
MASTER’S THESIS 2024

MLIR-based Code Generation
for High-Performance Machine
Learning on AArch64
Johanna Gustafson

ISSN 1650-2884
LU-CS-EX: 2024-04

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-04

MLIR-based Code Generation for
High-Performance Machine Learning on

AArch64

MLIR-baserad kodgenerering för
högpresterande maskininlärning på

AArch64

Johanna Gustafson

MLIR-based Code Generation for
High-Performance Machine Learning on

AArch64

(Building a retargetable high-performance DGEMM routine

with an MLIR-based approach)

Johanna Gustafson
jo2718gu-s@student.lu.se

January 22, 2024

Master’s thesis work carried out at Arm Sweden AB.

Supervisors: Jonas Skeppstedt, Jonas.Skeppstedt@cs.lth.se
Fredrik Knutsson, Fredrik.Knutsson@arm.com

Per Åstrand, Per.Astrand@arm.com

Examiner: Flavius Gruian, Flavius.Gruian@cs.lth.se

mailto:jo2718gu-s@student.lu.se
mailto:Jonas.Skeppstedt@cs.lth.se
mailto:Fredrik.Knutsson@arm.com
mailto:Per.Astrand@arm.com
mailto:Flavius.Gruian@cs.lth.se

Abstract

Given the growing complexity of machine learning architectures driving the
state-of-the-art, inference acceleration is an important aspect to consider in the
development of machine learning systems. Machine learning frameworks of-
ten address this challenge using hand-crafted compute libraries optimized for
a narrow range of hardware devices — often implemented by the hardware ven-
dors themselves — meaning significant engineering effort is needed to extend
to new platforms. For that reason, we highlight a modular approach in the de-
sign of machine learning systems, utilizing the MLIR (Multi-Level Intermedi-
ate Representation) compiler framework of the LLVM project. This notion is
strengthened through a demonstration of an MLIR-based implementation of an
optimized double-precision GEMM (GEneral Matrix Multiply) routine, which
is shown to reach a performance of 86% of the theoretical machine peak on a
single Neoverse-N1 core. Given the reusable and extensible nature of MLIR,
we believe that there is value in developing MLIR-based compilers for machine
learning software.

Keywords: MLIR, GEMM, machine learning systems, optimizing compilers, AArch64

2

Acknowledgements

I would like to acknowledge my supervisors, Jonas Skeppstedt from the Department of Com-
puter Science at LTH, and Fredrik Knutsson and Per Åstrand from Arm in Lund, for their
contributions to this master’s thesis, in helping to lay out the aim of the project and provid-
ing experience and knowledge relevant to understanding MLIR and computer architecture.
I would also like to thank Thomas Preud’homme from Arm in Cambridge who was happy
to share his engineering expertise during my time as an intern, and Flavius Gruian from the
Department of Computer Science at LTH for taking on the role as examiner.

3

4

Contents

1 Introduction 7
1.1 Related work . 8

1.1.1 An Early Case Study with GEMM 9
1.2 Research Objective . 10

1.2.1 Research Questions . 10
1.2.2 Contribution to Research . 10

2 Background 13
2.1 Compiler Architecture . 13

2.1.1 Emitting LLVM IR with Clang . 16
2.2 The MLIR Compiler Framework . 17

2.2.1 Lowering MLIR to LLVM IR . 18
2.3 Setup . 20

2.3.1 Hardware . 20
2.3.2 Software . 20

3 Initial DGEMM Benchmarks 23
3.1 General-Purpose Compilers . 23
3.2 High-Perfomance Compute Libraries . 25

4 Exploring the MLIR Framework 27
4.1 MLIR’s Infrastructure for Optimizations 28

4.1.1 Loop Tiling . 28
4.1.2 Explicit Copying . 30

5 Implementing a High-Performance DGEMM Routine in MLIR 33
5.1 HLO: A Minimal Dialect for High-Level Operations 34
5.2 Building the Loop Nest . 34
5.3 Optimizing the Loop Nest . 35

5.3.1 Loop Tiling . 36

5

CONTENTS

5.3.2 Explicit Copying . 40
5.3.3 Loop Unrolling . 41
5.3.4 Scalar Replacement . 42
5.3.5 Vectorization . 44
5.3.6 Inspecting the Assembly . 45
5.3.7 Fine-Tuning the Parameters . 47

6 Reflections 51
6.1 Research Questions . 53
6.2 Future Work . 53
6.3 Conclusion . 54

Appendix A Benchmark Programs 63
A.1 MLIR . 63

Appendix B Source files 67
B.1 MLIR . 67

B.1.1 Toy Tutorial . 67
B.1.2 HLO dialect . 68

Appendix C Demonstrations 73
C.1 Emitting LLVM IR with Clang . 73
C.2 The -affine-* passes . 74
C.3 The -hlo-matmul-to-loops pass . 75

6

Chapter 1

Introduction

With the advancement of machine learning, especially artificial neural networks, the com-
plexity of the underlying architectures driving the state-of-the-art is increasing. This is ex-
emplified by the deep learning model GPT-4, which supposedly withholds around 1.8 trillion
parameters across 120 layers [52, 17], making it more than 10 times larger than its predecessor
GPT-3 [52]. The rivaling Gemini AI of Google is said to have upwards 60 trillion parame-
ters [17]. Consequently, machine learning inference is an important factor to consider beside
the pure capabilities of machine learning models. The problem of inference acceleration can
be divided into three main categories; hardware, software and algorithmic [16]. On an algo-
rithmic level, the idea is to utilize methods that essentially remove or substitute components
of the model itself [16], reducing complexity without affecting the capabilities of the model.
On the other end of the inference acceleration stack, the idea is to make use of advanced
computation units in the hardware [16]. Although, most relevant to this thesis is the soft-
ware aspect — methods where software is used to accelerate inference without changing the
architecture [16]. Software accelerators are further divided into two subcategories; low-level
libraries and graph compilers [16]. These differ in that the latter utilizes optimized code gen-
eration to form a bridge between the machine learning model and target hardware, while
the former provides highly-tuned implementations for standard routines within machine
learning such as forward and backward convolution, pooling, normalization, and activation
layers [16].

The way in which the inference problem is handled differs between different machine
learning frameworks. For TensorFlow, one of the most popular machine learning frame-
works among data scientists [22], Intel oneAPI Deep Neural Network Library (OneDNN)
is turned on by default in all Linux x86 packages, delivering up to three times improved
performance by accelerating key performance-intensive operations, including matrix multi-
plication [13]. Though being an Intel library, experimental support is included for AArch64,
enabling Arm Compute Library (ACL) for machine learning applications and Arm Perfor-
mance Libraries (ArmPL) for general matrix multiply operations, respectively [14]. As such,
TensorFlow employs ACL to accelerate performance on AArch64 CPUs [58]. ACL is a col-

7

1. Introduction

lection of low-level machine learning functions optimized for Cortex-A CPU, Neoverse and
Mali GPU architectures [26], while ArmPL provides optimized standard core math libraries
for numerical applications on 64-bit Arm based processors [27].

OneDNN, ArmPL, and ACL are just some of the libraries that implement routines accel-
erating the performance of machine learning applications. These routines have been devel-
oped and carefully hand-optimized with significant engineering effort, often by the hardware
vendors themselves. Thus, an exceptional knowledge of the hardware and low-level code op-
timization is imperative to produce near-peak performance, making the process of deploying
machine learning workloads to new hardware platforms costly and tedious.

The MLIR (Multi-level Intermediate Representation) project addresses the challenge of
expanding software to heterogeneous hardware platforms by introducing a reusable and ex-
tensible framework for compiler development. MLIR was first announced by TensorFlow,
Google, in the EuroLLVM conference in April of 2019 [57], but was later contributed to the
LLVM Foundation in September of that year [23]. The design of MLIR is a hybrid of no-
tions from traditional three-address SSA representations and polyhedral loop optimization
works, optimized to represent, analyze, and transform high-level dataflow graphs as well as
target-specific code generated for high-performance data-parallel systems [39]. MLIR’s single
continuous design provides a framework to lower from arbitrary dataflow graphs to high-
performance target-specific code for a wide range of parallel architectures, enabled through
MLIR’s strong representational capabilities [39].

By functioning as a foundation for various compiler systems with the ability of targeting
heterogeneous hardware, the MLIR framework has the ambition to combat software frag-
mentation and reduce the cost of building domain-specific compilers [40].

1.1 Related work
Nicolas Vasilache et. al. made a case for MLIR in their article titled Composable and Modular
Code Generation in MLIR [62], published in 2022. The authors emphasized that machine learn-
ing systems, runtimes and compilers do not compose properly, and proposed an MLIR-based
design aiming at providing unprecedented degrees of modularity, composability and gener-
icity [62]. A number of single-thread CPU experiments proved that kernels of high relevance
to the machine learning community implemented with an MLIR-based approach were able
to reach near-peak performance [62].

Many novel compilers are built on MLIR technology, including Accera [link], Catalyst
[link], Firefly [link], PlaidML [link] and Pylir [link] [43]. One of the most prominent projects
to utilize MLIR is OpenXLA; an open-source machine learning compiler ecosystem made
available to the public in March of 2023, including the XLA, IREE, and StableHLO projects
— all of which leverage MLIR [50]. XLA (Accelerated Linear Algebra) is a compiler for
machine learning software that supports several machine learning frameworks, including
TensorFlow, PyTorch and JAX [59]. IREE, similar to XLA, is an end-to-end compiler and
runtime that lowers machine learning models to a unified IR and is supported by a variety of
machine learning frameworks, including the aforementioned three [21]. StableHLO, on the
other hand, is an operation set for high-level operations (HLO) that functions as a portability
layer between machine learning frameworks and compilers [50].

Before the announcement of MLIR, Glow [49] and TVM [6] have been proposed as com-

8

https://microsoft.github.io/Accera/
https://docs.pennylane.ai/projects/catalyst/en/latest/modules/mlir.html
https://github.com/GetFirefly/firefly
https://github.com/plaidml/plaidml
https://github.com/zero9178/Pylir

1.1 Related work

pilers for neural networks and deep learning, respectively, both tackling the challenge of
generating highly optimized code for heterogeneous hardware [49, 6].

1.1.1 An Early Case Study with GEMM
HIGH PERFORMANCE CODE GENERATION IN MLIR: AN EARLY CASE STUDY WITH GEMM
is an article published in 2020 [5], analyzing various implementations of equation 1.1, shown
below.

C := C + AB (1.1)

This operation entails adding the result of the matrix multiplication AB to matrix C, and
assigning C with the sum. This article is given its own section as it has been a big influence
to this thesis and our approach.

The author, Uday Bondhugula, begins by presenting a performance-baseline by bench-
marking various 2088 × 2048 double-precision implementations of equation 1.1: naive-nest
in C compiled with GCC and Clang, followed up with the hand-crafted matrix multiplica-
tion routines of the OpenBLAS, BLIS and MKL (Math Kernel Library — a library of math
functions for Intel CPUs and GPUs [15]) libraries. As one can expect, the libraries reach per-
formances of 85% and 92% of the theoretical machine peak [5], being 75.2 GFLOPS (109

Floating-Point Operations Per Second) per core on an Intel-based system, while GCC and
Clang stay at 0.6% and 6% respectively [5]. The implication is that OpenBLAS, BLIS and
MKL have the advantage of being specialized to efficiently run linear algebra problems or
machine learning workloads, while general-purpose compilers such as GCC and Clang are
not designed to optimize appropriately.

In the remainder of the article, Bondhugula implements equation 1.1 as an operation
in MLIR and iteratively introduces optimization techniques, comparing the performance
(measured in FLOPS) against the baseline values presented in the beginning. For the purposes
of the article, Bondhugula created a -hopt pass which expands the high-level operation hop.
matmul into MLIR-native mid-level code that performs a matrix multiplication of specified
matrices. The syntax is [5]

1 hop.matmul %A, %B, %C { some_attribute = 2, some_other_attribute = 4} : (memref <2088
x2048xf64 >, memref <2048 x2048xf64 >, memref <2088 x2048xf64 >)

where %A and %B correspond to the source operands and %C the destination operand of equa-
tion 1.1, and some_attribute and some_other_attribute represent attributes of the
operation. When compiling with the -hopt pass, hop.matmul expands to a naive 3-d loop
nest based on the affine dialect, corresponding to the previously implemented naive-nest
in C. As such, the optimization strategies discussed in the article are examples of, or work in
conjunction with, loop transformations. The optimization techniques are iteratively applied
and discussed in order of: tiling, explicit copying or packing, unroll and jam, and vector-
ization, all made available through -hopt. Lowering the MLIR to LLVM IR with no opti-
mization directives (beside -O3 in the LLVM pipeline) lead to a performance in line with
that of code compiled with clang -O3 — quite poor. However, it must be noted that this
is because both processes fundamentally are the same; the input code is translated from re-
spective source language to LLVM IR and then go through the same LLVM -O3 pipeline [5].
Since the MLIR project is not a compiler in itself — although providing tools to lower and
execute MLIR source code — there is essentially no point in using MLIR unless one builds

9

1. Introduction

upon it. Bondhugula finds that when implementing all aforementioned optimizations, op-
timally configured, MLIR performs at around 82.4% of the theoretical peak [5], concluding
that MLIR-based code generation is on-par or close to what was achieved with expert-written
assembly.

Given this promising result, we hypothesize that we can draw a similar conclusion; we
will be able to reach the performance of representative high-performance compute libraries
using MLIR-based code generation, although on an Arm-based setup.

1.2 Research Objective
On a high level, this master’s thesis aims to investigate the potential, in terms of performance
and composability, of MLIR-based code generation against high-performance compute li-
braries commonly used in or for machine learning on Arm-based CPUs (Central Processing
Units), specifically the AWS Graviton2 CPU with Neoverse-N1 cores. Due to the complexity
of machine learning models driving the state-of-the-art and the width of the field of machine
learning, we are limiting our analysis to one fundamental computation — matrix multiplica-
tion. In terms of high-performance compute libraries, ACL would be a natural choice given
that it implements machine learning functions optimized for Neoverse architectures, but
given that we are going to specifically analyze matrix multiplication, we have determined
that ArmPL is a suitable alternative. In addition to ArmPL, we are also including the BLAS-
like Instantiation Software (BLIS) framework, proposed by Field G. Van Zee and Robert A.
van de Geijn at The University of Texas at Austin in 2015 [60], due to the availability of
in-depth documentation of implemented kernels.

1.2.1 Research Questions
The following research questions detail the aim of our research.

RQ1. To what extent do the optimization techniques loop tiling, explicit copying, loop
unrolling, scalar replacement and vectorization improve the performance of GEMM
(GEneral Matrix Multiply), and how are they implemented in MLIR?

RQ2. Is MLIR-based code generation able to target the vector instructions of Arm Neon
(SIMD (Single Instruction Multiple Data) architecture extension)?

RQ3. What are the tradeoffs between using MLIR and high-performance compute libraries,
specifically ArmPL and BLIS, in building and employing routines for high-performance
machine learning, in terms of performance and composability?

The first two questions, RQ1 and RQ2, directly follow from the experiments we are conduct-
ing in this thesis. Furthermore, the outcome of our experimentation will be used to answer
the third question, RQ3.

1.2.2 Contribution to Research
Given the scale of machine learning applications in use today, there is reason to introduce
and further research novel compilers and infrastructures for machine learning, for improved

10

1.2 Research Objective

efficiency across a wide range of use-cases. This master’s thesis will ideally contribute to
development of knowledge by presenting the MLIR compiler infrastructure as a potential
solution to issues within machine learning, strengthening the claims of previous works such
as that of Vasilache et. al. in 2022 [62]. Given the novelty of MLIR and its descendants, we
also contribute by shedding light on its existence.

Though there already exist articles discussing the performance of MLIR-based code gen-
eration, there is little diversity in what hardware architecture is targeted, and MLIR is con-
tinuously developing. This master’s thesis draws a lot of inspiration from the works of Nicolas
Vasilache et. al. [62] and especially Uday Bondhugula [5], but is set apart in that an Arm-based
rather than Intel-based setup is used and a later version of MLIR is investigated.

11

1. Introduction

12

Chapter 2

Background

2.1 Compiler Architecture

Figure 2.1: Three-stage compiler structure.

A compiler is a computer program that translates input code from one programming language
(source) to another (target) [1]. The compilation process is summarized in figure 2.1, where
C, C++, Rust and Java on the left-hand side are example source programming languages and
Arm64, Arm32, Power and x86 on the right-hand side are example targets. It should be
mentioned that these example targets are actually instruction set architecture families, or
subsets of them. The target for a back end would rather be the implementation of the ISA
(Instruction Set Architecture), such as a CPU. Beside compilers that translate high-level code
to low-level code, as illustrated in figure 2.1, there exist many types of compilers for essentially
any combination of abstraction level and direction. But, for the purposes of this thesis, we
are going to focus on the former and CPU code generation in particular.

A compiler may implement all or some of the following phases;

• pre-processing,

• lexical analysis (lexer),

• syntax analysis (parser),

13

2. Background

Figure 2.2: An abstract syntax tree representation of the source code
presented in listing 2.1.

• semantic analysis,

• intermediate code generation,

• machine-independent code optimization,

• target code generation, and finally

• machine-dependent code optimization,

in the above or similar order [1]. Furthermore, the first five phases can be considered to
be a part of the front end, the last two of the back end and the remaining one, machine-
independent code optimization, of the middle end.

In the initial phases, the source code is broken down to a sequence of tokens, contain-
ing information for each meaningful sequence of characters [1]. These tokens are then struc-
tured according to the formal grammar of the programming language, represented by a syntax
tree [12, 1]. The compiler may produce an abstract syntax tree (often abbreviated to AST) [12],
where each node represents an operator, and the children nodes are its operands [1]. Figure
2.2 illustrates a sample AST for the source code in listing 2.1.

Listing 2.1: A sample program written in a made-up programming language. Note that the
formal grammar of this language is highly simplified for demonstrative purposes.

1 function main ():
2 a = 1;
3 b = false ;
4 if (a == 1):
5 b = true;

The compiler may construct one or more intermediate representations, IRs, in the trans-
lation process. The abstract syntax tree, as seen in figure 2.2, is an example of a graphical
IR [12, 1]. Before entering the back end of the compiler, it is typical to generate a low-level or
machine-like IR that is easy to translate into the target machine [1]. The IR generation phase
does not necessarily complete in a single step, but may consist of multiple internal levels.

14

2.1 Compiler Architecture

Figure 2.3: Clang/LLVM compiler architecture. By Jaehoon Koo et.
al. [link], licensed under Creative Commons Attribution 4.0 Inter-
national.

Steven Muchnick, for example, describes an advanced compiler design with three IR levels;
one high-level, one medium-level and one low-level [45].

The middle end performs machine-independent code optimizations, e.g., dead code elimi-
nation; eliminating redundant or useless code, and constant propagation; substituting the values
of known constants in expressions, on the IR. The back end performs target code generation
and, in the process, register allocation. As implied by the listed phases of a compiler, the
generated machine code may go through another round of code optimization before being
output by the compiler.

This three-stage structure of compilers allows for combining front ends for different
programming languages with back ends for different target CPUs, facilitated by a shared
IR and/or middle end [12]. Clang, for example, provides front ends for C, C++, Objective
C/C++, OpenCL, CUDA, and RenderScript which emit LLVM IR, and thus share the same
middle- and back ends for code optimizations and target code generation [29]. Figure 2.3
illustrates the architecture of a C-compiler consisting of Clang’s front end and a middle- and
back end from LLVM. In the Clang section we see the five forementioned front end phases,
while in the LLVM section different code optimization subphases are listed but the back end
is left arbitrary — Assembly refers to any low-level programming language with instructions
closely resembling the instructions of the machine. This is because LLVM provides back ends
for many popular CPUs as well as lesser-known ones, all built around LLVM IR [31]. Beside
Clang, there are many other technologies, external to the LLVM project, that emit LLVM IR.
One such example is the Rust compiler, rustc [51].

GNU Compiler Collection (GCC), similar to Clang, provides front ends for multiple pro-
gramming languages, including C, C++, Objective C, Fortran, Ada, Go, and D [56]. The main
interface between a GCC front end and the rest of the compiler is via the IR GENERIC [47],
as illustrated in figure 2.4. The following IR, GIMPLE, is a subset of GENERIC used for op-
timizations [47]. RTL (Register Transfer Language), unlike the C-like GENERIC and GIM-
PLE representations, is an assembler language for an abstract machine with infinite registers
and is ideally suited for low-level transformations such as register allocation and schedul-
ing [47]. Furthermore, a machine description file defines hardware-specific features and essen-
tially adapts the back end to the target [47].

15

https://www.researchgate.net/figure/Clang-LLVM-compiler-architecture_fig1_351511545
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2. Background

Figure 2.4: GCC architecture. By AlexeySmirnov at En-
glish Wikipedia, licensed under Creative Commons Attribution-
ShareAlike 3.0 Unported.

2.1.1 Emitting LLVM IR with Clang

Using Clang’s -emit-llvm flag in conjuction with the -S flag we can observe a sample LLVM
IR output in assembly format. Listing C.2 in the appendix presents a sample output file
from running the command on a simple function multiplying a with b, and then returning c
wherein the result has been stored (see listing C.1 in the appendix). The output file contains
a lot of information, such as the target architecture, x86-641, and operating system, Ubuntu,
but it is the excerpt presented in listing 2.2 that directly corresponds to our multiplication
function.

