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Abstract

In 2023 an operator theoretic approach to the Prime Number Theorem was introduced by Olsen
in [12]. In this thesis this approach is examined and applied to give a new, operator theoretic, proof of
a different version of the Prime Number Theorem and of the Prime Number Theorem for arithmetic
progressions. This approach is then expanded and rearranged to focus on the approximation error in
the Prime Number Theorem and then operator theoretic equivalents of the Riemann Hypothesis are
derived. Lastly, further properties of the operators involved in these operator theoretic equivalents
are discussed.
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Popular scientific summary

Prime numbers are whole numbers greater than 1 which are divisible only by 1 and itself. The first few
prime numbers are 2, 3, 5, 7, and 11. Not only are they very important in mathematics, but they are also
widely used in our everyday lives. For example, you have probably surfed the internet securely today
using encryption that is based on prime numbers (look up the RSA algorithm if you are interested).

It has been known since the ancient Greeks that there are infinitely many prime numbers (Euclid’s
theorem), but as we go further along the number line it gets harder and harder to find them, as they
become rarer and more difficult to recognize. Mathematicians in the 19th century have found a formula1

which tells us approximately where they are, but we have difficulty to this day in determining how
accurate this formula is. Of course, we could check its accuracy with a computer for, say, the first several
million numbers, but many results in number theory (the area of mathematics where this formula comes
from) depend on its accuracy in the long run.

In the 19th century, the work of the great mathematician Bernhard Riemann led to the hypothesis that
this formula is as accurate as it can be (still not accurate enough to worry encryption experts though).
This is now known as the Riemann Hypothesis and many of the greatest minds of the past 150 years
have tried to prove or disprove it. It was included by the famous mathematician David Hilbert in 1900
on his list of 23 important mathematical problems for the 20th century and in 2000 was also named by
the Clay Mathematics Institute as one of its 10 Millennium Prize Problems (with a reward of one million
dollars for anyone who solves one!). Because this problem is connected to so many results in number
theory and has been able to withstand so many attacks for so long and was included on these lists it is
considered to be one of the most important unsolved problems in mathematics.

While the formula comes from number theory, this thesis studies its accuracy using a different area of
mathematics, called operator theory, and shows how this accuracy is related to certain operators and
their properties. Hopefully, a different perspective will shed more light on this accuracy and the Riemann
Hypothesis.

1For those who know about logarithms and integrals: the formula says that the number of primes less than N is

approximately
∫N
2

1
ln(t)

dt. It turns out that this can in turn be approximated by N
lnN

and that this last approximation is

the same as saying that the Nth prime number can be found near N lnN .
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1 Introduction

Prime numbers have been studied since at least the ancient Greeks. One of the most significant results of
this time period was Euclid’s theorem; that there are infinitely many primes. Since then, mathematicians,
especially in the area of number theory, have wondered how these primes were distributed along the
number line. More specifically, they started studying the prime counting function (see Definition 3.6):

π(x) :=
∑

p≤x,p prime

1.

While this function looks like a rather random staircase when considering a small range of x (see Figure
1), the edges and randomness smooth out and a smooth curve seems to emerge when zooming out to a
larger range of x (see Figure 2).

Figure 1: The prime-counting function for
a small range of x.

Figure 2: The prime-counting function for
a larger range of x.

In the late 18th and early 19th century2, this led Legendre and Gauss to independently conjecture that
this curve is ’essentially’ x

log(x) , in the sense that the following limit holds:

lim
x→∞

π(x)

x/ log(x)
= 1.

Dirichlet soon published his own conjectured estimate, namely that

lim
x→∞

π(x)

li(x)
= 1,

where li(x), the logarithmic integral, is defined as

li(x) :=

∫ x

2

dt

log(t)

(see also Definition 3.5). The logarithmic integral (which itself is ’essentially’ x
log(x) ) turned out to be a

’better’ estimate of π(x), in the sense that the latter limit converges faster to 1 than the former.

These conjectured limits were proved in 1896 by Hadamard in [8] and de la Vallée-Poussin in [18] and
this result is known as the Prime Number Theorem. For their proofs they drew upon ideas by Bernhard
Riemann, who in 1859 published an explicit formula for π(x) (see Section 3.3 and [15]), remarkably

2The historical context leading up to Riemann’s 1859 paper can be found in for example H.M. Edwards’ 1974 book
”Riemann’s Zeta function”
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writing the number theoretic function π(x) as a sum of terms derived from the locations of the zeros and
pole of a complex analytic function: the Riemann zeta function (see Definition 3.10).

In the same paper, Riemann determined the location of the pole and the so-called trivial zeros, determined
that the remaining nontrivial zeros are symmetric about the line 1/2 + it, and conjectured that they all
lie exactly on this line. This is the famous Riemann hypothesis, which was shown by von Koch in [10]
to be equivalent to the statement that

π(x) = li(x) +O
(√
x log(x)

)
.

As the power of x in the big-oh term is equal to the supremum of the real parts of all nontrivial zeros,
this error bound is the best possible bound of this approximation to the prime counting function, given
the symmetry of the zeros about 1/2 + it.

In the more than 150 years since then, nobody has been able to prove or disprove the Riemann hypothesis,
despite many results in number theory dependent on this error estimate (for example the growth of
many number theoretic functions) and it being part of Hilbert’s 1900 list of 23 important mathematical
problems for the 20th century and the Clay Mathematics Institute’s 2000 list of 10 Millennium Prize
Problems.

In 2023 Olsen published a new proof of the Prime Number Theorem that uses an approach based on
operator theory (see [12]). This in turn inspired this thesis, which aims to apply this approach to the
Riemann Hypothesis in the hope of enabling further progress in the future.

The structure of the thesis is as follows. First, a brief introduction of relevant concepts and results of
operator theory and number theory is given in Sections 2 and 3 respectively. Then, Olsen’s approach
to the Prime Number Theorem is explained and discussed in Section 4. Moreover, in this section this
approach is applied to give new, operator theoretic, proofs of a different version of the Prime Number
Theorem (Corollary 4.10 in Section 4.1) and the Prime Number Theorem for arithmetic progressions
(Theorem 4.14 in Section 4.2). Also, a slight generalization of this approach in section 4.3 leads to an
investigation of the approximation error in Section 5, where also the main results are proved: Theorems
5.3 and 5.4 in Section 5.1 give operator theoretic equivalents of the Riemann Hypothesis. Finally, in
Section 5.2 some further properties of the operators involved in the main results are investigated.
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2 Operators

Before we define the operators we use in this thesis we first briefly discuss the vector spaces on which
they act. The thesis uses only Hilbert spaces and we assume that the reader is already familiar with
them, especially the space L2(R). The spaces are all assumed to be separable (i.e., they have a countable
basis).

We mostly focus on the L2(S) spaces (where S is usually some interval I):

Definition 2.1. For a given S ⊆ R we define L2(S) as the subspace of L2(R) of functions supported
only on S.

