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Abstract

Modern heat pumps are complex systems prone to multiple different types of
faults. Current IoT technologies allow these machines to continuously report
data and error codes corresponding to the aforementioned faults. This thesis ex-
plores the possibility of identifying anomalous behaviour corresponding to reg-
istered error codes, as well as identifying novel errors, using unsupervised and
semisupervised anomaly detection. This research opens up possibilities to anal-
yse IoT systems for health and product analysis without relying on human label-
ing of operational data. The thesis investigated six different anomaly detection
models with different approaches to anomaly detection evaluated against four
different preprocessing configurations of the data. The results showed random-
guess performance in the general case, but for some specific heat pump and
anomaly detection models a >0.9 Matthews Correlation Coefficient score was achieved.
However, it was deemed that there is no single model and preprocessing config-
uration that consistently outperformed the others. The discovery of novel errors
was evaluated as the ability to automatically cluster registered error points into
coherent clusters of the same error code, the idea being that the same technique
could then be applied to false positive points, the clusters for which can be eval-
uated by a domain expert. Using dimensionality reduction techniques the clus-
tering achieved adequate results for a majority of the heat pump systems, with
an average adjusted Rand index score of 0.43.

Keywords: Anomaly Detection, Anomaly Clustering, Heat Pumps, Unsupervised Ma-
chine Learning, Semisupervised Machine Learning
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Chapter 1

Introduction

Today, IoT-connected devices are more present than ever before. Industry 4.0 and the use
of connected devices is driving the need for efficient analysis of the generated data in or-
der to make informed decisions. Heat pump systems are no exception. By providing heat
pump systems with internet connectivity and smart sensors manufacturers have access to
large quantities of information that can be used to increase system knowledge. This knowl-
edge can then be used to provide services such as predictive maintenance, diagnostics, and to
guide development of potential improvements to the machines. The focus of this thesis is to
investigate the possibility of using unsupervised machine learning methods to find previously
unidentified error causes, by performing anomaly detection and then attempting to cluster
the found points to find common patterns. These patterns can then be used to learn more
about the heat pump machines, as well as identify causes for system malfunction. This thesis
was undertaken collaboratively with Robert Bosch AB, which facilitated access to sensor data
from heat pump systems distributed in various European countries.

1.1 Background
The fundamental purpose of a heat pump is to transfer heat (and air) either into an enclosed
space (heating), or out of an enclosed space (cooling), thereby changing the temperature
of the facility and improving air quality [36]. When heating a facility, the facility becomes
the destination of the heat transfer, and to cool a facility the facility instead becomes the
source [36]. This makes heat pumps important machines, since they allow facilities to retain
a comfortable temperature regardless of the time of year. In addition to being able to heat
facilities, heat pumps can also be used to heat water for both heating and domestic use such
as showering [36].

In order for a heat pump to be able to transfer heat from a hot source to a cold source
the heat pump needs to transfer energy from one medium into another [15] (see 1.1). What
defines the type of the heat pump is which two mediums the heat pump uses to transfer heat
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1. Introduction

to and from, in turn requiring different mechanisms to conduct energy transfer [15]. This
thesis will focus on AW (air to water) heat pumps, meaning heat pumps that transfer energy
from air to water. An abstract model of how a heat pump works may be seen in 1.1 which
showcases a simple overview of how this heat transfer occurs.

Figure 1.1: Abstract model of a heat pump. Source: An Introduction
Heat Pumps [30]

As with most complex machines, heat pumps have multiple components and many mov-
ing parts. This in turn means that the heat pumps may deteriorate over time, and cause errors
that can either be momentary faults without lasting effect or cause total system failure. This
makes diagnostics crucial, both for investigating issues, but also to be able to discover areas
of improvement for the machines. In order to facilitate diagnostics of the heat pumps, the
machines store procedurally generated logs containing a collection of sensor readings and
operational information, and how they change over time. These logs can be described col-
lectively as a multivariate time series data set, containing information about the heat pumps
and how they are performing. This data also includes preprogrammed error codes, which are
triggered when some feature or sensor enters a faulty state.

The aforementioned data sets are continuously growing in size during machine opera-
tions and quickly reach a level where manual analysis becomes a difficult and time consuming
process. In order to automate this process, a popular approach is to utilise machine learning
techniques since they are able to find patterns in data that would otherwise be impractical
to gather manually. However, a disadvantage of many machine learning techniques is that
they often require labelled data, meaning that the data set has to be manually annotated
by domain experts which in itself is an expensive and time consuming process. A way to
be able to avoid this is to use so called unsupervised or semi-supervised machine learning
techniques, which do not require a pre-labeled data set. A commonly performed task util-
ising unsupervised/semi-supervised techniques is anomaly detection, which is the attempt to
identify points that behave differently to normal data points.

One advantage of these techniques over supervised ones is that the points they find are
not based on previously known information, and thus they can find new patterns in the
data. This in turn can potentially allow finding information, previously unbeknownst to the
domain professionals.

10



1.2 Problem Definition

The idea of this thesis is to use unsupervised/semi-supervised anomaly detection tech-
niques to predict anomalies in the machine data, which can then be verified using the afore-
mentioned error data set as ground truth. Furthermore, we aim to investigate the possibility
of finding novel errors by identifying clusters of common properties among the points that
were classified as anomalous that do not have a corresponding error. The purpose of the clus-
tering was to be able to identify whether or not the aforementioned found anomalous points
correlate to a previously unknown error cause, which can then be evaluated and labeled by a
domain professional.

1.2 Problem Definition
The requirements for simultaneous analysis of temporal patterns and multivariate co-dependent
sensor measurements makes multivariate time series anomaly detection (MTSAD) a challeng-
ing task [2]. This thesis aims to investigate the applicability of MTSAD on a real-world heat
pump machine log dataset. To the best knowledge of the authors, no study has been done
on the applicability of unsupervised MTSAD on a real-world dataset of heat pump sensor
data to both identify anomalous behaviour corresponding to error codes, as well as identify
novel anomalies. Thus, this thesis aims to provide more knowledge on the possibilities of this
approach, providing research on data-driven development of heat pumps in particular, and
other multi-sensor industrial IoT systems in general. The study compares the performance of
the following six anomaly detection methods: Empirical Cumulative Distribution Functions
(ECOD) [21], Isolation Forest (IF) [22], Deep Isolation Forest (DIF) [39], Local Outlier Factor
(LOF) [5], Autoencoder (AE) [41] and Long Short-Term Memory Autoencoder (LAE) [28].

The research questions are as follows:

How efficient are the selected anomaly detection methods at identifying data points
corresponding to error codes in heat pump system data?

Can we use a clustering algorithm in order to be able to profile/group the predicted
anomalies to find new error causes?

1.3 Contribution Statement
This work provides to Robert Bosch AB an investigation into anomalous behaviour in oper-
ational data for their heat pumps. This may be used by Robert Bosch AB to improve internal
processes, further product development and potentially enable predictive maintenance op-
erations.

The work contributes a comparative study to the research community on unsupervised
anomaly detection methods on a real world dataset of multivariate time series operational
data; with specific contributions to the domain of heat pump analysis. The study highlights
the possibilities of several anomaly detection methods to be used for identifying erroneous
behaviour in multivariate time series and discusses the specific strengths and weaknesses of
the methods from a theoretical standpoint and how they translate to a real world dataset.
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1. Introduction

1.4 Methodology
The aim of this thesis was to investigate the applicability of unsupervised anomaly detection
techniques on a real world multivariate dataset. To get a nuanced and up-to-date evaluation,
a number of unsupervised anomaly detection techniques were selected with the purpose of
including models of fundamentally different approaches to anomaly detection. This resulted
in the six models introduced above in section 1.2 repeated here: ECOD, IF, DIF, LOF, AE and
LAE. Description for the models as well as motivation for their choice can be found in chapter
3.

Thereafter the provided data set was investigated (see section 4.3, titled Data Understand-
ing for more details) to determine what preprocessing steps would need to be performed in
order to transform the data into a format conductive for anomaly detection. An example
of some of the methods used include Sequential Forward Selection (SFS), and Uniform Manifold
Approximation and Projection (UMAP), for further details, see section 4.4. Finally all models
were constructed, trained and evaluated on the heat pump dataset.

The models were in general constructed using the Python based anomaly detection frame-
work named PYOD [43] (Python Outlier Detection) which is built on top of the popular
machine learning framework Scikit-learn [31] with the exception of the LSTM autoencoder
which was built using the Tensorflow Keras library.

Evaluation was conducted using the metrics discussed in section 3.7 titled Evaluation Met-
rics. Finally the evaluations were used to draw conclusions on the applicability of these models
on the data set under investigation; answering the presented research questions.

1.5 Related Work
In a study by Leahy et al. [19] they investigated the possibility to predict faults in a wind
turbine using operational data and the support vector machine anomaly detection algorithm.
They achieved positive results on identifying some faults, however the generality of the abil-
ity to detect faults was low, pointing to the difficulty of finding a general well performing
solution in this sort of task.

Beghi et al. [1] investigated fault detection and diagnosis (FDD) on a water chiller. By
using domain knowledge, they generated a select number of characteristic features suscepti-
ble to faults. Through a semi supervised statistical approach utilising a PCA projection and
measuring the prediction error of projections onto the model, they achieved good results at
predicting faults. Notable is the use of a Savitzky-Galoy filter (see section 2.4.1) for enhancing
the detectability of errors; a method that showed potential in this thesis as well. In contrast
to the data-driven approach utilised in this thesis, their work was characterized by the ability
to utilize domain knowledge to select/construct features with a high sensitivity to faults.

1.5.1 Outline
The overall structure begins with a general overview of the theory required to understand
the utilised process. The theory is separated into two chapters. First, the theory behind the
performed data processing techniques is introduced, with motivations on their applicability
on the data. Secondly, theory on anomaly detection and clustering is explained together with

12



1.5 Related Work

the utilised evaluation metrics. Subsequently, the employed approach is explained, describing
the procedural steps performed throughout the course of this thesis. Lastly, the results are
presented together with a discussion on the findings in addition to the final conclusions.

1.5.2 Work Distribution
The work performed in this thesis was evenly distributed and performed in full collaboration
between the two authors.
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Chapter 2

Data Processing

An important step in any machine learning pipeline is transforming the data into a for-
mat that makes it suitable for the given task. This transformation is highly task dependent,
but can , for example, include extrapolating new information from the features, or scaling
the features to prevent some features from dominating in the predictions [10]. While data
processing is important for all machine learning tasks, it can be especially important when
performing unsupervised anomaly detection. This is due to the fact that unsupervised meth-
ods lack supervision for which specific patterns they are supposed to identify, and are thus
more sensitive to noise when separating normal points from anomalies (for more details, see
chapter 3).

The data set that the unsupervised anomaly detection was performed on in this thesis can
be described as a multivariate time series data set, constructed from data reported by multiple
sensors. The reported data can formally be described as a sequence of numerical samples
recorded at a discrete time interval. Given K sensors the measurement at time instant n can
be defined as [2]

x[n] = (x1[n], x2[n], ..., xK[n])T

The time series then becomes a matrix of the form

X = (x[1], x[2], x[3], ..., x[N]) =


x1[1] x1[2] · · · x1[N]
x2[1] x2[2] · · · x2[N]

...
... . . . ...

xK[1] xK[2] · · · xK[N]


where the element at position (n, k) represents the measurement of sensor k at time instance
n, and each column x[n] represents a feature vector consisting of all the produced measure-
ments. More details about the data set can be found in section 4.3, titled Data Understanding.
This chapter introduces the theory for the processing methods used for examining the data
and performing anomaly detection/clustering.
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2. Data Processing

2.1 Feature Engineering
Feature engineering in the context of anomaly detection is the practice of extracting, trans-
forming, and manipulating the raw data into features more conductive to detecting anoma-
lous behaviour. The general aim of this feature transformation is to improve the performance
of the algorithms, and their ability to discriminate anomalous from normal data. The utilised
feature engineering methods include:

• Normalisation: The process of scaling features to a standard range (see section 2.2).

• Dimensionality reduction: The process of reducing data dimensionality, either by select-
ing a subset of the features (feature selection) or by combining features (feature extraction).
The aforementioned methods are further described in section 2.3.

• Interpolation: The process of filling missing values in a data set in order to create a
continuous representation (see section 4.4.1).

• Seasonality Removal: The removal of seasonal trends in data to enhance deviations from
the norm (see section 2.4).

Feature engineering is an important step in any machine learning application and can have
a large impact on the performance of an anomaly detection task [29, 10]

2.2 Normalisation Methods
When performing machine learning, it is important to identify how the used models are
affected by differing scales or variance between features in the data [3]. If the features are
of differing scales, it can cause features with a larger variance to dominate, which in turn
can negatively affect performance [3]. To circumvent this problem, it is common to per-
form feature normalisation, which scales all features so that they are in approximately the
same ranges [3]. Here the employed normalisation methods (as described in section 4.4.3) are
introduced, namely Min-Max and Z-score normalisation.

2.2.1 Min-Max Normalisation
Min-Max normalisation is a normalisation method that scales the feature vector so that all
values are between two values; typically to either a range of [0, 1] or [−1, 1]. The normalisa-
tion procedure on the range [low, high] is performed as follows [3]:

xnorm =
(high − low) ∗ (x − xmin)

xmax − xmin

Where x is a singular value in our list of feature values, xnorm is the normalized x value,
xmin, xmax are the smallest and largest value in the list respectively.
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2.3 Dimensionality Reduction

2.2.2 Z-Score Normalisation
The other method used is Z-score normalisation, where instead of guaranteeing that all fea-
tures are on the same range it instead scales the values so that they have a mean of 0 and a
standard deviation of 1 [3]. The Z-score normalisation is calculated as follows:

xnorm =
x − µ(X)
δ(X)

The calculated value xnorm corresponds to a single sample after the normalisation procedure.
The remaining definitions are as follows: x is a single sample, X is the list of all samples, µ(X)
is the mean, and δ(X) is the standard deviation.

2.3 Dimensionality Reduction
When performing machine learning on high dimensional data, a common problem that can
occur is referred to as the curse of dimensionality [20]. This phenomenon is where data tends
to be sparser when dimensionality increases, and thus algorithms that are designed to work
on low-dimensional space tend to be affected [20]. Furthermore, the more features are in-
troduced the more models have a tendency to overfit, and can thus provide lower perfor-
mance [20]. A way to circumvent this curse of dimensionality is to use a dimensionality reduc-
tion method, which can be categorized in two categories, namely feature selection and feature
extraction. Furthermore, dimensionality reduction can be a powerful data analysis tool, often
used to reveal simpler underlying patterns in high-dimensional data. This in turn can make
dimensionality reduction an important step, assisting with increased understanding and en-
abling more accurate modeling for any data processing [35]. The dimensionality reduction
methods used in this thesis are introduced below, namely PCA, UMAP, and Sequential Forward
Selection.

2.3.1 PCA Projection
A commonly employed technique dimensionality reduction technique for machine learning
and data analysis is called Principal Component Analysis (PCA). PCA is popular due to its abil-
ity to reveal underlying structures of complex multivariate data sets [35]. This is achieved by
transforming the original high-dimensional dataset into a new coordinate system, consist-
ing of principal components that are linear combinations of the original dimensions. It can
be briefly summarized in the following two steps: (1) Given a m × n matrix of m types of
samples and n samples, subtract the mean of each m column from each row n; (2) calculate
the eigenvectors of the covariance matrix, which correspond to the principal components
of the matrix [35]. The derived principal components capture the variance of the original
dataset in decreasing order, where the first principal component captures the most variance
and subsequent ones capture less.

In this thesis these properties of PCA were used for data understanding (see section 4.3),
in order to analyse the seasonal behaviour of the data (see section 2.4) and to evaluate the
clustering and novelty detection capabilities of the predicted anomalies (see section 3.6 for
theory and section 6.3 for discussion).

17



2. Data Processing

2.3.2 UMAP Projection
UMAP stands for Uniform Manifold Approximation and Projection and is a dimensionality re-
duction method that prioritises the preservation of local distances over global ones. It is used
as both a visualization and preprocessing technique for machine learning, typically outper-
forming other popular algorithms in terms of computational complexity and preservation of
global structures [25]. UMAP is in the family of algorithms called k-neighbour graph based
algorithms which can be described in a two step process. Firstly, the algorithm constructs a
weighted k-neighbour graph [25]. Secondly, the k-neighbour graph is projected into a lower
dimensional space [25]. Where the k-neighbour graph based algorithms differ is how these
two steps are performed, and thus we will continue to explain how UMAP performs these
steps.

UMAP Graph Construction
The first step in constructing a UMAP projection is to construct a k-neighbour graph [25].
Let the input data set be X = {x1, . . . , xN }. Additionally a dissimilarity measure function is
chosen d : X × X → R≥0 which determines the dissimilarity between two points x1, x2 [25].
With given hyper-parameter k, for each xi ∈ X , the set {xi1, . . . , xik} of k-closest neighbors
to xi are calculated using the d dissimilarity function [25]. Next, for each xi ∈ X two values
ρi and σi are defined. ρi is defined as follows [25]:

ρi = min{d(xi, xi j)|1 ≤ j ≤ k, d(xi, xi j) > 0}

While σi is defined as the value such that [25]:

k∑
j=1

exp
(
−max(0, d(xi, x j) − ρi)

σi

)
= log2(k)

Using these definitions we can define the weighted graphG = (V, E,w) where the vertex
set V is the same as X and the edge set E is defined as E = {(xi, xi j)|1 ≤ j ≤ k, 1 ≤ i ≤ N} [25].
Lastly, the weight function w is defined as [25]:

w(xi, xi j) = exp
(
−max(0, d(xi, x j) − ρi)

σi

)
Let A be a weighted adjacency matrix of the graph G, a symmetric matrix B can be con-

structed such that [25]:

B = A + AT − A ◦ AT

Here ◦ is the Hadamard product, which corresponds to an element wise multiplication of
the matrices.

The A and B adjacency sets may be interpreted as (a) Ai j is the probability that there
exists an edge from xi to x j while (b) Bi j is the probability that either the edge xi to x j exists
or the edge x j to xi [25]. The adjacency matrix of the UMAP graph G is the matrix B [25].
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UMAP Graph Layout
UMAP uses a force directed layout algorithm which defines repulsive forces between vertices
and attractive forces between edges [25]. The graph layout step applies the repulsive and at-
tractive forces for each edge and vertex iteratively, continuously updating the position of the
projected points. This iterative process makes UMAP a non-convex optimization problem,
where the convergence instead occurs due to the diminishing of a scaling factor that after a
set amount of iterations diminishes to 0.