Listing 2.2: Excerpt from listing C.2 in the appendix.
1 define dso_local i32 @multiply () #0 {
2 %1 = alloca i32 , align 4
3 %2 = alloca i32 , align 4
4 %3 = alloca i32 , align 4
5 store i32 4, i32* %1, align 4
6 store i32 10, i32* %2, align 4
7 %4 = load i32 , i32* %1, align 4
8 %5 = load i32 , i32* %2, align 4
9 %6 = mul nsw i32 %4, %5

10 store i32 %6, i32* %3, align 4
11 %7 = load i32 , i32* %3, align 4
12 ret i32 %7
13 }

First, space is allocated at addresses %1-%3 for variables corresponding to a, b and c. Then the
values 4 and 10 are stored at %1 and %2, respectively, and later loaded into %4 and %5. These
are multiplied and the result is stored into %3 through the temporary variable %6, loaded into
%7 and finally returned. Clearly, this is a lower-level representation of the source function,
but it is still target-independent given that there is no register allocation and the instructions
are generic. Note that this IR is unoptimized. If we instead want to view an optimized output
from the middle end, we also flag with -O3. The optimized IR has been dramatically reduced
in size, as seen in listing 2.3.

1The command was executed on an Intel-based setup.

16

https://en.wikipedia.org/wiki/User:AlexeySmirnov
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

2.2 The MLIR Compiler Framework

Figure 2.5: A generic example of an MLIR structure. Image taken
from MLIR’s Understanding the IR structure tutorial [link].

Listing 2.3: Output LLVM IR from running clang -S -emit-llvm on the multiplication
function in listing C.1 in the appendix.

1 define dso_local i32 @multiply () local_unnamed_addr #0 {
2 ret i32 40
3 }

This may have been achieved through a combination of constant propagation and dead code
elimination, the forementioned target-independent optimizations.

2.2 The MLIR Compiler Framework
MLIR is another subproject of the LLVM Project and thus shares some aspects of Clang
and other LLVM-based compiler architectures, but it differs in that it does not provide a
complete front end for any programming language. MLIR is rather a framework for compiler
development.

MLIR is a graphical IR consisting of nodes, called Operations, and edges, called Values [38].
The Operations are contained within Blocks and Blocks are contained within Regions [38].
Operations may also contain Regions, allowing for recursive structures [38]. Operations are
the core unit of abstraction and computation [41]; beside higher-level concepts like function
definitions and calls, Operations can represent lower-level concepts like target-specific ma-
chine instructions [38]. Figure 2.5 illustrates a generic example of the described hierarchical
structure of MLIR, where the root of this structure is a Block containing three Operations,
accessed through the Begin and End pointers. Each Operation has an arbitrary number of
Results, containing Values, and Operands, containing OpOperands. The thicker arrows con-
nects the use of a Value with its definition.

Note that there are two classes within MLIR’s C++ source code which relate to operations;
Operation and Op and any future mention of "operation" in the context of MLIR could
refer to either. The Operation class is used to generally model all operations and provides

17

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/

2. Background

a general API into an operation instance, while each type of operation is represented by
an Op-derived class acting as a smart pointer wrapper around a Operation *, providing
operation-specific accessor methods and type-safe properties of the operation [41].

Furthermore, MLIR’s dialects serve as a logical grouping mechanism for operations, at-
tributes and types [24]. The dialect namespace appears as a dot-separated prefix, e.g. toy.
constant represents the constant operation of the made-up dialect toy. Given the rep-
resentational capabilities of MLIR and its operations, a dialect can range from high-level
and hardware independent to low-level and hardware aware. The arm_neon dialect [link]
in the MLIR repository is an example of the latter, as it consists of operations that directly
translate to some of the LLVM instructions targeting Arm Neon intrinsics [61]. Utilities,
being operations, attributes and types, from multiple dialects may co-exist at each level of
the IR [24].

At the most fundamental level, MLIR can be completely described by its name; it is an
IR with multiple levels. One of the core principles of MLIR — as implied by first half of its
name — is to support progressive lowering, meaning to convert higher-level code down to low-
level representation in multiple small abstraction levels [24]. This is facilitated by MLIR’s
pass infrastructure, a familiar concept from LLVM [32], representing MLIR’s infrastructure
for transformations and optimizations. All compiler passes in MLIR inherit from the Op-
erationPass class and must adhere to a set of instructions, as it otherwise could lead to
problematic behavior in multithreaded and other advanced scenarios [42]. For example, a
compiler pass “must not modify any state referenced or relied upon outside the current op-
eration being operated on” ([42]). Similarly, it also “must not modify the state of another
operation not nested within the current operation being operated on” ([42]) and “must not
inspect the state of sibling operations” ([42]). Essentially, a compiler pass operates on a certain
type of operation, independently of surrounding information.

2.2.1 Lowering MLIR to LLVM IR
In a terminal, a compiler pass is represented by its class name in lower-case with each word
prefixed by a dash. Any compiler pass named -convert-*-to-llvm serves the purpose of
converting utility of one dialect into corresponding utility in the llvm dialect [link]. The
llvm dialect is an important dialect in the MLIR repository as it defines operations and
types corresponding to LLVM IR, and thus lays a foundation for a smooth transition into
the LLVM middle- and back ends. The following MLIR is semantically equivalent to the
previously implemented multiplication function in C (see listing C.1 in the appendix).

Listing 2.4: The multiplication function in MLIR.
1 module {
2 func.func @multiply () -> i32 {
3 %a = arith . constant 4 : i32
4 %b = arith . constant 10 : i32
5 %c = arith .muli %a, %b : i32
6 return %c : i32
7 }
8 }

Note that module represents a top-level container operation, belonging to the builtin di-
alect [link]. Using MLIR Playground2 [link]], we apply the -convert-arith-to-llvm pass

2MLIR Playground is a tool developed by MLIR-China, an independent user group based in China,

18

https://mlir.llvm.org/docs/Dialects/ArmNeon/
https://mlir.llvm.org/docs/Dialects/LLVM/
https://mlir.llvm.org/docs/Dialects/Builtin
https://github.com/MLIR-China/mlir-playground

2.2 The MLIR Compiler Framework

which produces the MLIR in listing 2.5,

Listing 2.5: @multiply with the -convert-arith-to-llvm pass applied.
1 module {
2 func.func @multiply () -> i32 {
3 %0 = llvm.mlir. constant (4 : i32) : i32
4 %1 = llvm.mlir. constant (10 : i32) : i32
5 %2 = llvm.mlir. constant (40 : i32) : i32
6 return %2 : i32
7 }
8 }

then the -convert-func-to-llvm which produces the MLIR in listing 2.6,

Listing 2.6: @multiply with the -convert-arith-to-llvm and
-convert-func-to-llvm passes applied.

1 module attributes {llvm. data_layout = ""} {
2 llvm.func @multiply () -> i32 {
3 %0 = llvm.mlir. constant (4 : i32) : i32
4 %1 = llvm.mlir. constant (10 : i32) : i32
5 %2 = llvm.mlir. constant (40 : i32) : i32
6 llvm. return %2 : i32
7 }
8 }

and finally the -canonicalize pass which produces the MLIR in listing 2.7,

Listing 2.7: @multiply with the -convert-arith-to-llvm, -convert-func-to-llvm
and -canonicalize passes applied.

1 module attributes {llvm. data_layout = ""} {
2 llvm.func @main () -> i32 {
3 %0 = llvm.mlir. constant (40 : i32) : i32
4 llvm. return %0 : i32
5 }
6 }

and retrieve an IR similar to the optimized LLVM IR presented in listing 2.3. The llvm
dialect can then be exported to LLVM IR using resources from the MLIR framework. Chapter
6 of MLIR’s Toy Tutorial [34] gives an example of how this is implemented in an MLIR-based
compiler (see listing B.1 in the appendix).

This is to demonstrate how MLIR may function as an intermediate representation in
a compiler. This also elaborates on the principle of progressive lowering, as we have syn-
thetically lowered the source code to the llvm dialect in three levels. Note however that
we have only demonstrated lowering and canonicalization and not any direct mechanism
for optimization in MLIR, which compiler passes also are responsible for. This will first be
introduced in section 4.1.

which allows for experimenting with MLIR without the need for installing any dependencies or setting
up a build system. The system was upgraded to LLVM 16 on May 25 2023 (see commit with hash
838b6057578be921601ead56421131dc85d6c3a6 [link]), but has not been updated since.

19

https://github.com/MLIR-China/mlir-playground/commit/838b6057578be921601ead56421131dc85d6c3a6

2. Background

2.3 Setup

2.3.1 Hardware
We are going to be remotely connected to an instance from the Amazon Elastic Compute
Cloud (EC2). There are different instance types optimized to fit different use cases [54]. We
are going to use an instance from the Compute Optimized category, as it is well suited for high
performance computing and machine learning inference [54]. The c6g, c7g and c7gn instances
from this category are all powered by Arm-based CPUs [54].

More specifically, we will be connected to a c6g.metal3 instance, powered by Arm-based
AWS Graviton2 processors [53]. The Graviton2 CPU has 64 Neoverse-N1 cores running at
2.5 GHz, with ARMv8.2-a ISA (Instruction Set Architecture) including 2 × 128-bit Neon,
and the additional features fp16, rcpc, dotprod, and crypto [3]. It has a 64 KiB L1 data cache
and a 1024 KiB L2 unified cache per core, and a 32 MiB shared L3 cache [3].

With this information, we are able to compute the theoretical machine peak of our setup.
The Neon technology of the Neoverse-N1 core yields support for fused multiply-add on 2
128-bit vectors, corresponding to 2 sets of 2 double-precision floating-point fields. The the-
oretical machine peak becomes 2 × 2 × 2 [mul, add] × 2.5 [GHz] = 20 GFLOPS per core.

2.3.2 Software
For software, we retrieved the latest versions of LLVM, BLIS and ArmPL available at the
time.

LLVM
The procedures for building MLIR and Clang were based on MLIR’s Getting Started [36],
Clang’s Getting Started: Building and Running Clang [9] and the Requirements section of LLVM’s
Getting Started with the LLVM System [30], using the commit presented in listing 2.8 below
[link].

Listing 2.8: git log output from the LLVM repository.
~/repos/llvm−project$ git log
commit 5f230ed762de050317a12bba56aadf8826a9b085 (HEAD −> main, origin/main, origin/HEAD)
Author: Tobias Gysi <tobias.gysi@nextsilicon.com>
Date: Wed Aug 30 12:52:46 2023 +0000
...

BLIS
The procedure for building BLIS was based on the instructions in their GitHub reposi-
tory [20], using the commit presented in listing 2.9 below [link].

3An EC2 instance provides certain memory bandwidth and number of virtual CPUs (vCPUs) depending
on instance type. A c6g.metal instance has 64 vCPUs and 128 GiB of memory [53]. However, the end-user may
customize the number of CPU cores and threads per core [55]. For a Graviton-based instance, each vCPU is a
core of the CPU [54].

20

https://github.com/llvm/llvm-project/commit/5f230ed762de050317a12bba56aadf8826a9b085
https://github.com/flame/blis/commit/6dcf7666eff14348e82fbc2750be4b199321e1b9

2.3 Setup

Listing 2.9: git log output from the BLIS repository.
~/repos/blis$ git log
commit 6dcf7666eff14348e82fbc2750be4b199321e1b9 (HEAD −> master, origin/master, origin/

HEAD)
Author: Field G. Van Zee <field@cs.utexas.edu>
Date: Sun Aug 27 14:18:57 2023 −0500
...

ArmPL
Free Arm Performance Libraries (version 23.04.1) was retrieved from Product Download Hub
of the Arm Developer site [link], and installed according to provided Linux instructions [28].

21

https://developer.arm.com/downloads

2. Background

22

Chapter 3

Initial DGEMM Benchmarks

Going forward, we will be implementing and running a double-precision matrix multiplica-
tion operation in various ways. The operation corresponds to equation 1.1 with A, B and C
dimensioned M ×K , K ×N and M ×N , respectively. For this master’s thesis, we have chosen
the dimensions M = 2088 and N = K = 2048 as they produce relatively large matrices
suitable for tiling. Notably, 2088 is divisible by 2, 3, 4, 6, 8, 9, 12 etc.

The aim for this chapter is to produce an approximate lower and upper bound in DGEMM
performance by assessing general-purpose compilers and high-performance compute libraries.
As for benchmark programs, we have retrieved the examples/matmul/matmul.c1 and
examples/matmul/matmul.blas.c2 files from Uday Bondhugula’s Pluto repository [link]
and made some modifications in line with our analysis. This includes:

• Adjusting the M macro to 2088.

• Modifying the init_array() and init_matrices() functions (since M != N).

• Removing any use of the MKL and OpenBLAS libraries.

• Introducing a corresponding benchmark for BLIS.

We present a single run of each benchmark just to give a reasonable idea of what current
compilers and libraries are able to achieve.

3.1 General-Purpose Compilers
We will be compiling a naive-nest implementation in C using Clang and GCC. The naive-
nest implementation refers to a loop nest iterating over M , then N and then K , as presented
in listing 3.1.

1As of commit with hash cfb0139eb344fe9dd051c49079f95d1a2c20c988 [link].
2As of commit with hash d21758b727075581d63e383e36e1cdc72ecb5428 [link].

23

https://github.com/bondhugula/pluto
https://github.com/bondhugula/pluto/commit/cfb0139eb344fe9dd051c49079f95d1a2c20c988
https://github.com/bondhugula/pluto/commit/d21758b727075581d63e383e36e1cdc72ecb5428

3. Initial DGEMM Benchmarks

Listing 3.1: Naive-nest implementation of equation 1.1 with M = 2088 and N = K = 2048,
in abbreviated pseudocode.

1 for i = 0 to 2088
2 for j = 0 to 2048
3 for k = 0 to 2048
4 /* load %A[i][k],
5 %B[k][j],
6 %C[i][j] */
7 /* mul , add */
8 /* store %C[i][j] */

One can expect that Clang and GCC will perform quite poorly due to their general-purpose
nature, but especially the former given previous results [5]. We compile with -O3 which ap-
plies a number of optimizations that are intended to increase the execution speed [7, 18], and
-ffast-math which essentially enables ignoring some of the IEEE, ISO or IEC rules/speci-
fications regarding math functions, yielding improved performance for programs that do not
require the guarantees of these specifications [8, 18].

Listing 3.2 demonstrates the compilation and execution of the naive-nest benchmark with
Clang,

Listing 3.2: Executing the naive-nest benchmark with clang -O3 -ffast-math.
$ clang −v
clang version 18.0.0 (https://github.com/llvm/llvm−project.git 5

f230ed762de050317a12bba56aadf8826a9b085)
Target: AArch64−unknown−linux−gnu

$ clang −O3 −ffast−math −DTIME input/matmul.c −o output/matmul.clang −lm
$ output/matmul.clang
45.371785s
0.39 GFLOPS

and listing 3.3 with GCC.

Listing 3.3: Executing the naive-nest benchmark with gcc -O3 -ffast-math.
$ gcc −−version
gcc (Ubuntu 11.4.0−1ubuntu1~22.04) 11.4.0

$ gcc −O3 −ffast−math −DTIME input/matmul.c −o output/matmul.gcc −lm
$ output/matmul.gcc
3.952853s
4.43 GFLOPS

Clang and GCC perform at 2.0% and 22.2% of the theoretical machine peak, respectively.
Similar to the results of Uday Bondhugula [5], there is around a 10x performance gap between
Clang and GCC. As observed, the execution time of a program is highly dependent of com-
piler, rather than programming language. This performance gap indicates that the LLVM
middle and back ends are inferior to GCC’s for optimizing GEMM applications.

It should be noted that a simple loop interchange from i jk to ik j drastically improves
the performance of both compilers, but especially Clang as seen in listing 3.4,

Listing 3.4: Executing the modified naive-nest benchmark with clang -O3 -ffast-math.
$ clang −O3 −ffast−math −DTIME input/matmul_ikj.c −o output/matmul_ikj.clang −lm
$ output/matmul_ikj.clang
5.296322s
3.31 GFLOPS

24

3.2 High-Perfomance Compute Libraries

and listing 3.5 for GCC.

Listing 3.5: Executing the modified naive-nest benchmark with gcc -O3 -ffast-math.
$ gcc −O3 −ffast−math −DTIME input/matmul_ikj.c −o output/matmul_ikj.gcc −lm
$ output/matmul_ikj.gcc
3.251577s
5.39 GFLOPS

This loop interchange boosts the performances to 16.6% and 26.7%, respectively. The near
9x improvement in Clang from a simple transformation gives insight to the inabilities of
Clang and/or LLVM in terms of loop nest optimizations.

3.2 High-Perfomance Compute Libraries
Moving on to BLIS and ArmPL, we are going to demonstrate some of the highest execution
speeds currently achievable by the state-of-the-art. We choose to compile with GCC, given
that it has proven to be more suitable for GEMM applications in the previous section.

For BLIS, we are using the bli_dgemm function [link], for which the benchmark is com-
piled and executed in listing 3.6.

Listing 3.6: Executing the BLIS benchmark with gcc -O3.
$ gcc −DBLIS −O3 −DTIME input/matmul.blas.c −lblis −o output/matmul.blis
$ output/matmul.blis
0.944253s
18.55 GFLOPS

Then for ArmPL, we are using the cblas_dgemm function [link], for which the benchmark
is compiled and executed in listing 3.7.

Listing 3.7: Executing the ArmPL benchmark with gcc -O3.
$ gcc −DARMPL −O3 −DTIME input/matmul.blas.c −larmpl −o output/matmul.armpl
$ output/matmul.armpl
0.943996s
18.55 GFLOPS

Both BLIS and ArmPL execute in less than a second, reaching 93.0% of the theoretical ma-
chine peak.

25

http://bluss.github.io/blis-sys/blis_experimental_sys/fn.bli_dgemm.html
https://developer.arm.com/documentation/101004/2110/BLAS-Basic-Linear-Algebra-Subprograms/CBLAS-functions/cblas-dgemm

3. Initial DGEMM Benchmarks

26

Chapter 4

Exploring the MLIR Framework

MLIR is a framework for compiler development and is not intended to be used as a pro-
gramming language as-is. However, for the purposes of this thesis, we will be implementing,
compiling and executing a double-precision matrix multiplication operation with syntax and
resources native to the MLIR project to demonstrate basic functionality. The tools to use for
this purpose are mlir-opt1 and mlir-cpu-runner which in conjunction lower the MLIR
to LLVM IR and run it through the LLVM pipeline. As in chapter 3, we base the input MLIR
off of equation 1.1 with A, B and C dimensioned M ×K , K ×N and M ×N , respectively, and
choose M = 2088 and N = K = 2048 for continuity. The benchmark program can be seen
in listing A.1 in the appendix, where the @matmul function corresponds to the naive-nest
implementation as presented in listing 3.1. Any mention of the @matmul function in this
thesis refers to the function in the benchmark program.

We lower the benchmark program to the llvm dialect using a sequence of various passes
and pipe the output to mlir-cpu-runner -O3, as presented in listing 4.1 below.

Listing 4.1: Executing the @matmul benchmark with no optimizations beside -O3.
$ mlir−opt −convert−linalg−to−loops −lower−affine −convert−scf−to−cf −convert−cf−to−llvm

−convert−arith−to−llvm −convert−func−to−llvm −expand−strided−metadata −finalize−
memref−to−llvm −reconcile−unrealized−casts input/matmul.mlir | mlir−cpu−runner −O3 −
e main −entry−point−result=void −shared−libs=lib/libmlir_runner_utils.so

0.346990 GFLOPS

The performance is at a poor 1.7% of the theoretical machine peak. This was expected, given
the previous demonstration of Clang; an unoptimized naive-nest implementation does not
perform well.

1The main purpose of mlir-opt is to test compiler passes.

27

4. Exploring the MLIR Framework

4.1 MLIR’s Infrastructure for Optimizations

In listing 4.1 above, one can note that -convert-linalg-to-loops, -lower-affine, -
convert-scf-to-cf, -convert-cf-to-llvm, -convert-arith-to-llvm, -convert-
func-to-llvm, -expand-strided-metadata, -finalize-memref-to-llvm and -reconcile-
unrealized-casts were input to mlir-opt alongside the input file. The purpose of these
passes are only to lower the source code to the llvm dialect, meaning there were no direct
optimization directives. The passes needed for this purpose, particularly the -convert-
*-to-llvm passes, directly depend on what dialects are present in the IR throughout the
progressive lowering. Additionally, the -expand-strided-metadata pass needs to be ap-
plied before the -finalize-memref-to-llvm2 pass [11] and -reconcile-unrealized-
casts needs to be applied as a last step [63]. Given that @matmul is a nest of affine loops
(see listing A.1 in the appendix), the optimizations most relevant to our code likely relates
to loop transformations or the affine dialect. We will focus on the -affine-loop-tile
and -affine-data-copy-generate passes, which we will use to implement loop tiling
and explicit copying.

4.1.1 Loop Tiling

As there exist many tiling schemes, the first thing to investigate is the functionality of -
affine-loop-tile. By applying this pass to @matmul with various configurations, we find
that the tiling scheme of -affine-loop-tile follows the general structure of listing 4.2.

Listing 4.2: @matmul after applying the -affine-loop-tile pass, in abbreviated
pseudocode.

1 for i = 0 to 2088 step M_B
2 for j = 0 to 2048 step N_B
3 for k = 0 to 2048 step K_B
4 for ii = i to i + M_B
5 for jj = j to j + N_B
6 for kk = k to k + K_B
7 /* load %A[ii][kk], %B[kk][jj], %C[ii][jj] */
8 /* mul , add */
9 /* store C[ii][jj]*/

The tiling scheme implemented in MLIR is quite straight-forward; one additional outer
loop is added for each of the original loops, in order of innermost to outermost. The tile
sizes, which we will refer to as MB, NB and KB, can be directly manipulated through the
-tile-size and -tile-sizes options, but we disregard the -tile-size option since it
adds the constraint MB = NB = KB. In choosing tile sizes, we must consider the cache level
capacities of our setup, as well as the structure of the generated loop nest. Given the tile sizes
MB, NB and KB, we are partitioning matrices A, B and C into tiles dimensioned MB × KB,
KB × NB and MB × NB, respectively. As the capacity of cache is limited, this leads into the

2The -finalize-memref-to-llvm pass was previously named -convert-memref-to-llvm, but was
renamed as the -expand-strided-metadata pass must be run beforehand [11, 10].

