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Abstract
As the processing power of computers continuously increase so does the interest for
machine learning and artificial intelligence. This thesis evaluates the forecasting
performance of both machine learning models and common auto-regressive models on
the Swedish stock market index OMXS30 on the Stockholm stock exchange during the
2008 financial crises. Forecasts are performed 3, 6 and 12 months ahead. The results
indicate that machine learning models perform noticeably better when forecasting 6
and 12 month ahead, while the result for the machine learning models are comparable
to those of the autoregressive models when forecasting 3 months ahead.
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ARIMA Auto Regressive Integrated Moving Average
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1 INTRODUCTION

1 Introduction

1.1 Background
The ups and downs of the stock market regularly makes headline news as the
expansion and contraction of the market is a key indicator of investors aggregated
expectation for the future of the economy (Merkle & Weber, 2014). Individuals in
general therefore have a vested interest in the stock market as changes in market
value have far broader global implications on the economy, impacting more than
just stockholders. Among private and corporate investors, the ability to accurately
forecast changes within the market would allow for investor to accrue large amounts
of wealth, as well as for governments to accurately adjust both monetary and fiscal
policies to mitigate the impact of future financial downturns.

The degree by which an investor accurately can forecast future prices on the
stock market using historical data is still debated. Some argue for the efficient market
hypothesis, stating that all known information is accounted for in the pricing of stocks
on the market, while any future information emerges at random, allowing for no single
investor to outperform the market (Dahlquist & Knight, 2022). Those who argue that
the future of the stock market is completely random are also implicitly stating that
past information has no bearing on future stock prices. This view of changes in the
stock market as completly random is echoed in Burton Malkiels influential book A
Random Walk Down Wallstreet from 1973, where Burton argues that any short-term
change in the stock market is completely random, going so far as to say that ”a
blindfolded monkey throwing darts at the stock listings could select a portfolio that
would do just as well as one selected by the experts” (Malkiel, 2016). Yet, with
the advent of digitalization and increased computational capacity, the principles of
the efficient market hypothesis have been challenged with many researchers arguing
that statistic, behavioural and rational models based on historical data do exhibit
certain predictive powers (Kumbure, Lohrmann, Luukka, & Porras, 2022). But if
Burton Malkiel is correct, and forecasting models are as effective at forecasting future
movement on the stock market as flipping a coin, newer more advanced machine
learning (ML) models should be equally incapable at market forecasting as the
simplest and most primitive models.

Today, financial forecasting and modeling is a key part of any technical market
analysis. Yet, it is generally agreed that while stock market forecasting is a relevant
and sought after endeavour, the ability of conventional models based on historical
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1 INTRODUCTION

data to accurately and consistently predict changes in the stock market is much
in doubt (Chen & Hao, 2018). Most previous studies concerned with financial
forecasting applies conventional statistical autoregressive time series models such
as ARCH (autoregressive conditional heteroscedasticity), ARIMA (autoregressive
integrated moving average) or VAR (Vector autoregressive) models. But, with the
introduction of artificial intelligence (AI) and machine learning (ML) new statistical
methods have garnered wide spread attention within the field of financial forecasting.
Unlike conventional time series models, these new models are often described as far
better equipped at handling noisy and chaotic nonlinear data and should therefore be
better suited to forecasting financial data than conventional models (Kumbure et al.,
2022). If ML models are better equipped at handling large, noisy and chaotic data,
do ML models outperform simpler statistical models during periods characterised by
chaotic and sudden changes, such as recessions?

As interest in the field of ML has increased drastically during the last fifteen
years and significant research has been devoted to improving and develop more
complex models, there exists somewhat of a noticeable optimism concerning the
future ability of both ML and AI amongst the public. Yet, many do argue that
literature within the field of ML forecasting tend to claim satisfactory results without
comparing them with other simpler statistical models such as autoregressive models.
Doing so creates false presumptions regarding the accuracy of ML methods according
to some researchers, creating a false apprehension that ML models due to their
increased sophistication and complexity are superior to simpler statistical methods
(Makridakis, Spiliotis, & Assimakopoulos, 2018).

1.2 Purpose and aim
With the rise of ML models, artificial intelligence and increased computational power
we have new reasons to question the principles of the efficient market hypothesis.
But also whether these newer models can outperform more conventional statistical
time series models. Yet, if the efficient market hypothesis holds true, any forecasting
models, regardless of complexity, should be equally incapable at forecasting future
changes in the market.

This thesis aim at chiefly discerning whether ML model, such as Recurrent Neural
Network (RNN) or Random Forest (RF), can outperform traditional autoregressive
models during periods characterised by chaotic and sudden changes such as recessions.
Given the previous introduction and discussion, the following question is formulated:

2



1 INTRODUCTION

• Can ML models more accurately predict price changes on the Swedish stock
market during periods of recession compared to conventional statistical models
such as autoregressive models?

