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Abstract    

 

Nowadays, public bicycle-sharing systems have been introduced in several big cities. Even 

though it is an undeniably sustainable and effective means of transport, monitoring the demand 

is of paramount importance to facilitate station planning and enhance the effectiveness of the 

local bike-sharing networks. Therefore, this thesis focuses on predicting the station-level 

demand of a docked public bicycle-sharing system by applying deep learning (DL) models. 

The predictions made by the DL models, specifically the Spatial Regression Graph 

Convolutional Neural Network (SRGCNN) and the SRGCNN-Geographically Weighted, are 

compared with classical machine learning (ML) methods, including Multiple Linear 

Regression, Multilayer Perceptron (MLP) Regressor, Support Vector Machine (SVM), and 

Random Forest (RF) Regressor. The number of trips between the stations is utilized to facilitate 

the station demand prediction. The two DL models are implemented and evaluated. Initially, 

station demand is measured based on the number of start trips for each station. Exploratory 

variables based on the urban built environment are calculated as influencing factors for the 

prediction task. The DL and ML models utilize these calculated features to predict the station 

demand. The overall results indicate that in terms of RMSE, MAE, and R-squared, the DL 

models and RF Regressor exhibit better performance in predicting station-level demand than 

the rest of the ML models. This thesis contributes to monitoring and decision-making processes 

regarding public bicycle-sharing station-level planning by examining the different influencing 

factors based on the urban built environment and implementing Machine learning and deep 

learning methods to predict the station-level demand. Future research endeavors could improve 

the models’ performance results and examine different factors affecting the PBS station-level 

planning.     
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1. Introduction 
 

A city comprises different subsystems, such as industries, universities, and transportation, 

facilitating residents' everyday life and development (Zong et al., 2019). The transportation 

subsystem ensures citizens' safety, convenience, and efficient daily commute from one place 

to another (Xiao et al., 2020). Nonetheless, the rapid growth of urbanization in numerous big 

cities has led to several problems, such as pollution, noise, parking, accidents, and congestion 

(Xiao et al., 2019). Therefore, the citizens' travel needs are hard to fulfill, and their travel 

efficacy could be higher (Xiao et al., 2020).  

 

Alternative ways of shared mobility (bike, e-bike, e-scooter, and car sharing) have been 

introduced in several cities around the globe (Si et al., 2019). Specifically, Public Bicycle-

sharing systems (PBS) as a more sustainable transportation solution aim to reduce carbon 

emissions further and provide citizens with independence and a more convenient, flexible, and 

sustainable transportation system (Chen et al., 2021). PBS systems consist of Station-

based/Docked and Dockless Public Bicycle-sharing systems (SD-PBS and DL-PBS, 

respectively).  

 

PBS programs and their users have grown significantly in recent years. According to Xiao et 

al. (2020), 256 cities in China had implemented their PBS programs with more than 50 million 

users by July 2018. The business model, the network design, the proper selection of operation 

areas, and predicting the picking up and returning bike demand are contributing factors to a 

successful and sustainable PBS system (Zhang et al., 2015). Despite the advantages, several 

problems have occurred after their application. To mention a few, unintelligent and random 

placement of bicycle stations and aimless and inaccurate bicycle deployment make it hard to 

deal with road management and traffic safety (Chen et al., 2020; Ma et al., 2016). In addition, 

problematic bicycle distribution leads to the depletion of bicycle resources. Hence, appropriate 

bicycle station arrangements are vital to enhancing the usage efficiency of PBS and bicycle 

availability, allocation, and usage (Chen et al., 2021).  

 

The PBS demand prediction can be implemented in three ways: cluster, area, and station-based 

demand prediction (Xiao et al., 2020). In cluster-based demand prediction, stations are 

separated into clusters with multiple clustering algorithms. Stations in the same clusters have 

similar demand characteristics, and those in different clusters have distinct demand 

characteristics. Contrastingly, area-based demand prediction aims at calculating the bike 

station demand in a particular area based on map segmentation. Studies show that deciding the 

study area size is hard since bike-sharing stations are unevenly distributed. Lastly, station-

based demand prediction is applied at a smaller scale, which is vital to improving the selection 

of operation areas and user convenience. 

 

This research utilizes the novel deep learning method Graph Convolutional Neural Network 

(GCNN) to accurately predict the PBS station-based demand, optimizing the existing bicycle 

station layout. GCNN, as a type of neural network working with graphs, can predict nodes, 
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edges, and network-based tasks. There have already been several studies in micro-mobility 

patterns utilizing machine learning techniques. However, the use of the GCNN method has 

been relatively limited in previous research endeavors; therefore, the findings of this study can 

lay the foundation for comparing and utilizing previous studies in future endeavors. 

Additionally, implementing the proposed GCNN method will facilitate public transport 

capacity mitigation and micro-mobility monitoring by city planners, policymakers, and service 

providers (Li et al., 2021).  

 

1.1 Research gaps 

 

Most studies have applied GCNN in various domains, such as traffic forecasting, taxi demand, 

and business practices, but in micro-mobility demand prediction they are still rare, especially 

when it comes to station planning. Moreover, influencing factors on demand prediction have 

been examined but not in conjunction with GCNN modeling. Therefore, this study aims to 

bridge the gap by exploring different variables that can impact long-term PBS demand 

prediction, focusing on the built environment. Additionally, graphs are constructed, and two 

GCNN models are developed to investigate the influencing factors of PBS demand and assist 

station planning.  

 

1.2 Master thesis aim  

 

This thesis aims to study the application of GCNN for predicting the station-based demand to 

assist station planning. Two GCNN models are applied to graphs to predict the bike-sharing 

station demand. Graphs are constructed based on the number of trips. The GCNN models and 

the different graph structures are scrutinized. This thesis has the following research objectives:  

o Outline the existing influence factors related to bike-sharing demand.  

o Define and implement two Graph Convolutional Neural networks to predict 

station-based demand.  

o Compare the prediction performance of two GCNNs with traditional machine 

learning methods.  

2. Background 

2.1 Graph Convolutional Neural Networks  

 

The evolution of smart cities and intelligent transportation systems led to integration of big 

data with machine learning into the micro-mobility system analysis (Chen, Chen, et al., 2020). 

Graph neural networks (GNN), used for nonlinear machine learning models, have recently 

drawn much attention. Graph structures, which can emulate the spatial and temporal 

relationships with the temporal and spatial convolutional network, can facilitate the station-

level prediction and achieve better accuracy (Luo et al.,2021). The training of the model can 

be based on the graphs. Researchers tried to make the model less complex by introducing 

convolution into the GNN. 
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Graph Convolutional Neural Networks (GCNN) have been recently used in various 

applications, especially within the geospatial domain. That is because most of the data in the 

real world are non-Euclidean, are described by nodes with various characteristics, and therefore 

have underlying graph structures. The difference between GCNN and regular CNN lies in the 

data structure; CNN operates in Euclidean data structures, while GCNN operates in unordered 

nodes, connected in various ways and having different properties. In addition, graph CNN 

performs better when it comes to computational efficiency.  

 

GCNNs have been applied in multi-scale traffic forecasting, which is the basis of urban traffic 

control and guidance. The traffic flow variables (namely speed, volume, and density) indicate 

the traffic condition status and contribute to future traffic predictions. Although statistical 

methods such as linear regression perform well on short-interval forecasts, they could be more 

effective in long-term predictions. That is because traffic flow is complex and uncertain. 

Machine learning methods, such as Support Vector Machine (SVM) and Neural Networks 

(NN), have challenged classic statistical models by providing higher prediction accuracy (Yu 

et al., 2017). Nonetheless, traffic networks are dense. Therefore, extracting spatial and temporal 

features jointly from the input is challenging.  

 

Yu et al. (2017) introduced a different approach for extracting traffic flow's temporal dynamics 

and spatial dependencies. The traffic network was modeled as a graph to use spatial 

information. Furthermore, they apply multiple Spatio-temporal graph convolutional blocks, a 

combination of convolutional graph layers, and convolutional sequence layers to model spatial 

and temporal dependencies.  

 

GCNNs have also been used to understand places' properties in geographic contexts. These 

properties depend on the characteristics of the place itself and its neighboring places. Hence, 

predicting these properties can be challenging as the relationship between the different places 

can be difficult to identify, and the neighborhoods can be described in various ways. Zhu et al. 

(2020) utilized GCNNs to model places as graphs. Nodes represented places, node features the 

place properties, and edges represented the place connections. Specifically, observed place 

characteristics and connections were used to predict unobserved place properties in Beijing.  

 

When it comes to business practices, selecting store sites can be a challenging task. Identifying 

potential locations for future stores is critical for attracting new customers and increasing a 

company's profits. The classic frameworks used for that purpose give a false impression of the 

local properties, which are multi-dimensional and unstructured. A recent study suggests a 

convolutional graph network (GCN) for practical site identification tasks (Lan T. et al., 2022). 

The case study is implemented in Singapore. The datasets included land use information and 

public transport networks. By constructing a geospatial GCN based on this novel dataset, the 

level of attractiveness of various store sites within the neighborhood was predicted.  

 

Another recent study examines taxi demand forecasting using a graph convolutional neural 

network (Xu et al., 2022). Two main challenges were tackled: virtual station discovery and 

modeling of the taxi demand forecasting. A two-stage clustering method was used to deal with 
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the former challenge. This algorithm considered the geospatial properties of taxi data and the 

transport properties of the demand between stations and revealed the number of stations. A 

non-negative fusion model (NGFM) was utilized for the last challenge, consisting of a non-

negative matrix factorization and graph convolutional neural networks. The two-stage 

clustering method determined the number of stations, considering the taxi demand's geographic 

and load properties, and identified the potential virtual stations accurately and efficiently. 