UMAP projection was used in multiple ways throughout this thesis. It was used for data
understanding (see section 4.3) and feature extraction (see 4.4). The reason UMAP was used
for feature extraction instead of PCA, is that UMAP generally performs better at separating
observations that are non-linear in nature [25].

2.3.3 Feature Selection
Feature selection is a dimensionality reduction method which improves algorithmic effi-
ciency while at the same time improving learning performance by finding a best performing
subset of features for the given task [20]. Feature selection works by selecting a subset of the
initial features, in contrast to feature extraction which works by returning a combination
of features [20]. Since feature selection methods retain the original features, feature selec-
tion has improved explainability and is thus often the preferred method for dimensionality
reduction [20].

High-dimensional real-world data tends to contain features that might add unnecessary
complexity and not contribute to the task, and those features can thus be categorised as re-
dundant features. Some features may also be noisy, which might have negative effects on
the resulting model. By conducting feature selection, these features can be removed to en-
hance performance while reducing storage and computational costs [20]. The feature selec-
tion method used in this thesis is called Sequential forward selection (SFS). SFS is a supervised
feature selection algorithm which starts from an empty set ∅ of features and then iteratively
trains models to detect up to p best performing features for identifying a target [32].

If we define the input as being a matrix of feature vectors of d features Y = {y1, y2, . . . , yd}

and X0 = ∅, k = 0, then the algorithm for determining the p best features is done by itera-
tively calculating Xk as Xk = Xk ∪ x+, where x+ = argmax J(Xk + x). Here, J refers to the
criterion function (the classifier) and x+ may be interpreted as the feature that maximises the
result of J [32]. In this thesis SFS was utilised to investigate the effect of feature reduction on
the high dimensionality data as is discussed in section 6.2.3. Do note that this is a supervised
method, and thus requires labeled data which is typically not available when performing un-
supervised machine learning tasks. The reasoning for using feature selection in spite of this
fact, is that the feature selection acts as a replacement for domain expertise in order to select
the most appropriate features for finding anomalies.

2.4 Seasonality in Time Series
When observing systems producing time-series data, the inherent stationarity of the data
set is important to take into account when making assumptions and predictions. Station-
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ary systems are systems wherein the statistical properties, namely mean, variance, and auto-
correlation are static, and do not vary over time [7]. A time-series can exhibit non-stationary
behaviour in different ways.

Change point is when some permanent change in the system is introduced, altering its
normal behaviour. This change is often drastic and noticeable in the data. It can be an
expected change, for example changing a component in the system, or a unexpected change,
for example increased system usage due to outside influence.

Concept drift is when the statistical distribution of time series data shifts over time [7]. One
specific instance of concept drift is called seasonality. This is drift over time in a seasonally
repeating pattern, specifically a cyclical pattern with a significantly longer period than the
sample rate [7].

A time series that exhibits non-stationary behaviours makes many anomaly detection
techniques difficult. The goal of anomaly detection can be defined as the ability to detect
behaviour deviating from the norm [7]. It is then clear that when the norm shifts over time the
same identifiers cannot always be used to determine if points are anomalous. To counteract
this, one can normalise the data using knowledge about the non-stationary behaviour. For
example a change points impact can be measured and subtracted from the data. A seasonal
time series can subtract the cyclical repeating pattern in the data, thus normalising the mean
and variance. This requires at least two periods of the data in order to predict what the
seasonal behaviour is.

Due to the inherent limitations of the data we have been provided (see chapter 4.3 for
details) we are not able to perform traditional methods for removing seasonality. The data
we have been provided is limited to around 450 days, and thus we do not have two seasonal
periods (i.e two years). Instead we will focus on signal processing techniques to estimate and
visualize the general trend in the data.

2.4.1 Savitzky-Golay Filter
The Savitzky-Golay filter (henceforth referred to as either SAVGOL or SG filter), is a signal
smoothing method utilising a least-squares fit convolution [23]. A SG filter is essentially a
weighted moving average filter, to which one can provide weight coefficients in the form of
a polynomial. In order to perform SG filtering, two parameters must be provided, a window
size and the degree of the polynomial [23].

The SG smoothing process can be described as follows:

s∗j =
∑i=m

i=−m cis j+i

N
Here s represents the original signal and s∗ is the signal after the smoothing procedure.

The coefficient for the i-th smoothing is ci , N equates to the number of points within the
smoothing window and is equal to 2m + 1, where m is half the width of the window [23].

This method is used to remove seasonality with the idea that the seasonality trend of the
data should equate to the smoothed signal. This is not a perfect method for removing season-
ality, since SG filters are sensitive to outliers during the smoothing process [23]. However,
due to the limitations of the data (more specifically referring to the aforementioned lack of
two full seasons) an SG filter was determined to be a suitable option.
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Chapter 3

Anomaly Detection

Anomaly detection is the practice of identifying outliers, i.e., entities differing from the norm
of the data in a significant way. In this chapter we will first introduce definitions of anoma-
lies, then discuss important considerations when choosing an anomaly detection technique,
followed by descriptions of the utilised multivariate time series anomaly detection (MTSAD)
methods. Finally, we will discuss the motivation for the choice of techniques for performing
anomaly detection on heat pump-sensor time-series data. Note that henceforth, the words
point, observation, and sample are used interchangeably, all referring to an element at a unique
time instance of a multivariate time series dataset.

3.1 Different Types of Anomalies
Anomalies may be defined in different ways depending on the subject matter. In the case
of multivariate systems, an anomaly may be defined as [7]: the measurable consequences of an
unexpected change in state of a system which is outside of its local or global norm. This definition
highlights the challenges and complex nature of multivariate data sets. The definition points
to the fact that the normal state of the machine can shift over time, and that the data ob-
servations provide a limited perspective on the true operation of the system. In order to
give further understanding of the inherent behaviours of anomalies and the behaviours that
the anomaly detection models are attempting to predict, we will in this section present the
different types of anomalies that may occur in multivariate data.

In figure 3.1 three types of anomalies in univariate data are visualised. They are point
anomalies, contextual anomalies, and collective anomalies [2]. Point anomalies are clear deviations
from the global norm in a single point. Contextual anomalies are point anomalies but only
if regarded in a specific local context. Lastly, collective anomalies are a series of consecutive
samples collectively deviating from the norm of other series of consecutive samples. All of
these anomalies are relatively clear to see and visualise in a univariate dataset, however when
regarding multivariate time series data these definitions become more challenging to apply.

21



3. Anomaly Detection

Figure 3.1: Plot showing different types of anomalies. The top
plot demonstrates point anomalies marked in red. The middle plot
shows contextual anomalies. The last plot shows collective anoma-
lies. Source: Unsupervised anomaly detection for iot-based multivariate
time series [2]

A sample may be within normal operations given its univariate measurements but when seen
in association with other variables it may be regarded as an anomaly [2]. Industrial machines
also tend to have degrading performances over time, so called over time anomalies [27]. Due
to limited domain knowledge over the degrading properties of the machines these anomalies
are outside the scope of this thesis.

3.2 Choice of Anomaly Detection Technique
There exist many choices for anomaly detection techniques with different advantages and
disadvantages. As stated by the no free lunch theorem no technique will be universally best
for every problem [38]. When performing MTSAD, the best choice of technique is highly
dependent on the structure of the data [16]. It is common that labeling data to acquire a
ground truth is prohibitively expensive in real-world scenarios, therefore this study focuses
on unsupervised and semi-supervised anomaly detection methods, i.e., anomaly detection
methods that do not require a ground-truth for training. When choosing an appropriate
anomaly detection method key factors to consider are:

• Suitability: How well suited is the algorithm to identify the specific types of anomalies
present in the data set?

• Assumption: What base assumption does the anomaly detection method make to de-
fine an anomaly?

• Data-complexity: How well does the algorithm handle high dimensional data and non-
linear relationships between features?
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• Time-complexity: How well does the algorithm scale with the size and structure of the
data set?

• Explainability: How well can a mapping between predicted anomaly and main con-
tributing features be constructed?

Below we will introduce the different types of MTSAD techniques that are studied in
this thesis including the strengths and weaknesses of the different approaches.

3.3 Different Types of Anomaly Detection
Methods

When performing anomaly detection, an appropriate choice of model is essential to achieve
positive results. This is due to the fact that what is an anomaly is highly dependent on the
structure of the data, and different models use different approaches to determine whether
or not a point is an anomaly. Here we will present a collection of different categories of
anomaly detection methods, together with their strengths and weaknesses, and why they
were considered appropriate for the task.

3.3.1 Density-Based Methods
Density-based anomaly detection methods are based on the intuition that anomalies will
appear in regions of lower densities in comparison to other normal points [33]. As can be
seen in figure 3.2 there are instances where an anomaly does not appear to be an anomaly
when observed globally, but is instead anomalous in relationship to its locality. The point
O in 3.2 would most likely be classified as a normal point if looking at the data globally,
however, when looking at the point O in relation to its locality, it may be observed that the
point is in fact anomalous in relation to its local cluster C1. The points in C2, even though
they are more spread out, form a distinct cluster in their own right and it is not as clear which
of the points in C2 are anomalous.

Some of the advantages that these methods tend to provide is that they are intuitive, and
thus their usage promotes explainability. However, they are also computationally expensive
since they require calculations of pairwise distances between points; making them typically
not suitable for large and complex datasets [33].

3.3.2 Tree-based Methods
Like many other anomaly detection methods the density-based ones work on the basic premise
of profiling normal samples and then identifying anomalies as deviations from that norm. In
contrast there is a family of methods called tree-based methods based on the premise of pro-
filing anomalies instead. They rely on the idea that anomalies are few and far between meaning
that anomalies should be inherently isolated from normal data points [33].

These methods work by splitting up the data feature-wise into sub-trees, determining
the anomaly score by the amount of sub-tree partitions needed to be performed in order to
isolate a sample.
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Figure 3.2: Example plot demonstrating the advantage of density-
based anomaly detection methods. The image shows two clusters
C1 and C2, and the outlier point O which is an outlier in relation
to cluster C2 but not globally. Source: Adaptive kernel density-based
anomaly detection for nonlinear systems [42]

As can be seen in 3.3 the sub-tree partitions can be visualised as "cuts" in the data-space,
where the fewer the amount of cuts required to isolated a sample, the higher the anomaly
score. The red point in figure 3.3 is marked as an anomaly since the data-set only needed
to be partitioned once in order to isolate that point. The main differentiating factor that
separates the different tree-based methods is how the partition cuts are created, which we
will explain when describing the Isolation Forest (see section 3.4.3) and Deep Isolation Forest (see
section 3.4.4) tree-based methods.

Some advantages of the tree-based anomaly detection approaches is that they tend to have
low run time complexity and are scalable even for large datasets. However, tree-based meth-
ods, of which Isolation Forest is most widely used, tend to not perform well when anomalies
are local in nature in contrast to density-based methods [33]. Isolation Forest also suffers from
difficulty of recognising non-linear relationships between different features which can be a
problem when performing tree-based methods on complex data sets [2]. This is a problem
that Deep Isolation Forest attempts to address by making the sub-tree partitions non-linear
in nature, at the expense of added time-complexity (see section 3.4.4)

3.3.3 Statistics-based Methods
Statistical models for anomaly detection are based on the idea that samples in a data set can
be modelled using probability distributions, which are then used to identify anomalies as
deviations in the distribution [21]. These methods are typically divided into two categories,
parametric and non-parametric models, where non-parametric models tend to be more expen-
sive but have the advantage of being easier to use [21]. The assumption that these models
generally make is that if a data set is modelled as either a multivariate statistical distribution
or a collection of univariate statistical distributions, then anomalies are samples that occur
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3.3 Different Types of Anomaly Detection Methods

Figure 3.3: An example of isolation forest partitioning of a dataset.
Samples are isolated by "cuts" in the dataset. The number of cuts
required to isolate a sample represents how anomalous it is. [22].
Source: Handbook of Anomaly Detection with Python Outlier Detec-
tion [8]

in the tail-end of the distributions [21]. The chosen method ECOD (see section 3.4.2) is based
on this premise.

3.3.4 Reconstruction-based Methods
Reconstruction-based anomaly detection methods can be described as methods that attempt
to deconstruct and then reconstruct the inherent patterns in the data [26]. These meth-
ods aim to discover the underlying representation of the input data in a two step process.
First the data is deconstructed, reducing its dimensionality, and then reconstructed again by
increasing its dimensionality to the dimensionality of the original input. How much the re-
constructed signal differs from the initial signal is called the reconstruction loss. This loss is the
measurement used to determine whether or not a point is an anomaly, with the idea that a
reconstruction model trained on normal data will have a high reconstruction loss when faced
with anomalous data points as inputs, since it has not been trained to reconstruct them [26].

This behaviour can be seen in 3.4 which shows the original signal, the reconstructed sig-
nal, and the reconstruction error. It may be observed that the original and the reconstructed
signal appear similar, but when plotting the reconstruction error (i.e., the difference between
the original and reconstructed signal), there is deviating behaviour in the area marked red in
3.4, i.e., we have an anomaly. The reconstruction loss is commonly calculated either with MSE
(mean square error) or MAE (mean absolute error) [26]. In this thesis, the reconstruction-
based methods used were the Autoencoder (see 3.4.5) and the LSTM-Autoencoder (see 3.4.6
methods. The LSTM-Autoencoder however also takes into account the temporal aspect of
the data, as described in the following section.

3.3.5 Time Series-Based Methods
Time-series based anomaly detection methods are inherently different to the previously men-
tioned methods. The main inherent difference is that time series-based methods are designed
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Figure 3.4: Image illustrating how reconstruction-based methods
determine an anomaly. The original signal is deconstructed and re-
constructed measuring the reconstruction loss. The anomaly is re-
vealed in the area marked in red due to its high reconstruction loss.
Source: New approaches to anomaly detection [14]

to be able to detect collective and contextual anomalies, meaning anomalies that are anoma-
lous relative to their time locality. The previously mentioned methods are instead mainly
for the detection of point anomalies, since they do not consider the time ordering of points
during training or classification.

Figure 3.5: A visualisation of the sliding window principle of an
LSTM. Source: Abnormal detection of electricity consumption of user
based on particle swarm optimization and long short term memory with
the attention mechanism [4]

The principle of using temporal data to perform classification can be seen in 3.5 where
each feature in the data is split into a window of size N and the label for prediction is set
to the point occurring after the window. Time series-based methods have the advantage of
accounting for the time series behaviour of the data, however, these methods also tend to
be more computationally expensive. These methods that utilise the aforementioned sliding
window approach can be described as semi-supervised since for each window a label is applied
that the model then uses as its ground-truth, however, this ground-truth is not pre-labelled
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but is instead derived from the patterns in the input data [28]. The time-series based method
that was utilised in this thesis is called LSTM-Autoencoder (see 3.4.6), which partly is a recon-
struction based method similarly to the Autoencoder. The LSTM autoencoder is separated
into a different category due to the fact that it takes the temporal aspect of the data into
account when making its predictions.

3.4 Chosen Anomaly Detection Models
In this section, the chosen anomaly detection methods are introduced, together with the
reasoning behind their applicability.

3.4.1 Local Outlier Factor
Local Outlier Factor (LOF) is a type of density-based anomaly detection method which works
by calculating a point’s local deviation in relation to other close data points [5]. Whether or
not a point is determined to be an anomaly is based on the immediate surrounding density of
the area around a point in relation to other points in its locality. The lower the density, the
higher the anomaly score, and thus the higher the likelihood that a point is classified as an
anomaly [5]. In order to define how a LOF for a point is determined we first need to define
what the k-distance of object p is. The k-distance of object p is defined as the distance d(p, o)
between object p to point o, point o being the point that is the furthest away from object
p while being part of the set consisting of the k closest points to point p [5]. Furthermore
we also need to define the reachability distance of object p to object o which can be defined as
follows [5]:

reach-distk(p, o) = max(k-distance(o), d(p, o))

Figure 3.6: Reachability distance of centroid point o to points p1
and p2 for k = 4. The dashed circle represents a circle of radius
4-distance(o). Source: Lof: Identifying density-based local outliers [5]

27



3. Anomaly Detection

An illustration of the reachability distance of object p to object o can be seen in figure 3.6. Here
the reachability distance between point o and point p1 becomes the k-distance(o) since p1
is within the k-distance(o) radius of point o, while the reachability distance between point o
and point p2 becomes the distance d(o, p2) since d(o, p2) > k-distance(o).
In order to define how LOF determines an anomaly detection score for a point, we now need
to define the local reachability density (lrd) of point p to point o, which is defined as [5]:

lrdMinPts(p) = 1/
(∑

o∈NMinPts(p) reach-distMinPts(p, o)
|NMinPts(p)|

)
This means that the local reachability density of object p is the inverse of the mean reachability
distance of the MinPts nearest points to p. Nk-distance(p)(p) here is called the k-distance neigh-
bourhood of object p, which can be explained as that Nk-distance(p)(p) contains all points, such
that their distance from p ≤ k-distance. Above, k-distance = MinPts(p), where MinPts(p)
is a parameter which specifies the minimum number of points when determining the local
density of a specific point.

Using these definitions we can now define the local outlier factor (LOF) as:

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|

This is how the anomaly score of a point is defined in LOF and it can be described as the
mean of the local reachability densities of the point p and p’s MinPts closest points.

The strength of this method is the fact that it is able to determine whether or not a point
is anomalous based on points in its local region.

3.4.2 ECOD
ECOD, which stands for Empirical-Cumulative-Distribution-based Outlier Detection is a statistics-
based method which uses the empirical cumulative distribution function (ECDF) to approximate
the cumulative distribution function (CDF). This is done with the assumption that the samples
of the data that are on the tail-end of the distribution are assumed to be anomalies [21].

A problem with calculating a single ECDF for a multivariate dataset is that the more
dimensions there are in the data, the slower the ECDF converges to the true CDF as a direct
consequence of the previously mentioned curse of dimensionality.

ECOD avoids this problem by making the assumption that the dimensions in the data
are independent, which means that it is possible to multiply the separately calculated tail-
probabilities with the univariate ECDFs [21].