28

4.1 MLIR’s Infrastructure for Optimizations

natural constraint that the tile sizes cannot be too large. More specifically,
MB · KB ·

8
1024 KiB <= 64 KiB or 1024 KiB

KB · NB ·
8

1024 KiB <= 64 KiB or 1024 KiB
MB · NB ·

8
1024 KiB <= 64 KiB or 1024 KiB

(MB · KB + KB · NB + MB · NB) · 8
1024 KiB <= 1024 KiB

(4.1)

where the RHS of each line assume we are only considering tiling for the L1 and L2 cache
levels, bound to 64 and 1024 KiB, respectively.

The first dimension to be traversed in both the inner and outer loop nests is the k-
dimension, meaning the C-tile is the longest to persist in cache since each access to C is
invariant of k. While processing a single C-tile, K /KB A-tiles, or MB · K entries of A, and
K /KB B-tiles, or K · NB entries of B, are streamed through cache. The second dimension to
be traversed is the j-dimension. This means we will traverse through the entire B matrix, but
start over on the same K /KB tiles of A N /NB times over. In the next ii-iteration, we move
over to the next set of K /KB tiles of A and traverse B once more. In total, we find that A
is read N /NB times, B is read M/MB times and C is read and stored K /KB times. The total
number of floating-point memory transfers is thus determined by equation 4.2.

(M · N) · 2 · K /KB + (K · N) · M/MB + (M · K) · N /NB (4.2)

Moreover, an A-tile is reused NB times, a B-tile MB times, and a C-tile KB times. So, the first
takeaway is that MB, NB and KB should all be maximized to decrease the number of memory
transfers and increase reuse. Another important aspect to take into consideration is the size
of respective tile in relation to cache capacities. This way, we can generally manipulate how
and where each tile is placed in or streamed through the cache hierarchy. Constraining our
analysis to only consider the L1 and L2 cache levels and tile sizes that are even divisors of
either M (= 2088), N (= 2048) or K (= 2048), we find that MB = 232, NB = 512 and
KB = 8 to be a suitable choice. Inserting these into equation 4.1 yields equation 4.3.

232 · 8 · 8
1024 KiB = 14.5 KiB

8 · 512 · 8
1024 KiB = 32.0 KiB

232 · 512 · 8
1024 KiB = 928.0 KiB

(232 · 8 + 8 · 512 + 232 · 512) · 8
1024 KiB = 974.5 KiB

(4.3)

The A- and B-tiles occupy around 22.7% and 50.0% of L1 cache, respectively, and the C-tile
occupy around 90.6% of L2 cache. We have essentially maxed out the cache capacity, with
space for one C-tile at a time and limited, but sufficient, space for tiles of A and B to flow
through the cache hierarchy. This is illustrated in figure 4.1.

As seen in listing 4.3, this loop tiling configuration yields a 12x improvement. At 20.5%
of the theoretical machine peak, we are now on par with the performance of GCC.

Listing 4.3: Executing the @matmul benchmark with loop tiling applied.
$ mlir−opt −affine−loop−tile="tile−sizes=232,512,8" −convert−linalg−to−loops −lower−

affine −convert−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−func−
to−llvm −expand−strided−metadata −finalize−memref−to−llvm −reconcile−unrealized−
casts input/matmul.mlir | mlir−cpu−runner −O3 −e main −entry−point−result=void −
shared−libs=lib/libmlir_runner_utils.so

4.100237 GFLOPS

29

4. Exploring the MLIR Framework

Figure 4.1: Illustration of the A- (green), B- (blue) and C-tiles (red)
in relation to L1 and L2 cache and registers.

4.1.2 Explicit Copying
Considering the size of the tiles (see equation 4.3), we know that one tile of each matrix is
accessed in memory at a time. The data within these tiles are not contiguous in memory, lead-
ing to conflict misses, TLB misses, and more prefetch streams [5]. Applying explicit copying,
packing the A-, B- and C-tiles into contiguous buffers before they are being accessed and
reused, will eliminate this issue and improve performance even further. Listing 4.4 demon-
strates how the copying takes place.

Listing 4.4: @matmul after applying the -affine-loop-tile and
-affine-data-copy-generate passes, in abbreviated pseudocode.

1 for i = 0 to 2088 step M_B
2 for j = 0 to 2048 step N_B
3 /* copy %C[i:i+M_B][j:j+N_B] to %C_C */
4 for k = 0 to 2048 step K_B
5 /* copy %A[i:i+M_B][k:k+K_B] to %A_C */
6 /* copy %B[k:k+K_B][j:j+N_B] to %B_C */
7 for ii = 0 to M_B
8 for jj = 0 to N_B
9 for kk = 0 to K_B

10 /* load %A_C[ii][kk], %B_C[kk][jj], %C_C[ii][jj] */
11 /* mul , add */
12 /* store %C_C[ii][jj]*/

Note that the three inner loops as well as the copy statements as presented in listing 4.4 do
not take into account the case where MB, NB or KB are not divisors of respective matrix
dimension. In MLIR, one can use affine.map and affine.min to handle such cases. E.g.,
for the case where MB = 300, we would replace

1 ii = 0 to 300

in the loop header with

1 ii = 0 to affine.min affine_map <(d0) -> (2088 - d0 , 300) > (i)

30

4.1 MLIR’s Infrastructure for Optimizations

which assigns the upper bound with either 300 or 2088 - i, depending on which is smaller.
This ensures that ii does not go out of bounds when traversing an edge tile. Given our
choice of parameters, the A-, B- and C-tiles are dimensioned 232×8, 8×512 and 232×512,
respectively.

We are going to implement this scheme using the -affine-data-copy-generate pass.
We guide the pass accordingly through the -fast-mem-capacity option. This option es-
sentially limits the amount of memory that can be occupied by these buffers at once. Given
our set constraints and the size of L2 cache, we know that a capacity of 1024 KiB will suffice
regardless of choice of tile sizes. Listing C.3 in the appendix presents the resulting IR. As
more transformations are applied, the output becomes long and hard to read, but on lines
15, 25 and 34 we note that memory is being allocated according to the specified tile sizes and
at the right nest levels. Following the call to memref.alloc() is a loop nest to copy each
element into the newly allocated memref iteratively. These new matrix tiles replace the uses
of the original operands within the inner loop body.

Applying explicit copying in conjunction with loop tiling boosts performance to 34.6%,
as seen in listing 4.5.

Listing 4.5: Executing the @matmul benchmark with loop tiling and explicit copying
applied.
$ mlir−opt −affine−loop−tile="tile−sizes=232,512,8" −affine−data−copy−generate="generate

−dma=false fast−mem−space=0 fast−mem−capacity=1024" −convert−linalg−to−loops −lower−
affine −convert−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−func−
to−llvm −expand−strided−metadata −finalize−memref−to−llvm −reconcile−unrealized−
casts input/matmul.mlir | mlir−cpu−runner −O3 −e main −entry−point−result=void −
shared−libs=lib/libmlir_runner_utils.so

6.928518 GFLOPS

We have finally surpassed the performance of GCC, even when manually optimized with a
loop interchange. However, we must improve the performance by almost 3x to be on par
with BLIS and ArmPL.

Moreover, one could use the -affine-loop-unroll, -affine-scalrep and -affine-
super-vectorize passes to apply loop unrolling, scalar replacement and vectorization, re-
spectively. Our attempts at applying these to @matmul on top of -affine-loop-tile and
-affine-data-copy-generate did however not improve performance.

31

4. Exploring the MLIR Framework

32

Chapter 5

Implementing a High-Performance DGEMM
Routine in MLIR

Constraining ourselves to the -affine-loop-tile and -affine-data-copy-generate
passes produced a performance far from that of BLIS and ArmPL. Given similar matrix mul-
tiplication experiments that produced near-peak performance [5, 62], we believe that there
is room for improvement. Since the MLIR project presents itself as an extensible framework
with fully extensible operations [37, 38], the natural next step is to build our own extension
of MLIR with the ultimate purpose of improving the performance of @matmul. This chap-
ter will elaborate on the notion of extensibility by demonstrating the implementation of an
MLIR dialect and operation. We draw inspiration from StableHLO of the OpenXLA project,
based on the MHLO dialect [link], which functions as a portability layer between machine
learning frameworks and compilers [48, 50].

The goal for this section is to implement the @matmul function as a functioning mlir
::Op in MLIR. Our approach is to implement a dialect hlo (derived from High-Level linear
algebra Operations) with a single mlir::Op called matmul, with the same functionality of the
previously defined @matmul function. We will achieve this by implementing a pass -hlo-
matmul-to-loops which expands the operation according to the specification of @matmul
through pattern rewriting [link]. MLIR provides some general guidelines for how to go about
implementing a dialect, such as the Defining Dialects documentation [link] and the Creating a
Dialect tutorial [link]. Relevant source files and the general directory structure, including file
names, can be found in appendix B.1.2.

33

https://www.tensorflow.org/mlir/hlo_ops
https://mlir.llvm.org/docs/PatternRewriter/
https://mlir.llvm.org/docs/DefiningDialects/
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

5. Implementing a High-Performance DGEMM Routine in MLIR

5.1 HLO: A Minimal Dialect for High-Level
Operations

We are able to minimize the amount of manually-typed code through the usage of LLVM’s
TableGen language. In each .td file, we declaratively define fundamental aspects of hlo (see
listings B.2 and B.3 in the appendix). Then, in mlir/include/.../IR/CMakeLists.txt
we add

1 add_mlir_dialect (HLOOps hlo)

which generates files for e.g. Op and dialect declarations and definitions, based on HLOBase.
td and HLOOps.td. These are then imported to corresponding implementation files. Us-
ing this approach, HLODialect.cpp and HLOOps.cpp only require a few lines of code to
implement mlir::hlo::HLODialect::initialize() and mlir::hlo::HLODialect
::registerOperations().

Finally, we make small adjustments to mlir/include/mlir/initAllDialects.h, so
that hlo is recognized by mlir-opt. This essentially means that mlir-opt will not raise an
error if we input a file containing the line

1 hlo. matmul ins (%A : memref <2088 x2048xf64 >, %B : memref <2048 x2048xf64 >, %C : memref
<20882048 xf64 >)

but at this point there exists no functionality to execute it. This will be handled by -hlo-
matmul-to-loops.

5.2 Building the Loop Nest
The -hlo-matmul-to-loops pass is declared in Passes.td (see listing B.4 in the ap-
pendix), where we specify the mlir::hlo::createHLOMatmulToLoopsPass() function
to be used as a constructor. It is also in here we declare the available options:

• tile – enable loop tiling.

• tile-params - loop tile parameters MC , KC , MR and NR.

• copy – enable explicit copying.

• unroll – enable loop unrolling.

• unroll-factor – unroll factor for the kk-loop.

• scalar-replace – enable scalar replacement.

• vectorize – enable vectorization.

for which respective value is specified through e.g. -hlo-matmul-to-loops="tile=true".
The minimum requirement for implementing our pass is thus to define its constructor

mlir::hlo::createHLOMatmulToLoopsPass(), with return type std::unique_ptr<
OperationPass<func::FuncOp». This constructor simply consists of a return statement

34

5.3 Optimizing the Loop Nest

with std::make_unique<HLOMatmulToLoops>(), meaning the majority of the imple-
mentation resides within the HLOMatmulToLoops class, where we must define the inherited
virtual function runOnOperation(). This is the function that acts upon input MLIR oper-
ations. In our case, any occurrence of hlo.matmul is transformed by a rewrite pattern HLO-
MatmulRewritePattern, derived from mlir::OpRewritePattern<hlo::MatmulOp>,
with a single function HLOMatmulRewritePattern::matchAndRewrite with arguments
hlo::MatmulOp op and PatternRewriter &rewriter, returning an instance of Logi-
calResult signaling either a success or failure. An abbreviated version of
HLOMatmulToLoops.cpp is presented in listing B.5 in the appendix, giving an overview of
how each class and function relate to each other. One can note that HLOMatmulToLoops di-
rectly inherits from mlir::hlo::HLOMatmulToLoopsBase<HLOMatmulToLoops>, which
has not been previously mentioned. This is a TableGen’erated class defined in include/
mlir/Dialect/HLO/Transforms/Passes.h.inc, inheriting from the
mlir::OperationPass<func::FuncOp> class. This class provides some basic function-
ality, such as processing user input, but the majority of HLOMatmulToLoops is manually
implemented. At the most basic level, in the case where every optimization is disabled, the
implementation is minimal; we use the rewriter and its create function to construct a
loop nest structure as presented in listing 3.1. We set the correct upper bounds for each
for-loop by reading the shapes of each operand passed to op.

The final step is to make small adjustments to mlir/include/mlir/initAllPasses.
h, so that -hlo-matmul-to-loops is recognized by mlir-opt. Listings C.4 and C.5 in
the appendix demonstrates that -hlo-matmul-to-loops, with no optimizations enabled,
functions properly. Note that hlo.matmul, lowered with no optimizations enabled, differs
from @matmul in that the fast option [link] is enabled in the calls to arith.mulf and
arith.addf (compare listing C.6 and @matmul of listing A.1 in the appendix).

We create a new benchmark for hlo.matmul (see listing A.2 in the appendix) and run
it with mlir-opt and mlir-cpu-runner -O3, as seen in listing 5.1. Again, this naive-nest
implementation is on par with the performance of Clang.

Listing 5.1: Executing the hlo.matmul benchmark with no optimizations beside -O3.
$ mlir−opt −hlo−matmul−to−loops −convert−linalg−to−loops −lower−affine −convert−scf−to−

cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−func−to−llvm −expand−strided−
metadata −finalize−memref−to−llvm="use−aligned−alloc=true" −reconcile−unrealized−
casts −canonicalize input/hlo_matmul.mlir | mlir−cpu−runner −O3 −e main −entry−point
−result=void −shared−libs=lib/libmlir_runner_utils.so −shared−libs=lib/
libmlir_c_runner_utils.so

0.389302 GFLOPS

5.3 Optimizing the Loop Nest
At this point we have managed to effectively recreate the @matmul function using a compiler
approach. Going forward, we are going to explore the implementation and effect of common
optimization techniques.

Using loop tiling, explicit copying and loop unrolling we aim to encompass a variation
of the matrix multiplication algorithm described by the BLIS developers [60], based on the
GEMM design principles laid out by Kazushige Goto and Robert A. van de Gejin from the
University of Texas at Austin in 2008 [19]. Using our own naming convention, the A and B

35

https://mlir.llvm.org/docs/Dialects/ArithOps/#fastmathflagsattr

5. Implementing a High-Performance DGEMM Routine in MLIR

matrices are first partitioned along K with a cache block size KC , producing M × KC and
KC × N tiles of A and B, respectively. The B-tile, BC , is packed to a contiguous buffer. The
C matrix as well as the A-tile is further partitioned along M with a cache block size MC and
the resulting MC × KC tile of A, AC , is packed to a contiguous buffer. The last partitions are
made along N , MC and KC with sizes NR, MR and 1, respectively. We refer to the MR × KC-,
KC × NR- and MR × NR-sized tiles produced by the partitioning along N and MC as AR, BR
and CR, respectively. The innermost computation iterating over KC is referred to as a micro-
kernel [60], where CR, a register tile (composed of CPU registers) of C, is updated. During the
operation, memory is transferred so that C resides in main memory, BC resides in L3 cache,
AC in L2 cache and BR in L1 cache [33]. Our implementation will follow this schedule with
the exception that BR is packed to a contiguous buffer instead of BC , meaning we choose
not to control memory allocation beyond the L2 cache level. This choice was made based
on the approach employed in [5]. It should be noted that BLIS implements GEMM with an
additional partition along N which reduces the size of BC to KC × NC [33]. This additional
partition is not necessary in our implementation given that we only consider the L1 and L2
cache levels. Given the placement of each tile in memory, the choice of KC , MC and NR
pertain to the capacity of cache and NR and MR to the capacity of CPU registers.

The resulting loop nest is illustrated in figure 5.1. The labels, KC , MC , NR and MR, indicate
which partition is made at what level and the AC and BR labels indicate where the packing
takes place. The outermost box illustrates the partitioning of the A and B matrices along K
with KC . The innermost box corresponds to the micro-kernel, which iterates over KC and
through instances of AR and BR. The tiles are color-coordinated according to their prescribed
placement in memory — red for CPU registers, blue for L1 cache, green for L2 cache, and
white for L3 cache or main memory. Furthermore, the subcomputation within the micro-
kernel — one round of updating the elements of the register tile of C — operates on MR × 1
and 1 × NR panels of AR and BR, respectively, which are loaded to CPU registers [33].

The way we will go about implementing the optimizations is based on the demonstrated
approach in [5]. We are going to recreate the loop nest structures presented [5] as a precau-
tion to ensure that the implementation steps ultimately result in the correct design. Loop
tiling will be used to partition the unoptimized version of hlo.matmul accordingly, ex-
plicit copying to pack AC and BR to contiguous buffers, and loop unrolling to remove the
redundant loops that are generated from loop tiling alone. These loops, which are created
from partitioning along N and MC , are redundant in the sense that the resulting loop nest
updates one element of the register tile in each iteration instead of the entire register tile,
which is necessary to constitute the micro-kernel. Loop unrolling will also be used to unroll
the micro-kernel by a factor KU , in an attempt to improve performance further. In addi-
tion to loop tiling, explicit copying and loop unrolling, we will implement scalar replace-
ment to remove redundant loads that occur from loop unrolling and vectorization to target
SIMD instructions. In terms of code, implementing these optimizations means for the most
part to extend the HLOMatmulToLoops class, especially the HLOMatmulRewritePattern
::matchAndRewrite function.

5.3.1 Loop Tiling
Listing 5.2 below presents the loop tiling scheme we are going to implement.

36

5.3 Optimizing the Loop Nest

Figure 5.1: A schematic representation of hlo.matmul optimized
according to our adaptation of the matrix multiplication algorithm
described by the BLIS developers [60].

37

5. Implementing a High-Performance DGEMM Routine in MLIR

Listing 5.2: hlo.matmul after enabling loop tiling, in abbreviated pseudocode.
1 for k = 0 to 2048 ceildiv K_C
2 for i = 0 to 2088 ceildiv M_C
3 for jj = 0 to 2048 ceildiv N_R
4 for ii = i * M_C/M_R to min (M/M_R , i * M_C/M_R + M_C/M_R)
5 for kk = 0 to min (K_C , k * -K_C + K)
6 for jjR = 0 to N_R
7 for iiR = 0 to M_R
8 /* load %A[ii * M_R + iiR][k * K_C + kk],
9 %B[k * K_C + kk][jj * N_R + jjR],

10 %C[ii * M_R + iiR][jj * N_R + jjR] */
11 /* mul , add */
12 /* store %C[ii * M_R + iiR][jj * N_R + jjR] */

Compare this loop tiling scheme to the illustration in figure 5.1; the k-, i-, jj-, ii- and
kk-loops correspond to the boxes from outermost to innermost. Variable k iterates through
the inner dimensions of A and B, i through the AC tiles along the specified K_C-wide panel
of A, ii and jj through the AR tiles of AC , the BR tiles along the specified K_C-wide panel
of B and the register tiles along the specified MC × NR-sized tile of C, kk through the inner
dimensions of AR and BR, and iiR and jjR through the outer dimensions of AR and BR as well
as through the rows and columns of CR. The upper bounds of the ii- and kk-loops are not
constant, meaning that MC and KC are not bound to being divisors of M and K , respectively.
The upper bounds of the jjR- and iiR-loop must however be constant. This constraint
arises from the loop unrolling that is going to be applied in a later stage. As such, NR must
be a divisor of N and MR a divisor of both MC and M . These constraints are summarized in
equation 5.1 below. 

NR | N
MR | M
MR | MC

(5.1)

Given the existence of the -affine-loop-tile pass, the MLIR framework already pos-
sesses resources to carry out loop tiling. For our purposes, we are going to use mlir::affine
::tile as well as mlir::affine::interchangeLoops in HLOMatmulToLoops to achieve
the general loop nest structure of listing 5.2. The starting point is a nest of the i-, j- and k-
loops, as presented in listing 3.1. We begin by placing the k-loop as the outermost loop by
interchanging the j- and k-loops, following up with another loop-interchange of the i- and
k-loops. Then, we apply mlir::affine::tile to an array of the i-, k- and j-loops, in
that order, specifying MC , KC and NR as tile sizes. After this round of tiling, the j-loop has
been transformed into the jj-loop and the ii-, kk and jjR-loops have been added to the
nest. Since the partition along MC has not yet been done, the current loop nest is missing
the iiR-loop. We create this loop by applying mlir::affine::tile once more, but only
to the output ii-loop, specifying a tile size of MR. This produces the output presented in
listing C.7 in the appendix.