Moreover, the NGFM extracted the node properties and estimated the associated adjacency 

matrix. This approach proved to achieve taxi demand predictions accurately.  

 

Another study examined passenger flow prediction in urban rail transit (URT) management, 

which aims to reduce congestion. Real-time passenger flow forecasting can be challenging due 

to the URT network's development, topology, and spatiotemporal correlation (Wang et al., 

2021). Previous research on this topic shows that two challenges are still unsolved: the 

correlation between stations and the identification of changing trends. Therefore, this study 

applies a multi-graph differential convolutional network (MDGCN) to extract the correlations 

between stations in heterogeneous space for URT passenger flow forecasting and capture the 

spatiotemporal correlations. 

 

Overall, GCNNs have already been used in several applications for traffic forecasting, 

predicting unobserved place properties, potential locations for future stores, taxi demand 

prediction, and passenger flow prediction (Wang et al., 2021; Xu et al., 2022; Zhu et al., 2020). 

However, they have yet to be used for micro-mobility demand prediction exclusively, which 

could reveal the patterns and users' preferences over micro-mobility solutions and help 

policymakers and urban planners to design more sustainable and environmentally friendly 

cities.  

 

2.2 Factors influencing Public Bike-sharing demand   

 

There are various factors contributing to the PBS demand prediction. Several studies examined 

the impact of weather conditions, such as air temperature and precipitation, air quality, 

demographics, bike-sharing distribution of stations, built environment, transportation 

infrastructure, bike availability, and the promotion of free rides (Bao et al., 2018; Shen et al., 

2018; Zhang et al., 2017). Regarding the weather-related influence, Shen et al. (2018) showed 

that although the climate is equatorial and, therefore, the weather would be relatively hot 

(around 30 degrees Celsius), temperature fluctuations during the day significantly impact the 

usage of bikes in Singapore. Specifically, the number of bike trips would rise during the late 

afternoon when the temperature would drop. In addition, the study showed that heavy rain 

could significantly reduce overall bike usage, especially during peak hours compared to off-

peak hours, since the number of bike trips had doubled after the rain.  

 

When it comes to the influence of the built environment, Shen et al. (2018) divided land use 

into four categories (namely public residential, private residential, commercial, and industrial 

areas). They collected points of interest (POI) from the Google Place API. The usage rate of 
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bikes in public residential areas was negative and relatively low due to the oversupply of public 

bikes in highly accessible areas. Contrastingly, the usage of public bikes in private residential 

areas was positive but insignificant because the supply of bikes is less than its actual demand. 

Then, the PBS usage rate was high in commercial areas and low in industrial areas. 

Transportation infrastructure can also have an impact on the PBS demand. Factors such as the 

availability of longer cycling routes, accessibility to bike stations, the number of available 

bikes, and road network connectivity can positively affect PBS usage. Also, it has been 

observed that promoting free bike rides leads to more bike trips (Shen et al., 2018). 

 

Although many studies examined the influence of the built environment, land use, 

demographic, infrastructure, and weather on the PBS demand, the diversity of each station's 

characteristics needs to be addressed. Bao et al. (2018) focused on classifying the PBS stations 

into different categories by using POI data around each station and further exploring the factors 

contributing to the PBS demand in New York City based on the different station characteristics. 

According to the model specification results, employment, the number of college enrollments, 

population, and median household income significantly impact bike-share ridership. Regarding 

infrastructure, the higher number of bike racks, bike lane length, and density of bike lanes can 

generate more bike trips. Also, precipitation and snowfall influenced the PBS demand 

negatively, while good weather conditions and warm temperatures would lead to more trips.  

 

Another study examined the built environment's impact on PBS demand at bike stations. 

According to Zhang et al. (2017), we can determine that there is a higher demand for bike 

stations situated in central urban areas with the highest population density. In addition, bike 

station capacity leads to a positive influence on the PBS station demand on weekends and 

holidays. This shows the users' preference for stations with larger capacity since the likelihood 

of finding an available bike is high. On the contrary, if the bike stations are relatively close 

(within 300 meters), the bike station demand shows a significant drop. 

 

Moreover, PBS demand increases with more bike lanes within the 1000 meters buffer area of 

the stations and the more considerable length of branch roads, which accounts for users' 

preference to choose bike-friendly roads and roads that are more accessible to parks, 

commercial, and residential areas. Land use diversity has also shown a positive impact on the 

PBS demand. Lastly, this study pointed out the existence of spatial autocorrelation between 

close stations. This means that the PBS station demand is positively correlated with the 

neighboring PBS station demand (Faghih-Imani & Eluru, 2016). 

 

2.3 Demand prediction on Docked Public Bike-sharing Systems  

 

Urban transport has experienced a remarkable evolution in recent years, especially after the 

advent of micro-mobility services (Zhang & Song, 2022). These services include shared bikes, 

e-scooters, and e-bikes, facilitating residents' daily commutes in urban centers. They can also 

help mitigate traffic congestion and reduce fuel consumption and carbon footprint, and they 

benefit human well-being (Zhang et al., 2015; Zhu & Diao, 2019).  
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Zhang and Song (2022) developed a framework to observe the network evolution of the docked 

bike-sharing system in New York City. They aimed to detect the periodic patterns of the system 

using a Gaussian Mixture Model clustering approach and uncover the growth trajectories of 

the bike stations via exponential and logistic models. Their findings showed that the PBS 

demand has a seasonal pattern, with high demand from July to November. Also, most of the 

stations have experienced growth since the program was launched, especially in the Bay area 

of Manhattan. These findings can help operators maintain an efficient PBS program and offer 

sufficient bikes to meet the bike trip demands.  

 

Luo et al. (2021) combined graph neural networks (GNN) and long short-term memory 

(LSTM) to demonstrate the temporal and spatial dependencies of the docked bike-sharing 

program of a city in Zhejiang Province and predict the pickup/return demands of 186 stations. 

In addition, more data storage was required since the number of shared bikes and links in a 

transportation network increases fast, so using an efficient demand forecast model was vital. 

Hence, they used local spectral graph convolution (LSGC) to reduce the computational power 

and enhance the availability of real-time demand prediction. The results indicate that spatial 

dependency should be considered in predicting the demand for a docked PBS system.  

 

Graph Neural Network (GNN) has extensively been utilized in graph or network analysis since 

it is an efficient deep learning model (Scarselli et al., 2009). Specifically, Graph Convolutional 

Neural Network (GCNN) operates in unordered nodes, which are connected in various ways, 

and have different properties, which have been applied to bike-sharing studies. Chai et al. 

(2018) suggested the prediction accuracy of the bike flow at the station level by utilizing deep 

learning methods. They saw the bike-sharing system as a graph and proposed a multi-graph 

convolutional neural network for the bike flow prediction at the station level. Specifically, they 

combined multiple graphs and then applied the convolutional layers to predict station-level 

future bike flow in New York and Chicago. The results showed that this multi-graph model 

performed better than other models. The prediction error declined by approximately 25% and 

15% for NY and Chicago, respectively.  

 

Xiao et al. (2021) used multi-view data and developed a spatiotemporal graph convolutional 

network to predict the public bike sharing (PBS) demand of 186 stations in Wenling, China. 

Specifically, they highlighted the superior performance of the GCNN method in terms of 

prediction accuracy and computational efficiency compared to the recurrent neural network 

(RRN) based models. By applying the spatiotemporal graph convolutional network (STGCN) 

model, it is denoted that PBS demand is greatly linked to the demand of the surrounding 

stations and the importance of spatial and temporal dependencies in predicting it. 
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3.Methodology  

3.1 Study area and data  

3.1.1 Data collection 

 

The study area for this thesis is Zurich (Figure 1), the largest city in Switzerland, located in the 

north-central part of the country, with a population of 434,335. The PBS trip dataset is obtained 

from open-accessible APIs of service provider companies in Switzerland between May 27 and 

July 7, 2022. Each record corresponds to a trip, including the following attributes: id, start/end 

time, start/end longitude, start/end latitude, start/end station id, type, distance, and duration. 

Since this thesis examines only the docked PBS system, users can pick up a bike from one 

station, and they must return the bike to the same or another station. The PBS station dataset is 

obtained from Swagger API (Table 2). This dataset contains all the active PBS stations 

throughout Zurich (Figure 1), including attributes such as id, latitude, and longitude. 

 
Figure 1. Map showing the study area: city of Zurich in Switzerland. The base map is obtained 

from Open Street Map. Also, the public bicycle sharing stations can be seen on the map, which 

are obtained from Publibike (Swagger API). 
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Table 2. List of datasets used for the analysis, their categories, and the sources. 

Dataset Category Source 

Land use Land use classes  Open Street Map  

POI Points of interest  

Population density  Statistics Kanton Zurich  

Employment density  Statistics 

Municipality borders Administrative regions 

Bike sharing stations  Transport  Swagger, 

Publibike API 

Bike sharing trips  Transport  Lund University  

 

The table in Appendic D shows the 16 variables used to train the model at a later stage and 

examine their impact on the PBS demand prediction and assist station planning. These 

variables are extracted from datasets downloaded from official geoportals such as Open Street 

Maps (OSM), Swagger API, the Kanton Zurich website, and Lund University.  

