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Abstract

The deep learning revolution has contributed to a great leap in protein structure prediction, but

predicting the multiple conformational states that proteins can hold remains an open problem.

This thesis approaches this problem through the use of MSA Transformer, a protein language

model pre-trained on multiple sequence alignments, that has demonstrated the ability to learn

protein properties such as contacts and secondary structure. The aim was to investigate if MSA

Transformer has learned to represent flexibility features of proteins during pre-training and if that

information can be captured somehow. This mainly took the shape of training neural networks on

the outputs of the transformer model to predict the local RMSD flexibility metric of flexible

proteins in the PDBFlex database. None of the attempted networks succeeded with classifying

flexibility, most likely because of problems with the chosen architectures, evaluation metric and

dataset. Much more promising was the discovery of patterns in the attention maps of MSA

Transformer which displayed correlation to the local RMSD metric. The findings were expanded

upon by the identification of certain attention heads that seemingly correlated with specific types

of flexibility, but further investigation is required to draw any conclusions. Prior studies have

shown that multiple sequence alignments can be clustered and modified in order to sample

multiple conformations with AlphaFold2. While not attempted in this project, the groundwork

has been laid for expanding on these approaches with the use of MSA Transformer features to

select residues and sequences of specific significance.
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1. Introduction
The field of structural biology has in recent years undergone a large shift as the rapid

developments in deep learning have been applied with great success to the protein folding

problem; the process of computationally predicting the three-dimensional structure of a protein,

solely from its sequence of amino acid residues. While the feats of structure prediction models

like AlphaFold2 are without a doubt very impressive and transformative for the field, multiple

subproblems with regards to protein folding still remain, perhaps most significantly the inability

to capture the conformational flexibility that is inherent to most proteins (Lane, 2023). The truth

is that the ability to dynamically assume a range of conformational states is the key behind many

important protein functions, and accurately predicting this range or at least multiple significant

conformations would be of great benefit to a wide variety of applications in biochemistry and

medicine.

1.1 Aims of the Study

In this report, I aim to approach the problem of predicting structural flexibility of proteins from

two directions. Firstly, through the training of deep neural networks to directly predict the

flexibility of protein residues as described by metrics such as local RMSD. Secondly, I aim to

sample multiple structural conformations with the structure prediction model AlphaFold2 by

inputting clustered multiple sequence alignments, as has been demonstrated in prior studies (del

Alamo et al., 2022; H. K. Wayment-Steele et al., 2022).

The common denominator between the two approaches is the use of the protein language model

MSA Transformer, which has been shown to emergently learn properties about proteins such as

contacts, secondary structure and intrinsically disordered regions (IDRs) from training on

millions of multiple sequence alignments. The study is carried out on the basis of the hypothesis

that MSA Transformer might have learnt to identify conformational flexibility in order to better

perform its objective, and that it could be possible to extract this information from it.



2. Background

2.1 Coevolution

In spite of a staggering variety of possible protein amino acid sequences, substituting mutations

are ultimately constrained by a residue’s surroundings – a random mutation often detracts from a

protein’s stability and function. This has the effect of strongly benefitting simultaneous and

complementary mutations of residues that are in close proximity in order to preserve the

structure of the protein. These kinds of residue pairs are known as coevolving residue pairs.

However, direct interaction by spatial proximity is not the only way in which substitutions are

constrained – indirect interactions can be mediated by intermediate molecules or arise from a

chain of directly interacting residue pairs (Burger & Nimwegen, 2010; Lockless & Ranganathan,

1999).

A common way to visualize and identify coevolving residues is by studying multiple sequence

alignments (MSAs) since conserved amino acids will often be vertically aligned with each other.

The implicit information that covariance between residues convey is commonly referred to as

coevolutionary signal. This connection between coevolutionary information and structural

contacts has long been utilized for structure prediction, commonly by Potts models. Potts models

are statistical models that capture coevolutionary information from individual and pairwise

frequencies in an input MSA (Ekeberg et al., 2013). From this, the models use average-product

correction to promote the direct couplings from the indirect ones and generate contact maps

which can be used for structure prediction. Potts models have in recent years met a challenger at

the task of capturing information from evolutionary data – deep learning.



2.2 Deep Learning

2.2.1 Deep Neural Networks

Weights and biases
Deep learning is a subfield of machine learning that takes inspiration from biological brains in

that it utilizes large networks of neurons with connections of different strengths between them.

The strength of the connections are governed by the model’s parameters: weights and biases.

Weights determine how much the activation of the node at the start of a connection should affect

the node at the end of it, while biases determine the threshold that a node will have to pass to

give an activation.

In the simplest kind of neural network, a fully connected network, the nodes are arranged in

layers where each node in a layer is connected to all of the nodes in the subsequent layer. While

networks can consist of just an input and output layer, what characterizes deep neural networks is

the presence of one or more hidden layers in between them. Multi-Layer Perceptrons (MLPs) are

an example of fully connected deep neural networks (Fig.1a). In MLPs, activations are calculated

through performing a matrix multiplication between the input vector x and the matrix w that

contains the weights for that layer. The sum of the resulting vector and the bias vector b are then

put into an activation function to give an output vector a of activations (Fig.1b). There are many

different activation functions in use, with ReLU, Sigmoid and TanH being some of the most

common ones (Fig.1c).

Figure 1. (a) Visualization of a simple MLP with a single hidden layer. (b) Equation for calculating the hidden layer activations

from the weight matrix and input and bias vectors. The numbers under each vector/matrix represent its dimensions. (c) Examples

of activation functions. Image source: https://images.app.goo.gl/ne28J1ZwJXWjHoHm9

https://images.app.goo.gl/ne28J1ZwJXWjHoHm9


Backpropagation
A way of looking at neural networks is through seeing the weights and biases of a model as

implementing an algorithm that transforms some given input to an output. The training process

thus becomes an optimization problem of finding the set of parameters which implement the best

algorithm for completing a given task. Different learning tasks can be broadly divided into two

types – supervised and unsupervised learning. In supervised learning there is a specific desired

output label for each input, which can vary greatly based on the task. In for example

classification tasks the output is one out of two or more discrete classes, while regression tasks

involve the prediction of a continuous value. Unsupervised learning lacks labels and is instead

used for finding patterns in unlabeled data, which can for instance help with clustering tasks.

Gradient descent through backpropagation is the standard methodology for training neural

networks. It operates through iteratively updating each parameter of a model in a direction so

they better implement an algorithm that can predict the training data labels. This starts with a

forward pass of the network to give a prediction ŷ based on its input data x. This prediction is

compared to the expected output y with a loss function, which gives a value for how accurate the

prediction was.

The goal of the network is to minimize loss, i.e. prediction error, which the backpropagation

algorithm does by calculating a gradient for how every parameter in the network should change

in order for the loss to be smaller for a given training example. This is done through a backward

pass which utilizes the chain rule of calculus to calculate the derivative of each parameter with

respect to the full objective function J. The parameters are then updated according to the

calculated gradient with a magnitude governed by the learning rate α (Eq.1-2). This process is

repeated for many training examples, with each pass over the training dataset being referred to as

an epoch, until the network has hopefully learnt to generalize.

(1)𝑤 : = 𝑤 − α 𝑑𝐽 𝑤,𝑏( )
𝑑𝑤

(2)𝑏 : = 𝑏 − α 𝑑𝐽 𝑤,𝑏( )
𝑑𝑏



Hyperparameters
Learning rate is an example of a hyperparameter – a set of parameters that govern the training

process and are usually kept the same for an entire training run. They can be everything from the

number of layers of a network, to how many epochs training should last or the extent a certain

optimization technique should be employed . Hyperparameters are tuned either manually or

through algorithms to provide the best possible conditions for learning.

Optimization
A model that is not able to predict training labels is considered to be underfitted. Underfitting

can be reduced by training for longer, increasing the amount of trainable parameters, or through

utilizing some of the optimization techniques that have been developed for effectivizing the

traversal of parameter space.

