
Fast Prototyping of Massive MIMO User
Equipment Using PYNQ

Keming Mao
ke0457ma-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Liang Liu
Co-supervisor: Sijia Cheng

Examiner: Erik Larsson

January 8, 2024

© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

When technology is being developed in wireless communication systems, it is cru-
cial to achieve very high spectrum efficiency. The massive Multiple-Input Multiple-
Output (MIMO) system is one of the techniques used to ensure ultra-high spec-
trum efficiency by spatial multiplexing. With multiple antennas implemented on
the Base Station (BS), the information transmission quality, throughput, and ca-
pacity are considerably increased. Utilizing the same time and frequency resources,
massive MIMO allows multiple User Equipment (UE) to concurrently connect to
the Base Station (BS).

Implementing UE using a Register-Transfer-Level (RTL) approach may consume
considerable time and effort, especially when optimizing fast-speed, low-power,
and small-area designs. Thus, the High-Level-Synthesis (HLS) will be performed
in this design to reduce the demanding amount of developing time. Using C++ to
implement Hardware Description Language (HDL) can lead to inefficient designs
due to the lack of control over low-level circuits. In this situation, several opti-
mization directives will be employed to fulfill the specific requirements.

In this thesis, the design will be implemented in Python Productivity for ZYNQ
(PYNQ) to conduct real-time verification. A loop-back verification will be per-
formed between the UE and PYNQ RX in the baseband to confirm the design’s
functionality on the hardware. Extracting RTL code from Vitis HLS to PYNQ
accelerates hardware implementation development due to its fast iteration charac-
teristics.

i

ii

Acknowledgement

I sincerely express my thankfulness to my supervisor Professor Liang Liu and co-
supervisor, Ph.D. student Sijia Cheng for your help and patience. Finally, I want
to acknowledge my parents and all my friends who gave their support and encour-
agement.

Keming Mao

iii

iv

Popular Science Summary

Due to the increasing demand for high transmission efficiency and large capacity in
wireless systems, researchers made great efforts to exploit multi-path propagation.
It can be dated back to the 90s when the concept of multi-channel transmission
was proposed. Many engineers improved the MIMO system over the last decades,
Nowadays, MIMO systems play a crucial role in achieving faster and more efficient
wireless transmission. This summary will clarify the evolution of massive MIMO
systems, from Single-Input Single-Output (SISO) to massive MIMO.

SISO stands for single input and output systems. These systems have unique
transmission paths between the TX and RX, which can result in poor reliability
and performance. However, Single-Input Multiple-Output (SIMO) systems can
help improve this situation. By replacing the single transmission path with two
paths, the reliability of the system is doubled compared to SISO. Multiple-Input
Single-Output (MISO) also has the same ability as SIMO. The quality of trans-
mission is a crucial aspect of modern wireless communication, the MIMO system
improves not only the quality but also transmission speed and capacity to some
extent. There is a clear distinction between MIMO and massive MIMO, which is
the number of antennas located at the BS. Multi-User MIMO is a type of MIMO
technology where the number of antennas is the same between the UE and the
BS. In contrast, massive MIMO has a much larger number of antennas located
at the BS compared to the UE. The implementation of massive MIMO involves
using multiple antennas at both the transmitter and receiver sides. This results in
a more complex process for developing RTL designs. However, using High-Level
Synthesis (HLS) can greatly speed up this process.

The development of HLS can be dated back to 1968 when it was first invented to
help engineers to abstract circuit design from a high level. Back then, the HLS
was primarily proposed by researchers who were mostly located on campus. The
application was limited to small designs. During the 90s, several Electronic Design
Automation (EDA) companies including Cadence, Synopsys, and Mentor launched
the HLS platform for commercial use, Unfortunately, the quality of the results was
considered poor in the industrial design. Currently, universities and industries
collaborate to make the HLS an important part of circuit design. Nowadays, high-
level programming languages like C++, C, and System Verilog are widely used in

v

various fields such as machine learning, DSP design, and System on Chip (SoC) to
conduct the HLS development process. The accuracy of the RTL code translation
in scheduling and timing mapping has significantly improved over the last few
years. Therefore, this thesis will use HLS for fast prototyping of massive MIMO
UE.

vi

Table of Contents

1 Introduction 1
1.1 Motivation and Challenges . 1
1.2 Thesis’s Purpose . 2
1.3 Outline . 2

2 Background Information 5
2.1 Background in Wireless System . 5
2.2 HLS Implementation . 9
2.3 PYNQ Framework . 13

3 Overall Architecture Design of the UE 15
3.1 An Overview of the UE . 15

4 Design Optimization and Implementation Results 23
4.1 Optimization Directives . 23
4.2 Design Optimization . 26

5 Design Test on PYNQ and Future Work 33
5.1 Loop-back Verification on PYNQ 33
5.2 Conclusion&Future Work . 35

References 39

vii

viii

List of Figures

2.1 Multi-path propagation. 5
2.2 Basic structure of OFDM TX. 6
2.3 A massive MIMO system. 7
2.4 OFDM TX with STBC. 7
2.5 Beamforming comparison [6]. 8
2.6 Subframe with different subcarrier spacing. 9
2.7 Mdulation constellation diagrams. 10
2.8 Workflow in Vitis HLS. 11
2.9 Environment of C testbench. 11
2.10 Different scheduling schemes. 12
2.11 Different mapping schemes. 13
2.12 RFSoC2x2 board [14]. 14

3.1 UE top-level architecture. 15
3.2 Basic structure of serial-to-parallel circuit and modulator. 16
3.3 Subcarrier mapping schemes. 17
3.4 Data symbol structure. 17
3.5 Pilot symbol structure. 18
3.6 4-point butterfly FFT [16]. 20
3.7 OFDM symbol frame. 21
3.8 Time domain after IFFT. 22

4.1 Partial loop unrolling. 23
4.2 Loop merge optimization. 24
4.3 Pipeline optimization [17]. 24
4.4 Dataflow optimization. 25
4.5 Different array partition schemes. 26