This intermediate result practically follows our set design, but we must make a couple of
adjustments to the loop bounds in order to recreate the loop nest structure presented in the
Tiling in MLIR section of [5]. Firstly, for each of the three innermost loops, we want to shift
the bounds so that the lower bound is a constant zero. We also have to modify every use of
the loop’s induction variable, given that its value range is changed. For the following made
up example,

38

5.3 Optimizing the Loop Nest

1 # lowerBound = affine.map <(d0) -> (d0)>
2 # upperBound = affine.map <(d0) -> (120 , d0 + 18) >
3 ...
4 affine.for %arg0 = # lowerBound (% idx) to min # upperBound (% idx) {
5 %0 = arith.addi %arg0 , %arg0 : i64
6 }

this modification would produce
1 # upperBound = affine.map <(d0) -> (120 - d0 , 18) >
2 ...
3 affine.for %arg0 = 0 to min # upperBound (% idx) {
4 %0 = affine.apply affine.map <(d0 , d1) -> (d0 + d1) >(%arg0 , %idx)
5 %1 = arith.addi %0, %0 : i64
6 }

%arg0 has been replaced by %0 using mlir::Value::replaceUsesWithIf, excluding the
use of %arg0 within the affine.apply call. We apply this modification to the three inner-
most for-loops, in order of innermost to outermost.

Secondly, we can note that mlir::affine::tile tiles a for-loop by simply setting
the step size to the specified tile size. This does not align with our design, where we instead
iterate through tile indices, e.g., the A[0 : MC , 0 : KC] section corresponds to AC with
index (k = 0, i = 0) and the A[MC : 2 · MC , 0 : KC] section corresponds to AC with index
(k = 0, i = 1). We can easily remove a step by dividing the lower and upper bounds by its
original step size, and then calling mlir::affine::AffineForOp::setStep(1). Again,
we also have to modify every use of the loop’s induction variable. For the following made up
example,

1 # lowerBound = affine.map <(d0) -> (d0)>
2 # upperBound = affine.map <(d0) -> (120 , d0 + 18) >
3 ...
4 affine.for %arg0 = # lowerBound (% idx) to min # upperBound (% idx) step 3 {
5 %0 = arith.addi %arg0 , %arg0 : i64
6 }

this modification would produce
1 # lowerBound = affine.map <(d0) -> (d0 ceildiv 3) >
2 # upperBound = affine.map <((d0) -> (40 , d0 ceildiv 3 + 6) >
3 ...
4 affine.for %arg0 = max # lowerBound (% idx) to min # upperBound (% idx) {
5 %0 = affine.apply affine.map <(d0) -> (d0 * 3) >(% arg0)
6 %1 = arith.addi %0, %0 : i64
7 }

We apply this modification to the four outermost for-loops, in order of innermost to outer-
most. This results in MLIR with the correct tiling strategy, as presented in listing C.8 in the
appendix.

Loop tiling alone generates the jjR- and iiR-loops, which means the current loop nest
updates one element of CR in each iteration (see listing 5.2). Consequently, we do not have
any control over register allocation at this stage. Thus, we are going to temporarily disregard
the choice of MR (arbitrarily set to 3) and choose KC , MC and NR for cache tiling. Given that
AC resides in L2 and BR in L1 cache [33], we are constrained by equation 5.2,

MC · KC ·
8

1024 KiB <= 1024 KiB
KC · NR ·

8
1024 KiB <= 64 KiB

(MC · KC + KC · NR) · 8
1024 KiB <= 1024 KiB

(5.2)

39

5. Implementing a High-Performance DGEMM Routine in MLIR

as well as equation 5.1. Analyzing the loop nest (see listing 5.2 and figure 5.1), we discern that
each instance of AC is reused N /NR times, that each instance of BR is loaded M/MC times
and reused MC/MR times, and that each instance of CR is reused KC times. Thus, KC and
MC should be assigned with large values and NR (and MR) with a small value to decrease the
number of memory transfers and increase reuse. By trying different values and calculating
the occupied space in cache, we find MC = 165, KC = 720, and NR = 8 to be a suitable
choice. Inserting these values into equation 5.2 yields equation 5.3,

165 · 720 · 8
1024 KiB = 928.125 KiB

720 · 8 · 8
1024 KiB = 45.0 KiB

(165 · 720 + 720 · 8) · 8
1024 KiB = 973.125 KiB

(5.3)

meaning AC occupies 928.125 KiB of L2 cache and BR occupies 45.0 KiB of L1 cache, thus
resembling our previous cache tiling setup (see equation 4.3). With this configuration, ap-
plying loop tiling leads to a performance at 9.7% of the theoretical machine peak, as seen in
listing 5.3.

Listing 5.3: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 165, KC = 720, MR = 3, and NR = 8
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=165,720,3,8" −convert−linalg−to−

loops −lower−affine −convert−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −
convert−func−to−llvm −expand−strided−metadata −finalize−memref−to−llvm="use−aligned−
alloc=true" −reconcile−unrealized−casts −canonicalize input/hlo_matmul.mlir | mlir−
cpu−runner −O3 −e main −entry−point−result=void −shared−libs=lib/
libmlir_runner_utils.so −shared−libs=lib/libmlir_c_runner_utils.so

1.936209 GFLOPS

5.3.2 Explicit Copying
This step involves packing each instance of AC and BR to contiguous buffers before they are
accessed and reused. Listing 5.4 demonstrates how the packing shall take place.

Listing 5.4: hlo.matmul after enabling loop tiling and explicit copying, in abbreviated
pseudocode.

1 for k = 0 to 2048 ceildiv K_C
2 for i = 0 to 2088 ceildiv M_C
3 /* copy %A[i * M_C : i * M_C + M_C][k * K_C : k * K_C + K_C]
4 to %A_C */
5 for jj = 0 to 2048 ceildiv N_R
6 /* copy %B[k * K_C : k * K_C + K_C][j * N_R : j * N_R + N_R]
7 to %B_R */
8 for ii = i * M_C/M_R to min (M/M_R , i * M_C/M_R + M_C/M_R)
9 for kk = 0 to min (K_C , k * -K_C + K)

10 for jjR = 0 to N_R
11 for iiR = 0 to M_R
12 /* load %A_C[-i * M_C + ii * M_R + iiR][kk],
13 %B_R[kk][jjR],
14 %C[ii * M_R + iiR][jj * N_R + jjR] */
15 /* mul , add */
16 /* store %C[ii * M_R + iiR][jj * N_R + jjR] */

We achieve this by using the underlying utility of the -affine-data-copy-generate pass,
the mlir::affine::affineDataCopyGenerate function. This function has the same
functionality as the -affine-data-copy-generate pass, with the added option to target

40

5.3 Optimizing the Loop Nest

a certain memory buffer (%A, %B, or %C). We are able to generate the correct copy procedures
by specifying the arguments mlir::affine::affineForOp forOp and std::optional<
mlir::Value> filterMemRef, and limiting the fastMemCapacityBytes option of the
mlir::affine::AffineCopyOptions ©Options argument accordingly. We make
two calls to the function, once for each of %A and %B, setting forOp to the immediately sur-
rounding for-loop, filterMemRef to either %A or %B, and fastMemCapacityBytes to
either 1024 · 1024, corresponding to the capacity of L2 cache in bytes, or 64 · 1024, cor-
responding to the capacity of L1 cache in bytes, in HLOMatmulToLoops. This produces the
MLIR presented in listing C.9 in the appendix. Applying explicit copying improves perfor-
mance by 3.3x, now 32.1% of the theoretical machine peak, as seen in listing 5.5.

Listing 5.5: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 165, KC = 720, MR = 3 and NR = 8, and explicit copying.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=165,720,3,8 copy=true" −convert−

linalg−to−loops −lower−affine −convert−scf−to−cf −convert−cf−to−llvm −convert−arith−
to−llvm −convert−func−to−llvm −expand−strided−metadata −finalize−memref−to−llvm="use
−aligned−alloc=true" −reconcile−unrealized−casts −canonicalize input/hlo_matmul.mlir
| mlir−cpu−runner −O3 −e main −entry−point−result=void −shared−libs=lib/
libmlir_runner_utils.so −shared−libs=lib/libmlir_c_runner_utils.so

6.411241 GFLOPS

Despite the relatively poor performance when applying loop tiling, we are currently on par
with the performance achieved from using -affine-loop-tile and -affine-data-copy-
generate.

5.3.3 Loop Unrolling
Enabling the micro-kernel
We have not yet implemented the micro-kernel, which is enabled by fully unrolling the
jjR- and iiR-loops. This effectivey means to replace the two innermost loops with the
corresponding sequence of statements. We easily achieve this by making two calls to mlir
::affine::loopUnrollFull(mlir::affine forOp), one for each of the redundant
loops, in HLOMatmulToLoops. The resulting loop nest corresponds to listing 5.4, but with-
out the jjR- and iiR-loops, and the kk-loop as the innermost loop.

The NR (= 8) and MR (= 3) parameters control the number of registers used in each
subcomputation within the micro-kernel. This is because MR×1- and 1×NR-sized panels of
AR and BR, respectively, are used to update an MR × NR register tile of C in one iteration of
the kk-loop. Figure 5.2, which can be seen as an elaboration on the micro-kernel illustrated
in figure 5.1, illustrates a hypothetical register allocation procedure within the micro-kernel
for the elements loaded from AC , BR and C. Since the MR · NR values stored in the register
tile are reused in the next kk-loop iteration, it follows that MR · NR registers, or MR · NR/2
2-length vector registers1, are reserved for the register tile. For AC and BR, however, we
instead hypothesize that MR registers are reserved for MR elements of AC (one for each), and
1 register is reserved for NR elements from BR (one for all). This is because the iiR-loop is
first to be unrolled, meaning the same MR values from AC are used over and over. The MR
registers for AC are reused, while the 1 register for BR has to load a new value from cache for

1This refers to the 128-bit SIMD&FP registers of Armv8-A, with space for 2 floating-point numbers [25].

41

5. Implementing a High-Performance DGEMM Routine in MLIR

each column of the register tile (NR times). BR resides in L1 cache as opposed to L2 cache,
meaning repetitive loads are not as costly.

Enabling the micro-kernel increases performance to 38.6% of the theoretical machine
peak, as seen in listing 5.6.

Listing 5.6: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 165, KC = 720, MR = 3 and NR = 8, explicit copying, and loop unrolling with
KU = 1.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=165,720,3,8 copy=true unroll=true

unroll−factor=1" −convert−linalg−to−loops −lower−affine −convert−scf−to−cf −convert
−cf−to−llvm −convert−arith−to−llvm −convert−func−to−llvm −expand−strided−metadata −
finalize−memref−to−llvm="use−aligned−alloc=true" −reconcile−unrealized−casts −
canonicalize input/hlo_matmul.mlir | mlir−cpu−runner −O3 −e main −entry−point−result
=void −shared−libs=lib/libmlir_runner_utils.so −shared−libs=lib/
libmlir_c_runner_utils.so

7.711173 GFLOPS

The unroll factor KU

The downside of using loops is that they bring computational overhead for controlling the
loop. The aim of unrolling the kk-loop by a factor KU is to eliminate or reduce these instruc-
tions. This unroll factor corresponds to the step size of the loop and the number of times its
loop-body is repeated. We introduce KU as the unroll factor of the kk-loop, which is input
alongside the kk-loop into mlir::affine::loopUnrollJamByFactor(mlir::affine
forOp, uint64_t unrollJamFactor) in HLOMatmulToLoops. Note that the micro-
kernel, as described in the previous section, corresponds to the kk-loop with KU = 1 (no
unrolling).

Naturally, the amount of code increases with KU , meaning there is a space-time tradeoff
to account for. For that reason, we are going to start off with a low value; KU = 2. This
increases performance to 47.5%, as seen in listing 5.7.

Listing 5.7: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 165, KC = 720, MR = 3 and NR = 8, explicit copying, and loop unrolling with
KU = 2.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=165,720,3,8 copy=true unroll=true

unroll−factor=2" −convert−linalg−to−loops −lower−affine −convert−scf−to−cf −convert
−cf−to−llvm −convert−arith−to−llvm −convert−func−to−llvm −expand−strided−metadata −
finalize−memref−to−llvm="use−aligned−alloc=true" −reconcile−unrealized−casts −
canonicalize input/hlo_matmul.mlir | mlir−cpu−runner −O3 −e main −entry−point−result
=void −shared−libs=lib/libmlir_runner_utils.so −shared−libs=lib/
libmlir_c_runner_utils.so

9.496424 GFLOPS

5.3.4 Scalar Replacement
Post loop unrolling, there appears a number of redundant loads, meaning that the same val-
ues from AC and BR are loaded multiple times. As seen in listing 5.4, the load from AC is
invariant of jjR, meaning the unrolling of the iiR- and jjR-loops produce NR − 1 redun-
dant loads for each of the MR loads from AC . For BR, MR − 1 redundant loads for each
of the NR loads are produced. In other words, MR · NR loads are generated for both AC

42

5.3 Optimizing the Loop Nest

(a) For one column of a register tile of C, 3 values from AC
and 1 value from BR are used.

(b) For the consecutive (and any other) column, the same 3
values of AC are used while another value of BR is used. The
register used to store values from BR and the resulting out-
put column in the register tile are emphasized with dashed
lines.

Figure 5.2: Illustration of a register tile of C (red) and additional
registers reserved for AC (green) and BR (blue) with NR = 8 and
MR = 3. The i0, i1, j0, j1 and k labels are arbitrary index values.

43

5. Implementing a High-Performance DGEMM Routine in MLIR

and BR, but only MR and NR are necessary for AC and BR, respectively. These issues are re-
solved by applying scalar replacement, which eliminates redundant loads and hoists invariant
loads to an appropriate nest-level. We implement this as a last step post-canonicalization in
HLOMatmulToLoops::runOnOperation() (see listing B.5 in the appendix) using affine
::affineScalarReplace. As an example, listing C.10 in the appendix demonstrates the
outcome of enabling scalar replacement with explicit copying disabled and NR = 2 and
KU = 1 for readability. In there we can count 3 (= MR) loads from AC and 2 (= NR) loads
from BR, meaning all redundant loads have been eliminated.

There is a slight improvement of performance when enabling scalar replacement, now at
47.6% of the theoretical machine peak, as seen in listing 5.8. This marginal increase in per-
formance indicates that the LLVM middle- and/or back end already implement functionality
to eliminate redundant loads.

Listing 5.8: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 165, KC = 720, MR = 3 and NR = 8, explicit copying, loop unrolling with KU = 2,
and scalar replacement.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=165,720,3,8 copy=true unroll=true

unroll−factor=2 scalar−replace=true" −convert−linalg−to−loops −lower−affine −
convert−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−func−to−llvm −
expand−strided−metadata −finalize−memref−to−llvm="use−aligned−alloc=true" −reconcile
−unrealized−casts −canonicalize input/hlo_matmul.mlir | mlir−cpu−runner −O3 −e main
−entry−point−result=void −shared−libs=lib/libmlir_runner_utils.so −shared−libs=lib/
libmlir_c_runner_utils.so

9.529780 GFLOPS

5.3.5 Vectorization
The last optimization technique to apply is vectorization, which is the process of transform-
ing scalar operations to operate on multiple data elements concurrently. In hlo.matmul (see
listing C.6 in the appendix), the scalar operations in question are

1 %4 = arith.mulf %1, %2 fastmath <fast > : f64
2 %5 = arith.addf %3, %4 fastmath <fast > : f64

and vectorizing would, at the most basic level, mean to transform these into
1 %4 = arith.mulf %1, %2 fastmath <fast > : vector <2 xf64 >
2 %5 = arith.addf %3, %4 fastmath <fast > : vector <2 xf64 >

where the vectors are of length 2 to reflect the capacity of the vector registers [25].
We choose to follow the same approach as [5], where %B and %C are shape-cast into

memref<?x1024vector<2xf64» outside of the loop nest. There is no need to shape-cast
%A since one value is used NR times over, accounting for one row of the register tile (see figure
5.2). For %A, we are instead applying vector.splat after each load from %A_C, which pro-
duces a vector containing the given value. Said shape-cast operation does not already exist
in MLIR, but Uday Bondhugula’s implementation of it is available online [link]. For simplic-
ity, we imported this implementation to our project as an operation within mlir::memref,
with syntactical changes made where necessary.

Listing C.11 in the appendix presents an example where vectorization has been enabled.
In addition to introducing memref.shape_cast and vector.splat, we have also replaced
the lines

44

https://github.com/bondhugula/llvm-project/commit/6a9822933b28aabced2c6ceef593f35c9665d1fe#diff-862f92fedaa626e6221ac920c18a6b8a

5.3 Optimizing the Loop Nest

1 %7 = arith.mulf %4, %5 fastmath <fast > : vector <2 xf64 >
2 %8 = arith.addf %6, %7 fastmath <fast > : vector <2 xf64 >

with the line

1 %7 = vector.fma %4, %5, %6 : vector <2 xf64 >

which guarantees that the MLIR is lowered to the llvm.fma.* intrinsic [44]. This replace-
ment does not necessarily have an effect on output, since fused multiply-add instructions
may be generated by the LLVM backend regardless of whether we specify it in the MLIR or
not. When enabling vectorization, there is a major improvement in performance, as seen in
listing 5.9. With every optimization enabled, we reach 75.4% of the theoretical peak.

Listing 5.9: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 165, KC = 720, MR = 3 and NR = 8, explicit copying, loop unrolling with KU = 2,
scalar replacement and vectorization.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=165,720,3,8 copy=true unroll=true

unroll−factor=2 scalar−replace=true vectorize=true" −convert−linalg−to−loops −lower
−affine −convert−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−func−
to−llvm −expand−strided−metadata −finalize−memref−to−llvm="use−aligned−alloc=true" −
reconcile−unrealized−casts −canonicalize input/hlo_matmul.mlir | mlir−cpu−runner −O3
−e main −entry−point−result=void −shared−libs=lib/libmlir_runner_utils.so −shared−
libs=lib/libmlir_c_runner_utils.so

15.074912 GFLOPS

5.3.6 Inspecting the Assembly

Since we were able to reach 93.0% of the theoretical peak with BLIS and ArmPL, we aim to
improve the performance of hlo.matmul further. The limitations of the current parameter
configuration (MC = 165, KC = 720, MR = 3, NR = 8 and KU = 2) may become clear by
inspecting the generated assembly. This will also let us observe whether we have managed
to target vector instructions of Arm Neon. To simplify the analysis and minimize the size
of listed code, we set KU = 1, which corresponds to employing the original micro-kernel
as described in section 5.3.3, for any discussion and analysis surrounding the generated as-
sembly. Note that KU modifies the kk-loop body and thus may affect the output assembly
and furthermore register allocation. Listing 5.10 presents the output assembly, where we can
confirm that the lower-level code has been vectorized as well.

45

5. Implementing a High-Performance DGEMM Routine in MLIR

Listing 5.10: Excerpt from output target assembly corresponding to the kk-loop body with
MR = 3, NR = 8 and KU = 1.

1 0000000000000000 <main >:
2 ...
3 4ec: 4 ddfce94 ld1r {v20 .2d}, [x20], #8
4 4f0: ad7f5995 ldp q21 , q22 , [x12 , # -32]
5 4f4: f1000673 subs x19 , x19 , #0 x1
6 4f8: 4 e74ced0 fmla v16 .2d, v22 .2d, v20 .2d
7 4fc: fd4b41b7 ldr d23 , [x13 , #5760]
8 500: fd5681b8 ldr d24 , [x13 , #11520]
9 504: 4 fd712c7 fmla v7 .2d, v22 .2d, v23.d[0]

10 508: 4 fd812c6 fmla v6 .2d, v22 .2d, v24.d[0]
11 50c: 4 e74ceb3 fmla v19 .2d, v21 .2d, v20 .2d
12 510: 4 fd712b2 fmla v18 .2d, v21 .2d, v23.d[0]
13 514: 4 fd812b1 fmla v17 .2d, v21 .2d, v24.d[0]
14 518: acc25995 ldp q21 , q22 , [x12], #64
15 51c: aa1403ed mov x13 , x20
16 520: 4 e74cec2 fmla v2 .2d, v22 .2d, v20 .2d
17 524: 4 fd712c1 fmla v1 .2d, v22 .2d, v23.d[0]
18 528: 4 fd812c0 fmla v0 .2d, v22 .2d, v24.d[0]
19 52c: 4 e74cea5 fmla v5 .2d, v21 .2d, v20 .2d
20 530: 4 fd712a4 fmla v4 .2d, v21 .2d, v23.d[0]
21 534: 4 fd812a3 fmla v3 .2d, v21 .2d, v24.d[0]
22 538: 54 fffda1 b.ne 4ec <main +0 x4ec > // b.any
23 ...

There are multiple calls to

• fmla vd, vn, vm corresponding to vmfaq_f64 [link], and

• fmla vd, vn, vm[lane] corresponding to either vmfaq_lane_f64 [link] or vm-
faq_laneq_f64 [link].

These are vectorized floating-point fused multiply-add to accumulator intrinsics. The first
operand is the destination (output) register and the two consecutive operands are the source
(input) registers. Thus, the first operand corresponds to an element from CR, and the sec-
ond and third operands correspond to elements from AC and BR. When a lane is specified,
it means the instruction is elementwise, only operating on the laneth index of the third
operand. We will assume that the first source operand corresponds to BR and the second
AC , since respective input sequence correspond to how the jjR- and iiR-loops have been
unrolled. Then, we can also assume that the first line in listing 5.10,

1 4ec: 4 ddfce94 ld1r {v20 .2d}, [x20], #8

would stem from e.g.
1 %3 = affine.load % alloc [% arg3 * 3, %arg4 + %arg0 * 720] : memref <2088 x2048xf64 >
2 %4 = vector.splat %3 : vector <2 xf64 >

in the vectorized MLIR (see listing C.11 in the appendix), since ld1r v20.2d, [x20], #8
[link] loads the value from register x20 to the 2 64-bit lanes of v20. Note that the d- and v-
registers we are referring to are interpretations of the 32 SIMD&FP registers; every SIMD&FP
register occupy 128 bits, but the number of significant bits vary [25]. This means that, for
example, d0 occupies the same space in memory as the initial 64 bits of v0. The d-registers
hold a single double-precision floating-point value, while the v-registers (otherwise called
vector registers) may, for example, hold 2 double-precision floating-point elements [25]. How
the 128 bits within a v-register is interpreted is determined by its suffix, .2d meaning 2
double-precision floating-point elements [25].