 

3.1.2 Data processing  

 

The datasets are processed with QGIS and Python. The bike-sharing stations dataset is called 

from Swagger API and saved into a CSV file format to be imported to QGIS for analysis. The 

stations kept for this thesis are only the ones within the city of Zurich. Then, 300-meter buffer 

zones are created around each station to examine further which variables fall into the zones 

and, subsequently, impact the PBS station-level demand (Jaber et al., 2022; Snehanshu et al., 

2020).  

 

Open Street Map datasets are used to examine the built environment characteristics around the 

bike-sharing stations. Industrial, commercial, and residential regions are extracted from the 

land use dataset. Moreover, the Points of Interest (POIs) dataset included numerous classes 

such as cafeterias, hospitals, bars, pharmacies, and more. To further differentiate the 

influencing factors of the PBS demand, the POIs are divided into ten variables: education, 

tourism, healthcare, entertainment, sports, accommodation, errands, dining, public transport 

stops, and bike lanes. In addition, the road dataset includes all the road networks within Zurich. 

Cycle paths are extracted from the road datasets by excluding the road classes inappropriate 

for cycling, such as highways. 

 

Furthermore, population density and employment density show the population and the 

employees per 100mx100m, respectively. The public transport stops variable contains all the 

stops regarding the means of public transport such as buses, trains, and trams.  

 

The following data analysis stage is to calculate the variables shown in Table 3. All the 

variables are overlayed with the 300-meter buffer zones of the bike-sharing stations to 

determine the influencing factors on the PBS demand around each station. The sum of each 

variable within the buffer zones is computed. For example, for the population density, the 
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number of people living within each buffer zone is calculated. The same process is applied for 

employment density, public transport stops, and POIs. For the bike lane density, the total length 

of the bike lanes within each buffer zone is computed. Moreover, the Euclidean distance is 

estimated from each bike-sharing station to the closest public transport stop.  

 

A different method is applied for the land use variable. Land Use Mix is used in many urban 

and spatial planning applications, indicating the diversity of land use types within a study area. 

For instance, land use mixture can boost the promotion of walkability in urban areas (Mavoa 

et al., 2018) and is supposed to be energy-efficient (Zhang & Zhao, 2017). As mentioned above, 

residential, commercial, and industrial land use types are extracted from the land use dataset. 

Therefore, the land use mixture is estimated for these three land use types for each buffer zone, 

i.e., each bike-sharing station zone. The entropy index is the most used metric to quantify land 

use mixture (Song et al., 2013): 

 

Entropy = −
∑ 𝑃𝑗 ln 𝑃𝑗𝑘

𝑗=1

ln 𝑘
 

( 1 ) Landuse Entropy Index 

Where:  

• 𝑃𝑗  is the ratio of each land use type j in the buffer zone, and  

• k is the total number of land use types.  

The ratio 𝑃𝑗  is computed in terms of the area of each buffer zone.  

 

3.2 Overall Research Framework  

 

Data collection is the first step of the analysis (Figure 1). The PBS data collected for this 

research are obtained from a micro-mobility services operator, as done by Li et al. (2021). This 

study will utilize docked bike-sharing trip data. The PBS station data are collected from 

Swagger API, including a unique ID for each station, latitude, longitude, and state of each 

station. Furthermore, more datasets, such as population density, employment density, POIs, 

and land use, are obtained from Open Street Maps API and Kanton Zurich's open data website. 

These datasets are used as the influencing factors on the PBS demand to assist station planning.  

 

After collecting the data, preprocessing and filtering are implemented. The start of each trip is 

used to calculate the station-level demand. The PBS station data are used to show all the PBS 

stations in Zurich and thereafter create 300-meter buffer zones to calculate the influencing 

factors of each PBS station-level demand. Additional datasets are processed to calculate the 

influencing factors. A final geojson file is created, which contains the station ID, station-level 

demand, and the sixteen influencing factors of each PBS station.  
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Figure 2. Step by step overview of the research framework. Data collection, preprocessing and 

filtering, data splitting, model development, and model evaluation. 

 

The next step is splitting the final dataset into training and validation subsets, 80% and 20% 

respectively. After developing the four ML and two DL models, the training subset is used to 

train each model, so that it thereafter yields the PBS station-level demand predictions. Then, 

having the PBS station demand prediction model, the validation subset is used to validate the 

models’ performance by utilizing evaluation metrics. Depending on the results, hyperparameter 

tuning is used to improve the models’ performance.  

 

A summary of the process described above and illustrated in Figure 2 is the following: 

1. Data collection:  

• Collect docked PBS trip data and PBS station data for Zurich. 

• Collect additional data, such as population density, POIs, and land use, utilized 

as influencing factors for the PBS station-level demand prediction. 

2. Preprocessing and filtering:  

• Use trip start times to calculate the station-level demand. 

• Create 300-meter buffer zones to calculate the independent variables for each 

PBS station. 

• Calculate variables such as hub distance, and land use entropy. 
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• Create a geojson file with station id, demand, and the sixteen influencing 

factors. 

3. Data splitting into training (80%) and validation (20%) subsets 

4. Model development:  

• Four ML and two DL models developed. 

• Training subset used to train each model for the PBS station-level demand 

prediction.  

• Tune hyperparameters to enhance models’ performance. 

5. Model validation: 

• Apply PBS station-level demand prediction model to the validation subset. 

• Evaluate model performance with evaluation metrics.  

 

3.3 Machine learning model development  

 

The datasets used in this master thesis are processed with four machine learning methods: 

Multiple Linear Regression (MLR), Multilayer Perceptron (MLP) Regressor, Support Vector 

Machine (SVM), and Random Forest (RF) Regressor, to compare with the performance of the 

GCNN model. The sklearn library was used to implement these models.  Multiple Linear 

Regression is a classic and interpretable model that works well when there is a linear 

relationship between the independent and the dependent variables. MLP regressor, as a neural 

network, is a powerful tool for capturing complex and non-linear patterns in the data. SVM is 

well-suited for regression tasks and works well when predicting a continuous variable. RF 

regressor can capture complex relationships and provide reliable predictions. These models 

were chosen to provide a diverse set of ML models that cover different aspects of the data.  

 

3.3.1 Multiple Linear Regression  

 

Multiple Linear Regression is a fundamental machine learning model for predicting continuous 

numeric values based on multiple input features (Hasan et al., 2022). It is similar to the concept 

of Simple Linear Regression with the difference that Multiple Linear Regression incorporates 

multiple independent variables, influencing the dependent variable (the one to be predicted). 

The model assumes a linear relationship between the input features and the output variable. 

Coefficients are estimated for each input feature, which represent the strength and the direction 

of the relationship between that feature and the predicted value. Therefore, Multiple Linear 

Regression aims to find the best-fitting linear equation that minimizes the difference between 

the predicted and actual values of the output variable.  

 

3.3.2 MLP regressor  

 

The Multilayer Perceptron is one of the most widely known and used kinds of neural networks 

(Popescu et al., 2009). It consists of multiple layers of interconnected nodes, and organized 

feedforward. It is proven to be a fundamental architecture in deep learning, and adequate for 

several machine learning tasks such as classification regression, and pattern recognition. 
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Similarly with Random Forest Regressor, MLP Regressor is used exclusively for regression 

tasks, specifically for predicting continuous numerical values. The best hyperparameters found 

are shown in Appendix E (Supplementary table 2).  

 

3.3.3 Support Vector Machine  

 

Support Vector Machine (SVM) is a powerful and versatile machine learning model for 

classification and regression tasks (Evgeniou & Pontil, 2001). SVM aims to find the hyperplane 

that best separates data points belonging to different classes in a high-dimensional space. The 

input data are represented as vectors. Then, an appropriate kernel function is chosen for non-

linear classification, such as linear, polynomial, radial basis function (RBF), and sigmoid 

kernels. During the model training, the SVM tries to find the decision boundary that maximizes 

the margin between the different classes, in order to determine the support vectors and the 

weights of the decision boundary. Finally, new data points are classified based on the side of 

the decision boundary they fall into. The best hyperparameters are shown in Appendix E 

(Supplementary table 3). 

 

3.3.4 Random Forest Regressor  

 

Random Forest is an ensemble of decision tree predictors, where each tree’s predictions are 

influenced by a randomly selected set of values (Breinman, 2001). These values are sampled 

independently and come from the same distribution for all the trees in the forest. As the number 

of trees increases, the generalization error for the forests converges to a specific limit. The 

resilience of the individual trees and the correlation between them determines how effective a 

forest of tree predictors is. The final output is generated by the ensemble mean of all the 

predictions from each tree.  

 

The individual trees’ performance and their correlations significantly impact the accuracy of a 

forest of tree classifiers. Random feature selection offers improved strength against noise in 

the data. Furthermore, evaluating factors such as error, strength, and correlation offer valuable 

insights into how the forest responds to increasing the number of features used for splitting 

nodes. Also, the importance of the different variables used in the model can be found by 

accessing these factors, facilitating more accurate predictions.  

 

Random Forest Regressor is a specific implementation of the Random Forest algorithm 

designed for regression tasks. Therefore, the main difference between Random Forest and 

Random Forest Regressor lies in the target variables and the intended use cases. Random Forest 

can handle both classification and regression problems, while Random Forest Regressor 

focuses on predicting numeric values. The best hyperparameters are shown in Appendix E 

(Supplementary table 4). 
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3.4 SRGCNN development workflow and architecture  

 

Figure 3 illustrates the methodology for a spatial regression analysis, as described by Zhu et al. 