Some optimization techniques make use of the vector-based nature of deep neural networks to

parallelize the training process. In batch gradient descent the input data is parallelised by

stacking all training data pairs into a batch in the form of a tensor from which a single gradient

can be calculated based on the combined loss of each training example in it. This fully utilizes

vectorization and takes large steps along the gradient at the cost of high memory usage and very

long epochs, thus making it more suitable for smaller datasets (Fig.2).

The dataset can alternatively be split up into multiple mini-batches, where each mini-batch

contains a number of examples equal to the batch size hyperparameter. Stochastic gradient

descent (SGD) uses a batch size of one, meaning that the weights will be updated after each

example, producing fast iterations of very noisy steps that will never fully converge with a

minima (Fig.2). Keeping the mini-batch size somewhere in between usually hits the “sweet spot”

by taking advantage of batches while avoiding some of their downsides (Fig.2).



Figure 2. A simplified 2D depiction of how three kinds of optimizers traverse the parameter gradient: Stochastic gradient descent

(purple), Mini-batch gradient descent (green) and Batch gradient descent (blue).

Momentum is an optimization technique designed to accelerate learning by accumulating an

exponentially decaying moving average of previous gradients and updating the parameters in that

direction (Ian Goodfellow et al., 2016). This smooths out the gradient and compensates for the

large parameter oscillations which can arise from an increased learning rate. RMSprop is another

optimizer which expedites convergence by making the learning rate adaptive. It does this through

dividing the update to each parameter by the square root of an accumulated squared gradient. As

a result, the learning rate of highly fluctuating parameters gets reduced, while the learning of

parameters with smaller updates gets accelerated. The ideas of momentum and RMSprop are

combined in the Adam optimization algorithm, which has gained widespread adoption thanks to

its outstanding performance.

Overfitting
When training a network, it is essential to keep the training and testing data separated through

splitting up the dataset into a training set and a testing set. The goal is to fit the model to the

training data by reducing the training error, but the performance on the test set will not always

follow. It is common for models to “overfit” to the training data, meaning that it starts picking up

idiosyncrasies and features in the training set that are not representative of real-world patterns

instead of learning to properly generalize from the data (Maini, 2018). Overfitting occurs when a

gap between training and test error arises (Fig.3) and is commonly reduced by increasing the

number of training examples or employing some of the many regularization techniques that have

been developed to combat overfitting.



Figure 3: Example plots of (a) overfitting and (b) underfitting, showing how

training loss and test loss develop over time during training.

Regularization
One of the most common regularization techniques is L2 regularization, or “weight decay”,

which is implemented by adding a regularization term to the objective function J (Ian1
2 𝑤| || |

2
2

Goodfellow et al., 2016). This punishes large weights, which incentivizes the network to be

simpler. Dropout is another commonly employed technique where random units in a neural

network are temporarily removed during training according to a set dropout probability

(Srivastava et al., 2014). This makes the networks more robust and less reliant on specific

weights, which helps reduce overfitting. Both weight decay and dropout are regulated by

hyperparameters.

When trying to reduce overfitting to the test set, it can be possible to make the model overfit to

the test data, which is why a third validation (or “dev”) set is often employed. This makes the

actual testing data less known to the model and thus a better representation of the real world.

Normalization
Despite the assistance of optimization techniques, traversing the search space can remain

challenging for cases of multidimensional data with varying scales. This is why input data is

often normalized by setting the mean to zero and changing the variance to be equal to one.

Alternative normalization techniques include layer normalization, which normalizes the features

within each example vector, and batch normalization that normalizes each feature across all

examples in a batch collectively.



Batch normalization can also be used to prevent vanishing gradients – a problem which may

arise in networks with many layers, where a small decrease in activation per layer leads to an

exponentially decreasing gradient. Batch normalization prevents this by ensuring that each layer

has consistent means and variances.

2.2.2 Convolutional Models

Convolutional network structure
Convolutional neural networks, CNNs for short, are a type of architecture developed for image

classification by mimicking the human visual cortex (Raschka et al., 2022). They operate by

identifying simple features such as edges or corners in input images and using them to identify

more complex features like shapes or even faces in later layers. The convolutional layers are

usually followed by a series of fully connected MLP layers and a Softmax layer. Softmax turns

the activations, referred to as logits, into a distribution of probabilities over the output classes. In

CNNs, the class with the highest probability is picked, but for other architectures the sampling

could be more varied.

Convolutional layers
The fundamental operation of a convolutional layer involves the sliding of a filter matrix across

an input image matrix. At each step of movement, the pairwise products of the overlapping

numbers are summed and added to the corresponding element in the output matrix (Fig.4a). The

length of the steps is determined by the stride hyperparameter (Fig.4b); a short stride gives a

large output matrix while a long one makes it smaller. The dimensions of the output matrix can

also be adjusted through padding, which involves adding a border of pixels, typically set to 0,

around the input with a specified thickness (Fig.4c).

Typically, each layer consists of multiple filters that share the same dimensions but have distinct

weights. Each filter operates independently from the others and generates individual output

matrices called channels, which get concatenated into a tensor. When applying convolution to a

multi-channel tensor, the filter has to have the same channel count as the input, where each

channel of the filter possesses a unique set of weights. The resulting products for each of the

channels are then summed to yield a single output element per position and filter (Fig.4d).



Figure 4. (a) Example of a simple convolutional layer with a single 3x3 filter. (b) Variation of the first setup but with a stride of

3. (c) Variation of the first setup but with a padding of 1. (d) Variation of the first setup but with three input channels and two

3x3x3 filters.

Another staple of CNNs are pooling layers that break the input matrix into segments and output a

matrix of either the average or maximum activation for each segment. This reduces the

sensitivity to small input variations and increases computational effectiveness by reducing the

size of features (Raschka et al., 2022). 1x1 convolutional layers on the other hand are a type of

layer that can be used when aiming towards reducing the channel count. These layers slide 1x1

filters across the input and subject the dot products to an activation function, giving them a

similar behavior to MLPs.

2.2.3 Sequence Models

Recurrent neural networks
Recurrent neural networks (RNNs) are a type of architecture specifically designed to process

sequential data, such as text, sound, or in our case, properties of protein sequences. In the case of

data consisting of tokens such as words or amino acids, the tokens will have to be converted into

vectors known as embeddings in order for them to be properly processed by the network. Each

embedding represents a specific token, so output embeddings can then be translated back to

token form. However, it is also possible to let the network learn different ways of embedding and

de-embedding the tokens.



In their most basic form, RNNs consist of a series of connected hidden units between an output

and input layer. The purpose of these hidden units is to act as a form of memory, where

activation values from each time-step are carried over to the next. Each cell of a basic RNN

shares the same three parameters Whx, Wyh and Whh (Fig.5). It is also possible to stack multiple

hidden layers to form a multilayer RNN (Raschka et al., 2022).

Figure 5. Compressed structure of a single-layer RNN (left) and an expanded structure of the same network (right). x<t> are the

input elements, h<t> the hidden units and y<t> the output elements. Whx is the weight matrix between the input and hidden units,

Whh the weights between the hidden units and Wyh the weights between the hidden units and the output.

LSTM models
RNNs can struggle with vanishing gradients if the number of cells is large and the hidden layer

weights is smaller than one . Architectures, such as Long Short-Term Memory (LSTM)𝑤
ℎℎ| |

networks, have managed to help with modeling long-range dependencies through the use of

memory cells (Raschka et al., 2022). LSTMs contain both a long-term focused cell state and a

shorter term hidden state that can influence each other (Raschka et al., 2022).

The central components of an LSTM network are three gates (Fig.6). The forget gate decides

which information should be forgotten from the cell state, while the input gate determines which

parts of a candidate cell state should be added to the cell state. The output gate decides how the

values of the hidden units should be updated.



Figure 6. Illustration of a LSTM recurrent unit, showing how the gates (shown in red)

decide how the hidden state updates the cell state. Image source:

https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e5 4c2ff22e

2.2.4 Transformer Models
While RNNs may still be useful for processing sequential data, they are ultimately limited by

their lack of parallelization and ability to prioritize what information is worth focusing on. The

invention of the transformer architecture has since enabled networks to excel in those areas,

causing a paradigm shift for sequence modeling, especially in tasks related to natural language

processing (NLP). The remarkable performance of transformer networks stem from their

attention mechanism, which relies on two key ideas: self-attention and multi-headed attention.