Note that the definition of L2(S) differs slightly from most textbooks (where it denotes the space of all
functions that are square-integrable on S, regardless of their support) and is chosen here as it is more
convenient for the purposes of the thesis.

It is assumed in the next section and in 2.2 that the reader is not yet familiar with basic concepts and
results from operator theory. A reader already familiar with these subjects can skip ahead to section 3.

2.1 Definition and basic properties of operators

The main objects in this thesis are linear operators. The qualifier ‘linear’ is generally omitted, as all
operators in this thesis are linear.

Definition 2.2. A (linear) operator A : X → Y is a mapping between two vector spaces that preserves
both vector operations (addition and scalar multiplication).
We call the two vector spaces respectively the domain and codomain of the operator, i.e.: an operator
A is from the domain X to the codomain Y . If the domain and codomain are the same, we say that the
operator is on the (co)domain.

We can view operators as matrices, since we can construct a (possibly infinite) matrix from an operator
after choosing a basis for its domain. An important example is a diagonalizable operator:

Definition 2.3. A diagonalizable operator is an operator whose matrix representation in a certain
basis is a diagonal matrix.

The operators in this thesis are in general bounded:

Definition 2.4. Let A be an operator from a normed space X to a normed space Y . If it is the case
that ||Ax||Y ≤ c||x||X for some c > 0 and all x ∈ X, then we say that the operator is bounded. The
smallest such c is called the operator norm of A, which we denote by ||A||.

Bounded operators are usually easier to work with than unbounded operators, as they more closely
resemble operators on finite-dimensional spaces (which are also bounded) and we have a lot of results at
our disposal to study them.

For example, a useful property of operators on complex finite-dimensional spaces is that they each have
a unique conjugate transpose. The Riesz representation theorem (see e.g. Theorem 6.4 in [11]) allows
us to generalize this notion to bounded operators between all Hilbert spaces. Only now this operator is
called the adjoint, but it is also guaranteed to exist, to be unique, and to be bounded:

Definition 2.5. Let A be a bounded operator from a Hilbert space X to a Hilbert space Y . The
bounded operator A∗ from Y to X such that ⟨Ax, y⟩Y = ⟨x,A∗y⟩X for all x ∈ X and y ∈ Y is called the
adjoint of A.

Definition 2.6. Let A be a bounded operator on a Hilbert space X. If AA∗ = A∗A, then the operator
is called normal and if A∗ = A, then it is called self-adjoint (or Hermitian).
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Some operators in this thesis are compact:

Definition 2.7. An open cover of a subset S of a topological space is a family of open sets whose
union contains S. A subset S of a topological space is called compact if every open cover has a finite
subcover.

Definition 2.8. Let A be an operator from a normed space X to a normed space Y . If the image of every
bounded subset of X has compact closure in Y , then it is called compact. Equivalently, A is compact
if for every bounded sequence {xn} of vectors in X the sequence {Axn} has a Cauchy subsequence.

It is important to know if an operator is compact since we have even more results available to study
them than we do for bounded operators. This is because compact operators are always bounded:

Proposition 2.9. A compact operator from a normed space X to a normed space Y is bounded.

Proof. Let A : X → Y be a compact operator and let C ⊂ Y be the closure of the image of the unit ball
under A. For C we can find an open cover consisting of Br: open balls of radius r > 0 centered at the
origin, as they form an open cover of all of Y . Since this open cover of C must have a finite subcover of
C, there is a finite M such that BM covers C. From this we get that ||Ax|| ≤M ||x|| for all x ∈ X.

Interestingly, the identity operator on X, which we denote by Id to prevent confusion with an interval
I (i.e.: Idx = x for all x ∈ X), is compact if and only if X is finite-dimensional (Theorem 5.6 in [11]),
so this immediately gives an example of a bounded operator that is not compact. A good example of a
useful result in the study of compact operators, which we will use in the next section, is the following: if
A is a compact normal operator, then it is diagonalizable (Theorem 3.3.8 in [14]).

Lastly, we mention that an operator can also be bounded below, but generally this is not the case if it
is compact:

Definition 2.10. Let A be an operator from a normed space X to a normed space Y . If it is the case
that ||Ax||Y ≥ c||x||X for some c > 0 and all x ∈ X, then we say that the operator is bounded below.

Proposition 2.11. A compact operator from an infinite-dimensional normed space X to a normed space
Y is not bounded below.

Proof. We prove the contrapositive and let A : X → Y be an operator bounded from below. Since X
is infinite-dimensional there exists a sequence of unit vectors {xn} without a Cauchy subsequence (e.g.,
such that ||xi−xj ||X > 1

2 whenever i ̸= j). As ||Axi−Axj ||Y ≥ c||xi−xj ||X the image of this sequence
does not have a Cauchy subsequence in Y either, which means that A is not compact.

2.2 The spectrum of a bounded operator

Definition 2.12. Let A be a bounded operator on a Banach space X. A complex number z is in ρ(A),
the resolvent set of A, if A − zId is a bijection. Conversely, a complex number z is in σ(A), the
spectrum of A, if A− zId is not a bijection.

Let (λ, x) be an eigenvalue-eigenvector pair of A, i.e.: Ax = λx. We have that the operator A − λId
maps a nonzero x to 0, which means that this operator is not injective. Conversely, if A − λId is not
injective for some λ, then there is at least one pair of distinct vectors (x1, x2) that is mapped to the
same vector, but this means that x = x1 − x2 ̸= 0 is mapped to 0, so (λ, x) is an eigenvalue-eigenvector
pair. Therefore, the set of all λ such that A− λId is not injective is exactly the set of eigenvalues of A.

So every eigenvalue of A is part of σ(A) and if X is finite-dimensional then an operator is injective if and
only if it is surjective. Thus, the eigenvalues are all of σ(A) then. However, if X is infinite-dimensional,
then A− λId can be injective, but not surjective, and we partition σ(A) as follows:

Definition 2.13. Let A be a bounded operator on a Banach space and λ ∈ σ(A).
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• λ ∈ σp(A), the point spectrum of A, if A− λId is not injective

• λ ∈ σc(A), the continuous spectrum of A, if A−λId is injective, but its range is a dense proper
subset of X (so it is ’almost’ surjective)

• λ ∈ σr(A), the residual spectrum of A, if A − λId is injective, but its range is not dense in X
(so it is ’far from’ surjective)

In this way, the spectrum of A serves as a generalization of eigenvalues in a finite-dimensional context.

To see an example of this, suppose we have a bounded diagonalizable operator M on a Hilbert space
with the sequence (mn) on the diagonal in a matrix representation. The eigenvectors of M are precisely
the diagonalizing basis vectors en (Men = mnen), which means that σp(M) = {mn}. It could be that
σc(M) is empty, e.g., if M = Id, then M − λId = (1 − λ)Id, which is surjective whenever it is injective
(i.e., when λ ̸= 1). An example where σc(M) for a diagonalizable operatorM is not empty will be shown
later in this section. However, σr(M) can only be empty:

Proposition 2.14. If M is a diagonalizable operator on a Hilbert space X, then σr(M) = ∅.