(2022). A spatial weights adjacency matrix W is constructed for all the stations that have spatial 

features including both the independent variables X (influencing factors) and the dependent 

variable y (PBS station-level demand).  Then, the following generalized formula is used to 

specify the spatial regression model:  

   

𝑦 =  𝑓𝛩(𝑦, 𝑊, 𝑋) 

( 2 ) Spatial Regression Model 

 

For the fitted model, Θ is estimated, which includes all spatial and non-spatial effects when the 

model is fitted to the observations. Finally, the fitted model is used to predict the PBS station 

demand. In this master thesis, GCNNs are combined with traditional spatial regression and 

geographically weighted spatial regression.  

 

 
Figure 3. Illustration of a typical workflow for the spatial regression analysis. Four major steps 

are marked as 1) collecting the cross-sectional data and constructing the weighted adjacency 

matrix, 2) specifying a regression model, 3) estimating parameters in the fitted model, 4) 

predicting values for the dependent variable. 

 

3.4.1 Graph structure  

 

Graph Convolutional Neural Networks (GCNNs) are neural networks that operate on graph 

structure. Graphs consist of nodes and edges. By conceptualizing graphs, nodes are the network 
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objects, and edges can be any relation the nodes can have. Moreover, nodes and edges can have 

additional attributes. In this thesis, nodes demonstrate the PBS stations and edges the number 

of trips done between the stations. Also, the stations have additional features. Specifically, the 

independent variables analyzed in the previous section are the influencing factors of the PBS 

station-level demand prediction.  

 

The figure below shows a directed graph representation comprised of four nodes (the blue 

circles) and five edges (the black arrows). Graphs can be directed or undirected. Directed 

graphs (Figure 4) demonstrate asymmetric relationships. Supposing that the nodes and the 

edges demonstrate the PBS stations and the number of trips respectively, there are trips only 

from station 361 to station 425. On the contrary, undirected graphs (Figure 5) have bidirectional 

edges. Therefore, there could be trips from station 361 to station 425 and from station 425 to 

station 361.  

 

 

 

 
Figure 4: Directed graph representation. Four PBS stations are randomly selected.  

 

Graph neural networks (GNNs) can be seen as a version of Convolutional neural networks 

(CNNs) that can be applied to graphs. CNN utilizes the convolution operation to compute, for 

instance, the hidden attributes for different pixels based on the neighboring pixel values, by 

using a kernel filter over the input image. Supposing that the nodes and the edges of a graph 

structure are the pixels and the distance of the adjacent pixels (resolution) respectively, then 

we have the Graph Convolutional Neural Networks (GCNNs).  
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GNNs are useful since we can use non-Euclidean spatial data. Contrary to the image 

representation by pixels, graph structures can represent reality as a set of unordered nodes and 

edges. In fact, this lays the foundation for numerous advanced applications that could be 

divided into three categories: graph, edge, and node classification.  

 

Supposing that we have an undirected graph (Figure 5), therefore containing nodes with 

symmetric relationship, with attribute values attached to the nodes and the edges. In this thesis, 

the attribute values attached to the nodes and the edges are the influencing factors and the 

number of trips respectively.  

 

 
Figure 5: Undirected graph representation. Four PBS stations are randomly selected and plotted 

using Python. Each station is represented as a node and is denoted by a station ID (located at 

the circle's center). A single attribute is associated with each station, which corresponds to the 

count of public transport stops within the 300-meter buffer zone. In cases where trips exist 

between the stations, edges are established to connect the nodes. The edges are additionally 

annotated with numeric values at their centers, representing the number of trips between the 

linked stations. 

Figure 5 is expressed by the adjacency matrix and the feature matrix. The adjacency matrix 

(denoted by A) indicates which nodes are connected or not in the graph. Moreover, this matrix 

is symmetrical with zero diagonal (Equation 3). The feature matrix includes (denoted by H) 

the attributes of the nodes. In this case, the adjacency matrix (A) demonstrates which PBS 

stations are connected or not and the number of trips between them, and the feature matrix (H) 

illustrates the influencing factors of each PBS station (in this example only the number of 

public transport stations in the vicinity of each PBS station are illustrated).  
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𝐴 =

83
560
569
702

[

0 2 0 2
2 0 1 20
0 1 0 1
2 20 1 0

] ; 𝐻 =  

83
560
569
702

[

14
6
2

20

] 

( 3 ) Examples of Adjacency and Feature matrices. 

 

Then, a new feature vector is generated to reveal the attributes of the neighboring stations for 

each station based on the connection of those neighboring stations. When estimating the 

attributes of the neighboring stations, the attributes of the particular station being examined are 

excluded, which is invalid. Thereafter, the identity matrix (I) is created and added to the 

adjacency matrix (A) in order to alter the zeros to ones. The modified adjacency matrix will 

be:  

�̃� = 𝐴 + 𝐼 

( 4 ) Modified adjacency matrix. 

 

Furthermore, the values of the feature matrix are relatively high which may lead to 

computational instability. One way to tackle this issue is to normalize the feature matrix by 

dividing it by the graph degree matrix (D). The degree matrix includes information about the 

number of trips corresponding to each station. Therefore, the final normalized feature vector is 

estimated by the following formula:  

 

𝐻′ =  𝐷−1�̃�𝐻 

( 5 ) Normalized feature vector. 

 

In this thesis, two graph structures are utilized. The first graph structure, used for the SRGCNN 

model, is based on the weighted adjacency matrix, built upon the number of trips between the 

PBS stations in Zurich as mentioned above. The second graph structure is based on the k nearest 

neighbors (KNN), inspired by Zhu et al., 2022. KNN considers up to the 𝑘𝑡ℎ nearest neighbors 

regarding each PBS station. Supposing that the number of GCNN layers is 2 and the sampling 

ratio of training is 80%, the smallest number of k should satisfy 𝑘2 ≥ 80, so that the model 

covers all the stations after the self-multiplication of weights matrix when the training features 

are propagated in the GCNN. So, the required k needs to be at least 9. To make sure that all 

stations are covered and after hyperparameter tuning, the k value was set to 10 and  35. It should 

be mentioned that the graph structures and, subsequently, the definition of the spatial weights 

matrix, significantly affect the regression analysis. Hence, different graph structures could lead 

to better model fitting and higher prediction accuracy (Zhu et al., 2020).  

 

3.4.2 SRGCNN and SRGCNN-GW 

 

Since GCNNs can be applied to spatial analysis, in this master thesis Spatial Regression 

Convolutional Neural Networks (SRGCNN) is used to conduct spatial regression and predict 
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the demand of the PBS stations in Zurich. SRGCNN facilitates the understanding of graph 

convolution mechanisms and spatial regression models (Zhu et al., 2022).  

  

The construction of SRGCNNs begins by gathering data that includes the PBS station locations 

and cross-sectional information, i.e., the PBS demand as the depend variable y and the 

influencing factors as the independent variables X. A graph is then created to represent the 

adjacency matrix. The nodes on the graph are initialized with the known values of the 

influencing factors. These values are then propagated through a specific GCNN architecture. 

The values of the PBS demand, which are available at the training nodes, are input to the last 

GCNN layer to calculate the output errors and enable backpropagation. SRGCNNs optimize 

the parameters of its GCNN model using a semi-supervised learning strategy which considers 

the weights between all the given nodes even though the demand values are only observed at 

the training nodes. By leveraging the propagation mechanism and the spatial locality nature of 

GCNNs, SRGCNNs optimize the GCNN model to approximate spatial relationships accurately 

and predict the PBS station-level demand values.  

 

Spatial regression models do not necessarily allow the parameters to change spatially (Zhu et 

al., 2022). The SRGCNN is a global learning model. It utilizes shared parameters to distinguish 

the stationary knowledge of geographical relationships and does not take into account the 

heterogeneity between locations. On the contrary, local models such as SRGCNN-GW 

consider the fact that spatial relationships can vary between different spatial locations. This 

model uses a spatial weight matrix (W) and additional parameters at each location. Hence, 

SRGCNN-GW approach enables a learning process that adapts to the unique characteristics of 

different geographical areas. The spatial weights matrix is built based on k nearest neighbor 

inspired by Zhu et al., 2022.  

 

Supposing we have N nodes, 𝐶𝑖𝑛 input features and 𝐶𝑜𝑢𝑡 output features, the SRGCNN can be 

described by the following layer-wise graph convolution:  

𝑋(𝑙+1) = 𝑊 × 𝑋𝑙 × 𝚯𝑙 

( 6 ) SRGCNN formula 

Where:  

• 𝑋(𝑙+1) ∈ ℝ𝑁×𝐶𝑜𝑢𝑡 

• 𝑋(𝑙) ∈ ℝ𝑁×𝐶𝑖𝑛 

• 𝑊 ∈ ℝ𝑁×𝑁 

• 𝚯𝑙 ∈ ℝ𝐶𝑖𝑛×𝐶𝑜𝑢𝑡 

The parameters 𝚯𝑙 are common to all neurons within the GCNN, resulting in a global spatial 

regression across a locally connected graph structure. On the other hand, the SRGCNN-GW 

model, with a geographically weighted layer-wise graph convolution will be as follows:  
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𝑋(𝑙+1) = 𝑊 × (𝑋𝑙 ⨂ 𝚯𝑙𝑜𝑐𝑎𝑙
(𝑙)

) × 𝚯𝑙 

( 7 ) SRGCNN-GW formula 

Where  𝚯𝑙𝑜𝑐𝑎𝑙
(𝑙)

∈ ℝ𝑁×𝐶𝑖𝑛  and contains the geographically weighted parameters 𝑋𝑙  ⨂ 𝚯𝑙𝑜𝑐𝑎𝑙
(𝑙)

. 