46

https://developer.arm.com/architectures/instruction-sets/intrinsics/vfmaq_f64
https://developer.arm.com/architectures/instruction-sets/intrinsics/vfmaq_lane_f64
https://developer.arm.com/architectures/instruction-sets/intrinsics/vfmaq_laneq_f64
https://developer.arm.com/documentation/dui0801/h/A64-SIMD-Vector-Instructions/LD1R--vector-?lang=en

5.3 Optimizing the Loop Nest

Figure 5.3: Illustration of a register tile of C (red) and additional
registers reserved for AC (green) and BR (blue) with NR = 8, MR = 3.
The first use of and resulting output from respective vector register
used to store values from BR are emphasized with dashed and dotted
lines. i0-i2, j0-j2 and k are arbitrary index values.

Judging from listing 5.10 and the inputs to the fmla instructions, v0-v7 and v16-v19
(12 in total) are used to store the output values, meaning they are reserved for the register tile
of C. Then, v21 and v22 are used to store values from BR, and v20, v23 and v24 are used to
store values from AC . From figure 5.2 we can reason that the minimum required number of
registers is 16 when using MR = 3 and NR = 8; 12 vector registers for a register tile of C, one
for each of the 3 values from AC and 1 for every value of BR. However, the total is instead 17,
since 2 vector registers are used for BR (see figure 5.3). Using 2 instead of 1 vector register for
BR means only NR/(2 · 2) = 2 calls have to be made to ldp q21, q22 * [link], which update
the values inside both of the vectors. If 1 vector register had been used, NR/2 = 4 calls would
have to be made to e.g. ldr q21 * [link], which update the values inside a single vector.

5.3.7 Fine-Tuning the Parameters
Throughout section 5.3.6, it has been implied that MR = 3 and NR = 8 is a poor choice
for register tiling, given that this configuration under-utilizes the 32 SIMD&FP registers.
The question is whether it is possible to find a better configuration under the constraints
of equations 5.1 and 5.2. From 5.1 with M = 2088 and N = 2048, we figure that MR is a
multiple of 2 and/or 3, and NR is a multiple of 2. Ideally, assuming that it is possible and
beneficial to use a single vector register to store values from BR, we would find values that
fulfill

MR · NR/2 + MR + 1 = 32 (5.4)

but given the constraints, this is not mathematically possible. However, with MR = 3 and
NR = 16 we expect to use 24 vector registers for output and 3 for values from AC . Given that
there are 32 − 24 − 3 = 5 additional vector registers, and previously observed outcome (see

47

https://developer.arm.com/documentation/dui0801/g/A64-Floating-point-Instructions/LDP--SIMD-and-FP-
https://developer.arm.com/documentation/dui0801/g/A64-Floating-point-Instructions/LDR--immediate--SIMD-and-FP-

5. Implementing a High-Performance DGEMM Routine in MLIR

figure 5.3), we can expect that at least 2 vector registers are going to be used to store values
from BR, making a total of 29 registers. Modifying all tile parameters accordingly, including
adjusting MC and KC to retain the same sizes of AC and BR as seen in equation 5.3, proves to
be beneficial. We reach a performance of 82.4% of the theoretical machine peak, as seen in
listing 5.11.

Listing 5.11: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 330, KC = 360, MR = 3 and NR = 16, explicit copying, loop unrolling with KU = 2,
scalar replacement and vectorization.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=330,360,3,16 copy=true unroll=

true unroll−factor=2 scalar−replace=true vectorize=true" −convert−linalg−to−loops −
lower−affine −convert−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−
func−to−llvm −expand−strided−metadata −finalize−memref−to−llvm="use−aligned−alloc=
true" −reconcile−unrealized−casts −canonicalize input/hlo_matmul.mlir | mlir−cpu−
runner −O3 −e main −entry−point−result=void −shared−libs=lib/libmlir_runner_utils.so
−shared−libs=lib/libmlir_c_runner_utils.so

16.474362 GFLOPS

Listing 5.12 presents the generated assembly after modifying the parameters to increase
register use and setting KU = 1, which ascertain that 29 registers are used in total in the
micro-kernel. Again, Note that modyfing KU may have an effect on output assembly and
furthermore register allocation, and that KU = 1 to simplify the analysis and minimize the
size of listed code.

Listing 5.12: Excerpt from output target assembly corresponding to the kk-loop body with
MR = 3, NR = 16 and KU = 1.

1 580: 4 ddfcde9 ld1r {v9 .2d}, [x15], #8
2 584: ad7e2d8a ldp q10 , q11 , [x12 , # -64]
3 588: f10005ad subs x13 , x13 , #0 x1
4 58c: 4 e69cd7c fmla v28 .2d, v11 .2d, v9 .2d
5 590: fd45a1cc ldr d12 , [x14 , #2880]
6 594: fd4b41cd ldr d13 , [x14 , #5760]
7 598: 4 fcc117b fmla v27 .2d, v11 .2d, v12.d[0]
8 59c: 4 fcd117a fmla v26 .2d, v11 .2d, v13.d[0]
9 5a0: 4 e69cd5f fmla v31 .2d, v10 .2d, v9 .2d

10 5a4: 4 fcc115e fmla v30 .2d, v10 .2d, v12.d[0]
11 5a8: 4 fcd115d fmla v29 .2d, v10 .2d, v13.d[0]
12 5ac: ad7f2d8a ldp q10 , q11 , [x12 , # -32]
13 5b0: aa0f03ee mov x14 , x15
14 5b4: 4 e69cd76 fmla v22 .2d, v11 .2d, v9 .2d
15 5b8: 4 fcc1175 fmla v21 .2d, v11 .2d, v12.d[0]
16 5bc: 4 fcd1174 fmla v20 .2d, v11 .2d, v13.d[0]
17 5c0: 4 e69cd59 fmla v25 .2d, v10 .2d, v9 .2d
18 5c4: 4 fcc1158 fmla v24 .2d, v10 .2d, v12.d[0]
19 5c8: 4 fcd1157 fmla v23 .2d, v10 .2d, v13.d[0]
20 5cc: ad402d8a ldp q10 , q11 , [x12]
21 5d0: 4 e69cd70 fmla v16 .2d, v11 .2d, v9 .2d
22 5d4: 4 fcc1167 fmla v7 .2d, v11 .2d, v12.d[0]
23 5d8: 4 fcd1166 fmla v6 .2d, v11 .2d, v13.d[0]
24 5dc: 4 e69cd53 fmla v19 .2d, v10 .2d, v9 .2d
25 5e0: 4 fcc1152 fmla v18 .2d, v10 .2d, v12.d[0]
26 5e4: 4 fcd1151 fmla v17 .2d, v10 .2d, v13.d[0]
27 5e8: ad412d8a ldp q10 , q11 , [x12 , #32]
28 5ec: 9102018 c add x12 , x12 , #0 x80
29 5f0: 4 e69cd62 fmla v2 .2d, v11 .2d, v9 .2d
30 5f4: 4 fcc1161 fmla v1 .2d, v11 .2d, v12.d[0]
31 5f8: 4 fcd1160 fmla v0 .2d, v11 .2d, v13.d[0]
32 5fc: 4 e69cd45 fmla v5 .2d, v10 .2d, v9 .2d
33 600: 4 fcc1144 fmla v4 .2d, v10 .2d, v12.d[0]
34 604: 4 fcd1143 fmla v3 .2d, v10 .2d, v13.d[0]
35 608: 54 fffbc1 b.ne 580 <main +0 x580 > // b.any

48

5.3 Optimizing the Loop Nest

Using the same reasoning as in section 5.3.6, we observe that v0-v7 and v16-v31 (24 in total)
are reserved for the register tile, v9, v12 and v13 are used to store values from AC , and v10
and v11 are used to store values from BR. One could reason that MR = 6 and NR = 8 would
be a preferable choice, given that this would be expected to use all 32 SIMD&FP registers if
we assume that 6 and 2 vector registers are used to store values from AC and BR, respectively.
We have, however, observed that using MR = 6 and NR = 8 produces output that does not
follow the expected trend and yields poor performance. It is thus disregarded.

Furthermore, in addition to the advantages discussed in section 5.3.3, another advantage
to unrolling the kk-loop is that it increases the number of SIMD&FP registers used in the
micro-kernel. For KU = 8, we observe that every register is used except for v8, as v0-v7
and v16-v31 are reserved for the register tile, v9 is reserved for values from AC and v15 is
reserved for values from BR. The remaining 5 vector registers v10-v14 are used for values
from both AC and BR. Setting KU = 8 leads to a performance at 85.6% of the theoretical
peak, as seen in listing 5.13. We lose the intended benefit when increasing KU any further.
This could be due to the forementioned space-time tradeoff.

Listing 5.13: Executing the hlo.matmul benchmark after applying loop tiling with
MC = 330, KC = 360, MR = 3 and NR = 16, explicit copying, loop unrolling with KU = 8,
scalar replacement and vectorization.
$ mlir−opt −hlo−matmul−to−loops="tile=true tile−params=330,360,3,16 copy=true unroll=

true unroll−factor=8 vectorize=true" −convert−linalg−to−loops −lower−affine −convert
−scf−to−cf −convert−cf−to−llvm −convert−arith−to−llvm −convert−func−to−llvm −expand−
strided−metadata −finalize−memref−to−llvm="use−aligned−alloc=true" −reconcile−
unrealized−casts −canonicalize input/hlo_matmul.mlir | mlir−cpu−runner −O3 −e main −
entry−point−result=void −shared−libs=lib/libmlir_runner_utils.so −shared−libs=lib/
libmlir_c_runner_utils.so

17.126675 GFLOPS

Ultimately, we have found that loop tiling, explicit copying, loop unrolling, scalar re-
placement and vectorization can be used to increase the performance of hlo.matmul from
1.9% to 85.6% — 8% from the performances achieved with ArmPL and BLIS. Table 5.1
summarizes the hlo.matmul benchmark results with respect to the parameter configura-
tions tested. A dash (-) means that the (corresponding) optimization technique is disabled,
and performance is presented in relation to the theoretical machine peak of 20 GFLOPS.

Table 5.1: Summary of results for the various parameter configura-
tions tested in section 5.3.

MC KC MR NR Explicit copying KU Scalar replacement Vectorization Performance [%]
- - - - - - - - 1.9

165 720 3 8 - - - - 9.7
165 720 3 8 yes - - - 32.1
165 720 3 8 yes 1 - - 38.6
165 720 3 8 yes 2 - - 47.5
165 720 3 8 yes 2 yes - 47.6
165 720 3 8 yes 2 yes yes 75.4
330 360 3 16 yes 2 yes yes 82.4
330 360 3 16 yes 8 yes yes 85.6

49

5. Implementing a High-Performance DGEMM Routine in MLIR

50

Chapter 6

Reflections

In the pre-analysis, we found that the performance of the 2088×2048 double-precision ma-
trix multiplication ranges from 0.4 GFLOPS for a naive-nest implementation compiled with
clang -O3 -ffast-math to 18.55 GFLOPS for respective DGEMM routine of ArmPL and
BLIS (see figure 6.1). This gap arises from the fact that high-performance compute libraries
such as ArmPL and BLIS consist of hand-crafted routines specialized for certain purposes
and hardware, unlike general-purpose compilers that leave the implementation and high-
level optimizations to the end-user. Thus, implementing and compiling a generic 3-d loop
nest, as we did in section 3.1, does not yield high performance. On the other hand, the advan-
tage of using compilers is that the end-user is not bound to a finite set of low-level routines.
A routine may yield excellent performance in isolated circumstances — as we have shown
in this thesis for cblas_dgemm and bli_dgemm from ArmPL and BLIS, respectively — but
then there is the question of how these routines should be incorporated to software applica-
tions, e.g. machine learning frameworks, as well as whether they can be utilized for different
hardware platforms and architectures.

This brings us to MLIR-based code generation and the findings of this project. We were
not able to prove that the MLIR-based DGEMM routine, hlo.matmul, could reach the per-
formance of ArmPL and BLIS, but one must take into account that a limited set of configu-
rations were tested (see table 5.1) due to time constraints. As seen in equation 4.1, the AC and
BR buffers do not completely occupy the 1024 KiB available in L1 and L2 cache. We have not
assessed whether MC and KC could be adjusted to account for that, under the constraints of
equations 5.1 with MR = 3 and 5.2. Furthermore, there exists other well-researched optimiza-
tion strategies beside the ones chosen for this thesis that potentially could further improve
performance. For one, when implementing loop tiling, we chose not to control memory al-
location beyond the L1 and L2 cache levels. To consider the L3 cache level as well, we would
have to make a partition along N with NC and pack the resulting KC × NC-sized tile BC to a
contiguous buffer [33].

However, we would argue that the difference of 8% between the performances of hlo.
matmul and bli_dgemm of BLIS or cblas_dgemm of ArmPL is insignificant for our pur-

51

6. Reflections

Figure 6.1: Overview of the benchmark results presented in this the-
sis. The height of each bar represents the absolute performance,
while the overlaid percentage is the performance relative the the-
oretical machine peak of 20 GFLOPS.

poses, on the first hand being to showcase the possibility of implementing high-performance
routines using an MLIR-based approach and on a higher level to present the MLIR frame-
work as a reusable and extensible alternative to high-performance compute libraries common
in machine learning frameworks. For research purposes, we restricted the experimentation to
the Graviton2 CPU and as a natural consequence, our implementations likely will not work
as expected for any other setup "out of the box". However, any necessary adjustment could
be as simple as inputting an appropriate option value for the compiler pass. The loop tiling
parameters, for example, can be adjusted for essentially any type of cache and register setup,
assuming the chosen optimization strategy (see figure 5.1) is an appropriate choice. E.g., in
sections 5.3.6 and 5.3.7, we showed how to use 17 as well as 29 registers in the micro-kernel
while occupying the same amount of space in L1 and L2 cache by adjusting MC , KC , MR
and NR. For any CPU that does not implement fused multiply-add vector instructions, the
vectorize option should be set to false. It should also be noted that -hlo-matmul-to-
loops could have been supplemented with more options beside the ones presented in this
master’s thesis, e.g., an option to control the vector length.

We believe the findings of this master’s thesis will have a positive effect on society. MLIR
is novel technology and may not be known by most computer scientists, or even compiler re-
searchers and engineers. Given the discussed advantages of MLIR, we have a positive attitude
toward MLIR being employed on a wider scale. The promising results of our experimentation
as well as our demonstration of implementing an MLIR dialect and operation support that
intention. This strengthens the MLIR project’s aim of addressing software fragmentation
and aiding in connecting existing compilers together.

52

6.1 Research Questions

6.1 Research Questions
RQ1 We showed that applying loop tiling, explicit copying, loop unrolling, scalar replace-
ment and vectorization to an unoptimized GEMM operation (see listing C.6 in the appendix)
increased performance from 1.7% to 85.6%. These optimization techniques were imple-
mented within the HLOMatmulToLoops class using MLIR’s pre-implemented resources, such
as the mlir::affine::tile and mlir::affine::interchangeLoops functions which
were used to achieve the general structure of the loop tiling scheme presented in listing 5.2.

RQ2 We vectorized hlo.matmul by shape-casting %B and %C into memref<?x1024<
2xf64» and inserting the vector.splat and vector.fma operations into the body of
the loop nest. In listing 5.10, we observed that these modifications were enough to tar-
get vmfaq_f64 and vmfaq_lane_f64 or vmfaq_laneq_f64 — vector floating-point fused
multiply-add to accumulator intrinsics of Arm Neon.

RQ3 When assessing performance as-is, bli_dgemm of BLIS and cblas_dgemm of ArmPL
are superior to MLIR-based hlo.matmul by around 8%, when implementing the optimiza-
tion strategy described in section 5.3. This is because such routines of high-performance
compute libraries have been carefully hand-crafted for certain purposes and hardware. Still,
we are of the opinion that we achieved high performance with MLIR as well. In terms of
composability, we argue that MLIR is the better alternative. As was demonstrated in section
5.3, the MLIR framework consists of a wide array of pre-implemented resources that can be
reused for different purposes. As opposed to typical high-performance compute libraries,
the MLIR framework is not designated for a narrow range of hardware platforms. Yet, we
were able to target vector machine instructions of Arm Neon and achieve high performance
with MLIR. Given the options of -hlo-matmul-to-loops and the retargetability of the
LLVM backend, we hypothesize that hlo.matmul could be used on, or adjusted for, various
hardware and retain high performance.

6.2 Future Work
A natural, perhaps obvious, extension to this project would be to implement additional op-
timization techniques or expand on the techniques chosen for this master’s thesis in order to
bridge the gap between hlo.matmul and cblas_dgemm or bli_dgemm. Although, given the
higher-level topic of this master’s thesis being to improve machine learning systems from a
software engineering perspective, we believe that it would have been more valuable to extend
our efforts to building a (more or less) complete front end of a (machine learning) compiler
and not restricting to the IR generation phase. In practice, this would mean to implement
pre-processing, lexical analysis, syntax analysis and semantic analysis, generating an AST in
likeness of figure 2.2, which would be further lowered to MLIR. This would elaborate on the
topic of automatability, e.g. in automatically adapting the optimization parameters accord-
ing to hardware-specific properties such as cache and register capacities and architecture, and
further concretize the idea of leveraging MLIR-based code generation in a machine learning
system. For the former, we could take inspiration from the machine description file of GCC,
which specifies hardware-specific features and is used by the compiler to generate target code

53

6. Reflections

accordingly. Our version of the machine description file would consist of information relat-
ing to e.g. cache and registers. This information would be used to calculate appropriate values
for MC , KC , MR and NR, using, for example, the proposed formulas of Low et. al. [33]. Ad-
ditionally, the analysis could be extended to include standard routines or functions beside
DGEMM, especially ones that make up typical "building blocks" within machine learning
models.

Another aspect that would have been interesting to explore is higher-level optimization
techniques that affect machine learning architecture on a larger scale, such as operator fusion
— a key optimization in many state-of-the-art deep neural network execution frameworks,
including TensorFlow [46]. Operator fusion is highly relevant to the objective of our research
given that previous experiments in Apache SystemDS (previously Apache SystemML), an
open source ML system for the end-to-end data science lifecycle [2], have shown up to 21x
performance improvements with optimized fusion plans compared to hand-written fused
operators, with negligible optimization and code generation overhead [4].

Since there already exist projects leveraging MLIR for machine learning software, such
as OpenXLA [50], an alternative approach to our research objective would be to piggyback
off of these infrastructures, instead of constructing a framework from scratch.

6.3 Conclusion
In this master’s thesis, we have demonstrated the implementation of an optimized double-
precision GEMM routine using an MLIR-based approach, yielding a performance only 8%
from the effective machine peak on a Neoverse-N1 core.

Using MLIR resources, we were able to efficiently implement a compiler pass lower-
ing the high-level hlo.matmul operation to a semantically equivalent loop nest, equipped
with options enabling control over the optimization process and furthermore the design of
a suitable micro-kernel. Despite optimizing on high-level IR, we were able to target the
vectorized floating-point fused multiply-add to accumulator intrinsics of Neon and control
register allocation. This is indicative of the potential benefits of incorporating MLIR in the
infrastructure of machine learning systems, in constituting retargetability while retaining
high performance.

54

References

[1] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, Aug. 2006. isbn: 0321486811. url: http : / / www . amazon . ca / exec /
obidos/redirect?tag=citeulike09-20%5C&path=ASIN/0321486811.

[2] Apache. Apache SystemDS™. url: https://systemds.apache.org/ (visited on
12/19/2023).

[3] AWS. AWS Graviton Technical Guide. url: https : / / github . com / aws / aws -
graviton-getting-started/tree/main#readme (visited on 11/15/2023).

[4] Matthias Boehm et al. “On optimizing operator fusion plans for large-scale machine
learning in systemML”. In: Proc. VLDB Endow. 11.12 (Aug. 2018), pp. 1755–1768. issn:
2150-8097. doi: 10.14778/3229863.3229865. url: https://doi.org/10.
14778/3229863.3229865.

[5] Uday Bondhugula. High Performance Code Generation in MLIR: An Early Case Study with
GEMM. 2020. arXiv: 2003.00532 [cs.PF].

[6] Tianqi Chen et al. “TVM: an automated end-to-end optimizing compiler for deep
learning”. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation. OSDI’18. Carlsbad, CA, USA: USENIX Association, 2018, pp. 579–
594. isbn: 9781931971478.

[7] Clang. clang - the Clang C, C++, and Objective-C compiler. url: https://clang.llvm.
org/docs/CommandGuide/clang.html (visited on 11/15/2023).

[8] Clang. Clang Compiler User’s Manual. url: https : / / clang . llvm . org / docs /
UsersManual.html (visited on 11/15/2023).

[9] Clang. Getting Started: Building and Running Clang. url: https://clang.llvm.org/
get_started.html (visited on 11/15/2023).

[10] Quentin Colombet. [mlir][Conversion] Rename the MemRefToLLVM pass. url: https:
//reviews.llvm.org/D142463 (visited on 01/10/2024).

55

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20%5C&path=ASIN/0321486811
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20%5C&path=ASIN/0321486811
https://systemds.apache.org/
https://github.com/aws/aws-graviton-getting-started/tree/main#readme
https://github.com/aws/aws-graviton-getting-started/tree/main#readme
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.14778/3229863.3229865
https://arxiv.org/abs/2003.00532
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/get_started.html
https://clang.llvm.org/get_started.html
https://reviews.llvm.org/D142463
https://reviews.llvm.org/D142463

REFERENCES

[11] Quentin Colombet. PSA: You need to run ‘expand-strided-metadata‘ before ‘memref-to-llvm‘
now. url: https : / / discourse . llvm . org / t / psa - you - need - to - run -
expand-strided-metadata-before-memref-to-llvm-now/66956 (visited on
01/10/2024).