Additionally, in order to determine which tail of the distribution to use for a feature when
assuming whether a point is an anomaly or not, ECOD uses the skewness of the distribution.
This means that if one of the tails is more skewed, i.e., one of the tails is longer, then it is
assumed that the anomalies occur on that tail of the distribution. An example of this can be
seen in figure 3.7 which showcases how the choice of tails affects the result of the anomaly
detection. In the distribution shown in plot (a) in figure 3.7 we can see the ground-truth while
plots (b) and (c) showcase the results when using the left and right tails respectively. We can
see that the distribution is skewed in nature, where the anomalies tend to occur on the left
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tail of the distribution. When the tails are selected based on the skewness, as can be seen in
plot (e) we can see that ECOD is more accurately able to discover the existing anomalies.

Figure 3.7: Plots showcasing how skewness affects the results of
ECOD. Plot (a) showcases the ground truth, while plot (b) and (c)
shows the effect of using the left and right tails respectively. The
last two plots (d) and (e) shows the average of the two tails and the
skewness corrected result respectively. Source: Ecod: Unsupervised
outlier detection using empirical cumulative distribution functions [21].

Some advantages of ECOD is that it has a low time complexity scaling linearly with the
size and dimensions of the dataset, it has interpretable results, while being effective at finding
anomalies [21].

3.4.3 Isolation Forest
Isolation forest (IF) is a tree-based unsupervised anomaly detection technique popular for its
linear time-complexity, low memory usage and high performance with low hyperparameter
configuration [22].

In Isolation Forest, the sub-trees (as described in section 3.3.2) are called Isolation Trees
(iTrees). Each iTree is constructed by creating a sub-sample of the data through random se-
lection without replacement. The samples in the iTree are then isolated by recursive random
partitions on one randomly selected feature at a time. The anomaly score of each sample is
then the path length to the root of the iTree. An ensemble over all isolation trees is what
makes up the Isolation Forest (IF). The average path length over all iTrees determines the
final anomaly score of each sample. Those samples isolated near the root of multiple iTrees
are regarded as anomalies.

The algorithm can be formally explained as follows: given a sub-sample X = {x1, x2, ..., xn}

from some multivariate distribution; each iTree is constructed through partitioning of X by
randomly selecting an attribute q and a split value p. The X sub-sample is then partitioned
into a left and right sub-trees (Xl, Xr) using the test q < p. This partitioning can be seen
as linear axis-parallel cuts in data space, as seen in figure 3.3. The partitioning is recursively
performed until either (1) the tree reaches a height limit, (2) all samples have been isolated
or (3) all remaining samples are identical. The tree height limit is used to preemptively stop
the partitioning with the reasoning that after a certain tree depth all points are regarded as
normal and thus not of interest [22].

The limited tree depth is one-key factor to the linear time-complexity of the isolation
forest, the second is that the size of the iTrees is bounded by the sub-sampling size. It is shown
that keeping the size of the iTrees low not only lowers memory-requirements and increases
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Figure 3.8: An example on generated data of how sub-sampling en-
hances the possibility to identify deviating samples in the Isolation
Forest algorithm. Anomalies are marked by a red triangle and nor-
mal samples by a blue circle. By randomly selecting a sub-sample of
the data the anomalies are more clearly separated from the normal
samples [22]. Image source: Isolation forest [22]

efficiency, but it also improves anomaly detection performance due to smaller sample sizes
making deviating characteristics more clearly noticeable [22]. This concept is demonstrated
in figure 3.8. The two hyperparameters for isolation forest are the sub-sampling size ϵ and
the number of iTrees, both of which were shown to converge quickly at low numbers [22].

3.4.4 Deep Isolation Forest
Deep Isolation Forest (DIF) is a modern hybrid method, based on the aforementioned Iso-
lation Forest algorithm [39]. The major difference in DIF is that the cuts in data space are
non-linear instead of axis-parallel, aiming to increase its effectiveness at isolating hard to
isolate samples in non-linear data. DIF utilises casually induced neural networks to project
the selected input features for an iTree (see section 3.4.3) to a randomised non-linear data
space as is shown in figure 3.9. Subsequent axis-parallel cuts in this space are equivalent to
non-linear cuts in the original data space. If a sample is isolated early in multiple randomly
induced sub-spaces it indicates that the sample is a non-linear anomaly. Similarly to the orig-
inal Isolation Forest algorithm, the anomaly score is given by the average path length over
an ensemble of these so called deep iTrees into a Deep Isolation Forest. This means that it is
sufficient for an anomalous sample to be isolated in a subset of randomised non-linear data

30



3.4 Chosen Anomaly Detection Models

spaces for it to be recognised as an anomaly.

Figure 3.9: Showcase of the data space projection of deep isola-
tion forest from original data space to three randomly induced data
spaces. Axis-parallel cuts in the transferred data spaces are equiva-
lent to non-linear cuts in the original data space. Image source: Deep
isolation forest for anomaly detection [39]

The DIF algorithm effectively attempts to reduce the curse of dimensionality that the
original algorithm suffers from. This comes at the price of increased computational com-
plexity due to having to train the neural networks [39].

3.4.5 Autoencoder
An Autoencoder is a type of reconstruction-based method that typically relies on neural
networks to find the patterns in the data during deconstruction and reconstruction [41]. An
Autoencoder can essentially be thought of as two functions. The encoder function z = f (x)
which maps data from data space to the latent space, and then the decoder function r = g(z)
which reconstructs its inputs from the latent space back to data space [41]. Generally, the
encoder/decoder functions are stochastic in nature and are then defined as pencoder(z|x) and
pdecoder(r|z) [41].

In figure 3.10 we can see the general structure of a traditional Autoencoder which may be
described as a densely connected neural network [41]. While it does not necessarily have to
be, it is often implemented as a "mirror" architecture, meaning that the decoder layers are a
mirror image of the encoder [41]. What separates Autoencoders from other neural network
architectures is the fact that the input and output layers have to have the same dimension
since we are trying to reconstruct the input signal and the central layer has to consist of less
neurons than the outer layers in order to transform the data to latent space [41].

3.4.6 LSTM Autoencoder
The LSTM-Autoencoder falls into the category of reconstruction-based methods since its
purpose is to reconstruct a signal. However, its general assumptions and how it makes pre-
dictions differs significantly from the pure Autoencoder (see section 3.4.5). The Autoencoder
attempts to reconstruct the whole signal at once, while in contrast the LSTM-Autoencoder
uses a sliding window transformation (see 3.5) and Long Short-Term Memory units to make
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Figure 3.10: Illustration of a densely connected autoencoder archi-
tecture. Image source: Variational autoencoders are beautiful [13]

predictions for every point based on local patterns in the data [28]. This makes LSTM-
Autoencoders especially suited for detecting contextual and collective anomalies, since they are
able to capture temporal dependencies. We believe this property makes LSTM-Autoencoders
advantageous for anomaly detection on heat pump data, since the heat pump’s behaviour is
connected to its temporal properties as discussed in sections 4.3.2 and 4.3.3.

Figure 3.11: Image source: Lstm-autoencoder for vibration anomaly de-
tection in vertical carousel storage and retrieval system (vcsrs) [9]

As can be seen in the figure illustrating an LSTM-Autoencoder architecture 3.11, and figure
3.10 showing a classical Autoencoder architecture, the two networks appear similar. Where
the two architectures differ is that the neurons in a classical Autoencoder are replaced with
LSTM units, which are described below.
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Long Short-Term Memory (LSTM)
A Long Short-Term Memory (LSTM) is a type of improved Recurrent Neural Network (RNN) that
removes an inherent problem with RNNs, the so called vanishing/exploding gradient prob-
lem [28]. RNNs work by processing arbitrary length input sequences through a recursive
process by activating a transition function on a hidden state vector ht . The inputs to the ht
for each time-step t are the outputs of the previous layer ht−1 and the feature vector xt . The
inputs are then multiplied by two weight matrices, Wx and Wh according to the following
function [28]:

ht = tanh(WxXt +Whht−1 + b)

In the training of a RNN the Wx and Wh weights are applied at each time-step, therefore
the resulting outputs run a risk of having exponential growth/decay over time [28]. LSTMs
solve this vanishing/exploding gradient problem by introducing a memory cell which pre-
serves cell states by changing in response to inputs which results in preservation of cell state
over long periods [28].

Figure 3.12: Example of an LSTM Unit. Source: End-to-end radio
traffic sequence recognition with recurrent neural networks [28]

An LSTM-unit is illustrated in figure 3.12. The unit consists of an input gate it , an output
gate ot , a forget gate ft , a memory cell state ct and lastly a hidden state ht . The memory cell ct
and the hidden state ht are the parts of the unit responsible for the long-term dependencies,
while the other ones are responsible for the short-term dependencies which is why the unit
is called long-short term memory [28]. An LSTM network manages the vanishing/exploding
gradient problem by either blocking or passing on the input. Each unit also has its own
weights, which are applied to the input.
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3.5 Motivation for Choice of Methods
As mentioned in section 3.2, according to the no free lunch theorem there is no universal method
that can solve every anomaly detection problem. When exploring the data set (see chapter
4.3) where/how the registered errors for the heat pumps tend to occur, the errors that do
occur do not follow a consistent behaviour. Some errors seem to be point anomalies that
are registered as errors due to spikes in the sensor data, while others appear to be contextual
anomalies and are only classified as errors due to local spikes.

Heat pumps are complex machines in the sense that they do not necessarily have just one
normal state, but rather multiple ones depending on how they are being used. For example
if a hot shower is turned on, the heat pump will start consuming more energy since heating
water is a costly operation. Thus many of the features can spike during this process, but this
does not necessarily mean that the heat pump is malfunctioning.

This is the main motivation for the utilisation of the density-based methods (see 3.3.1).
This is because the density-based methods define anomalies as deviating from clusters of
high density, and thus these methods may be able to find these normal behaviours as distinct
clusters while the anomalies may just be anomalies relative to the state of the machine.

However, the existing errors may in some cases not be anomalous relative to a particular
state, but rather to the whole system. These errors may be described as global errors. These
point-wise errors are most likely more easily detected using a tree-based approach like Isola-
tion Forest or a statistical approach like ECOD, since global anomalies are by definition well
isolated from normal data points.

While these methods tend to perform well for linear systems, they tend to miss more
complex relations between different features [2]. This is where reconstruction-based methods
tend to perform better because the encoding and decoding procedure is inherently non-linear
(at least in an Autoencoder), and thus they are able to capture more complex patterns. This
also speaks for the use of Deep Isolation Forest which attempts to capture the non-linear
relationships in the data.

One disadvantage with the normal reconstruction-based methods is that they do not con-
sider temporal patterns in the data. These patterns such as yearly weather fluctuations ex-
hibit patterns in the data that the normal reconstruction-based methods are not able to catch.
Time series-based methods such as LSTM-Autoencoders (see 3.3.5), take previous points into
account when making predictions. This fact makes it so that time series-based methods have
an advantage when attempting to detect contextual and collective anomalies that are local
in nature.

3.6 Anomaly Clustering
When performing anomaly detection, the task is typically categorised as a one-class classifi-
cation problem, namely classifying normal and anomalous points. This means that the result
is binary, with normal points classified as a 0 and and anomalous points as a 1. However, in
complex machines such as heat pumps, binary classification does not capture the variation in
different issues that may cause the machines to express faulty behaviour. A way to circumvent
this problem and be able to categorise the caught anomalies is to use clustering methods, i.e.,
methods that group similar data points based on their inherent characteristics.
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The method that was chosen to perform the anomaly clustering is called Density Based
Spatial Clustering of Applications with Noise (DBSCAN), which is an unsupervised density-
based clustering technique used to classify data by identifying clusters of arbitrary shape [12].
It clusters samples based on their proximity to other points in a high-density area, with the
assumption that high-density areas are separated by low-density areas [2].

DBSCAN uses two hyperparameters; the distance to other samples for clusters ϵ , and
the minimum number of points in the cluster M . The ϵ -neighbourhood of a sample xi are
all the samples within ϵ distance of xi . Formally that is: Nϵ (xi) = {x ∈ D | dist(xi, x) ≤
ϵ } [2], where dist(a,b) is a distance function between samples (a,b). The size of the clusters is
decided by varying ϵ and M . Using ϵ and M , DBSCAN clusters the samples by marking each
sample as either a core point, boundary point or outlier in the following steps: (1) for each sample
identify all points in the ϵ -neighbourhood of that sample and mark the ones with minimum
M neighbours within ϵ radius as core points; (2) create a new cluster for every core point if it
is not already associated with a cluster; (3) recursively iterate through each cluster and assign
all point within ϵ distance to the cluster, those points with less than M neighbours within
ϵ are marked as boundary points; (4) iterate through all remaining points [2]. Outliers are
those points not belonging to any cluster after the process has finished. A visual example
of a DBSCAN clustering can be seen in figure 3.13. In the right plot of the figure the large
coloured circles are core points, the smaller coloured circles are boundary points and the
small black circles outside the clusters are anomalies.

DBSCAN is popular for its ability to handle relatively large sets of non-linear data while
requiring little domain knowledge [2].

Figure 3.13: An example of DBSCAN clustering. Identified clusters
are separated by colour. Large coloured circles represent core points,
small coloured circles represent boundary points and small black cir-
cles are outliers/anomalies. Image source: DBSCAN in Python [11]

3.7 Evaluation Metrics
In this section, we will present the different metrics that we utilised to evaluate the results of
our models. Different evaluation metrics have different strengths and weaknesses and thus it
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is important to evaluate the results of a classifier using different methods in order to give a
nuanced perspective on the performance of the trained models. Thus we will in this section
also present the strengths and weaknesses of different evaluation methods. The importance
of a specific metric is also heavily influenced by the subject matter. In the instance of unsu-
pervised MTSAD algorithms, metrics are mainly valued on their ability to detect complex
anomalies in multi-dimensional, co-dependent data while being resistant to noise [2].

3.7.1 Classification Terminology
When evaluating anomaly detection predictions, the predictions can be thought of as a binary
classification problem where anomalies are represented by a 1 or true, and normal points are
represented by a 0 or false. In order to appropriately evaluate the results it is important to not
only look at the hit-rate (how many predicted anomalies that correspond to actual anomalies)
but also how many points were incorrectly classified. A resulting prediction in a binary
classification problem can be split into four categories; true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN). TP corresponds to the points predicted
as anomalies that correspond to the ground truth, while TN are points that were classified
as normal points and are labeled as normal points. The TP and TN can be interpreted as
the correctly classified samples. Respectively, FP are points that were classified as anomalous
but are labeled as normal points and FN are points that were not classified as anomalous but
are labeled as such in the ground truth. The main diagonal in the confusion matrix (see 3.14)
are thus the correctly predicted points. We will now proceed to explain different methods
which utilise the TP, TN, FP, FN values to evaluate the performance of a binary classification
model.

Figure 3.14: Confusion Matrix. Image source: What is a confusion
matrix in machine learning? [34]
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3.7.2 Evaluating Anomaly Detection
In this section, the metrics that were used to evaluate the performance of the anomaly detec-
tion models are presented.

Accuracy
The accuracy of a models performance, or ACC, is a metric of the rate of correct classifica-
tions, which is calculated by dividing the correct predictions by the total predictions. The
accuracy of a model is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision
Precision can be described as how accurately a machine learning model was able to classify
the positive instances (TP and FP) in the data set, meaning that it is a metric of how many
predicted positive instances are relevant. The precision of a model is defined as follows:

Precision =
TP

TP + FP

Recall
Recall is a metric which measures the ability of the model to find all of the instances of the
positive class. The recall is calculated as follows:

Recall =
TP

TP + FN

F1-Score
The F1-score is a combination of the precision and recall metrics, by taking the harmonic
mean of the two. F1-scores are valuable when evaluating classifier performance because the
assessment takes both false positives and false negatives into account. There are two distinct
types of F1-scores which have different strengths called micro F1 and macro F1. Micro F1 is
defined as follows:

F1 = 2 ∗
Precision ∗ Recall
Precision + Recall

For binary classification problems such as anomaly detection micro F1 becomes a similar
metric to accuracy and thus we will focus on the macro F1 score. Macro F1-scores can be
calculated as follows:

Macro F1 =
1
N

N∑
i=1

F1i
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MCC-Score
MCC-Score (Matthews Correlation Coefficient-Score) is another metric used for evaluating
the performance of machine learning models. The main strength of the MCC-score metric
is that it only produces a high score if the model has a high accuracy for all classes, namely
normal and anomaly points respectively in a binary anomaly detection problem [6]. A com-
mon criticism of F1-scores, which is the most commonly used evaluation metric, is that the
rate of correctly classified negative samples are not taken into account which is a problem
that mcc-score solves [6]. The MCC-score of a model is calculated as follows:

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3.7.3 Evaluating Anomaly Clustering
In this section, the metrics that were used to evaluate the performance of the anomaly clus-
tering are presented.

Adjusted Rand Index Score
Adjusted Rand Index (ARI) is a commonly employed evaluation metric used in clustering anal-
ysis to determine agreement between partitions of data [40]. Given the partitions u and v,
let ni j correspond to the number of objects that overlap between class ui and cluster v j . Fur-
thermore, let ni and n j correspond to the number of objects that are in class ui and cluster
v j . These definitions are illustrated in table 3.1.

Class \Cluster v1 v2 . . . vC Sums
u1 n11 n12 . . . n1C n1·
u2 n21 n22 . . . n2C n2·
...

...
... . . . ...

...
uR nR1 nR2 . . . nRC nm·
Sums n·1 n·2 . . . n·C n·· = n

Table 3.1: Contingency table for comparing R classes with C clusters

Using these definitions the ARI score can then be defined as follows:

ARI =
∑

i, j
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The ARI score scales between -1 and 1, where -1 means no agreement between the clusters

and the ground-truth, while 1 means that the two partitions are in perfect agreement [40].
The ARI score measures the statistical similarity between the partitions. A strength of the
ARI score, is that the score is adjusted based on the possibility that there is a match due to
random chance [40].
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Normalized Mutual Information Score
Another popular metric for evaluating the agreement between data partitions is the so called
Normalized Mutual Information (NMI) score. The NMI score is a measure of how much mu-
tual information there is between the partitions, normalized by the label entropy. Using the
aforementioned definitions, NMI can be defined as follows:

NMI(u, v) =
−2

∑R
i=1

∑S
j=1 ni j log(ni jn/ni·n j·)∑R

i=1 ni·log(ni·/n) +
∑s

j=1 n· j log(n· j /n)
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Chapter 4

Approach

This chapter introduces the methodology applied throughout the duration of this project,
spanning from the initial phases to the final outcomes. The first section presents an overview
of the steps performed in the anomaly detection process. The following section outlines the
application of the CRISP-DM (Cross-Industry Standard Process for Data Mining) frame-
work, elaborating on the execution of each phase within the framework. Furthermore, an
overview is provided of the external libraries utilised throughout the duration of the devel-
opment process.

