�

�. I�����������

��

Chapter �

Soak Testing

Soak tests is a software development methodology that aims to test the overall endurance of
a system. The notion is di�erent from load tests in the sense that they target the long-term
health of the system by running for a longer duration, such as for several days. The soak tests
aim to expose any performance degradations that happen over longer time than what typical
load tests would. These degradations include memory leaks, increased garbage collection or
any other problems in the system. Comparatively to a load test the soak test is run with a
constant number of agents such as users or servers at a high load to the system to extensively
�nd problems [�][�].

2.1 The Neo4j Graph Database
The graph databasemanagement systemNeo�j, named after the company, lets user distribute
a database over multiple physical machines, together called a cluster. This is to ensure data
availability and faster access. A distributed system presents a lot of challenges in terms of
how to keep the database updated across machines and handling disruption in the event of a
machine going down. To explain how it works more deeply we de�ne three notions: server,
database and database management system (DBMS). Servers can be bare metal machines, vir-
tual machines, or containers. The DBMS manages the servers and one or multiple databases.
The DBMS assigns servers to a cluster that jointly hosts a database, each keeping a copy of
it. A server can also host multiple databases.

2.1.1 Autonomous Clustering
To handle disruption to the cluster Neo�j utilizes a process called Autonomous Clustering.
Within the cluster for a database the DBMS assigns the servers to one of two modes, either
primary or secondary. An examples of how databases are allocated is shown in �gure �.� [��].

��

�. S��� T������

P P S S

configured layout

P P PPP PS

Database 1

server 1 server 2 server 3 server 4

P P P

configured layout

Database 2

P PPP

S

server 5

Figure �.�: Example of a system with two databases, to the left a con�guration of three primaries
(P) and two secondaries (S), to the right a con�guration of three primaries. Bottom shows allo-
cation on di�erent servers.

Servers who are primaries allow for both read and write transactions to the database through
it. The secondaries only allow for read transactions to the database through them. Servers as-
signed as primaries are the point of contact for requests from clients to write to the database.
A write transaction sent to one primary server is propagated to the rest of the primary servers
following a protocol called Raft later mentioned. To keep each version of the database up-
dated on the servers assigned as secondary they periodically poll a transaction log from pri-
maries to �nd new write transactions and if found update their version of the database with
the changes as well as adding them to their own transaction log. The more prevalent require-
ment from databases is a high capability of processing read transactions i.e. a larger number
of secondaries. The idea of secondaries solely being responsible of keeping their copy of the
database updated by pulling instead of being pushed to allows for a smaller number of pri-
maries to be available in the cluster since the write transactions only go one way. The process
is labeled as autonomous because of how the DBMS manages to keep a cluster intact in the
case of a server abruptly shutting down. When a cluster lose connection to a member the
DBMS automatically assigns another server present in other clusters to said cluster [��][��].

2.1.2 Raft Protocol
To further handle disruption to the cluster Neo�j implements the Raft protocol in addition
to Autonomous Clustering. Raft is an algorithm that enables a cluster of computing systems
to reach a consensus on a state they collectively manage. It works by �rst electing a server to
be the leader of the cluster, the rest being labeled as followers. The leader is the entrypoint
for changing the state of values and keeps track of changes through a log. The leader prop-
agates updates to the log to the followers who in turn update their own version of the state.
Meanwhile it periodically sends a heartbeat to the other members in the cluster to indicate
its existence. If the leader fails to send a heartbeat that member is considered nonexistent and
a new leader is elected by the remaining members [��]. The algorithm is only used for servers
assigned as primaries. Consequently secondaries are not assigned as leader or follower.

��

�.� A������������� ����

2.2 Administrative test
The purpose of the administrative test is to see that the DBMS manages the clusters as ex-
pected when issued commands that a�ect the cluster such as change of modes or remov-
ing servers. The test creates three databases and keeps the total number of servers for each
database at �ve throughout the test, two Primaries and three Secondaries. The test then ran-
domly issues commands that alter the clusters concerning the three databases. We are going
to reference them as cluster commands. The cluster commands and their resulting changes in-
clude:

• AddFollowerCommand: Boots up a new server and assigns it as a primary and a follower
in the mentioned cluster

• AddSecondaryCommand: Boots up a new server and assigns it as a secondary in the men-
tioned cluster

• BackupCommand: Instructs the cluster to make a backup of the database

• ReplaceFollowerCommand: Removes a server assigned as a follower from the cluster and
boots up a new server and assigns it at as a follower

• ReplaceLeaderCommand: Removes the server assigned as the leader and boots up a new
server and assigns it at as a primary

• ReplaceSecondaryCommand: Removes a server assigned as a secondary from the cluster
and boots up a new server and assigns it at as a secondary

• StopRemoveLeaderCommand: Removes the server assigned as the leader from the cluster
without replacing it. This forces the DBMS to rebalance to keep the desired number
of primaries and secondaries. This also initiates an election process to elect a new leader

• StopRemoveSecondaryCommand: Removes a server assigned as a secondary from the clus-
ter without replacing it. This forces the DBMS to rebalance to keep the desired number
of secondaries

• StopRemoveFollowerCommand: Removes a server assigned as a follower from the cluster
without replacing it. This forces the DBMS to rebalance to keep the desired number
of primaries

In addition to issuing cluster commands the test also issues queries in theCypher Query Language
[��] to the database which we will reference as cypher commands. The cypher commands are
issued in order to keep a workload that performs steady read and write operations as would
be the case in a production database. The test is con�gured so that the number of queries
sent to a database is constant at ��� transactions per second.

��

�. S��� T������

��

Chapter �

Anomaly Detection and Machine Learning

3.1 Artificial Neural Networks
Arti�cial Neural Networks (ANNs) is a subset of machine learning that draws inspiration
from how biological brains gain knowledge from the environment. An ANN much like a
brain is comprised of many connected neurons, referenced here as nodes, that collectively
form a network. As with a neuron synapse, these connections have a weight associated with
them that in�uences the strength of the signal from one node to another. The network re-
ceives an input and propagates the output from the nodes throughout the network to ensuing
nodes to end up with an output. During the learning process each input is paired with a cor-
rect output that the network can use to calculate what’s called a loss between the correct and
actual output. Learning then occurs by adjusting the weights to be larger or smaller based
on how high the loss was. Through repeated adjusting of the weights the actual output will
move towards the correct output [��][��].

3.1.1 Perceptron
The perceptron consists of a single node with inputs x1, ..., xk as a vector x̄ each with an
associated weight vector w̄. The node performs a weighted summation of input vector x̄ and
outputs a new signal ŷ as pictured in equation �.�.

ŷ = '

0
BBBBB@

KX

k=1
wkxk + b

1
CCCCCA (�.�)

An activation function'(a) is applied to theweighted summation to create the�nal output ŷ.
As seen in equation �.�, a bias term b is also added to the signal. The purpose of the activation
function is inspired by the biological neuron where a strong input gives a larger output and a
threshold behaviour exists to trigger the neuron. There exists di�erent activation functions

��

�. A������ D�������� ���M������ L�������

for various purposes. Two common ones are sigmoid and ReLU pictured in equation �.�.

sigmoid(x) = 1
1+e�x , ReLU(x) = max(0, x) (�.�)

Another common one, softmax, takes a vector of values and adjusts them so that the sum
equals to �.