[12] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann, 2022.
isbn: 9780128189269. url: https://www.amazon.com/Engineering-Compiler-
Keith-D-Cooper/dp/0128154128.

[13] Intel Corporation. Intel oneDNN AI Optimizations Enabled as Default in TensorFlow. url:
https://www.intel.com/content/www/us/en/newsroom/news/intel-
onednn-speeds-ai-optimizations-in-tensorflow.html (visited on 11/21/2023).

[14] Intel Corporation. Intel® oneAPI Deep Neural Network Developer Guide and Reference.
url: https : / / www . intel . com / content / www / us / en / docs / onednn /
developer - guide - reference / 2023 - 1 / build - options . html (visited on
11/21/2023).

[15] Intel Corporation. Intel® oneAPI Math Kernel Library. url: https://www.intel.
com/content/www/us/en/developer/tools/oneapi/onemkl.html (visited
on 11/27/2023).

[16] Deci. An Introduction to the Inference Stack and Inference Acceleration Techniques. url:
https://deci.ai/blog/inference-stack-and-inference-acceleration-
techniques/#/ (visited on 12/14/2023).

[17] Ray Fernandez. Google Gemini AI: Everything We Know So Far. url: https://www.
techopedia.com/everything-we-know-about-google-gemini (visited on
12/14/2023).

[18] GCC. Options That Control Optimization. url: https://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html (visited on 11/15/2023).

[19] Robert van de Geijn and Kazushige Goto. “Anatomy of high-performance matrix mul-
tiplication Kazushige Goto, Robert A. van de Geijn ACM Transactions on Mathemat-
ical Software (TOMS), 2008”. In: ACM Transactions on Mathematical Software 34 (May
2008), Article 12. doi: 10.1145/1356052.1356053.

[20] Science of High Performance Computing group. url: https : / / github . com /
flame/blis/blob/master/docs/BuildSystem.md (visited on 11/15/2023).

[21] IREE. IREE. url: https://iree.dev/ (visited on 12/15/2023).

[22] Kaggle. State of Data Science and Machine Learning 2022. url: https://www.kaggle.
com/kaggle-survey-2022 (visited on 12/11/2023).

[23] Chris Lattner and Tim Davis. MLIR: accelerating AI with open-source infrastructure. Sept.
2019. url: https://blog.google/technology/ai/mlir-accelerating-ai-
open-source-infrastructure/.

[24] Chris Lattner et al. MLIR: A Compiler Infrastructure for the End of Moore’s Law. 2020.
arXiv: 2002.11054 [cs.PL].

[25] Arm Limited. Arm Architecture Reference Manual. for A-profile architecture.

[26] Arm Limited. Arm Compute Library. url: https://www.arm.com/technologies/
compute-library (visited on 12/15/2023).

56

https://discourse.llvm.org/t/psa-you-need-to-run-expand-strided-metadata-before-memref-to-llvm-now/66956
https://discourse.llvm.org/t/psa-you-need-to-run-expand-strided-metadata-before-memref-to-llvm-now/66956
https://www.amazon.com/Engineering-Compiler-Keith-D-Cooper/dp/0128154128
https://www.amazon.com/Engineering-Compiler-Keith-D-Cooper/dp/0128154128
https://www.intel.com/content/www/us/en/newsroom/news/intel-onednn-speeds-ai-optimizations-in-tensorflow.html
https://www.intel.com/content/www/us/en/newsroom/news/intel-onednn-speeds-ai-optimizations-in-tensorflow.html
https://www.intel.com/content/www/us/en/docs/onednn/developer-guide-reference/2023-1/build-options.html
https://www.intel.com/content/www/us/en/docs/onednn/developer-guide-reference/2023-1/build-options.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://deci.ai/blog/inference-stack-and-inference-acceleration-techniques/#/
https://deci.ai/blog/inference-stack-and-inference-acceleration-techniques/#/
https://www.techopedia.com/everything-we-know-about-google-gemini
https://www.techopedia.com/everything-we-know-about-google-gemini
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://doi.org/10.1145/1356052.1356053
https://github.com/flame/blis/blob/master/docs/BuildSystem.md
https://github.com/flame/blis/blob/master/docs/BuildSystem.md
https://iree.dev/
https://www.kaggle.com/kaggle-survey-2022
https://www.kaggle.com/kaggle-survey-2022
https://blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/
https://blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/
https://arxiv.org/abs/2002.11054
https://www.arm.com/technologies/compute-library
https://www.arm.com/technologies/compute-library

REFERENCES

[27] Arm Limited. Arm Performance Libraries. url: https : / / developer . arm . com /
Tools % 20and % 20Software / Arm % 20Performance % 20Libraries (visited on
12/15/2023).

[28] Arm Limited. Get started with Arm Performance Libraries (standalone version). url: https:
/ / developer . arm . com / documentation / 109408 / 0100 / Installation /
Install-on-Linux?lang=en (visited on 11/15/2023).

[29] LLVM. Clang: a C language family frontend for LLVM. url: https://clang.llvm.
org/ (visited on 11/13/2023).

[30] LLVM. Getting Started with the LLVM System. url: https : / / llvm . org / docs /
GettingStarted.html#requirements (visited on 11/15/2023).

[31] LLVM. The LLVM Compiler Infrastructure. url: https : / / llvm . org/ (visited on
11/13/2023).

[32] LLVM. Writing an LLVM Pass. url: https://llvm.org/docs/WritingAnLLVMPass.
html (visited on 11/27/2023).

[33] Tze Meng Low et al. “Analytical Modeling Is Enough for High-Performance BLIS”. In:
ACM Trans. Math. Softw. 43.2 (Aug. 2016). issn: 0098-3500. doi: 10.1145/2925987.
url: https://doi.org/10.1145/2925987.

[34] MLIR. Chapter 6: Lowering to LLVM and CodeGeneration. url: https://mlir.llvm.
org/docs/Tutorials/Toy/Ch-6/ (visited on 11/14/2023).

[35] MLIR. Creating a Dialect. url: https://mlir.llvm.org/docs/Tutorials/
CreatingADialect/ (visited on 11/23/2023).

[36] MLIR. Getting Started. url: https://mlir.llvm.org/getting_started/ (visited
on 11/15/2023).

[37] MLIR. Interfaces. url: https://mlir.llvm.org/docs/Interfaces/3 (visited on
01/11/2024).

[38] MLIR. MLIR Language Reference. url: https://mlir.llvm.org/docs/LangRef/
(visited on 11/14/2023).

[39] MLIR. MLIR Rationale. url: https : / / mlir . llvm . org / docs / Rationale /
Rationale/# (visited on 12/21/2023).

[40] MLIR. Multi-Level Intermediate Representation Overview. 2023. url: https://mlir.
llvm.org/ (visited on 11/27/2023).

[41] MLIR. Op vs. Operation: Using MLIR Operations. url: https://mlir.llvm.org/
docs/Tutorials/Toy/Ch-2/#op-vs-operation-using-mlir-operations
(visited on 11/14/2023).

[42] MLIR. Pass Infrastructure. url: https://mlir.llvm.org/docs/PassManagement/
(visited on 11/14/2023).

[43] MLIR. Users of MLIR. 2023. url: https://mlir.llvm.org/users/ (visited on
01/19/2024).

[44] MLIR. vector.fma (vector::FMAOp). url: https : / / mlir . llvm . org / docs /
Dialects/Vector/#vectorfma-vectorfmaop (visited on 01/20/2024).

57

https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Libraries
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Libraries
https://developer.arm.com/documentation/109408/0100/Installation/Install-on-Linux?lang=en
https://developer.arm.com/documentation/109408/0100/Installation/Install-on-Linux?lang=en
https://developer.arm.com/documentation/109408/0100/Installation/Install-on-Linux?lang=en
https://clang.llvm.org/
https://clang.llvm.org/
https://llvm.org/docs/GettingStarted.html#requirements
https://llvm.org/docs/GettingStarted.html#requirements
https://llvm.org/
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://doi.org/10.1145/2925987
https://doi.org/10.1145/2925987
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-6/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-6/
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/
https://mlir.llvm.org/getting_started/
https://mlir.llvm.org/docs/Interfaces/3
https://mlir.llvm.org/docs/LangRef/
https://mlir.llvm.org/docs/Rationale/Rationale/#
https://mlir.llvm.org/docs/Rationale/Rationale/#
https://mlir.llvm.org/
https://mlir.llvm.org/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-2/#op-vs-operation-using-mlir-operations
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-2/#op-vs-operation-using-mlir-operations
https://mlir.llvm.org/docs/PassManagement/
https://mlir.llvm.org/users/
https://mlir.llvm.org/docs/Dialects/Vector/#vectorfma-vectorfmaop
https://mlir.llvm.org/docs/Dialects/Vector/#vectorfma-vectorfmaop

REFERENCES

[45] Steven S. Muchnick. Advanced Compiler Design and Implementation. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1998. isbn: 1558603204.

[46] Wei Niu et al. “DNNFusion: accelerating deep neural networks execution with ad-
vanced operator fusion”. In: Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation. PLDI 2021. Virtual, Canada:
Association for Computing Machinery, 2021, pp. 883–898. isbn: 9781450383912. doi:
10.1145/3453483.3454083. url: https://doi.org/10.1145/3453483.
3454083.

[47] Diego Novillo. “GCC—An Architectural Overview, Current Status, and Future Di-
rections”. In: 2010. url: https : / / api . semanticscholar . org / CorpusID :
49334934.

[48] OpenXLA. StableHLO. url: https://github.com/openxla/stablehlo#stablehlo
(visited on 01/19/2024).

[49] Nadav Rotem et al. Glow: Graph Lowering Compiler Techniques for Neural Networks. 2019.
arXiv: 1805.00907 [cs.PL].

[50] James Rubin. OpenXLA is available now to accelerate and simplify machine learning. Mar.
2023. url: https://opensource.googleblog.com/2023/03/openxla-is-
ready-to-accelerate-and-simplify-ml-development.html.

[51] Rust. Rust Compiler Development Guide. url: https://rustc-dev-guide.rust-
lang.org/overview.html#intermediate-representations (visited on 11/13/2023).

[52] Maximilian Schreiner. GPT-4 architecture, datasets, costs and more leaked. url: https:
//the-decoder.com/gpt-4-architecture-datasets-costs-and-more-
leaked/ (visited on 12/14/2023).

[53] Amazon Web Services. Amazon EC2 C6g Instances. url: https://aws.amazon.com/
ec2/instance-types/c6g/ (visited on 11/27/2023).

[54] Amazon Web Services. Instance Type Details. url: https://aws.amazon.com/ec2/
instance-types/ (visited on 11/27/2023).

[55] Amazon Web Services. Optimize CPU options. url: https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html (visited on
11/27/2023).

[56] The GCC Team. GCC, the GNU Compiler Collection. url: https://gcc.gnu.org/
(visited on 12/20/2023).

[57] The TensorFlow MLIR Team. MLIR: A new intermediate representation and compiler frame-
work. Apr. 2019. url: https : / / medium . com / tensorflow / mlir - a - new -
intermediate-representation-and-compiler-framework-beba999ed18d.

[58] TensorFlow. What’s new in TensorFlow 2.10? 2022. url: https://blog.tensorflow.
org/2022/09/whats-new-in-tensorflow-210.html (visited on 08/01/2023).

[59] TensorFlow. XLA architecture. url: https://www.tensorflow.org/xla/architecture
(visited on 12/15/2023).

[60] Field G. Van Zee and Robert A. van de Geijn. “BLIS: A Framework for Rapidly In-
stantiating BLAS Functionality”. In: ACM Trans. Math. Softw. 41.3 (June 2015). issn:
0098-3500. doi: 10.1145/2764454. url: https://doi.org/10.1145/2764454.

58

https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
https://api.semanticscholar.org/CorpusID:49334934
https://api.semanticscholar.org/CorpusID:49334934
https://github.com/openxla/stablehlo#stablehlo
https://arxiv.org/abs/1805.00907
https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html
https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html
https://rustc-dev-guide.rust-lang.org/overview.html#intermediate-representations
https://rustc-dev-guide.rust-lang.org/overview.html#intermediate-representations
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://aws.amazon.com/ec2/instance-types/c6g/
https://aws.amazon.com/ec2/instance-types/c6g/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://gcc.gnu.org/
https://medium.com/tensorflow/mlir-a-new-intermediate-representation-and-compiler-framework-beba999ed18d
https://medium.com/tensorflow/mlir-a-new-intermediate-representation-and-compiler-framework-beba999ed18d
https://blog.tensorflow.org/2022/09/whats-new-in-tensorflow-210.html
https://blog.tensorflow.org/2022/09/whats-new-in-tensorflow-210.html
https://www.tensorflow.org/xla/architecture
https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454

REFERENCES

[61] Nicolas Vasilache and Javier Setoain. [RFC] Vector Dialects: Neon and SVE. 2020. url:
https : / / discourse . llvm . org / t / rfc - vector - dialects - neon - and -
sve/2284 (visited on 11/20/2023).

[62] Nicolas Vasilache et al. Composable and Modular Code Generation in MLIR: A Structured
and Retargetable Approach to Tensor Compiler Construction. 2022. arXiv: 2202 . 03293
[cs.PL].

[63] Alex Zinenko. PSA: run -reconcile-unrealized-casts after all -convert-*-to-llvm from now on.
url: https://discourse.llvm.org/t/psa-run-reconcile-unrealized-
casts - after - all - convert - to - llvm - from - now - on / 4266 (visited on
01/10/2024).

59

https://discourse.llvm.org/t/rfc-vector-dialects-neon-and-sve/2284
https://discourse.llvm.org/t/rfc-vector-dialects-neon-and-sve/2284
https://arxiv.org/abs/2202.03293
https://arxiv.org/abs/2202.03293
https://discourse.llvm.org/t/psa-run-reconcile-unrealized-casts-after-all-convert-to-llvm-from-now-on/4266
https://discourse.llvm.org/t/psa-run-reconcile-unrealized-casts-after-all-convert-to-llvm-from-now-on/4266

REFERENCES

60

Appendices

61

Appendix A

Benchmark Programs

A.1 MLIR
The program presented in listing A.1 was used for benchmarking in chapter 4, while the
program presented in listing A.2 was used in chapter 5. Both benchmark programs are based
on the mlir/benchmark/dgemm-hop.mlir file from the MLIRX repository1.

Listing A.1: Benchmark of naive-nest implementation of equation 1.1, with M = 2088 and
N = K = 2048.

1 func.func @matmul (%A: memref <2088 x2048xf64 >, %B: memref <2048 x2048xf64 >, %C: memref
<2088 x2048xf64 >) {

2 affine .for %arg3 = 0 to 2088 {
3 affine .for %arg4 = 0 to 2048 {
4 affine .for %arg5 = 0 to 2048 {
5 %a = affine .load %A[% arg3 , %arg5] : memref <2088 x2048xf64 >
6 %b = affine .load %B[% arg5 , %arg4] : memref <2048 x2048xf64 >
7 %ci = affine .load %C[% arg3 , %arg4] : memref <2088 x2048xf64 >
8 %p = arith .mulf %a, %b : f64
9 %co = arith .addf %ci , %p : f64

10 affine . store %co , %C[% arg3 , %arg4] : memref <2088 x2048xf64 >
11 }
12 }
13 }
14 return
15 }
16

17 func.func @main () {
18 %reps = index . constant 5
19

20 %A = memref . alloc () : memref <2088 x2048xf64 >
21 %B = memref . alloc () : memref <2048 x2048xf64 >
22 %C = memref . alloc () : memref <2088 x2048xf64 >
23 %cf1 = llvm.mlir. constant (1.00000 e+00 : f64) : f64
24

25 linalg .fill ins (% cf1 : f64) outs (%A : memref <2088 x2048xf64 >)

1MLIRX was MLIR with extensions, although defunct since 2 December 2023. The original benchmark
program can be viewed by reverting to commit with hash 120a9c93a3286c6745f3a824dd73521cd7a18dab [link].

63

https://github.com/polymage-labs/mlirx/blob/120a9c93a3286c6745f3a824dd73521cd7a18dab/mlir/benchmark/dgemm-hop.mlir

A. Benchmark Programs

26 linalg .fill ins (% cf1 : f64) outs (%B : memref <2048 x2048xf64 >)
27

28 % t_start = call @rtclock () : () -> (f64)
29 affine .for %ti = 0 to %reps {
30 linalg .fill ins (% cf1 : f64) outs (%C : memref <2088 x2048xf64 >)
31 func.call @matmul (%A, %B, %C) : (memref <2088 x2048xf64 >, memref <2048 x2048xf64

>, memref <2088 x2048xf64 >) -> ()
32 }
33 % t_end = call @rtclock () : () -> (f64)
34

35 %c0 = index . constant 0
36 %c1 = index . constant 1
37 %M = memref .dim %C, %c0 : memref <2088 x2048xf64 >
38 %N = memref .dim %C, %c1 : memref <2088 x2048xf64 >
39 %K = memref .dim %A, %c1 : memref <2088 x2048xf64 >
40

41 %t = arith .subf %t_end , % t_start : f64
42 %f1 = arith .muli %M, %N : index
43 %f2 = arith .muli %f1 , %K : index
44 // 2*M*N*K.
45 %c2 = index . constant 2
46 %f3 = arith .muli %c2 , %f2 : index
47 % num_flops = arith .muli %reps , %f3 : index
48 % num_flops_i = arith . index_cast % num_flops : index to i64
49 % num_flops_f = arith . sitofp % num_flops_i : i64 to f64
50 % flops = arith .divf % num_flops_f , %t : f64
51

52 call @printF64 (%t) : (f64) -> ()
53 call @printNewline () : () -> ()
54 call @printFlops (% flops) : (f64) -> ()
55

56 memref . dealloc %A : memref <2088 x2048xf64 >
57 memref . dealloc %B : memref <2048 x2048xf64 >
58 memref . dealloc %C : memref <2088 x2048xf64 >
59

60 return
61 }
62

63 func.func private @printNewline () -> ()
64 func.func private @printF64 (f64) -> ()
65 func.func private @printFlops (f64) -> ()
66 func.func private @rtclock () -> (f64)

Listing A.2: Benchmark of hlo.matmul, with M = 2088 and N = K = 2048.
1 func.func @main () {
2 %reps = index . constant 5
3

4 %A = memref . alloc () : memref <2088 x2048xf64 >
5 %B = memref . alloc () : memref <2048 x2048xf64 >
6 %C = memref . alloc () : memref <2088 x2048xf64 >
7 %cf1 = llvm.mlir. constant (1.00000 e+00 : f64) : f64
8

9 linalg .fill ins (% cf1 : f64) outs (%A : memref <2088 x2048xf64 >)
10 linalg .fill ins (% cf1 : f64) outs (%B : memref <2048 x2048xf64 >)
11

12 % t_start = call @rtclock () : () -> (f64)
13 affine .for %ti = 0 to %reps {
14 linalg .fill ins (% cf1 : f64) outs (%C : memref <2088 x2048xf64 >)
15 hlo. matmul ins (%A : memref <2088 x2048xf64 >, %B : memref <2048 x2048xf64 >, %C :

memref <2088 x2048xf64 >)
16 }
17 % t_end = call @rtclock () : () -> (f64)
18

19 %c0 = index . constant 0
20 %c1 = index . constant 1
21 %M = memref .dim %C, %c0 : memref <2088 x2048xf64 >
22 %N = memref .dim %C, %c1 : memref <2088 x2048xf64 >
23 %K = memref .dim %A, %c1 : memref <2088 x2048xf64 >

64

A.1 MLIR

24

25 %t = arith .subf %t_end , % t_start : f64
26 %f1 = arith .muli %M, %N : index
27 %f2 = arith .muli %f1 , %K : index
28 // 2*M*N*K.
29 %c2 = index . constant 2
30 %f3 = arith .muli %c2 , %f2 : index
31 % num_flops = arith .muli %reps , %f3 : index
32 % num_flops_i = arith . index_cast % num_flops : index to i64
33 % num_flops_f = arith . sitofp % num_flops_i : i64 to f64
34 % flops = arith .divf % num_flops_f , %t : f64
35

36 call @printF64 (%t) : (f64) -> ()
37 call @printNewline () : () -> ()
38 call @printFlops (% flops) : (f64) -> ()
39

40 memref . dealloc %A : memref <2088 x2048xf64 >
41 memref . dealloc %B : memref <2048 x2048xf64 >
42 memref . dealloc %C : memref <2088 x2048xf64 >
43

44 return
45 }
46

47 func.func private @printNewline () -> ()
48 func.func private @printF64 (f64) -> ()
49 func.func private @printFlops (f64) -> ()
50 func.func private @rtclock () -> (f64)

65

A. Benchmark Programs

66

Appendix B

Source files

B.1 MLIR

B.1.1 Toy Tutorial
MLIR’s Toy Tutorial walks through the implementation of a basic MLIR-based programming
language. Listing B.1 presents an example of how to emit LLVM IR from and MLIR module.