4.1 Method Overview
Here we present a process diagram of every step performed, starting with loading the data
and ending with the final evaluation process. The step-by-step process can be seen below.
For a process diagram of the anomaly detection procedure, see figure 4.1. A more detailed
description of each performed step can be seen in the following section 4.2.

1. Data Interpolation & Aggregation: The process starts with the initial data loading and
the preprocessing steps. The preprocessing included forward filling the missing values
and then aggregating over a set time span.

2. Data Projection (optional): Dimensionality reduction is done by performing a UMAP
projection to a lower-dimensional feature space.

3. Feature Selection (optional): Dimensionality reduction is done by performing a feature
selection using sequential forward selection.

4. Choice of Anomaly Detection Model: Here, a choice of anomaly detection model is done,
choosing between Isolation Forest, Deep Isolation Forest, LOF, DBSCAN, Autoen-
coder, and LSTM-Autoencoder.
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5. Choice of Normalisation Method: Here, depending on whether the anomaly detection
method requires it, a normalisation method is chosen. The choice is between z-score
and min-max normalisation.

6. Execution and Evaluation: Lastly the anomaly detection method is trained on the data
and then the results are evaluated.

Figure 4.1: Process diagram showcasing the anomaly detection pro-
cess, from the initial data loading to the final evaluation step.

4.2 The CRISP-DM Process
This thesis was conducted using the industry standard Cross-Industry Standard Process for Data
Mining (CRISP-DM) process, which is a commonly employed framework for approaching
data mining projects [37]. An overview of the CRISP-DM process can be seen in figure 4.2.
This process is most commonly split into 6 steps, which are are as follows:

1. Business Understanding

The initial step in the CRISP-DM process is focused on understanding the business
use case, defining the requirements and objectives of the business in order to create a
project plan.
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Figure 4.2: Model of the CRISP-DM process, showcasing the phases
and life cycle of a data-mining project with arrows indicating phase
dependencies. Source: What is CRISP DM? [17]

2. Data Understanding

The next phase is exploring the data in order to understand the limitations and possi-
bilities that are inherent to the data set. This is done to gain an understanding of the
data, and which steps are required in order to achieve the goal of the project.

3. Data Preparation

Data preparation is where the data is prepared for the forthcoming phases, which can
include multiple techniques (e.g., feature engineering, feature selection, and dimen-
sionality reduction).

4. Modeling

In this phase, multiple models and parameters of the models are tested in order to find
optimal configurations. In reference to this thesis, the models in question refer to the
machine learning models utilised in the anomaly detection process.

5. Evaluation

Systematic evaluation of the performance of the aforementioned models, in order to
determine whether or not the model(s) satisfy the project requirements.

6. Deployment

Lastly, the model(s) are deployed. This final phase includes monitoring and mainte-
nance of the model(s).
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This project follows steps 2-5 in the CRISP-DM model, omitting the business understand-
ing and deployment steps as they are outside the scope.

4.3 Data Understanding
In this section, we will cover the second phase of the CRISP-DM process, labeled data un-
derstanding. The utilised data sets are introduced and explored, with a focus on the general
dimensionality, frequency and inherent characteristics of the features. These insights guide
the next phase of the CRISP-DM process, namely data preparation.

4.3.1 Heat Pump Industrial Metrics
The dataset designated for the anomaly detection process was provided by Robert Bosch AB.
It encompasses time-series industrial metrics for heat pumps of multiple models/manufacturers
that are distributed over multiple European countries. In this chapter and onwards the terms
column and feature will be used interchangeably depending on the context to describe the
columns in the data.

The data consists of roughly 200 - 300 different columns per heat pump system. New ob-
servations are continuously reported at a frequency of ∼6 times per minute with the changes
that have occurred in the system. If no changes have occurred for a feature then it is reported
as an empty value. The reported observation may then be interpreted as a sparse vector
mostly consisting of empty values, which by extension means that the majority of the data in
the dataset is empty.

The quantity of data varies between each heat pump, with a spread of between ∼100
and ∼450 days of reported data. Additionally, the heat models do not have the exact same
features, having only about 50% of the features overlapping between all models.

The quantity of data varies between each heat pump. The heat pumps have a variance in
different features, with about 50% of the features overlapping between all models. Further-
more, the length of gathered data for every heat pump varies between ∼100-450 days. This
means that the data for each heat pump consists of between ∼700 thousand and ∼3 million
observations.

An overview of the different types of features that exist in the data is presented below:

1. Categorical:

(a) Binary Values: Signal a state shift such as On/Off or Yes/No or 0/1

(b) Tertiary Values: Signal a state shift when there are 3 machine states.

(c) Context: Static information about the heat pump that "never" change, such as
which components are part of the heat pump.

2. Numerical

(a) Momentary Value: Signals a recorded momentary value from for example a sensor
in the system.

(b) Accumulated Values: Records accumulated values over time, for example total en-
ergy consumption of the system or a component.
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Since anomaly detection requires that the anomalies are a minority of the existing data
points (otherwise the anomalous behaviour becomes the normal behaviour), we chose to focus
on heat pumps that have a contamination rate lower than 50%. The contamination rate, here
and henceforth, refers to the proportion of total points that are registered as errors by the
machines. We also chose to focus on heat pumps that have at least 400 days of data, which left
21 heat pumps systems to be used for the study. An overview of the chosen heat pumps and
their respective contamination rates can be seen in table 4.1. Do note that the contamination
is split into a left column signifying the total contamination for that system over the entire
registered timespan, while the right column shows the contamination of the final 20% of the
timespan used as validation data set for the semisupervised models.

The reason for choosing the final 20% of the data as validation rather than a random subset
is twofold. Firstly, the first 80% of the data corresponds to approximately a full year (∼ 360
days), meaning that the semisupervised models can learn from a full season of data. Secondly,
this results in the fact that the time-series is continuous in both the training and validation
sets. This came at the expense of that a minority of the heat pumps lacked contamination in
the validation sets, and thus could not be evaluated.

The data from each heat pump was then aggregated to discrete 1 hour time intervals,
which reduced the number of samples to ∼10000 per heat pump system. A sample was
defined as a ground-truth error if it contained any reported error codes within the 1 hour
timespan, and multiple errors could be reported during each discrete time interval.

4.3.2 Seasonal Behaviour in the Heat Pumps
In order to be able to understand the inherent seasonality of the heat pumps, here we will
showcase 1-dimensional PCA projections plotted against the registered timestamp for each
datapoint. As can be seen in figure 4.3 the plots (a) and (b) seem to exhibit a sinusoidal cyclic
behaviour and this behaviour becomes less prominent as the contamination rate increases.
In plot (c) in figure 4.3 it can be seen that the seasonality in the data seems to deteriorate
with large contamination rates. Note: seasonality here implies regression seasonality [18], as
in periodic behavior in the data.

This yearly seasonality can be explained by the fact that heat pumps are inherently con-
textual machines meaning that their behaviour is correlated with weather conditions. When
it is cold outside, the machines will need to produce more heat and vice versa and this be-
haviour can be seen in figure 4.3. This implies that in order to minimise the effect that the
seasonality has on the anomaly prediction this variance needs to be removed. However, as
previously mentioned, the data set only consists of up to ∼450 days, i.e., only one full sea-
son, which is not enough to use traditional seasonality removal techniques (see 2.4.1 for more
information).

However, heat pumps do not only exhibit a yearly seasonality, but also a daily seasonality.
Depending on the time of day, the heating needs differ since the temperature changes in a
24 hour time span are not static, with it being usually colder during the night and warmer
during the day.

In figure 4.4 this daily seasonality behaviour can be seen, and that it differs highly between
different seasons. During January, we can see that the frequency of the PCA plot is higher,
having around 4 peaks per day, while during June the projection has around 2-3 peaks. We
can also see that in January, the PCA vector tends to have lower values than during June.
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Contamination
Id Total Validation

H1 2.1% 1.0%
H2 1.4% 0.0%
H3 2.2% 0.0%
H4 1.4% 0.1%
H5 3.0% 7.5%
H6 1.0% 4.8%
H7 1.9% 2.7%
H8 2.7% 0.1%
H9 2.6% 0.0%
H10 4.8% 1.3%
H11 5.4% 0.0%
H12 6.2% 0.3%
H13 4.7% 1.0%
H14 9.0% 15.5%
H15 9.0% 38.2%
H16 6.3% 10.7%
H17 6.6% 0.0%
H18 10.1% 9.7%
H19 15.3% 0.0%
H20 25.9% 96.4%
H23 37.5% 34.2%

Average 7.6% 10.6%

Table 4.1: Contamination rates of the data from each heat pump
in the study, based on 1H window aggregates. Left column shows
contamination for the entire dataset. Right column shows the con-
tamination of the last 20% of the dataset. The validation set is used
to evaluate the semi-supervised anomaly detection algorithms.
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(a) Time-series
PCA plot of heat
pump with 10%
contamination
rate

(b) Time-series
PCA plot of heat
pump with 24%
contamination
rate

(c) Time-series
PCA plot of heat
pump with 52%
contamination
rate

Figure 4.3: Time-series PCA plot of three heat pumps with different
contamination rates. Blue dots are normal points while the red ones
are reported errors.
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Figure 4.4: PCA plot for one heat pump for two separate weeks dur-
ing summer and winter.

This provides further complexity when analysing the seasonality and performing anomaly
detection on the heat pump data since the seasonality seems to be highly dependent on the
context, i.e the temperature and the heating needs. We can also see that during June, this
specific heat pump seems to have close to stationary behaviour during some days. This is
reasonable considering that most likely the heat pump does not need to heat a facility during
the summer months.

Figure 4.5: Plot showing the registered values for a single feature
that shows semi-seasonal behaviour.
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Another layer of added complexity is the fact that we do not only have seasonal be-
haviours in the data, but also semi-seasonal features. In the context of heat pump data semi-
seasonal refers to features that seem to correlate with the outside temperature when it is either
hot or cold outside, but not generally across the whole yearly season. This behaviour may be
seen in 4.5, where we can see a feature that is stationary up until September, and then spikes
up until May with registered peak values around December to January. This behaviour is rea-
sonable considering that the heating needs are higher during the winter months and lower
during the summer months. The semi-seasonal features make anomaly detection more com-
plex since, not only, do we have seasonal behaviours in some features but also inconsistent
seasonality between different features.

4.3.3 Stationarity of Features
Here we will explore a subset of the heat pump features in order to show that the stationarity
is not consistent, i.e., some features exhibit stationary behaviour, while other features tend
to follow seasonal trends and exhibit change-point behaviours.

Figure 4.6: Figure showing two plots for data in a singular heat
pump. On the top is the data as registered by the heat pump, while
on the bottom is the same plot with the seasonal trend removed by
subtracting the sav-gol filtered signal.

As we can see in figure 4.6, for this singular feature the data has a clear seasonal trend.
The feature generally seems to register high values during the summer months which seem
to peak around August, and registers lower values during the winter months with the lowest
values registered around December.

In figure 4.7 we can however see the plot for another feature, where no clear seasonality
can be observed at least visually. In figure 6.2 we can observe two different features for the
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Figure 4.7: Figure showing two plots for a single feature from a heat
pump that does not seem to exhibit seasonal behaviour. The top
plot showcases the signal as registered by the heat pump, while the
bottom plot showcases the same signal where the Savitzky-Golay
filtered trend has been subtracted.

same heat pump system both exhibiting a clear change point in the final two months of the
plot. This change point instance also directly correlated to registered errors as can be seen in
figure 6.1.

These observations showcase that we can not regard all features in the same way since
they inherently have different behaviours which in turn leads to added complexity to the
feature engineering stage of the anomaly detection pipeline.

4.3.4 Identifying Error Behaviours
In this section, we will attempt to demonstrate the patterns that were observed about the
error occurrences, in order to be able to explain the patterns that were discovered and that
were then used in an attempt to enhance the models. In figure 4.8 it is possible to see a plot
showcasing a single feature with the Savitzky-Golay smoothed curve subtracted. For this
specific feature, we were able to observe that there seems to be a correlation between noise
in the signal and where the error tends to occur. Important to note is that it is important to
be mindful that correlation does not necessarily imply causation, especially since we have no
way to verify if this is the feature that causes the error.

A source of added complexity when performing anomaly detection specifically on this
heat pump dataset and other similarly complex systems, is that the errors may exhibit dif-
ferent behaviours for different features. This can be seen in figure 4.9. Here we have a heat
pump with a high contamination rate of 52% and plots showing how this affects 3 different
features. In plot (a) in figure 4.9 we can see that the errors are collective in nature, this means
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Figure 4.8: Plot of single feature with Savitzky-Golay filtered sea-
sonal trend subtracted, plotted in blue. All the occurrences of errors
are marked with red. Plot covers a time period of 2 months.

that the errors occur in a part of the signal that deviates in its behaviour from other parts of
the signal. Meanwhile in plot (b) in figure 4.9, we can see that for the same time span, the
feature signal instead seems to exhibit contextual anomalies.

This means that while the signal appears to behave similarly in the whole showcased
time span, the part where the errors occur has a lower frequency of peaks than the part of the
signal where no errors are registered. Lastly we have another case of point anomalies as can
be seen in plot (c), where the errors are registered in points that may be regarded as noise,
while the normal behavior for the signal is a flat curve (for a more in depth description of
the three aforementioned anomaly types see section 3.1). Again it is important to note that
we do not know if the errors are connected to these particular features, but we can still see a
correlation since a deviation from the normal behaviour (i.e part of the signal that does not
have registered errors) can be observed.

4.3.5 System Wide Patterns
Here we will explore UMAP projections (see 2.3.2) for three different heat pumps, of which
the data has varying contamination rates in order to show how/if the errors form distinct clus-
ters. In figure 4.10 we can see three such plots. It seems that when the contamination rate is
low as in plot (a) in figure 4.10, UMAP is not able to distinctly separate the error points into
any clear clusters, and the errors are relatively evenly distributed across all groups. When ob-
serving plot (b) in figure 4.10 however, we are starting to see a more distinct pattern where a
majority of the error points seem to cluster together on the left side of the plot. Lastly, when
looking at plot (c) in figure 4.10, we can see 6 distinct clusters forming, each with a clear
separation between error and normal points. This seems to imply that the higher the con-
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(a) Showcases fea-
ture exhibiting er-
rors as collective
anomalies.

(b) Showcases
feature exhibiting
errors as context
anomalies.

(c) Showcases
feature exhibiting
errors as point
anomalies.

Figure 4.9: 3 plots showcasing how the same error can exhibit differ-
ent behaviours for different features over a time period of 1 month.
The signal is in blue while the red points are registered errors.
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tamination rate, the more accurately the UMAP projection is able to separate normal from
anomalous points. It is worthy to note however, that it is possible that the UMAP projection
is not able to separate the points for the heat-pump datasets with lower contamination rates
due to the fact that the UMAP projection is only two-dimensional.

(a) UMAP projec-
tion of heat pump
with 10% contami-
nation rate

(b) UMAP projec-
tion of heat pump
with 24% contam-
ination rate

(c) UMAP projec-
tion of heat pump
with 52% contami-
nation rate

Figure 4.10: 2-dimensional UMAP Projection of normal and errors
points for three heat pumps of varying contamination rates. Normal
points are shown in blue while error points are shown in red.
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4.4 Data Preparation
Here we will present how we performed the third stage of the CRISP-DM process, i.e., data
preparation. This includes the feature engineering steps performed, as well as the chosen
dimensionality reduction methods.

4.4.1 Data Interpolation & Aggregation
As mentioned in section 4.3.1 when describing the heat pump dataset, each feature is reported
as an empty value until a change has occurred, at which point the updated value is reported.
This in turn means that the dataset is inherently sparse, as a vast majority of the values are
empty. As a value in a column is only updated when a change has occurred, it was deemed
suitable to interpolate the data using a forward fill operation. This is done by filling the
missing values for each feature with the most recently occurring value. If the first value in the
time series for a column was missing it was instead back filled, and set to the next occurring
value. Here, multiple different methods for interpolation were attempted, including rolling
window, cubic spline, second degree polynomial, and moving average interpolation but the
best result results were achieved using forward fill interpolation.

After the data was interpolated an aggregation procedure was performed, where the data
was aggregated over the time spans of 24 hours, 1 hour, and 10 minutes. The 24 hour and
10 minute aggregations were mainly performed for data exploration purposes, while the 1
hour aggregated data was used for the anomaly detection. The data aggregation was done
by calculating the means over all features for the aforementioned time spans. The main rea-
son for aggregating the data was to both reduce momentary noise but also to increase the
computational efficiency.

4.4.2 Dimensionality Reduction
Dimensionality reduction is an important technique in machine learning and anomaly de-
tection techniques since it reduces a major problem in machine learning, namely the curse of
dimensionality (see section 2.3). Having many features can often lead to added noise, which
adds difficulty when attempting to both explore and understand the data. Additionally, a
high dimensionality can also lower the ability of anomaly detection models to discriminate
anomalous from normal points, since the discriminatory ability of individual features may
diminish as the dimensionality increases. Features can also be highly correlated, meaning
that multiple features can convey the same information.

In order to perform dimensionality reduction multiple techniques were used. The tech-
niques in question are sequential feature selection (see 2.3.3) as well as feature extraction
techniques, namely UMAP (see 2.3.2).

4.4.3 Data Normalisation
Data normalisation is another important step when performing anomaly detection and many
other machine learning tasks. The purpose of normalisation, is to guarantee scale consistency,
so that all features are of the same scale. This is important, especially for anomaly detection
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methods that use distance to determine whether or not a point is an anomaly, since fea-
tures with larger magnitudes can dominate even though the feature in question is not the
cause of the anomalous behaviour. This process was not performed on all anomaly detection
methods, since especially the tree-based methods build their trees feature-wise, meaning that
the scale of one feature has no effect on other features and their contribution to the total
anomaly score. The data normalisation methods used here are z-score normalisation as well
as min-max normalisation, depending on which is the most appropriate for the used anomaly
detection technique. Fur further information see section 2.2 on normalisation methods.