1.3 Data limitations
This thesis considers forecasting on the Swedish stock market, specifically the market
index OMXS30 (OMX Stockholm 30) which is a weighted average index including
the 30 most traded stocks on the NASDAQ Stockholm stock exchange. Although
granular data is available down to a frequency of minutes for the OMXS30, this thesis
considers a monthly frequency (end of month) as other key economic indicators used
as independent variables for both the VAR and RF model are only available on a
monthly basis. The same restrictions concerning available data limits the studied
time span to a time period starting in 1990.

The studied period contains four recessions: The 90s crises, the IT-bubble, the
financial crises of 2008 and the 2020 stock market crash. Due to the limited time
span this thesis is limited to the financial crises of 2008 as earlier recessions do not
give a sufficiently large training set for the studied models.

Figure 1: Graphical illustration of the OMXS30 before the forecasted period.

1.4 Previous research
Laymen, corporations and researchers have all taken a keen interest in ML models and
their potential uses within the financial market. While many do consider ML models
to be the next development in time series modeling, some argue that the increased
sophistication of such models does not necessarily have to translate to increased
accuracy (Bhattacharjee & Bhattacharja, 2019). When evaluating the accuracy of
ML models such as KNN, RNN, LSTM and RF on historical stock data researchers
have on occasion found that ML models do outperform traditional forecasting models
(Bhattacharjee & Bhattacharja, 2019). Yet, when Makridakis et al. (2018) compared
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1 INTRODUCTION

the forecasting ability of simple statistic and ML models on a data set of over a
thousand time series from the business and finance sector, the researchers found
that the forecasting accuracy of ML models were lower than that of conventional
forecasting models, such as the ARIMA model.

A core problem discussed in relation to forecasting financial markets is the
inherit non-linearity, volatility and unpredictability of financial data. Proponents of
ML models argue that these models are better adapted to handling non-linearity and
therefore more suited to forecasting on financial data (Vijh, Chandola, Tikkiwal, &
Kumar, 2019). When Kavinnilaa et. al. (2021) evaluated the forecasting accuracy
of RNN models in relation to common statistical models the authors concluded that
the LSTM model achieved the highest accuracy. Similar results were achieved by
Sonkavde et al. (2023) when forecasting changes on the European stock market, also
stressing the importance of accurately tuning model hyperparameters.

The performance of forecasting models on the Swedish stock market has been
evaluated previously, chiefly in academic papers written by students. Most of these
thesis, such as Hellman and Pilerot (2017) or Andréasson and Blomquist (2020),
indicates that Recurrent neural network (RNN) in general outperform or perform as
well as autoregressive models when tested on data from the Swedish stock market
(Pilerot & Hellman, 2017; Andréasson & Blomquist, 2020). These thesis all employ
an ARIMA (autoregressive integrated moving average) model as a reference when
evaluating the result of different ML models. Unlike previous papers this thesis
considers a vector autoregressive (VAR) model as a benchmarking model used to
compare with the results of the ML models. While the ARIMA model forecast future
values of the time series based on previous observations and trends within the same
series, the VAR model is a form of multivariate analysis which models the behaviour
of the studied time series based on its statistical relationship to historical data of
other time series (Shumway & Stoffer, 2017).

1.5 Disposition
• Chapter one introduces the thesis background, purpose and previous research.

• Chapter two considers the theoretical background of the used models as well as
a background regarding time series, time series modeling and neural networks.

• Chapter three describes the underlying hyperparameters of each model along
with information regarding dependent and independent variables used for the
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models.

• Chapter four presents the results for each model when forecasting 3, 6 and 12
months ahead during the studied period of November 2007 and October 2008.

• Chapter five discusses the results and thesis in general as well as giving
concluding remarks.

• Chapter six discusses future research.
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2 THEORETICAL BACKGROUND

2 Theoretical background

2.1 Stationarity
A key assumption of any autoregressive models is that of weak-stationarity as the model
assumes that the computed time series represents a realisation of a stochastic process
centered around a constant mean value (µ) independent of time. For any time series
to be considered weakly stationary it needs to exhibit the same statistical behaviour
and a constant probability distribution regardless of analysed time period. Therefore
time series that display long term trends, such as GDP, or seasonality, such as local
temperature, would not be considered weakly stationary (Montgomery, Jennings, &
Kulahci, 2008), for graphical illustration of different time series see Figure 2.

Figure 2: Graphical illustration of time series exhibiting weak-stationarity, seasonality
and long term trend.

