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Abstract

In recent years, Graph Database Management Systems(GDBMS) has in-
creased in popularity for many use cases. One of the most popular GDBMS
is Neo4j, which uses Cypher as a query language. With the increasing use of
GDBMS in many business-critical applications, the need to test Neo4j and its
competitors has become critical. One common practice for identifying bugs in
a database system is using randomly generated tests, known as fuzz testing.
Previously, this has been done by randomly generating queries, and several
tools are currently available for this purpose.

When executing a Cypher query, the query goes through several processing
steps to ensure a correct result returns quickly. One of the intermediate struc-
tures used in the query processing is the execution plan, which details how
the runtime should solve the query.

In this thesis, we propose a novel approach to fuzz testing GDBMS by ran-
domly generating execution plans. Our tool utilizes differential testing be-
tween different Neo4j runtimes, which allows for identifying incorrect results
returned from one or more of the runtimes. These types of bugs are known
as logic bugs. We can also identify situations when the Neo4j runtimes throw
unexpected exceptions. The testing suite identified 20 bugs within the Neo4j,
of which 11 were logic bugs. This approach to fuzz testing has proven helpful
in identifying errors within the Neo4j runtimes, which previously received in-
sufficient coverage by fuzz testing using queries. Other database management
systems that utilize execution plans can benefit from the approach proposed
by this thesis. The main drawbacks of this new approach are that it is not
easily portable between different GDBMS and requires access to the query
processing source code.
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Chapter 1

Introduction

1.1 Context
Database management systems (DBMS) are an essential part of any organization. Hav-

ing a simple way to store and access data improves efficiency and decreases the com-
plexity of many tasks. Relational databases have been the dominant solution for these
purposes, but in recent years, graph databases have emerged as a more viable option for
many use cases [2]. They are finding their applications in fraud detection, logistics, rec-
ommendation engines, and many other domains. Graph database management systems
(GDBMS) store their data as a graph with nodes and relationships instead of several ta-
bles connected by primary and foreign keys linking them. Neo4j is one of these options
and uses the query language Cypher. Several other graph databases also use Cypher, or
versions of it, as their query language. Cypher can simplify some queries that would be
complicated to construct in a language like SQL, and a GDBMS can compute them more
efficiently [8]. The simplicity of Cypher is especially apparent when finding paths within
the data. The two query languages contain some similarities in how their queries are pro-
cessed [4] but differ in syntax. One of these similarities is that they use an intermediate
structure during the processing before they can be executed, called an execution plan.

Software products are always flawed in their implementation, especially products under
continuous development. Limiting the number of bugs is essential to the integrity of the
software, both from a usability and security perspective. However, the challenge lies in
finding bugs, which is a complex and time-consuming process. Finding bugs before they
reach the consumer or a malicious actor that could exploit the bug is preferable. A wide
variety of tools and practices for bug identification have materialized.

One of these practices is fuzz testing, which involves randomly generating input for the
program to create many random tests. Through fuzz testing, it is possible to discover bugs
and errors missed through manual testing. Furthermore, continuously utilizing random
tests saves time as long as they are kept up to date and incorporate new features in the
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1. INTRODUCTION

software.
Fuzz testing has been successfully used in many different scenarios, including relational

DBMS [10] [11] as well as GDBMS [5] [3] [13]. In these examples, the fuzz testers create
test cases by randomly generating valid queries as input to the databases. By randomly
generating queries, the fuzz tester can produce many valid inputs to a database, provid-
ing good test coverage of the system. Furthermore, queries can be used interchangeably
across different DBMS that use the same query language or with minor tweaks for differ-
ent dialects of the same language.

Of particular interest for researchers in fuzz testing is finding bugs that return an in-
correct value, commonly called logic bugs. Logic bugs are challenging to identify in a
production environment as they require knowledge of the expected result of a query be-
fore running it on the GDBMS. Thus, unlike unexpected exceptions(error bugs), these are
not commonly reported, which will crash the program. A logic bug will continue running
generally without notifying the user and could corrupt their data. In recent research on
using fuzz testing on Neo4j, only a few identified bugs have been logic bugs, even in
papers with the explicit goal of finding them [5] [3].

1.2 Problem statement
Specifically for Neo4j, generating queries for fuzz testing has yet to prove to be as ef-

fective in identifying logic bugs as they have been at finding error bugs. One possible
explanation for this limitation is that queries are ineffective in identifying the underlying
issues that lead to logic bugs, as numerous intermediary steps exist between the query
string and the possible root causes of logic bugs. Could this result from a lower likeli-
hood of thoroughly investigating the later stages of query processing while extensively
searching query syntax and parsing?

We believe there would be a potential advantage to test later in the query processing, in
our case, randomly generating execution plans as the input, in fuzz testing of GDBMS.
One benefit of using execution plans instead of queries is decreasing the space where we
could find bugs. We cannot detect bugs in a query’s syntax, parsing, or planning, limiting
the search to the runtimes. One drawback of our approach is that the test cases we will
generate might not correspond to an actual execution plan that the current implementation
of Neo4j could plan. Thus, we will investigate the random generation of execution plans
in Neo4j for use in fuzz testing of the GDBMS.

In this thesis, we will answer the following questions.

• How can we randomly generate semantically correct execution plans in Neo4j, and
can these be used efficiently for fuzz testing?

• How does execution plan generation compare to query generation in the case of the
identification of bugs, especially logic ones?

1.3 Contribution
During this project we have developed a testing suite capable of performing fuzz testing

on logic execution plans in the Neo4j graph database. By testing directly on the execution
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plan layer, we have shown that a group of previously challenging bugs past the planning
stage of the query processing within Neo4j are possible to identify. During our testing,
we identified 20 bugs of varying importance in the Neo4j runtimes. The approach shows
promise in effectively identifying logic bugs as they seem more likely to occur in the
runtimes compared to syntactic or semantic bugs found higher up in the architecture.
Our specific implementation is not portable to other databases. However, the practice
of testing on intermediate structures applies to all Cypher-based databases and relational
databases, such as SQL-based databases that use execution plans.

1.4 Contribution statement
During the development of the testing suite, we have pair-programmed all significant

parts of the code, ensuring that both have complete knowledge of how the solution works.
Pair programming has been an important method, allowing us to solve problems and
discuss improvements with our supervisors. Writing the thesis has worked similarly, with
one writing a section and then the other rewrites and improving on the initial text.

1.5 Outline
The structure of the thesis is as follows. In Chapter 2, we discuss the background needed

to understand the project, particularly the Neo4j GDBMS, Cypher query processing, and
the testing practices and tooling used in this thesis. Chapter 3 presents our approach to
implementing differential testing using logic execution plans. Chapter 4 describes our
process of generating valid logic execution plans, desired characteristics, and limitations.
In Chapter 5, we present the test results and discuss their reasons. Chapter 6 discusses
related works, focusing on other fuzz testers used on Neo4j that implement query gener-
ation and how they compare to our approach. Chapter 7 presents this thesis’s conclusions
and future work within the research area of execution plan generation.
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Chapter 2

Background

2.1 Neo4j and Graph DBMS

What sets a graph database apart from relational databases are a few key distinctions.
Most notably, instead of organizing data into multiple tables, graph databases store infor-
mation within entities that collectively form a graph structure. These entities can represent
nodes or relationships, connecting two nodes within the graph [1]. Nodes can be catego-
rized using labels, and relationships always have a type and a direction. Furthermore,
entities can contain properties, enabling the storage of data associated with them, which
can later be used for computation or retrieved from the database. These properties are a
combination of a property key and a corresponding value. The structure described here
is specifically for the GDBMS Neo4j. For other GDBMS, the structure may vary, but the
general outline is the same.

In Figure 2.1, we illustrate a simple graph created in Neo4j consisting of three nodes and
their interconnecting relationships. The two blue nodes have the same label Person, and
they both have a relationship of the type FRIENDS_WITH pointing at the other person.
Having the same label does not imply that the nodes need the same properties. We can
see Bob has one more property than Alice, which represents his occupation. Bob also has
another relationship pointing at the third node. This one has the type WORKS_AT and a
property representing the year he started. This third node has a different label from the
other nodes to represent that it is a company. It also contains some differing properties.
Note that the names Alice, Bob, and Neo4j written inside the nodes are only to make the
representation more straightforward to understand and not stored in a Neo4j database.
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2. BACKGROUND

Figure 2.1: An example of a simple graph showing two nodes
with the label Person, one node with the label Company, two re-
lationships with type FRIENDS_WITH and one relationship with
type WORKS_AT. All nodes and the WORKS_AT relationship have
properties.