Self-attention
Attention mechanisms have been incorporated within RNNs in the past but what sets the

transformer architecture apart is the removal of the recurrent process in favor of more

self-attention (Vaswani et al., 2017). Self-attention functions by creating a Query (Q), Key (K)

and Value (V) matrix by multiplying the input embeddings with three corresponding weight

matrices:WQ,WK andWV (Eq.1-3, Fig.7a).

(1)𝑄 = 𝑊𝑄 • 𝑋

(2)𝐾 = 𝑊𝐾 • 𝑋

(3)𝑉 = 𝑊𝑉 • 𝑋

https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e5


The query matrix Q undergoes a matrix multiplication with the transpose of the key matrix K,

with the resulting dot product, also referred to as an attention matrix or filter, being a

representation of how well the query fits the key for each token pair. The dot product is then

scaled through division by the square root of the number of dimensions in K (dk) and undergoes

softmax before being multiplied with the value matrix V to get the scaled dot product attention

(Eq.4, Fig.7b) (Vaswani et al., 2017).

(4)𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

𝑑
𝑘

( )𝑉

Figure 7. Visual depictions of attention calculations. (a) Creation of query, key and value matrices. (b) Self-attention mechanism.

(c) Multi-head attention with four concatenated scaled dot product attention matrices.

Source: https://jalammar.github.io/illustrated-transformer/

Multi-head attention
The self-attention mechanism can be amplified by running multiple instances in parallel. Each

iteration of self-attention has its own weights and is referred to as a head, hence the name

multi-headed self-attention, or just multi-head attention. The scaled dot product attention of each

head is concatenated and undergoes a linear transformation through matrix multiplication with

the output weight matrix WO (Eq.5-6, Fig.7c).

(5)𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉( ) = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑
1
,  ...  , ℎ𝑒𝑎𝑑

ℎ( )𝑊𝑂

where (6)ℎ𝑒𝑎𝑑
𝑖

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊
𝑖
𝑄, 𝐾𝑊

𝑖
𝐾, 𝑉𝑊

𝑖
𝑉( )

https://jalammar.github.io/illustrated-transformer/


Positional encoding
By processing entire sequences in parallel, the inherent order of sequential data gets lost. The

information about the positions of each token in a sequence is instead added through positional

encoding. The original transformer made use of alternating sin and cos functions to give each

position a unique positional embedding, but it is possible to have the model learn the positional

embeddings instead.

Transformer architecture
The original transformer model architecture (Fig.8) consisted of two stacks, with one stack

composed of encoder blocks and the other of decoder blocks. The goal of the encoder is to map

the sequential input data X into a continuous representation Z that is passed to the decoder. The

decoder then uses Z to generate an output sequence Y through autoregression, where it

iteratively adds the previous output token to the input.

Figure 8. The model architecture for the original transformer model introduced in the Attention is all you need paper. The block

to the left is an encoder block and the one to the right is a decoder block. Image source: https://arxiv.org/abs/1706.03762

There have been numerous variations upon this architecture, some which only uses encoder or

only decoder blocks (Brown et al., 2020; Devlin et al., 2019). The transformer model at the

center of this thesis, MSA Transformer, has an architecture more closely resembling an encoder.

Encoder blocks have a relatively simple architecture of a multi-head attention layer followed by

https://arxiv.org/abs/1706.03762


a fully connected feed-forward network. Wrapped around each of the two sublayers are so-called

residual connections, followed by layer normalization. Residual connections form the basis of

what is referred to as the residual stream in transformers. The sublayers of a transformer can be

thought of as reading and writing features to the residual stream, forming complex information

processing circuits between layers (Elhage et al., 2021). This makes the embeddings layered with

representations from earlier heads, allowing the transformer to detect even more sophisticated

features.

Training transformer models
One of the drawbacks with supervised learning is the difficulty of finding the large quantities of

labeled data that is required for training large transformer models. Self-supervised learning has

provided a solution to the problem through automatically generating labels by masking tokens in

unsupervised data.

Autoregressive models, such as GPT models, are often trained using a causal language modeling

(CLM) objective. CLM objectives involve the prediction of the next token in a sequence by

looking at the previous tokens in it. This is done by masking the token to be predicted along with

all the ones to the left of it before running the model and comparing the prediction to the label.

Models which lack autoregressive decoders, such as BERT or other encoder-based models, don’t

iteratively predict the next token, but instead add layered representations of features to the input

embeddings. Identified features can then for example be used by classification layers

downstream of the model. Masked language modeling (MLM) objectives are a standard way to

train these types of encoder models. MLM works by randomly masking some percentage of the

input tokens and having the model predict the masked tokens (Devlin et al., 2019). The

prediction is done by applying softmax over the vocabulary (all possible tokens) on the output

embeddings of each position in the sequence.

Although transformers have been predominantly designed for NLP, certain architectures and

techniques apply just as effectively to a language not constructed by humans but evolved over

time – protein sequences.



2.3 MSA Transformer

2.3.1 Protein Language Models
Self-supervised protein language modeling had its start in LSTM models but were quickly

outcompeted by transformer-based language models. A major upside of the latter is the

connection between sequence-based attention matrices and contact maps – it turns out that

knowing which residues are in close proximity is very useful for predicting their coevolution.

This makes attention matrices strongly correlated with contact maps, allowing for the prediction

of 3D structures from just an amino acid sequence (Fig.9).

Figure 9. Comparison of a layer 12 MSA Transformer row attention matrix (left) and a predicted contact map (right) for an

example protein 1AE7. The x and y axes for both matrices correspond to a residue in the protein. Blue pixels in the predicted

contact map’s bottom right are residues which are predicted to be in proximity, while the pixels in the top left show how well the

predictions correspond to actual contacts.

Amino acid sequences are intuitive inputs for a protein language model as they resemble text

input in natural language processing, albeit much less directional. While models using this

approach have been proven successful for structure prediction purposes, they are often quite

opaque in how they identify relevant features (Lin et al., 2023). The MSA Transformer language

model operates on entire MSAs, meaning a lot of coevolutionary information is already stored in

the input, potentially making the learned features simpler and thus more approachable for use in

downstream tasks. Another perk of this approach is the shared MSA input type with AlphaFold2

that could allow for a straightforward pipeline between them.



2.3.2 The MSA Transformer Architecture

Input and output

After embedding the two-dimensional input MSA, the input is a matrix , whereM𝑥 ∈ 𝑅𝑀 × 𝐿 × 𝑑

is the number of sequences per MSA (512), L is the number of positions in each sequence and d

is the hidden dimension of the embedding. MSAs are often much larger than the maximum

sequence count (M), which is why the most diverse sequences are “greedily” subsampled from

the original MSA in a process that maximizes their hamming distances.

The two-dimensional structure of the data means that the standard one-dimensional embeddings

work less well. Instead, learned positional embeddings are added independently to each row to

allow the model to distinguish between sequences as well as positions in them.

Axial attention
The attention mechanism uses axial attention to process the two-dimensional input data. Axial

attention splits up attention over rows and columns into two separate multi-head attention

sublayers. Multi-head self-attention is performed on sequences corresponding either to rows or

columns in the input matrix and the resulting features are added to the residual stream like

normal.

The axial attention going on in MSA Transformer uses a slight variation of this method. In MSA

Transformer, column attention heads operate on positions across sequences and thus become the

model’s way of explicitly reading coevolutionary signals about the current protein instead of

implicitly memorizing with learned weights. The row attention uses a variant called tied row

attention. In tied row attention, the row attention matrices are all summed into one single matrix

that is then multiplied with the value weights. The rationale behind summing the attention

matrices is that the sequences have similar structures and thus attention patterns, which will be

strengthened through summation. Tied row attention maps can later be used for contact

prediction like in other protein transformer models.