Proof. Let M be a diagonalizable operator on a Hilbert space and {en} the diagonalizing basis. Notice
that Rλ = M − λId is also a diagonalizable operator (with the same diagonalizing basis) and denote
with (rλ,n) the sequence on the diagonal in the matrix representation of Rλ in this basis. Now suppose
that Rλ is injective. This means that the en cannot be mapped to 0, so all rλ,n must be nonzero. Since
1

rλ,n
Rλen = en, we have that all en are in the range of Rλ, which means that their span is also in the

range of Rλ. Thus, the range of Rλ is dense in X and σr(M) = ∅.

Definition 2.15. Let A be a bounded operator on a Banach space and λ ∈ σ(A). The spectral radius,
r(A), is the supremum of all |λ|.

In general, the spectrum of a bounded operator A on a Banach space is a nonempty compact subset of
C and for all λ ∈ σ(A) we have that |λ| ≤ ||A|| (Theorem 17.4 in [11]). Thus, r(A) ≤ ||A||.

If we know that A is a compact operator on a Banach space X, then the spectral theorem for compact
operators (Theorem 21.6 in [11]) gives a relatively simple description of σ(A). It is a countable set, which
can have either no limit point or 0 as its only limit point, and if a λ ∈ σ(A) is nonzero it must be in
σp(A). If 0 ∈ σ(A), which has to be the case if X is infinite-dimensional, it could be in either of the 3
partitions.

Using this description we can construct an example where σc(M) for a diagonalizable operator M is
not empty: a compact M on an infinite-dimensional Hilbert space with no zeros on the diagonal. This
operator will have 0 ∈ σ(M), but 0 /∈ σp(M). As M is diagonalizable, we have that σr(M) = ∅ by
proposition 2.14, so it must be that 0 ∈ σc(M).

Depending on what else we know about an operator A on a Hilbert space we get further information about
its spectrum from other spectral theorems. If A is a compact normal operator, then it is diagonalizable
(Theorem 3.3.8 in [14]) and thus σr(A) = ∅ by Proposition 2.14. If A is a self-adjoint operator, then its
spectrum consists only of real numbers (Theorem 32.5 in [11]). Finally, while the point spectrum can
be empty in the case of a compact operator and also in the case of a self-adjoint operator, if A is both
compact and self-adjoint, then it can be shown that at least one of ||A|| and −||A|| is an eigenvalue of A
(Theorem 2 in [2]).
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3 The Prime Number Theorem and the Riemann Hypothesis

3.1 Asymptotic notations

While it is assumed that the reader is already familiar with the asymptotic notations O(g(x)) and o(g(x))
for some given function g, their definitions are given below so they can be compared with the definitions
of two less commonly used asymptotic notations that are also employed in this thesis. Note that all
asymptotic notations in the thesis are used exclusively to describe a given f(x) as x tends to infinity.

Definition 3.1. Let f and g be real functions. A function f(x) is little-oh of g(x), i.e., f(x) = o(g(x)),

if limx→∞
f(x)
g(x) = 0.

Definition 3.2. Let f and g be real functions, with g(x) > 0 for all x ≥ x0 for some x0 ∈ R. A function
f(x) is big-oh of g(x), i.e., f(x) = O(g(x)), if there exists a positive constant C and a real constant x0
such that |f(x)| ≤ Cg(x) for all x ≥ x0 or, equivalently, if lim supx→∞

|f(x)|
g(x) <∞.

We can see these notations as the asymptotic equivalents of ’<’ and ’≤’ respectively. The first less
commonly used asymptotic notation we introduce can be seen as the asymptotic equivalent of ’=’:

Definition 3.3. Let f and g be real functions. A function f(x) is on the order of g(x) or asymp-

totically equal to g(x), i.e., f(x) ∼ g(x), if limx→∞
f(x)
g(x) = 1

The usage of a tilde here is not accidental, as this indeed defines an equivalence relation. This notation
indicates that f grows or decays at approximately the same rate as g. The function g is in some sense
a ’good’ approximation of f . If we write f(x) = g(x) +E(x), where E(x) collects all the approximation

errors, then f(x)
g(x) = 1 + E(x)

g(x) . Thus, f(x) ∼ g(x) implies E(x) = o(g(x)) (and similarly E(x) = o(f(x))).

So, this is a ’good’ approximation in the sense that the relative error decays.

The second less commonly used asymptotic notation we introduce is the negation of little-oh:

Definition 3.4. Let f and g be real functions. A function f(x) is big Omega of g(x), i.e., f(x) =

Ω(g(x)), if lim supx→∞
|f(x)|
g(x) > 0

If we look at the very simple example −5x2+x+10 = O(x2), then it is also the case that −5x2+x+10 =
Ω(x2). In a way, this means that we cannot ’improve’ our big-oh estimate. We call such an estimate a
sharp estimate.

3.2 The Prime Number Theorem

Definition 3.5. The logarithmic integral is the function defined by

li(x) :=

∫ x

2

dt

log(t)
.

Using partial integration we see that this function can be approximated by x/ log(x), in which case we
make an error of O(x/ log(x)2), which is sharp. Note that this implies that li(x) ∼ x/ log(x), but this
last statement only tells us that the relative error decays to 0, not how fast. From the error estimate we
can see that this decay is very slow, as it has the sharp estimate O(1/ log(x)).

Definition 3.6. For every K ⊆ N we can define a counting function, which counts the numbers in K
less than or equal to x:

πK(x) =
∑

k≤x,k∈K

1.

Special cases are πN(x) = ⌊x⌋ and the prime-counting function, which we simply write as π(x).
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It had long been an important goal of mathematicians to find a ’good’ approximation of the prime-
counting function, i.e., π(x) ∼ g(x) for some simpler function g(x). Initially it was conjectured that
π(x) ∼ x

log(x) , but the equivalent π(x) ∼ li(x) is more accurate and theoretically more interesting (as

discussed in the next section). This is considered of such importance that the eventual theorem that
proved these conjectures is called the Prime Number Theorem, which we state as follows:

Theorem 3.7. The Prime Number Theorem (Hadamard in [8] and de la Vallée-Poussin in [18])

π(x) ∼ li(x).

The convergence of both approximations is demonstrated below:

Figure 3: The ratio of the prime-counting function to two of its approximations: π(x)/ x
log(x) (blue) and

π(x)/ li(x) (green).

Instead of working directly with the prime-counting function, it is common to work via the Chebyshev
functions:

Definition 3.8. The first Chebyshev function is defined as

θ(x) =
∑
p≤x

log p,

where p is prime.

Definition 3.9. The second Chebyshev function is defined as

ψ(x) =
∑
k∈N

∑
pk≤x

log p,

where p is prime.

These functions are closely related to the prime-counting function, but it tends to be easier to work with
them. Chebyshev showed in [3] that the Prime Number Theorem is equivalent to both θ(x) ∼ x and
ψ(x) ∼ x and the latter equivalence was used by Hadamard and de la Vallée-Poussin in their proofs of
the Prime Number Theorem.