1 MATCH (:Person{name:Alice})-[:FRIENDS_WITH]->(p)-[:WORKS_AT]->(:Company
{name:Neo4j})

2 RETURN p.name

Figure 2.2: An example of a Cypher query

2.2 Cypher

Neo4j has also developed Cypher as a dedicated query language for interacting with
the Neo4j GDBMS. Notably, Cypher is not confined to its product alone, as several other
graph databases across the industry have adopted dialects of the language. One of the
primary advantages of Cypher lies in the simplicity and effectiveness of specific queries
[2]. As all data is in one graph, it eliminates using a JOIN operator, which is necessary
to query a relational database if accessing more than one table. Given the structure of a
graph database, certain operations and computations can be executed efficiently [8]. The
syntax focuses on common patterns in graphs, visually modeling the graph patterns when
writing the query by representing nodes with parenthesis and relationships with arrows.
Figure 2.2 shows an example of a Cypher query that incorporates labels and properties.
In this query, we can see how the nodes Alice, Neo4j, and the one we are looking for, the
variable p, are represented within parenthesis and the relationships between them with
arrows with their type encased in brackets. This query will find every person in the graph
named Alice and then the names of all their friends who work at Neo4j. In this case, the
result would be only Bob.

12



2.3 CYPHER QUERY PROCESSING

Figure 2.3: The stages of processing a Cypher query in the Neo4j
GDBMS and the output at each stage.

2.3 Cypher Query Processing
To execute a Cypher query, Neo4j must first process the incoming query string. The pro-

cess is done in several steps to ensure efficient and correct query execution. In Neo4j, the
query processing is a six-step process from a given query string to a final result presented
to the user, as shown in figure 2.3.

The first step is parsing the query into an Abstract Syntax Tree (AST) representing the
query. This AST is then put through semantic analysis to check the variable types and
scope of variables and optimizations such as naming anonymous pattern nodes, expand-
ing aliases, and folding constants. After rewriting the AST, the next step is to construct
another intermediate structure known as the query graph, an abstract high-level repre-
sentation of the query, allowing for cost computation and performance optimization to a
more significant degree than the AST can support. From the query graph, it is possible
to generate multiple candidate logical execution plans through a step-by-step process in a
bottom-up approach. By leveraging known statistics about the graph, the planner can now
estimate and pick an efficient plan for executing out of these candidates. Neo4j uses sev-
eral different runtimes that determine how to handle data during execution. This step also
allows for several optimizations. During the next phase, the logical execution plan trans-
forms into a physical execution plan corresponding to the chosen runtime. This physical
execution plan can then be executed with the given runtime on a specific graph and will,
if correct, generate a result. During the execution, the GDBMS uses variables containing
rows of data.

13



2. BACKGROUND

2.3.1 Logical Execution Plans
Logical execution plans are binary trees composed of logical operators corresponding to

the execution of a query [1]. The operators are responsible for data transformation in an
execution plan. After the transformation or retrieval of data, the operator passes it to its
parent. The operators can have different characteristics, such as the number of children
(leaf operators, unary operators, and binary operators) if they are updating operators or
eager operators. Neo4j has around 120 operators, which it uses when planning a logical
execution plan.

Figure 2.4 was created by using the EXPLAIN keyword when running the query in figure
2.2 and shows the logical execution plan generated for that query. The plan is supposed
to be read from the bottom up, looking at the columns Operator and Details.

• At Id 5 the operator DirectedRelationshipTypeScan will scan for every
relationship in the database with the type WORKS_AT, giving the start node the
variable name p.

• At Id 4, the operator is Filter, will only keep the relationships that point to a node
that has the label Company and have the property name with a specific value. In
the plan, this value is called a parameter and is represented by a $ before the name.
In this case, the parameter $autostring_1 has the value Neo4j.

• At Id 3, using the starting point of all the relationships we now have, the Expand(All)
operator will find all relationships with the type FRIENDS_WITH that points to that
same node.

• At Id 2, we again have a Filter operator. From the relationships we just found,
we only keep those that originate from a node with a label Person and contain
the property name of a with the same value as the parameter $autostring_0,
which has the value Alice.

• At Id 1, the values of property name on the variable p is projected as a new variable
with the name p.name using the Projection operator.

• Finally, the result is produced for the user using the ProduceResults operator.

>> EXPLAIN MATCH (:Person{name:Alice})-[:FRIENDS_WITH]->(p)-[:WORKS_AT]->(:Company{name:Neo4j})
RETURN p.name

+-------------------------------+----+-------------------------------------------------+
| Operator | Id | Details |
+-------------------------------+----+-------------------------------------------------+
| +ProduceResults | 0 | ‘p.name‘ |
| | +----+-------------------------------------------------+
| +Projection | 1 | p.name AS ‘p.name‘ |
| | +----+-------------------------------------------------+
| +Filter | 2 | (anon_0.name = $autostring_0 AND anon_0:Person) |
| | +----+-------------------------------------------------+
| +Expand(All) | 3 | (p)<-[anon_1:FRIENDS_WITH]-(anon_0) |
| | +----+-------------------------------------------------+
| +Filter | 4 | anon_3:Company AND anon_3.name = $autostring_1 |
| | +----+-------------------------------------------------+
| +DirectedRelationshipTypeScan | 5 | (p)-[anon_2:WORKS_AT]->(anon_3) |
+-------------------------------+----+-------------------------------------------------+

Figure 2.4: The logical execution plan produced for the query.
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2.3 CYPHER QUERY PROCESSING

Leaf Operators

Leaf operators are operators that do not have any children. According to some char-
acteristics, most leaf operators fetch data directly from the database. In the plan shown
in figure 2.4, there is one leaf operator, DirectedRealtionshipTypeScan. This
operator will fetch all relationships and the nodes they connect that have the desired type.
Another leaf operator is AllNodesScan. As the name suggests, this will return all
nodes in the graph. Some leaf operators do not return entities but the number of entities
such as NodeCountFromCountStore.

Unary Operators

Unary operators have one operator as their child passing data to them. These opera-
tors will transform before passing the data to their parent operator. The example, figure
2.4, contains a few of these, one being Filter, which will take the data from its child
and pass the data that fulfills its predicate. Another unary operator in this example is
Expand, which, given one or more nodes, will traverse all relationships connected to the
node. There are also many variations of Expand to handle different types of traversals,
such as when there are no matching relationships or when we want to traverse chains of
relationships with a certain length. A final example of a unary operator is Sort, which
will sort the incoming data in a given order.

Binary Operators

Similar to the unary operators, binary operators will apply a function to the data given by
their children. Only the binary operators have two children. One example is the operator
Union, which will concatenate the results from both of its children operators. Many of
these operators are versions of the Apply operator. The standard format will take one
row from the left-hand child at a time and use it as the argument for the right-hand child.
The result will be the right-hand child for every row from the left-hand child.

2.3.2 Runtimes
The runtime decides how the logical execution plan should behave during execution,

specifically how to handle data during execution [1]. There are currently three available
runtimes within Neo4j: slotted, pipelined, and parallel. There is also a fourth, interpreted,
which Neo4j maintains for internal use. There are several configurations available for
the user to control how the runtimes transform the logical execution plan into a physical
execution plan. The runtimes are all expected to provide the same results unless other-
wise stated. The runtimes have different advantages and disadvantages and may vary in
performance depending on the scenario.

Interpreted Runtime

The Interpreted runtime is now deprecated but still maintained runtime in Neo4j. It
does not implement any of the optimizations that later introduced runtimes use. It is
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2. BACKGROUND

usually slower at solving queries than the more modern runtimes. It does not implement
complicated optimizations, so it is less prone to errors.