5.1 PYNQ frame structure. 34
5.2 Reconfigurable modulator test results. 34
5.3 Reconfigurable pilot test results. 35
5.4 Pilots and data symbols. 36

ix

x

List of Tables

2.1 A brief comparison of 4G and 5G. 9

3.1 Subcarrier mapping parameters. 16
3.2 Algorithmic complexity comparison. 19
3.3 System parameters. 20

4.1 Unoptimized solution directives. 26
4.2 Unoptimized solution resources results. 27
4.3 Unoptimized solution timing results. 27
4.4 Loop merge solution resources results. 27
4.5 Loop merge solution timing results. 28
4.6 Partiton solution resources results. 28
4.7 Partition solution timing results. 29
4.8 Dataflow & pipeline solution resources results. 29
4.9 Pipeline&dataflow solution timing results. 29
4.10 Comparison between two software versions. 30
4.11 Comparison of resources utilization 30
4.12 Comparison of throughput . 31

xi

xii

List of Acronyms

MIMO Multiple-Input Multiple-Output

BS Base Station

UE User Equipment

RTL Regsiter Transfer Level

HLS High-Level Synthesis

HDL Hardware Description Language

PYNQ Python Productivity for ZYNQ

SISO Single-Input Single-Output

SIMO Single-Input Multiple-Output

MISO Multiple-Input Single-Output

EDA Electronic Desing Aautomation

SoC System on Chip

5G NR Fifth Generation New Radio

SDMA Space Division Multiplexing Access

FDMA Frequency Division Multiplexing Access

TDMA Time Division Multiplexing Access

OFDM Orthogonal Frequency Division Multiplexing

CDMA Code Division Multiplexing Access

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

ISI Inter-Symbol Interference

STBC Space Time Block Coding

QPSK Quadrature Phase-Shift Keying

xiii

16QAM 16 Quadrature Amplitude Modulation

64QAM 64 Quadrature Amplitude Modulation

CP Cyclic Prefix

ICI Inter-Carrier Interference

PL Programming Logic

PS Processing System

GPIO General Purpose Input Output

MMIO Memory Mapped IO

DMA Direct Memory Access

II Iteration Interval

FIFO First-In First-Out

xiv

Chapter 1
Introduction

The introduction will consist of three parts. The motivation and challenge section
will provide an overview of the massive MIMO system and challenge in this thesis,
the thesis purpose will clarify the aim to implement the UE transmitter using HLS,
and the outline will provide a summary of all chapters.

1.1 Motivation and Challenges

The Fourth Generation (4G) wireless systems use massive MIMO systems to in-
crease data rates [1], signal quality, and spectrum efficiency. Furthermore, the
integration of millimeter waves, also called millimeter bands, into RF systems
can also improve the aforementioned parameters. Due to the increased demand
for bandwidth, the 5G NR frequency range1 and range2 can both reach up to
gigahertz, resulting in significantly low power received at RX as shown in (1.1).
Prx and Ptx represent power at the receiver and transmitter side respectively.
Grx and Gtx represent gain at the receiver and transmitter side. λ represents
wavelength, and R represents the distance between the two sides. Implementing
millimeter wave technology introduces significant challenges due to the usage of
high-frequency bandwidth, which ranges from 30GHz to 300GHz.

Prx =
Ptx

4πR2

λ2

4π
GrxGtx (1.1)

One way to enhance the power gain at RX is to use the massive MIMO system. By
implementing multiple antennas, the Space Division Multiplexing Access (SDMA)
is introduced. Compared to Time Division Multiplexing Access (TDMA) and
Frequency Division Multiplexing Access (FDMA), the SDMA increases the capa-
bility of bandwidth and immunity to external interference. However, improving
spectrum efficiency leads to increased computational complexity. According to
Robin and Robert [2], pilot contamination, signal detection, channel estimation,
precoding, hardware impairment, and user scheduling present the most significant
challenges. Pilot contamination mostly happens when the pilot signals interfere
with neighboring cells. This phenomenon will deteriorate the channel estimation
quality. When the multiple antennas were implemented, more effort was needed

1

2 Introduction

to deal with the complexity of computation when detecting signals, estimating
channels, and precoding. This thesis will concentrate on enhancing the perfor-
mance of hardware by implementing some configurable improvements in modula-
tion schemes and user scheduling. Specifically, a reconfigurable modulator that
supports three modulation schemes and reconfigurable uplink pilot signals to sup-
port four different UE will be developed. However, introducing reconfigurability
creates challenges in both the modulator and pilot signal areas. Furthermore, fast
prototyping of UE can also be challenging since the traditional approach of using
RTL is time-consuming and weak in wireless signal processing.

1.2 Thesis’s Purpose

With the advancement of wireless communication systems, signal processing, and
operations have become more complex on hardware. The HLS has played an im-
portant role recently by virtue of its fast iteration capability. Additionally, HLS
using C/C++ based development process provides an opportunity for powerful
algorithm crafting. Therefore, some research has been conducted to compare the
pros and cons of RTL and HLS approaches. Ghattas and Ali performed an eval-
uation between HLS and HDL when designing radix-2 FFT and radix-4 FFT for
digital signal processing [3]. The results indicate that HLS can maintain the same
speed and resources as RTL while requiring less development time. It also provides
flexible directive constraints for optimization without the need for code refactoring.

When implementing a wireless system UE that focuses on signal processing on
FPGA/ASIC for transmission, it is crucial to balance area and speed [4]. This
thesis utilizes IFFT and FFT algorithms with specific requirements in a reconfig-
urable efficient UE transmitter, making HLS an ideal option. Further details on
hardware architecture and optimization will be discussed later.

1.3 Outline

This section provides an overview of the motivation and challenges in this thesis,
giving a preliminary explanation of why using massive MIMO in wireless systems
and why using HLS to implement UE on PYNQ.

Chapter 2 will elaborate on the background information to give preliminary ideas
on the key points of the thesis. To begin with design application, and the standards
and protocols should be followed. Afterward, the approaches and methodology will
be explained.

In Chapter 3, architecture design and details will be presented. Starting from elab-
orating on the UE system, the performance requirements and the block diagram
of the design will be shown.

Introduction 3

Chapter 4 focuses on design optimization, using several directives to improve de-
sign performance.

Chapter 5 presents loop-back verification on PYNQ, including the comprehensive
understanding of design architecture, the discussion of the verification results, and
suggestions for future work.

4 Introduction

Chapter 2
Background Information

2.1 Background in Wireless System

2.1.1 Frequency-selective Fading

In 2G, TDMA is the primary access scheme for users, while CDMA was widely
adopted as the primary approach for 3G. However, the use of these two access tech-
nologies can result in a phenomenon known as frequency-selective fading, caused
by Inter-Symbol Interference (ISI), which can degrade the signal quality. Thus, a
scheme with multi-carriers was introduced in 4G and 5G. As Figure 2.1 illustrated,
the inter-communication between BS and users may contain multiple paths. The
multi-path propagation will interfere with each other. Assuming there is one user
and two paths when communicating. After FFT, The two paths with different
timing can be shown below in (2.1), C denotes the attenuation factor, R(w) de-
notes the received signal in the frequency domain, t0 and t denote the first path
delay and delay between two paths respectively.

Figure 2.1: Multi-path propagation.

R(w) = CF (w)e−jwt0(1 + e−jwt) (2.1)

H(w) =
R(w)

F (w)
= Ce−jwt0(1 + e−jwt) (2.2)

Rewriting the frequency function as (2.2) will result in frequency-selective fading

5

6 Background Information

concerning w.

2.1.2 OFDM

The core idea of OFDM technology is to divide a wide-frequency carrier into
multiple orthogonal sub-carriers with smaller bandwidths and use these orthogo-
nal sub-carriers to transmit and receive signals. Considering the set of functions
as (2.3), each two of them’s integral is 0.