For each input x̄ we have a corresponding expected output labeled y. The learning process
that covers classi�cation involves an optimization problem where the loss E(w̄) between ŷ

and y is to be minimized. Through a process called gradient descent we can iteratively adjust
the weights until we reach a satis�able loss. There exists di�erent ways of calculating loss
that depends on the objective of our model. For regression the mean squared error (MSE) is
used and for classi�cation a formula called cross-entropy is used. For cross-entropy loss and
binary classi�cation where we only have two classes, � or �, we calculate how much the ac-
tual output ŷ 2 [0, 1] di�ers from the expected output y. A logistic activation function '(a)
turns the output from the weighted summation to a value within the range. To get the class
prediction we round the value to the nearest integer. The perceptron is a core component in
machine learning and is what in larger numbers make up a neural network [��].

3.1.2 Neural Network
A feed forward neural network is an evolvement of the perceptron that incorporates multi-
ple connected nodes to form a network. The nodes are grouped into sections called layers
of which there exists multiple. A feed forward neural network can have connections that

Figure �.�: A fully connected neural network showing the input layer, two hidden layers and the
output layer with their accompanying nodes (circles) and weights (lines) [��].

skip certain layers, such as a connection from an input layer directly to a second hidden
layer. Comparatively, a neural network where each connection is only between a layer hn

and the next layer hn+1, as pictured in �gure �.�, is called a multi-layer perceptron. The only
requirement for the two types is that the connections go from left to right and that there are
no feedback. The networks are structured to receive an input, propagate it through all the
nodes in the network and produce an output. Gradient descent training occurs by comparing
the actual output to the expected and backpropagating through the network and adjusting
the weights [��][��].

3.1.3 Recurrent Neural Network
Recurrent neural networks (RNN) are a subset of neural networks that process an ordered
sequence of values such as a sentence "He", "is", "happy", a sequence of words, or a time series

��

�.� A��������� N����� N�������

of the temperature during a day. The network takes an input value x(t) from the sequence
x(0), x(1), ..., x(T) one at a time and then applies the previous output h(t) on the input with
'(a) representing the activation function, as seen in equation �.�.

y(t) = ' (Vh(t))
h(t) = ' (Ux(t) +Wh(t � 1)) (�.�)

This makes it so that every output is dependent on the previous input and subsequently the
network keeps a memory of the previous inputs in the hidden node h(t). If we "unfold" the
network for a sequence as in �gure �.�we can see this more clearly. We notice that the hidden

y

x

h

y0

x0

h0

y1

x1

h1

y2

x2

h2

y3

x3

h3

Figure �.�: A folded RNN to the left with input node x, hidden node h and output node y.
Hidden node has the previous value as input aswell. To the right, the RNN unfolded for each
timestep with an input xt and output yt for each timestep t.

nodes weight W is shared across all of the steps in the sequence which enables the network
to draw conclusions from every part of the sequence. A recurrent neural network is trained
in the same manner as a feed-forward network through backpropagation by adjusting the
weights to get the output to as closely possible match the input [�][��].

3.1.4 Long Short-Term Memory
One shortcoming with recurrent neural networks is that for very long sequences, since each
sequence step depend on all previous, the gradient calculation causes values to vanish or
explode slowing down training. Since RNN’s can work poorly on longer sequences, the Long
Short-Term Memory (LSTM) network was introduced [��]. The overall layout and idea of
the network is the same apart from that instead of a hidden node as we had with an RNN
we use a LSTM cell as pictured in �gure �.�. The output h(t) is calculated based on a series

Figure �.�: LSTM cell with the value xt at time step t in the sequence, ht�1 value from the previous
cell and ct�1 value from the previous cell as input. Output consists of the current ht and ct [��].

of operations including the input x(t) and the output h(t � 1) from the previous LSTM cell.
The cell also outputs c(t) which is considered the internal memory of the cell. The LSTM
deals with the issue of vanishing and exploding gradients by intentionally forgetting previous

��

�. A������ D�������� ���M������ L�������

information with the network deciding on its own when in the sequence to forget. While
this may seem counterintuitive when our objective is to form some sort of memory into how
sequences are structured we only reset the long term memory. This is where the name comes
from, we essentially end up with short-term memory on long sequences [�][��].

3.1.5 Convolutional Neural Network
A convolutional neural network (CNN) is another subset of neural networks that deals with
data that has a grid-like structure such as an image with a �D grid of pixels. They have seen
a huge success of applications in areas such as image and video recognition. CNNs are able
to capture spacial relations between inputs such as, in very simple terms, the occurrence of
the color red forming a speci�c shape in images picturing apples. Through multiple layers,
a network is able to distinguish di�erent features inherent to the input in each layer. This
means that one layer might focus on say the brightness of an image while another focuses
on features like strong lines. In the most basic form the network performs a mathematical
operation called convolution on the input I(i, j), in this case an image, with the help of a kernel
K(m, n) as shown in equation �.�, but expanding it to a sum.

H(i, j) =
X

m,n

I(i + m, j + n) K(m, n) (�.�)

The values in the kernel K(m, n), in the �D case a matrix, in�uence the output H(i, j) by
accentuating di�erent features of the input like those mentioned previously. The learning
process then consists of adjusting these kernel values which we do using back-propagation.
[�][��]

3.1.6 Transformer Architecture
A Transformer is a recent deep learning architecture proposed in [��] that tackles the down-
sides of existing recurrent networks (RNN, LSTM)with regards to taking a long time to train.
Recurrent networks process one step at a time in a sequence which impacts the time to train
a model when the sequences are especially long. The Transformer on the contrary takes the
whole sequence as input which drastically cuts down training time. Transformers also utilizes
a novel mechanism called attention, �rst mentioned in [��], implemented to improve how
models take context in a sequence into account when predicting the next time step. Giving
models the ability to understand context helps with tasks such as language translation where
predicting the next word often depends on the context of the sentence [��][��].

General Attention Mechanism
Consider half a sentence, which is just a sequence of words, and we wish to somehow predict
the next word in the sentence. A simple way would be to �nd the most common word in
all published texts that comes after our previous word. A better way would be to take the
context of the whole sentence into account. The attention mechanism allows for this by
giving more weight to certain parts of the sentence when predicting our next word [��][��].

��

�.� L������� ����������

Transformer
The authors in [��] propose a variant of the attention mechanism, labeled Multi-Head At-
tention, for the Transformer. The full architecture of the Transformer is pictured in �gure
�.�. The Transformer, originally proposed for natural language processing purposes, is com-

Figure �.�: Transformer model with the encoder to the left and decoder to the right. Output
from the encoder acts as input to the decoders middle part Multi-Head Attention layer. Target
sequence also goes in to the decoder. Linear layer at the end as well as softmax produces proba-
bilities for the target sequence [��].

prised of two components: Encoder and Decoder. It takes word embeddings of a sequence
as input to the Encoder and target word embeddings as input to the decoder and outputs
in this case probabilities for each target. The Transformer can also output a sequence if a
di�erent activation function than softmax is used. The Transformer architecture features a
fully connected feed forward neural network in both the Encoder and Decoder.

3.2 Learning approaches
There exists multiple ways of training a machine learning model with respect to what type
of data is available. Two main approaches are mentioned in this section: Supervised learning
and Unsupervised learning.

3.2.1 Supervised Learning
Supervised learning is a concept that means to provide the model with an answer to a given
input during training to increase learning. In the case of image recognition this constitutes
giving the model an image of an animal, letting it predict the animal and afterwards giving it

��

�. A������ D�������� ���M������ L�������

the actual answer. For supervised learning to be possible, a dataset is needed where for each
sample there exists a label associated to the feature [��].

3.2.2 Unsupervised Learning
In contrast to supplying the model with labels during training, there exists an approach that
seeks to let the model itself di�erentiate between patterns and label them. Some algorithms
use a clustering approach that groups patterns together that share similarities while others
seek to �nd a latent space representation that represents the majority of samples [��].