MSA Transformer blocks
MSA transformer blocks have a similar design to the original encoder blocks, except with the

tied row attention and column attention being split into two multi-head attention layers, each

preceded by layer normalization and added to the residual stream via residual connections

(Fig.10). Like in the original transformer, feed-forward layers are placed at the end of each

block.

Figure 10. Architecture of the MSA Transformer model. The transformer block is repeated
12 times after creating the embeddings and positional encodings from the input MSA.

Source: https://www.nature.com/articles/s41598-022-18205-9/figures/1

The total amount of parameters in the model is 100M which might seem like a lot, but is on the

small side by 2023’s standards. The protein language model ESM-2 has up to 15B trainable

parameters and NLP models have reached over one trillion (Fedus et al., 2022; Lin et al., 2023).

Pre-training
MSA Transformer was trained on a dataset of 26M MSAs created from the UniClust30 database

with HHblits 3 – a sequence alignment tool that makes use of hidden markov models (Steinegger

et al., 2019). A MLM objective adapted to the MSA setting was then used to train the model to

predict randomly masked out MSA tokens.

https://www.nature.com/articles/s41598-022-18205-9/figures/1


2.3.3 MSA Transformer Applications
The MSA Transformer paper showed how the features of the residual stream could be used for

downstream classification tasks by training a secondary structure prediction head based on the

Netsurf architecture (Klausen et al., 2019).

The activations of the model’s attention heads have also been shown to contain useful structural

information, which the LSTM-based S-Pred model uses, along with the output embeddings of

the residual stream. S-Pred is the architecture for a small group of protein structural property

predictors trained to predict one of three different properties: secondary structure, accessible

surface area (ASA) and intrinsically disordered regions (Hong et al., 2022). Intrinsically

disordered regions (IDRs) are regions of proteins which lack a well-defined 3D structure, often

because of a lack of hydrophobic residues that mediate folding.

2.4 Prediction of Multiple Conformational States

AlphaFold2 might be constrained by only being able to predict one conformation, but the fact

that it uses MSAs as a source of coevolutionary signal enables manipulation of the MSA to

influence the predicted structure. Two approaches that have been shown to make progress in this

area involve either sequence clustering or directly modifying residues in the input MSAs.

Sequence clustering attempts to split MSA sequences into multiple clusters, where each cluster

contains different coevolutionary signal that can be read by AF2. Clustering methods based on

sequence similarity have proven successful at sampling multiple conformations of a couple of

fold-switching proteins (H. K. Wayment-Steele et al., 2022). They showed that removing the

coevolutionary information about a higher-energy fold-switching state allowed AF2 to predict

the ground state as well.

The secondary approach, dubbed “in silico mutagenesis”, involves the mutation of aligned

residues in specific positions (columns) by changing them to alanin (Stein & Mchaourab, 2022).

The positions to mutate are chosen by identifying contact points in the structures generated from

the original MSA. Similar to clustering, the idea is to sample different conformations by

blocking out structural coevolutionary signal.



In this report I hypothesize that indiscriminately mutating residue positions across sequences or

clustering sequences by similarity might be too blunt a tool for selecting specific coevolutionary

information. This could potentially be improved by using the activations and features of the

MSA Transformer, which have evidently captured useful structural information.

3. Results and Discussion

3.1 Overview of Strategy

The overarching objective of extracting flexibility information from the protein language model,

MSA Transformer, was tackled through two distinct sub-projects: Training neural networks on

the output data of the language model to predict per-residue protein flexibility, and using the

output data for clustering and modifying MSAs in order to sample multiple conformations of the

same protein with AlphaFold2.

Section 3.1 describes the preparations made to allow for the first project, the training of

networks. Initially, a dataset of flexible proteins to use for training and evaluating the model

designs was chosen, along with a metric for per-residue flexibility that could be set as labels for

the dataset. Lastly, some filtering and analysis was performed on the dataset to improve the

quality of the training data.

The designs and training processes for the three types of model architecture are showcased along

with their results in the following sections: MLP networks in Section 3.2, LSTMs in Section 3.3

and CNNs in Section 3.5.

Section 3.4 details the development of a framework that enables the use of column attention data

by convolutional networks and clustering methods. The section also examines patterns between

column attention matrices and flexibility data, as well as across different attention heads.

Evaluating clustering methods for the second sub-project requires, much like the first project, a

set of examples and a metric to compare them by. Section 3.6 describes the process of

constructing a benchmark of example proteins and comparing a couple evaluation metrics.

Unfortunately, time constraints prevented the development and evaluation of clustering methods.



3.1 Experimental Setup

3.1.1 The PDBFlex Database

PDBFlex is a flexible protein database structured around 38,341 protein clusters of superimposed

PDB structures that share at least a 95% sequence identity, created with CD-HIT (Huang et al.,

2010). According to the paper behind the database, the natural or engineered substitutions

making up the 5% difference in sequence identity should not have a large-scale impact on the

structures, except for certain substitutions like glycines and prolines that might change the shapes

of alpha-helices (Hrabe et al., 2016). Despite reservations about the impact of differences in

sequence identity, the database was selected as a promising candidate for a training dataset due to

several factors, including its substantial size, pre-calculated flexibility metrics, and accessible

web-based interface for visualizing conformational changes (Fig.11).

Figure 11. Example of the visualization options available for the PDBFlex cluster 4mvdB.

Screenshot taken from the PDBFlex website: https://pdbflex.org/cluster.html#!/4mvdB/23116/4mvdB.

3.1.2 Local RMSD
The PDBFlex database has a couple flexibility metrics, with the main one being local RMSD

profiles that are accessible via an Application Programming Interface (API) that enables external

programs to retrieve data from the website (Fig.12a). The average local RMSD for each residue

was calculated by first identifying a ‘master’ sequence, i.e. the most complete sequence in each

cluster. The average RMSD values between the master sequence’s Cα atoms and the

https://pdbflex.org/cluster.html#!/4mvdB/23116/4mvdB


corresponding atoms in the other cluster sequences are then calculated over a 10-residue sliding

window. This makes local RMSD a decent metric for finding local flexibility, but also “hinges”

where the residues on either side of the hinge change their relative position between the

structures in a cluster. Hinge movements tend to produce sharp peaks in the local RMSD profile,

while fold-switching seems to be represented by a wide band of high local RMSD (Fig.12b).

Figure 12. (a) Example of a local RMSD profile for the 4huuA protein cluster in the PDBFlex database. The coloured bands

represent secondary structure and the bands below the RMSD profile plot represent the secondary structures of the other cluster

members. (b) Local RMSD profiles for two fold-switching proteins: Selecase (PDB: 4qhfA) and KaiB (PDB: 2qkeB).

Screenshots taken from the PDBFlex website: https://pdbflex.org/viewer.html#!/4huuA/21499/4huuA.

Other metrics of flexibility were also considered, such as difference distance maps, Local

Distance Difference Test (lDDT) and B-factors. B-factors were ruled out for their low resolution

and focus on dynamics instead of larger scale conformational changes, but difference contact

maps and lDDT could just as well have been chosen. Ultimately, local RMSD was chosen for the

sake of convenience and saving time, since local RMSD labels had already been created for the

entire PDBFlex database. Examining other metrics would have been interesting, but was deemed

out of scope for the project.

https://pdbflex.org/viewer.html#!/4huuA/21499/4huuA


3.1.3 Filtering the Dataset

Having a dataset of over 38,000 clusters provided the luxury of liberally filtering to select only

the most desirable clusters in terms of size and flexibility. The histogram of the sequence lengths

of each cluster (Fig.13a) shows the majority of the distribution laying between 50 to 400

residues. 400 was used as an upper limit to save computational time, and the lower limit of 50

residues was put in place to avoid the issues that could come about with very short sequences,

such as when generating MSAs. Since the objective of the project was to detect larger

conformational changes, the clusters with a maximum local RMSD value of less than 1Å were

filtered out. The low-flexibility clusters made up a large portion of the total dataset (Fig.13b), but

a sizable 13,042 clusters remained after the two aforementioned reductions.

Figure 13. Histograms of the database showing the distribution of (a) sequence lengths or (b) maximum local RMSD.