Slotted Runtime

Slotted runtime produces a one-to-one mapping from the logical execution plan, where
each logical operator maps to a corresponding physical operator and is processed individ-
ually starting at the bottom left-most operator. Each variable in the slotted runtime has a
dedicated "slot" containing rows of data. This is where the data is stored intermediately
during execution. The slotted runtime uses a pull-based process where each operator in
the tree pulls rows of data from its child operator, causing data to move from the bottom
to the top.

The Slotted runtime is an interpreted runtime, meaning it interprets the logical plan
operator-by-operator. It has a comparatively short planning phase as it only needs to
generate some of the code for the query before executing. On the other hand, it is generally
slower than the newer runtimes as it is inefficient with its CPU usage.

Pipelined Runtime

The Pipelined runtime divides the logical execution plan into one or more pipelines,
which allows more than one row of operators to execute at a time. The pipelines are a
grouping of logical operators that can execute the same task. Each pipeline consumes a
batch of rows, known as morsels, which buffers between the pipelines.

Unlike the Slotted runtime, the Pipelined runtime is a push-based execution model
where data moves from child to parent. By storing the data in local variables, the data
in Pipelined runtime allows for more efficient CPU usage. The Pipelined runtime can use
either an interpreted or compiled runtime but uses the compiled variation as a default,
referred to as with or without fusing. Compiled runtimes have a code generation phase,
unlike the interpreted runtimes, which generally cause longer planning times but shorter
executions.

Parallel Runtime

The Parallel runtime shares the same architecture as the Pipelined runtime but allows the
parallelization of queries by allowing each pipeline task to execute on a separate thread. In
general, the Parallel runtime produces more pipelines compared to the Pipelined runtime,
as it is more efficient to have more tasks that run in parallel. When a pipeline receives a
morsel, it can start computing the input if there is an available thread.

Several considerations need to be taken into account when using the parallel runtime.
Firstly, running updating queries on the parallel runtime is currently not supported. More-
over, the order of the output is not guaranteed. The parallel runtime offers a significant
speed-up on large graph-global queries. However, there is no single rule to determine if a
query will run faster on the parallel runtime compared to the sequential variations.
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Compiled Expressions

The setting "compiled expressions" controls how the runtime evaluates expressions in
the query [1]. The default is that the runtime will use the compiled expression engine
when needed, but it is also possible to force the runtime to use it always. Forcing the
usage of the compiled expression engine should not alter the output.

2.4 Testing

2.4.1 Fuzz Testing
Fuzz testing is a technique of testing software through randomized correct input to the

program. If the test is sufficiently random, the test will explore large parts of the program
[6]. Running enough tests will probably result in the program crashing or finding dif-
fering results, thus finding a bug depending on what testing parameter the fuzz test uses
to determine an incorrect response or the test’s ground truth. There are several different
ways to compare the performance of a fuzz tester, with some usual performance measures
being the number of bugs found and the code coverage. A challenge with fuzz testing as
an approach is identifying unique bugs, as it is usually possible for multiple generations
to generate the same bug for different input variations.

2.4.2 Differential Testing
Establishing a ground truth to verify whether a program is running correctly is a founda-

tional step in testing. Differential testing might be a helpful approach when it is difficult
to establish a ground truth in a testing environment, exploiting the fact that if multiple
programs are expected to solve the same problem and are deterministic, then they are ex-
pected to return the same result for the same input [9]. Differential testing cross-references
different programs against each other. Thus, comparing results or behavior is utilized as
the ground truth for establishing the correctness of the programs. Establishing which of
the programs have returned the correct result can be difficult. The more programs in the
comparison, the easier it will be to determine which are faulty.

2.4.3 ScalaCheck
ScalaCheck is a library used for property-based testing and automatic test data gen-

eration for Scala [7]. Generators generate test data in ScalaCheck, represented by the
org.scalacheck.Gen class. You need to know how to use this class if you want
ScalaCheck to generate data of types not supported by default.

This library allows for generating with conditions using the suchThat method, which
will try to generate and afterward check if it conforms with the condition sent to the
function. If the condition is not met, the generated data is discarded. A variation to this
called retryUntil does the same thing but allows for the option to retry a set number
of times. Two other central methods from this library are oneOf and frequency.
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1 val numbers = Set(1, 2, 3, 4, 5, 6)
2

3 val generateNumber: Gen[Int] = for {
4 number <- Gen.oneOf(numbers)
5 } yield number
6

7 val generateEvenNumber: Gen[Int] = for {
8 number <- generateNumber.suchThat(_ % 2 == 0)
9 } yield number

10

11 val generateMostlyEven: Gen[Int] = for {
12 number <- Gen.frequency(9 -> generateEvenNumber, 1 -> generateNumber)
13 } yield number
14

15

16 def printRandomNumbers(): Unit{
17 val num1 = generateNumber(Gen.Parameters.default, Seed.random())
18 val num2 = generateNumber(Gen.Parameters.default, Seed.random())
19 println(s"First number: $num1")
20 println(s"Second number, from the same generator: $num2")
21 }

Figure 2.5: An example of how generators can be created with
ScalaCheck and used to generate numbers.

These will create generators that pick one option from a list of options. The first chooses
at random, while the other has a set frequency of how often each option should be picked.

Figure 2.5 shows three examples of how we can create generators with the help of
ScalaCheck. Note that these do not have the type Int but rather Gen[Int] and can be
used to generate numbers. If called multiple times, the value will be random each time.
The generator generateEvenNumber shows how suchThat can be used to gener-
ate with a condition, in this case, that the generated number should be even. Note, how-
ever, that generateNumber will only generate an even number half the time. When
the number is not even, the generator generateEvenNumber will generate the value
None. The last generator, generateMostlyEven, is an example of how the function
frequency can weigh the options. In this case, the generator has a 90 percent chance
of only being able to generate an even number (or None) and a 10 percent chance of
generating a random number from the set.

Lastly, the figure shows an example of how a method can use these generators to gener-
ate random numbers. The method printRandomNumbers shows how one generator
can be used multiple times to generate a number. Each time the generator is called, it will
return a random value, num1 and num2 will not necessarily have the same value unless
the seed is the same.
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Chapter 3
Approach

Our method for identifying bugs relies on the idea that each runtime in Neo4j should
return the same results when provided with the same query, which is the basis of our
differential testing approach in our testing suite. As we have included the parallel runtime,
we must consider that the result might be unordered when comparing the parallelized and
sequential runtimes.

Algorithm 1 outlines the structure of our testing approach. Using a set of graphs, we
create several execution plans for each graph. After execution on the different runtime
configurations, we compare the results and can identify unexpected behavior. The re-
porting of bugs were done continuously during the development of the tool and the final
product comprises over 2500 lines of code.

3.1 Test procedure
To enable the differential testing, we set up nine different runtimes configurations, as

displayed in table 3.1. The interpreted runtime is our reference runtime, against which we
compare all other configurations. All runtimes, except interpreted, have a configuration
where we force the usage of the compiled expression engine. For the pipelined runtime,
we run it with and without the option of fusing and with and without forcing compiled
expression, giving us four total variations of the pipelined runtime.

After initializing our runtimes, we build the graph on which we will run tests. We give
all the entities in the graph zero or more properties of the three types we have decided
on: integers, strings, and boolean values. We track all entities and property labels and
use them to construct the logical execution plan later. For our testing suite, we are using
seven different graphs with varying complexity. Table 3.2 presents their configurations.

Using the information provided by the graphs, we can now generate a logical execution
plan that incorporates relevant information from the plan. Each plan uses a specific seed
that, combined with the graph, can recreate the test case.
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3. APPROACH

Algorithm 1 An overview of our testing procedure.
Require: G : Set of graphs
Require: Np : The number of plans to be generated for each graph
Require: R : Set of runtimes

for g ∈ G do
propertySeed ← randomLong()
addRandomProperties(g, propertySeed)
for i = 1→ Np do

s← randomSeed()
logicalPlan← generateLogicalPlan(s, g)
re f erenceResult ← execute(interpreted, logicalPlan)
for r ∈ R do

result ← execute(r, logicalPlan)
if result did not complete then

logBug(r, i, g) ▷ Error bug
end if
if result ̸= re f erenceResult then

logBug(r, i, g) ▷ Logic bug
end if

end for
print(re f erenceResult, loggedBugs)

end for
end for

Runtime Compiled Expression Fusing Reference
Interpreted ✓
Slotted
Slotted ✓
Pipelined ✓
Pipelined ✓ ✓
Pipelined
Pipelined ✓
Parallel ✓
Parallel ✓ ✓

Table 3.1: Runtime configurations used in the test suite
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3.2 REPRODUCING AND ENSURING UNIQUENESS OF BUGS

The plan is then executed using the different runtime configurations, with all results
stored and the results from the interpreted runtime marked as the reference. First, we
check if all results completed execution without throwing an exception and within the
time limit. If no problem occurs, the tool checks for differences between the results. To
ensure ordering is no problem, we sort the results, including the lists that may be present
in the results, and are then compared row by row to avoid false positives due to different
ordering. The test is marked as passed if results do not differ and no exception occured.