3.3 Time Series Anomaly Detection
3.3.1 Unsupervised Classification
An Autoencoder is a neural network model that consists of two parts: the encoder and the
decoder. The size and number of layers of the encoder and decoder often have a mirrored
symmetry, seen in �gure �.�, where the size of the layers decreases moving to the center, form-
ing a butter�y design. The encoder takes an input and through the series of layers decreases

Figure �.�: Depiction of the layers for an Autoencoder neural network model featuring an input
layer, hidden layer, middlemost latent space, hidden layer and an output layer in order left to
right [��].

the dimension of the data until reaching the middlemost layer, often called the latent space
representation. The decoder takes this representation of the input and tries to reconstruct
it through its layers to the original dimension. The goal of training is to minimize the loss
between the input to the encoder and the reconstruction from the decoder. The loss is com-
monly de�ned as the mean squared error (MSE) or mean absolute error (MAE). In terms of
anomaly detection the hope is that the model learns properties of the data that constitute
normality. When given an anomalous input the representation loss will then be much greater
signaling the presence of an anomaly [��][��]. By calculating the distribution of reconstruc-
tion losses on a dataset one can identify a threshold value that distinguishes normal from
anomalous samples. The threshold can then be used for binary classi�cation [�].

Training can employ a supervised approach where the set of samples include only those con-
sidered normal. The model then learns a representation of normality and reacts through a

��

�.� T��� S����� A������ D��������

poor reconstruction when given an anomalous sample. Training can also employ an unsuper-
vised approach if the set of samples are not labeled. The notion is that since an anomaly is
an outlier it therefore does not occur more often than non-anomalous patterns, such that a
representation of normality can still be achieved.

Employing an Autoencoder on sequence data can be achieved by using LSTM layers instead.
The dimension is then reduced by decreasing the number of hidden nodes h(t) in each sub-
sequent layer [�].

3.3.2 Supervised Classification
Supervised classi�cation using deep neural networks has gradually become a widely used ma-
chine learning method due to its performance in areas such as computer vision and natural
language processing. Other supervised classi�cation approaches such as support vector ma-
chines, random forests and decision trees have historically been widely used for supervised
classi�cation [��]. In advent of the successes with neural networks, research has also been
done with supervised time series classi�cation. One of the research areas is convolutional
neural networks (CNN) that have gained popularity due to many successful implementa-
tions in various �elds such as computer vision. The idea behind using CNNs for time series
revolves around the notion that a convolution can be seen as a �lter that moves along the
time series in one dimension. Because we are using time series the input is �-dimensional
(time) unlike �-dimensional as with images. A general form of how applying a �lter on a
time series is given in equation �.�:

H(t) = '
0
BBBBB@b +
X

n

I(t + n)K(n)
1
CCCCCA (�.�)

Where H(t) denotes the result of a convolution at time step t applied on a univariate time
series I(t) of length n, a kernel K(n) and a �nal activation function '(a). Through the use of
multiple convolutions we can create multiple versions of the same time series that accentuate
di�erent features inherent to it and therefore in theory learn more discriminative features
[�]. The usage of channels in CNNs also gives us the added bene�t of being able to handle
multivariate time series where each time series is on its own channel [��]. To enable clas-
si�cation the result of the convolutional layers acts as input to an MLP whose last layer in
the case of binary classi�cation outputs a value in the range �,� through a sigmoid operation.
The output value represents a prediction of which class the input is closest to. Consequently
a prediction of �.� would categorize the input as pertaining to the class �. The result of the
convolutional layers is �attened such that an �x� image gives an input to the MLP of size ��
(4 ⇤ 4 = 16) [��]. The MLP can feature multiple non-linear layers with activation functions
such as ReLU but can also be as simple as a perceptron. The process of training the model
is identical to a feed-forward network where the network is given the time series as input
and compares the predicted output (i.e the predicted class �/�) to the expected output [�]. In
case of binary classi�cation the loss function of choice would be binary cross-entropy. This
is then followed by back-propagation in order to update the weights accordingly [�].

��

�. A������ D�������� ���M������ L�������

3.3.3 Classification Evaluation Metrics
Having derived a model the process of evaluating it presents a few options. With binary
classi�cation let us consider two classes, positive or negative, that a given sample belongs
to. Classifying a sample as positive and it actually being positive is de�ned as a true positive
(TP). Similarly if the sample is positive and is classi�ed as a negative this counts as a false
negative (FN). Visually this is shown in �gure �.�. Trivially the blue diagonal with the true

A
ct
ua
l

Predicted
P N

P TP FN
N FP TN

Table �.�: Confusion matrix with actual class on the y-axis and predicted class on the x-axis.
Blue diagonal represents number of correct classi�cations, green diagonal represents number of
incorrect classi�cations.

positives and true negatives represents the number of correct classi�cations from a set of
samples and the green represents the number incorrect classi�cations [��]. The resulting
table is called the confusion matrix and lets us identify irregularities with classi�cation such
as predicting one class with higher frequency. Observing the ratio of correctly classi�ed
samples is an important metric for evaluation. Sensitivity represents the ratio of correctly
classi�ed positive samples out of the total number of positive samples. Speci�city represents
the ratio of correctly classi�ed negative samples out of the total number of negative samples.
Formulas for these are seen in �.�[��].

Sensitivity = TP
TP+FN Speci�city = TN

TN+FP (�.�)

Another important metric is Accuracy, de�ned as the ratio between correctly classi�ed sam-
ples and the total amount of samples, formulated in �.�.

Accuracy = TP+TN
TP+TN+FP+FN (�.�)

An imbalanced set of samples, where samples of one class outnumber the samples of the other
class, a�ect the Accuracy since it uses values from both the positive and negative row. When
working with an imbalanced set of samples it is therefore recommended to instead focus on
Sensitivity and Speci�city. Another option is de�ned as Balanced Accuracy that takes the
latter metrics into account to produce a better measure of accuracy for imbalanced sets of
samples. The formula is speci�ed in �.�.

Balanced Accuracy = 1
2 (Sensitivity + Speci�city) (�.�)

��

Chapter �

Method

4.1 Metrics Selection
In order to achieve a model that can successfully identify anomalies in the test data, the
most straightforward way is to mimic how manual inspection is carried out. We therefore
identi�ed the most signi�cant metrics that during a manual inspection tell us if the test has
failed or contains anomalies. We identi�ed them through interviews with people within the
company and by attending inspections. In total we identi�ed six metrics. The following
sections describe the metrics we identi�ed as most signi�cant during manual inspection.

Throughput
Throughput is a metric that states the amount of reads and writes a server hosting a database
processes in a given amount of time. We were able to separate the metric into two, namely
one for the read throughput and one for write throughput. A drop in throughput tells us
that the machine is not processing as many read or writes as it should, because of the load
balancing property mentioned previously in section �.�, and is a stark sign that the test has
failed.

Cypher commands
As mentioned previously in section �.� the test generator issues cypher commands to the
database. If the database does execute the command this is recorded as a successful com-
mand. If the database fails to execute the command in any manner this is recorded as a failed
command. Each command has both a sequence of successful and failed counts. The number
of commands were �� so we ended up with �� sequences in total. A decrease in the number
of successful commands and subsequently an increase in failed ones do indicate that the test
may have failed.

��

�. M�����

Cluster commands

Cluster commands are as mentioned previously in section �.� instructions issued by the load
generator to the cluster ofmachines as awhole to in someway alter the structure of the cluster.
As with cypher commands we have sequences of both failed and successful commands issued
during the test. The number of commands were nine so we ended up with �� sequences in
total.