1, sinwt, coswt, sin2wt, cos2wt, ..., sinnwt, cosnwt w ∈ [−π, π] (2.3)

This set of functions is defined as orthogonal functions which can be utilized in
OFDM. Assuming the bandwidth is BW , the number of subcarriers is N , so the
subcarrier spacing is

∆f =
BW

N
(2.4)

for the timing domain, the signals transmitted can be denoted as the (2.5),

f(t) =
∑

Ai sin(2πfit) +
∑

Bi cos(2πfit) (2.5)

the fi equals f0 + (i− 1)∆f , rewrite as (2.6),

f(t) =
∑

Cie
j2πfit (2.6)

To implement an OFDM transmitter, IFFT logic is needed. The 2.6 can be inter-
preted as conducting IFFT on the information signal Ci of each subcarrier. The
Figure 2.2 illustrates the basic building blocks of OFDM TX.

Figure 2.2: Basic structure of OFDM TX.

Based on multi-carrier capability and orthogonality, the frequency-selective fading
is limited to smaller bandwidths, thus decreasing the impact of this phenomenon.

Background Information 7

2.1.3 Massive MIMO System with OFDM

Assuming a massive MIMO system with m antennas at TX and k users at RX.
The architecture as the Figure 2.3 showed below,

Figure 2.3: A massive MIMO system.

this system can be represented as a matrix model as the (2.7) below, Sr and St

are received signal vector and transmitted signal vector, the sizes are nr × 1 and
nt × 1 respectively. The nr and nt are antenna numbers on both sides. The n0 is
a nr × 1 noise vector in the channel. H is a nr × nt channel matrix. As the (2.8)
indicates, the h11 is the channel factor between the first antenna in TX and the
first antenna in RX.

Sr = HcSt + n0 (2.7)

Hc =

 h11 · · · h1nt

... · · ·
...

hnr1 · · · hnrnt

 (2.8)

A basic structure of massive MIMO OFDM TX is shown below, Space Time Block

Figure 2.4: OFDM TX with STBC.

Coding (STBC) [5] is used to transmit multiple copies of a data stream in wireless
communications. Generate multiple received versions of data through many anten-
nas to improve the reliability of data transmission. There are three key concepts
of massive MIMO [5],

8 Background Information

• Spatial multiplexing

• Spatial diversity

• Beamforming

Massive MIMO systems employ spatial multiplexing to significantly boost data
throughput and spectrum efficiency. The use of spatial multiplexing in massive
MIMO systems enhances the system’s capacity to handle more data by allowing
for independent streams of information to be sent in parallel.

Wireless systems are often affected by obstacles such as buildings, air, and wa-
ter, which can lead to a degradation in signal quality and affect the transmission
of information. One method to overcome this issue is through the use of spatial
diversity, which involves the parallel transmission of redundant streams of infor-
mation. This technique can reduce the likelihood of errors occurring during the
transmission process. On the receiving side, the redundant information can be
processed to overcome the negative impact caused by the obstacles. As a result,
spatial diversity can significantly improve the quality of the signal.

Beamforming is a technique used to improve the throughput and capacity in MIMO
systems. Beamforming narrows the beam to improve signal quality, particularly in
massive MIMO systems. Instead of sending signals in all directions, beamforming
focuses the signal in a specific direction, as illustrated in Figure 2.5. This reduces
the impact from different beams and enhances the signal strength in the interest
direction.

Figure 2.5: Beamforming comparison [6].

2.1.4 5G New Radio (NR)

The 5G NR standard was released at the end of 2017, it makes it compatible
with 4G LTE and increases the frequency spectrum up to GHz (mmWave). Al-
though both 4G and 5G use OFDM to exploit frequency and timing resources, 5G
outperforms in terms of spectrum efficiency, speed, and low latency [7]. A short

Background Information 9

comparison according to Misha’s post [8] are shown below in Table 2.1

Technology Data Rates Latency Spectrum Efficiency
5G (NR) Peak 20 Gb/s 1ms DL- 30bits/Hz
4G (LTE) Peak 300 Mb/s 10-50 ms DL- 6bits/Hz

Table 2.1: A brief comparison of 4G and 5G.

The main difference between 4G and 5G frame structures is that 5G uses a pa-
rameter called numerology to specify subcarrier spacing, while 4G uses fixed 15
kHz to configure the frame structure. As Figure 2.6 displayed, the length of the
subframe is fixed, but slots vary with the numerology 2µ.

Figure 2.6: Subframe with different subcarrier
spacing.

2.1.5 Modulation Schemes

This thesis includes three modulation schemes: Quadrature Phase-Shift Keying
(QPSK), 16-Quadrature Amplitude Modulation (16QAM), and 64-Quadrature
Amplitude Modulation (64QAM), each scheme maps the received bitstream in
the frequency domain. Three schemes are illustrated below in Figure 2.7, each
dot on the constellation diagram represents a unique amplitude and phase in the
frequency domain.

2.2 HLS Implementation

Regarding HLS, some may assume it involves an automated process of converting
high-level languages such as C++ or C into RTL code. Professor Daniel D. Gajski,
however, defines the HLS as a mapping of a behavioral description of a digital

10 Background Information

(a) QPSK [9] (b) 16QAM [10] (c) 64QAM [10]

Figure 2.7: Mdulation constellation diagrams.

system into an RTL design consisting of a data path and a control unit [11].
This definition not only requires engineers’ software programming ability but also
requires hardware knowledge. Extensive research has been conducted on using
HLS by software engineers to achieve hardware acceleration.

2.2.1 Basic Vitis HLS Workflow

Compared to the traditional RTL approach, HLS has multiple advantages. One of
them is accelerating the development process, which makes HLS a promising tool,
especially in hardware algorithm crafting. Nonetheless, Juan J. Alonso researched
evaluating performance loss of Stencil Computation using HLS [12], which showed
weaknesses in resources and performance. Thus, it is crucial for engineers to use
a better coding style and perform in the right usage. This thesis will use Vitis
HLS as the development platform. The process is significantly different from RTL,
Figure 2.8 simply illustrates the workflow of Vitis HLS.

Similar to RTL, the C++ code needed to be verified by functional simulation, and
a C code testbench was added when simulating. The basic environment of the test-
bench is illustrated in Figure 2.9. The generator will operate the DUT by providing
input data, in our case, MATLAB provides golden results for further verification.
The monitor displays the step results when simulating, and the scoreboard per-
forms a comparison between the DUT and reference model. Whenever there is a
mismatch in the scoreboard, the simulation will fail. After simulation, users can
optimize the design by adding directives, such as pipeline, unfolding, dataflow, etc.
The output of C synthesis are reports containing timing and resource information,
and RTL codes. Afterward, the co-simulation will be performed between the C
testbench and RTL model, and the cycle-based waveform will be outputted for
further verification.

Background Information 11

Figure 2.8: Workflow in Vitis HLS.

2.2.2 A Deep Dive In HLS Implementation

HLS allows for hardware design using high-level programming languages. How-
ever, it differs from HDL in that it is not clock-based. Hence, converting code to
hardware must be efficient and accurate. This subsection will elaborate on some
key procedures in HLS. Regarding to [13], some key concepts are compilation,
allocating, scheduling, and binding.