Therefore, the features are parameterized, with each node having an independent set of 

trainable parameters.  

 

The hyperparameters used for the SRGCNN and SRGCNN-GW are shown in Appendix E 

(Supplementary table 5 and 6). 

 

3.5 Machine Learning and Deep Learning techniques  

 

Some of the techniques used to build and train the ML and DL models are mentioned below.  

 

Overfitting and underfitting 

When a model learns the training data it might capture noise and fluctuations rather than the 

underlying patterns, which is primarily the goal of applying ML and DL models (Bashir et al., 

2020). This is called overfitting and it results in poor model performance and inaccurate 

predictions. Therefore, an overfit model fits the training data very well; however, its 

performance on the validation data is worse. On the other hand, a simplistic model fails to learn 

from the training data and, subsequently, performs poorly on both the training and the test data. 

This is called underfitting. Underfit models have usually high bias and low variance.  

 

Epoch  

A complete pass through the entire training dataset during the model training is called epoch. 

Especially in DL models, as done in this thesis, multiple epochs are used for model training in 

order to enhance the model’s ability to learn complex patterns and achieve better results.  

 

Hyperparameter tuning (Random search) 

The hyperparameters are defined by the user before training the model. Each ML and DL model 

have their own set of hyperparameters. The process of finding the best combination of 

hyperparameters in order to achieve better model performance is called hyperparameter tuning. 

In this thesis, random search (Bergstra & Bengio, 2012) was applied to determine the best 

combination of hyperparameters for the ML models. For the DL models, different 

hyperparameters have been applied after experimentation.  

 

Regarding random search, the hyperparameters and their range of values is predefined. After a 

specified number of iterations, random search randomly selects a set of hyperparameters and 

yields the best performance on the validation data. It is a computationally efficient 

hyperparameter optimization technique since it allows a wider exploration of the 

hyperparameter space. Nonetheless, it is not guaranteed that random search results in the best 

possible hyperparameter combination. Hence, most of the times the process needs to be done 

multiple times with different hyperparameters and ranges of values to enhance the models’ 
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performance results by finding the best set of hyperparameters. In this thesis, random search is 

utilized to determine the hyperparameters for MLP regressor, SVM, and RF regressor.  

 

The steps of random search are the following:  

1. Define the hyperparameters to be tuned and their potential values.  

2. Define the number of iterations, i.e., the number of hyperparameter combinations to be 

randomly selected and assessed.  

3. Randomly select a set of hyperparameters for each iteration.  

4. Model training using the selected set of hyperparameters on the training data.  

5. Performance evaluation on the validation set.  

6. Record the model’s performance evaluation metrics for the selected set of 

hyperpararameters.  

7. Repeat steps 3-6 for the specified number of iterations.  

8. Select the hyperparameters that led to the best performance based on the evaluation 

metrics.  
 

Activation functions 

Activation functions allow neural networks to learn complex rationships in the data by 

introducing non-linearity. Some common functions are ReLU(Rectified Linear Unit), sigmoid, 

and tanh.  

 

Dropout 

Dropout is a technique utilized in neural networks to prevent overfitting. During model 

training, some neurons are randomly ignored which improves model performance and 

robustness.  

 

3.6 Experimental settings  

3.6.1 Settings for machine learning methods  

 

The following settings were used to process the data for the machine learning methods:  

 

• The entire dataset is split into training and test samples. Specifically, 80% is used for 

training, and 20% is used for testing. The same training and test samples are used for 

all the ML models in order to compare the performance evaluation results.  

• Choose the best hyperparameters to improve the model performance.  

• The entire training sample is used to fit each ML model.  

• The entire test sample is used to evaluate each ML model’s performance.  

• Performance metrics are estimated for each ML model such as MSE, RMSE, MAE, 

MAPE, and R-squared.  

 

3.6.2 Settings for DL models 

 

The following settings were used to process the data for the DL models:  
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• The entire dataset is split into training and test samples. Specifically, 80% is used for 

training, and 20% is used for testing. The same training and test samples are used for 

all the ML and DL models in order to compare the performance evaluation results.  

• Calculate the spatial variables for each PBS station in Zurich. The spatial variables are 

calculated in QGIS. 300-meter buffer zones are created for each PBS station and each 

variable is estimated for each buffer zone.  

• Construct graph structures in two ways to model the spatial dependency effects among 

the PBS stations. The first graph structure, used for SRGCNN, is constructed based on 

the trips occurring between two stations. The second graph structure, used for 

SRGCNN-GW, is built based on k nearest neighbor. 

• Calculate the demand for each PBS station. The trip dataset is used to calculate the 

demand by summing up the number of trips for each PBS station. The start of each trip 

is used to calculate the demand.  

• Train and test each GCNN model with the same datasets used for the ML models in 

order to compare the performance metrics.  

• Estimate the performance metrics such as MSE, RMSE, MAE, MAPE, and R-squared.  

 

3.7 Evaluation metrics 

 

Several metrics are used to evaluate the performance of the ML and the GCNN models (Chicco 

et al., 2021). These metrics are namely Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-

squared. One adjacency matrix is used for the GCNN models: the weighted adjacency matrix. 

The weights of adjacency matrix are the number of trips between the PBS stations.  

 

Mean Square Error (MSE) 

MSE is one of the most common metrics which calculates the average squared difference 

between the observed and the predicted values of the dependent variables in a dataset, the PBS 

demand in this case. The formula for calculating MSE is the following:  

 

𝑀𝑆𝐸 = (
1

𝑛
) ∗ ∑(𝑦𝑖 − 𝑦�̂�)

2 

( 8 ) MSE 

Where:  

• n is the total number of the observations 

• 𝑦𝑖 is the observed value for the i-th observation 

• 𝑦�̂� is the predicted value for the i-th observation 

 

By calculating MSE how well a model’s predictions match the actual observed values can be 

shown. A low MSE value suggests that the model’s predictions are closer to the actual values; 

therefore, the model performs well. One of its limitations is that due to the squaring operation, 
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if outliers or extreme values are present in the dataset, MSE can be relatively high. However, 

MSE is widely used in model training and optimization processes due to its ease of 

interpretation, when the aim is to detect model parameters that minimize the MSE and enhance 

the model’s overall accuracy.  

 

Root Mean Square Error (RMSE) 

RMSE is derived from MSE and calculates the average magnitude of the prediction errors in 

the same units as the original observations. RMSE is estimated from the following formula:  

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

( 9 ) RMSE 

The difference between RMSE and MSE lies in the scale of the metric. MSE value is in squared 

units, whereas RMSE value is the original units of the data which facilitates interpretation and 

comparison against the original observations.  

 

Mean Absolute Error (MAE) 

MAE estimates the average magnitude of errors between the observed and the predicted values 

in a dataset. Similar to MSE and RMSE, MAE is utilized to evaluate the model performance, 

but it focuses on the absolute differences between actual and prediction values. The formula 

for calculating MAE is the following:  

 

 

𝑀𝐴𝐸 = (
1

𝑛
) ∗ ∑|𝑦𝑖 − 𝑦�̂�| 

( 10 ) MAE 

 

Where:  

• n is the total number of the observations 

• 𝑦𝑖 is the observed value for the i-th observation 

• 𝑦�̂� is the predicted value for the i-th observation 

 

In contrast to MSE and RMSE, where the differences are squared and thereby larger errors are 

more heavily penalized, with MAE all errors are equally treated. Hence, MAE is a more 

interpretable metric of the model performance and, subsequently, the prediction accuracy. It 

should be noted that MAE is particularly useful when outliers or extreme values are present in 

the dataset, since it is less sensitive compared to squared error metric such as MSE.  

 

Mean Absolute Percentage Error (MAPE) 

MAPE considers the average percentage differences between the observed and the predicted 

values. It is useful especially when the goal is to access the relative accuracy of predictions, 

especially when dealing with data of varying scales. The formula for calculating MAPE is:  
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𝑀𝐴𝑃𝐸 = (
1

𝑛
) ∗ ∑(|𝑦𝑖 − 𝑦�̂�|/𝑦𝑖) ∗ 100 

( 11 ) MAPE 

Where:  

• n is the total number of the observations 

• 𝑦𝑖 is the observed value for the i-th observation 

• 𝑦�̂� is the predicted value for the i-th observation 

 

So, the error is expressed as a percentage. One drawback of MAPE is its sensitivity to cases 

where the observed values are close to zero, which can lead to extremely large percentage 

errors.  

 

R-squared  

R-squared or the coefficient of determination evaluates the goodness-of-fit of a regression 

model. It accounts for how well the independent variables in a regression model explain the 

variability of the dependent variable. The formula for calculating R-squared is:  

 

𝑅2 = 1 − (𝑆𝑆𝑅/𝑆𝑆𝑇) 

( 12 ) R-squared 

Where: 

• Sum of Squared Residuals (SSR) is the sum of the squared differences between the 

actual values of the dependent variable and the predicted values by the regression 

model, and  

 

𝑆𝑆𝑅 = ∑(𝑦𝑖 − 𝑦�̂�)
2 

( 13 ) SSR 

• Total Sum of Squares (SST) is the sum of the squared differences between the actual 

values of the dependent variable and the mean of the dependent variable.  