4.4.4 Removing Seasonality
Due to the inherent behaviours in the data as is presented in section 4.3.2, it was important
to take seasonality into account when transforming the data. Seasonality can become a nui-
sance when performing unsupervised anomaly detection since the seasonality changes the
inherent behaviour of the data and by extension the machine learning methods. In order to
minimize the effect of seasonality on the utilised models the signal processing technique Sav-
itzky–Golay filtering was used with a time window of 10% of the data length and a polynomial
degree of three. For further information on the Savitzky-Golay filter and its applicability for
this data set see 2.4.1.

4.5 Modeling
Here we will present how the modeling step of the CRISP-DM process was performed. This
step consisted of attempting multiple different types and configurations of anomaly detec-
tion methods. The different types of anomaly detection methods investigated were tree,
density, reconstruction, statistics, as well as time-series based methods. The contamination
rate to be predicted was set to the same contamination rate as the ground-truth for each
heat pump system. While this is not possible in a real world scenario due to the fact that the
contamination rate can not be known beforehand, we determined that this is a reasonable
approach when evaluating the performance of the models. We chose to focus on 4 different
preprocessing configurations for the anomaly detection, in order to validate how different
manipulations of the data affect the results of different models. The configurations are the
following:

1. Baseline: Anomaly detection performed on the default data for each model, meaning
after interpolation and aggregation. This will act as the baseline for comparison with
other results.

2. Feature Selected: Anomaly detection performed on features chosen using Sequential
Forward Selection (SFS) for each heat pump system.

3. UMAP Projected: Anomaly detection performed on data projected to 10 UMAP dimen-
sions, in order to see if UMAP (unsupervised feature extraction) can outperform a
supervised feature selection.

4. Savitzky-Golay Filtered: In this configuration, the approximate seasonal residual is sub-
tracted from each feature that exhibits seasonal behaviour. The approximate seasonal
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residual is calculated per seasonal feature using a Savitzky-Golay filter. The window
size of the filter was set to 1000, with a third degree polynomial interpolation function.

The best performing configuration for each heat pump is then used to perform the anomaly
clustering using DBSCAN to evaluate whether successful predictions could be used to find
novel errors. For further description and motivation for the choice of anomaly detection
methods see chapter 3. Below we will present the chosen architectures for the deep learning
approaches, namely deep isolation forest, autoencoder, and LSTM autoencoder.

4.5.1 Deep Isolation Forest Architecture
The chosen architecture for transforming the data space for the tree cuts in Deep Isolation
Forest is a simple densely connected neural network. The network consists of two layers, one
with 500 neurons, connecting to a layer of 100 neurons. A schematic of the architecture can
be seen in figure 4.11.

Figure 4.11: Schematic of the used deep isolation architecture that is
used to transform the data space for the tree cuts. The architecture
consists of two densely connected layers, of 500 and 100 neurons
respectively.

4.5.2 Autoencoder Architecture
The chosen architecture for the Autoencoder consisted of five densely connected neural net-
work layers, with the encoder and the decoder layers consisting of two layers while the latent
space layer consisted of one dense layer of neurons. The hidden layer activation used was
ReLU while the output activation was sigmoid. A schematic of the used architecture can be
seen in figure 4.12.

4.5.3 LSTM Autoencoder Architecture
The chosen architecture for the LSTM autoencoder consisted of four densely connected
LSTM unit layers with a repeat vector in the middle. The output then passes through a
time distributed layer. The chosen activation for the LSTM layers was ReLU.
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Figure 4.12: Schematic of the used autoencoder architecture. Each
block represents a densely connected neural network layer, where
the number represents the number of neurons in the layer.

Figure 4.13: Schematic of the used LSTM autoencoder architecture.
The blocks represent the different layers, with LSTM, repeat vector,
and time distributed layers. The numbers represent the number of
LSTM units in the layer.
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4.6 Evaluation
This section covers the final phase of the CRISP-DM process, namely the evaluation phase. In
this phase, the performance of the models was examined in order to determine their viability
for the given task, using a combination of evaluation methods. The evaluation methods used
included visual tools like plotting the results with UMAP projections, as well as numerical
evaluations using different metrics. The metrics in question included precision, recall, macro
F1 and MCC. For more in-depth description of these evaluation methods refer to section 3.7.

4.7 External Tools
Here we will present the different external libraries used for the different parts of the thesis
as well as how they were utilised.

4.7.1 Scikit-learn
Scikit-learn is a popular Python-based machine learning library, providing modules for all
steps of the machine learning process including pre-processing, running machine learning
models, evaluation methods and more[31]. The utilised modules from the scikit-learn li-
brary included sklearn.metrics for evaluations, as well as normalisation methods from the
sklearn.preprocessing module.

4.7.2 PyOD
PyOD (Python Outlier Detection) is a Python based library built for performing outlier/anomaly
detection, offering a wide-range of different methods and algorithms [43]. This library was
mainly used to implement the different used anomaly detection methods with the LSTM
autoencoder being the only exception. The methods that were used were all part of the
pyod.models module, and included the IF, AutoEncoder, DIF, LOF, DBSCAN submodules.

4.7.3 MLXtend
MLXtend (machine learning extensions) is a library including modules useful for many differ-
ent data science tasks and is often used as a complement to other machine learning libraries
such as scikit-learn [32]. The module that was utilised from the MLXtend library was the mlx-
tend.feature_selection module which was utilised to perform the sequential forward selection
procedure.

4.7.4 TensorFlow Keras
Keras is a high-level API built on top of the popular TensorFlow machine learning library.
It is a commonly used library for machine learning with a focus on deep learning tasks [24].
Keras was mainly used for implementing the LSTM autoencoder for which the keras.layers,
keras.optimizers, keras.Sequential, keras.callbacks submodules were used.

58



Chapter 5

Results

In this chapter we present the results of the anomaly detection and clustering in accordance
with the evaluation metrics presented in section 3.7. All approaches were validated using a
fixed contamination rate corresponding to the contamination rate in the ground-truth for
validation purposes. The results are mainly focused on the MCC score (see 3.7.2) since this
metric was deemed to give the most nuanced view of model performance out of the presented
metrics. The results are split into unsupervised (isolation forest labeled IF, deep isolation
forest labeled DIF, local outlier factor labeled LOF, empirical-cumulative distribution func-
tion based outlier detection labeled ECOD) and semisupervised models (autoencoder labeled
AE, LSTM autoencoder labeled LAE) since the semisupervised models should be trained on
"clean" data and were thus split into a training (with removed data points corresponding to
errors) and validation set, while the unsupervised models were trained on the whole data set.
For the heat pumps that have lower than 1% contamination in the validation set the results
are marked with an x.

5.1 Feature Selection Results

Here the results of the feature selection is shown, showing the mean cross-validation score of
the classifier results as well as the selected number of features for each heat pump. What can
be seen in table 5.1 is that the feature selection seems to be able to accurately identify which
features are relevant for each heat pump since a mean cross-validation accuracy of >0.97 can
be observed for all heat pumps. Important to note here is that the feature selection was
trained using a supervised model, and thus these scores do not reflect how well the chosen
feature selection will perform in an unsupervised scenario.
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Id Cross-Validation Score |Features|

H1 0.997 5
H2 0.994 4
H3 0.993 5
H4 0.997 5
H5 0.986 5
H6 0.999 5
H7 0.995 5
H8 0.996 5
H9 0.997 5
H10 0.983 5
H11 0.994 5
H12 0.991 5
H13 0.996 5
H14 0.971 5
H15 0.986 5
H16 0.986 5
H17 0.999 5
H18 0.948 5
H19 0.984 5
H20 0.991 4
H23 0.997 5

Table 5.1: Results of the feature selection. Shows cross-validation
score as well as the number of selected features.
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5.2 Prediction Results
Here we will present the prediction results for the 4 different configurations, namely the
predictions performed on the baseline, UMAP projected, feature selected and Savitzky-Golay
filtered data. The results are presented with tables consisting of macro f1 score and MCC
scores, as well as confusion matrices for the best and worst performing models.

5.2.1 Baseline
In this section, the results for the baseline are presented split into the results for the unsu-
pervised and supervised models. Here we can see based on the MCC score that in the general
case, the performance of the models amounts to random guess as can be seen in the fact that
the best case average MCC score for a model is 0.09.

Unsupervised Models
Here the results for the unsupervised models for the baseline configuration are presented.
Here we can see that generally speaking, the prediction is next to random since the average
MCC score for the best performing model is 0.05. We can see that for the last two heat pumps
in particular (H20, H23), all of the unsupervised models seem to hallucinate and have a worse
than random guess performance. For some specific cases, namely heat pump H11 with the IF
model, and H6 with the DIF model, the performance is slightly better, with an MCC score
of 0.43 and 0.38 respectively. When looking at the macro f1 scores, a similar trend is seen,
where average performance for the best performing model is 0.52, in principle random guess.
When looking at the confusion matrices for the best and worst performing models (see table
5.1) we can see that for the best performing model a majority of the points were classified
correctly, but with a lot of noise with 600 points classified incorrectly in total. The worst
performing model was not able to identify any significant patterns.

Semisupervised Models
Here we can see the results for the semisupervised models, namely the autoencoder and LSTM
autoencoder models. It can be observed that for heat pump H23 for the LSTM autoencoder,
the achieved performance was an MCC score of 0.87, indicating a strong agreement between
the predicted and labeled anomalies. We see that the autoencoder (AE) has poor overall per-
formance with an average MCC score of 0.03, resulting in marginally-above-random-guess
performance. The exception is for heat pump H4 where the autoencoder outperformed the
LSTM autoencoder with an MCC score of 0.41 against a performance of 0. The LSTM au-
toencoder seems to perform slightly better in the general case with an average case MCC
score of 0.12. While this is an improvement over the autoencoder, the general results of the
LSTM autoencoder can still be considered next to random. The macro F1 scores also corrob-
orate these findings, where the LAE model has an average f1 score of 0.58 and the AE model
has an average f1 score of 0.5.
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Macro F1 Scores MCC Scores
IF DIF ECOD LOF IF DIF ECOD LOF

H1 0.51 0.50 0.49 0.53 0.03 0.01 -0.01 0.05
H2 0.49 0.50 0.49 0.50 -0.01 -0.01 -0.01 -0.01
H3 0.69 0.49 0.60 0.51 0.38 -0.01 0.20 0.03
H4 0.50 0.50 0.50 0.50 0.00 0.01 0.01 -0.01
H5 0.53 0.50 0.53 0.56 0.06 0.01 0.07 0.12
H6 0.50 0.69 0.50 0.49 0.00 0.38 0.00 -0.01
H7 0.52 0.51 0.50 0.54 0.04 0.01 0.00 0.08
H8 0.51 0.51 0.52 0.52 0.02 0.03 0.03 0.05
H9 0.53 0.54 0.54 0.54 0.06 0.09 0.07 0.08
H10 0.53 0.49 0.51 0.52 0.05 -0.01 0.02 0.04
H11 0.71 0.48 0.66 0.53 0.43 -0.04 0.32 0.06
H12 0.49 0.49 0.48 0.53 -0.01 -0.02 -0.05 0.07
H13 0.51 0.59 0.51 0.54 0.02 0.19 0.03 0.07
H14 0.57 0.53 0.53 0.54 0.14 0.06 0.05 0.08
H15 0.54 0.48 0.50 0.52 0.08 -0.05 0.01 0.05
H16 0.55 0.48 0.57 0.51 0.10 -0.04 0.14 0.02
H17 0.47 0.47 0.46 0.49 -0.06 -0.06 -0.07 -0.03
H18 0.48 0.48 0.47 0.52 -0.03 -0.03 -0.06 0.05
H19 0.56 0.45 0.55 0.49 0.11 -0.10 0.10 -0.02
H20 0.40 0.37 0.39 0.48 -0.20 -0.27 -0.23 -0.05
H23 0.40 0.49 0.30 0.49 -0.19 -0.02 -0.40 -0.02

µ 0.52 0.50 0.50 0.52 0.05 0.01 0.01 0.03

Table 5.2: Macro F1 and MCC score for the unsupervised models for
the baseline configuration.
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(a) Confusion matrix for best performing
model (IF) with MCC score of 0.43 for heat
pump H11.
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(b) Confusion matrix for worst performing
model (ECOD) with MCC score of -0.40 for
heat pump H11.

Figure 5.1: Confusion matrix for best and worst performing unsu-
pervised models for the baseline configuration.
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(a) Confusion matrix for best performing
model (LAE) with MCC score of 0.87 for heat
pump H23.
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(b) Confusion matrix for worst performing
model (AE) with MCC score of -0.17 for heat
pump H15.

Figure 5.2: Confusion matrix for best and worst performing semisu-
pervised models for the baseline configuration.
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Macro F1 Scores MCC Scores
AE LAE AE LAE

H1 0.49 0.60 -0.01 0.19
H2 x x x x
H3 x x x x
H4 x x x x
H5 0.57 0.48 0.15 -0.03
H6 0.47 0.47 -0.05 -0.05
H7 0.49 0.52 -0.03 0.05
H8 x x x x
H9 x x x x
H10 0.51 0.51 0.02 0.02
H11 x x x x
H12 x x x x
H13 0.52 0.50 0.04 -0.01
H14 0.49 0.58 -0.02 0.15
H15 0.41 0.65 -0.17 0.29
H16 0.56 0.65 0.12 0.30
H17 x x x x
H18 0.55 0.49 0.10 -0.02
H19 x x x x
H20 0.52 0.53 0.05 0.05
H23 0.44 0.94 -0.11 0.87

µ 0.50 0.58 0.01 0.15

Table 5.3: Macro F1 and MCC score for the semisupervised models
for the baseline configuration.
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5.2.2 UMAP Projected
Here the results for the UMAP projected data set is presented. The data has first been nor-
malized using MinMax normalization before being projected to a 10 dimensional UMAP
feature space.

Unsupervised Models
Yet again it may be observed that the general results indicate that the performance essentially
amounts to random guess across all of the evaluated unsupervised models. The results show
a next to 0 average MCC and a close to 0.5 macro f1 score across all models. A notable
observation here is that for heat pump H20, the IF and DIF models seem to hallucinate,
having an MCC score of -0.33 and -0.34 respectively. The best performing model here is the
DIF model, which has a best case performance of an MCC score of 0.25 and a macro f1 score
of 0.63 for heat pump H7. When looking at the worst case confusion matrix (see figure 5.3),
we can see that the model was barely able to identify any errors with only 12 identified true
positives.

Macro F1 Scores MCC Scores
IF DIF ECOD LOF IF DIF ECOD LOF

H1 0.49 0.49 0.49 0.52 -0.02 -0.02 -0.02 0.03
H2 0.49 0.49 0.61 0.50 -0.01 -0.01 0.22 0.00
H3 0.49 0.49 0.49 0.51 -0.02 -0.02 -0.02 0.03
H4 0.49 0.49 0.50 0.51 -0.01 -0.01 -0.01 0.01
H5 0.50 0.49 0.51 0.50 -0.01 -0.03 0.01 0.00
H6 0.50 0.49 0.49 0.50 -0.01 -0.01 -0.01 0.01
H7 0.62 0.53 0.49 0.50 0.25 0.06 -0.02 -0.00
H8 0.49 0.49 0.50 0.50 -0.02 -0.03 0.00 0.00
H9 0.49 0.49 0.53 0.53 -0.03 -0.03 0.05 0.06
H10 0.48 0.48 0.48 0.50 -0.03 -0.04 -0.04 0.01
H11 0.54 0.63 0.51 0.53 0.09 0.25 0.02 0.06
H12 0.55 0.55 0.47 0.51 0.09 0.10 -0.06 0.01
H13 0.60 0.48 0.49 0.55 0.20 -0.03 -0.02 0.09
H14 0.54 0.54 0.62 0.54 0.07 0.07 0.24 0.08
H15 0.51 0.47 0.49 0.53 0.02 -0.06 -0.03 0.05
H16 0.49 0.49 0.49 0.51 -0.02 -0.02 -0.02 0.01
H17 0.48 0.48 0.47 0.51 -0.04 -0.05 -0.05 0.02
H18 0.47 0.44 0.47 0.51 -0.06 -0.11 -0.05 0.01
H19 0.46 0.54 0.42 0.49 -0.07 0.08 -0.16 -0.03
H20 0.34 0.33 0.62 0.48 -0.33 -0.34 0.25 -0.04
H23 0.48 0.49 0.53 0.50 -0.04 -0.03 0.06 0.01

µ 0.50 0.49 0.51 0.51 -0.00 -0.01 0.02 0.02

Table 5.4: Macro F1 and MCC score for the unsupervised models for
the UMAP configuration.

65



5. Results

gr
ou

nd
tr

ut
h

prediction

pp np total

pg

163 391

554

ng

391 9371

9762

total 554 9762

(a) Confusion matrix for best performing
model (DIF) with MCC score of 0.25 for heat
pump H11.
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(b) Confusion matrix for worst performing
model (DIF) with MCC score of -0.34 for heat
pump H20.

Figure 5.3: Confusion matrix for best and worst performing UMAP
projected unsupervised models

Semisupervised Models
For the semisupervised models we can see that we get a best case performance of an MCC
score of 0.9 and an macro f1 score of 0.95 for heat pump H23 with the LSTM autoencoder
while we have the worst case performance for the same heat pump for the autoencoder model
with an MCC score of -0.11 and a macro f1 score of 0.44.
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(a) Confusion matrix for best performing
model (LAE) with MCC score of 0.9 for heat
pump H23.
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(b) Confusion matrix for worst performing
model (AE) with MCC score of -0.11 for heat
pump H23.

Figure 5.4: Confusion matrix for best and worst performing semisu-
pervised models using UMAP projection
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Macro F1 Scores MCC Scores
AE LAE AE LAE

H1 0.49 0.49 -0.01 -0.01
H2 x x x x
H3 x x x x
H4 x x x x
H5 0.47 0.46 -0.06 -0.08
H6 0.47 0.47 -0.05 -0.05
H7 0.49 0.49 -0.03 -0.03
H8 x x x x
H9 x x x x
H10 0.49 0.51 -0.01 0.02
H11 x x x x
H12 x x x x
H13 0.50 0.50 -0.01 -0.01
H14 0.46 0.50 -0.08 0.00
H15 0.55 0.64 0.1 0.28
H16 0.45 0.46 -0.11 -0.08
H17 x x x x
H18 0.53 0.45 0.06 -0.11
H19 x x x x
H20 0.54 0.50 0.08 0.01
H23 0.44 0.95 -0.11 0.9

µ 0.49 0.54 -0.02 0.07

Table 5.5: Macro F1 and MCC score for the semisupervised models
for the UMAP configuration.
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5.2.3 Feature Selected
Here the results of the anomaly detection performed on feature selected data are presented.
The amount of features utilised varied between 4 and 5, depending on which features were
deemed most important by the sequential forward selection process.