Figure 2.9: Environment of C testbench.

12 Background Information

Compilation

In HLS, the code is compiled by analyzing the high-level language and abstracting
functions as a data flow graph. This exhibits data dependencies between operations
and enables further allocation and optimization.

Allocating

Allocating refers to selecting a specific type and number of hardware. This process
may be similar to RTL design, when starting to develop code, it is necessary to
determine the required hardware resources. The HLS tools choose the hardware
by analyzing the code. For example, when performing matrix multiplication, the
operation requires multiple adders and multipliers, and the results may need to
be stored in memory such as registers or RAMs. The HLS hardware standard
libraries may contain some information regarding the area, latency, and power for
further optimization.

Scheduling

In C/C++, the code can be executed either in a serial manner or concurrently.
In hardware, all the operations are executed based on the clock cycle. Scheduling
refers to the process of organizing operations that take place in each clock cycle.
Assuming the operation y = a ∗ b+ c+ d ∗ e, the scheduling can be both below in
Figure 2.10, The first scheme demonstrates that operations are scheduled sequen-
tially using one multiplier and one adder. On the other hand, the second scheme
illustrates that the operations without data dependence are scheduled in parallel
to achieve the smallest latency with one adder and two multipliers. The users can
optimize scheduling for lower resource usage or higher throughput.

Figure 2.10: Different scheduling schemes.

Background Information 13

Binding

Binding refers to mapping the operations into hardware, this procedure may have
multiple mapping schemes as Figure 2.11 displayed, both of them are the binding
results of Figure 2.10. The first binding needs two multipliers, one adder, and
three registers. The second binding needs two DSP resources, one ALU, and three
registers to achieve the operations. Engineers can optimize the design by inserting
directives which may result in different mapping schemes.

Figure 2.11: Different mapping schemes.

2.3 PYNQ Framework

The PYNQ framework includes an embedded processor that can be operated using
the Python programming language. Besides the processor, PYNQ also includes
an FPGA part called overlay. The processor and overlay are interconnected, en-
abling efficient control of the overlay through the processor. The overlays can be
programmed in RTL or HLS. This feature simplifies the design process and allows
for quick iteration. One of the primary advantages of PYNQ over ZYNQ is that it
offers a Python-based programming framework, which facilitates fast prototyping
of designs using Jupyter Notebook, a web-based programming tool. PYNQ has
various features, which are listed below.

• Python programming: PYNQ enables users to interact with FPGA using
Python easily, simplifying hardware control through a high-level language.

• Jupyter notebook: This tool is user-friendly, allowing for specific result
processing and overlay testing.

• ARM processor: By incorporating an ARM processor, users can easily in-
tegrate hardware and software, while facilitating implementation of designs
by software engineers.

14 Background Information

Figure 2.12: RFSoC2x2 board [14].

Chapter 3
Overall Architecture Design of the UE

3.1 An Overview of the UE

The top-level architecture is shown in Figure 3.1, and the bitstream data source
is converted into parallel for further processing. The constellation mapping block
can use one of three modulation schemes based on an external select signal. For
reconfigurability, the uplink pilot signal is determined by an external signal and
can configure 4 different UEs. By adding uplink pilot signals and performing sub-
carrier mapping, the data is pre-processed in the frequency domain.

Figure 3.1: UE top-level architecture.

IFFT will convert frequency domain data into time domain. The output of this
design is OFDM-framed data, carrying the source information in the time domain.
The following subsections will exhibit the design in detail.

3.1.1 Reconfigurable Modulator

Different amounts of bits are required in QPSK, 16QAM, and 64QAM as Figure 2.7
illustrates, therefore, it is necessary to implement a serial-to-parallel circuit before
sending the data source to the modulator. As shown in Figure 3.2, the select signal

15

16 Overall Architecture Design of the UE

chooses one of three modulation schemes to encode. By simply implementing shift
registers, the data source is divided into 6 parallel inputs. The modulator utilizes
2 inputs in QPSK, 4 inputs in 16QAM, and 6 inputs in 64QAM.

Figure 3.2: Basic structure of serial-to-parallel circuit and
modulator.

3.1.2 Subcarrier Mapping

This subsection provides some knowledge on state-of-the-art subcarrier mapping
technology and elaborates on the design’s details. Assuming the information data
is M , the IFFT point is 2n, and 2n −M zeros are needed to add in the symbol to
perform IFFT. The process of subcarrier mapping involves mapping source data
into a vector of size 2n. The zeros work like the unused spectrum guard band
to prevent interference. Regarding the research [15], there are three ways of sub-
carrier mapping, distributed, localized, and interleaved. Figure 3.3 illustrates the
distributed and localized subcarrier mapping.

In this design, the localized subcarrier mapping is performed. The details are dis-
played below in Table 3.1.

Specification Value
Ndata

symbol 600
NIFFT 1024

Mapping scheme localized

Table 3.1: Subcarrier mapping parameters.

In this thesis, the mapping circuit maps 600 data into 1024 subcarriers, inserting

Overall Architecture Design of the UE 17

Figure 3.3: Subcarrier mapping schemes.

424 zeros. A simple data symbol is displayed below, it can be noted that the
mapped data starts from no.1 subcarrier. The no.0 subcarrier is called the DC
subcarrier, normally, the value should be 0. In the baseband, modulating the DC
subcarrier to another frequency band causes the DC offset problem. It also can
be noted that the last part of the data mapped into the 1-300 subcarriers and the
first part of the data mapped into 724-1023 subcarriers. The switch is caused by
the image frequency after it has been sampled.

Figure 3.4: Data symbol structure.

3.1.3 Reconfigurable Uplink Pilot

In real-life scenarios, the signal received at the RX is influenced by multiple factors,
and the channel may vary. To decode signals accurately, pilot signals transmitted
by the TX at the beginning of each subframe are used to perform channel estima-
tion. Assuming the channel is noiseless, rewrite (2.7) as below,

Ĥ =
Sr

St

(3.1)

18 Overall Architecture Design of the UE

The channel estimation can be obtained with the received pilot signal and trans-
mitted pilot signal as (3.1). Ĥ is the estimated channel matrix. Sr, St represent
the received pilot signal and transmitted pilot signal respectively. Nonetheless,
the division on hardware may be costly both in area and timing. So, it is crucial
to use an effective method for conducting channel estimation.

In this design, an external signal can configure a different uplink pilot signal for
UE. In each transmission, one of the four users is identified by the user-id signal.
The pilot signal spacing is set to 4 and a ROM stores 150 pilot values which are
placed in the pilot symbol. The pilot symbol is illustrated in Figure 3.5 below, the
uplink pilot is only applied in the first symbol of each transmission.

Figure 3.5: Pilot symbol structure.