Yet, ascertaining whether a time series is weakly stationary or if it exhibit different
statistical properties dependent on time is not obvious. If a time series yt is weakly
stationary it needs to fullfill the following criteria for any t, h ∈ N:

E(yt) = µ Mean is independent on time
VAR(yt) = σ2 Variance is independent on time

COV(yt, yt+h) = ph Constant Auto-correlation independent on time

Generally, when testing for stationarity the Dickey-Fuller test (DF) is employed which
considers a simple AR(1) (autoregressive) model without time trend or drift given by
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2 THEORETICAL BACKGROUND

Equation 2.1 where εt denotes white noise.1 See Section 2.2.1 for further discussion of
the AR model.

yt = φyt−1 + εt (2.1)

Subtracting the lagged value of the time series, yt−1 on both sides:

yt − yt−1︸ ︷︷ ︸
∆yt

= (φ − 1)︸ ︷︷ ︸
ρ

yt−1 + εt (2.2)

∆yt = ρyt−1 + εt (2.3)

As the term εt represents white noise we know E(εt) = 0, V ar(εt) = σ2 and
Cov(εt, εs) = 0 ∀ t 6= s. As a result, any time series with ρ < 0 exhibiting the
same statistical properties independent of time would result in a stationary model.
Therefore the following null hypothesis is formulated and tested using OLS-regression
for the estimator φ:

H0 : ρ =0, time series contains a unit root and is not stationary
H1 : ρ <0, time series has no unit root and is stationary

For time series data exhibiting higher order correlation, the so called Augmented
Dickey-Fuller test (ADF) is used which, unlike the DF test, considers an AR(p) model:

yt = µ + φ1yt−1 + ... + φpyt−p + εt = µ +
p∑

i=1
φiyt−i + εt (2.4)

Subtracting the lagged value of the time series, yt−1 on both sides:

∆yt = µ + ρyt−1 +
p∑

i=1
φi∆yt−i + εt (2.5)

The hypothesis testing for the ADF is the same as for the regular DF test.

2.2 Autoregressive models
2.2.1 AR

An autoregressive (AR) model describes a process in which the output variables of
the model is solely determined by its own previous values and an error term. The
order p of the autoregressive model indicates the number of lags of the model, i.e,
the number of lagged parameters the output of the model is dependent on (Peixeiro,

1The Dickey-Fuller unit root test commonly considers three AR(1) models, including and or
excluding drift and linear time trend, see Dickey-Fuller 1976.
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2 THEORETICAL BACKGROUND

2022). Mathematically the autoregressive model AR(p) is described as:

yt = µ + φ1yt−1 + ... + φpyt−p + εt = µ +
p∑

i=1
φiyt−i + εt t = 1, ..., T (2.6)

Where µ is a constant, φ1...φp are the autoregressive coefficients and εt indicates a
realisation of a white noise process.

2.2.2 VAR

The vector autoregressive model (VAR) is commonly used for evaluating the
relationship between time series. The degree by which the VAR model can predict
future values of the time series is both dependent on the selected variables included
within the model and their correlation. Unlike the AR model, the VAR model is a
multivariate extension considering multiple time series (Shumway & Stoffer, 2017).
Consider a multivariate system consisting of three time series yt, xt and zt, dependent
on p lags of themselves and the other variables:

yt = µy + φ1
11yt−1 + φ1

12xt−1 + φ1
13t−1 + ... + φp

11yt−p + φp
12xt−p + φp

13zt−p + εy,t

xt = µx + φ1
21yt−1 + φ1

22xt−1 + φ1
23t−1 + ... + φp

21yt−p + φp
22xt−p + φp

23zt−p + εx,t

zt = µz + φ1
31yt−1 + φ1

32xt−1 + φ1
33t−1 + ... + φp

31yt−p + φp
32xt−p + φp

33zt−p + εz,t

Where µ is the mean of the time series, φ are the autoregressive coefficient and ε is
the white noise of the model. The VAR model written in matrix form:

yt

xt

zt

 =


µy

µx

µz

+


φ1

11 φ1
12 φ1

13

φ1
21 φ1

22 φ1
23

φ1
31 φ1

32 φ1
33




yt−1

xt−1

zt−1

+...+


φp

11 φp
12 φp

13

φp
21 φp

22 φp
23

φp
31 φp

32 φp
33




yt−p

xt−p

zt−p

+


εy,t

x,t

z,t


Written in a reduced form as:

Yt = δ +
p∑

i=1
ΦiYt−i + εt (2.7)

Where:

p Number of lags
T Number of variables
Yt n×1 vector containing the variables
δ n×1 vector containing the intercepts
Φi n×n matrix of coefficients
Yt−i n×n matrix of i lagged variables
εt n×1 vector of error terms
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2 THEORETICAL BACKGROUND

With any autoregressive model it is critical to determine the optimal lag length for
the model. A common mean of lag length selection is through the use of selection
criteria such as Aiaike Information Criterion (AIC) or Bayesian information criterion
(BIC). These criteria evaluates the sum of squared residuals for including additional
parameters in the model, with the model achieving the lowest value being considered
the best fitting model (Chakrabarti & Ghosh, 2011). According to Chakrabarti and
Ghosh (2011) the AIC is more appropriate when evaluating the best model to use for
future predictions, while the BIC is more useful when selecting a more correct model
in relation to known data.