 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − �̅�)2 

( 14 ) SST 

The values of 𝑅2 can range from zero to one. If 𝑅2 = 0  the model fails to explain any 

variability in the dependent variable. Contrastingly, if 𝑅2 ≈ 1  the model explains a high 

proportion of the variability in the dependent variable.  

 

Nonetheless, it should be mentioned that if the 𝑅2 value turns out to be high (close to one) it 

cannot be assumed that the model is a good fit or that the predicted values are accurate. For 

example, by adding more independent variables to the model the 𝑅2 tends to get higher. This 

leads to overfitting where the model performs well on the training data but shows poor 
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performance on the predicted values. On the contrary, is 𝑅2 is close to zero it might indicate 

that the model is relatively simple and, therefore, fails to capture underlying patterns. However, 

it does not necessarily mean that the model is unreliable. Moreover, a low 𝑅2 value could be 

valuable in case the model offers significant insights. The interpretation of 𝑅2 highly relies on 

the context of the data and the aim of the analysis. Therefore, alternative factors should be 

considered when evaluating the quality and the accuracy of a regression model such as the 

selection of the independent variables, assumption been made, and the context of the data. 

4. Results  

4.1. Maps of the independent and dependent variables  

 

The PBS demand is the dependent variable. It is used to train and test the different models 

implemented at a later stage of this thesis. Figure 6 shows the distribution of the PBS demand 

against the frequency within the dataset. The demand for most of the PBS stations is around 

500. There are some PBS stations with greater demand, approximately 1500-2000, and 1 PBS 

station with demand value close to 3500. The mean and the standard deviation of the PBS 

demand are 497 and 321 respectively. 

 

Figure 6. Demand distribution of the Public Bike-Sharing stations in Zurich. 



 

 24 

 
Figure 7. Network plot featuring the Public Bike-Sharing stations situated in Zurich. This 

visualization, generated using Python, serves to illustrate the demand at the station level. 

Notably, the size of each circle corresponds to the magnitude of demand, with larger circles 

indicating higher demand. Additionally, a color ramp is used to demonstrate the station-level 

demand, with warmer color indicating higher demand.  

As we can see from figure 7, the PBS demand is greater in the city center. The further we go 

from the city center, the lower the demand becomes. Even though the PBS station with demand 

value close to 3500 could be considered as an outlier, it has been kept in the data analysis and 

model training since it is in the city center, and it plays a significant role in the demand 

predictions and the whole analysis. However, it might have influenced significantly the 

prediction results and the accuracy of the models.  
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Figure 8. Network plot of the Public Bike-Sharing stations in Zurich. Whenever trips exist 

between these stations, the nodes in the network are linked by edges. 

Figure 8 demonstrates the PBS network with the edges. Each node (PBS station) is connected 

with other nodes by the edges based on the adjacency matrix which is built upon the number 

of trips between the stations. It can be observed that it is rather complex network. Hence, there 

is a need for computational power, and a model that can capture the underlying patterns within 

this network.  

 

As discussed in the data processing module, the different influencing factors are calculated 

using different methods. Some of the independent variables are illustrated as examples on 

maps. Figure 9 shows the land use mixture estimated by the entropy index. The land use types 

utilized for the analysis are residential, commercial, and industrial. Then the entropy is 

estimated. The stations with entropy equal to zero have only one land use type. The greater the 
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entropy, the more types of land use are within the 300-meter buffer zones of the stations. The 

minimum value is 0, and the maximum value is 1,06.  

 
Figure 9: Map showing the land use mixture within the 300-meter buffer zones of each Public 

Bike-Sharing station in Zurich. The land use mixture is calculated by the entropy index of three 

land use types: residential, commercial, industrial.  

Figure 10 demonstrates the population density corresponding to each 300-meter buffer zone of 

each PBS station. There are five classes. The minimum value is 144, and the maximum value 

is 7030 people. Figure 11 illustrates the errands density, i.e., the everyday shops and stores 

within the buffer zones of each PBS station. The minimum value is 1 and the maximum value 

is 272. Five classes are created.  
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Figure 10: Map showing the population density within the 300-meter buffer zones of each 

Public Bike-Sharing station in Zurich.  

 
Figure 11: Map showing the errand density within the 300-meter buffer zones of each Public 

Bike-Sharing station in Zurich. 
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Figure 12. Histogram illustrating the hub distance from the Public Bike-Sharing stations to the 

closest bus, train, tram station in Zurich.  

Figure 12 illustrates a histogram of the closest distance from the PBS stations to the bus, train, 

and tram stations against their frequency within the dataset. As we can see, the Hub Distance 

to bus and tram stations is lower than 500 meters for most of the PBS stations. On the contrary, 

the Hub Distance to railway stations reaches 1500 meters or more.  

 

4.2 PBS station-level demand predictions 

 

The final output from all the models is the PBS station-level demand prediction shown in 

Figure 13. Four ML and two DL models are developed to predict the PBS station-level demand. 

It can be observed from the figures in Appendix A that there are differences in the prediction 

results. First, the range of the demand prediction values is slightly different from model to 

model. Multilinear regression and MLP regressor appear to have relatively similar range of 

values, from around 400 to 1200. Also, it can be seen from the spatial distribution of the 

demand prediction that the results are relatively the same; higher demand is expected in the 

city center and the further we go from the city center the lower the demand. For SVM and RF 

regressor it can be seen that more stations in the city center are expected to have higher demand 

values. SRGCNN demand prediction exhibits the lowest range of values. Additionally, most 

of the stations exhibit demand values in the upper limit of the range of values. Finally, the 

demand values from SRGCNN-GW show that they are expected to be very high in the city 

center and very low in the outer area of Zurich.  
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The figures in Appendix B demonstrate the errors (real – predicted) for each ML and DL model. 

A color ramp is used to show if the station-level demand prediction values are underestimated 

or overestimated. Also, the size of the circles, representing the PBS stations, accounts for the 

amount of the absolute prediction error for each station. The following formula was used to 

calculate the error plots:  

 

𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑒𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 

( 15 ) Demand prediction error 

Figures 13 and 15 illustrate the relationship between the actual and the predicted station-level 

demand values of the SRGCNN and SRGCNN-GW models. As we can see from the figures, 

there is a wide range of demand values. Taking the demand distribution into account (Figure 

6), only a few PBS stations have station demand greater than 1000. It can be observed that the 

actual station demand in the city center (highest actual demand value) has a very high error 

value (Figures 16 and 18). This is why the ML and DL models were run again excluding the 

station in the city center with a demand value of 3432. The results can be seen in the following 

sections.  

 
Figure 13. Scatter Plot of Actual vs. Predicted Demand for Train and Test Samples of Spatial 

Regression Graph Convolutional Neural Network. The plot illustrates the relationship 

between the actual demand values and the predicted demand values for the train and test 

samples. 
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Figure 14. Combined Error Plots for Train and Test Samples of Spatial Regression Graph 

Convolutional Neural Network. The upper subplot displays the error distribution for train 

samples, while the lower subplot shows the error distribution for test samples. 

 
Figure 15. Scatter Plot of Actual vs. Predicted Demand for Train and Test Samples of Spatial 

Regression Graph Convolutional Neural Network – Geographically Weighted. The plot 
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illustrates the relationship between the actual demand values and the predicted demand values 

for the train and test samples. 

 
Figure 16. Combined Error Plots for Train and Test Samples of Spatial Regression Graph 

Convolutional Neural Network – Geographically Weighted. The upper subplot displays the 

error distribution for train samples, while the lower subplot shows the error distribution for test 

samples. 

From the error plots (Figures 14 and 16), it can be observed that the station-level demand 

predictions are overestimated for actual demand values of approximately 500 or lower. On the 

contrary, for actual demand values of around 500 or higher, the station-level demand prediction 

values are underestimated.  

 

4.3 DL performance evaluation  

 

Several metrics are used to evaluate the performance of the ML and the DL models. These 

metrics are namely Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared.  
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Figure 17. Root mean square error for Spatial Regression Graph Convolutional Neural Network 

model 

 
Figure 18. Root mean square error for Spatial Regression Graph Convolutional Neural Network 

-Geographically Weighted model 

As we can see from Figure 17, the RMSE for the train and test data of the SRGCNN model is 

relatively high during the first 100 epochs, which means that the model’s predictions have a 

significant average magnitude of error compared to the observed values. The RMSE gradually 

decreases, hence improving the prediction accuracy. After 100 epochs, the RMSE remains 

high, indicating that the model cannot make accurate predictions. The RMSE for the SRGCNN-

GW (Figure 18) indicates that the RMSE values are lower compared to the SRGCNN model.  
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Figure 19. Mean Absolute Error for Spatial Regression Graph Convolutional Neural Network 

model 

 
Figure 20. Mean Absolute Error for Spatial Regression Graph Convolutional Neural Network 

-Geographically Weighted model 

In the first epochs, MAE values are relatively high for the SRGCNN model (Figure 19), around 

450 and 550 for the train and test data, respectively. This indicates that, on average, the model’s 

predictions significantly differ from the actual values. MAE gradually decreases as training 

progresses; therefore, the model’s ability to make predictions with lower absolute errors 

improves. MAE values for the SRGCNN-GW (Figure 20) gradually decrease over 300 epochs.   
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Figure 21. Mean Absolute Percentage Error for Spatial Regression Graph Convolutional 

Neural Network model 

 

 
Figure 22. Mean Absolute Percentage Error for Spatial Regression Graph Convolutional 

Neural Network -Geographically Weighted model 

Figures 21 and 22 illustrate the MAPE values for the SRGCNN and the SRGCNN-GW models. 