3.3 The Riemann Hypothesis

The Riemann Hypothesis concerns the zeros of the Riemann zeta function:

10



Definition 3.10. Let K ⊆ N. The zeta function for K, ζK(s), is a complex function defined to be the
analytic continuation of the series ∑

k∈K

k−s.

Special cases are the prime zeta function, ζP (s), where P denotes the set of primes, and the Riemann
zeta function, ζ(s), for K = N.

As is the historical convention, we use the notation s = σ+ it for complex numbers when discussing the
Riemann zeta function. The infinite sum used to define this function converges in the half-plane σ > 1,
but can be analytically continued to all of C except for a pole at s = 1, which was shown by Riemann
in [15]. One of the main ingredients in his construction of the analytic continuation was the following
functional equation he found:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Here, Γ(s) is the gamma function, which is the analytic continuation of:

Γ(s) =

∫ ∞

0

ts−1e−tdt.

Due to the sine in the functional equation we immediately get that ζ(s) = 0 for all negative even integers,
as the other zeros of the sine are cancelled by the pole of ζ(1− s) at s = 0 and the poles of Γ(1− s) at
positive even integers. These zeros of ζ(s) are called the trivial zeros. Riemann also showed in the same
paper that the remaining, nontrivial, zeros must lie in the strip 0 ≤ σ ≤ 1, that they are symmetric
about σ = 1/2, and that there are infinitely many of them.

One of Riemann’s most remarkable achievements is finding an explicit formula for π(x) (also in [15]),
based on the pole and the zeros of the Riemann zeta function (trivial or not). To understand this formula
we first need to define the Möbius function:

Definition 3.11. The Möbius function is the function defined for all n ∈ N by

µ(n) =

{
0 if n has a squared prime factor

(−1)k if n is a product of k distinct primes.

We then define the following function:

R(x) =
∑
n∈N

µ(n)

n
li(x1/n).

Riemann partially proved that

π(x) = R(x)−
∑
ρ

R(xρ),

where
∑
ρ sums over all zeros of the Riemann zeta function. The gaps in the proof were later filled

by Hadamard and von Mangoldt. Note that this equality holds almost everywhere. As is typical for
approximations of functions with jumps, the right-hand side converges to the average of the left and
right limits at each jump of π(x).

This remarkable result shows that essentially all information about the prime-counting function is con-
tained in the location of the pole (which determines the R(x) term) and the zeros of ζ(s). The Prime
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Number Theorem (π(x) ∼ li(x)) then tells us that, for large x, the first term of R(x) gives the biggest
contribution in this formula for π(x).

This formula is demonstrated below:

Figure 4: The prime-counting function (blue), li(x) (green), and Riemann’s formula using all trivial zeros
and the first 100 nontrivial zeros (orange).

Afterwards, both Hadamard and de la Vallée-Poussin independently proved that there are no zeros on
the line σ = 1 and then used that result to prove the Prime Number Theorem. A few years later de la
Vallée-Poussin was also able to give a bound on π(x)− li(x) (see [19]):

π(x) = li(x) +O
(
x exp

(
−a

√
log(x)

))
.

Here, a is some positive constant and the notation exp(f(x)) = ef(x) is used. This bound has been
improved somewhat over the years. Right now, the state of the art is by Ford (see [6]):

π(x) = li(x) +O

(
x exp

(
−0.2098

log(x)3/5

log(log(x))1/5

))
.

These bounds are constructed by first determining a zero-free region in the strip 0 < σ < 1. Ingham
showed how to translate zero-free regions of a certain type to error bounds, should they turn out to
be true (see [9]). Broadly speaking, a ’wider’ zero-free region would result in a better error term. A
consequence of this is that if one were to prove that ζ(s) has no zeros in the domain σ > 1− b, for some
0 < b ≤ 1

2 , then the error bound would be greatly improved to:

π(x) = li(x) +O
(
x1−b log(x)

)
.

In particular, if σ = 1
2 for all nontrivial zeros, then we get the best possible version of this bound:

π(x) = li(x) +O
(√
x log(x)

)
.

The conjecture that σ = 1
2 for all nontrivial zeros of ζ(s) was already made by Riemann in [15] and

is known as the Riemann Hypothesis. The Riemann Hypothesis has been verified empirically for many
nontrivial zeros, but no proof (or counterexample) is known at the time of writing.
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Interestingly, an explicit formula for the second Chebyshev function is also known, due to von Mangoldt:

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
= x−

∑
ρ

0<Re ρ<1

xρ

ρ
−−1

2
log(1− x−2)− log(2π),

where
∑
ρ sums over all zeros of the Riemann zeta function. Again, the right-hand side converges to

the value halfway between the values to the left and right of the jump discontinuities of ψ(x), but is
otherwise exact. This shows that the location of the pole and the zeros of ζ(s) also contain essentially
all information about this function, with a slight correction from the logarithmic derivative evaluated at
0.
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4 An operator theoretic approach to the Prime Number Theo-
rem

We now turn to discuss the operator theoretic approach to the Prime Number Theorem that inspired
this thesis. It is assumed that the reader is already familiar with the basics of Fourier Analysis and
of the Laplace transform. To understand this operator theoretic approach we first need four additional
definitions.

Definition 4.1. Let I ⊂ R be a bounded interval symmetric about the origin and 2I the same interval,
but twice as wide. A convolution operator W on L2(I) is an operator of the form

Wf(t) = χI(t)

∫
I

f(τ)K(t− τ)dτ

for some function K integrable on 2I called the kernel.

Definition 4.2. A net is a generalization of the concept of a sequence. While the index set of a
sequence is the natural numbers, the index set of a net can be uncountable, as long as it is a directed
set: a nonempty set with a binary relation (denoted by ’≤’) that is reflexive and transitive and has the
property that for any a, b in the index set there exists a c in the index set such that both a ≤ c and
b ≤ c.

This generalization allows us to use subsets of the real numbers as index sets.

Definition 4.3. A net of vectors xϵ in a Hilbert space X with (0,∞) as index set converges strongly
to a vector x ∈ X if limϵ→0+ ||xϵ − x|| = 0. A net of operators Wϵ on a Hilbert space X with (0,∞) as
index set converges strongly to an operator W on X if limϵ→0+ ||Wϵx0 −Wx0|| = 0 for all x0 in X.

Definition 4.4. A net of vectors xϵ in a Hilbert space X with (0,∞) as index set converges weakly
to a vector x ∈ X if limϵ→0+⟨xϵ, x0⟩ = ⟨x, x0⟩ for all x0 in X. A net of operators Wϵ on a Hilbert space
X with (0,∞) as index set converges weakly to an operator W on X if limϵ→0+⟨Wϵx1, x2⟩ = ⟨Wx1, x2⟩
for all x1, x2 in X.

Weak convergence is called that because it is implied by strong convergence, but the other direction does
not hold in general (see e.g. example 10.2 in [11]):

Proposition 4.5. Strong convergence of a net of vectors or operators implies weak convergence.