3.1.4 FFT Using Radix-4 Butterfly

On hardware, implementing a DFT/IDFT algorithm is time-consuming and resource-
intensive. To achieve the same functionality, engineers use radix-2/radix-4 FFT/IFFT.
The algorithmic complexity is displayed below in Table 3.2, the algorithmic com-
plexity decreased by using radix-4 also called butterfly radix-4 transformation. The
two algorithms differ in the number of divided parts used in each computation.
The former algorithm divides the computation into two parts, while the latter
algorithm divides it into four parts. With more complexity in radix-4, however, it

Overall Architecture Design of the UE 19

requires 75 percent as many complex multipliers as radix-2. It is also efficient to
utilize radix-4 FFT/IFFT with the input length of 4n. In this design, the IFFT
length is 1024, thus, the radix-4 IFFT is performed.

Algorithm Complexity
DFT/IDFT O(n2)

radix-2 O(n log n)
radix-4 O(n log n)

Table 3.2: Algorithmic complexity comparison.

Assuming the DFT function is (3.2), N represents the length of input, k =
0, 1, ..., N − 1.

X(k) =

N−1∑
n=0

x(n)e−j 2πkn
N (3.2)

Using radix-4 algorithm to divide the (3.2) into 4 parts, Wnk
N represents the rota-

tion factor e−j 2πkn
N ,

X(k) =

N/4−1∑
n=0

[x1(n)W
nk
N + x2(n)W

(n+N/4)k
N + x3(n)W

(n+N/2)k
N + x4(n)W

(n+3N/4)k
N]

=

N/4−1∑
n=0

[x1(n) + x2(n)W
(N/4)k
N + x3(n)W

(N/2)k
N + x4(n)W

(3N/4)k
N]Wnk

N

(3.3)

as the equation above, the DFT has been divided into 4 parts with a cycle of 4
N ,

rewrite yields,

X(4k) =

N/4−1∑
n=0

[x1(n) + x2(n) + x3(n) + x4(n)]W
nk
N/4

X(4k + 1) =

N/4−1∑
n=0

[x1(n)− jx2(n)− x3(n) + jx4(n)]W
n
NWnk

N/4

X(4k + 2) =

N/4−1∑
n=0

[x1(n)− x2(n) + x3(n)− x4(n)]W
2n
N Wnk

N/4

X(4k + 3) =

N/4−1∑
n=0

[x1(n) + jx2(n)− x3(n)− jx4(n)]W
3n
N Wnk

N/4

(3.4)

in this case k = 0, 1, ..., N
4 −1, the N points FFT is transformed in N

4 points FFT,
extract the basic computation as the (3.5) is shown below,

20 Overall Architecture Design of the UE

X(4k)

X(4k + 1)
X(4k + 2)
X(4k + 3)

 =

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

x1(n)
x2(n)
x3(n)
x3(n)

 (3.5)

this computation can be represented in butterfly FFT, which is illustrated in Fig-
ure 3.6,

Figure 3.6: 4-point butterfly FFT [16].

ROMs are required to store the rotation factor e−j 2πkn
N with different phases, the

radix-4 butterfly is completed by the FFT core with multiple stages, the 1024-
point vector is first divided into 256 4-point FFT, then divided into 64 4-point
FFT, and so on.

3.1.5 OFDM Symbol Frame

This thesis uses the 5G NR protocol to communicate, the transmission in 5G is
based on the OFDM symbol. The requirements and specifications are listed below
in Table 3.3,

Parameters Value
Bandwidth 50MHz
fsampling 61.44MHz

Subcarrier spacing 60 kHz
OFDM symbol 16.7µs

Table 3.3: System parameters.

The OFDM symbol frame is displayed below in Figure 3.7, the subframe duration
is fixed in 1ms, with 60KHz subcarrier spacing, the Nsubframe

slots = 4. Each slot
contains 14 symbols. The first symbol corresponds to uplink pilots while the next

Overall Architecture Design of the UE 21

six correspond to data signals. The remaining symbols are set to zero to accom-
modate downlink signals. After performing IFFT on the frequency domain data,
the information bits are converted into the time domain.

Figure 3.7: OFDM symbol frame.

Before sending the data, a necessary guard band called Cyclic Prefix (CP) is added
to the symbol. Assuming that each symbol’s end has µ data added to its start,
the x1(n) is listed below,

x(N − µ), ..., x(N − 1), x(0), x(1), x(2), ..., x(N − 1) (3.6)

the length of µ data is called CP, the number of valid signals is N , let

h(x) = [h(0), h(1), ..., h(µ)] (3.7)

with (3.6) and (3.7),

y(n) = h(n) ∗ x(n) =
µ∑

k=0

h(k)x(n− k) (3.8)

from (3.6) have

x1(−µ) = x1(N − µ) (3.9)

22 Overall Architecture Design of the UE

combine (3.8) and (3.9), The linear convolution can be converted into circular
convolution, which can be represented by the symbol ⊗.

y(n) =

µ∑
k=0

h(k)x((n− k))NRN (n) = h(n)⊗ x1(n) (3.10)

Therefore, by converting to circular convolution, the IFFT/FFT can be performed
using the radix-4 butterfly algorithm. The CP is an approach that not only im-
proves the computation efficiency but also reduces the effects of Inter-Carrier In-
terference (ICI) and ISI. In 5G, with subcarrier spacing 60KHz, the number of CP
is 144, and the time domain data structure is displayed below.

Figure 3.8: Time domain after IFFT.

Chapter 4
Design Optimization and Implementation

Results

4.1 Optimization Directives

In Vitis HLS, there are multiple directives available for optimization, which can
affect both speed and resource utilization. This section will explain the essential
directives that are often used. In the next section, the comparison between the
optimized and un-optimized designs will be performed.

4.1.1 Loop Unrolling

By replicating the circuits to several parts, the loop unrolling directive enables
iterations to be executed in parallel, decreasing latency but increasing area and
resource utilization. loop with a loop bound of 6, by performing the full unrolling
on this loop, there will be 6 replication circuits executed in parallel. For large
loops, the unrolling can be implemented in partial with a factor, as the Figure 4.1
displayed,

Figure 4.1: Partial loop unrolling.

the loop is unrolled into 3 circuits, each of which takes charge of two iterations, the
first and the third iterations are performed on the first circuit, and so on. Partial
unrolling provides an approach to balance between area and performance.

23

24 Design Optimization and Implementation Results

4.1.2 Loop Merge

The loop merge directive merges two loops, which reduces the total number of
execution cycles. When two loops execute in serial, the total cycles considering
the loop entry and exit are 2× (8 + 1) = 18. However, by merging two loops, the
execution cycles are reduced to 9 cycles.

Figure 4.2: Loop merge optimization.

Using loop merge can greatly enhance the performance of Vitis HLS compiled
code. This is because the compilation order is sequential, later loops must wait for
earlier loops to finish. resulting in poor performance. By merging two loops, the
control logic decreases, reducing the utilization of resources and improving latency.

4.1.3 Pipeline

The most commonly used approach to improve the speed in RTL is pipeline.
Similarly, the directive pipeline in HLS also leads to a faster design. As the
figure illustrated below, the three operations executed in serial which results in a
latency of 9 clock cycles. The pipeline allows the Adder operation to be executed
immediately, without waiting for all operations to complete.

Figure 4.3: Pipeline optimization [17].