AIC = 2k − 2ln(L̂)
BIC = k · ln(n) − 2 · ln(L̂)

Where :

n Number of observations
k Number of parameters
L̂ Maximized value of the likelihood

function

2.3 Neural Networks
A neural network (NN) is a structure of interconnected neurons arranged in layers.
Each neuron acts as a function which given an input returns a calculated output
which is weighted and summarised together with the output of the remaining neurons
within the layer (Peixeiro, 2022). In a simple linear model each underlying feature x

is multiplied by a corresponding weight w and summarised to give the prediction of
the next value in the time series, see Figure 3. The mathematical expression for the
next value in the time series using a simple linear model can therefore be described as:

yt+1 = w1x1,t + w2x2,t + w3x3,t + w4x4,t + w5x5,t (2.8)

Figure 3: Structure of a single node in a neural network where each input value xi,t is
multiplied with a corresponding weight wi and summarised to give the output
value yt+1.

9



2 THEORETICAL BACKGROUND

More complex neural networks employ so called hidden layers and are generally
referred to as deep neural networks (DNN) or artificial neural networks (ANN)
depending on the number of hidden layers or depth of the model. Artificial neural
network consist structurally of three types of layers: the input, hidden and output
layer, see Figure 4. The hidden layers allow for a non-linear relationship between the
input data and the output prediction, resulting in a more complex but generally more
accurate model. The added benefit of employing additional layers is that the model is
given more opportunities to learn and thus improve its performance (Peixeiro, 2022).
In general it is better to include a large number of hidden neurons rather than too
few, as a model with an insufficient amount of neurons may not be able to adequately
capture the non-linearity of the data. Yet, NN which employ too many neurons
may result in an overfitted and computationally expensive model which accurately
captures the trend of known training data, but fails at making accurate prediction for
future values (Hastie, Tibshirani, & Friedman, 2009).

Figure 4: A schematic overview of an ANN employing an input layer, three hidden layers
and a single output layer.

A common way to assess the optimal number of neurons for a given model is
through cross-validation. A process where the known sample data is portioned into
two data sets, a training set used to train the data on known values and a test set
which is used to calculate the error of the models predictions. As the number of
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2 THEORETICAL BACKGROUND

neurons increases, the error of the predictions decreases until a point where the error
term converges, indicating the optimal number of neurons (Hastie et al., 2009).

A recurrent neural network (RNN) is a form of deep learning architecture which
is especially adapted to processing sequences of data such as time series, natural
language processing (NLP) or audio where the order of the data matters. Unlike
common NN, the RNN effectively uses previous information from the sequence to
inform the output for the next element, creating a form of memory which allows for
previous elements to have an impact on future predictions. The RNN employs a so
called hidden state, denoted as h in Figure 5, which is computed and updated before
it is passed on to the next element in the sequence.

Figure 5: Schematic overview of a RNN where the hidden state h is passed along
updating the network.

A problem generally associated with RNN is that of the vanishing gradient problem.
The gradient is the function which changes the weights of historical data in the
network, if the gradient is very small the weights of the network seize to be updated
for older historical information. As a result the network only learns from relatively
recent information, creating a short-term and less effective neural network (Mandic &
Chambers, 2001). The problem of vanishing gradient is generally solved through long
short-term memory (LSTM) architecture which is explained in Section 2.4.1.

2.4 Machine Learning models
2.4.1 LSTM

The long short-term memory (LSTM) network is a type of RNN with a complex
system architecture which allows for the individual cells to consider what information
to store and what information to forget. The LSTM network was created with the
intention of addressing the vanishing gradient problem common amongst RNN models
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2 THEORETICAL BACKGROUND

by adding the cell state which allows for the network to keep past information within
the network for longer periods of time (Sherstinsky, 2020).

The LSTM cell acts as a point in the flow of information where new and historical
information is evaluated and filtered before it is passed along the network. A core part
of any ANN, and especially LSTM cells, are the so called activation functions. The
activation function transforms the input value into a output value within a limited
range which allows for a more logical processing of data within the network (Hastie
et al., 2009). The LSTM cell considers two separate non-linear activation functions:
the sigmoid function and the hyperbolic tangent function (tanh).

Figure 6: Graphical illustration of the Sigmoid- and Hyperbolic tangent function.