Cypher replan events

The replan option for a cypher query gives the option to decide whether a query should be
recompiled or not. Not recompiling a query could be bene�cial when dealing with expensive
computations and knowing that the data has not changed since the last time a query was sent.
This metric states the total number of times a query has been re-planned for a database. If
we see large and frequent spikes this could indicate an issue. Since the administrative test
consists of three databases we ended up with the same number of sequences. We took the
derivative to produce a sequence concerning number of cypher replan events per time step.

Check pointing time

Check pointing is an action where all pending updates from volatile memory to non-volatile
memory are �ushed. This is to minimize the time required for recovery after an improper
shutdown or crash has occurred in a database. The metric states the total time, in millisec-
onds, spent in check pointing so far. We took the derivative to produce a sequence concerning
total time spent check pointing per time step.

4.2 Data Gathering
Metrics gathered during the duration of the system test, and later used as documentation for
the manual inspection, was archived at the end of the test. We proceeded by fetching all the
archives and wrote a script to recursively unpack the archives and extract the relevant �les
concerning the most signi�cant metrics we previously identi�ed. The time series sequences
were formatted in a �le format used by the monitoring tool called Graphite. The �les con-
tained the same time series but with di�erent durations between each measurement: �m, �m,
��m. We thereafter used a script to dump the contents of the �les into text �les with the time
series sequences intact. Using a Python script the contents of the text �les were imported
into a pandas DataFrame with each �lename represented as a column and each time step rep-
resented as a row. Graphite conveniently enough stored the UNIX timestamp for when each
"measurement" was received so we were able to match up all the rows in every column. The
DataFrame was thereafter converted into a csv �le and stored. In total we ended up with ��
csv �les that were later used to build the dataset.

��

�.� D��� F���������

4.3 Data Formatting
The nature of the test meant that the number of possible features to the model would change
with every occasion. One example of this is that the total number of machines spun up, and
that at some point were part of a cluster, di�ers between runs. This is due to the way the
test operates, as detailed in section �.�. This entails that the number of Throughput, Check
pointing and Cypher replan event sequences is di�erent from each test run. To address this
we decided to use dimensionality reduction that allowed us to from a variable amount of
sequences get a single representation of the sequences. We also performed transformations
on few selected metrics. We ended up with �� features consisting of time series.

4.3.1 Dimensionality Reduction
Below is an overview of the metrics that di�er in number between test runs and how a lower
dimensional representation was constructed.

Throughput
At �rst glance a way to concatenate all the throughput sequences would be to add them all
together. However due to the load generator adjusting the throughput to the other machines
when a drop occurs elsewhere we would end up with a sequence that does not contain any in-
formation that a drop in throughput in a machine has occurred. To preserve the information
in the sequence that a drop in throughput in one of the machines had occurred we calculated
the variance in throughput over all the sequences at a given timestep.

Cypher & Cluster commands
We did not face the same issue with the sequences of cypher and cluster commands so we
proceeded with dimensionality reduction by adding together the values at each timestep of
each command to form one sequence. Subsequently we ended up with two sequences: one
with counts of all successful commands and one with counts of all failed commands

4.3.2 Transformations
In accordance to how the team handles these metrics and uses them to perform manual in-
spection we did additional transformations on somemetrics. This includes taking the deriva-
tive of sequences for Cypher replan events and Check pointing times.

4.3.3 Normalization
The training set was normalized using min-max normalization. Each feature was normalized
independently of the others because of the di�erence in scale between them. The validation-
and test-set was normalized in the same way but using the min, max values previously calcu-
lated on the training set.

��

�. M�����

4.3.4 Labeling
Since the previous soak tests had undergone manual inspection the teamwere aware of which
test instances that were classi�ed as passed or failed. Through manual inspection the team
were able to identify at which point (unix timestamp) in the time series that a problem �rst
became apparent. With the knowledge of where a problem �rst appeared an additional col-
umn was added to each csv �le and each measurement was labeled with a � representing a
pass and a � representing a fail. Some leeway of approximatively -� hours were added with
the notion that the problem might be apparent earlier and that a model might learn what
happens before a problem occurs and in a sense see into the future.

4.4 Creating the datasets
To enable �exibility in our working process we implemented a custom Dataset class derived
from the base class in PyTorch. The class imported all the available CSV �les into a single
DataFrame and returned three datasets considered for training, validation and testing con-
taining the input features and target labels. All measurements were divided into sequences of
a length speci�ed when instantiating the class. The last sequence at the end of a test instance
might not have enough measurements to satisfy the length speci�ed so these sequences was
padded with -�, intentionally since no time series sequence contain negative values. All the
sequences were thereafter labeled using the notion that a whole sequence is a fail if it con-
tains any measurement deemed a fail. Since the distribution of test instances that failed or
passed was uneven, randomly sampling sequences for the three datasets could lead to an even
greater imbalance. The Dataset class therefore utilizes strati�ed sampling to the extent that
a train dataset that contains ��% of all sequences contains ��% of all sequences considered
passed and ��% all sequences considered failed. The dataset consisted of �� test instances of
which �� and �� were considered to have passed and failed, respectively.

4.5 Anomaly detection

4.5.1 LSTM Autoencoder
We implemented an autoencoder architecture with hidden LSTM cells instead of regular
hidden nodes that you will �nd in a typical autoencoder. The implementation was written
using PyTorch. An overview of the architecture that we found to work best can be seen in
table �.�. We found that using the mean squared error (MSE) between the input sequence
and reconstruction sequence during gradient descent provided the lowest loss compared to
mean absolute error (MAE). As an optimizer we used NAdam. We trained the model us-
ing minibatches of a speci�ed size and for each epoch calculated a MSE loss on the whole
validation set. We used the loss on the validation set to adjust the hyperparameters of the
model to counteract over�tting and bring down both the training and validation loss. The
model was trained with various sequence lengths and we found that a sequence of �� mea-
surements, i.e. �� minutes, provided the lowest loss. To allow us to classify a sequence as
anomalous we proceeded with deciding on a threshold of the reconstruction loss that would

��

�.� C�������������

Layer (Type) Component Input size Output size
LSTM Encoder �� ��
LSTM Encoder �� �
LSTM Decoder � ��
LSTM Decoder �� ��

Table �.�: LSTM Autoencoder architecture in order from top to bottom. Each row speci�es a
layer in the model with the accompanying input and output size as well as what part, encoder or
decoder, the layer pertains to.

allow us to di�erentiate the two. To decide on a threshold we used Optuna for optimiza-
tion [��]. We computed the reconstruction error on the training set using the mean absolute
percentage error (MAPE) that provided better results compared to using the MSE. The idea
behind using MAPE was that since each metric has a di�erent scale that looking at the error
percentage-wise would handle cases where a metric is generally much larger than the rest bet-
ter and therefore not skew the result. For each suggested threshold by Optuna we calculated
the accuracy by labeling a sample as anomalous if the MAPE was greater than the threshold
and comparing the labeling to the true label for the sample. The computed accuracy was
balanced so as to not skew the results due to there being more samples labeled as normal
than anomalous in the dataset. The optimization procedure ran for �.��� iterations until it
was stopped. We evaluated the model on a test set by computing the TP, TN, FP, FN from
classifying the samples using the threshold and comparing the predicted and actual label.