When at least one runtime failed to execute, or a discrepancy is found in the result, the
test will fail, and relevant information will sent to the log. In the case of a timeout or an
arithmetic error, such as division by zero, the test will be ignored. When the test fails on
an exception, the stack trace will be in the result.

When all the tests have completed, we manually check the failed test to see if the cause
is differing results (logic bug) or an exception (error bug). If we have not previously re-
ported the bug, or if determining its uniqueness is challenging, we save all the information
concerning the test so that it can be recreated and reported later.

We cannot tell beforehand if a plan will terminate within a reasonable time frame. Be-
cause of this, we have implemented a time limit in the test suite, which will cancel the
test if the test exceeds it. For most tests, this timeout has been one second per runtime
configuration. The upper time limit for each test as follows 1s ∗ nbrCon f igurations +
planGenerationTime. Plans, including large expansions or path searches, are prone to
quickly expand the number of rows, even on small plans, and are thus prone to cancella-
tion. After all tests are done for a graph, we calculate some statistics. This includes the
number of empty results, the number of canceled tests, and the average plan length.

3.2 Reproducing and ensuring uniqueness
of bugs

When a test case is marked as failed, the test suite produces a reproducible case con-
taining all necessary information. The test case can be run separately from the standard
test suite to reproduce the error and confirm its validity. In some cases, we are manually
able to simplify the plan slightly; this is done by removing one operator at a time from
the plan until all operators that do not modify the result are removed.

Verifying the uniqueness of a bug is a process of discussion and comparison. With the
error bugs, it is usually relatively easy to establish if the bug has already been recorded.
It is usually more difficult with logic bugs as the plans can be pretty complex, and the
root cause can be difficult to establish or appear in multiple operators due to underlying
implementation. The final confirmation of a bug’s uniqueness is impossible to establish
until a fix for the bug in question is at hand. When rerunning the test case with the fix, it
should now pass. Thus, after reporting, we keep track of the bug’s progress.

3.3 Graph structure
The current test suite implementation uses seven different graphs as presented in table

3.2. The plans have different structures to broaden the possible test cases we can generate,
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3. APPROACH

Graph #Nodes #Relationships
Bipartite with extra nodes 37 50
Empty 0 0
Two Nodes 2 0
Two Nodes and Relationship 2 1
Grid 25 40
Lollipop 3 3
Nested Star 40 39

Table 3.2: The graph configurations used in the test suite.

as the graph impacts which plans we can generate. Some graphs have simple structures,
such as an empty graph, one with two nodes without a relationship, and one with a rela-
tionship connecting them. The more complex graphs were chosen from Neo4j’s library
of test graphs, including a bipartite graph, a grid, and others, providing the test suite with
more complex graphs to run tests. Having graphs that were easy to create would simplify
the process of recreating failing test cases and make it easier for developers at Neo4j to
confirm bugs. The methods for creating all these graphs, except for bipartite with extra
nodes, can be found in Neo4j’s community edition 1.

When generating the properties for a graph, a random selection of the available prop-
erties was made and given to the entities. These properties were picked from three sets
that we created. The sets contained properties of boolean, string, and integer types. The
random generation of properties was also seeded to support recreating them if needed.

1https://github.com/neo4j/neo4j/blob/5.13/community/cypher/
runtime-spec-suite/src/test/scala/org/neo4j/cypher/internal/runtime/
spec/GraphCreation.scala
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Chapter 4
Generation of Logical Execution Plans

For the random generation of plans needed to perform the fuzz testing, we have imple-
mented a logical execution plan generator using ScalaCheck. This chapter describes the
generated plans’ general structure and an overview of the process.

4.1 Structure and desired characteristics
We strive to construct semantically correct plans that include interesting features. Over

many tests, the variation of plans explored should be extensive. There are multiple inter-
esting features that we are looking for in our plans. One factor is the interconnectedness
and awareness of the plan by the operators. What we mean by this is that an operator
should use previously generated variables, especially those generated close to the oper-
ator in question. This increases data dependencies within the plan, particularly when
generating expressions incorporating variables. Furthermore, the generation should be
able to generate any possible combination of operators over a large number of tests.

All of the plans we generate will be semantically correct and possible to execute, but
we cannot verify if the generated plan will terminate within a reasonable time. Non-
terminating plans are a problem as they are not possible to test. To counteract this, we
rely on the number of operators in the plan to act as a rough limitation of the plan’s
complexity. The number of operators in a logical execution plan does not necessarily
reflect the computational runtime. Nevertheless, limiting the number of operators will
decrease the number of plans that pass the time limit.

4.2 Generation process
The first step of generation is the preprocessing of the graph information. We collect

label names and relationship types and gather IDs of entities, as some of the operators we
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Implemented Not in scope Total Lines of code
Leaf 17 33 50 212

Unary 23 22 45 370
Binary 14 4 19 138
Total 54 58 114 720

Table 4.1: Number of implemented operators per category as well
as how many source lines of code their implementations consist
of. The operators that are not within the scope of the testing suite
are updating operators and operators leveraging indexes within
the database. The missing binary operator is Repeat(Trail)
due to complicated implementation.

implement require these as input. Thus, different graphs will cause different generations
of plans as the available graph data differs. After the preprocessing step, we can start the
generation process.

At the top of each logical execution plan is the operator ProduceResult, a unary
operator, meaning we must generate a child operator. Figure 4.1 shows the function called
every time an operator needs a child and will be called recursively by all unary and binary
operators. When the plan reaches the operator limit, the planGen function will always
assign leaf operators to complete the plan. The figure simplifies how the function works
in the actual generator. In reality, there is the option to weigh the choice of operator type
and specific operators, allowing us to tune the likelihood of each operator type depending
on which has been picked. The three different methods picked in figure 4.2 only show
one option per category, and table 4.1 shows the actual number of options within each
category.

As all sub-trees of a plan are valid plans, the general idea is to pick an operator and
then generate the children that fulfill the operator’s requirements. When reaching the
size limit and any operators still have unevaluated children, the plan will be completed
by only assigning leaf operators. The ScalaCheck library allows us to put requirements
on children, causing it to retry the generation if the requirements are unmet. We allow
for 1000 attempts to generate the correct plan on the top level that meets the minimum
requirement of operators. When the generation is complete, the plan is set as the child of
the ProduceResult operator.

4.2.1 PlanState
During the plan generation phase, we utilize a PlanState object to ensure the cor-

rectness and that the plan conforms to our desired outcome at any given point during the
generation of a plan. An overview of the PlanState object is presented in table 4.2.
The attributes marked with Control are used when choosing the operator type when gen-
erating a child and are updated continuously during generation. The rest ensures the plan
is correctly assembled and will run when executed. These values update during the gen-
eration of each operator. When we create each operator, the opsCount is incremented
and given an id by idGen.

The opsCount value ensures the desired structure of our plans as shown in figure 4.1.
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4.2 GENERATION PROCESS

1 def planGen(planState: PlanState): Gen[LogicalPlan] = {
2 if (planState.opsCount >= MAX_COUNT) {
3 leafPlan(planState)
4 } else {
5 Gen.oneOf(
6 leafPlan(planState.incOpsCount()),
7 unaryPlan(planState.incOpsCount()),
8 binaryPlan(planState.incOpsCount())
9 )

10 }
11 }

Figure 4.1: The function planGen from our generator. This
method manages the number of operators in the plan and ran-
domly picks the following type of operator if the limit has not yet
been reached.