Unsupervised Models
The feature selection results shows a marginal average increase from the baseline. The MCC
score increases from an average of around 0.03 to 0.11 when combining all models. Similarly
the increase for F1 is from 0.51 to 0.55. Once again the performance varies largely dependent
on the heat pump and anomaly detection model. We observe the best case MCC score to be
0.92 using DIF for heat pump H8. The worst case MCC score is−0.39 for heat pump H23. In
figure 5.8 the confusion matrix for the best and worst performing models can be seen. What
may be observed that in the best case the DIF model showed promising performance, only
misclassifying 39 points out of a total of 9466 with a precision of 0.93.

Macro F1 Scores MCC Scores
IF DIF ECOD LOF IF DIF ECOD LOF

H1 0.59 0.54 0.50 0.50 0.18 0.08 0.01 -0.01
H2 0.62 0.55 0.57 0.49 0.24 0.09 0.15 -0.01
H3 0.77 0.53 0.65 0.56 0.55 0.06 0.30 0.12
H4 0.50 0.49 0.50 0.52 -0.00 -0.01 -0.01 0.05
H5 0.53 0.49 0.53 0.52 0.06 -0.03 0.07 0.05
H6 0.78 0.49 0.83 0.53 0.55 -0.01 0.67 0.06
H7 0.51 0.51 0.50 0.51 0.02 0.02 0.01 0.03
H8 0.74 0.96 0.57 0.50 0.48 0.92 0.13 0.00
H9 0.50 0.53 0.49 0.53 0.01 0.07 -0.01 0.06
H10 0.52 0.51 0.51 0.50 0.04 0.03 0.02 0.00
H11 0.72 0.47 0.72 0.53 0.44 -0.06 0.44 0.05
H12 0.77 0.82 0.67 0.55 0.53 0.65 0.35 0.09
H13 0.49 0.49 0.48 0.51 -0.02 -0.01 -0.03 0.02
H14 0.73 0.86 0.62 0.57 0.46 0.72 0.24 0.13
H15 0.61 0.47 0.60 0.49 0.21 -0.05 0.20 -0.01
H16 0.56 0.56 0.60 0.53 0.13 0.12 0.20 0.06
H17 0.48 0.50 0.48 0.48 -0.03 -0.00 -0.05 -0.04
H18 0.49 0.63 0.49 0.51 -0.01 0.26 -0.03 0.01
H19 0.55 0.53 0.46 0.51 0.09 0.05 -0.08 0.01
H20 0.51 0.48 0.45 0.41 0.02 -0.04 -0.10 -0.17
H23 0.43 0.42 0.31 0.46 -0.15 -0.16 -0.39 -0.08

µ 0.59 0.56 0.55 0.51 0.18 0.13 0.10 0.02

Table 5.6: Macro F1 and MCC score for the unsupervised models
using the feature selected configuration.
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(a) Confusion matrix for best performing
model (DIF) with MCC score of 0.92 for heat
pump H8.
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(b) Confusion matrix for worst performing
model (ECOD) with MCC score of -0.39 for
heat pump H23.

Figure 5.5: Confusion matrix for best and worst performing unsu-
pervised models using the feature selected configuration.

Semisupervised Models
The feature selection results in general shows promising results for the semisupervised mod-
els, at least for the autoencoder model with an average MCC score of 0.17 and a best case
MCC score of 0.71. The LSTM autoencoder did not perform as well here, with an MCC
score of 0.04 and a best case performance of an 0.47 MCC score.
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(a) Confusion matrix for best performing
model (AE) with MCC score of 0.71 for heat
pump H14.
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(b) Confusion matrix for worst performing
model (LAE) with MCC score of -0.53 for heat
pump H23.

Figure 5.6: Confusion matrix for best and worst performing unsu-
pervised models using feature selected features
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5. Results

Macro F1 Scores MCC Scores
AE LAE AE LAE

H1 0.49 0.55 -0.01 0.09
H2 x x x x
H3 x x x x
H4 x x x x
H5 0.47 0.52 -0.05 0.04
H6 0.49 0.50 -0.02 -0.01
H7 0.50 0.52 0.01 0.05
H8 x x x x
H9 x x x x
H10 0.49 0.49 -0.01 -0.01
H11 x x x x
H12 x x x x
H13 0.50 0.60 -0.01 0.19
H14 0.86 0.74 0.71 0.47
H15 0.54 0.49 0.07 -0.02
H16 0.69 0.62 0.39 0.23
H17 x x x x
H18 0.67 0.49 0.34 -0.02
H19 x x x x
H20 0.50 0.50 0.01 -0.01
H23 0.78 0.24 0.64 -0.53

µ 0.66 0.52 0.17 0.04

Table 5.7: Feature Selected semisupervised models
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5.2 Prediction Results

5.2.4 Savitzky-Golay Filtered
Here we will present the results of the anomaly detection for the heat pump data where the
seasonal residual is removed by using a Savitzky-Golay filter with a window size of 1000 and
a 3rd degree polynomial.

Unsupervised Models
For the unsupervised models we can see that the best result was for the ECOD model for
heat pump H11 which has an MCC score of 0.49 and a macro f1 score of 0.74. We can also see
that for the same heat pump, the IF model showcased comparable but slightly worse results
with an MCC score of 0.46 and a macro f1 score of 0.73. Also notable is the DIF model which
scored an MCC score of 0.35 for heat pump H6 where all the other models were not able to
detect the anomalies with all having an MCC score of close to 0. In general the IF model
performed the best, but again with close-to-random-guess-performance with a mean MCC
score of 0.06 and a mean macro f1 score of 0.53.

Macro F1 Scores MCC Scores
Id IF DIF ECOD LOF IF DIF ECOD LOF

H1 0.52 0.51 0.51 0.53 0.03 0.01 0.01 0.05
H2 0.49 0.50 0.50 0.50 -0.01 0.00 -0.01 0.00
H3 0.69 0.49 0.61 0.53 0.39 -0.01 0.22 0.05
H4 0.50 0.50 0.50 0.51 0.01 -0.00 -0.00 0.01
H5 0.54 0.50 0.52 0.56 0.09 -0.01 0.05 0.13
H6 0.50 0.67 0.50 0.49 -0.00 0.35 -0.00 -0.01
H7 0.52 0.51 0.52 0.55 0.04 0.03 0.03 0.10
H8 0.50 0.51 0.51 0.51 0.01 0.02 0.02 0.02
H9 0.54 0.60 0.55 0.54 0.09 0.20 0.11 0.07
H10 0.53 0.49 0.50 0.53 0.07 -0.02 -0.00 0.06
H11 0.73 0.48 0.74 0.54 0.46 -0.03 0.49 0.08
H12 0.50 0.51 0.50 0.52 0.00 0.02 0.00 0.04
H13 0.52 0.59 0.51 0.52 0.04 0.19 0.03 0.05
H14 0.56 0.53 0.58 0.54 0.13 0.06 0.16 0.07
H15 0.56 0.48 0.53 0.51 0.12 -0.04 0.06 0.02
H16 0.53 0.48 0.57 0.50 0.06 -0.04 0.14 0.01
H17 0.47 0.47 0.47 0.49 -0.06 -0.06 -0.07 -0.02
H18 0.50 0.48 0.48 0.52 -0.01 -0.03 -0.04 0.03
H19 0.53 0.47 0.51 0.48 0.05 -0.05 0.01 -0.03
H20 0.40 0.40 0.38 0.48 -0.19 -0.21 -0.25 -0.04
H23 0.50 0.40 0.48 0.49 -0.00 -0.20 -0.05 -0.01

Average 0.53 0.50 0.52 0.52 0.06 0.01 0.04 0.03

Table 5.8: Savitzky-Golay Filtered unsupervised models
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(a) Confusion matrix for best performing
model (ECOD) with MCC score of 0.49 for
heat pump H11.

gr
ou

nd
tr

ut
h

prediction

pp np total

pg

194 2393

2587

ng

2396 5010

7406

total 2590 7403

(b) Confusion matrix for worst performing
model (ECOD) with MCC score of -0.25 for
heat pump H20.

Figure 5.7: Confusion matrix for best and worst performing unsu-
pervised models using feature selected features

Semisupervised Models
For the semisupervised models the LSTM autoencoder shows both the best and worst result
for two different heat pumps. The best performing model has an MCC score of 0.47 and a
macro f1 score of 0.74 while the worst performing model had an MCC score of -0.53 and a
macro f1 score of 0.24. We note that the anomalies seem to be captured in an inverse fashion
in the worst performing model.
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(a) Confusion matrix for best performing
model (LAE) with MCC score of 0.47 for heat
pump H14.
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Figure 5.8: Confusion matrix for best and worst performing unsu-
pervised models using feature selected features
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5.2 Prediction Results

Macro F1 Scores MCC Scores
AE LAE AE LAE

H1 0.49 0.55 -0.01 0.09
H2 x x x x
H3 x x x x
H4 x x x x
H5 0.57 0.52 0.13 0.04
H6 0.48 0.50 -0.04 -0.01
H7 0.51 0.52 0.03 0.05
H8 x x x x
H9 x x x x
H10 0.49 0.49 -0.01 -0.01
H11 x x x x
H12 x x x x
H13 0.52 0.60 0.04 0.19
H14 0.56 0.74 0.12 0.47
H15 0.54 0.49 0.08 -0.02
H16 0.59 0.62 0.18 0.23
H17 x x x x
H18 0.53 0.49 0.06 -0.02
H19 x x x x
H20 0.50 0.50 -0.01 -0.01
H23 0.24 0.24 -0.52 -0.53

µ 0.50 0.52 0.00 0.04

Table 5.9: Savitzky-Golay Filtered semisupervised models
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5. Results

5.2.5 Best Performing Models and Configurations Per
Heat Pump

Here the summarized results are presented (see table 5.10), showing which model and con-
figuration performed the best for every heat pump. What can generally be noted is that there
is no single model or configuration that performs well across all heat pumps. Furthermore,
it may be observed that for 8 out of the 23 heat pumps we successfully managed to find con-
figurations that had at least a moderate performance with an MCC score of at least 0.4, but
with lacking results for the remaining heat pumps. The models that managed to achieve a
high performance of an MCC score of >0.7 were the DIF and LSTM autoencoder models.
ECOD was also not far behind in the best case, with an MCC score of 0.67 in the best case. It
is worthy to note that for some of the heat pumps a close to random guess performance was
the best achieved result. This was the case for H17 and H10 which both have an MCC score
of <0.1. For the heat pumps H23 and H8 we were able to achieve a close to perfect result of
above 0.9 MCC score.

Id Model Configuration MCC Score

H1 LAE Baseline 0.19
H2 ECOD UMAP 0.22
H3 IF Feature Selected 0.55
H4 AE Baseline 0.41
H5 LOF/AE Savitzky-Golay Filtered 0.13
H6 ECOD Feature Selected 0.67
H7 IF UMAP 0.25
H8 DIF Feature Selected 0.92
H9 DIF Savitzky-Golay Filtered 0.2
H10 IF Savitzky-Golay Filtered 0.07
H11 ECOD Savitzky-Golay Filtered 0.49
H12 DIF Feature Selected 0.65
H13 DIF/LAE Baseline/Feature Selected/Savitzky-Golay Filtered 0.19
H14 DIF Feature Selected 0.72
H15 LAE Baseline 0.29
H17 LOF UMAP 0.02
H18 AE Feature Selected 0.34
H19 IF Baseline 0.11
H20 ECOD UMAP 0.25
H23 LAE UMAP 0.9

Table 5.10: Best Performing model and configuration for each tested
heat pump.

5.2.6 True positive rates comparison
Following are results comparing the true positive hit rate of predicted anomalies to actual
error codes. Comparisons are presented as baseline true positive rate in the left column and
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5.3 Anomaly Clustering Results

difference after applying a configuration in the right. The configurations are feature selection
5.11, UMAP 5.14 and Savitsky-Golay filter 5.13. In table 5.12 the difference in true positive
rate for the most frequently appearing error, when that specific error is targeted in the feature
selection, is presented. In the baseline case the best performing models are the semisupervised
ones, namely the Autoencoder and the LSTM-Autoencoder, with average true positive rates
of 0.20 and 0.30 respectively, notably due to the high true positive rates for heat pump H20
where both have a true positive rate of 0.97. For all other models the average true positive
rates are around 0.1.

Observing the configurations one by one we see that for the feature selection in table
5.11 the average case is an improvement of +0.065. Feature selection has the highest im-
provement on the Auto Encoder with an increase of +0.15. The other models also show
general improvement after feature selection with the exception of the LSTM Auto Encoder
which has a −0.06 change, mainly due to the true positive rate of heat pump H23 decreasing
by 0.92.

For the UMAP configuration in table 5.14 we observe reductions in the the true positive
rate for all models. The average reduction is −0.03 with the most impacted model being the
LSTM-Autoencoder with a reduction of −0.07. This mainly due to the −0.34 decrease in
true positive rate for heat pump H16.

For the Savitsky-Golay filter configuration in table 5.13 we observe minor changes for all
models with the average change approaching zero. In general, changes are minor with the
exception for a decrease of 0.92 for the LSTM-Autoencoder for heat pump H23.

For the configuration comparing feature selection for the most frequently appearing er-
ror code in table 5.12 we observe a baseline true positive rate of around 0.1 for all models.
These are improved for most models with an average improvement of DIF, IF and ECOD
being 0.07 whereas LOF observes a minor decrease of −0.01. Largest increase is for DIF with
an average of +0.09 and an increase of +0.74 and +0.69 for heat pumps H12 and H14 respec-
tively. General best performance after targeted feature selection is by IF with a true positive
rate of 0.18. Note that the semisupervised models, Autoencoder and LSTM-Autoencoder,
were omitted since we were unable to guarantee the availability of the targeted error in the
validation dataset.

5.3 Anomaly Clustering Results
Here the results of the anomaly clustering using DBSCAN (see 3.6 for details) will be pre-
sented. The anomaly clustering was performed using the true positives that were found using
the best performing combination of anomaly detection model and configuration as shown
in table 5.10. The results will first consist of the baseline case, where we extracted the corre-
sponding baseline values (the aggregated heat pump values without any feature manipulation)
for each feature corresponding to the found true positive points. The next two cases that are
presented were ones where the baseline values are projected to 2, 5, and 10 dimensions us-
ing PCA and UMAP respectively. Lastly, we present the result of performing the DBSCAN
directly on the best performing anomaly detection configuration, i.e., if the Savitzky-Golay
filtered data had the best result for H1 then the DBSCAN clustering was performed on that
data. Important to note here is that it was decided that the results will be limited to cases
where there are at minimum two unique error codes among the true positive points, but also
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5. Results

Baseline Difference
Id AE DIF ECOD IF LOF LAE AE DIF ECOD IF LOF LAE

H1 0.00 0.03 0.01 0.05 0.07 0.20 +0.0 +0.07 +0.02 +0.15 -0.06 -0.1
H2 x 0.01 0.00 0.00 0.01 x x +0.09 +0.16 +0.25 -0.01 x
H3 x 0.01 0.21 0.40 0.05 x x +0.08 +0.1 +0.16 +0.09 x
H4 x 0.02 0.02 0.01 0.01 x x -0.02 -0.01 +0.0 +0.05 x
H5 0.21 0.04 0.10 0.08 0.14 0.04 -0.19 -0.04 +0.0 +0.01 -0.06 +0.07
H6 0.00 0.38 0.01 0.01 0.00 0.00 +0.03 -0.38 +0.66 +0.55 +0.07 +0.04
H7 0.00 0.03 0.02 0.06 0.10 0.07 +0.04 +0.01 +0.0 -0.02 -0.06 +0.0
H8 x 0.05 0.06 0.05 0.07 x x +0.87 +0.1 +0.44 -0.04 x
H9 x 0.11 0.10 0.08 0.11 x x -0.02 -0.09 -0.05 -0.02 x
H10 0.04 0.04 0.06 0.10 0.09 0.04 -0.04 +0.03 +0.0 -0.02 -0.04 -0.04
H11 x 0.02 0.36 0.46 0.11 x x -0.02 +0.11 +0.01 -0.01 x
H12 x 0.04 0.02 0.05 0.13 x x +0.63 +0.37 +0.51 +0.02 x
H13 0.05 0.23 0.07 0.06 0.12 0.00 -0.05 -0.19 -0.06 -0.03 -0.06 +0.2
H14 0.14 0.15 0.14 0.22 0.16 0.28 +0.64 +0.59 +0.17 +0.29 +0.05 +0.27
H15 0.28 0.05 0.10 0.16 0.13 0.56 +0.15 -0.01 +0.17 +0.12 -0.05 -0.18
H16 0.22 0.03 0.19 0.16 0.08 0.38 +0.24 +0.14 +0.06 +0.02 +0.04 -0.06
H17 x 0.01 0.00 0.01 0.04 x x +0.05 +0.02 +0.02 -0.01 x
H18 0.19 0.07 0.05 0.07 0.14 0.08 +0.22 +0.26 +0.03 +0.02 -0.03 +0.0
H19 x 0.07 0.24 0.25 0.13 x x +0.13 -0.15 -0.02 +0.03 x
H20 0.97 0.06 0.09 0.11 0.22 0.97 -0.01 +0.17 +0.09 +0.17 -0.09 -0.01
H23 0.27 0.37 0.13 0.25 0.36 0.92 +0.73 -0.1 +0.0 +0.03 -0.04 -0.92

µ 0.20 0.09 0.09 0.13 0.11 0.30 +0.15 +0.11 +0.08 +0.12 -0.01 -0.06

Table 5.11: Average hit rates per pump difference before and after
feature selection.
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5.3 Anomaly Clustering Results