Proof. Let the net xϵ in a Hilbert space X with (0,∞) as index set converge to x strongly and x0 be
given. Then (using Cauchy-Schwarz)

lim
ϵ→0+

|⟨xϵ, x0⟩ − ⟨x, x0⟩| = lim
ϵ→0+

|⟨xϵ − x, x0⟩| ≤ lim
ϵ→0+

||xϵ − x||||x0|| = 0.

The proof for operators follows the same steps.

The Prime Number Theorem was originally proved using techniques and results from complex analysis
and number theory. In 2023, Olsen published a new proof that uses results and techniques from operator
theory and Fourier analysis (see [12]). In this proof, a given function S(x), which is non-decreasing on
[0,∞) and O(x), is considered. As S(x) = O(x), the associated function G(s) := L (S(eu))(s) (where
L denotes the Laplace transform) exists for σ > 1. We can thus define the following net of convolution
operators on L2(I) for positive ϵ (with I ⊂ R again a bounded interval symmetric about the origin):

WS,I,ϵf(t) :=
χI(t)

π

∫
I

f(τ)Re G(1 + ϵ+ i(t− τ))dτ.

The key result of this new approach is

14



Theorem 4.6. (Theorem 1.2 in [12])

Let S(x), non-decreasing on [0,∞) and O(x), be given and the net of operators WS,I,ϵ defined as above.
Then

lim
ϵ→0+

WS,I,ϵ = AId + ΨS,I

weakly, for some constant A ≥ 0 and compact operator ΨS,I for all sufficiently large I if and only if

lim
u→∞

S(eu)

eu
= A.

Or, in asymptotic notation: S(x) = o(x) if A = 0 and S(x) ∼ Ax if A > 0. In other words, we can
use this theorem to try to prove if the given function S(x) can eventually be approximated ’well’ by a
line. Theorems like this one, where properties of an integral transform of a function S are used to prove
asymptotic behavior of S, are called Tauberian theorems.

Note that this approach is not guaranteed to succeed. An example is S(x) = x+ x+1
2 (sin(log(x+ 1)) +

cos(log(x + 1))). This function is non-decreasing on [0,∞), since its derivative is 1 + cos(log(x + 1)).
However, the relative error, x+1

2x (sin(log(x+ 1)) + cos(log(x+ 1))), does not converge.

To illustrate Theorem 4.6 and to also show how the Prime Number Theorem can be proved using this
result, we set S(x) = π(x) log(x). This is indeed a non-decreasing function on [0,∞) that we expect to
be approximated ’well’ by x eventually.

We can use the following lemma to facilitate the calculation of the associated function G(s). It gives a
nice relation between the counting function and the zeta function of the same infinite set K ⊆ N:

Lemma 4.7. Let K = (kn) be an arbitrary infinite subset of N, then

L (πK(eu))(s) =
ζK(s)

s
,

for σ > 1.

Proof. The following integral converges for σ > 1, as in the worst case we have K = N and πN(e
u) ≤ eu:

L (πK(eu))(s) =

∫ ∞

0

πK(eu)e−sudu

=
∑
kn∈K

∫ log kn+1

log kn

ne−sudu

=
∑
kn∈K

n

s
(k−sn − k−sn+1)

=
1

s

∑
kn∈K

k−sn

=
ζK(s)

s
.

As a final ingredient for this proof we will use a lemma that will make it much easier to show that a
certain class of convolution operators is compact:

Lemma 4.8. If a convolution operator on L2(I) with I compact has a kernel that is continuous on I,
then it is a compact operator (e.g., Theorem 22.3 in [11]).
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We are now in a position to prove the following version of the Prime Number Theorem:

Corollary 4.9. (Corollary 1.3 in [12])

π(x) ∼ x

log(x)
.

Proof. After using Lemma 4.7 on S(x) = π(x) log(x) we encounter the prime zeta function, ζP (s). This
function has a logarithmic singularity at s = 1, but is otherwise analytic in a neighborhood of σ > 1.

That is, we can write ζP (s)
s = − log(s− 1) + ψP (s), where ψP (s) is analytic in a neighborhood of σ > 1

(see e.g. (6) in [12]). We thus get that

G(s) = L (S(eu))(s)

= L (π(eu)u)(s)

= − d

ds
L (π(eu))(s)

= − d

ds

ζP (s)

s

=
d

ds
(log(s− 1)− ψP (s))

=
1

s− 1
− ψ′

P (s).

Plugging this in WS,I,ϵ we get that

WS,I,ϵf(t) =
χI(t)

π

∫
I

f(τ)Re G(1 + ϵ+ i(t− τ))dτ

=
χI(t)

π

∫
I

f(τ)Re

(
1

ϵ+ i(t− τ)
− ψ′

P (1 + ϵ+ i(t− τ))

)
dτ

=
χI(t)

π

∫
I

f(τ)
ϵ

ϵ2 + (t− τ)2
dτ − χI(t)

π

∫
I

f(τ)Re ψ′
P (1 + ϵ+ i(t− τ))dτ.

The left integral we recognize as the Poisson kernel on the upper half plane, which converges strongly to
f(t) (see e.g. Theorem 5.2.6 in [17] for a subset of functions that is dense in L2(R) by, e.g., Proposition
8.17 in [5]). The right integral converges strongly to an operator that is compact by Lemma 4.8. So
limϵ→0+ WS,I,ϵ = Id + ΨS,I for some compact ΨS,I strongly, hence also weakly, and thus by Theorem
4.6,

lim
x→∞

π(x) log(x)

x
= 1,

i.e.,

π(x) ∼ x

log(x)
.

4.1 Operator theoretic proof of a different version of the Prime Number
Theorem

Another example may be instructive and this allows us to also show a direct, operator theoretic, proof
of a different version of the Prime Number Theorem:
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Corollary 4.10 (The Prime Number Theorem for θ(x)).

θ(x) ∼ x.

Proof. Now the given function S is simply S(x) = θ(x), the first Chebyshev function, and we note that
it is non-decreasing. Let pn denote the nth prime number. As

θ(x) :=
∑
n∈N
pn≤x

log(pn)

≤
∫ x

1

log(t)dt

= x(log(x)− 1) + 1,

we thus have that θ(eu) ≤ eu(u− 1) + 1. Therefore, the following integral converges for σ > 1:

G(s) = L {θ(eu)}(s)

=

∫ ∞

0

θ(eu)e−sudu

=
∑
n∈N

∫ log pn+1

log pn

n∑
j=1

log(pj)e
−sudu

=
∑
n∈N

n∑
j=1

log(pj)
1

s
(p−sn − p−sn+1)

=
∑
n∈N

log(pn)

s
p−sn

= −1

s
ζ ′P (s)

=
1

s

d

ds
(log(s− 1)− ψP (s))

=
1

s(s− 1)
− ψ′

P (s)

s

=
1

s− 1
− 1

s
− ψ′

P (s)

s
.