The design reaches a Iteration Interval (II) of 1 after the pipeline. which means
the next new iteration will be executed in every clock cycle. The latency of the
entire loop decreased from 9 to 5, which resulted in a faster design. However,
achieving fast speed requires adding more circuits because pipelining the design
necessitates more control logic. Additionally, utilizing a pipeline directive can also
enhance the throughput. Thus, the pipeline directive can be a trade-off between
performance and area.

Design Optimization and Implementation Results 25

4.1.4 Dataflow

The dataflow directive can improve the latency of several functions with data de-
pendency. Assuming three functions executed in serial, the total latency can be
calculated by adding the latency of all three functions together.

Figure 4.4: Dataflow optimization.

After dataflow, function B can execute as long as it has the required data from
function A, without waiting for function A to complete. The overall latency was
reduced through parallel computation. Figure 4.4 demonstrates the implementa-
tion of a channel between two functions, using a FIFO, registers, or Ping-Pong
buffer, to enable the overlap of two functions. The dataflow directive can mini-
mize latency and increase throughput, providing an alternative method for better
throughput.

4.1.5 Array Partition

Arrays are often used to store data in high-level languages. In HLS, arrays are
synthesized to ROM, FIFO, RAM, etc. Optimizing arrays is crucial to avoid
performance bottlenecks and reduce area usage. It is possible to specify arrays to
hardware like SPRAM and DPRAM with resource directives. The most commonly
used method to optimize an array is partitioning. By specifying the partition
factor, the array is divided into several parts, which are then mapped to actual
memory. This improves throughput and avoids bottlenecks. There are three ways
to partition an array, block, cyclic, and complete.
As Figure 4.5 displayed, the Block partition divides the original array into smaller
arrays in a continuous manner, while the cyclic partition divides the array into
smaller ones in a round-robin manner. The complete option can significantly
increase resource usage and decrease performance when transferring arrays into
registers.

26 Design Optimization and Implementation Results

Figure 4.5: Different array partition schemes.

4.2 Design Optimization

4.2.1 Unoptimized Solution

The software used to optimize is Vitis HLS 2023.1. The first solution on HLS opti-
mization using the directives displayed below in Table 4.1 to ensure the success of
synthesis. The AXI-stream interface is used to implement the inputs and outputs
for communication with DMA. The internal stream is used between the modulator
and the subcarrier mapping module, the stream will be synthesized in a First-In
First-Out (FIFO) with a depth of 3600 to avoid deadlock. Memory optimization
is applied on the output to partition the array with a block factor 14, it will ensure
the memory does not exceed the capacity.

Directives Value
Clock_period 10ns

Stream_depth_mod_out 3600
Array_partition_block 14

Interface AXI-S

Table 4.1: Unoptimized solution directives.

By performing all the necessary directives, the utilization report is shown below
in Table 4.2. The equation below calculates the required throughput. n represents
the data processed, while Tk represents the total time used to process n data. 1024
data are waiting to be processed for one symbol, and the required time for one
symbol is mentioned in Table 3.3.

throughput0 =
n

Tk
=

1024Samples

16.7µs
= 61.32MSamples/s (4.1)

The unoptimized solution requires fewer resources, but it results in poor perfor-

Design Optimization and Implementation Results 27

Resources Total Utilization%
BRAM 103 2%

FF 12226 1%
DSP 0 0
LUT 19117 1%

Table 4.2: Unoptimized solution resources results.

mance. The timing information results are listed below, noticing the throughput
of the unoptimized design is 18.3MSamples/s < throughput0. Thus, further op-
timization should be applied to achieve a faster design.

Modules Latency(cycles) II(cycles)
Input loop 72008 72008
Modulator 72008 72008

Pilots 13589 13589
IFFT 3195 3195
CP 2347 2347

Loop output 16354 16354

Table 4.3: Unoptimized solution timing results.

throughput =
n

Tk
=

32704Samples

1787.1µs
= 18.3MSamples/s (4.2)

4.2.2 Solution with Loop Merge

As Table 4.3 displayed, the modulator and loop input has the most latency, thus,
to improve performance and decrease hardware costs, loop merging is utilized dur-
ing synthesis, which combines multiple loops into fewer loops to improve latency.
The resources cost is shown below,

Resources Total Utilization%
BRAM 97 2%

FF 12302 1%
DSP 0 0%
LUT 18520 1%

Table 4.4: Loop merge solution resources results.

The timing results are shown below. Noticeably, the latency and initiation in-
terval of both the loop input and modulator have significantly decreased due to

28 Design Optimization and Implementation Results

the directive loop merge. As a result, the throughput has been boosted to 29.6
MSamples/s. Unfortunately, it still falls short of the requirement.

Modules Latency(cycles) II(cycles)
Input loop 7170 7170
Modulator 3617 3617

Pilots 13589 13589
IFFT 3195 3195
CP 2347 2347

Loop output 16354 16354

Table 4.5: Loop merge solution timing results.

throughput =
n

Tk
=

32704Samples

1104.88µs
= 29.6MSamples/s (4.3)

4.2.3 Solution with Array Partition

To get better performance, the directive array partition is applied to synthesis. In
this solution, the block partition is applied to synthesis. The memory optimization
will significantly increase the resources with a better performance. The resource
report is shown below,

Resources Total Utilization%
BRAM 93 2%

FF 17428 1%
DSP 0 0%
LUT 90924 7%

Table 4.6: Partiton solution resources results.

The timing result is displayed below, which indicates that the array partition
reduces the latency of the cp and loop input. However, the loop output and
pilots still contribute the most to latency. This is due to the version of Vitis HLS
which is not efficient in partitioning loops with more than 3000. Additionally,
the submodules do not work in an overlapping manner, so further optimization is
required to decrease II.

throughput =
n

Tk
=

32704Samples

981.46µs
= 33.32MSamples/s (4.4)

Design Optimization and Implementation Results 29

Modules Latency(cycles) II(cycles)
Input loop 4098 4098
Modulator 3617 3617

Pilots 13589 13589
IFFT 3195 3195
CP 584 584

Loop output 16372 16372

Table 4.7: Partition solution timing results.

4.2.4 Solution with Dataflow & Pipeline

To get better performance, the directive dataflow and pipeline are applied to
synthesis, the task-level optimization will significantly improve the latency and
throughput, the resources report is shown below,

Resources Total Utilization%
BRAM 227 5%

FF 118960 4%
DSP 14 1%
LUT 335421 25%

Table 4.8: Dataflow & pipeline solution resources results.

Although parallelism can lead to higher hardware costs, it results in better per-
formance as shown by the timing results. Compared to the previous design, the
II has decreased significantly, resulting in a much-improved throughput of 98.98
MSamples/s, which meets the requirement of 61 MSamples/s. However, fur-
ther optimization could be applied to improve the II and latency, but this would
significantly increase the synthesis time due to resource limitations.