The sigmoid function maps any input value within the range (0,1) and can be viewed
as a form of probability in decimal form given by Equation 2.9. For the LSTM
network the sigmoid function indicates to what degree previous information within
the network is to be included, with zero resulting in completely discarding the
information and a one indicates keeping all of the information.

σ(x) = 1
1 + e−x

(2.9)

The hyperbolic tangent function (tanh) is a non-linear activation function just like the
sigmoid function. But, unlike the sigmoid funtion, the hyperbolic tangent function
maps the input value within a range between (1,-1) and is given by equation 2.10. See
Figure 6 for a visual representation of both the sigmoid and tanh activation function.

tanh(x) = ex − e−x

ex + e−x
(2.10)

Figure 7 outlines the architecture of a common LSTM cell divided into three separate
processes called gates, each with a separate function.

12



2 THEORETICAL BACKGROUND

Figure 7: A schematic illustration of a LSTM cell consisting of the three gates: Forget-,
Input-, and Output gate.

• The forget gate determines what information from previous steps are still
relevant and should be passed along the sequence. The present element x1 is
combined with previous information ht−1 and duplicated being sent both to
the input gate and to the sigmoid activation function. The information is then
pointwise multiplied with the previous cell state ,Ct−1, generating a new updated
cell state Ct.

• The input gate evaluates what information from the current step is to be kept
within the network. The information ht−1 + xt is passed along from the forget
gate and once again duplicated and sent to the sigmoid function which determine
whether the information is to be kept or discarded, while the hyperbolic tangent
function (tanh) regulates the efficiency of the network. The resulting information
is pointwise multiplied to one another and then pointwise added to the cell state,
Ct resulting in an updated and final cell state.

• The output gate is the point where the new hidden state, ht, and the cell state,
Ct, is constructed and passed along to the next LSTM neuron in the next stage.
The information ht−1 + xt is passed through the sigmoid function and point-by-
point multiplied with the output of the updated cell state Ct and then passed
through the hyperbolic tangent function (tanh) creating a new hidden state ht.

2.4.2 Random Forest

RF is a form of ML method which uses decision-trees to solve problems concerning
classification and regression. A decision-tree is a form of supervised learning consisting
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2 THEORETICAL BACKGROUND

of a hierarchical structure which acts like a decision process where a given input is
processed resulting in a specific output. The input value flows from the root of the
decision-tree along branches to internal nodes which represents a decision based on
specific features (Ho, 1995), see Figure 8 for illustration of a common decision tree.

Figure 8: Illustration of a decision-tree evaluating the risk for a participant to suffer from
an heart attack based on specific features.

Regression based problems considers a regression tree which, unlike the decision tree,
handles continuous variables instead of classes where each leaf (potential output)
represents a numeric value. Each leaf of the regression tree considers a partitioned
space or region represented by a constant value (Sammut & Webb, 2010), see Figure
9.

Figure 9: Illustration of a regression-tree and corresponding graphical illustration as
partitioned areas.

Single decision- or regression trees have one aspect which prevents them from being
ideal methods for predicting or forecasting, namely inaccuracy. While single trees
do exhibit a high degree of accuracy when evaluated on the same data used to train
them, single trees perform poorly on new unknown data. Therefore, the RF considers
multiple decision- or regression trees in an ensemble with trees built in parallel, utilising
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2 THEORETICAL BACKGROUND

a resampling method called bootstrapping. Each individual tree within the RF is
trained on a subset of the training data and a random selection of features resulting in
a large number of trees, each individually different from the other. When forecasting
on new data the RF algorithm aggregates the prediction of all individual tress within
the ”forest”, creating a final aggregated prediction (Hastie et al., 2009).

2.5 Evaluation Metrics
Conventionally when evaluating the performance of any forecasting model the
forecasted values are compared with historical data in an effort to asses the accuracy
of a given model. This approach of evaluating models based on residuals is commonly
referred to as assessing the goodness of the fit, with the best fitting model exhibiting the
smallest error. This thesis considers two forms of error measurement commonly used
when evaluating the accuracy of time series models: MAE and RMSE (Montgomery
et al., 2008).

2.5.1 MAE

The mean absolute error (or MAE) consider the linear relationship between the
forecasted and observed value, where the average of the sum of all residuals indicates
the error of the model, see Equation 2.11.

MAE = 1
n

n∑
t=1

|et| where:
n Number of observations
et Residual

(2.11)

2.5.2 RMSE

While the MAE indicates the linear relationship between the forecasted and observed
value, the root mean squared error (or RMSE) punishes models with large individual
residuals. Unlike the MAE, the relationship between forecasted and observed value is
quadratic, premiering forecasting models with less noisy residuals, see Equation 2.12.