4.5.2 Transformer
Another model was implemented in PyTorch using the transformer architecture consisting
of a encoder and a decoder as described in [��]. The model was trained with a seq�seq ap-
proach where the encoder and decoder was fed an input sequence and the decoder produced
an output sequence. During training the MSE loss between the input and output sequence
was calculated and the objective was to minimize it. NAdam was used as an optimizer. To
optimize the hyperparameters, pictured in Table A.� in Appendix, we used Optuna to train
the model and evaluate the hyperparameters with respect to the validation loss from the last
epoch of training. We proceeded by deciding on a threshold for the reconstruction error,
that would constitute a sequence as anomalous, using Optuna in the same manner as for the
LSTM Autoencoder. Ultimately the model was evaluated on a test set by computing the TP,
TN, FP, FN from classifying the samples, using the threshold, and comparing the predicted
and actual label.

4.6 Classification

4.6.1 Transformer-Encoder
A relevant research area is how Transformers can be used for text classi�cation and more
recently for time series classi�cation [��]. One approach is to train the encoder part of the
Transformer as detailed in subsection �.�.� [��][��]. We wanted to explore if our already

��

�. M�����

trained Transformer model used for seq�seq could be re-utilized for supervised classi�cation
purposes. The encoder pertaining to our transformer was disconnected from the decoder and
a fully connected layer was added to the output layer from the feed-forward-network of the
encoder. The fully connected layer has �� input features, one output and a sigmoid operation.
Training occured only on the fully connected layer with the other weights intact using the
same training set as we used for the transformer. The length of the input sequence that was
used to train the transformer was also used in training the classi�er. We used NAdam as
optimizer and binary cross-entropy for the loss function. We evaluated the model on the
test set by computing the TP, TN, FP, FN from classifying the samples and comparing the
predicted and actual label.

4.6.2 CNN
From the notion that CNNs can be applied to multivariate time series as mentioned in sub-
section �.�.� we implemented a one-dimensional CNN using PyTorch with the architecture
seen in �gure �.�. The model takes a vector sequence t1, t2, t3, ..., tk as input. Each feature

1x60x16 1x60x64

1x480 1x50

1x15x321x30x321x30x64

Figure �.�: All layers ordered from left to right, input to output. Convolutional layers with
padding same and ReLU (blue), max pool layers (red), �attened layer (green) and linear layer +
sigmoid (purple). Width of block speci�es number of channels. Depth of block speci�es sequence
length.

for a time series is inputed as a channel to the model. Consequently the �rst layer has ��
input channels. The models layers consists of a repetition of a �d convolutional layer, ReLU
activation function and a �d max pooling layer. The convolutional layers pad the output so
the input and output dimensions are the same. We experimented with the use of multiple
repetitions and found that two repetitions gave the best validation accuracy. The �rst con-
volutional layer expands the number of channels to four times the amount. We found that
�rst increasing the number of channels in the �rst layer worked best compared to decreasing
them as we do with the other convolutional layers. Our notion is this creates more trainable
parameters in the model. The output from the last �d Max Pool layer is thereafter �attened
and acts as input to a MLP with a sigmoid activation function at the end. We used NAdam
as an optimizer and binary cross-entropy as the loss function. Hyperparameters of the model
such as sequence length, kernel size, stride were manually optimized to �nd the choices that
gave the lowest validation loss and balanced accuracy without over�tting. We evaluated the
model on the test set by computing the TP, TN, FP, FN from classifying the samples and
comparing the predicted and actual label.

��

Chapter �

Result

5.1 Anomaly Detection

LSTM Autoencoder

We found the optimal threshold for the reconstruction MAPE of the LSTM Autoencoder
to be �.����. This value was reached after ��,��� iterations. The model that performed the
best was trained with an initial learning rate of �.��� and a batch size of �� for a duration of
��� epochs. Looking at the confusion matrices for each dataset in Table �.� we see that there
is a large discrepancy between the two classes and that the model is more likely to predict
that a sequence is non-anomalous. The test set accuracy for correctly identifying a sample

A
ct
ua
l

Predicted
P F

P ���� ���
F ��� ���

TPR: .�� TNR: .��

A
ct
ua
l

Predicted
P F

P ��� ��
F �� ��

TPR: .�� TNR: .��

A
ct
ua
l

Predicted
P F

P ��� ��
F �� ��

TPR: .�� TNR: .��

Table �.�: Confusion matrix for training, validation and test set on the two classes "Pass" (P) and
"Fail" (F) from left to right. Sensitivity (TPR) and Speci�city (TNR) below each matrix. Darker
color in a cell represents a higher concentration of predicted values in that class

labeled as normal and anomalous ends up at ��.��% and ��.��%, respectively. If we compare
the balanced accuracies among the di�erent datasets, training, validation, test, we see that
they are quite similar, ��.��%, ��.��% and ��.��% respectively.

��

�. R�����

Transformer
Through optimization with the help of Optuna we managed to �nd the hyperparameters
stated in Table A.� after �� iterations of training for ��� epochs. It is interesting to note
the signi�cant di�erence in the input sequence length for the Transformer compared to the
LSTMAutoencoder with it being � and �� respectively. We found with the Transformer that
a shorter sequence length provided a lower reconstruction loss. The resultingmodel exhibited
signi�cant potential due to the small reconstruction loss on test samples. We calculated the
average reconstruction loss on each of the �� in total features to get a sense of if some features
were harder to reconstruct and found that they were low across the spectrum as seen in the
Table A.�. We found the most optimal threshold value of the reconstruction MAPE to be
�.���� after ��,��� iterations of searching.

A
ct
ua
l

Predicted
P F

P ���� ����
F ���� ����

TPR: .�� TNR: .��

A
ct
ua
l

Predicted
P F

P ���� ���
F ��� ���

TPR: .�� TNR: .��

A
ct
ua
l

Predicted
P F

P ���� ���
F ��� ���

TPR: .�� TNR: .��

Table �.�: Confusion matrix for training, validation and test set on the two classes "Pass" (P) and
"Fail" (F) from left to right. Sensitivity (TPR) and Speci�city (TNR) below each matrix. Darker
color in a cell represents a higher concentration of predicted values in that class

Looking at the confusionmatrix in Table �.�we see similar results to the LSTMAutoencoder.
The balanced accuracy where we take into account the disparity between the number of
"pass" and "fail" samples ends up at ��.��% on the test set. However if we look at the accuracy
independently for each class the accuracy for correctly identifying a sample labeled as "pass"
and "fail" ends up at ��.��% and ��.��% respectively. Note the di�erent amount of samples in
all the datasets compared to the LSTMAutoencoder is due to a shorter input sequence length
and therefore the ability to get more samples from available data. If we compare the balanced
accuracies among the di�erent datasets, training, validation, test, we see that they are quite
similar, ��.��%, ��.��% and ��.��% respectively. This at least indicates that no over�tting
has occurred. The notion that the Transformer performed poorly due to being trained on a
collection of both anomalous and normal samples was ruled out, as training the Transformer
on only normal samples produced worse results.

Visualizing the reconstruction MAPE
By calculating the reconstruction MAPE for the LSTM Autoencoder and Transformer with
the test set as input we can look at the distribution. This is pictured in �gures �.�, �.�. We
see that for both models the reconstruction MAPE from fail sequences is to a large degree the
same as those for a pass sequence judging from the leftmost portions of the �gures. We also
see a large concentration of samples located right after �.� in both �gures and that almost no
sample produce a reconstruction MAPE larger than that. The large concentration at around
�.� matches well with the threshold value we found for the Transformer using Optuna. The
threshold for the LSTM Autoencoder found using Optuna is located within the distribution
concerning normal samples. Probably, not enough anomalous samples exist outside the dis-
tribution, compared to the larger spike at �.� in �gure �.�, to move the threshold further

��

�.� C�������������

Figure �.�: Distribution of reconstruc-
tion MAPE for all test sub-sequences la-
beled as pass (normal) or fail (anoma-
lous) for the LSTM AE.