Modules Latency(cycles) II(cycles)
Input loop 4096 4
Modulator 3617 1

Pilots 13589 1
IFFT 5254 5254
CP 584 1

Loop output 16372 14

Table 4.9: Pipeline&dataflow solution timing results.

throughput =
n

Tk
=

32704Samples

330.4µs
= 98.98MSamples/s (4.5)

30 Design Optimization and Implementation Results

4.2.5 Analysis and Summary

This chapter discusses how to achieve desired performance using different tech-
niques and comparing used software versions. The version of the tool used for
synthesis is crucial as it can impact the efficiency of the design. In this study,
synthesis was initially performed in VIVADO HLS 2017.4, which resulted in an
inefficient design. However, when the same design was synthesized in Vitis HLS
2023.1, it performed better than in VIVADO HLS 2017.4. A comparison of the two
releases is presented in Table 4.10, which highlights two designs with the same di-
rectives but different versions. The latest version resulted in a speed improvement
of about 1.7 times faster. As explained in Chapter 2, the process of converting a
high-level language to HDL involves several steps such as compilation, allocation,
scheduling, and binding. The most recent version of the software may have im-
proved binding and scheduling techniques, which leads to faster synthesis results
compared to older versions.

Version Latency(cycles) II(cycles)
VIVADO HLS 2017.4 269868 269868

Vitis HLS 2023.1 162359 162359

Table 4.10: Comparison between two software versions.

To improve loop efficiency and reduce resource usage, one can use the loop merge
directive. By merging identical loop bounds loops, the total execution time can be
reduced, improving throughput by approximately 1.6 times faster than an unopti-
mized loop. Array partition is applied to enhance memory and loop throughput,
resulting in better performance but at the cost of increased hardware. The pipeline
and dataflow top-level directives have been employed to enhance the design speed
and improve the throughput performance, which is now three times better than
the previous solution. The use of dataflow and pipeline has led to the insertion of
more registers, which has improved the work frequency and enabled the overlap-
ping of different functions. This means that the following function starts to work
as soon as there is needed data from the previous function, without waiting for
the previous one to finish. However, the final optimization has 25% more resource
costs than the previous solution. The comparison of resources is shown below.

Solutions BRAM FF DSP LUT
Unoptimized 2% 1% 0 1%
Loop merge 2% 1% 0 1%
Partition 2% 1% 0 7%

Pipeline&Dataflow 5% 4% 1% 25%

Table 4.11: Comparison of resources utilization

It’s no surprise that the LUT incurs the highest cost. When having multiple
pipeline stages, the control logic and data dependency may require additional

Design Optimization and Implementation Results 31

hardware to manage it effectively. Additionally, applying pipeline directives will
unroll all sub-loops or sub-functions, resulting in increased hardware utilization.

Solutions Throughput
Requirement 61.32MSamples/s

Unoptimized 18.3MSamples/s
Loop merge 29.6MSamples/s
Partition 33.32MSamples/s

Pipeline&Dataflow 98.98MSamples/s

Table 4.12: Comparison of throughput

In hardware design, the amount of work completed in a given amount of time,
known as throughput, can be affected by two factors: the design’s latency and
the initiation interval (II). However, latency can be reduced by implementing loop
merge, while pipeline and dataflow can decrease the II. Based on the information
presented in Table 4.11 and Table 4.12, it can be inferred that by increasing re-
source utilization, the throughput can be improved up to 5.4 times compared to
the unoptimized solution. This highlights the need to balance throughput and
utilization in hardware design.

32 Design Optimization and Implementation Results

Chapter 5
Design Test on PYNQ and Future Work

5.1 Loop-back Verification on PYNQ

5.1.1 PYNQ Frame Structure

This design includes a Programmable Logic (PL) UE and a Processing System
(PS) RX for loop-back verification. The PS is a processing system based on dual
ARM Cortex A9 cores, which integrates internal memory and external memory
interfaces, and a large number of peripherals, GPIO, UART, SD/SDIO, IIC, SPI,
Ethernet, CAN, etc. The PL part is a programmable logic unit based on the
Xilinx 7 series architecture. Through the PL part, many peripheral overlays can
be customized for PS [18]. The PYNQ PS/PL interface has several kinds of ports,
there are 2 Master GP ports, 2 Slave GP ports, 4 Slave HP ports, 1 Slave ACP port,
and GPIO for simple control signals and interrupts on the PS side. Furthermore,
the PS/PL interface utilizes four ways of communication,

• General Purpose Input Output (GPIO)

• Memory Mapped IO (MMIO)

• Direct Memory Access (DMA)

• Memory Allocation

GPIO can only support a small amount of bits or bytes of data. DMA is commonly
used in larger chunks of transfer. Virtual memory in Linux-based PS is used to
implement buffers for data transmission to and from DMA overlays. MMIO can
read and write the memory-mapped location especially suited to the scenario for a
small amount of data. In this thesis, the control signal is transmitted using GPIO,
and the UE inputs and outputs are transmitted via DMA.

The system architecture is shown above in Figure 5.1. Python implementation of
RX on PS has the same architecture as UE but in reverse order. In the PL, the
generated HLS IP is implemented with DMA. The input and results are transmit-
ted between PS and PL with the AXI4 protocol. PS configures the UE through
AXI GPIO IP. The user-id and mod-select signals control uplink pilots and mod-
ulation schemes respectively. After receiving the results from PL, the loop-back

33

34 Design Test on PYNQ and Future Work

Figure 5.1: PYNQ frame structure.

verification should be applied to check the functionality. On the PS side, a score-
board is used to compare results from RX and raw data. If there is a mismatch,
the verification fails.

5.1.2 Reconfigurable Modulator Test

As shown in Figure 5.2, the modulated information is received signal on the PYNQ
PS side. An external signal controls the reconfigurable modulator to perform three
modulation schemes. Compared to Figure 2.7, QPSK has 4 dots while 16QAM
and 64QAM have 16 and 64 dots respectively on the diagram.

(a) QPSK result (b) 16QAM result (c) 64QAM result

Figure 5.2: Reconfigurable modulator test results.

Design Test on PYNQ and Future Work 35

5.1.3 Reconfigurable Pilots Test

The image in Figure 5.3 illustrates 150 reconfigurable pilot signals allocated to
each of the 4 users. There are 600 pilots altogether, stored in a ROM. The partial
subcarrier from 720 to 750 is shown in Figure 5.3, with user0’s pilots starting from
724 and the remaining users following in sequence.

(a) user0 pilot structure (b) user1 pilot structure

(c) user2 pilot structure (d) user3 pilot structure

Figure 5.3: Reconfigurable pilot test results.

5.1.4 Pilot and Data Symbols

As shown in Figure 5.4(a), there are a total of 1024 subcarriers with 424 zeros
inserted. The pilot signals are modulated with QPSK, resulting in an amplitude of
approximately 1.0. Figure 5.4(b) to Figure 5.4(d) showed three types of modulated
symbols. QPSK has a 1.0 amplitude, while 16QAM and 64QAM have different
amplitudes due to modulation schemes.