RMSE =
√√√√ 1

n

n∑
t=1

(et)2 where:
n Number of observations
et Residuals

(2.12)
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3 Method

3.1 Variables
As both the VAR and RF model use independent variables, these variables need to
be selected with care. Table 1 describes all variables considered in this thesis starting
from the year 1990 with a monthly frequency.

Variable Description Data Source
OMXS30 Index consisting of a weighted portfolio

including the 30 largest traded stocks
on the NASDAQ Swedish stock market.

(NASDAQ OMX NORDIQ,
2023)

CPI Yearly average consumer price index in
Sweden on monthly basis

(Statistiska Centralbyrån, 2023a)

Export Total Swedish export on a mothly basis (Statistiska Centralbyrån, 2023b)
Oil price Crude oil price ($ per barrel) (Federal Reserve Bank of St

Louis, 2023)

Table 1: Overview of dependent (OMXS30) and independent (CPI, Export and Oil price)
variables used in this thesis.

As it is common for many economic indicators to be reported on a quarterly or yearly
basis, this thesis only considers economic indicators which are reported at least at a
monthly basis. Another aspect which impacts the selection of variables is the need for
the selected variable to have available data stretching back to the 1990s. In selecting
the relevant independent variables used for the multivariate models, this thesis
considers arguments from relevant academic litterateur concerned with evaluating the
relationship between shifts in economic indicators and changes on relevant financial
markets.

The consumer price index (CPI) considers the relative difference in total cost
of a weighted average basket of a typical urban consumer between two different time
periods. The CPI is a common metric to measure inflation, i.e the relative price
increase in goods and services for a country. During periods of increased inflation
it is common for the central bank to increase interest rates, resulting in decreased
investment, spending and output, risking a potential future recession (Blanchard
& Johnson, 2013). Most articles evaluating the relationship between inflation and
short-term stock return find a clear negative correlation, such as Anari and Kolari
(2014) study on the Canadian, US, UK, French, German and Japanese stock market.

Since export is a key component in any countries GDP, export is generally
regarded as a key economic indicator when determining the state of a nations
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economy (Blanchard & Johnson, 2013). An increased export would indicate an
expanding economy resulting in a positive shift on the stock market (Dahlquist &
Knight, 2022). When studying the relationship between exports and stock market
performance of European countries Mads Asprem (1989) found strong correlation
between lagged export values and stock prices. The same strong correlation between
export and changes in the stock market was observed by Celebi and Köning (2019)
when evaluating the impact of macro economic factors on the German stock market.

The impact of sudden changes in oil prices on global financial markets have
been much discussed since the 1970s energy crisis. During recent decades the number
of academic papers discussing the topic has increased noticeably, with most papers,
such as Degiannakis, Filis & Arora (2018), indicating a strong correlation between
increased crude oil price volatility with increased volatility on financial markets. In
relation to the European market, it is especially sudden shocks in crude oil price
which seems to have a statistically significant impact on stock market return (Park &
Ratti, 2008).

See Table 2 for an overview of models and corresponding dependent and independent
variables.

AR VAR LSTM RF
Dependent variable OMXS30 OMXS30 OMXS30 OMXS30

Independent Variables
CPI CPI

Export Export
Crude Oil Crude Oil

Table 2: Overview of each model in relation to used dependent and independent variables.

3.2 Models and hyperparameters
3.2.1 AR

As previously discussed in Section 2.2.1 the number of lags (or order p) for the AR
model describes the number of previous values considered in the forecast. To determine
the optimal number of lag, the AIC for the AR model has been calculated using
different number of lags, see Figure 10. From the figure the optimal number of lags is
determined as 9, since the AR(9) model exhibit the lowest AIC score. As mentioned
in Section 2.2.2 the AIC score is generally regarded as a better metric for evaluating
the predictive performance of a model, which is why this thesis considers the AIC and
not the BIC for time lag selection.
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Figure 10: AIC score for the AR models using different number of lags.

3.2.2 VAR

The number of lags for the VAR model is determined using the same AIC metric as
used for the AR model. Just like with the AR model, the VAR model with the lowest
AIC score is considered to use the optimal number of lags. According to the AIC plot
displayed in Figure 11 a VAR model using 14 lags was determined to be optimal.

Figure 11: AIC score for the VAR models using different number of lags.

3.2.3 LSTM

The LSTM model considers a multitude of adjustable hyperparameters:

• Neurons: The number of neurons within each hidden layer.

• Hidden Layers: The number of hidden layers of neurons between the output and
input layer.
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• Epochs: The number of times the training set is run through the model allowing
the internal parameters to ”learn” and optimise to more adequately fit the
training data.