To simplify the computation we define h(s) := 1
s +

ψ′
P (s)
s , which is also analytic in a neighborhood of

σ > 1. Plugging this in WS,I,ϵ gives

WS,I,ϵf(t) =
χI(t)

π

∫
I

f(τ)Re G(1 + ϵ+ i(t− τ))dτ

=
χI(t)

π

∫
I

f(τ)Re

(
1

ϵ+ i(t− τ)
− h(1 + ϵ+ i(t− τ))

)
dτ

=
χI(t)

π

∫
I

f(τ)
ϵ

ϵ2 + (t− τ)2
dτ − χI(t)

π

∫
I

f(τ)Re h(1 + ϵ+ i(t− τ))dτ.

Again we see the Poisson kernel on the upper half plane in the left integral. Also, the right integral again
converges strongly to an operator that is compact by Lemma 4.8. Hence, θ(x) ∼ x.
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4.2 Operator theoretic proof of the Prime Number Theorem for arithmetic
progressions

One final example of how this approach can be used to give short proofs of asymptotic estimates is a
proof of the Prime Number Theorem for arithmetic progressions.

Definition 4.11. An arithmetic progression is a sequence of numbers with a constant difference
between consecutive elements. If we let a denote the starting element and d the common difference, then
the sequence is of the form (a, a+ d, a+ 2d, . . . ) (i.e., they are all congruent to a modulo d).

Definition 4.12. Euler’s totient function, ϕ(n), is the function that counts the number of positive
integers up to the given positive integer n that are coprime to n. For example, ϕ(10) = 4, as 1, 3, 7, and
9 are coprime to 10.

Definition 4.13. Let A be a subset of the set of primes P . If the limit

lim
s→1+

∑
p∈A p

−s∑
p∈P p

−s

exists, then this number is called the Dirichlet density of A.

Theorem 4.14. The Prime Number Theorem for arithmetic progressions (de la Vallée-Poussin in [18])

Let πd,a(x) be the counting function of all primes less than x that are also part of the arithmetic progres-
sion defined by a and d. If d and a are coprime, then

πd,a(x) ∼
li(x)

ϕ(d)
.

Proof. The above statement is equivalent to

πd,a(x) ∼
x

ϕ(d) log(x)
.

So we set S(x) = ϕ(d)πd,a(x) log(x), which is again non-decreasing. By Dirichlet’s theorem on arithmetic
progressions there are infinitely many primes congruent to a modulo d if a and d are coprime (similar
to and implying Euclid’s theorem that there are infinitely many primes). If we let K denote this set of
primes congruent to a modulo d we thus get by Lemma 4.7 that

L (πd,a(e
u))(s) =

ζK(s)

s
.

We saw in the proof of Corollary 4.9 that the prime zeta function has a logarithmic singularity at s = 1
and is otherwise analytic in a neighborhood of σ > 1. The zeta functions we encounter here turn out to
behave almost the same, except that we need to account for the Dirichlet density of K when approaching
the logarithmic pole. This is proved in Theorem VI.2 in [16], where we get that in this case the Dirichlet
density is 1/ϕ(d) and that

ζK(s)

s
= − 1

ϕ(d)
log(s− 1) + ψK(s),

where ψK(s) is analytic in a neighborhood of σ > 1. Therefore, the associated function is
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G(s) = L (ϕ(d)πd,a(e
u)u)(s)

= −ϕ(d) d
ds

ζK(s)

s

=
1

s− 1
− ϕ(d)ψ′

K(s),

and we can follow the same steps as in Corollary 4.9 to conclude the proof.

Of course, we get back the ’ordinary’ Prime Number Theorem if we set d = 1.

4.3 Examining and generalizing this approach

To study how this approach works and slightly generalize it at the same time, we set, for some nonzero
p ∈ R,

S(x) = Axp + E(x),

where E(x) = O(xp) captures the errors we make when approximating some non-decreasing (non-
increasing if p < 0) S(x) on [0,∞) with Axp. We then plug this in to the following net of convolution
operators:

WS,I,ϵ,pf(t) =
χI(t)

π

∫
I

f(τ)Re G(p+ ϵ+ i(t− τ))dτ.

Now the associated function G becomes (the integral converges for σ > p as S(x) = O(xp)):

G(s) = L {Aepu + E(eu)}(s)

= A

∫ ∞

0

e(p−s)udu+ L {E(eu)}(s)

=
A

s− p
+ L {E(eu)}(s).

If we plug this in to WS,I,ϵ,p, we get

WS,I,ϵ,pf(t) =
χI(t)

π

∫
I

f(τ)Re G(p+ ϵ+ i(t− τ))dτ

=
χI(t)

π

∫
I

f(τ)Re

(
A

ϵ+ i(t− τ)
+ L {E(eu)}(p+ ϵ+ i(t− τ))

)
dτ

=
AχI(t)

π

∫
I

f(τ)
ϵ

ϵ2 + (t− τ)2
dτ +

χI(t)

π

∫
I

f(τ)Re (L {E(eu)}(p+ ϵ+ i(t− τ))) dτ

=
AχI(t)

π

∫
I

f(τ)
ϵ

ϵ2 + (t− τ)2
dτ +

χI(t)

π

∫
I

f(τ)Re

(∫ ∞

0

E(eu)e−(p+ϵ)ue−i(t−τ)udu

)
dτ.

Just like in the previous examples for p = 1 we see that the left net of operators converges strongly to
AId. The right net can be rewritten as follows (using Re z = z+z

2 and the fact that E(x) = O(xp) allows
changing the order of integration using Fubini-Tonelli):
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ΨS,I,ϵ,pf(t) =
χI(t)

π

∫
I

f(τ)Re

(∫ ∞

0

E(eu)e−(p+ϵ)ue−i(t−τ)udu

)
dτ

=
χI(t)

2π

∫
I

f(τ)

∫ ∞

0

E(eu)e−(p+ϵ)ue−i(t−τ)ududτ +
χI(t)

2π

∫
I

f(τ)

∫ ∞

0

E(eu)e−(p+ϵ)uei(t−τ)ududτ

=
χI(t)

2π

∫
I

f(τ)

∫ 0

−∞
E(e−v)e(p+ϵ)vei(t−τ)vdvdτ +

χI(t)

2π

∫
I

f(τ)

∫ ∞

0

E(eu)e−(p+ϵ)uei(t−τ)ududτ

=
χI(t)

2π

∫
I

f(τ)

∫ 0

−∞
E(e|v|)e−(p+ϵ)|v|ei(t−τ)vdvdτ +

χI(t)

2π

∫
I

f(τ)

∫ ∞

0

E(e|u|)e−(p+ϵ)|u|ei(t−τ)ududτ

=
χI(t)

2π

∫
I

f(τ)

∫
R
E(e|u|)e−(p+ϵ)|u|ei(t−τ)ududτ

=
χI(t)

2π

∫
R
E(e|u|)e−(p+ϵ)|u|

∫
I

f(τ)eiu(t−τ)dτdu

=
χI(t)

2π

∫
R
E(e|u|)e−(p+ϵ)|u|

∫
R
f(τ)e−iuτdτeiutdu

=
χI(t)

2π

∫
R
E(e|u|)e−(p+ϵ)|u|F{f}(u)eiutdu.