Both models begin with high MAPE values, which is typical for the initial stages of the training 

process. Since MAPE decreases for both models, the predictive accuracy improves. However, 

the final MAPE values are around 49-55% indicating that the models’ predictions might not be 

highly accurate.  
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Figure 23. R-squared for Spatial Regression Graph Convolutional Neural Network model 

 

Figure 24. R-squared for Spatial Regression Graph Convolutional Neural Network -

Geographically Weighted model 

 

As we can see from Figures 23 and 24, the 𝑅2  for both models begin at a low value of 

approximately -0.4 for the training model, which indicates that the variability in the target 

variable poorly explains the model’s predictions. As training progresses, the 𝑅2  values 

increase, and therefore improving the model’s ability to capture the variability in the data. It is 

shown that after 100 and 150 epochs for the SRGCNN and the SRGCNN-GW models 

respectively, the 𝑅2  values are around 0.6, which suggests that both models improve their 
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ability to capture and explain the variability in the dependent variable, resulting in better overall 

fit to the data.  

 

4.4 Comparison of ML and DL models  

 

In this section evaluation metrics are compared to assess the ML and DL models’ performance. 

Two distinct scenarios were implemented in order to scrutinize the different cases. In the initial 

scenario, all the PBS stations in Zurich are used to train the models and generate demand 

predictions. In the second scenario, PBS stations with demand exceeding 2000 were excluded 

from the analysis. As mentioned in section 4.1, the mean demand of the PBS stations is 497. 

Therefore, PBS stations with demand exceeding 2000 would greatly impact the models’ 

performance results.  

 

  
Figure 25. Comparison of deep learning and machine learning models based on root mean 

square error 

 

Figure 25 demonstrates the RMSE values for each ML and DL model. Among all models, the 

SRGCNN achieves the lowest RMSE, followed by the rest of the models. SRGCNN 

outperforms the rest of the ML and DL models when it comes to RMSE, which means that they 

provide more accurate predictions. The SRGCNN model has the lowest RMSE among all 

models, which suggests that it is the most accurate model based on this metric.  
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Figure 26. Comparison of deep learning and machine learning models based on Mean Absolute 

Error 

 

Regarding MAE values (Figure 26) among all models, the SRCGNN has the lowest MAE, 

followed by RF regressor. SRGCNN and SVM exhibit relatively similar MAE values. 

Therefore, the SRGCNN model appears to be the most accurate in making predictions with 

lower absolute errors.  

 

 
Figure 27. Comparison of deep learning and machine learning models based on  Mean Absolute 

Percentage Error 

As shown in Figure 27, SVM has the lowest MAPE among all models. The DL models and RF 

regressor have competitive MAPE values compared to the rest of the ML models. However, 

SVM appears to be the most accurate model based on this metric, with the DL models and RF 

regressor being a good alternative.  
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Figure 28. Comparison of deep learning and machine learning models based on R-squared 

 

Figure 28 illustrates the R-squared values among all the models implemented in this thesis. For 

the ML models, the Random Forest Regressor before excluding the outliers and SVM after 

excluding the outliers achieve the highest R-squared value, indicating a good performance in 

terms of explaining the variability in the data. The DL models have significantly higher R-

squared values than the ML models. Hence, SRGCNN and SRGCNN-GW achieve the best fit 

to the data compared to the ML models.  

 

Overall, SRGCNN and SRGCNN-GW outperform the ML models in most metrics used to 

evaluate the models’ performance, with RF regressor being a good alternative since it achieves 

the lowest MSE and RMSE values.  

 

Table 9 (Appendix C) shows all the models’ performance results of the initial data sample and 

the data sample excluding the outliers (demand values less than 2000). Comparing these results 

for demand excluding outliers, SRGCNN still shows the lowest RMSE, MAE, and MAPE, as 

well as the highest R-squared. SRGCNN-GW (k=35) also performs well in these metrics. 

Random Forest Regressor, Multilayer Perceptron Regressor, and Multiple Linear Regression 

show relatively lower performance, especially in terms of R-squared. It's clear that considering 

outliers in demand has an impact on the model performance, and DL models such as SRGCNN 

seem to handle these cases better in terms of prediction accuracy and explanation of variance.
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4.5 Feature importance  

 

Feature importance is a method to determine the relative importance of the independent 

variables when predicting the dependent variable. This is of paramount importance in feature 

engineering and the interpretation of ML models. Several studies have utilized different feature 

importance methods (Strobl et al., 2007; Williamson et al., 2023). The most common approach 

is the feature ranking method. This method assigns a score to each variable depending on how 

it contributes to the model’s accuracy. In this thesis, feature permutation importance is utilized 

to determine the feature importance of the independent variables for the four ML models 

(Pedregosa et al., 2011).  

 

 
Figure 29. Feature importance for Multiple Linear Regression. A feature with high importance 

contributes more to the model's accuracy than a feature with low importance. 

 

For Multiple Linear Regression it is found that the most important features are sports, closest 

distance to bus stop, errands, bike lanes, and accommodation. Particularly noteworthy is the 

prominence of entertainment as the most influential feature, evident from the observations in 

Figure 29. For MLP regressor, the most important features are entertainment and 

accommodation, followed by bike lanes, dining, education and errands (Figure 30). Moreover, 

for SVM, healthcare, closest distance to bus stop, sports, and public transport are the most 

important features, with entertainment exhibiting the highest importance of all (Figure 31). 

Finally, population, dining, entertainment, and errands are the most important features for RF 

regressor (Figure 32).  
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Figure 30. Feature importance for Multilayer Perceptron Regressor 

 
Figure 31. Feature importance for Support Vector Machine  
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Figure 32. Feature importance for Random Forest Regressor.  

Figure 33. Scatter Plot of 'Public Bike-Sharing Demand' vs. Entertainment 

Overall, the most important features for all the ML models are sports, closest distance to bus 

stop, bike lanes, accommodation, errands, dining, and education. Entertainment shows the 

highest importance for all the ML models. As we can see from the regression line from figure 

33, entertainment density is increasing with higher demand values. Therefore, it is likely that 

there is a correlation between places for entertainment and the PBS station demand. Regarding 



 

 42 

the closest distance to bus stop, it can be seen from figure 34 that it exhibits the opposite pattern. 

The further a bus stop is located from a PBS station, the less the PBS station demand will be.  

 

 

 

Figure 34. Scatter plot of 'Public Bike-Sharing demand' vs. 'Closest distance to Bus stop' 

5. Discussion  
 

As described in the previous sections of this thesis, four ML models and two DL models are 

implemented in order to predict the station-level demand for the PBS system in Zurich. Taking 

the models’ performance results into consideration, the DL models outperform the ML models’ 

performance accuracy. Specifically, the SRGCNN-GW model shows superior performance 

across several metrics such as RMSE, MAE, MAPE, and R-squared. This means that the 

SRGCNN-GW model is more capable of predicting the station demand and capturing the 

underlying patterns in the PBS data and the influencing factors compared to the other models.  

 

On the contrary, the MLP regressor shows poor performance with low R-squared and high 

MAE and RMSE values. Therefore, it struggles to capture the relationships within the dataset 

and might not be a reliable model for predicting the station demand. The performance of the 

Random Forest regressor and SVM is relatively similar, with varying strengths and weaknesses 

in different metrics. Overall, the DL models, especially the SRGCNN-GW, appear to be a 
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better choice when it comes to predicting the PBS station demand with the influencing factors 

used in this thesis.  

 

Nevertheless, it should be noted that the DL models’ performance is still not optimal since the 

values in several metrics, such as RMSE, MAE and MAPE, are still relatively high. Several 

factors could influence the models’ performance. For instance, complex models, such as 

SRGCNN and SRGCNN-GW, are potentially better at capturing intricate relationships in the 

data. However, they are more prone to overfitting, especially if the dataset is relatively small. 

This thesis uses 151 PBS stations and 16 influencing factors to train the models and predict the 

station demand. Even though the dataset size appears sufficient, more PBS stations or 

influencing factors could lead to better generalization and enhanced performance. For instance, 

Zhu et al. (2022) utilized approximately 6000 nodes in the network. Hence, the DL models 

were more capable of capturing the underlying patterns since the sample was greater.  

 

Moreover, the selection of hyperparameters, such as learning rates, hidden layers, and dropout, 

can play a significant role in model training and can affect the model performance. In this 

thesis, random search is utilized to define the hyperparameters for the ML models. The number 

of iterations while randomly searching the best hyperparameters is being experimented in order 

to achieve the best performance. For the DL models, hyperparameter tuning is conducted 

through experimentation by comparing the evaluation metrics’ results. Nonetheless, the ML 

and DL models still exhibit relatively poor performance.  

 

Additionally, the quality and relevance of the data used for model training can significantly 

affect the results. In this case, all the influencing factors are selected carefully, based on 

previous studies on PBS station forecasting. However, further studies can reveal alternative 

feature selection, or better combinations of spatial features. The influencing factors can differ 

depending on the nature of the dependent variable to be predicted, the study area and its 

surroundings. Also, the buffer zone size has played a significant role in the analysis. 300-meter 

buffers are created around each PBS station to calculate the 16 independent variables. A smaller 

or larger buffer size could have led to slightly different results.  