Baseline Difference
Id DIF ECOD IF LOF DIF ECOD IF LOF

H1 0.03 0.01 0.05 0.07 +0.05 +0.02 +0.05 -0.06
H2 0.01 0.00 0.00 0.01 +0.0 +0.0 +0.0 +0.0
H3 0.01 0.19 0.41 0.06 +0.0 -0.13 -0.24 +0.08
H4 0.00 0.01 0.00 0.00 +0.0 +0.0 +0.0 +0.0
H5 0.01 0.05 0.08 0.28 +0.02 +0.35 +0.28 -0.17
H6 0.4 0.01 0.00 0.00 +0.0 +0.25 +0.0 +0.0
H7 0.02 0.02 0.02 0.06 -0.01 +0.0 -0.01 -0.05
H8 0.06 0.06 0.05 0.08 +0.0 +0.03 +0.41 +0.01
H9 0.11 0.10 0.08 0.10 -0.04 -0.08 +0.02 +0.01
H10 0.00 0.05 0.02 0.04 +0.0 +0.0 +0.0 -0.03
H11 0.02 0.35 0.46 0.11 -0.02 -0.17 -0.26 -0.01
H12 0.04 0.02 0.05 0.12 +0.69 +0.26 +0.58 -0.03
H13 0.23 0.08 0.07 0.13 -0.21 -0.05 -0.03 -0.06
H14 0.16 0.09 0.14 0.16 +0.74 +0.24 +0.69 +0.04
H15 0.04 0.07 0.11 0.11 +0.02 +0.19 +0.0 -0.03
H16 0.01 0.17 0.13 0.08 +0.0 +0.0 -0.09 -0.04
H17 0.01 0.00 0.01 0.04 +0.0 +0.0 +0.01 +0.03
H18 0.07 0.05 0.07 0.14 +0.33 +0.03 +0.05 -0.03
H19 0.07 0.22 0.26 0.12 +0.05 -0.21 -0.06 +0.05
H20 0.03 0.08 0.08 0.21 +0.27 +0.22 +0.13 +0.04
H23 0.26 0.15 0.31 0.39 -0.09 +0.03 -0.04 +0.02

µ 0.08 0.08 0.11 0.11 +0.09 +0.05 +0.07 -0.01

Table 5.12: Target hit rates per pump for most frequently appear-
ing error code for that pump, comparing difference before and after
feature selection for the four unsupervised algorithms IF, DIF, LOF,
ECOD. The two semi supervised models were omitted due to not
being able to guarantee the presence of the target error in the vali-
dation data set.
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Baseline Difference
Id AE DIF ECOD IF LOF LAE AE DIF ECOD IF LOF LAE

H1 0.00 0.03 0.01 0.05 0.07 0.20 +0.0 +0.0 +0.02 +0.0 +0.0 -0.1
H2 x 0.01 0.00 0.00 0.01 x x +0.0 +0.01 +0.0 +0.0 x
H3 x 0.01 0.21 0.40 0.05 x x +0.0 +0.03 +0.0 +0.02 x
H4 x 0.02 0.02 0.01 0.01 x x -0.01 -0.01 +0.01 +0.02 x
H5 0.21 0.04 0.10 0.08 0.14 0.04 -0.01 -0.02 -0.02 +0.03 +0.01 +0.07
H6 0.00 0.38 0.01 0.01 0.00 0.00 +0.01 -0.02 +0.0 +0.0 +0.0 +0.04
H7 0.00 0.03 0.02 0.06 0.10 0.07 +0.05 +0.01 +0.03 +0.0 +0.02 +0.0
H8 x 0.05 0.06 0.05 0.07 x x +0.0 -0.01 -0.01 -0.03 x
H9 x 0.11 0.10 0.08 0.11 x x +0.11 +0.03 +0.03 -0.02 x
H10 0.04 0.04 0.06 0.10 0.09 0.04 -0.04 -0.01 -0.01 +0.01 +0.02 -0.04
H11 x 0.02 0.36 0.46 0.11 x x +0.01 +0.15 +0.03 +0.02 x
H12 x 0.04 0.02 0.05 0.13 x x +0.04 +0.04 +0.01 -0.03 x
H13 0.05 0.23 0.07 0.06 0.12 0.00 +0.0 +0.0 +0.0 +0.03 -0.03 +0.2
H14 0.14 0.15 0.14 0.22 0.16 0.28 +0.12 +0.0 +0.09 -0.02 +0.0 +0.27
H15 0.28 0.05 0.10 0.16 0.13 0.56 +0.15 +0.0 +0.05 +0.04 -0.03 -0.18
H16 0.22 0.03 0.19 0.16 0.08 0.38 +0.05 +0.0 +0.0 -0.04 -0.01 -0.06
H17 x 0.01 0.00 0.01 0.04 x x +0.0 +0.0 +0.0 +0.01 x
H18 0.19 0.07 0.05 0.07 0.14 0.08 -0.03 +0.0 +0.02 +0.02 -0.01 +0.0
H19 x 0.07 0.24 0.25 0.13 x x +0.04 -0.08 -0.05 +0.0 x
H20 0.97 0.06 0.09 0.11 0.22 0.97 -0.01 +0.05 -0.02 +0.01 +0.01 -0.01
H23 0.27 0.37 0.13 0.25 0.36 0.92 -0.27 -0.12 +0.21 +0.12 +0.01 -0.92

µ 0.20 0.09 0.09 0.13 0.11 0.30 0.00 +0.0 +0.03 +0.01 +-0.0 -0.06

Table 5.13: Average hit rates per pump for Savitsky-Golay filtered
vs baseline results.
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Baseline Difference
Id AE DIF ECOD IF LOF LAE AE DIF ECOD IF LOF LAE

H1 0.00 0.03 0.01 0.05 0.07 0.20 +0.0 -0.03 -0.01 -0.05 -0.02 -0.2
H2 x 0.01 0.00 0.00 0.01 x x -0.01 +0.23 +0.0 +0.0 x
H3 x 0.01 0.21 0.40 0.05 x x -0.01 -0.21 -0.4 +0.0 x
H4 x 0.02 0.02 0.01 0.01 x x -0.02 -0.01 -0.01 +0.02 x
H5 0.21 0.04 0.10 0.08 0.14 0.04 -0.19 -0.04 -0.06 -0.06 -0.11 -0.03
H6 0.00 0.38 0.01 0.01 0.00 0.00 +0.0 -0.38 -0.01 -0.01 +0.02 +0.0
H7 0.00 0.03 0.02 0.06 0.10 0.07 +0.0 +0.05 -0.02 +0.2 -0.08 -0.07
H8 x 0.05 0.06 0.05 0.07 x x -0.05 -0.03 -0.04 -0.04 x
H9 x 0.11 0.10 0.08 0.11 x x -0.11 -0.02 -0.08 -0.03 x
H10 0.04 0.04 0.06 0.10 0.09 0.04 -0.04 -0.03 -0.05 -0.08 -0.03 +0.0
H11 x 0.02 0.36 0.46 0.11 x x +0.27 -0.29 -0.32 +0.0 x
H12 x 0.04 0.02 0.05 0.13 x x +0.12 -0.02 +0.1 -0.06 x
H13 0.05 0.23 0.07 0.06 0.12 0.00 -0.05 -0.21 -0.04 +0.18 +0.01 +0.0
H14 0.14 0.15 0.14 0.22 0.16 0.28 -0.05 +0.01 +0.17 -0.06 +0.0 -0.13
H15 0.28 0.05 0.10 0.16 0.13 0.56 +0.16 -0.01 -0.04 -0.06 +0.01 +0.0
H16 0.22 0.03 0.19 0.16 0.08 0.38 -0.21 +0.01 -0.15 -0.12 -0.01 -0.34
H17 x 0.01 0.00 0.01 0.04 x x +0.01 +0.02 +0.02 +0.05 x
H18 0.19 0.07 0.05 0.07 0.14 0.08 -0.04 -0.07 +0.0 -0.02 -0.03 -0.08
H19 x 0.07 0.24 0.25 0.13 x x +0.15 -0.23 -0.16 +0.0 x
H20 0.97 0.06 0.09 0.11 0.22 0.97 +0.0 -0.06 +0.35 -0.1 +0.01 -0.01
H23 0.27 0.37 0.13 0.25 0.36 0.92 +0.0 -0.01 +0.28 +0.1 +0.02 +0.01

Average 0.20 0.09 0.09 0.13 0.11 0.30 -0.04 -0.02 -0.01 -0.05 -0.01 -0.07

Table 5.14: Average hit rates per pump for UMAP dimensionality
reduced vs baseline results.
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that there are a minimum of 10 true positive points in total.

5.3.1 Baseline
In the baseline case as can be seen in table 5.15, we can generally see that the clustering did
not adequately capture any patterns reliably. We can see that both the ARI and NMI score
are around 0, indicating a random guess performance for the clustering.

Id |Error Codes| ARI NMI

H2 2 -0.09 0.03
H3 3 -0.03 0.01
H5 6 0 0
H7 3 -0.18 0.1
H8 2 -0.01 0
H10 7 -0.23 0.18
H11 7 -0.06 0.03
H12 2 -0 0
H14 4 -0.01 0
H15 4 0.12 0.14
H19 6 0.04 0.17
H20 4 0.01 0.05

µ 4.2 -0.04 0.06

Table 5.15: Clustering results for the baseline case, showcasing the
heat pump id of the heat pump that the clustering was performed on,
the number of unique error codes among the detected true positive
points, as well as ARI and NMI scores for the detected clusters.

5.3.2 PCA
In the PCA projected case, it can be noted that the clustering overall seemed to be able to
more accurately detect relevant clusters than the baseline case (see table 5.16). This can be
seen in the fact that for all of the projected dimensions both the ARI and NMI scores ex-
ceeded the performance of the baseline. What can be observed here is that the results seem
to deteriorate with more dimensions, performing the best when the data is projected to two
dimensions. This seems to indicate that two principal components seem to be sufficient to
capture the variance in the data, at least when clustering. For the 2-dimensional PCA pro-
jection, the result shows an average ARI score of 0.43 and an NMI score of 0.42. Interesting
to note here is that there are three heat pumps that get a result of 0, namely heat pumps H8,
H12 and H14 which lower the overall average. If these heat pumps are not taken into account,
the average ARI increases to 0.58, indicating overall reasonable, while not perfect, agreement
between the labels and the predicted clusters.
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PCA=2 PCA=5 PCA=10
Id |Error Codes| ARI NMI ARI NMI ARI NMI

H2 2 0.59 0.48 -0.03 0.07 -0.09 0.04
H3 3 0.08 0.11 -0.01 0.02 -0.02 0.01
H5 6 0.57 0.7 0.08 0.44 0 0
H7 3 0.41 0.27 0 0.16 -0.1 0.13
H8 2 -0.01 0 -0.01 0 0 0
H10 7 0.96 0.85 0.36 0.46 -0.07 0.25
H11 7 0.73 0.62 0.43 0.31 0.14 0.13
H12 2 -0 0 0.01 0.01 0 0
H14 4 0 0 0.02 0.02 0 0.01
H15 4 0.68 0.7 0.2 0.33 0.02 0.2
H19 6 0.22 0.44 0.28 0.37 0.05 0.27
H20 4 0.95 0.89 0.95 0.87 0.14 0.16

µ 4.2 0.43 0.42 0.19 0.26 0 0.2

Table 5.16: Clustering results for the PCA projected case, which
shows the clustering results when projecting the data to 2,5 and 10
dimensions. Showcased are the heat pump id of the heat pump that
the clustering was performed on, the number of unique error codes
among the detected true positive points, as well as ARI and NMI
scores for the detected clusters.

5.3.3 UMAP
In the UMAP projected case, two general trends can be seen (see table 5.17). Firstly, the
UMAP projection does not seem able to accurately separate the different error codes; having
close to random guess performance for both ARI and NMI scores for all projections. We
can see that the average results are slightly better than the baseline, albeit not significantly.
Secondly, we can see that the performance does not seem to change with increasing dimen-
sions, indicating that the UMAP projection seemed to already achieve a distinct separation
between different clusters with two dimensions but not in a successful manner.

5.3.4 Best Performing Configuration
When performing clustering on the best performing configuration, a general improvement
may be observed over the baseline case, but it did not outperform the 2-dimensional PCA
projection (see table 5.18). Here an average ARI and NMI score of 0.21 and 0.24, respectively,
was achieved.

5.4 Error codes
Error code distribution and average true positive rate over all models and configurations is
displayed in the two histograms in figure 5.9. Histogram (a) shows more errors due to the
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UMAP=2 UMAP=5 UMAP=10
Id |Error Codes| ARI NMI ARI NMI ARI NMI

H2 2 0 0 0 0 0 0
H3 3 0 0 0 0 0 0
H5 6 0 0 0 0 0 0
H7 3 0 0 0 0 0 0
H8 2 0 0 -0.01 0 -0.01 0
H10 7 0 0 0 0 0 0
H11 7 0 0 0 0 0 0
H12 2 -0 0 0 0 0 0
H14 4 -0.01 0 0 0.01 0 0.01
H15 4 0.69 0.71 0.69 0.71 0.69 0.71
H19 6 0.29 0.38 0.29 0.38 0.29 0.38
H20 4 0.02 0.08 0.02 0.08 0.02 0.08

µ 4.2 0.08 0.10 0.08 0.10 0.08 0.10

Table 5.17: Clustering results for the UMAP projected case, which
shows the clustering results when projected the data to 2,5 and 10
dimensions. Showcased are the heat pump id of the heat pump that
the clustering was performed on, the number of unique error codes
among the detected true positive points, as well as ARI and NMI
scores for the detected clusters.

Id |Error Codes| ARI NMI

H2 2 0.43 0.23
H3 3 0.09 0.12
H5 6 0.17 0.35
H7 3 0.3 0.34
H8 2 -0.01 0
H10 7 0.65 0.79
H11 7 0.67 0.52
H12 2 -0 0
H14 4 0.06 0.13
H15 4 0.12 0.14
H19 6 0.04 0.17
H20 4 0.02 0.1

µ 4.2 0.21 0.24

Table 5.18: Clustering results for the best performing configuration
for each heat pump. Showcased are the heat pump id of the heat
pump that the clustering was performed on, the number of unique
error codes among the detected true positive points, as well as ARI
and NMI scores for the detected clusters.
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unsupervised models being evaluated on the entire dataset and inversely histogram (b) shows
fewer due to the semisupervised models being evaluated on a validation set consisting of the
final 20% of the data.

(a) Unsupervised anomaly detection models mean true
positive rates of predicting error codes.

(b) Semisupervised anomaly detection models mean
true positive rates of predicting error codes.

Figure 5.9: Histograms over the mean true positive rates of predic-
tions matching error codes for all error codes appearing in the data,
with number of appearances listed on each bar. Split into unsuper-
vised and semisupervised due to the semisupervised case validating
on the final 20% of the data.
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Chapter 6

Discussion

Following is a discussion of the results presented in chapter 5 with the aim of answering the
research questions, which have been formulated as follows:

How efficient are the selected anomaly detection methods at identifying data points
corresponding to error codes in heat pump system data?

Can we use a clustering algorithm in order to be able to profile/group the predicted
anomalies to find new error codes?

The first question is discussed in section 6.2, analysing the results of applying the six anomaly
detection models chosen to our dataset and analysing the effects of different processing con-
figurations on the input data. The second question is discussed in section 6.3, evaluating how
well we were able to cluster confirmed error points in the dataset to determine the possibility
to do so for false positive points in our data as well given access domain knowledge for de-
termining the validity of the false positive points as indicators of actual erroneous behaviour.
Results of particular interest are highlighted, by showing plots and reasoning for why the
model and configuration worked particularly well or badly for that specific instance.

6.1 Error Code Distribution
When inspecting the distribution of error codes in the data we can clearly see in the his-
tograms in section 5.9 that there is a large distribution of different error codes and a large
variance in the frequency of the error codes. Some error codes, for example EB18, appear
thousands of times while others appear very seldom, for example error code EA60 which
only appears 18 times.

For both the unsupervised and semi-supervised models, we can see that the models fail
to predict more than 20% of the appearing error codes in a majority of cases. It is notable
however, that the semi-supervised models are able to successfully predict the error code EA71

85



6. Discussion

with a mean true positive rate close to 100% and the error codes EA37 and RA38 with a
mean true positive rate close to 80%. Further analysis shows that these error codes are mostly
appearing for a single heat pump, and thus it would be important to gather more data to
observe if this behaviour holds in the general case or if it is an isolated incident.

On the other hand, it can be observed that some error codes are poorly predicted, with
true positive rates approaching zero for error codes EA43, RA76 and EA75 for the semi-
supervised case.

In general, the wide variance of appearing errors shows the complexity of the system and
consequently the difficulty in predicting the errors using a singular anomaly detection model.
The positive cases indicate that there are possibilities for the anomaly detection models to
perform well in a prediction task for some faults, and a more in depth research on those
specific instances could be a potential further course of study. However, in the general case,
the unsupervised anomaly detection algorithms showed lackluster performance.

6.2 Prediction Results
The general results of the prediction can be summarised with the aforementioned no free
lunch theorem, which says that there is no single approach in unsupervised machine learning
that will consistently show the best results. The errors simply express themselves in vastly
different ways across different heat pumps, and there are too many factors that affect the
heat pump and their behaviours. This in turn means that all of the tested anomaly detection
method categories, namely the density-based, tree-based, reconstruction-based, statistics-
based, and time-series-based methods, all had heat pumps and configurations for which they
performed the best out of all of the models. Here we will attempt to explain why some of
the models and configuration combinations performed well in some cases, while they show
subpar performance in others.

6.2.1 Baseline
In the baseline case there are two specific cases of interest that we will focus on. The first
consists of the results for heat pump H23, where we can see that the unsupervised models
hallucinated across all models, performing worse than random guess (see table 5.2 for ref-
erence). What makes this heat pump particulary interesting is that the LSTM autoencoder
here excelled with an MCC score of 0.87 (see table 5.2). The second case of interest is heat
pump H6, where only deep isolation forest seemed to be able to detect anything at all with
a MCC score of 0.38 while all other models had an MCC score of less than or equal to 0.

Starting with the first case which can be observed in figure 6.1 where a 1-dimensional
PCA plot shows the results of the LSTM autoencoder on heat pump H23. Here we can see
that the errors that are registered on the heat pump occur in the right-most segment of the
plot, starting around the 20th of June and continuing for the remainder of the time-span.
Here we can see that the registered values seem to be static, barely having any variation.
While we can see a similar pattern between the 5th of June and the 20th of June, the pattern
in that segment seems to have a higher variance.
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Figure 6.1: 1-dimensional PCA plot for heat pump H23

(a) Time-series plot of registered values for
single feature

(b) Time-series plot of registered values for
single feature

Figure 6.2: Plot showcasing two separate features which show sta-
tionarity

In figure 6.2 this behaviour can be observed, which shows two feature plots. Here, it can
be seen that in the time-span starting on the 20th of June, the reported feature values stop
changing and the remainder of the curve appears stationary. We can also see that where the
stationarity occurs, whether being in a high or low region, seems to be inconsistent. While
this is not the case for all features, this trend can be observed over the majority of them.
This is a case where the heat pumps seem to exhibit a contextual anomaly, since the relative
value of where the feature starts to become stationary is less important than the fact that the
feature is itself stationary.