When selecting the hyperparameters of the model a form of grid search is performed
where models using different hyperparameters are trained and tested on historical
data. The so called loss function is commonly used for hyperparameter estimation
which considers the difference between the estimated and true value (Hastie et al.,
2009). Although there exist a wide variety of loss functions with different purposes,
the LSTM model in this thesis is assessed using the mean squared error (MSE) which
is mathematically described in Equation 3.1.

MSE = 1
n

n∑
t=1

e2
t where:

n Number of observations
et Residual

(3.1)

To improve the performance of the LSTM models and minimise the loss function
different optimizers are selected depending on the nature of the data set and model.
This thesis considers the optimizer Adaptive Moment Estimation commonly referred
to as Adam, which according to Kingma and Ba (2015) is an appropriate optimizer
to use with non-stationary and noisy data. The Adam optimizer also has the added
benefit of being quick to converge, less computationally intensive and commonly used
with LSTM models which makes it a fitting optimizer for this thesis (Peixeiro, 2022).

When selecting model hyperparameters it is important not to select too few
hidden layers or neurons as a too simple model may fail to capture the flexibility
and non-linearity of the data. Yet, creating a far to complex model may result in an
overfitted model less accurate when forecasting future values. Figure 12 illustrates the
mean squared error for the model using the Adam optimizers depending on number
of hidden layers, number of neurons in each layer and number of epochs. As indicated
by the figure the MSE quickly converges around 10 epochs but the total error slightly
decreases by each new epoch. In general it can be stated that the models using more
neurons within each hidden layer performs better than those with less neurons. This
thesis considers a LSTM model with the following hyperparameters:

Hyperparameter Value
Hidden layers 3
Neurons per layer 100
Epochs 30
Optimizer Adam
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Figure 12: The loss function plotted for the LSTM model using different number of
neurons, layers and epoch.
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3.2.4 Random Forest

As with any ML model tuning hyperparameters is a critical aspect in optimising
the performance of any RF model (Probst, 2019). Failure to sufficiently tune
hyperparamaters may result in the model over- or underfitting the data, resulting
in a model unable to generalise and make accurate predictions. The following
hyperparamaters have been considered for the RF model in this thesis:

• The max depth considers the maximum total depth or number of steps in each
individual tree. The max depth is an important hyperparameter as a too long
tree risks overfitting the model while a short tree might lack the necessary depth
to capture complex patterns or non-linearity within the data.

• The number of estimators indicates the total number of regression trees
constructed in the RF. A large number of estimators generally increases the
accuracy and performance of the model, but increases computational cost.

• The max number of features indicates the number of features considered when
splitting a node in each individual decision-tree. A high number of features has
the benefit of improving the performance of the model, yet a too high number of
features decreases the diversity of individual trees within the RF. It is common to
either select the square-root or binary logarithm of the total number of features
as the max number of feature for the model.

To optimally select the hyperparamaters for the model a grid-search was performed
for a variety of hyperparamaters illustrated in Figure 13. This thesis considers the
following hyperparamaters for the RF model:

Hyperparameter Value
Max depth 10
Number of estimators 200
Max features sqrt

3.3 Software
The models used in this thesis were written in Python 3.9 using the following
open-source software libraries: Keras 3.0, TensorFlow 2.13, statsmodels 0.14.1 and
sklearn 1.3. Illustrative and schematic figures have all been designed in Affinity
Designer.
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Figure 13: The loss function plotted depending on the number of estimators for the RF
model using different hyperparametares.
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4 Empirical results
This section considers the results of the four forecasting models: AR, VAR, RF and
LSTM. The results considers the forecasted period between November 2007 and the
end of October 2008, evaluating the accuracy of the models when forecasting 3, 6 and
12 months ahead using the metrics discussed in Section 2.5. The results for the four
models are given in Table 3, 4 and 5. For graphical illustration of the forecasted results
of the AR, VAR, LSTM and RF models see Appendix A, B, C and D.

Forecasting 3-months ahead
RMSE

Autoregressive models ML models
Period AR VAR LSTM RF

Nov 2007 - Jan 2008 131.7 259.9 73.2 80.5
Feb 2008 - Apr 2008 108.9 58.0 90.9 68.7
May 2008 - Jul 2008 100.2 122.7 46.5 118.3
Aug 2008 - Okt 2008 121.6 129.2 282.5 104.9

Average 115.6 142.4 123.7 93.1

MAE
Autoregressive models ML models

Period AR VAR LSTM RF
Nov 2007 - Jan 2008 114.7 243.4 57.6 77.7
Feb 2008 - Apr 2008 101.7 52.2 89.4 67.3
May 2008 - Jul 2008 86.9 111.6 41.2 89.8
Aug 2008 - Okt 2008 91.1 101.4 253.8 91.1