 

Regarding the independent variables, some of them, especially the POIs, are probably 

inappropriate for this task. For example, sports and accommodation variables have a relatively 

small range of values and for a lot of PBS stations they were zero. This significantly affects the 

model training and, therefore, influences the model performance. Furthermore, it can be seen 

from figure 6, showing the PBS station demand distribution, that most of the PBS stations have 

a demand of around 500. However, a few stations in the city center have a demand of 

approximately 1500-2000 and 3500. This is why the ML and DL models were applied for both 

the initial dataset and without the outlier. The results showed that all the models performed 

better without the outlier and, therefore, the prediction accuracy was significantly improved.   

 

Furthermore, the hub distance between the PBS stations and the closest bus, train, and tram 

stations is calculated in QGIS, using the Euclidean distance. Even though it is a suitable 

method, calculating the network distance might have resulted in better performance. Also, the 
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bike lane or cycle path datasets found needed to be more extensive and lacked a lot of 

information. Hence, the road dataset from GeoFabrik is used to determine the bike lanes by 

excluding all the road types inappropriate for cycling. This has been done empirically and 

might have some underlying error. The models’ performance might be improved if there is a 

specific and reliable dataset for cycle paths in future case studies.   

 

Another important aspect regarding the data is the season. The data utilized for the station-level 

demand predictions were exclusively during the summer season, which could have led to some 

limitations. The data can be used to predict the short-term demand around this period of the 

year, but not the long-term demand since it cannot account for varying weather conditions and 

seasons. Furthermore, the usage of public bikes may differ significantly during the summer 

months, with individuals engaging in distinct activities compared to other seasons. Therefore, 

this variance in user behavior added another layer of complexity to the demand patterns which 

should be considered in future endeavors.  

 

The graph structure implemented in this thesis is based on the number of trips between the PBS 

stations. Different graph structures could improve the models’ performance. For example, 

alternative graph structures could be based on the duration of the trips, the Euclidean distance 

between the stations, or the network distance between the stations. Then, a comparative 

analysis could be implemented in order to determine which is the most optimal and appropriate 

graph structure for the task. When it comes to data analysis, standard scaler library is used to 

normalize the influencing factors. There are different normalizing techniques that can greatly 

affect the results.  

6. Conclusion  
 

The advent of docked public bicycle-sharing systems has drawn much attention recently. Many 

cities have introduced PBS systems to facilitate the daily commute of their citizens. Machine 

Learning and Deep Learning methods can be utilized in order to predict the PBS station-level 

demand and evaluate the spatial distribution of the stations. In this thesis, two DL models, 

namely SRGCNN and SRGCNN-GW, are used for PBS station demand forecasting and 

compared with four traditional ML models. Spatial features such as POIs, population density 

and other factors influencing the station demand are used to train the models. 300-meter buffer 

zones around the PBS stations are utilized to calculate the spatial features. Evaluation metrics, 

namely RMSE, MAE, MAPE, and R-squared, are used to compare the ML with the DL models’ 

performance. The evaluation metrics demonstrate that the DL models have similar performance 

and are better at predicting the PBS demand in terms of RMSE, MAE and R-squared, than the 

rest of the ML models. Two graph structure are applied in the DL models based on the number 

of trips between the PBS stations and the k nearest neighbor for the SRGCNN and the 

SRGCNN-GW model, respectively.  

 

Several constraints have been identified within this study, which could be the focus of future 

research endeavors. One of them is the number of stations which is relatively low and, 
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subsequently, insufficient for both ML and DL model training. For instance, Zhu et al. 2022 

used approximately 6000 nodes to create the network. Hence, future studies could consider 

more nodes to enhance the prediction accuracy. Different graph structures could also be 

implemented, based on the trip duration, the Euclidean distance, or the Network distance 

between the stations. This could provide different results and show which graph structure plays 

a significant role in the station demand prediction. Moreover, in this study only the start of each 

trip is considered to calculate the station demand. In future studies, each trip’s start and end of 

could be considered. In this way, PBS demand underlying patterns could be more easily 

revealed and potentially improve the PBS station demand prediction accuracy.    

 

Overall, this thesis managed to examine and reveal the most important factors influencing the 

PBS station-level demand in Zurich and predict the demand through four ML and two DL 

models. Evaluation metrics are used to assess the models’ performance. The goal of this thesis, 

to lay the foundation for a complete analysis that could be applied to different cities around the 

world, has been met. In this way, such a study can facilitate PBS network evaluation and 

planning. 
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Appendix A  
Maps of the Spatial Distribution of PBS station-level demand prediction values in Zurich. The 

ML and DL models used to implement the predictions are Multilinear regression, MLP 

regressor, SVM, RF Regressor, SRGCNN, and SRGCNN-GW. 
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Appendix B  
Maps of the Spatial Distribution of PBS station-level demand prediction errors in Zurich. The 

ML and DL models used to implement the predictions are Multilinear regression, MLP 

regressor, SVM, RF Regressor, SRGCNN, and SRGCNN-GW. 
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Appendix C  
 

Supplementary Table  1. Evaluation metrics for validation data for ML and DL models 

 
Metrics  

RMSE  MAE  MAPE(%) R-squared 

Models Demand  Demand excl. 

Outlier 

Demand  Demand excl. 

Outlier 

Demand  Demand excl. 

Outlier 

Demand  Demand excl. 

Outlier 

SRGCNN 573 253 298 178 52 41 0.58 0.88 

SRGCNN-GW (k=10) 622 502 494 412 96 92 0.50 0.51 

SRGCNN-GW (k=35) 539 307 312 223 55 51 0.62 0.82 

Random Forest Regressor 566 288 306 205 51 44 0.12 0.06 

Multilayer Perceptron 

Regressor 

585 288 350 227 67 57 0.06 0.07 

Support Vector Machine 598 278 311 186 48 33 0.02 0.13 

Multiple Linear 

Regression  

595 285 340 218 59 50 0.03 0.08 

 

 

 

 

 

 

 

 

 



Appendix D  
The table shows the factors influencing the public bike-sharing station-level demand 

prediction. The influencing factors are the independent variable used for the analysis and 

station-level demand prediction at a later stage. A description for each variable is provided. 

Also, the variables are divided into the following categories: statistics, POIs, land use, and hub 

distance.   

Variables Description Category  

Population density  Population per 100m x 100m Statistics 

 Employment density  Employees per 100m x 100m 

Bike lane density  Total length within buffer zone Points of interest 

(roads) 

Public Transport stops Total number within buffer Points of interest  

Closest distance to bus stops Euclidean distance from PBS station 

to bus stop 

Hub distance  

Closest distance to tram 

stops 

Euclidean distance from PBS station 

to tram stop 

Closest distance to railway 

stops 

Euclidean distance from PBS station 

to railway stop 

Land use mixture Entropy (residential, commercial, 

industrial) 

Land use  

Education density university, library Points of interest  

Tourism density  archeological, attraction, castle, 

memorial, monument, museum, 

tourist info  

Points of interest  

Healthcare density clinic, dentist, doctors, nursing 

home 

Points of interest  

Entertainment density arts center, bar, biergarten, café, 

cinema, nightclub, pub, theater 

Points of interest  

Sports density sports center, swimming pool Points of interest  

Accommodation density guesthouse, hostel, hotel Points of interest  

Errand density ATM, bakery, bank, beauty, bike 

rental, bike shop, book, butcher, car 

wash, clothes, community centre, 

computer, convenience, fast food, 

florist, food court, furniture, garden 

centre, gift, greengrocer, 

hairdresser, jeweller, kiosk, laundry, 

mall, marketplace, mobile phone, 

optician, outdoor, post box, post 

office, shoe, recycling, sports, 

pharmacy, post office, shoe, sports 

shop, supermarket, toy, video  

Points of interest  

Dining Restaurants Points of interest  
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Appendix E  
 

Supplementary Table  2. Hyperparameters used for Multilayer Perceptron Regressor 

MLP Regressor – 

Hyperparameters  

solver  adam 

learning rate  constant  

hidden layer 

sizes  

(200,200,200) 

alpha  0.1 

activation identity  

 

Supplementary Table  3. Hyperparameters used for Support Vector Machine 

SVM - Hyperparameters  

kernel  rbf 

gamma 0.01 

epsilon  0.001 

C 1000 

 

Supplementary Table  4. Hyperparameters used for Random Forest Regressor 

RF Regressor - Hyperparameters  

Number of 

estimators  

100 

min samples split  2 

min samples leaf  10 

max features  sqrt 

max depth  20 

bootstrap  True  
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Supplementary Table  5. Hyperparameters used for Spatial Regression Graph Convulotional 

Neural Network method 

SRGCNN - Hyperparameters  

Number of 

labels 

1 

Number of 

features  

16 

epochs  300 

learning rate  0.01 

hidden  8*Number of 

features  

dropouts 0.3 

 

Supplementary Table  6. Hyperparameters used for Spatial Regression Graph Convulotional 

Neural Network – Geographically Weighted method 

SRGCNNGW  - Hyperparameters  

Number of 

labels 

1 

Number of 

features  

16 

epochs  300 

learning rate  0.001 

hidden  32*Number of 

features  

dropouts 0.1 

k1 10 

k2 35 

   

 

 

 

 

 

 