3.2 Training MLP classifiers

As an introductory task, a few MLP networks were created to increase familiarity with deep

learning and try out some techniques. The designs of the networks were architecturally simple

variations of a series of fully connected layers as exemplified in Figure 14.

Figure 14. Architecture of a simple fully connected per-residue flexibility classifier. The input dimensions are 768, which
through five fully connected layers (orange) gets reduced to 2 classes: local RMSD above or below a certain threshold.



The binary classification task
It seemed too complicated for such a simple network to predict the flexibility of an entire

sequence at once, so the models were instead trained to simply predict whether each residue had

a local RMSD above or below a certain threshold. The reason for using a binary classification

task instead of multiclass classification or regression was partly because it is simpler, but also

because the heights of local RMSD peaks appeared to be relatively arbitrary and difficult to

predict. The idea was that it would be easier for the model to just separate flexible and

non-flexible residues from each other instead of having to get the exact level of flexibility right.

Generating embedding input data
The input data for the model was originally intended to include the entire output embedding for

each residue, but the dimensions of this would have been far too large, with tensor dimensions up

to 768 x 512. Instead, only the embeddings for the residues in the query sequence were used, as

inspired by the S-Pred model input. To speed up the process across multiple training runs, the

MSA Transformer was run in advance, saving only the parts of the embeddings to be used as

inputs.

The network was trained on the embeddings for single residues. These were created by first

separating the input protein embeddings across training, testing and validation datasets, and then

splitting each of them into residue embeddings. This was done to prevent residues from the same

protein to be present in both the training and testing dataset.

MLP model results
Unsurprisingly, none of the simple models trained with MLP networks managed to accomplish

more than overfitting on the training data, reaching a per-residue accuracy barely above the one

obtained from predicting the local RMSD value to be under the threshold every time.

Throughout the project, four types of plots were created to evaluate the performance of the

trained models. Loss curve plots (Fig.15a) compare the training and validation loss per epoch

and are a useful tool for noticing when the model overfits or gets stuck. Similarly, accuracy curve

plots (Fig.15b) were used to evaluate the average accuracy for each epoch, providing another

dimension to study overfitting. Accuracy is simply calculated by dividing the number of correct

predictions with the total number of predictions. Accuracy plots also allow for comparisons with



a baseline accuracy as a means to determine whether a model has achieved any relevant

predictive ability. The baseline in this case is referred to as the zero guess line, and is the

accuracy achieved from predicting each local RMSD value to be below the selected threshold.

The ratio between residues with local RMSD below the threshold of 0.2 Å to ones above were

about 4:1, which is why the zero guess baseline and initial predictions had accuracies so close to

0.8.

Figure 15. (a) Loss curve displaying the training loss (blue) and validation loss (orange) across 30 epochs.

(b) Accuracy plot comparing the testing accuracy (blue) with the baseline zero guess accuracy (orange) across 30 epochs.

Confusion matrices are another staple among model evaluation metrics (Fig.16a). They are used

to put a number on the distribution of true and false positives and negatives. From these, other

metrics such as precision, recall and F1 score can be calculated for further analysis. Lastly, I

wanted to visualize the results on a per-example basis to better understand what the model

predicts for each residue. A new type of plot was created for this purpose, where the local RMSD

profile and predictions are shown alongside each other (Fig.16b).



Figure 16. (a) Confusion matrix displaying what share of the predictions were true negatives (top left), false negatives (bottom

left), false positives (top right) and true positives (bottom right). (b) Plot comparing the local RMSD labels (gray) with the

predictions for 5 test set proteins. Green dots signify residues for which the model correctly predicted whether or not the local

RMSD was above the 0.2 Å threshold, while red dots signify incorrect predictions.

3.3 Training S-Pred Inspired LSTM Classifiers

Following the success of the S-Pred model’s LSTM architecture on classification and regression

tasks related to protein properties, it seemed reasonable to attempt using a similar network for

classifying residue flexibility. The model was created by simply using the secondary structure

classification version of the S-Pred model and changing the output classes from 8 to 2. The

model was also modified to allow it to be trained and allow for use of pre-generated embeddings

as inputs.



Figure 17. Architecture of the S-Pred model. The non-grayed out parts were pre-generated when creating the dataset, while the
grayed out parts were performed when running the model. Image source:

https://www.nature.com/articles/s41598-022-18205-9/figures/1

Generating input data
Like for the MLP models, input data consisted of embeddings generated by MSA Transformer

beforehand to save time. Query sequence embeddings and average-pooled row attention matrices

were concatenated and saved as tensors with dimensions [c x 1056]. The non-greyed out parts of

Figure 17 correspond to the data that was generated as the inputs in the dataset.

Results of using a LSTM model
The trained models tended to almost always predict a local RMSD below the threshold, even

after changing some hyperparameters. A likely reason for this could be mistakes in implementing

the S-Pred model, so to validate the methodology, an attempt was made to reproduce the original

S-Pred model, including using the original weights. The reproduction attempts gave similar

results to the altered model, so it seems likely that further tweaking of the model is required if

using the S-Pred architecture. There was not enough time to do this so the focus was instead

moved to the second part of the project: clustering sequences to sample multiple conformations

with AlphaFold2.

https://www.nature.com/articles/s41598-022-18205-9/figures/1


3.4 A Deep Dive Into Column Attentions

Finding features with meaningful differences between sequences corresponding to different

conformations was the primary goal of the second part of the project. This rests on the hope that

these features could then be used when clustering MSA sequences, so that the clusters contain

even more relevant coevolutionary information than they would from just clustering by sequence

similarity.

Row attention matrices were briefly considered for this, but their summation into tied row

attention matrices meant that information that separated sequences from each other was lost.

Modifying the MSA Transformer code could provide a way of accessing the untied matrices, but

the plan was discontinued in favor of pursuing column attention maps instead since their very

purpose is to compare coevolutionary information across multiple sequences.

Each run of MSA Transformer creates 144 column attention matrices for each residue (column),

where each column attention matrix has a width and height equal to the number of sequences in

the input MSA. This totals hundreds of millions of data points; way more than can easily be

clustered, so the dimensions had to be reduced in some way. One way to accomplish this was

through summing the attention matrices along one axis and stacking them together to form a

matrix of the same shape as the original MSA for each attention head. These matrices were then

summed across the heads to form a single matrix per input MSA. While the matrices showed

some potential, the noise from summing across all column attentions was hard to manage

(Fig.18).



Figure 18. (a) Comparison between the stacked summations of column attention matrices, the combined query matrix, and the

vertical and horizontal query matrices for protein cluster 5fog_d. (b) Comparison between the same matrices as a, but for protein

cluster 1c3h_a.

Query matrices
Another type of matrix was created by stacking the row / column of the column attention

matrices that corresponds to the query sequence, i.e. the original sequence used for creating the

MSA (Fig.18). The rationale behind the creation of these “query matrices” was built on the

assumption that attention related to the query sequences would be especially rich in useful

information about the sequence of interest. The idea is that the vertical query matrix (matrix 0)

describes which sequences the model is taking information from when updating the query

sequence’s embeddings, while the horizontal query matrix (matrix 1) describes how much

attention is paid to the query sequence when updating each of the other sequences’ embeddings.

Both of these pieces of information seemed highly related to coevolutionary signal and thus of



interest for clustering. The query matrices showed some promising differences between

sequences, but also contained some unexpected patterns.

Query matrices and local RMSD
Closer inspection of the query matrices revealed a surprising correlation between bands of

activation and local RMSD profiles (Fig.19). While not present in all proteins, this correlation

pointed towards the fact that MSA Transformer had learnt to detect features that correlate with

protein flexibility. The secondary structures of the MSA sequences begin to tell the story of how

this correlation might come about: As can be observed in Figure 19a, the peaks of high activation

appear to correlate with IDRs and flexible linkers between more rigid secondary structures. This

is in accordance with the findings from downstream ML models like S-Pred that show that

features from MSA Transformer can correspond to IDRs and secondary structures. It is however

striking that these patterns are so clearly visible by simply observing the model’s column

attention activations.