This is where we can see a clear advantage of the LSTM Autoencoder model for this
specific case; the points themselves are only anomalous in relation to the time-frame that
they appear in and the fact that they do not follow the pattern of the remainder of the data.
This is a clear example of a collective anomaly, for which the LSTM Autoencoder seemed to
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outperform the other models.
Here it also becomes interesting to discuss the performance of the unsupervised models,

which all have worse than random guess results, and here ECOD in particular sticks out with
an MCC score of -0.4 and showcases a particular weakness of that model. The fact that ECOD
classifies anomalies by calculating whether or not a point is on the tail-end of distributions
makes this model particularly weak at detecting collective anomalies, since the features do
not appear to be in statistically abnormal ranges.

While the remainder of the unsupervised models are not based on the same assumption
as ECOD they also seem to suffer from hallucinations. This can be explained similarly, the
points simply are not anomalous in a global context for this particular case, and thus all of
the unsupervised models show subpar performance.

Figure 6.3: Results of the baseline configuration on the H6 heat
pump for DIF model. The results are shown using a 2-dimensional
UMAP projection.

Now for the second case, where we present the classification results projected to two
dimensions using UMAP in figure 6.3. What may be observed here is that the data forms
many different clusters, a vast majority of which consist of normal points. Furthermore, it
may be observed that a majority of the errors (labeled TP and FN for true positive and false
negative respectively), seem to appear in the two central clusters. While it is difficult to
explain exactly why deep isolation forest outperforms the remainder of the models since it is
not possible to observe more than two projected dimensions, we can still make assumptions
based on the general advantages of deep isolation forest as outlined in section 3.4.4. The main
advantage of the DIF model is the fact that it uses non-linear feature space transformations
in order to isolate samples, which means that it generally can outperform other models which
struggle to isolate points in the original feature space.
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6.2.2 UMAP-Projected
The next configuration to be evaluated is the anomaly detection performed using a 10-dimensional
UMAP projection. Here we can see when looking at table 5.14 that in the general case, the
UMAP projection reduces the capability of the anomaly detection models to detect errors
when comparing to the baseline. It can be seen that the average capability of the model to
detect errors in the worst case decreases by 7 percentage-points, while in the best case it de-
creases by 1 percentage-point. Based on these results, the conclusion may be drawn that in the
general case for this heat pump data set, a UMAP projection at least to 10 dimensions is not
a viable method for feature extraction. A problem with using UMAP as a general method for
feature extraction is that the quality of the projection is dependent on how well the param-
eters are chosen, as outlined in section 2.3.2. Thus it is possible that the performance of the
models can be improved, but this would require fine tuning of parameters for each specific
heat pump which is a time-consuming task.

With that in mind, while in general the UMAP projection showed worse results than the
baseline, it did manage to improve the MCC score slightly in relation to the basecase for the
best performing model, from an MCC score of 0.87 to an MCC score of 0.9. Why this is the
case can be seen in figure 6.4 which shows the assigned anomaly score for the baseline and
UMAP projected data, respectively. Here it can be seen that a majority of the points that
are labeled as false positives in the basecase are no longer classified as such. Additionally,
it may be observed that the results for the UMAP projected data more clearly distinguished
between normal and anomalous points. This can most likely be explained by the fact that the
UMAP projection removed some of the occurring noise in the data, making the contextual
anomalies at the end of the time-span more easily distinguishable.

Another interesting observation here is for heat pump H20, where the ECOD model
outperformed the remaining unsupervised anomaly detection methods. The performance
of the ECOD model was an MCC score of 0.25, while the remainder of the unsupervised
models hallucinated with an average MCC score of -0.24. Why this is the case is difficult to
explain due to the complexity of the data, as analysing where the point occurs on the Gaussian
distribution for each feature is a time consuming task. That being said, a hypothesis for why
the ECOD model outperformed the remaining models is that the UMAP projection made
the points appear in the tail-end of the distributions for at least some of the UMAP features.
If these points deviated statistically in a subset of the features while not appearing isolated
globally, then ECOD might have been able to more accurately predict those points. However,
more investigation is required to be able to determine if this is the case.

6.2.3 Feature-Selected
When performing feature selection the results indicate that the tree-based models are the
best performing. As can be seen in table 5.6 Isolation Forest and Deep Isolation Forest have
the best average MCC scores of 0.18 and 0.13, respectively. This is an increase of 0.13 for
Isolation Forest and 0.12 for Deep Isolation Forest.

We see that the LSTM-Autoencoder seems to lose its ability to identify the contextual
anomaly in H23 (see section 6.2.1 for further discussion of the anomaly) seeing that the MCC
score decreases from 0.87 in the baseline(see table 5.3) to -0.52 in the feature selected con-
figuration (see table 5.7). There may be many reasons for this, but the main hypothesis is
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(a) Scatter plot showing assigned anomaly score
for every point in the baseline configuration

(b) Scatter plot showing assigned anomaly score
for every point in the umap configuration

Figure 6.4: Scatter plots showing the assigned anomaly score for
each data point for heat pump H23 for the LSTM autoencoder
model

that the feature selection may have been too restrictive, and thus removed crucial features
affected by this specific erroneous behaviour.

One explanation for the improved performance of the tree-based methods is that they
are susceptible to the curse of dimensionality and thus a reduction of the number of features
is beneficial for their performance.

The general results of the feature selection indicate that proper feature selection might
be an avenue worth exploring further due to the seen improvement in the average MCC score
across most models.

6.2.4 Savitzky-Golay-Filtered
The Savitzky-Golay filtering showed varied results and only a negligible improvement over
the basecase. The unsupervised model that improved the most was ECOD with just a 0.03
MCC score improvement (compare table 5.3 and table 5.8). When comparing the semisu-
pervised models we can see that the Savitzky-Golay-filtered result was worse in the general
case, where the average LSTM autoencoder MCC score dropped by 0.11, and the autoencoder
result was essentially the same with a difference of just 0.01. What greatly affects the average
for both the semisupervised models but especially the LSTM autoencoder in particular, is
the performance on heat pump H23 which dropped from an MCC score of 0.87 to an MCC
score of -0.53. A demonstration of the features of this heat pump were shown in figure 6.2,
where it can be seen that the errors seem to be caused by the fact that the features start to
become stationary where they should not. This means that in this case the stationarity it-
self is the deviating behaviour that the anomaly detection method should predict. However,
since in this case the seasonal residual is removed, the whole feature space will appear almost
stationary which makes this error region of the data more difficult to isolate.

That being said, if we look at table 5.13 we can see some instances of improvement. In
particular we can see an improved true positive rate of 15 percentage-points for heat pump
H11 for the ECOD model. This can be seen in figure 6.5 which shows a 1-dimensional PCA
plot of the Savitzky-Golay filtered data for that heat pump. In this case we can see that the
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Savitzky-Golay filtering seemed to have managed to capture that the error points tend to
occur in an area that deviates from the norm, namely when observing the time-span between
January 2023 and March the same year. We can however also see that ECOD seemed to have
captured points on the other tail-end that does not seem to correspond to actual registered
errors, with a high rate of false positives around February the same year. Generally speaking,
it seems that what is determined to be an error in a heat pump is typically more complex
than just being a statistical deviation.

Figure 6.5: 1-dimensional PCA projection showcasing results for
heat pump H11 for the ECOD model. The projection was performed
on data with removed Savitzky-Golay residual.

6.3 Anomaly Clustering Results
The results for the anomaly clustering showcases that there is a possibility that utilising DB-
SCAN to cluster anomalies may be a viable option for attempting to discover novel error
codes. This is corroborated by the fact that with the right data transformation, in this case a
2 dimensional PCA projection, it was possible to at least with an adequate performance be
able to separate the errors into distinct clusters.

For the 2-dimensional PCA projection, as previously mentioned, we were able to achieve
an average ARI score of 0.43, with a best case score of 0.95 and a worst case of -0.01. Here it
is important to note that a perfect result is not required, since manual identification of the
detected points would be required regardless. This is due to the fact that in order to classify
these clustered anomalies as a novel error code, it would require careful analysis of what causes
these errors to occur in the first place in order to provide a correct label and description to
the error. These clusters may then be used as a guide, that can be used to identify and label
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similarly behaving outliers. These results by themselves may provide sufficient guidance to
the domain experts to be able to identify new error codes.

In figure 6.6, we can see the visualisation of the best performing clustering, namely for
H20, which was performed on a 2-dimensional PCA projection. Here we can see that the
PCA was able to effectively separate the data points, which in turn means that the clustering
was able to correctly group the detected errors.

Figure 6.6: 2-dimensional PCA plot of the best performing cluster-
ing done on heat pump H20. Same color on a point indicates in the
left plot that the points are of the same error code, while in the right
plot it indicates that the points are placed in the same cluster.

In contrast, in figure 6.7 we can see the visualisation for the worst performing clustering.
What may be observed here is that a majority of the errors correspond to a single error code,
while the remaining points are not sufficiently separated. We hypothesise that the reason for
this may be that the most occurring error code dominates when deriving the principal com-
ponents for the PCA, meaning that which features are deemed to be important by the PCA
projection is biased towards the most occurring error. This shows that projecting the data
is not a perfect approach when clustering, but it did overall manage to identify meaningful
clusters.

6.4 Limiting factors
Though some general observations and case by case observations can be made, the study is
impacted by the relatively small sample size of data available, both in terms of data per heat
pump, but also data of heat pumps of the same model. Would more data have been available,
there is a chance that we would achieve more efficient mapping of the nominal state, and
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Figure 6.7: 2-dimensional PCA plot of one of the worst performing
clustering done on heat pump H14. Same color on a point indicates
in the left plot that the points are of the same error code, while in the
right plot it indicates that the points are placed in the same cluster.

thus also better be able to capture possible erroneous behaviours. This is highlighted by the
oftentimes wide discrepancies between results of different heat pumps, as described earlier
in the discussion.

Furthermore, this thesis shows the limitations of a purely data-driven approach to un-
supervised anomaly detection in multivariate time-series data. If more domain knowledge
was available, the selection of appropriate features in feature selection and more accurate
processing of the features would likely be possible. For example, knowing more about which
error codes are caused by which components and features would open up the possibility to
perform a more targeted study on detection of specific anomalies in the heat pumps. Ad-
ditionally, without having access to domain knowledge, it is not possible to verify if points
that were determined to be false positives are in fact false positives, or could instead be new
potential non-labeled errors.

Lastly, with more computing power it would be feasible to predict anomalies on a lower
time frame aggregate, which might have provided better performance. It would also open up
the ability to analyse how early anomalies are detected before they trigger an error, which
could be useful for predictive maintenance scenarios. More computing power would also
allow for more hyperparameter testing of the anomaly detection methods. This would have
been particularly interesting when investigating the neural network based models (DIF, AE,
LAE), since their performance can vary highly depending on the chosen architecture. This
thesis limited itself to a base configuration for each method and focused on exploring how
processing of the input might affect the outcome.
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Chapter 7

Conclusions & Further Work

In this chapter, the conclusions are presented which are based on the results shown in chapter
5 and the discussion in chapter 6. Lastly, we present potential for further work that can be
done to improve the anomaly detection procedures based on findings discovered throughout
the study.

7.1 Conclusions
This study corroborates the fact that proper preprocessing is a key factor in highly perform-
ing anomaly detection. The configurations studied in this thesis had a large impact on model
performance and domain knowledge is likely required to further improve preprocessing. The
general consensus for the anomaly detection is that there is no single classifier or preprocess-
ing step that consistently produces accurate results. Essentially, it was concluded that even
though the different heat pumps technically are the same type of system, when studying them
purely as a data set, they can be regarded as completely different machines. The motivation
for this conclusion is twofold. Firstly, the behaviour of the heat pumps is highly dependent
on uncontrollable outside factors. This means that the exhibited behaviours in the data for
the heat pump varies highly, both between different heat pumps but also for the specific heat
pump depending on machine state and both daily and yearly seasonality. Secondly, the errors
that the heat pumps exhibit are highly varied. They are varied in multiple ways, mainly in
the fact that they can have many different causes since heat pumps are complex machines,
but also in the way they show themselves in the data with both contextual and point-wise
expressions.

That being said, there were cases where we managed to identify errors with a moderate
to high degree of accuracy. The general observation was that which model and configura-
tion could accurately identify errors varied between different heat pumps and what errors
they experienced. For each tested anomaly detection model and configuration we managed
to find a scenario where their combination outperformed the rest. Some observations about
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specific models was that the LSTM autoencoder was especially capable at identifying collec-
tive anomalies, but was also the most sensitive to how the data was transformed. We could
also see that generally, the tree-based methods (i.e isolation forest and deep isolation forest)
performed the best on average, with particular cases where deep isolation forest was able
to identify errors where the remaining methods performance could be amounted to random
guess. Out of the tested methods local outlier factor seemed to perform the worst on average,
with its best case performance being close to random guess which shows that perhaps at least
this density-based method is not a suitable anomaly detection algorithm for the task.

While we managed to find examples of results where each configuration outperformed
the others, generally speaking we could see that the best average performance was on the
feature selected data. This indicates that it may be possible to perform purely data driven
anomaly detection, but having access to domain expertise and thus knowing which features
are important can be crucial if the goal is to build a consistently reliable anomaly detector.

It is also interesting to note both when and why the feature extraction (UMAP) and
feature selection methods seemed to perform the best. The general observation here is that
feature extraction seemed to perform well when the errors expressed themselves as collective
anomalies in the data. We believe that this is due to the fact that the feature extraction
captures the general trend in the data, allowing especially the LSTM-autoencoder to highly
effectively capture collective anomalies. This may also be why the feature extraction did
not perform well in the general case, probably due to the fact that the projection may have
lessened noise in the data, which made it harder for the models to find point anomalies.
Generally speaking, feature selection seemed to perform slightly better, most likely due to
the fact that having less features reduces the curse of dimensionality, allowing the methods
to more easily identify anomalous points.

To answer the first research question, namely How efficient are the selected anomaly detection
methods at identifying data points corresponding to error codes in heat pump system data? is that the
performance of the methods is highly varied and depends on both the heat pump itself but
also on which errors that heat pump exhibits. The general conclusion is that there is no single
method or preprocessing technique out of the ones that were tested that consistently show
positive results. Thus if we did not have access to ground-truth, which typically is the case
when performing unsupervised anomaly detection, we most likely would not be able to find
a suitable configuration which shows the general difficulty with performing unsupervised
machine learning on complex machines.

For the second question, namely Can we use a clustering algorithm in order to be able to
profile/group the predicted anomalies to find new error codes? the answer is both yes and no. While
we could not identify new error codes due to lack of access to domain experts, we could see
that we managed to get at least an adequate average clustering performance when using the
ground-truth for verification. This indicates that there is a possibility that if the clustering
was done on the points that were identified as false positives that the found clusters could
correspond to new potential error codes. However, since we were unable to verify this by
actually finding new error codes this answer remains inconclusive.
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7.2 Further Work
Firstly, this work was limited by a purely data-driven approach to a real world dataset and
the poor performance shows the difficulty of the task. Further work would likely benefit
from including human expertise in the loop. In particular in the feature selection and pre-
processing steps where more knowledge about the system in question likely would allow for
better transformation of the input features to make them more conductive to showing clear
deviations when faults appear. Secondly, with the help of domain experts it would be feasible
to get a domain expert evaluation of the detected novel anomalies and verify whether they
actually correspond to a faulty behaviour in the heat pump and thus can be labeled as a new
error code. Thirdly, data for both a longer timespan and more heat pumps and coupled with
domain expertise opens up an interesting possibility to more accurately model the nominal
state of the heat pumps. This would likely aid the performance of the LSTM-Autoencoder
which showed some promise, but was limited by computing power and continuous data.
Lastly it would be interesting to investigate how much better performance in the prediction
task can be achieved when performing hyperparameter tuning on the models, something that
was beyond the time scope of this thesis.
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Usch vad kallt det är?! Kan data avslöja
varför värmepumpen inte fungerar?

POPULÄRVETENSKAPLIG SAMMANFATTNING Maks Epsteins, Felix Forsström

Värmepumpar är komplexa system vars fel kan uttrycka sig på flertalet sett i
värmepumpens data. Detta arbete undersökte möjligheterna att identifiera dessa fel
med hjälp av maskininlärning, samt möjligheterna att identifiera nya fel genom att
gruppera datapunkter med liknande egenskaper.

Värmepumpar har blivit en viktig del av vår till-
varo. Världen över används värmepumpar för att
öka bekvämligheten i hem och andra byggnader,
genom att reglera temperatur och luftkvalité.
Värmepumpar fungerar genom en samverkan av
flera olika komponenter, med både rörliga och
statiska delar, vilka över tid kan ge upphov till
fel.

Att undersöka dessa fel är både dyrt och
tidskrävande. För att underlätta denna process
har flertalet tillverkare implementerat loggnings-
funktionalitet som kontinuerligt sparar mätvärden
från maskinens IoT sensorer.

Detta möjliggör användning av den registrerade
datan för att upptäcka fel med hjälp av datadrivna
maskininlärnings metoder. Detta examensarbete
undersökte först möjligheten att upptäcka fel
genom maskininlärningsmetoder och sedan huru-
vida det gick att gruppera fel genom en klustering-
algoritm. Då syftet var att upptäcka befintliga
och nya fel, så användes oövervakade anomali-
detektion och klustringsmetoder, det vill säga
metoder som använder omärkt data.

För att utföra detta testades 4 olika data-
förbehandlingsmetoder, och 6 olika anomali-
detektionsmetoder som alla har olika styrkor
och svagheter. Det visade sig att eftersom

olika fel uttrycker sig annorlunda mellan olika
värmepumpssystem så varierade även metoder-
nas förmåga att upptäcka fel samt vilka
förbehandlingsmetoder som gav positiva resultat.

I det bästa fallet uppnåddes en klassifierings-
prestation med ett MCC värde på 0.92 (nästan
perfekt klassifiering), och i det värsta ett värde på
-0.52 (mycket sämre än en slumpmässig gissning)
vilket visar på svårigheterna med oövervakad
maskininlärning. I det generella fallet hittades
ingen metod som lyckades identifiera en majoritet
av felen. Klustringen visade bättre resultat över-
lag, där vi för majoriteten av värmepumparna
lyckades få positiva resultat.
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