In the previous examples for p = 1 we always used strong convergence to show that these operators
converge weakly. It turns out that this strong convergence is always the case:

Theorem 4.15. Let S(x), non-decreasing on [0,∞) and O(xp), be given and the net of operators ΨS,I,ϵ,p
defined as above. Then ΨS,I,ϵ,p converges strongly to the bounded operator

ΨS,I,pf(t) =
χI(t)

2π

∫
R
E(e|u|)e−p|u|F{f}(u)eiutdu.

Proof. As E(x) = O(xp) we have for some constant C > 0 that (using first Plancherel’s theorem and the
Fourier inversion theorem and then the dominated convergence theorem):

2π lim
ϵ→0+

||ΨS,I,pf −ΨS,I,ϵ,pf || = lim
ϵ→0+

||
∫
R
E(e|u|)e−p|u|(1− e−ϵ|u|)F{f}(u)eiutdu||

= lim
ϵ→0+

||E(e|t|)e−p|t|(1− e−ϵ|t|)F{f}(t)||

≤ C lim
ϵ→0+

||(1− e−ϵ|t|)F{f}(t)||

= C|| lim
ϵ→0+

(1− e−ϵ|t|)F{f}(t)||

= 0.

Note that the application of the dominated convergence theorem is justified, as, applying Plancherel’s
theorem again, we have for all ϵ > 0 that

||(1− e−ϵ|t|)F{f}(t)|| ≤ ||F{f}(t)|| = ||f(t)|| <∞,

from which we also obtain that

||ΨS,I,p|| ≤
C

2π
.

Since the Fourier transform of a convolution is the product of the Fourier transforms we have that
E(e|u|)e−p|u| is the Fourier transform of Re (L {E(eu)}(p+ i(t− τ))). If we assume that E(x) is also
o(xp), i.e., that E(e|u|)e−p|u| decays, then ΨS,I,p is a compact operator due to the following lemma:
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Lemma 4.16. (Lemma 2 in [13] with slightly stricter hypotheses for convenience)

Let I ⊂ R be a bounded interval symmetric about the origin and 2I the same interval, but twice as wide.
Also let (Kϵ)ϵ∈(0,1) be a net of functions integrable on 2I that converges weakly to a K integrable on 2I
whose Fourier transform decays to 0 at infinity.

Then the operator

Ψf(t) = lim
ϵ→0

χI(t)

∫
I

f(τ)Kϵ(t− τ)dτ

is a compact operator on L2(I).

This leads to a proof of a slight generalization of Theorem 4.6 we essentially get for free:

Corollary 4.17. (Generalization of Theorem 2 in this thesis, which is Theorem 1.2 in [12])

Let S(x) be O(xp) for some nonzero p ∈ R and non-decreasing on [0,∞) (non-increasing for p < 0) and
let the net of operators WS,I,ϵ,p be defined as

WS,I,ϵ,pf(t) :=
χI(t)

π

∫
I

f(τ)Re G(p+ ϵ+ i(t− τ))dτ,

with G(s) := L (S(eu))(s).

Then the following 3 conditions are equivalent:

lim
ϵ→0+

WS,I,ϵ,p = AId + ΨS,I,p

weakly, for some constant A ≥ 0 and compact operator ΨS,I,p for all sufficiently large I,

lim
ϵ→0+

WS,I,ϵ,p = AId + ΨS,I,p

strongly, for some constant A ≥ 0 and compact operator ΨS,I,p for all sufficiently large I, and

lim
u→∞

S(eu)

epu
= A.

Proof. We can follow the same steps as the proof in [12] and the equivalence between weak and strong
convergence follows from Proposition 4.5 and Theorem 4.15.

To summarize, we see here how a monotone function S(x), that is known to be O(xp), can be analyzed
using this approach by giving operator theoretic conditions that are equivalent to the condition that the
relative error decays. If one of these conditions holds, this approach shows that S is then either also
o(xp) (if A = 0) or Ω(xp), and in the latter case it separates S into the part that is ∼ xp and the part
that is o(xp).
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5 The approximation error

Corollary 4.17 may at first not seem very useful. Instead of directly testing if an S(x) is approximated
’well’ by xp we could instead simply multiply S(x) by a suitable power of x and use Theorem 4.6.
However, since Corollary 4.17 works if and only if E(x) = S(x)−Axp = o(xp), we immediately obtain:

Corollary 5.1. ΨS,I,p is a compact operator if and only if E(x) = o(xp).

Therefore, if we consider ΨS,I,p for lower and lower p we can investigate how fast the error grows (or even
decays if p < 0) and the lowest p for which Corollary 5.1 works tells us how ’good’ the approximation is.
Essentially, we filter out the ’signal’ xp, so we can study what used to be the ’noise’ as our new ’signal’.

We can probably even refine this method a bit by investigating if the image of ΨS,I,p lies in Ck, with k
a natural number or even a real number, if and only if E(x) = o(xp/ log(x)k). Such a result would be
similar to how Delange generalized the Wiener-Ikehara theorem in [4]. While some work in this direction
was done, it was ultimately decided to be too far outside the scope of this thesis.

5.1 Application to the Riemann Hypothesis

We will now apply Corollary 5.1 to obtain an equivalent to the Riemann Hypothesis, but first we need
to take care of a small detail:

Lemma 5.2. Let a ∈ R, then we have that f(x) = o(xa+ϵ) for all ϵ > 0 if and only if f(x) = O(xa+ϵ)
for all ϵ > 0.

Proof. From the definitions we immediately get for every ϵ0 > 0 that f(x) = o(xa+ϵ0) implies f(x) =
O(xa+ϵ0), so that gives one direction.

For the other direction we assume lim supx→∞ |f(x)|x−a−ϵ is finite for all ϵ > 0. We want to show that
limx→∞ f(x)x−a−ϵ = 0 for all ϵ > 0, so we fix an ϵ0 > 0. We know that lim supx→∞ |f(x)|x−a−ϵ0/2 is
finite, so lim supx→∞ |f(x)|x−a−ϵ0 has to be 0. Since it holds for nonnegative functions g(x) that

0 ≤ lim inf
x→∞

g(x) ≤ lim sup
x→∞

g(x),

we must also have that lim infx→∞ |f(x)|x−a−ϵ0 = 0. Therefore,

lim
x→∞

|f(x)|x−a−ϵ0 = lim
x→∞

f(x)x−a−ϵ0 = 0.

Since ϵ0 was arbitrary, this holds for all ϵ > 0.

With that taken care of, we can prove our first main result by setting S(x) = θ(x):

Theorem 5.3 (First operator theoretic equivalent of the Riemann Hypothesis).

The operator on L2(I) defined by

ΨS,I,pf(t) :=
χI(t)

2π

∫
R
(θ(e|u|)e−p|u| − 1)F{f}(u)eiutdu

is a compact operator for all p > 1
2 if and only if the Riemann Hypothesis is true.