1 def leafPlan(planState: PlanState): Gen[LogicalPlan] = {
2 Gen.oneOf(
3 allNodesScan(planState),
4 ...
5 )
6 }
7 def unaryPlan(planState: PlanState): Gen[LogicalPlan] = {
8 Gen.oneOf(
9 projection(planState),

10 ...
11 )
12 }
13 def binaryPlan(planState: PlanState): Gen[LogicalPlan] = {
14 Gen.oneOf(
15 cartesianProduct(planState),
16 ...
17 )
18 }

Figure 4.2: The methods used when picking an operator within
the three categories. These have been scaled down and only shows
one option for each operator type.

25



4. GENERATION OF LOGICAL EXECUTION PLANS

Name Type Use Correctness Control
opsCount Int Number of operator

generations in the
plan

✓

idGen IdGen Generator for opera-
tor ids

✓

varCount Int Tracks number of
used variables

✓

parameters Set[Parameter] Tracks used parame-
ters including name
and type expected

✓

variables Set[LogicalVariable] Tracks the currently
available variables

✓

semanticTable SemanticTable Tracks types of vari-
ables in the plan

✓

config LogicalPlanConfig Contains current
frequencies for plan
generation

✓

Table 4.2: The values stored in the PlanState object.

Using it, we can roughly control how many operators make up each plan. What we omit
from this figure is how config can affect the choices made by the generator by con-
trolling the frequency of individual operators. This may be updated statically before the
generation as well as during the generation. For example, if we chose a binary operator,
the likelihood of picking another afterward is lowered.

During generation, we create new variables used by the plan. The type of each variable
kept track of in the SemanticTable. The variables are named sequentially, starting
at zero. The set variables tracks which variables should be in scope during different
stages of the plan. When generating expressions, we can use parameters containing ran-
dom values. When we generate a parameter, it is tracked, together with their respective
types, in the set parameters in the PlanState. Before executing the plan, we generate
random values for the parameters with the expected types.

4.2.2 Operator implementations
All operator implementations follow the same pattern. They get a PlanState from

their parent operator, and in the case of unary and binary operators, they call planGen
once for each child. When doing this, some operators will have additional requirements on
the plan succeeding it. For example, if we want to create a ShortestPath operator, the
child must have two available nodes to calculate the path between them. The ScalaCheck
library has a function called suchThat[7] that requires the child plan to contain specific
characteristics. If the generated plan does not meet the requirements, ScalaCheck will
discard the plan. In the case of operators with strict requirements on the contents of their
children, it will be less likely to be planned. After the generation of the children, we
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1 // Generated plan
2 .produceResults("var0", "var1", "var2")
3 .sort("var0 ASC", "var2 DESC")
4 .cartesianProduct()
5 .|.nodeCountFromCountStore("var2", Seq(Some("A"), Some("B"))
6 .projection("$param1 + 4 = 10 AS var1")
7 .allNodeScan("var0")

Figure 4.3: An example of a generated plan, generated with the
data from the default graph. The left and right-hand side of a
binary operator is separated with the symbol |. The plan generated
three variables var0, var1 and var2 as well as a parameter
$param1.

1 // Leaf Operator
2 def allNodesScan(planState: PlanState): Gen[AllNodesScan] = for {
3 variable <- newVariable(planState)
4 planState <- Gen.const(planState.newNode(variable))
5 } yield {
6 AllNodesScan(variable, planState.arguments)(planState.idGen)
7 }

Figure 4.4: The implementation of the operator AllNodeScan,
an example of a leaf operator.

create the necessary variables and expressions before returning the complete operator.
Figure 4.3 shows an example of a plan generated using our tool.

Figure 4.4 shows the implementation of the leaf operator AllNodesScan. This op-
erator will return all nodes contained in the graph. Line 3 in this figure shows how a
variable is created, and on line 4, we update the planState to contain this variable,
and its content is of type Node. When the operator is created and returned on line 7, this
variable is given as an input. In figure 4.3 on line 6, we can see how a AllNodeScan
operator might look in a finished plan, var0 is the variable that is created to store the
resulting rows.

To give an example of the implementation of a unary operator, figure 4.5 shows the
implementation of the operator Projection. This operator evaluates a particular ex-
pression and saves the result as a new variable. Since this is a unary operator, the first step
is to call the planGen function to generate a child, as seen in line 4. After this, we gen-
erate an expression using the function validExpression that ensures the expression
is valid within the current state. The method has a set of available symbols, the variables
generated by the child plan. Like the previous operator, Projection needs to create a
variable to store its results. However, we do not know the type of this variable. In line 7,
the variable gets a type using a method that evaluates the type of the expression and gives
the variable the same type. When creating the finished operator on line 10, the child is
given as a parameter, connecting the operators. In figure 4.3 on line 5, we see an example
of a Projection operator in a finished plan. In this case, the generated expression is
$param1 + 4 = 10, and var1 is the variable created to store it. Where $param1
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1 // Unary Operator
2 def projection(planState: PlanState): Gen[Projection] = for {
3 planState <- Gen.const(planState.updateConfig(new OneChildConfig))
4 child <- planGen(planState)
5 expr <- validExpression(child.availableSymbols.toSeq, planState, _.

expression)
6 variable <- newVariable(planState)
7 planState <- Gen.const(planState.declareTypeAs(variable,

getExpressionType(expr, planState)))
8 } yield {
9 val map: Map[LogicalVariable, Expression] = Map(variable -> expr)

10 Projection(child, map)(planState.idGen)
11 }
12

Figure 4.5: The implementation of Projection, an example
of an unary operator.

1 // Binary Operator
2 def cartesianProduct(planState: PlanState): Gen[CartesianProduct] = for

{
3 left <- planGen(planState)
4 right <- planGen(planState)
5 } yield {
6 CartesianProduct(left, right)(planState.idGen)
7 }

Figure 4.6: The implementation of Cartesian Product, an
example of a binary operator.

is a generated parameter, it is assigned a numeric type since it is part of an arithmetic
expression.

The final type of operator to implement is the binary operator. Figure 4.6 shows the im-
plementation of the operator CartesianProduct, which combines the rows from its
two children. As with all binary operators, it generates its left child first and then the right-
hand child second. Figure 4.3 provides an example of how this operator can be generated,
as shown in line 3. In this example, the operator has the left-hand child Projection
and on the right-hand side NodeCountFromCountStore. In the ProduceResult
operator at the top, we can see how it contains the variables created by both left and right-
hand children, var0 and var1 are created on the left-hand side of the CartesianProduct
while var2 is created on its right-hand side.

Some of the binary operators will modify the PlanState in between the generation of
its children. In some cases, the need to do so is that the right-hand child should not be able
to access all variables generated on the left-hand side. The need to update the PlanState
is the case for the many different versions of the Apply operator. Binary operators may
also generate variables and expressions when needed.

These were only one example of each operator type, but they all follow the same general
structure. The complexity of the implementations of these operators varies wildly, and in
general, the more complex the operators need, the more lines of code are needed for their
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implementations. Table 4.1 shows how many operators we implemented of each type and
how many lines of code were written to implement them.

4.2.3 Expression generation
Many of the operators make use of expressions to transform the incoming rows. Neo4j

supports a large number of different expressions that perform a variety of different tasks.
Expression can be mathematical operations such as simple arithmetic, calculating the
average from a list of values, calculating distance or duration, or predicate functions. An
expression can incorporate properties from entities or parameters provided by the user. An
expression can also include conditional statements and even sub-queries encompassing a
complete Cypher query. Due to the large number of possible functions in expression and
the implications of the combinations, we only implement a small subset of the possible
expressions. Figure 4.3 shows an expression generated for the Projection operator. It
is a predicate expression that will return true if the parameter $param1 has the value
6.

The operators expect different expressions, some with specific requirements, while oth-
ers can run with almost any combination of transformations. This requires us to tailor the
expression generation to the specific operators to ensure valid and reasonable plans. The
generators are heavily weighted towards desired behaviors, such as using available vari-
ables produced previously in the plan and utilizing properties available on the variables.
These are kept track of in the PlanState. Importantly, we track the typing of vari-
ables in the SemanticTable. Without this weighting, the likelihood of the expression
generator producing expressions showing these characteristics would be negligible.