Figure 19. (a) Comparison of query matrices and their local RMSD profiles for protein clusters 5fog_d (left) and 1c3h_a (right).

(b) Line plots comparing the normalized sums of the query matrices (blue line) and the normalized local RMSD profiles (orange

line) for the two protein clusters.

Figure 19a also suggests some redundancy among sequences, in that many of them contain

similar information. A comparison between using 128, 64 or 32 sequences (Fig.20) showed that



there was only a minimal difference between using 128 and 64 sequences. Future experiments

thus use only 64 sequences in order to save time and memory, but a more thorough analysis

could definitely prove interesting.

Figure 20. Comparison of smoothened normalized summed query matrix values from query matrices with 128 (red), 64 (blue)

and 32 (cyan) sequences for the protein clusters 5fog_d and 1c3h_a. The gray line represents the local RMSD values for each

residue.

Evaluating correlation
The ability to more quantitatively measure the correlation between the query attention activations

and local RMSD values at a larger scale would provide a way to evaluate the correlation better

than a handful of cherry-picked examples could. Summation across attention heads and

sequences might drown out correlating patterns with weaker activations, for example the large

peaks in query matrix activation that is commonly found near the terminals. Separately

calculating the similarity between the RMSD labels and query activations for each combination

of attention head and MSA sequence allowed for a more precise measurement of correlation.

Observing the most correlated sequences can give a clue as to what features the attention heads

of the model might have learnt to pay attention to. Moreover, the data can be presented in a more

readable way by assembling the similarity scores of each combination of attention head and

MSA sequence into a “similarity score matrix”.

As an example of utilizing these techniques, I chose to study a highly flexible PDBFlex cluster

5bpd_a, which contains the multiple conformations of the DNA-binding archaeal chromatin



protein TrnBL2. The summed query matrix of the protein displayed an interesting pattern in that

it showed multiple large peaks at residues connecting secondary structures, of which two

coincided with major local RMSD peaks (Fig.21a). When examining the structural

conformations of TrnBL2, the first major peak appears to represent a hinge-like movement of

two subunits while the second one seems to correlate to a smaller-scale flexibility within a

subunit (Fig.21b). The matrix of similarity scores for each head/sequence combination showed a

band of sequences for which some early heads produced activations with high similarity to the

local RMSD label (Fig.21c). Closer examination showed that the similarity came from overlap

with the first, hinge-related peak (Fig.21d), prompting the question of whether different types of

flexibility are recognized by different attention heads.

Figure 21. (a) Normalized line plot of summed query matrices (blue) and local RMSD (orange). (b) Protein structure of 5bpd_a,

with arrows pointing to the two major peaks of the local RMSD profile. (c) Similarity score matrices constructed from the

vertical query matrix (left) and horizontal query matrix (right) for 5bpd_a. (d) Normalized line plots of the two combinations of

query matrix type, attention head and MSA sequence (blue) with the highest similarity to the local RMSD profile (orange) for the

5bpd_a cluster.

In an attempt to answer this question, two sets of similarity score matrices were created, with

each of them operating on roughly half of the query matrix so that the two peaks would be



isolated from each other (Fig.22). When comparing the score matrices, two types of similarity

become apparent. For the slice containing the first peak, the results resemble previous results in

that there is a band of high-scoring combinations (Fig.22a, horizontal red arrow), while the

second slice shows more vertical lines (Fig.22b, vertical red arrows) that indicate that

information about the flexible region is identified by specific attention heads more than from

certain sequences.

Figure 22. Comparison between two sets of similarity score matrices (vertical on the left, horizontal on the right) created from

the 5bpd_a protein cluster. (a) Matrices created from the first 140 residues. (b) Matrices created from the residues after the 140th.

The red arrows point at rows and columns which have a clear difference between the similarity score matrices of the two slices.

To verify the results of the first slice, a query matrix was created from the activations of head 16,

a head which showed a strong correlation with the first peak (Fig.23a). The lack of signal

strength for certain sequences was adjusted for by normalizing the values for each sequence to

produce a new, normalized matrix (Fig.23b). Amplifying the signal gave rise to a distinct band at

the area of the peak for sequences 45, 46, 47 and 47. Further examination of the sequences

contributing to the band reveals a striking similarity between the activations of head 16 and the

gaps present in the input MSA, with the bands most likely being the result of the sequences

ending at the same spot as the peak in local RMSD begins (Fig.23c). This explanation also could

be the reason as to why early attention heads gave the best similarity scores for the first peak;

identifying when sequences end seems like a simple task which could easily develop in early



layers.

Figure 23. (a) Vertical query matrix constructed from attention head 16 for the 5bpd_a cluster. (b) The same query matrix as in

the previous figure, but with each row normalized. (c) Content of the 64-sequence 5bpd_a MSA, with positions containing amino

acids shown in blue and positions containing gaps shown in green.

The correlation between gaps in the MSA and activations in the model could potentially help

explain some of the identified correlations with local RMSD. Residues missing from MSAs

could conceivably be related to disordered regions and finding sequences that are cut off might

help the model identify where different subunits end or begin. These theories are however highly

speculative and would require a much more systematic approach to verify. One way of

investigating the reliance on gaps could be to compare the performance and correlations on input

MSAs where sequences above a certain gap content threshold are filtered out. Similarly, the

theories about different heads learning different forms of flexibility would have to be



substantiated by more thorough evidence before any meaningful conclusions could be drawn.

The findings do however point towards interesting properties about the internal workings of

MSA Transformer that further research could investigate more thoroughly and systematically.

Comparing correlation across multiple proteins
In an effort to make more general statements about the model internals, similarity score matrices

for multiple proteins were summed. The purpose of this was to give a general picture of which

sequences and attention heads produced the activation patterns with the highest similarity to the

local RMSD labels (Fig.24). As is to be expected, the similarity scores were fairly distributed

across sequences, but the difference was noticeable between attention heads, with some heads

having much stronger correlation than others. The pattern showed a clear similarity to the lines in

the similarity score matrix for the second half of the 5bpd_a sequence, suggesting that the peak

in this section could be the result of a type of flexibility that those attention heads correlate with.

Summing the scores across sequences also allowed for comparisons between vertical and

horizontal query sums, and between the 500 proteins with the highest or lowest average local

RMSD (Fig.24).

Figure 24: Bar plots comparing the attention heads’ total level of similarity to local RMSD labels, between the 500 clusters with

highest RMSD (top) and the 500 clusters with lowest RMSD. The plots on the left are made from vertical query matrices while

the plots on the right are made from horizontal ones. The 5 highest scoring heads of each plot are shown in red. The unit on the

y-axis is not that relevant since the aim of the figure is to give a general picture of the differences between attention heads.

The results in Figure 24 show that the heads with the greatest correlation in matrix 0 were mostly

located in the final layer, with a fairly consistent increase in score across heads when increasing



the local RMSD. Matrix 1 showed very different results, with most of the heads having an

overall negative correlation and an increase in similarity when using proteins with low flexibility.

There is clearly much room for further examination of what the attention heads actually represent

and why their correlations change between different levels of flexibility. Even when knowing

which heads tend to be the most correlated with flexibility, the problem of knowing which MSA

sequences to look at remains.

3.5 Training Convolutional Networks

After the initial discovery that column attention maps demonstrated correlation with local

RMSD, a final attempt at training a flexibility classifier was made. The query matrices created in

Section 3.4 were essentially two-dimensional images with 144 channels, one for each attention

head. This input data seemed suitable for a convolutional architecture due to the task’s

similarities with image processing.

Creating a dataset of query matrices
Query matrices of shape 400 x 128 x 144 were created by padding the residue length dimension

of each query matrix to the maximum residue length, 400. The padding was done to keep the

dimensions identical and allow for minibatch training.

Creating the architecture
The general idea was to reduce the number of dimensions from L x M x H (400 x 128 x 144)

down to L x 1 x 1 (400 x 1 x 1), i.e. with one output value for each of the L residues. The

reasoning behind keeping the L dimension constant throughout the model was so that

information about each residue would carry over until the output layer without having to be

represented with fewer dimensions. The size of the L dimension was kept the same throughout

the model through first employing a series of 2d convolutions with uneven stride and padding,

thus reducing only only the M dimension while keeping the L dimension constant and increasing

the size of the H dimension. Max pooling is also employed to quickly reduce the M dimension

until it reaches 1. At that point, 1d convolutions can reduce the H dimension down to 1.