Figure �.�: Distribution of reconstruc-
tion MAPE for all test sub-sequences la-
beled as pass (normal) or fail (anoma-
lous) for the Transformer.

away. This might explain the lower accuracy of the LSTM Autoencoder compared to the
Transformer.

5.2 Classification
Convolutional Neural Network
In Table �.� the confusionmatrix for each dataset is featured for the CNNmodel. We see that
the miss-classi�cation is fairly low among all the datasets. The miss-classi�cation of samples
labeled as "fail" for the test set is particularly low with �,�% miss-labeled. This success is even
more impressive when you take into the fact that the training dataset had a much higher ratio
of samples labeled as "passed" namely ��%.

A
ct
ua
l

Predicted
P F

P ���� ��
F �� ���

TPR: .�� TNR: .��

A
ct
ua
l

Predicted
P F

P ��� ��
F � ���

TPR: .�� TNR: .��

A
ct
ua
l

Predicted
P F

P ��� �
F � ��

TPR: .�� TNR: .��

Table �.�: Confusion matrix for training, validation and test set on the two classes "Pass" (P) and
"Fail" (F) from left to right. Sensitivity (TPR) and Speci�city (TNR) below each matrix. Darker
color in a cell represents a higher concentration of predicted values in that class

Taking the balanced accuracy into account in Table �.� the accuracy stays consistent between
each dataset which is a sign of a high grade of generalization and no occurrence of overtrain-
ing. There is a slight di�erence in accuracy between the two classes pass and fail, however this
is expected because of the disparity previously mentioned. The model was trained with an
initial learning rate of �.���� and a batch size of �� for a duration of ��� epochs. We found
that the model didn’t produce satis�able results until we increased the number of epochs.

��

�. R�����

Dataset Accuracy (P) Accuracy (F) Balanced Accuracy
Training �,���� �,���� �,����
Validation �,���� �,���� �,����
Test �,���� �,���� �,����

Table �.�: Accuracy concerning classifying a sub-sequence as pass or fail as well as balanced
accuracy for training, validation and test set.

This is shown in �gure �.� where we clearly see that the model takes a long time to reach a
desired loss �gure and even doing a large dip around ��� epochs.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Number of epochs

Lo
ss
(B
C
E)

training
validation

Figure �.�: Instance of training and validation loss for the CNN model. Vertical line at ���
epochs. This speci�c instance was selected for evaluation.

Transformer-Encoder Classifier
The classi�er consisting of the Encoder-part from the Transformer underperformed severly
compared to the CNN based classi�er. From the Table �.� we see that the Transformer-
Encoder classi�er is severly over�tted to the pass class classifying nearly all samples as be-
longing to that class. This accounts to a balanced accuracy of ��%, ��% and ��% on the

A
ct
ua
l

Predicted
P F

P ���� �
F ���� �

TPR: .�� TNR: NaN

A
ct
ua
l

Predicted
P F

P ���� �
F ���� �

TPR: .�� TNR: �.�

A
ct
ua
l

Predicted
P F

P ���� �
F ��� �

TPR: .�� TNR: �.�

Table �.�: Confusion matrix for training, validation and test set on the two classes "Pass" (P) and
"Fail" (F) from left to right. Sensitivity (TPR) and Speci�city (TNR) below each matrix. Darker
color in a cell represents a higher concentration of predicted values in that class

training, validation and test set which is comparable to random assignment. Looking at the
speci�city, i.e. the proportion of actual fail samples correctly identi�ed, it lands at close to

��

�.� C�������������

zero which is reasonable looking at the confusion matrices where almost no fail samples are
correctly classi�ed. Themodel was trained for ��� epochs with a learning rate of �.���, batch
size of �� and a sequence length of � time steps.

��

�. R�����

��

Chapter �

Discussion

Reflections
Initially when starting out we imagined that the LSTM Autoencoder would produce satis-
�able results in terms of accurately identifying an anomalous sequence. Mainly due to the
prevalance in using autoencoders and LSTM networks for anomaly detection. We also imag-
ined that supervised classi�cation would perform subpar due to our small dataset. When
developing the LSTM Autoencoder we started with a simple model of six layers with a bot-
tleneck of � nodes while using MSE as a loss function. We found that using MAE provided
a better result instead of MSE. We were however not satis�ed since the model still su�ered
from over�tting. We found that MAE outperformed MSE when the complexity grew, and
the other way around when the complexity shrank. Our notion with testing MAE came from
the fact that it is less a�ected by outliers compared to MSE that accentuates outliers due to
squaring the di�erence.

As stated previously we experienced an accuracy comparable to the LSTMAutoencoderwhen
we initially started out with the CNN classi�er. What changed this was the addition to the
�rst layer that the number of out channels are �x the number of input channels, i.e. from ��
to ��. This widely increased the accuracy of the model and one can imagine due to the in-
crease of trainable parameters that the model is better at learning the data when dealing with
a higher dimension. We started out with three repeated segments of a convolutional layer,
ReLU and a max pooling layer as presented in subsection �.�.� and found the accuracy to
be very good, however we noted that the validation loss had large spikes i.e. "wobbly", while
still keeping a downward trend. Reducing the complexity of the model by removing one of
the three repeated segments of layers removed this tendency. Our �ndings are in agreement
with previous research, seen in [�][�][�][��], that demonstrate similar success in utilizing �d
convolutional neural networks for time series classi�cation.

Based on the results from visualizing the reconstruction loss for the LSTM Autoencoder and

��

�. D���������

the Transformer it becomes more clear why they both performed subpar. With the distribu-
tions concerning pass and fail sequences merging into one another it is hard to decide on a
threshold that achieves a high accuracy on both classes. There could be multiple culprits for
this result. Firstly the dimensionality reduction we performed on the original metrics during
the data formatting stage section �.� could have removed certain aspects to the sequences that
are prevalent when an anomaly is present. Secondly it might be a model issue where it does
not have enough complexity in terms of trainable parameters to be able to draw conclusions
from the input sequences. It is notable that the authors in [�] also did not achieve satisifable
results with an LSTM Autoencoder, while attempting anomaly detection on metrics from
the Neo�j database running in production. The authors attributed the reason that data was
not gathered in a controlled environment, something that cannot be said for our case.

It is interesting to note how low of a reconstruction loss the Transformer model was able to
produce and that the reconstructed sequences were nearly identical to the input sequences.
This is in contrast to the poor result of the Transformer when trying to classify a sequence
using the threshold. The possible culprits are the same as those stated before, namely that we
have lost aspects of the data that indicate an anomaly or having to small of a dataset. This is
evident due to the similarity of distribution of reconstruction loss for the Transformer and
LSTM Autoencoder as pictured in �gure �.�. Contrary to our results previous research into
Transformers and multivariate time series [��] showed promising results. In the paper the
time series data consisted of electrocardiagram (ECG) readings. We hypothesise that the dif-
ference in accuracy between our work and theirs could be explained by ECG readings being
more periodical than our data.

When attempting to �nd the most optimal threshold value for the reconstruction loss re-
garding the LSTM Autoencoder and Transformer models we calculated the loss on the set
previously used for training the models, as mentioned in section �.�. We initially calculated
the reconstruction loss using mean squared error (MSE) on all �� input features. Adding the
notion that the scale of the values for the various features di�ered greatly meant that cal-
culating the MSE would therefore skew the loss in favour of one or multiple features with a
greater range of values while downplaying those with a smaller range. To counteract this we
proceeded with using mean absolute percentage error (MAPE) to compute the reconstruc-
tion loss. MAPE counteracts the issue by instead looking at the percentage ratio that the
deviation constitutes for each feature and then taking the average of all percentage ratios.
The change had an impact on the resulting accuracy and when looking at the distribution of
reconstruction losses showed improvement in the sense that the two classes were less merged.
Judging from the results it would make sense to extend the use of MAPE to the loss function
used during training of the models. Due to time constraints we were unable to investigate
this.