As we want the logical execution plan to be interconnected, we need to type the results
of the expression if possible. For this, we use the Neo4j semantic checking, which is
usually run multiple times during the planning stage before the logical execution plan
is generated. We can construct the necessary structures from the values we keep track
of during generation. If an expression fails the semantic checking, a new one will be
generated, retrying one hundred times to create a valid expression.

4.3 Generation limitations
We have made some limitations to the generation in the current version of the log-

ical execution plan generator. We are currently not implementing any updating queries.
This would require reworking the graph handling framework that implements rolling back
changes to the graph after each test to keep the graph state coherent. Allowing for updat-
ing queries would also disallow us from testing the parallel runtime, as it currently does
not allow updating queries. Furthermore, we are not handling any queries involving the
indexing of values in the graph. Indexing would be a potential future expansion of the test
suite. Finally, we are forcing ordering for some operators to ensure that the result from
the sequential runtimes is the same as the result from the parallel runtime. This is done by
sorting all variables before any operator relying on the order of the incoming data, such
as Top and Limit.
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Chapter 5

Evaluation

In this chapter, we evaluate the random generation of execution plans. The first section
contains an evaluation and presentation of how the testing suite behaves and performance
under different configurations. In the second section, the reported bugs are categorized
and presented. In the third section, we highlight two examples of the bugs we have identi-
fied. In the last two sections, we further discuss the tool’s usefulness and the generation’s
limitations.

5.1 Testing suite behavior
To better understand how the random generation works, we did several tests with dif-

ferent configurations on the limits of the plan size. The results are presented in table 5.1,
giving us insight into how the results change depending on the size of the generated plans.
The values resulting from generating 1000 plans on the bipartite with extra nodes graph
on the same version of the tool. Avg Ops is the average number of operators present per
plan. Observe that the number of operators in a plan can be larger than the maximum
number due to the need of of adding additional operators if the plan is not complete by
the point when the limit is reached. Unevaluated right-hand sides of binary operators are
commonly what causes the need for additional opertors. The Empty column contains the
number of tests without any resulting values. The Canceled column contains the number
of plans timed out within the one-second timeout or included a valid error, e.g., division
by zero. Non-Comp. is the sum of empty and canceled values showing the number of
non-comparable tests. In the table, we can see that increasing the lower bound of the
generation will increase the time it takes to generate a plan within the limitations. An ex-
planation is that ScalaCheck has to retry the generations multiple times before returning
a valid plan. Figure 5.1 presents the distribution of the number of operators in plans.

When observing the average length of the plans, the configuration with 10 as the upper
limit can produce larger plans on average than the one with 25 operators as the upper
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limit. We also see that larger plans have a higher chance of not providing any rows in
the result and causing a timeout. It is a balance between testing more complex structures
but with a higher percentage of the plans being non-comparable and taking more time to
generate. With shorter plans, we can generate more comparable plans in a shorter time,
while the plans are less complex overall.

Min Ops Max Ops Time Avg Ops Empty Canceled Non Comp.
0 10 5m 59s 5.114 258 11 269
2 10 8m 31s 8.268 369 24 393
4 10 14m 26s 11.238 408 42 450
6 10 18m 57s 13.645 478 68 546
8 10 22m 6s 15.115 504 46 550
0 25 7m 23s 4.487 236 16 252
2 25 7m 40s 6.372 331 14 345
4 25 16m 57s 9.422 393 34 427
6 25 28m 59s 12.266 415 56 471
8 25 50m 5s 15.271 467 61 528

Table 5.1: The table shows how the test suite is impacted by ad-
justing the graph limiting values of Min and Max number of op-
erators.

0 10 20 30 40

0 / 10
0 / 25
2 / 10
2 / 25
4 / 10
4 / 25
6 / 10
6 / 25
8 / 10
8 / 25

Number of operators

Figure 5.1: A boxplot showing how the number of operators per
plan change depending on the generation minimum and maximum
values. The diamond indicates the average number of operators.
The values are from the data used in table 5.1

.

In figure 5.2, the distribution of generated operators is presented. Operators Sort and
ProduceResult are excluded due to always being present or planned together with
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other operators due to the need for persevering ordering. It is interesting to see the dis-
tribution of the unary operators, with the most prevalent being the operators without any
prerequisites, such as Distinct, Optional, and Filter. Note that Expand and
its variations, as well as Unwind, are much less commonly planned due to requiring the
existence of either nodes or lists present in the sub-plan of the child. The same pattern
appears within the binary operators as NodeHashJoin and Union are rarely planned
due to complicated requirements on their children.

5.2 Found Bugs
The random logical execution plan proved able to identify several bugs across the nine

Neo4j runtime configurations used in the testing suite. The results are from tests that
we ran during the development of the tool, as well as after the final version. Table 5.2
presents the found bug, totaling 20 bugs. Of the bugs, 11 were logic bugs causing the
runtimes to provide different results, and 9 were error bugs causing the runtimes to throw
an unexpected exception.

5.3 Highlighted Bugs
This section will present two bugs: one logic bug and one error bug. The shown logical

execution plans are simplified versions of the original plans we generated. This process
of minimizing the execution plans is done by hand.

5.3.1 An example of a logic bug
One logic bug we found was related to variable aliasing. When a query contains multiple

variables that reference each other, Neo4j treats those variables as aliases, i.e., only one
physical column is allocated for all of these variables. This is an optimization. We were
able to identify a bug in this mechanism whereby an alias was incorrectly identified,
i.e., two columns that were not equivalent were considered as aliases. This resulted in
incorrect results being returned to the user. A simplified test case of the identified bug
is displayed in figure 5.3. Looking at the example, one non-nullable variable, n0, was
introduced first, followed by a nullable variable, n2, which referenced n0. Variables
introduced below an Optional operator are always nullable. For some rows, the correct
value for n2 was NULL whereas n0 could never be NULL, but this bug ensured that n2
was never set to NULL.

5.3.2 An example of an error bug
One error bug we found concerned the unexpected cancellation of rows. The pipelined

and parallel runtimes are push-based and work on batches of rows simultaneously. In
contrast, slotted and interpreted are pull-based and work on a single row at a time. Push-
based runtimes have performance advantages, but one drawback is that it is difficult to
process a query lazily. One of the optimization tactics employed by pipelined to combat
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Figure 5.2: The plot shows the average number of occurrences
per plan for each operator. The data is collected from 10000 gen-
erated plans. ProduceResult and Sort are omited from the
plot and occur with a frequency of 1 and 1.55 per plan.
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Description Err/Log Runtime Fixed
NodeHashJoin should read cor-
rect slot from lhs

Error S, Sc Yes

Use RHS argument size slot allo-
cation fix for primitive aggrega-
tions

Error S, Sc Yes

Null handling in LetSemiApply Error Sc, Pc, Pwc, PAc Yes
Nested exception handling in byte
code

Error Sc, Pc, Pwc, PAc Yes

Make sure slots are nullable after
optional

Error Sc, Pc, Pwc, PAc Yes

Class cast exception in expand
into

Error P, Pc Yes

ProjectEndpoints not filtering null
rels

Logic P, Pc, Pw, Pwc Yes

OrderedUnion cancelled row bug Logic P, Pc, Pw, Pwc Yes
ConditionalApplyBuffer only
writing to one delegate

Logic P, Pc, Pw, Pwc Yes

Bug in OrderedUnion filter can-
celled arguments

Logic P, Pc, Pw, Pwc Yes

Error in row cancellation on small
morsel sizes

Logic P, Pc, Pw, Pwc Yes

Input cursors should not be reset Logic P, Pc, Pw, Pwc Yes
Optional and Conditional-/Select-
Apply handling of aliases

Logic P, Pc, Pw, Pwc, PA, PAc Yes

Race condition Logic PA, PAc Yes
Account for NaN in StdDev Logic PA, PAc Yes
Fused ProjectEndpoints produc-
ing null rows on optional input