A couple variations upon this architecture with different numbers of layers were tested. The first

model (Fig.25a) was very large, containing 7 layers with parameters and a total of 14M



parameters, making the model very slow to train. Among others, a smaller model (Fig.25b) with

2.5M parameters spread out over 5 layers was created, and trained using Adam to classify

flexibility into above or below a set threshold. The model overfitted and failed to generalize

beyond the training set, never reaching an accuracy greater than predicting zero every time

would have produced.

Figure 25. Architectures of two modes. (a) An initial design that first reduces the sequence dimension to 1 and increases the

amount of channels through 2d convolutions (blue) and max pooling (purple), followed by 1d convolutions (green) to reduce the

channels to 1. (b) A simpler design that uses fewer layers and thus fewer parameters. The channel count is also greatly reduced.

3.6 Setting up a Benchmark for Sampling Conformations

Setting up a benchmark
When developing a new methodology, it is important to set up a benchmark to compare it to

other methodologies that are operating on the data, so that the comparison is as fair as possible.

To construct such a benchmark, 6 examples of fold-switching proteins were taken from the

benchmark used by AF_Cluster (H. K. Wayment-Steele et al., 2022) and 2 examples were taken

from the SPEACH_AF benchmark (Stein & Mchaourab, 2022). Two reference structures for

each benchmark protein were downloaded, along with their MSAs, as created by both HHBlits

and MMSeqs2 using colabfold (Google Colaboratory, n.d.). The reference structures are

representations of two distinct conformations the protein can take. By comparing the similarity to

the reference structures, clustering methods can have their ability to sample naturally occuring

conformations tested.



Table 1: List of example proteins used in the benchmark, along with their reference PDB IDs and sources of origin.

Name Reference PDB 1 Reference PDB 2 Source
KaiB 2qke_e 5jyt_a AF_Cluster

RfaH 5ond_a 6c6s_d AF_Cluster

Mad2 1s2h_a 1duj_a AF_Cluster

Selecase 4qhf_a 4qhh_a AF_Cluster

Lymphotactin 1j9o_a 2jp1_a AF_Cluster

CLIC1 1k0n_a 1rk4_b AF_Cluster

Adenylate Kinase 4ake_a 1ake_a SPEACH_AF

Ribose Binding Protein 2dri_a 1ba2_b SPEACH_AF

Choosing an evaluation metric
The two research papers by which the benchmark was inspired each used different metrics for

evaluating structural similarities between sampled structures and reference PDBs. The

AF_Cluster paper made use of RMSD while SPEACH_AF used TM scores to evaluate the

predictions. They both used Principal Component Analysis (PCA), an unsupervised ML

technique for reducing the dimensions of data, to compare the contact maps of each predicted

structure.

Sampling structure predictions with AlphaFold2 for the sometimes hundreds of clusters

generated by the AF_Cluster methodology proved time consuming enough to warrant an

investigation into possibly using a proxy metric instead of RMSD. The MSA Transformer paper

included methodology for very quickly evaluating the accuracy of its predicted contact map with

the one of a reference PDB structure. If this metric correlated with RMSD, would enable quick

iteration and development of clustering methods. When comparing the two metrics it became

clear that contact prediction accuracy was quite poor of a proxy (Fig.26). While there could still

be other, faster evaluation methods, it is likely the case that creating structures with AlphaFold2

is an essential step of evaluation.



Figure 26. Plots comparing the (a) 2D plots comparing the RMSD to the two reference structures for each structure predicted

from the MSA clusters generated by AF_Cluster. (b) 2D plots comparing the predicted contacts of the MSA clusters created by

AF_Cluster with the contacts of the two reference structures. Six different metrics were used to evaluate the contacts: long_P@L,

long_P@L2, long_P@L5, medium_P@L, short_P@L and local_P@L.

By this point in the project, there was unfortunately no time left to do any of the more thorough

clustering experiments that were planned to be performed on the benchmark. If given more time,

multiple types of clustering algorithms could have been put to use across different types of MSA



Transformer output data. Some preliminary testing of clustering query matrices was done, but

without any reliable results. An example of a proposed methodology was to cluster the sequences

in a query matrix since it was hypothesized that attention values for sequences with similarities

to an alternate conformation would likely have a different pattern of attention than the rest, at

least for the specific residues where the contacts differed the most. Dimensionality reduction

through PCA or similar algorithms could perhaps also be employed to aid with the clustering

since the data points per sequence could be quite large if every head and sequence is included.

4. Conclusions

Overall, the project has made some progress on its initial aims of understanding how to extract

flexibility features from the MSA Transformer language model. The initial goals of training

neural networks and clustering sequences through the use of the model’s activations were largely

unsuccessful for reasons I will delve further into later on.

Core findings of the project
One of the most fundamental parts of any machine learning project is understanding the data one

is working with. For this project, the two types of data consisted of local RMSD labels and MSA

Transformer outputs. The initial discoveries regarding MSA Transformer’s column attention

matrices showcased in Section 3.4 were made after already having attempted MLP and LSTM

networks, and the latter ones were not made until the very end of the project, at which point they

were of little use. The findings do however indicate a variety of interesting correlations that

would likely prove valuable for further research into extracting features from MSA Transformer,

or similar protein language models.

Since the data to be understood consisted of neural network activations, the research can be seen

as a rudimentary form of model interpretability research – the study of opening up models in an

attempt at understanding what they have learnt and how they represent this information. Most

existing interpretability research has been done with computer vision or NLP models, so

furthering the understanding of protein language models would be a novel contribution to the

research area.



The most significant finding of the report is most likely the fact that activations for the query

sequences in column attention maps often correlate with residue flexibility as described by the

local RMSD metric. Furthermore, the construction of query matrices from column attention

strips made the correlations easier to visualize and opened up for further analysis. Among this

analysis, the discovery of attention heads corresponding to gaps in the MSA, and in particular

attention heads displaying varying correlations with flexibility, poses many further questions

worthy of investigation. An approach that builds on this project’s findings to focus on furthering

the understanding of the model’s features and internals would likely be able to provide higher

quality data for both the training of future networks and clustering of MSAs.

Improving the flexibility classifier architectures
The idea of using neural networks for predicting flexibility from transformer outputs may appear

less promising given the absence of positive results, but there are many potential reasons that

could explain these unsuccessful attempts. Deep learning can be both difficult and time

consuming, often taking entire teams months to develop and refine new models, so much could

be attributed to the large scope and limited time. For example, it seems plausible that a model

with an S-Pred architecture could succeed, as it is in many ways the closest thing available to the

desired flexibility classification model. Similarly with the convolutional models, there are likely

other designs that would better be able to take advantage of the information in MSA

Transformer’s column attention matrices. Much of the process of choosing architectures and

hyperparameters could also be automated to save a lot of time, and allow for quicker iteration

and ruling out bad designs.

The decision to pose the problem as a binary classification task instead of multiclass

classification or regression was made for the sake of simplicity, but could likely have hampered

the models’ performance. The learning signal, an important ML concept that describes the

information used to fuel the learning process’s feedback loop, might have become too

coarse-grained as a result of using binary classification. In reality, flexibility lays more on a

spectrum, and reducing the data to being above or below an arbitrarily set threshold likely had

some consequences: Either the cutoff point was so high that it excluded many peaks, or so low

that it included too much. Too high of a cutoff point also made the balance between the two

classes so uneven that the model easily learnt to just predict the flexibility to be below the



threshold every time. Even including different loss weights for the two classes had little effect,

likely because of how little learning signal the model got.