Proof. Von Koch showed that the Riemann Hypothesis is equivalent to (see section 7 in [10]):

θ(x) = x+O(x
1
2+ϵ) for all ϵ > 0.
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By Lemma 5.2 this is equivalent to

E(x) = θ(x)− x = o(x
1
2+ϵ) for all ϵ > 0

and the result follows by Corollary 5.1.

Von Koch showed in the same article that the Riemann Hypothesis is also equivalent to

ψ(x) = x+O(x
1
2+ϵ) for all ϵ > 0.

Therefore, by setting S(x) = ψ(x) and noting that θ(x) ∼ ψ(x) we similarly obtain our second main
result:

Theorem 5.4 (Second operator theoretic equivalent of the Riemann Hypothesis).

The operator on L2(I) defined by

ΨS,I,pf(t) :=
χI(t)

2π

∫
R
(ψ(e|u|)e−p|u| − 1)F{f}(u)eiutdu

is a compact operator for all p > 1
2 if and only if the Riemann Hypothesis is true.

These theorems allow the Riemann Hypothesis to be studied using methods and results in operator
theory, combined with results from number theory of course. There are quite a few methods and results
in operator theory dedicated to proving or disproving the compactness of operators, for example by
trying to approach the operator in question with a net of operators that are more well-behaved or well-
understood (maybe bounded finite-rank operators could help here). In the next section we discuss some
further properties of the operators appearing in these theorems, which could give some initial lines of
reasoning to investigate.

5.2 Further properties of ΨS,I,p

Given the connection to the Riemann Hypothesis and their potential usefulness in investigating other
asymptotic estimates, we further investigate the operators ΨS,I,p.

Firstly, these operators are self-adjoint:

Theorem 5.5. Let S(x) be O(xp) for some nonzero p ∈ R and non-decreasing on [0,∞) (non-increasing
for p < 0) and let the operator ΨS,I,p be defined as

ΨS,I,pf(t) :=
χI(t)

2π

∫
R
E(e|u|)e−p|u|F{f}(u)eiutdu,

with E(x) = S(x)−Axp for some constant A ≥ 0, then this operator is self-adjoint.

Proof. If we set

KS,p(x) =
1

π

∫ ∞

0

E(eu)e−pu cos(xu)du

and working our way back from Theorem 4.15, then we note that ΨS,I,p is a convolution over I with the
kernel KS,p:

ΨS,I,pf(t) = χI(t)

∫
I

f(τ)KS,p(t− τ)dτ.
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This form of ΨS,I,p makes it easier to calculate the adjoint (which is of course also on L2(I)):

⟨ΨS,I,pf, g⟩ =
∫
I

ΨS,I,pf(t)g(t)dt

=

∫
I

χI(t)

∫
I

f(τ)KS,p(t− τ)dτg(t)dt

=

∫
I

f(τ)χI(τ)

∫
I

g(t)KS,p(t− τ)dtdτ

= ⟨f,Ψ∗
S,I,pg⟩.

Therefore,

Ψ∗
S,I,pg(t) = χI(t)

∫
I

g(τ)K(τ − t)dτ.

However, since KS,p is even, we have that ΨS,I,p is self-adjoint.

We thus immediately get from the results discussed in Section 2.2 that if ΨS,I,p is compact then

• Its spectrum is real and countable

• It is diagonalizable and σr(ΨS,I,p) = ∅

• 0 is either in σc(ΨS,I,p) or is an eigenvalue

• At least one of ||ΨS,I,p|| and −||ΨS,I,p|| is an eigenvalue

• The eigenvalues have 0 as the only possible limit point

• If an eigenvalue is nonzero, then it has finitely many linearly independent associated eigenvectors

As a compact operator ΨS,I,p has at least one eigenvalue, it could be fruitful to study its eigenvectors. It
may for example be possible to derive a commutation relation between ΨS,I,p and the derivative operator
and use that relation to study them (similar to, e.g., [1]). While some work in this direction was done,
it was ultimately decided to be too far outside the scope of this thesis.

Moreover, this could be a very hard problem. If we set for example

S(x) = Axp + xpχ[1,e](x),

then

ΨS,I,pf(t) =
χI(t)

π

∫
I

f(τ)
sin(t− τ)

t− τ
dτ.

In for example [7], the known results on the eigenvectors and eigenvalues of this operator are summarized.
It turns out, that even in this simple case the eigenvectors are expressible in terms of so-called prolate
spheroidal wave functions. Of course, this case falls slightly outside the scope of this thesis as this
S violates the monotonicity assumption once, but it still gives a good indication of how difficult this
problem could be.

We further note that, if ΨS,I,p is compact, it is not bounded below (by Proposition 2.11) and not
surjective either (a consequence of the open mapping principle, see e.g. Theorem 15.9 in [11]).

Lastly, if ΨS,I,p is an integral operator with a smooth kernel, like we saw in the proofs of the various
Prime Number Theorems, then it must be a so-called trace class operator (Theorem 30.13 in [11]), i.e.:
an operator whose trace is finite and well-defined (just as in the finite-dimensional case). We can then
even get a very nice formula for the trace:
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Theorem 5.6. Let S(x) be O(xp) for some nonzero p ∈ R and non-decreasing on [0,∞) (non-increasing
for p < 0) and let the operator ΨS,I,p be defined as

ΨS,I,pf(t) = χI(t)

∫
I

f(τ)KS,p(t− τ)dτ,

with a smooth

KS,p(x) =
1

π

∫ ∞

0

E(eu)e−pu cos(xu)du,

with E(x) = S(x)−Axp for some constant A ≥ 0, then this operator has the following trace:

|I|
π

∫ ∞

0

E(eu)e−pudu.

Proof. Let the set of en be the standard orthonormal exponential basis for L2(I). Following the same
computations as in [12] we get a result similar to (8) in that article:

⟨ΨS,I,pen, en⟩ =
|I|
2π

∫
R
E(e|u|)e−p|u|

(
sin(u|I|/2)
u|I|/2− πn

)2

du.

And this gives us the formula for the trace (we can switch the order of summation and integration by
Fubini-Tonelli as the sum is absolutely convergent since the trace is well-defined):

∑
n∈Z

⟨ΨS,I,pen, en⟩ =
|I|
2π

∑
n∈Z

∫
R
E(e|u|)e−p|u|

(
sin(u|I|/2)
u|I|/2− πn

)2

du

=
|I|
2π3

∫
R
E(e|u|)e−p|u| sin(u|I|/2)2

∑
n∈Z

1

(n− u|I|/2π)2
du

=
|I|
2π3

∫
R
E(e|u|)e−p|u| sin(u|I|/2)2 π2

sin(u|I|/2)2
du

=
|I|
π

∫ ∞

0

E(eu)e−pudu.

So essentially, the trace is then equal to a multiple of the ’total’ relative error and is also equal to
|I|Ks,p(0).
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