Logic PA, PAc Yes

SlottedPipeOperator cancellation
bug

Error PA, PAc Yes

Do not alias argument slots under
Optional

Logic S, Sc, P, Pc, Pw, Pwc, PA, PAc Yes

Copy argument aliases to LHS
slot config in cartesian product

Error S, Sc, P, Pc, Pw, Pwc, PA, PAc Yes

Bug in liveness analysis Error All Yes

Table 5.2: This table presents the found, unique, confirmed bugs
by the testing suite. In the Error/Logic column it is indicated what
type of bug we categorized it as. In the runtime column we note
in which runtimes the error occurred, the listing is not exhaustive
but what we noted the bug as. I - interpreted, S - slotted, Sc -
slotted with compiled expression, P - pipelined, Pc - pipelined
with compiled expression, Pw - pipelined without fusion, Pwc -
pipelined without fusion with compiled expression, PA - parallel,
PAc - parallel with compiled expression
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1

2 Logic bug
3

4 .produceResults("n0")
5 .apply()
6 .|.optional("n0")
7 .|.filter("false")
8 .|.projection("n0 AS n2")
9 .|.allNodeScan("n1")

10 .allNodeScan("n0")
11 .build()
12

Figure 5.3: A simplified logical execution plan for reproducing a
logic bug. The expected result was 5 but we received -1.

this is to cancel upstream rows that have already been queued for later processing when
the runtime recognizes it is safe to do so, e.g., if a LIMIT has already been reached. It is
sufficient to say that pipelined operators must know this row cancellation mechanism and
cannot process canceled rows. Thus, it is invalid for an operator to yield new output rows
based on an already canceled input row. There was a bug in how pruningVarExpand
handled canceled input rows, which could be reproduced by the plan presented in figure
5.4.

1

2 Error bug
3

4 .produceResults("r")
5 .semiApply()
6 .|.limit(1)
7 .|.pruningVarExpand("(c)<-[*1..1]-(d)")
8 .|.allNodeScan("c")
9 .relationshipTypeScan("(a)-[r:R]->(b)")

10 .build()
11

Figure 5.4: Simplified logical execution plan reproducing an er-
ror bug. The plan caused a NullPointerException.

5.4 Usefulness of the testing suite
Testing using logical execution plans in Neo4j proved helpful in identifying multiple

previously unknown bugs in the Neo4j runtimes. Of the bugs reported, the distribution of
bugs between error and logic bugs supports the idea that logic bugs are more commonly
present in the later stages of query processing. The Neo4j runtimes are expected to be
robust to semantically correct execution plans whether or not the plan can be planned in
the current state of Neo4j parsing and planning stages. Thus, we see our bugs as crucial
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to the robustness of the Neo4j runtimes, which is emphasized further by the fact that the
developers have fixed all the reported bugs shortly after reporting them.

From the results, we can see that bugs are present in all runtimes that have been tested,
with most occurring in the pipelined configurations and configurations using the compiled
expression engine. From speaking with the developers, we know that many of the bugs
we have found have been in operators and combinations of operators that previously have
been difficult to identify due to the limited test coverage reached through manual test
writing. The developers at Neo4j intend to incorporate the tool into the routine testing
procedures used during the development and maintenance of the runtimes.

After continuously running the testing suite and updating the Neo4j version to incor-
porate the fixes to previously identified bugs, we observed that the number of potential
bugs detected by the tool decreased without further extensions to the testing suite. Our
tool may have exhausted most of the bugs it can produce in the current version of Neo4j.
There is still the possibility that there could be cases that produce bugs that have not been
produced due to chance. We can assume that there are still bugs within the Neo4j run-
times. We believe that some of these can be reached with our tool if it is further improved
to cover more operators and expressions or run for a more significant number of iterations.

5.5 Insights
The current implementation of the fuzz tester has proven successful at identifying bugs

within the tested Neo4j runtimes. However, we have several insights from analyzing
the generation of plans. Looking at table 5.1, we can observe that the number of non-
comparable results increases with increasing average size of plans. This is expected as
a larger plan is more likely to include combinations of operators with a high chance of
canceling rows from the result. Generating larger plans is not, in itself, a desirable charac-
teristic. However, a larger plan is more likely to include interesting data dependencies and
combinations of operators that would not be possible to explore otherwise. Empty results
are challenging to counteract without putting considerable limitations on the possible gen-
erations. One possible expansion would be to be more restrictive with how operators such
as LIMIT, SKIP, and Anti-Apply operators as they are likely to cause empty results.

In figure 5.2, some further limitations of the fuzz tester are shown. The table shows that
the tool is biased toward operators who do not have any requirements for their children.
Thus, they are easy to plan. This limits the coverage of some operators, and it would be
beneficial if we could plan these more often. A better spread of operator planning would
allow for more varied combinations of operators, which would benefit the tool’s coverage.

Studying figure 5.1, we find some odd behavior in the fuzz tester. When we increase the
upper limit of the number of operators allowed in a plan, the plans are generally smaller,
with a few significant outliers. This is counter-intuitive and is possibly an effect of the
higher limit trying to create longer, complicated plans that are less likely to succeed,
causing it to retry more often and be more likely to succeed only in making shorter plans.
Nevertheless, a higher limit also allows for generating larger plans, which causes a few
large outliers for the higher limit. Shorter plans will produce more comparable results
and less variation of what can be planned on the right-hand side of the binary operators
since they will reach their limit earlier and give leaf operators as a right-hand side to all
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unevaluated binary operators.
The uneven operator spread and the failure to generate large plans is, to a large degree, an

effect of the generation architecture. With the plans constructed top-down and operators
picked without knowing whether their children will meet the requirements, ScalaCheck
will discard many potential plans that include more difficult operators. For a future ex-
ploration of execution plan generation, a bottom-up approach might be preferable to test.
By starting from the bottom, the generation will always know what variables are available
at every stage of the generation and can thus more intelligently choose relevant operators
and expressions in parent operators than the current implementation can do.

38



Chapter 6

Related work

6.1 Random Generation of Semantically Valid
Cypher Queries

Random Generation of Semantically Valid Cypher Queries is a previous thesis at Neo4j
studying the generation of queries [3]. The project developed a fuzz tester using differ-
ential testing similar to ours, utilizing the idea that all runtimes should yield the same
results. The implementation utilizes a context object to track the available values used in
constructing the queries to increase data dependencies within the queries generated. Since
they also generated updating queries, the parallel runtime had to be excluded from some
tests, and the graph reset between tests. The project managed to identify 25 confirmed
unique bugs, of which one was a logic bug located in the planning stage of the query pro-
cessing and two error bugs located in a Neo4j runtime. The entire distribution of reported
bugs is shown in table 6.1.

Found
Parsing 3
Semantic analysis 7
Planning 13
Runtime 2
Total 25

Table 6.1: Locations in Neo4j processing layer of reported bugs
by Random Generation of Semantically Valid Cypher Queries
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6.2 GDsmith: Detecting Bugs in Cypher Graph
Database Engines

GDsmith presents the first automated and portable testing tool for any graph database
engine based on Cypher [5]. The tool is focusing on effectively identifying logic bugs.
GDsmith generates data and queries using three open-source graph databases (Neo4j, Re-
disGraph, and Memgraph). As well as comparing the output from the different databases,
they make a cross-version comparison. However, this is only for Neo4j(v.4.4.12 and
v.3.5.0). To optimize the differential testing to allow them to find more logic bugs, they
ensure that the generated queries give a high ratio of nonempty results. This is done by
analyzing the generated data before creating the queries. The query is then created in two
steps: firstly, a skeleton of the query is constructed, and then they generate patterns and
expressions. When using these optimizations, GDSmith drastically increased the number
of nonempty tests from 18% to 73%.

This study found 28 bugs across these three databases, 20 of which were logic bugs, and
the rest were error bugs. Looking specifically at Neo4j, however, only two out of seven
total bugs were logic.

Some of the limitations that they faced were quite similar to ours. One of these is
dividing by zero, an exception they ignored just like we did. They also faced the issue with
undefined behaviors regarding NaN, which sometimes threw an exception. All queries
also had to be made deterministic, an issue we faced with the operators Top and Skip.

6.3 Dinkel: Fuzzing Graph Databases with
Complex and Valid Cypher Queries

Dinkel is a tool created for fuzz testing on GDBSMs working to improve upon the
work done in GDSmith and GDMeter [12]. The main contribution of Dinkel is the focus
on increasing complexity within the queries generated through increasing data dependen-
cies. This was done through accounting of more state information when constructing their
queries. This practice was not used by previously published fuzz testers such as GDSmith
and GDMeter. By tracking the query state during generation, Dinkel can know which
variables, labels, types, and properties are available and can thus make intelligent use of
them. As a result, the queries produced will utilize previously introduced values more
significantly, allowing for increased data dependencies within the query. This is similar
to how we have used the PlanState object in our implementation.