Listing B.1: Function exporting an MLIR module into LLVM IR. Taken from [34].
1 int dumpLLVMIR (mlir :: ModuleOp module) {
2 // Translate the module , that contains the LLVM dialect , to LLVM IR. Use a
3 // fresh LLVM IR context . (Note that LLVM is not thread -safe and any
4 // concurrent use of a context requires external locking .)
5 llvm :: LLVMContext llvmContext ;
6 auto llvmModule = mlir :: translateModuleToLLVMIR (module , llvmContext);
7 if (! llvmModule) {
8 llvm :: errs () << " Failed to emit LLVM IR\n";
9 return -1;

10 }
11

12 // Initialize LLVM targets .
13 llvm :: InitializeNativeTarget ();
14 llvm :: InitializeNativeTargetAsmPrinter ();
15 mlir :: ExecutionEngine :: setupTargetTriple (llvmModule .get ());
16

17 /// Optionally run an optimization pipeline over the llvm module .
18 auto optPipeline = mlir :: makeOptimizingTransformer (
19 /* optLevel =*/ EnableOpt ? 3 : 0, /* sizeLevel =*/0 ,
20 /* targetMachine =*/ nullptr);
21 if (auto err = optPipeline (llvmModule .get ())) {
22 llvm :: errs () << " Failed to optimize LLVM IR " << err << "\n";
23 return -1;
24 }
25 llvm :: errs () << * llvmModule << "\n";
26 return 0;
27 }

67

B. Source files

B.1.2 HLO dialect
The directory tree below displays all the files needed to implement hlo.

llvm-project
mlir

include
mlir

Dialect
HLO

IR
CMakeLists.txt
HLO.h
HLOBase.td
HLOOps.td

Transforms
CMakeLists.txt
Passes.h
Passes.td

CMakeLists.txt
lib

Dialect
HLO

IR
CMakeLists.txt
HLODialect.cpp
HLOOps.cpp

Transforms
CMakeLists.txt
HLOMatmulToLoops.cpp

CMakeLists.txt

In general, the include directory is reserved for public header files and lib for sources [35].
We have chosen to reserve the IR subdirectories for basic declarations and definitions per-
taining to hlo and hlo.matmul, and Transforms for the -hlo-matmul-to-loops pass.

Listings B.2, B.3 and B.4 present the .td files that are used to TableGen’erate boilerplate
code.

Listing B.2: TableGen file HLOBase.td.
1 include "mlir/IR/ DialectBase .td"
2

3 def HLO_Dialect : Dialect {
4 let name = "hlo ";
5

6 let summary = "A minimal dialect consisting of High - Level linear algebra
Operations .";

7

8 let description = [{
9 HLO is a minimal dialect consisting of High - Level linear algebra Operations .

10 }];
11

12 let cppNamespace = ":: mlir :: hlo ";
13

68

B.1 MLIR

14 let dependentDialects = [
15 " affine :: AffineDialect ",
16 " arith :: ArithDialect ",
17 " memref :: MemRefDialect ",
18 " vector :: VectorDialect "
19];
20

21 let extraClassDeclaration = [{
22 /// Register all dialect operations .
23 void registerOperations ();
24 }];
25 }

Listing B.3: TableGen file HLOOps.td.
1 include "mlir/IR/ OpBase .td"
2 include "mlir/ Dialect /HLO/IR/ HLOBase .td"
3

4 # ifndef HLO_OPS
5 # define HLO_OPS
6

7 class HLO_Op < string mnemonic , list <Trait > traits = []> :
8 Op < HLO_Dialect , mnemonic , traits > {}
9

10 def MatmulOp : HLO_Op <" matmul "> {
11 let arguments = (ins F64MemRef :$A , F64MemRef :$B , F64MemRef :$C);
12 let assemblyFormat = [{
13 attr -dict
14 ‘ins ‘ ‘(‘ $A ‘:‘ type($A) ‘,‘ $B ‘:‘ type($B) ‘,‘ $C ‘:‘ type($C) ‘)‘
15 }];
16 }
17

18 # endif // HLO_OPS

Listing B.4: TableGen file Passes.td.
1 # ifndef MLIR_DIALECT_HLO_PASSES
2 # define MLIR_DIALECT_HLO_PASSES
3

4 include "mlir/Pass/ PassBase .td"
5

6 def HLOMatmulToLoops : Pass <"hlo -matmul -to - loops ", "func :: FuncOp "> {
7 let summary = "...";
8 let constructor = "mlir :: hlo :: createHLOMatmulToLoopsPass () ";
9 let dependentDialects = [" affine :: AffineDialect ", " arith :: ArithDialect ", " memref

:: MemRefDialect ", " vector :: VectorDialect "];
10 let options = [
11 Option <" enableTiling ", "tile", "bool",
12 /* default =*/ " false ",
13 " Enables loop tiling .">,
14 ListOption <" tileParameters ", "tile - params ", " unsigned ",
15 "Loop tile parameters M_C , K_C , M_R and N_R .">,
16 Option <" enableExplicitCopying ", "copy", "bool",
17 /* default =*/ " false ",
18 " Enables explicit copying .">,
19 Option <" enableUnrolling ", " unroll ", "bool",
20 /* default =*/ " false ",
21 " Enables loop unrolling .">,
22 Option <" unrollFactor ", "unroll - factor ", " unsigned ",
23 /* default =*/ "4" ,
24 " Unroll factor for the k-loop .">,
25 Option <" enableScalarReplacement ", "scalar - replace ", "bool",
26 /* default =*/ " false ",
27 " Enables vectorization .">,
28 Option <" enableVectorization ", " vectorize ", "bool",
29 /* default =*/ " false ",
30 " Enables vectorization .">,
31];

69

B. Source files

32 }
33

34 # endif // MLIR_DIALECT_HLO_PASSES

The majority of the implementation resides in HLOMatmulToLoops.cpp, partially pre-
sented in listing B.5.

Listing B.5: Abbreviated version of HLOMatmulToLoops.cpp
1 /* included files */
2

3 namespace mlir {
4 namespace hlo {
5 # define GEN_PASS_DEF_HLOMATMULTOLOOPS
6 # include "mlir/ Dialect /HLO/ Transforms / Passes .h.inc"
7 } // namespace hlo
8 } // namespace mlir
9

10 namespace {
11

12 struct HLOMatmulToLoops
13 : public hlo :: impl :: HLOMatmulToLoopsBase <
14 HLOMatmulToLoops > {
15 void runOnOperation () override ;
16 /* extra implementation - specific definitions */
17 };
18

19 } // namespace
20

21 std :: unique_ptr < OperationPass <func :: FuncOp >>
22 mlir :: hlo :: createHLOMatmulToLoopsPass () {
23 return std :: make_unique < HLOMatmulToLoops >();
24 }
25

26 /* helper functions to construct the new operation */
27

28 class HLOMatmulRewritePattern : public OpRewritePattern <hlo :: MatmulOp > {
29 public :
30 HLOMatmulRewritePattern (MLIRContext *context , bool enableTiling , ArrayRef <

unsigned > tileParams , bool enableExplicitCopying , bool enableUnrolling ,
unsigned unrollFactor , bool enableVectorization) :

31 OpRewritePattern <hlo :: MatmulOp >(context , 1) ,
32 enableTiling (enableTiling), tileParams (tileParams),
33 enableExplicitCopying (enableExplicitCopying),
34 enableUnrolling (enableUnrolling), unrollFactor (

unrollFactor),
35 enableVectorization (enableVectorization) {}
36

37 LogicalResult matchAndRewrite (hlo :: MatmulOp op ,
38 PatternRewriter & rewriter) const override {
39 /* construct a new operation */
40 rewriter . replaceOp (op , newOp);
41 }
42

43 private :
44 bool enableTiling ;
45 ArrayRef <unsigned > tileParams ;
46 bool enableExplicitCopying ;
47 bool enableUnrolling ;
48 unsigned unrollFactor ;
49 bool enableVectorization ;
50 };
51

52

53 void HLOMatmulToLoops :: runOnOperation () {
54 auto enclosingOp = getOperation ();
55 MLIRContext * context = enclosingOp . getContext ();
56 RewritePatternSet patterns (context);
57 /* ... */

70

B.1 MLIR

58 patterns .add < HLOMatmulRewritePattern >(context , enableTiling , tileParams ,
enableExplicitCopying , enableUnrolling , unrollFactor , enableVectorization);

59 /* additional rewrite patterns for canonicalization */
60 applyPatternsAndFoldGreedily (enclosingOp , std :: move(patterns));
61 /* ... */

71

B. Source files

72

Appendix C

Demonstrations

C.1 Emitting LLVM IR with Clang
Using the -emit-llvm flag, we can observe the LLVM IR emitted from a file input to clang.
Listing C.2 presents the LLVM IR generated from the input file multiply.c (see listing C.1).

Listing C.1: Sample input file multiply.c consisting of a simple multiplication function.
1 int multiply () {
2 int a = 4;
3 int b = 10;
4 int c = a * b;
5

6 return c;
7 }

Listing C.2: Produced output file multiply.ll from running clang -S -emit-llvm
multiply.c.

1 ; ModuleID = ’c/ multiply .c’
2 source_filename = "c/ multiply .c"
3 target datalayout = "e-m:e-p270 :32:32 - p271 :32:32 - p272 :64:64 - i64 :64 - f80 :128 - n8

:16:32:64 - S128"
4 target triple = "x86_64 -pc -linux -gnu"
5

6 ; Function Attrs : noinline nounwind optnone uwtable
7 define dso_local i32 @multiply () #0 {
8 %1 = alloca i32 , align 4
9 %2 = alloca i32 , align 4

10 %3 = alloca i32 , align 4
11 store i32 4, i32* %1, align 4
12 store i32 10, i32* %2, align 4
13 %4 = load i32 , i32* %1, align 4
14 %5 = load i32 , i32* %2, align 4
15 %6 = mul nsw i32 %4, %5
16 store i32 %6, i32* %3, align 4
17 %7 = load i32 , i32* %3, align 4
18 ret i32 %7
19 }

73

C. Demonstrations

20

21 attributes #0 = { noinline nounwind optnone uwtable "frame - pointer "=" all" "min -
legal -vector - width "="0" "no -trapping -math "=" true" "stack -protector -buffer -size
"="8" "target -cpu "=" x86 -64" "target - features "="+ cx8 ,+ fxsr ,+mmx ,+sse ,+ sse2 ,+ x87"

"tune -cpu "=" generic " }
22

23 !llvm. module . flags = !{!0 , !1, !2, !3, !4}
24 !llvm. ident = !{!5}
25

26 !0 = !{ i32 1, !" wchar_size ", i32 4}
27 !1 = !{ i32 7, !" PIC Level ", i32 2}
28 !2 = !{ i32 7, !" PIE Level ", i32 2}
29 !3 = !{ i32 7, !" uwtable ", i32 1}
30 !4 = !{ i32 7, !" frame - pointer ", i32 2}
31 !5 = !{!" Ubuntu clang version 14.0.0 -1 ubuntu1 .1"}

C.2 The -affine-* passes
Listing C.3 presents @matmul (see listing A.1) transformed with MLIR’s pre-implemented
passes.

Listing C.3: @matmul with loop tiling and explicit copying applied, using the
-affine-loop-tile and -affine-data-copy-generate passes.

1 func.func @matmul (% arg0: memref <2088 x2048xf64 >, %arg1: memref <2048 x2048xf64 >, %arg2
: memref <2088 x2048xf64 >) {

2 % c118784 = arith.constant 118784 : index
3 %c0 = arith.constant 0 : index
4 % c118784_0 = arith.constant 118784 : index
5 %c0_1 = arith.constant 0 : index
6 % c4096 = arith.constant 4096 : index
7 %c0_2 = arith.constant 0 : index
8 % c1856 = arith.constant 1856 : index
9 %c0_3 = arith.constant 0 : index

10 %c0_4 = arith.constant 0 : index
11 affine.for %arg3 = 0 to 2088 step 232 {
12 affine.for %arg4 = 0 to 2048 step 512 {
13 %0 = affine.apply affine_map <(d0 , d1) -> (d0) >(%arg3 , %arg4)
14 %1 = affine.apply affine_map <(d0 , d1) -> (d1) >(%arg3 , %arg4)
15 % alloc = memref.alloc () : memref <232 x512xf64 >
16 affine.for %arg5 = affine_map <(d0) -> (d0) >(% arg3) to affine_map <(d0) -> (d0

+ 232) >(% arg3) {
17 affine.for %arg6 = affine_map <(d0) -> (d0) >(% arg4) to affine_map <(d0) -> (

d0 + 512) >(% arg4) {
18 %4 = affine.load %arg2 [% arg5 , %arg6] : memref <2088 x2048xf64 >
19 affine.store %4, % alloc [% arg5 - %arg3 , %arg6 - %arg4] : memref <232

x512xf64 >
20 }
21 }
22 affine.for %arg5 = 0 to 2048 step 8 {
23 %4 = affine.apply affine_map <(d0 , d1) -> (d0) >(%arg3 , %arg5)
24 %5 = affine.apply affine_map <(d0 , d1) -> (d1) >(%arg3 , %arg5)
25 % alloc_5 = memref.alloc () : memref <232 x8xf64 >
26 affine.for %arg6 = affine_map <(d0) -> (d0) >(% arg3) to affine_map <(d0) -> (

d0 + 232) >(% arg3) {
27 affine.for %arg7 = affine_map <(d0) -> (d0) >(% arg5) to affine_map <(d0) ->

(d0 + 8) >(% arg5) {
28 %8 = affine.load %arg0 [% arg6 , %arg7] : memref <2088 x2048xf64 >
29 affine.store %8, % alloc_5 [% arg6 - %arg3 , %arg7 - %arg5] : memref <232

x8xf64 >
30 }
31 }
32 %6 = affine.apply affine_map <(d0 , d1) -> (d0) >(%arg5 , %arg4)
33 %7 = affine.apply affine_map <(d0 , d1) -> (d1) >(%arg5 , %arg4)
34 % alloc_6 = memref.alloc () : memref <8 x512xf64 >

74

C.3 The -hlo-matmul-to-loops pass

35 affine.for %arg6 = affine_map <(d0) -> (d0) >(% arg5) to affine_map <(d0) -> (
d0 + 8) >(% arg5) {

36 affine.for %arg7 = affine_map <(d0) -> (d0) >(% arg4) to affine_map <(d0) ->
(d0 + 512) >(% arg4) {

37 %8 = affine.load %arg1 [% arg6 , %arg7] : memref <2048 x2048xf64 >
38 affine.store %8, % alloc_6 [% arg6 - %arg5 , %arg7 - %arg4] : memref <8

x512xf64 >
39 }
40 }
41 affine.for %arg6 = affine_map <(d0) -> (d0) >(% arg3) to affine_map <(d0) -> (

d0 + 232) >(% arg3) {
42 affine.for %arg7 = affine_map <(d0) -> (d0) >(% arg4) to affine_map <(d0) ->

(d0 + 512) >(% arg4) {
43 affine.for %arg8 = affine_map <(d0) -> (d0) >(% arg5) to affine_map <(d0)

-> (d0 + 8) >(% arg5) {
44 %8 = affine.load % alloc_5 [-% arg3 + %arg6 , -%arg5 + %arg8] : memref

<232 x8xf64 >
45 %9 = affine.load % alloc_6 [-% arg5 + %arg8 , -%arg4 + %arg7] : memref <8

x512xf64 >
46 %10 = affine.load % alloc [-% arg3 + %arg6 , -%arg4 + %arg7] : memref <232

x512xf64 >
47 %11 = arith.mulf %8, %9 : f64
48 %12 = arith.addf %10 , %11 : f64
49 affine.store %12 , % alloc [-% arg3 + %arg6 , -%arg4 + %arg7] : memref <232

x512xf64 >
50 }
51 }
52 }
53 memref.dealloc % alloc_6 : memref <8 x512xf64 >
54 memref.dealloc % alloc_5 : memref <232 x8xf64 >
55 }
56 %2 = affine.apply affine_map <(d0 , d1) -> (d0) >(%arg3 , %arg4)
57 %3 = affine.apply affine_map <(d0 , d1) -> (d1) >(%arg3 , %arg4)
58 affine.for %arg5 = affine_map <(d0) -> (d0) >(% arg3) to affine_map <(d0) -> (d0

+ 232) >(% arg3) {
59 affine.for %arg6 = affine_map <(d0) -> (d0) >(% arg4) to affine_map <(d0) -> (

d0 + 512) >(% arg4) {
60 %4 = affine.load % alloc [% arg5 - %arg3 , %arg6 - %arg4] : memref <232

x512xf64 >
61 affine.store %4, %arg2 [% arg5 , %arg6] : memref <2088 x2048xf64 >
62 }
63 }
64 memref.dealloc % alloc : memref <232 x512xf64 >
65 }
66 }
67 return
68 }

C.3 The -hlo-matmul-to-loops pass
The -hlo-matmul-to-loops pass transforms the matmul operation of the hlo dialect into
a 3-d loop nest. This is demonstrated in listing C.5, which is the result of applying the pass to
the input file in listing C.4. Listing C.6 presents the excerpt from listing C.5 corresponding
to hlo.matmul.

Listing C.4: The demonstration source file input/hlo_matmul_test.mlir.
1 func.func @main () {
2 %A = memref . alloc () : memref <2088 x2048xf64 >
3 %B = memref . alloc () : memref <2048 x2048xf64 >
4 %C = memref . alloc () : memref <2088 x2048xf64 >
5 %cf1 = llvm.mlir. constant (1.00000 e+00 : f64) : f64
6

7 linalg .fill ins (% cf1 : f64) outs (%A : memref <2088 x2048xf64 >)

75

C. Demonstrations

8 linalg .fill ins (% cf1 : f64) outs (%B : memref <2048 x2048xf64 >)
9 linalg .fill ins (% cf1 : f64) outs (%C : memref <2088 x2048xf64 >)

10

11 hlo. matmul ins (%A : memref <2088 x2048xf64 >, %B : memref <2048 x2048xf64 >, %C :
memref <2088 x2048xf64 >)

12

13 memref . dealloc %A : memref <2088 x2048xf64 >
14 memref . dealloc %B : memref <2048 x2048xf64 >
15 memref . dealloc %C : memref <2088 x2048xf64 >
16

17 return
18 }

Listing C.5: Output from running mlir-opt -hlo-matmul-to-loops
input/hlo_matmul_test.mlir.

1 module {
2 func.func @main () {
3 %0 = llvm.mlir. constant (1.000000 e+00 : f64) : f64
4 % alloc = memref . alloc () : memref <2088 x2048xf64 >
5 % alloc_0 = memref . alloc () : memref <2048 x2048xf64 >
6 % alloc_1 = memref . alloc () : memref <2088 x2048xf64 >
7 linalg .fill ins (%0 : f64) outs (% alloc : memref <2088 x2048xf64 >)
8 linalg .fill ins (%0 : f64) outs (% alloc_0 : memref <2048 x2048xf64 >)
9 linalg .fill ins (%0 : f64) outs (% alloc_1 : memref <2088 x2048xf64 >)

10 affine .for %arg0 = 0 to 2088 {
11 affine .for %arg1 = 0 to 2048 {
12 affine .for %arg2 = 0 to 2048 {
13 %1 = affine .load % alloc [symbol (% arg0), symbol (% arg2)] : memref <2088

x2048xf64 >
14 %2 = affine .load % alloc_0 [symbol (% arg2), symbol (% arg1)] : memref <2048

x2048xf64 >
15 %3 = affine .load % alloc_1 [symbol (% arg0), symbol (% arg1)] : memref <2088

x2048xf64 >
16 %4 = arith .mulf %1, %2 fastmath <fast > : f64
17 %5 = arith .addf %3, %4 fastmath <fast > : f64
18 affine . store %5, % alloc_1 [symbol (% arg0), symbol (% arg1)] : memref <2088

x2048xf64 >
19 }
20 }
21 }
22 memref . dealloc % alloc : memref <2088 x2048xf64 >
23 memref . dealloc % alloc_0 : memref <2048 x2048xf64 >
24 memref . dealloc % alloc_1 : memref <2088 x2048xf64 >
25 return
26 }
27 }

Listing C.6: Excerpt from listing C.5 which corresponds to hlo.matmul.
1 affine .for %arg0 = 0 to 2088 {
2 affine .for %arg1 = 0 to 2048 {
3 affine .for %arg2 = 0 to 2048 {
4 %1 = affine .load % alloc [symbol (% arg0), symbol (% arg2)] : memref <2088 x2048xf64 >
5 %2 = affine .load % alloc_0 [symbol (% arg2), symbol (% arg1)] : memref <2048

x2048xf64 >
6 %3 = affine .load % alloc_1 [symbol (% arg0), symbol (% arg1)] : memref <2088

x2048xf64 >
7 %4 = arith .mulf %1, %2 fastmath <fast > : f64
8 %5 = arith .addf %3, %4 fastmath <fast > : f64
9 affine . store %5, % alloc_1 [symbol (% arg0), symbol (% arg1)] : memref <2088

x2048xf64 >
10 }
11 }
12 }

The loop nest is optimized by specifying the options within -hlo-matmul-to-loops.

76

C.3 The -hlo-matmul-to-loops pass

The first option to demonstrate is tile which enables loop tiling, as shown in listing C.8.
Listing C.7 presents the initial implementation of the loop tiling scheme, where the induction
variables and loop bounds have not been adjusted according to our specifications.