When we tried di�erent sequence lengths for the Transformer we found that the reconstruc-
tion loss was higher with longer sequences. The same sequence length as for the LSTM Au-
toencoder performed comparably. This goes against the notion that a Transformer should
handle longer sequences better than a LSTM. The optimal sequence length ended up at �
which is a far way from the LSTM Autoencoders sequence length of ��. Why this is the case
is unclear.

��

Research Objective
Looking back at our �rst research question we demonstrated with the LSTM Autoencoder
and Transformer that the amount of anomalous sequences detected did not correlate well
with the sequences manually identi�ed as in need of further scrutiny. This is due to the low
accuracy of both models which were only able to correctly detect less than half of the anoma-
lous sequences. Since the Tranformer and LSTM Autoencoder performed around the same
one could argue that the models are not to blame but the data formatting, speci�cally the
dimensionality reduction, or the data itself that inhibit the models from di�ering between
non- and anomalous sequences.

The third research question argued whether a model can outright classify if results from a
soak test constitutes a pass or fail. Regarding this we propose a model that with a high de-
gree of accuracy can classify if a sequence spanning �� time steps (��min) is considered pass
or fail. This constitutes being able to outright classify if a soak test should be considered to
have passed or failed by dividing the full time series into sub-sequences and use the model
on them independently. By answering the �rst and third research question we also answer
the second one, namely if we can identify where in the time series that anomalies are present.
This answers itself since our models deals with sub-sequences of the full soak test and indi-
vidually examines them for anomalies.

During the study appropriate measures were taken to address threats to validity. As men-
tioned in section �.� the dataset was split according to the train-validate-test paradigm that
intends to infer validity and reliability of machine learning models. We also employ strati-
�ed sampling such that the amount of pass and fail sequences in each subset of the dataset is
representative of the whole dataset, which adds to the validity and reliability. The study also
details the hyperparameters and architectures used which greatly improves reproducibility.
A threat to the validity is the fact that the models have only been evaluated on soak tests from
the Neo�j graph database. Questions regarding generalization is therefore left unanswered.

Future Work & Applications
We propose a few directions that further work can take. Firstly, it would be interesting to
apply the notion of an exploding layer, as seen in the CNN, to the LSTM Autoencoder and
investigate if it improves the reconstruction loss. Secondly, due to the success in �nding a
threshold using MAPE compared to MSE it would be interesting to also use MAPE during
training, i.e. to compute the reconstruction loss. This would probably decrease the impor-
tance that is laid on certain features. One could also imagine using another loss function that
take the di�erence in scale between features into account.

The results demonstrate one potential use case that machine learning can have at Neo�j to
facilitate the veri�cation process. We propose a model that accurately can classify a soak
test as having passed or failed as well as identify where during the duration of the test that
an anomaly �rst occurred. Although results are promising further evaluation is needed by
the company to ensure that the quality of released software does not decrease with an auto-
mated soak testing approach. A good approach is to �rst utilize the model alongside manual
veri�cation. The model could be integrated in the release process that already exists to auto-

��

�. D���������

matically output predictions on the soak test and present them to the overseer. Although our
models were trained on data gathered from an administrative soak test it would be interesting
to apply the model to data gathered from other variations of soak tests used at Neo�j. This
would showcase if the model learnt underlying generalizations that exist between tests.

Since our work is �ne-tuned to adhere to the workings of the Neo�j graph database we imag-
ine that the work has little bearing elsewhere in the industry. The nearest area that may
bene�t from our research is other providers of distributed databases that may �nd inspira-
tion in our work.

��

Chapter �

Conclusion

The objective of this thesis was to investigate howmachine learning could be utilized to facil-
itate the veri�cation process of the results from a soak test. This included outright classifying
a test as having passed or failed or provide feedback regarding behaviour that is anomalous. In
this e�ort we collected metrics data from soak tests and identi�ed the most relevant metrics.
We explored a wide variety of di�erent deep learning architectures which included LSTM
Autoencoders, CNNs and Transformers. We later evaluated our models against our objec-
tive by comparing metrics such as accuracy and reconstruction loss. We managed to develop
models that leave room for improvement but also propose a CNNmodel that achieves a high
degree of accuracy on classifying sequences as non- or anomalous.

Circling back to our �rst research question our �ndings demonstrate that the amount of
anomalies detected in unsupervised analyses does not correlate well with the need for fur-
ther manual scrutiny because of how few anomalous sequences were detected. In reference to
our second research question our models can in theory help identify where in the time series
that anomalous behaviours present themselves but falls short due to the high-degree of miss-
classi�cation. We do however, in reference to the third research question, propose a CNN
model that accurately can classify if the results from a soak test constitutes a pass or a fail
based on the available data. Regarding our second research question we can however with
our CNN model help identify where in the time series that anomalous behaviours present
themselves due to the high degree of accuracy and the inherent nature of the model looking
at sub-sequences of the whole soak test.

��

�. C���������

��

References

[�] Muhammad Abid Jamil, Muhammad Arif, Normi Sham Awang Abubakar, and Akhlaq
Ahmad. Software Testing Techniques: A Literature Review. In ���� �th International
Conference on Information and Communication Technology for The Muslim World (ICT�M),
pages ���–���, ����.

[�] Mihir Sardana, Tanupriya Choudhury, and Dev Kumar Chaudhary. Extensive review on
software testing and pipeline testing softwares. In ���� International Conference on Big
Data Analytics and Computational Intelligence (ICBDAC), pages ���–���, ����.

[�] Itti Hooda and Rajender Singh Chhillar. Article: Software Test Process, Testing Types
and Techniques. International Journal of Computer Applications, ���(��):��–��, February
����.

[�] Mattie Salim, Erik Wåhlin, Karin Dembrower, Edward Azavedo, Theodoros Foukakis,
Yue Liu, Kevin Smith, Martin Eklund, and Fredrik Strand. External Evaluation of �
Commercial Arti�cial Intelligence Algorithms for Independent Assessment of Screen-
ing Mammograms. JAMA Oncology, �(��):����–����, �� ����.

[�] Evelina Danielsson and Lisa Franzén af Klint. Predicting loss of fault tolerance in a cloud
graph database, ����. MSc thesis, Department of Computer Science, Lund University.

[�] Oleksandr I. Provotar, Yaroslav M. Linder, and Maksym M. Veres. Unsupervised
Anomaly Detection in Time Series Using LSTM-Based Autoencoders. In ���� IEEE
International Conference on Advanced Trends in Information Theory (ATIT), pages ���–���,
����.

[�] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep learning for time series classi�cation: a review. Data mining
and knowledge discovery, ��(�):���–���, ����.

[�] Ji Sung Lee, Hyeon Sung Cho, Kyo Il Chung, and Ji Sang Park. Feature Selection for
Stock forecasting usingMultivariate ConvolutionNeural Network. In ���� International
Conference on Information and Communication Technology Convergence (ICTC), pages ����–
����, ����.

��

REFERENCES

[�] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Con-
volutional neural networks for time series classi�cation. Journal of Systems Engineering
and Electronics, ��(�):���–���, ����.

[��] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Exploiting multi-channels
deep convolutional neural networks for multivariate time series classi�cation. Frontiers
of Computer Science, ��:��–���, ����.

[��] Abrar Alamr and Abdelmonim Artoli. Unsupervised Transformer-Based Anomaly De-
tection in ECG Signals. Algorithms, ��(�), ����.

[��] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep Learning for
Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines. IEEE Access,
�:������–������, ����.

[��] John Stegeman. Easily Run, Scalable, Fault Tolerant Graph Databases With
Neo�j Autonomous Clustering. https://neo4j.com/developer-blog/
scalable-fault-tolerant-graph-databases-neo4j-autonomous-clustering/.
[Accessed ����-��-��].

[��] Neo�j. Clustering / introduction. https://neo4j.com/docs/
operations-manual/current/clustering/introduction/. [Accessed ����-��-
��].

[��] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In ���� USENIX Annual Technical Conference (USENIX ATC ��), pages ���–���,
Philadelphia, PA, June ����. USENIX Association.

[��] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An Evolving Query Language for Property Graphs. In SIGMOD’�� Proceedings
of the ���� International Conference on Management of Data, page ����, Houston, United
States, June ����. ACM Press.

[��] Patrik Edén and Mattias Ohlsson. Lecture Notes on Introduction to Artificial Neural Net-
works and Deep Learning. Media-Tryck, ����.

[��] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, ����.

[��] Stanford University. CS���n Convolutional Neural Networks for Visual Recognition.
https://cs231n.github.io/convolutional-networks/#add. [Accessed ����-
��-��].

[��] Klaus Gre�, Rupesh K. Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmid-
huber. LSTM:A Search SpaceOdyssey. IEEE Transactions on Neural Networks and Learning
Systems, ��(��):����–����, ����.

[��] Olah, C. Understanding LSTM Networks. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/. [Accessed ����-��-��].

��

https://neo4j.com/developer-blog/scalable-fault-tolerant-graph-databases-neo4j-autonomous-clustering/
https://neo4j.com/developer-blog/scalable-fault-tolerant-graph-databases-neo4j-autonomous-clustering/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://cs231n.github.io/convolutional-networks/%23add
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

REFERENCES

[��] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume ��. Curran Associates,
Inc., ����.

[��] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. In Yoshua Bengio and Yann LeCun, editors,
�rd International Conference on Learning Representations, ICLR ����, San Diego, CA, USA,
May �-�, ����, Conference Track Proceedings, ����.

[��] Navaneeth Malingan. Attention mechanism in deep learning.
https://www.scaler.com/topics/deep-learning/attention-mechanism-deep-learning/.
[Accessed ����-��-��].

[��] Maha Alkhayrat, Mohamad Aljnidi, and Kadan Aljoumaa. A comparative dimension-
ality reduction study in telecom customer segmentation using deep learning and PCA.
Journal of Big Data, �:�, �� ����.

[��] Zhaodong Wu, Jun Zhang, and Shengliang Hu. Review on Classi�cation Algorithm
and Evaluation System of Machine Learning. In ���� ��th International Conference on
Intelligent Computation Technology and Automation (ICICTA), pages ���–���, ����.

[��] Raneen Younis, Sergej Zerr, and Zahra Ahmadi. Multivariate Time Series Analysis:
An Interpretable CNN-based Model. In ���� IEEE �th International Conference on Data
Science and Advanced Analytics (DSAA), pages �–��, ����.

[��] Alaa Tharwat. Classi�cation assessment methods. Applied Computing and Informatics,
��:���–���, � ����.

[��] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings
of the ��th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
����.

[��] Sai Wu, Zhiyin Huang, and Hao Feng. Text Labels Classi�cation Model based on BERT
Algorithm. In ���� �th International Conference on Big Data Artificial Intelligence Software
Engineering (ICBASE), pages ���–���, ����.

[��] Aaryan Jagetia, Umang Goenka, Priyadarshini Kumari, and Mary Samuel. Visual Trans-
former for Soil Classi�cation. In ���� IEEE Students Conference on Engineering and Systems
(SCES), pages �–�, ����.

[��] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume ��. Curran Associates, Inc., ����.

��

REFERENCES

��

Appendices

��

Appendix A

Supporting tables

MSE Metric
�.���������������e-�� All (Training)
�.������������������� All (Validation)
�.������������������ database one throughput variance read
�.����������������� cypher command fail count
�.������������������� cypher command success count
�.������������������� database one cypher replan events
�.������������������� database two cypher replan events
�.����������������� database two check pointing duration
�.������������������� cluster command fail count
�.������������������� database one check pointing duration
�.�������������������� database three check pointing duration
�.�������������������� database one throughput variance write
�.�������������������� cluster command success count
�.�������������������� database two throughput variance read
�.������������������� database three cypher replan events
�.�������������������� database two throughput variance write
�.�������������������� database three throughput variance write
�.���������������e-�� database three throughput variance read

Table A.�: Individual MSE for each feature concerning the Transformer.

sequence length �
learning rate �.�������
batch size ��
number of heads in the multi-head attention layer �
number of encoder layers �
number of decoder layers �
number of nodes in feed forward network (encoder) ����
encoder dropout rate �.�������
encoder layer norm value �.�������
number of nodes in feed forward network (decoder) ���
decoder dropout rate �.�������
decoder layer norm value �.�������
activation function ReLU

Table A.�: Hyperparameters for torch.nn.TransformerEncoder and
torch.nn.TransformerDecoder in [��] obtained using Optuna.

��

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-12-18

EXAMENSARBETE Optimizing Soak Test Reviews: A Comparative Study of Deep Learning Architectures
STUDENT Hugo Bläckberg
HANDLEDARE Patrik Edén (LTH)
EXAMINATOR Markus Borg (LTH)

Underlätta analys av resultat från

soak-testning med hjälp av

maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Hugo Bläckberg

För att säkerställa att mjukvara uppfyller specificerade krav och fungerar som förväntat

över en längre tid används soak-testning. Detta arbete har undersökt hur granskn-

ing av resultaten från soak-testning kan utföras med maskininlärning för att minska

manuellt arbete.

Soak-testning är en metod för mjukvaruutveckling
som syftar till att testa den övergripande robust-
heten hos ett system. Testerna riktar in sig på sys-
temets långsiktiga hälsa genom att köra under en
längre tid, till exempel under flera dagar. Detta
exponerar eventuella prestandaförsämringar som
sker under längre tid än vad typiska belastnings-
tester skulle göra. Dessa försämringar inklud-
erar t.ex. minnesläckor eller ökad garbage collec-
tion. Resultaten från soak-testning kontrolleras
idag manuellt, något som tar upp en stor del tid.

I mitt examensarbete har jag undersökt ifall
maskininlärning kan användas för att identifiera
avvikelser i resultatet från soak-testning, och i
bästa fall klassificera resultatet som godkänt eller
icke-godkänt. För detta ändamål utforskade jag
olika arkitekturer för djupinlärning, mer speci-
fikt LSTM autoencoders, transformers och konvo-
lutionella neurala nätverk. Modellerna använder
sig av samma metriker som finns tillgängliga vid
manuell kontroll. LSTM autoencodern och trans-
formern klassificerar avvikelser baserat på rekon-
struktionsförluster samt ett tröskelvärde. Ett
endimensionellt konvolutionellt neuralt nätverk
och en transformer-encoder tränades därefter med

etiketter från datan. Resultaten visar att alla

modeller presterade bristfälligt, med en låg nog-
grannhet, förutom det konvolutionella neurala
nätverket som fick en balanserad noggrannhet på
95% på test-datan. Det kan finnas flera orsaker till
resultatet, något som nämns i rapporten. Bland
annat så kan konvolutionella neurala nätverk vara
bättre lämpade för multivariata tidsserier eller så
förlorades viktiga aspekter i datan under forma-
teringen.