Dinkel was evaluated on Neo4j, RedisGraph, and Apache AGE, finding 53 unique, con-
firmed bugs. Of the reported bugs, 25 occurred in Neo4j, and all were error bugs. The
testing suite does not test for logic bugs.
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6.4 Comparison to execution plan genera-
tion

These three examples of query-generating fuzz testers show the usefulness of fuzz test-
ing for GDBMS. With some differences in approach, they all successfully identified sev-
eral previously unknown bugs with Neo4j and other GDBMS. Our approach shares sev-
eral characteristics with these examples while limiting the scope of testing to the Neo4j
runtimes.

Our results differ from that of the fuzz testers presented above, which is unsurprising
as we can only search a subset of their search space while testing it more thoroughly. It
is thus interesting to compare how the result from our approach compares to the more
general one used by the query testers.

Lepik & Forsberg provide us with detailed documentation of at which stage of the query
processing their identified bugs occurred, which is an interesting comparison. Out of their
25 identified bugs, only two were found within the Neo4j runtimes, while most were bugs
within the parsing and planning stages of the query processing. It is interesting as their
testing suite used differential testing between different Neo4j runtimes, similar to ours.
This could suggest that query-based fuzz testing is insufficient for testing the later stages
of query processing. We do not have access to the query processing stages in which the
bugs identified by Dinkel or GDSmith occurred. Thus, we can not compare our results to
their reach within the query processing.

An often-stated goal of papers presenting testing suites for GDBMS is finding logic bugs
within a system. We were successful in finding a large number of logic bugs when testing
on the runtimes directly. This differs from the results presented by Lepik & Forsberg as
well as GDSmith, as they were only able to identify one and two logic bugs, respectively,
in Neo4j. GDSmith was more successful at identifying logic bugs in other GDMBS than
Neo4j. As far as we could tell, Dinkel did not utilize any method allowing them to identify
logic bugs. By using execution plans for our fuzz testing, we can explore many situations
for the Neo4j runtimes that might not be planned or only planned on a small number of
occasions during normal operations of Neo4j. Every plan we generate would need to be
individually investigated if one would like to determine whether or not an execution plan
is currently possible to plan by writing a query and which configuration of Neo4j it would
require. This is because there is no easy way to map from execution plans to queries, as
any plan could correspond to many Cypher queries. Another possible explanation is that
logic bugs are more often a consequence of errors within the runtimes of a GDMBS rather
than the planning or parsing stages. We can conclude that testing the Neo4j runtimes has
improved their robustness and correctness.

Compared to fuzz tester using queries, our approach has some apparent drawbacks.
Firstly, unlike the three discussed testing suites, our approach does not provide portability
between GDBMS. Both Dinkel and GDSmith ran tests on multiple GDBMS, and the
tool provided by Lepik & Forsberg could be adapted to do so. This further allows for
differential testing within a certain GDBMS and between multiple GDBMS using the
same query language. Our approach is not easily modifiable between GDBMS as they
use different underlying implementations to process the same query language. With that
said, more tests using our approach on other GDBMS would be interesting as it would
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allow for a more general conclusion on the effectiveness of generating execution plans
compared to queries.

Furthermore, to successfully implement an execution plan fuzz tester, the tester needs
to be able to access the source code for the query processing of the GDBMS in question.
Thus, our approach could be considered some kind of grey box testing. This limits the
usefulness of this approach to database systems with open-source code in the case of
external testing.

From this comparison, it is clear that how a testing suite is implemented will dictate what
bugs it can identify within a system. Different tools will allow for coverage of different
parts of GDBMS, and it is thus essential to have diversity in the approaches used for
testing a system. Our tool has likely found bugs that the discussed query generators could
not find, and most of the bugs they found were outside the scope of our tool. Execution
plan generation is not a replacement for conventional testing using queries, as it would
not provide sufficient coverage of the query processing in any GDBMS. However, it is an
excellent complement to them as it can identify bugs that previously have been difficult
to identify.
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Chapter 7
Conclusion and Future Work

This thesis presents a novel approach to testing Neo4j through the random generation of
execution plans. The work is a successful proof of concept of the approach’s usefulness.
Our testing tool found 20 bugs, of which 9 were error bugs, and 11 were logic bugs. Thus,
we have covered parts of the query processing structure that were previously difficult to
test using query fuzz testers exhaustively. Fuzz testing using execution plans is an ef-
fective testing approach within its limitations and complements conventional fuzz testers
that randomly generate Cypher queries well. The approach requires comparatively more
implementation, access, and knowledge of the system tested on than the query testers.
However, it offers greater coverage in the later stages of the query processing. We will
also note that the number of logic bugs identified within Neo4j is large compared to the
number of error bugs identified, which could be of interest for future work aiming to
identify logic bugs within database systems.

The practice of random generation of execution plans needs to be further explored, pri-
marily through extending the practice to other graph database management systems and
testing it on relational database management systems. Several implementation improve-
ments and extensions could be made to provide more data dependencies within generated
plans and increased coverage of the operators used. Possibly, many of the good practices
and innovations used in generating queries could be adapted to execution plan generation.
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Att hitta och åtgärda fel i mjukvaruprodukter är något som utvecklare spenderar
mycket tid på så att effektivt kunna identifiera fel är mycket värdefullt för ett mjuk-
varuföretag. Vi presenterar ett verktyg, som genom slumpmässig genering av exekver-
ingsplaner kan testa grafdatabaser, specifikt Neo4j.

Att använda en databas för att lagra information
är en självklarhet för alla typer av företag. En
typ av databaser som blivit allt mer populär un-
der de senaste åren är grafdatabaser. En graf-
databas struktureras som en graf där varje nod
innehåller information och länkas samman av re-
lationer. Ett populärt språk som används för
att skapa och hämta ut data ur grafdatabaser är
Cypher. Cypher har utvecklats för grafdatabasen
Neo4j. Både språket och databasen expanderas
och förbättras kontinuerligt och som alla mjuk-
varuprodukter så fungerar det inte alltid exakt
som tänkt. Som användare förväntar man sig att
databasen fungerar som utlovat, om detta inte är
fallet går det då alltid att identifiera när det blivit
fel?

Att säkerställa att resultaten från en databas
är korrekta är ett ständigt pågående arbete men
många fel är svårfångade och lyckas inte alltid
identifieras innan de når användarna. Det är där-
för viktigt att ha en bra testningsmiljö för att hitta
så många fel som möjligt, så tidigt som möjligt.
För databaser som använder Cypher har en pop-
ulär metod bland forskare varit att slumpmäs-
sigt generera en stor mängd korrekta frågor till
databasen och på så sätt hitta fel.

Vi har tagit ett nytt angreppssätt för att hitta
fel i grafdatabaser genom att istället slumpmäs-
sigt generera exekveringsplaner som sedan testas
mot en databasinstans. En exekveringsplan är en
datastruktur som en Cypher-fråga skrivs om till
innan den kan hitta ett svar i databasen. Vi ex-
ekverar planen med olika konfigurationer som all
förväntas ge samma resultatet och jämför sedan
dessa. Genom denna process får vi två felkate-
gorier, när en eller flera konfigurationer ger ett
oväntat felmeddelande och när de olika konfigura-
tionerna ger olika resultat tillbaka. Vi kan på så
sätt effektivt identifiera fel i delar av databasen
som tidigare varit svåra eller omöjliga att nå
genom testning med slumpmässig generering av
Cypher-frågor.

Detta angreppssätt för testning har visat sig
vara mycket effektiv. Totalt hittade vi 20 fel i
databasen, av dessa var 9 fel där databasen fick ett
oväntat fel och 11 fel var tillfällen då vi fick olika
resultat tillbaka som förväntades vara samma. Fe-
len vi har identifierat skulle vara osannolika att
identifiera med hjälp av slumpmässiga Cypher-
frågor eller manuella tester. Vårt resultat visar
att detta angreppssätt är effektivt och kan kom-
plementera redan existerande testningsverktyg.
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