Listing C.7: Output produced from the initial loop tiling implementation.
1 # map = affine_map <(d0) -> (d0)>
2 # map1 = affine_map <(d0) -> (2088 , d0 + 165) >
3 # map2 = affine_map <(d0) -> (2048 , d0 + 720) >
4 # map3 = affine_map <(d0) -> (d0 + 8) >
5 # map4 = affine_map <(d0 , d1) -> (d0 , d1)>
6 # map5 = affine_map <(d0 , d1) -> (2088 , d0 + 165 , d1 + 3) >
7 module {
8 func.func @main () {
9 %0 = llvm.mlir. constant (1.000000 e+00 : f64) : f64

10 % alloc = memref . alloc () : memref <2088 x2048xf64 >
11 % alloc_0 = memref . alloc () : memref <2048 x2048xf64 >
12 % alloc_1 = memref . alloc () : memref <2088 x2048xf64 >
13 linalg .fill ins (%0 : f64) outs (% alloc : memref <2088 x2048xf64 >)
14 linalg .fill ins (%0 : f64) outs (% alloc_0 : memref <2048 x2048xf64 >)
15 linalg .fill ins (%0 : f64) outs (% alloc_1 : memref <2088 x2048xf64 >)
16 affine .for %arg0 = 0 to 2048 step 720 {
17 affine .for %arg1 = 0 to 2088 step 165 {
18 affine .for %arg2 = 0 to 2048 step 8 {
19 affine .for %arg3 = #map (% arg1) to min #map1 (% arg1) step 3 {
20 affine .for %arg4 = #map (% arg0) to min #map2 (% arg0) {
21 affine .for %arg5 = #map (% arg2) to #map3 (% arg2) {
22 affine .for %arg6 = max #map4 (% arg1 , %arg3) to min #map5 (% arg1 , %

arg3) {
23 %1 = affine .load % alloc [symbol (% arg6), symbol (% arg4)] :

memref <2088 x2048xf64 >
24 %2 = affine .load % alloc_0 [symbol (% arg4), symbol (% arg5)] :

memref <2048 x2048xf64 >
25 %3 = affine .load % alloc_1 [symbol (% arg6), symbol (% arg5)] :

memref <2088 x2048xf64 >
26 %4 = arith .mulf %1, %2 fastmath <fast > : f64
27 %5 = arith .addf %3, %4 fastmath <fast > : f64
28 affine . store %5, % alloc_1 [symbol (% arg6), symbol (% arg5)] :

memref <2088 x2048xf64 >
29 }
30 }
31 }
32 }
33 }
34 }
35 }
36 memref . dealloc % alloc : memref <2088 x2048xf64 >
37 memref . dealloc % alloc_0 : memref <2048 x2048xf64 >
38 memref . dealloc % alloc_1 : memref <2088 x2048xf64 >
39 return
40 }
41 }

Listing C.8: Loop tiling enabled with MC = 165, KC = 720, MR = 3 and NR = 8.
1 #map = affine_map <(d0) -> (d0 * 55) >
2 #map1 = affine_map <(d0) -> (696 , d0 * 55 + 55) >
3 #map2 = affine_map <(d0) -> (d0 * -720 + 2048 , 720) >
4 module {
5 func.func @main () {
6 %0 = llvm.mlir. constant (1.000000 e+00 : f64) : f64
7 % alloc = memref . alloc () : memref <2088 x2048xf64 >
8 % alloc_0 = memref . alloc () : memref <2048 x2048xf64 >
9 % alloc_1 = memref . alloc () : memref <2088 x2048xf64 >

10 linalg .fill ins (%0 : f64) outs (% alloc : memref <2088 x2048xf64 >)
11 linalg .fill ins (%0 : f64) outs (% alloc_0 : memref <2048 x2048xf64 >)
12 linalg .fill ins (%0 : f64) outs (% alloc_1 : memref <2088 x2048xf64 >)
13 affine .for %arg0 = 0 to 3 {

77

C. Demonstrations

14 affine .for %arg1 = 0 to 13 {
15 affine .for %arg2 = 0 to 256 {
16 affine .for %arg3 = #map (% arg1) to min #map1 (% arg1) {
17 affine .for %arg4 = 0 to min #map2 (% arg0) {
18 affine .for %arg5 = 0 to 8 {
19 affine .for %arg6 = 0 to 3 {
20 %1 = affine .load % alloc [% arg6 + %arg3 * 3, %arg4 + %arg0 * 720] :

memref <2088 x2048xf64 >
21 %2 = affine .load % alloc_0 [% arg4 + %arg0 * 720 , %arg5 + %arg2 * 8]

: memref <2048 x2048xf64 >
22 %3 = affine .load % alloc_1 [% arg6 + %arg3 * 3, %arg5 + %arg2 * 8] :

memref <2088 x2048xf64 >
23 %4 = arith .mulf %1, %2 fastmath <fast > : f64
24 %5 = arith .addf %3, %4 fastmath <fast > : f64
25 affine . store %5, % alloc_1 [% arg6 + %arg3 * 3, %arg5 + %arg2 * 8] :

memref <2088 x2048xf64 >
26 }
27 }
28 }
29 }
30 }
31 }
32 }
33 memref . dealloc % alloc : memref <2088 x2048xf64 >
34 memref . dealloc % alloc_0 : memref <2048 x2048xf64 >
35 memref . dealloc % alloc_1 : memref <2088 x2048xf64 >
36 return
37 }
38 }

Option copy enables explicit copying, as shown in listing C.9.

Listing C.9: Loop tiling and explicit copying enabled.
1 #map = affine_map <(d0) -> (d0 * 165) >
2 #map1 = affine_map <(d0) -> (2088 , d0 * 165 + 165) >
3 #map2 = affine_map <(d0) -> (d0 * 720) >
4 #map3 = affine_map <(d0) -> (2048 , d0 * 720 + 720) >
5 #map4 = affine_map <(d0) -> (d0 * 8) >
6 #map5 = affine_map <(d0) -> (d0 * 8 + 8) >
7 #map6 = affine_map <(d0) -> (d0 * 55) >
8 #map7 = affine_map <(d0) -> (696 , d0 * 55 + 55) >
9 #map8 = affine_map <(d0) -> (d0 * -720 + 2048 , 720) >

10 module {
11 func.func @main () {
12 %0 = llvm.mlir. constant (1.000000 e+00 : f64) : f64
13 % alloc = memref . alloc () : memref <2088 x2048xf64 >
14 % alloc_0 = memref . alloc () : memref <2048 x2048xf64 >
15 % alloc_1 = memref . alloc () : memref <2088 x2048xf64 >
16 linalg .fill ins (%0 : f64) outs (% alloc : memref <2088 x2048xf64 >)
17 linalg .fill ins (%0 : f64) outs (% alloc_0 : memref <2048 x2048xf64 >)
18 linalg .fill ins (%0 : f64) outs (% alloc_1 : memref <2088 x2048xf64 >)
19 affine .for %arg0 = 0 to 3 {
20 affine .for %arg1 = 0 to 13 {
21 % alloc_2 = memref . alloc () { alignment = 32 : i64} : memref <165 x720xf64 >
22 affine .for %arg2 = #map (% arg1) to min #map1 (% arg1) {
23 affine .for %arg3 = #map2 (% arg0) to min #map3 (% arg0) {
24 %1 = affine .load % alloc [% arg2 , %arg3] : memref <2088 x2048xf64 >
25 affine . store %1, % alloc_2 [% arg2 - %arg1 * 165 , %arg3 - %arg0 * 720] :

memref <165 x720xf64 >
26 }
27 }
28 affine .for %arg2 = 0 to 256 {
29 % alloc_3 = memref . alloc () { alignment = 32 : i64} : memref <720 x8xf64 >
30 affine .for %arg3 = #map2 (% arg0) to min #map3 (% arg0) {
31 affine .for %arg4 = #map4 (% arg2) to #map5 (% arg2) {
32 %1 = affine .load % alloc_0 [% arg3 , %arg4] : memref <2048 x2048xf64 >
33 affine . store %1, % alloc_3 [% arg3 - %arg0 * 720 , %arg4 - %arg2 * 8] :

memref <720 x8xf64 >
34 }

78

C.3 The -hlo-matmul-to-loops pass

35 }
36 affine .for %arg3 = #map6 (% arg1) to min #map7 (% arg1) {
37 affine .for %arg4 = 0 to min #map8 (% arg0) {
38 affine .for %arg5 = 0 to 8 {
39 affine .for %arg6 = 0 to 3 {
40 %1 = affine .load % alloc_2 [% arg1 * -165 + %arg6 + %arg3 * 3, %arg4

] : memref <165 x720xf64 >
41 %2 = affine .load % alloc_3 [% arg4 , %arg5] : memref <720 x8xf64 >
42 %3 = affine .load % alloc_1 [% arg6 + %arg3 * 3, %arg5 + %arg2 * 8] :

memref <2088 x2048xf64 >
43 %4 = arith .mulf %1, %2 fastmath <fast > : f64
44 %5 = arith .addf %3, %4 fastmath <fast > : f64
45 affine . store %5, % alloc_1 [% arg6 + %arg3 * 3, %arg5 + %arg2 * 8] :

memref <2088 x2048xf64 >
46 }
47 }
48 }
49 }
50 memref . dealloc % alloc_3 : memref <720 x8xf64 >
51 }
52 memref . dealloc % alloc_2 : memref <165 x720xf64 >
53 }
54 }
55 memref . dealloc % alloc : memref <2088 x2048xf64 >
56 memref . dealloc % alloc_0 : memref <2048 x2048xf64 >
57 memref . dealloc % alloc_1 : memref <2088 x2048xf64 >
58 return
59 }
60 }

Listing C.10 demonstrates loop unrolling with scalar replacement, enabled through un-
roll and scalar-replace. Explicit copying has been disabled, NR has been decreased and
KU is set to 1 to minimize the size of the output.

Listing C.10: Loop tiling, loop unrolling and scalar replacement enabled. NR = 2 and
KU = 1 for readability.

1 #map = affine_map <(d0) -> (d0 * 55) >
2 #map1 = affine_map <(d0) -> (696 , d0 * 55 + 55) >
3 #map2 = affine_map <(d0) -> (d0 * -720 + 2048 , 720) >
4 module {
5 func.func @main () {
6 %0 = llvm.mlir. constant (1.000000 e+00 : f64) : f64
7 % alloc = memref . alloc () : memref <2088 x2048xf64 >
8 % alloc_0 = memref . alloc () : memref <2048 x2048xf64 >
9 % alloc_1 = memref . alloc () : memref <2088 x2048xf64 >

10 linalg .fill ins (%0 : f64) outs (% alloc : memref <2088 x2048xf64 >)
11 linalg .fill ins (%0 : f64) outs (% alloc_0 : memref <2048 x2048xf64 >)
12 linalg .fill ins (%0 : f64) outs (% alloc_1 : memref <2088 x2048xf64 >)
13 affine .for %arg0 = 0 to 3 {
14 affine .for %arg1 = 0 to 13 {
15 affine .for %arg2 = 0 to 1024 {
16 affine .for %arg3 = #map (% arg1) to min #map1 (% arg1) {
17 affine .for %arg4 = 0 to min #map2 (% arg0) {
18 %1 = affine .load % alloc [% arg3 * 3, %arg4 + %arg0 * 720] : memref <2088

x2048xf64 >
19 %2 = affine .load % alloc_0 [% arg4 + %arg0 * 720 , %arg2 * 2] : memref

<2048 x2048xf64 >
20 %3 = affine .load % alloc_1 [% arg3 * 3, %arg2 * 2] : memref <2088

x2048xf64 >
21 %4 = arith .mulf %1, %2 fastmath <fast > : f64
22 %5 = arith .addf %3, %4 fastmath <fast > : f64
23 affine . store %5, % alloc_1 [% arg3 * 3, %arg2 * 2] : memref <2088

x2048xf64 >
24 %6 = affine .load % alloc [% arg3 * 3 + 1, %arg4 + %arg0 * 720] : memref

<2088 x2048xf64 >
25 %7 = affine .load % alloc_1 [% arg3 * 3 + 1, %arg2 * 2] : memref <2088

x2048xf64 >

79

C. Demonstrations

26 %8 = arith .mulf %6, %2 fastmath <fast > : f64
27 %9 = arith .addf %7, %8 fastmath <fast > : f64
28 affine . store %9, % alloc_1 [% arg3 * 3 + 1, %arg2 * 2] : memref <2088

x2048xf64 >
29 %10 = affine .load % alloc [% arg3 * 3 + 2, %arg4 + %arg0 * 720] : memref

<2088 x2048xf64 >
30 %11 = affine .load % alloc_1 [% arg3 * 3 + 2, %arg2 * 2] : memref <2088

x2048xf64 >
31 %12 = arith .mulf %10 , %2 fastmath <fast > : f64
32 %13 = arith .addf %11 , %12 fastmath <fast > : f64
33 affine . store %13 , % alloc_1 [% arg3 * 3 + 2, %arg2 * 2] : memref <2088

x2048xf64 >
34 %14 = affine .load % alloc_0 [% arg4 + %arg0 * 720 , %arg2 * 2 + 1] :

memref <2048 x2048xf64 >
35 %15 = affine .load % alloc_1 [% arg3 * 3, %arg2 * 2 + 1] : memref <2088

x2048xf64 >
36 %16 = arith .mulf %1, %14 fastmath <fast > : f64
37 %17 = arith .addf %15 , %16 fastmath <fast > : f64
38 affine . store %17 , % alloc_1 [% arg3 * 3, %arg2 * 2 + 1] : memref <2088

x2048xf64 >
39 %18 = affine .load % alloc_1 [% arg3 * 3 + 1, %arg2 * 2 + 1] : memref

<2088 x2048xf64 >
40 %19 = arith .mulf %6, %14 fastmath <fast > : f64
41 %20 = arith .addf %18 , %19 fastmath <fast > : f64
42 affine . store %20 , % alloc_1 [% arg3 * 3 + 1, %arg2 * 2 + 1] : memref

<2088 x2048xf64 >
43 %21 = affine .load % alloc_1 [% arg3 * 3 + 2, %arg2 * 2 + 1] : memref

<2088 x2048xf64 >
44 %22 = arith .mulf %10 , %14 fastmath <fast > : f64
45 %23 = arith .addf %21 , %22 fastmath <fast > : f64
46 affine . store %23 , % alloc_1 [% arg3 * 3 + 2, %arg2 * 2 + 1] : memref

<2088 x2048xf64 >
47 }
48 }
49 }
50 }
51 }
52 memref . dealloc % alloc : memref <2088 x2048xf64 >
53 memref . dealloc % alloc_0 : memref <2048 x2048xf64 >
54 memref . dealloc % alloc_1 : memref <2088 x2048xf64 >
55 return
56 }
57 }

Listing C.11 corresponds to listing C.10 with vectorization enabled.

Listing C.11: Loop tiling, loop unrolling, scalar replacement and vectorization enabled.
NR = 2 and KU = 1 for readability.

1 #map = affine_map <(d0) -> (d0 * 55) >
2 #map1 = affine_map <(d0) -> (696 , d0 * 55 + 55) >
3 #map2 = affine_map <(d0) -> (d0 * -720 + 2048 , 720) >
4 module {
5 func.func @main () {
6 %0 = llvm.mlir. constant (1.000000 e+00 : f64) : f64
7 % alloc = memref . alloc () : memref <2088 x2048xf64 >
8 % alloc_0 = memref . alloc () : memref <2048 x2048xf64 >
9 % alloc_1 = memref . alloc () : memref <2088 x2048xf64 >

10 linalg .fill ins (%0 : f64) outs (% alloc : memref <2088 x2048xf64 >)
11 linalg .fill ins (%0 : f64) outs (% alloc_0 : memref <2048 x2048xf64 >)
12 linalg .fill ins (%0 : f64) outs (% alloc_1 : memref <2088 x2048xf64 >)
13 %1 = memref . shape_cast % alloc_0 : memref <2048 x2048xf64 > to memref <2048

x1024xvector <2 xf64 >>
14 %2 = memref . shape_cast % alloc_1 : memref <2088 x2048xf64 > to memref <2088

x1024xvector <2 xf64 >>
15 affine .for %arg0 = 0 to 3 {
16 affine .for %arg1 = 0 to 13 {
17 affine .for %arg2 = 0 to 1024 {
18 affine .for %arg3 = #map (% arg1) to min #map1 (% arg1) {

80

C.3 The -hlo-matmul-to-loops pass

19 affine .for %arg4 = 0 to min #map2 (% arg0) {
20 %3 = affine .load % alloc [% arg3 * 3, %arg4 + %arg0 * 720] : memref <2088

x2048xf64 >
21 %4 = vector . splat %3 : vector <2 xf64 >
22 %5 = affine .load %1[% arg4 + %arg0 * 720 , %arg2] : memref <2048

x1024xvector <2 xf64 >>
23 %6 = affine .load %2[% arg3 * 3, %arg2] : memref <2088 x1024xvector <2 xf64

>>
24 %7 = vector .fma %4, %5, %6 : vector <2 xf64 >
25 affine . store %7, %2[% arg3 * 3, %arg2] : memref <2088 x1024xvector <2 xf64

>>
26 %8 = affine .load % alloc [% arg3 * 3 + 1, %arg4 + %arg0 * 720] : memref

<2088 x2048xf64 >
27 %9 = vector . splat %8 : vector <2 xf64 >
28 %10 = affine .load %1[% arg4 + %arg0 * 720 , %arg2] : memref <2048

x1024xvector <2 xf64 >>
29 %11 = affine .load %2[% arg3 * 3 + 1, %arg2] : memref <2088 x1024xvector

<2 xf64 >>
30 %12 = vector .fma %9, %10 , %11 : vector <2 xf64 >
31 affine . store %12 , %2[% arg3 * 3 + 1, %arg2] : memref <2088 x1024xvector

<2 xf64 >>
32 %13 = affine .load % alloc [% arg3 * 3 + 2, %arg4 + %arg0 * 720] : memref

<2088 x2048xf64 >
33 %14 = vector . splat %13 : vector <2 xf64 >
34 %15 = affine .load %1[% arg4 + %arg0 * 720 , %arg2] : memref <2048

x1024xvector <2 xf64 >>
35 %16 = affine .load %2[% arg3 * 3 + 2, %arg2] : memref <2088 x1024xvector

<2 xf64 >>
36 %17 = vector .fma %14 , %15 , %16 : vector <2 xf64 >
37 affine . store %17 , %2[% arg3 * 3 + 2, %arg2] : memref <2088 x1024xvector

<2 xf64 >>
38 }
39 }
40 }
41 }
42 }
43 memref . dealloc % alloc : memref <2088 x2048xf64 >
44 memref . dealloc % alloc_0 : memref <2048 x2048xf64 >
45 memref . dealloc % alloc_1 : memref <2088 x2048xf64 >
46 return
47 }
48 }

81

DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HÖGSKOLA | PRESENTED 2024-01-09

MASTER’S THESIS MLIR-based Code Generation for High-Performance Machine Learning on
AArch64
STUDENT Johanna Gustafson
SUPERVISORS Jonas Skeppstedt (LTH), Fredrik Knutsson (Arm), Per Åstrand (Arm)
EXAMINER Flavius Gruian (LTH)

Using MLIR to conquer machine learning

POPULAR SCIENCE SUMMARY Johanna Gustafson

In the quest of high execution speeds, current machine learning systems tend to rely on
high-performance compute libraries optimized for a narrow range of hardware devices.
Thus, we propose a modular approach in the design of machine learning systems,
utilizing the reusable and extensible MLIR compiler framework.

Imagine you are in middle school, given the assign-
ment of constructing a durable miniature bridge.
The more weight it can bear, the better. Your
teacher explains that the best bridges tend to
be based upon triangular units and mentions the
Howe truss and Warren truss bridges. With no
further explanation, they walk out of the room.
Suddenly, you feel confused; what is Howe or War-
ren truss? Not only do you have to come up with a
design through guesswork, you also have to collect
material on your own.

Our master’s thesis investigates this issue, al-
though replacing bridges with machine learning
systems and durability with performance. More
specifically, the problem pertains to adapting ad-
vancements within machine learning technology to
the ever-expanding plethora of hardware. We be-
lieve MLIR (Multi-Level Intermediate Represen-
tation) — a novel approach to building reusable
and extensible compiler infrastructure — is a so-
lution to this issue. MLIR can be likened to the
teacher providing you and your classmates with
popsicle sticks, glue and a suggested step-by-step
guide on how to go about the task, although giv-
ing you the freedom to modify and expand as you
wish. This simple consideration eliminates the ef-
fort by you and your classmates to each surpass
the initial threshold of the assignment.

Given the width of machine learning topics, we
focused on one fundamental computation — mul-
tiplication and addition of matrices — and demon-
strated the implementation of an optimized MLIR
operation, as presented in figure 1. We believe the
results of our research is indicative of the poten-
tial benefits of incorporating MLIR into machine
learning systems, in constituting retargetability
while retaining high performance.

Figure 1: The implemented operation is essen-
tially a nest of loops around a so-called micro-
kernel; a small sequence of computation tasks.
This image illustrates the two innermost loops,
where partitions of the three original matrices are
multiplied and added.

	Introduction
	Related work
	An Early Case Study with GEMM

	Research Objective
	Research Questions
	Contribution to Research

	Background
	Compiler Architecture
	Emitting LLVM IR with Clang

	The MLIR Compiler Framework
	Lowering MLIR to LLVM IR

	Setup
	Hardware
	Software

	Initial DGEMM Benchmarks
	General-Purpose Compilers
	High-Perfomance Compute Libraries

	Exploring the MLIR Framework
	MLIR's Infrastructure for Optimizations
	Loop Tiling
	Explicit Copying

	Implementing a High-Performance DGEMM Routine in MLIR
	HLO: A Minimal Dialect for High-Level Operations
	Building the Loop Nest
	Optimizing the Loop Nest
	Loop Tiling
	Explicit Copying
	Loop Unrolling
	Scalar Replacement
	Vectorization
	Inspecting the Assembly
	Fine-Tuning the Parameters

	Reflections
	Research Questions
	Future Work
	Conclusion

	Appendix Benchmark Programs
	MLIR

	Appendix Source files
	MLIR
	Toy Tutorial
	HLO dialect

	Appendix Demonstrations
	Emitting LLVM IR with Clang
	The -affine-* passes
	The -hlo-matmul-to-loops pass