Systematic problems with PDBFlex and local RMSD
Apart from the aforementioned shortcomings, there could plausibly exist some more systematic

problems with the approach, namely with the chosen dataset and flexibility labels. It might be

worth questioning whether the 95% sequence identity within PDBFlex clusters is sufficient to

guarantee that a protein is flexible. The database is doubtlessly a useful tool for visualizing

protein flexibility, but it might be less suited as a training dataset since the data could be polluted

by examples where the different conformations came about as a result of sequence differences.

As previously stated, the local RMSD profiles used during the project might not have been the

best choice for dataset labels. As opposed to other labels such as secondary structure, IDRs and

accessible surface area used by the S-Pred model, local RMSD has a much less direct connection

to physical properties. This is in addition to the fact that local RMSD peaks can correspond to

everything from hinge movements to fold-switching to local disordered regions. If MSA

Transformer has managed to capture features related to those types of flexibility, it seems

unlikely that they would all be represented in the same way. Lumping them all into the same

metric likely made the learning process harder for the downstream classifiers. Instead of using

just a single metric, a solution could involve training multiple models on different, more specific

metrics that each encapsulate certain types of flexibility. This would most likely make the

learning problem for each model simpler, and having multiple outputs could be useful for

analysis and further use, such as MSA clustering. Difference distance maps (DDMs) are an

example of a metric which primarily corresponds to large-scale conformational changes, while

lDDT might be better suited to measure local flexibility.

Further studies on sampling multiple conformations
Ultimately, the designated time was not enough to complete the final part of the project, mostly

because of the ambitious scope and unexpected setbacks. What can be said about clustering is

that using predicted contacts as a proxy for RMSD when evaluating clusters was not feasible. It

seems fairly likely that this would extend to all proxies because they would need to capture the

way in which AF2 makes structure predictions in order to work. Using the AF_Cluster protocol



to create AF2 predictions from each of the sequence clusters and comparing them to the

reference structures currently seems like the best approach, with the potential of speeding up the

process by running the predictions on a computer cluster.

Despite not being able to run any clustering experiments, a lot of groundwork for clustering

MSAs has been made, including the creation of a benchmark and identification of potential input

data and ways in which it can be expanded upon further. Using query matrices, especially from

specific attention heads, seems like a very promising approach to both clustering sequences and

identifying relevant pieces of coevolutionary information that could be altered through in silico

mutagenesis.

5. Method
The code written for the project can be found in the GitHub repository with the following URL:

https://github.com/VeraKarlin/master-thesis/

5.1 Creating a dataset

5.1.1 Accessing the PDBFlex database

A list of the master sequences of each cluster in the PDBFlex database was compiled in a csv file

using a web crawler, pdbflex_crawler.py, written using selenium and geckodriver. Another

script, get_rmsd_profiles.py, created another csv file containing the local RMSD profiles for the

first 1024 residues of each cluster in the database by accessing them through the API.

5.1.2 Filtering the clusters

The filter_pdbflex_dataset.py script was used to create a text file of the master sequence PDB

IDs for the clusters that passed the filters imposed on the clusters, namely sequence length and

average RMSD.



5.1.3 Generating multiple sequence alignments

In accordance with the MSA tool used in the MSA Transformer paper, HHblits version 3.1.0

(Steinegger et al., 2019) was selected with default settings except for the number of search

iterations, which was set to 3. HHblits uses FASTA files as inputs so FASTA files were created

with the pdb_id_to_fasta.py script by turning the SEQRES record over all PDB entry sequences

into a dictionary and looking up the FASTA sequence for each of the master sequences.

The run_all_batch_alignments.py script divided the dataset into clusters and ran the

batch_alignment.py script in parallel, which created the alignments for a list of input PDB IDs

by executing the following command:

hhblits -cpu 4 -i <fasta_path> -d <db_directory> -oa3m <output_path> -n 3

MSAs with fewer than 1,000 sequences were filtered out to ensure a diverse selection of

sequences in the alignments, leaving a total of 10,381 clusters.

5.1.4 Generating input data from MSA Transformer outputs

MSA Transformer has three forms of output with the following dimensions:

● Tied row attention: layers (12) ✕ heads (12) ✕ L ✕ L

● Column attention: layers (12) ✕ heads (12) ✕ L ✕ M ✕ M

● Embeddings: layers (12) ✕ M ✕ L ✕ embedding_dim (768)

Where:

L = Sequence length (50 - 400)

M = Sequence count (usually set to 64, 128 or 512)

Different parts of this output data were used depending on the downstream model architecture.

The size of the total output reaches billions of variables, so only selected parts of the outputs

were saved during each run. The MSA Transformer outputs used for each type of downstream

model were as follows:



Inputs for fully connected (MLP) models

● Input types:

○ Layer 12 embeddings for the query sequence (L ✕ 768).

● Scripts:

○ batch_embeddings.py

○ run_all_batch_embeddings.py

Inputs for LSTM models

● Input types:

○ Layer 12 embeddings for the query sequence (L ✕ 768).

○ Row attention maps (144 ✕ L✕ L)

● Scripts:

○ batch_s-pred_features.py

○ run_all_batch_s-pred_features.py

Inputs for convolutional (CNN) models

● Input types:

○ Vertical/horizontal query sequences of column attention matrices

(144 ✕ L✕ M✕ 2).

● Scripts:

○ batch_column_attentions.py

○ run_all_batch_column_attentions.py

5.2 Flexibility classification models

5.2.1 MLP models

Models were designed, trained and tested in the jupyter notebookMLP Classifier.ipynb. Jupyter

notebooks were used for many parts of the project because they allowed for quick hands-on

experimentation with new concepts and libraries.

What the MLP models had in common was stacks of fully connected layers with ReLU

activation functions and decreasing dimensions until they reached a binary output of the local



RMSD being either above or below a set threshold. This threshold was usually set to 0.2 Å since

it struck the balance between including enough local RMSD peaks without too much

insignificant noise. The Adam optimizer was used with learning rates ranging from between 0.01

to 0.0001, but most commonly 0.001. A mini-batch size ranging from 32 to 2048 was used

depending on the size of the model and dataset. In terms of regularization, some models used

combinations of batch normalization and various levels of dropout, with 0.2 being a common

dropout rate.

5.2.2 LSTM models

The code implementing an LSTM model based on the S-Pred architecture was written in the

LSTM Classifier.ipynb notebook. The model was further expanded upon to allow for minibatch

training in the LSTM Minibatch Classifier.ipynb notebook. The differences in sequence length

between the proteins meant that a lot of padding would be necessary when creating batches. As a

way to minimize the padding, each dataset was first sorted by sequence length, followed by each

batch being padded to the length of the longest protein in that batch, after which the sequences of

each batch were shuffled. It was also in this notebook where the S-Pred replication attempt was

implemented.

5.2.3 CNN models

Multiple different convolutional model designs were implemented in the CNN Classifier.ipynb

notebook. As with the other classifier models, many of the same optimization and regularization

techniques were employed, namely the Adam optimizer, minibatch gradient descent and batch

normalization.

5.3 Analysis of column attention matrices

The Column Attention Visualization.ipynb notebook is where the discoveries showcased in

Figures 18, 19 and 20 were made. The analysis shown in Figures 21 to 24 was carried out later

on in the Query Matrix Analysis.ipynb notebook. The headings in the notebooks showcase the

code used to produce the plots in the results section.



5.4 Setting up a benchmark

The benchmark was set up so that each example protein had a directory where all relevant

information was stored. The directory structure was as follows:

/benchmark_data/
/af_cluster_monomeric/ # KaiB, RafH, Mad2
/af_cluster_oligomeric/ # Selecase, Lymphotactin, CLIC1
/classic/ # Adenylate Kinase, Ribose Binding Protein

<Name>
/af_clusters/ # Clusters from the AF_Cluster GitHub
/alignments/ # HHBlits and MMSeqs2 MSAs
/fasta/ # The Fasta sequence used to generate the MSAs
/reference_1/ # PDB file for the first reference protein
/reference_2/ # PDB file for the second reference protein

The 2D contact accuracy plots were created using the run_benchmark.py script, while 2D

RMSD plots were created from AF2 structures with the CalculateModelFeatures.py script taken

from the AF_Cluster GitHub (H. Wayment-Steele, 2022/2023).
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