5.2 Conclusion&Future Work

Conclusion

This thesis concludes by presenting the conclusion and discussing possibilities for
future work. Specifically, the thesis focuses on the implementation of a recon-
figurable UE on the PYNQ platform. The reconfigurable modulator offers three
modulation schemes, namely: QPSK, QAM14, and QAM64, which can be switched
using an external signal for reconfiguration. Additionally, the users’ pilot signal

36 Design Test on PYNQ and Future Work

(a) pilot signal symbol

(b) QPSK data symbol

(c) 16QAM data symbol

(d) 64QAM data symbol

Figure 5.4: Pilots and data symbols.

Design Test on PYNQ and Future Work 37

that supports 4 UES separately is also controlled by an external signal. A Python-
based RX and overlay TX are used to conduct loop-back verification on PYNQ,
using DMA to transfer data between PS and PL. After multiple rounds of opti-
mization, the design throughput can achieve up to 98.98 MSamples/s.

The high-level synthesis approach used in this design is a promising tool for future
hardware design, with advantages over traditional RTL design in the following
ways.

• High-level abstraction for design

• Faster prototyping

• Optimizing and parallelizing can be done easily

• Enhancing the efficiency of the development process.

Nonetheless, HLS needs relatively high demands on tools, and using it may require
a certain level of expertise and experience. For instance, under the same directives,
the latency of synthesized design decreased by 40% in Vitis HLS 2023.1 compared
to that in VIVADO HLS 2017.4. While using HLS for circuit synthesis, it may
be necessary to include specific directives to ensure proper control of the synthesis
tool. Moreover, HLS may incur additional hardware costs when compared to RTL
design. In such cases, the user may need to adopt unconventional solutions to
address these issues effectively. Overall, HLS is a powerful approach to designing
hardware but may require extra effort for users and higher compatibility with
tools.

Future Work

Several aspects can be improved in the future.

• Theoretically, the Iteration Interval (II) can be reduced to 1, which could
significantly improve throughput. However, due to limitations in the current
version of Vitis HLS, pipelining the entire design is impractical.

• Better architecture for FFT and CP may be required to reduce latency and
II due to data dependencies. This design can process large amounts of data
simultaneously, but reducing latency can further improve performance and
give a faster response.

• This design is based on the baseband, however, it is capable of implemen-
tation for up-conversion in the channel for further use.

38 Design Test on PYNQ and Future Work

References

[1] T. Hanninen, M. S. Saud, H. Y. Amin and M. Juntti, MIMO detector imple-
mentations using high-level synthesis tools from different generations, 2017
51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, USA, 2017, pp. 489-493, doi: 10.1109/ACSSC.2017.8335387.

[2] Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Net-
works—Overview, Recent Trends, Challenges, and Future Research Direction.
Sensors 2020, 20, 2753. https://doi.org/10.3390/s20102753

[3] G. Akkad, A. Mansour, B. ElHassan, F. L. Roy and M. Najem, FFT Radix-2
and Radix-4 FPGA Acceleration Techniques Using HLS and HDL for Digital
Communication Systems, 2018 IEEE International Multidisciplinary Confer-
ence on Engineering Technology (IMCET), Beirut, Lebanon, 2018, pp. 1-5,
doi: 10.1109/IMCET.2018.8603064.

[4] Shuangnan Liu, Francis CM Lau, and Benjamin Carrion Schafer. 2019. Ac-
celerating FPGA Prototyping through Predictive Model-Based HLS Design
Space Exploration. In Proceedings of the 56th Annual Design Automation
Conference 2019 (DAC ’19). Association for Computing Machinery, New
York, NY, USA, Article 97, 1–6. https://doi.org/10.1145/3316781.3317754

[5] P. Patil, M. R. Patil, S. Itraj and U. L. Bomble, A Review on MIMO OFDM
Technology Basics and More, 2017 International Conference on Current
Trends in Computer, Electrical, Electronics and Communication (CTCEEC),
Mysore, India, 2017, pp. 119-124, doi: 10.1109/CTCEEC.2017.8455114.

[6] What is Beamforming? everything RF. (n.d.).
https://www.everythingrf.com/community/whatisbeamforming.

[7] Trick C. 4G vs LTE vs 5G: What’s the Difference? Trenton Systems. March
2023. https://www.trentonsystems.com/blog/4g-vs-lte-vs-5g.

[8] Misha. What is the Difference Between 5G NR and 4G LTE?
https://blog.router-switch.com/2020/06/what-is-the-difference-between-
5g-nr-and-4g-lte/. Published October 16, 2023.

[9] Solved Given the QPSK constellation diagram shown below, | Chegg.com.
Available at: https://www.chegg.com/homework-help/questions-and-
answers/given-qpsk-constellation-diagram-shown-using-matlab-plot-qpsk-
signal-given-bit-rate-10mbps-q69179863.

39

40 References

[10] Hen-Geul Yeh. Figure 5. 64-QAM Signal Constellation with Gray
Coding. Figure 4. 16-QAM Signal Constellation with Gray Cod-
ing. ResearchGate. https://www.researchgate.net/figure/64-QAM-Signal-
Constellation-with-Gray-Coding_fig5_4260156.

[11] D. D. Gajski and L. Ramachandran, Introduction to high-level synthesis, in
IEEE Design & Test of Computers, vol. 11, no. 4, pp. 44-54, Winter 1994,
doi: 10.1109/54.329454.

[12] W. Altoyan and J. J. Alonso, Investigating Performance Losses in
High-Level Synthesis for Stencil Computations, 2020 IEEE 28th An-
nual International Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), Fayetteville, AR, USA, 2020, pp. 195-203, doi:
10.1109/FCCM48280.2020.00034.

[13] P. Coussy, D. D. Gajski, M. Meredith and A. Takach, An Introduction to
High-Level Synthesis, in IEEE Design & Test of Computers, vol. 26, no. 4,
pp. 8-17, July-Aug. 2009, doi: 10.1109/MDT.2009.69.

[14] Patrick Lysaght. (n.d.). Xilinx research labs FPGA21 RFSoC PYNQ Tutorial.
In https://www.rfsoc-pynq.io/pdf/isfpga_Rfsoc_2x2_overview.pdf.

[15] Pervej MF, Sarkar MZI, Roy TK, Hasan MdM, Rahman MdM,
Bain SK. Analysis of PAPR reduction of DFT-SCFDMA system us-
ing different sub-carrier mapping schemes. International Conference
on Computer and Information Technology (ICCIT). December 2014.
doi:10.1109/iccitechn.2014.7073067

[16] Dan Boschen. Radix-2 vs Radix-4 FFT. Signal Processing Stack Exchange.
https://dsp.stackexchange.com/questions/68375/radix-2-vs-radix-4-fft.

[17] Yue zhen. Vivado HLS (High-level Synthesis) note5, for
loop optimization_vivado simulation for the loop-CSDN blog.
https://blog.csdn.net/h_ang/article/details/90116641.w

[18] PS/PL Interfaces — Python productivity for Zynq (Pynq).
https://pynq.readthedocs.io/en/v3.0.0/overlay_design_methodology/pspl_
interface.html.