Average 98.6 127.2 110.5 81.5

Table 3: Overview of the results from the four models when forecasting three months
ahead. The results are given as the RMSE (Root Mean Squared Error) and
MAE (Mean Absolute Error) between the forecasted value and the observed
value for the OMXS30.
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Forecasting 6-months ahead
RMSE

Autoregressive models ML models
Period AR VAR LSTM RF

Nov 2007 - Apr 2008 149.5 335.7 105.9 78.2
Maj 2008 - Okt 2008 178.2 201.8 98.7 123.1

Average 163.8 268.7 102.3 100.6

MAE
Autoregressive models ML models

Period AR VAR LSTM RF
Nov 2007 - Apr 2008 139.3 319.1 97.1 59.8
May 2008 - Okt 2008 150.7 172.2 82.3 101

Average 145.0 245.6 89.7 80.4

Table 4: Overview of the results from the four models when forecasting six months ahead.
The results are given as the RMSE (Root Mean Squared Error) and MAE (Mean
Absolute Error) between the forecasted value and the observed value for the
OMXS30.

Forecasting 1-year ahead
RMSE

Autoregressive models ML models
Period AR VAR LSTM RF

Nov 2007 - Okt 2008 222.6 509.7 78.3 104.8

MAE
Autoregressive models ML models

Period AR VAR LSTM RF
Nov 2007 - Okt 2008 199.1 472.3 57.3 86.4

Table 5: Overview of the results from the four models when forecasting twelve months
ahead. The results are given as the RMSE (Root Mean Squared Error) and
MAE (Mean Absolute Error) between the forecasted value and the observed
value for the OMXS30.

From the results indicating the error of each model when forecasting 6 and 12 months
ahead (see Table 4 & 5) the ML models exhibit the highest degree of accuracy with
both the LSTM and RF model outperforming the autoregressive models. The results
also indicate that the VAR model perform most poorly in relation to the other
evaluated models for all studied periods and forecast horizons. This may be explained
by poor predictive power of the independent variables selected for the VAR model.

From the results when forecasting 3 months ahead summarised in Table 3 the
RF model perform on average the best. Both the AR and VAR model forecasting
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3 months ahead during the initial period of the recession performs poorly, while
forecasts performed for later periods exhibit far lower error. Both the RMSE and
MAE indicate that both the ML and autoregressive models when forecasting 3 months
ahead shows about similar results. Indicating small differences between models when
forecasting short periods ahead, unlike when forecasting 6 or 12 months ahead where
results indicate better performance from ML models.
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5 Discussion and concluding remarks
This thesis was written with the intention of comparing the forecasting accuracy
of common statistical models and more complex ML models on the Swedish stock
market during periods of recession. From the results given in Section 4 the ML
models clearly outperforms both autoregressive models when forecasting 6 or 12
months ahead. Indicating that both ML models (LSTM and RF) are better at long
term forecasting on non-linear and sporadic data such as financial markets, something
which is commonly argued for in the literature. The ML models seems notably
better at capturing and predicting future sudden and unexpected shocks in stock
market price which acts contrary to historical trends. This is somewhat expected as
autoregressive models makes predictions on future values based on historical data,
yet the increased accuracy of the ML models indicates how ML may more accurately
predict future recessions.

The accuracy of the autoregressive models increases when forecasting three
months ahead during later parts of the studied period. As the historical data includes
recent downwards trend in the training data it is expected that these forecasts
concerned with forecasting later periods should result in lower error. Never the less,
the RF model performs best when forecasting three months ahead.

As both the VAR and RF uses independent variables to forecast future values
within the time series the accuracy of these models are heavily dependent on the
selection of independent variables. It could be argued that a larger number of
independent variables would increase forecasting accuracy. Yet, it is difficult to
find relevant variables which are reported at a monthly frequency while including
historical data stretching back to January 1990. It should also be mentioned that
variables which could explain changes on the Swedish stock market previously may
not necessarily explain future changes. A deeper discussion regarding relevant
economic indicators and changes on the stock market is interesting but outside the
scope of this thesis.

It should also be mentioned that this thesis only considers two ML models and
two common autoregressive models. There are a number of other common statistic
models (SARIMA, ARIMA, MA etc) as well as other ML models (XGB, SVM etc)
and variations on the LSTM and RF model which would have yielded different results.
When tuning hyperparameters for the ML models only a small subset of the most
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relevant and commonly tuned hyperparameters were considered. This was chiefly
due to time constrain but equally the large number of available hyperparameters
necessitate limitation.

Although the results indicate that the RF model in general outperform the
LSTM model, the results and scope of the study are insufficient to indicate which ML
model is preferred above the other. Hyperparamater tuning along with a different
or larger selection of independent variables would undoubtedly impact the forecast
results and the outcome of the thesis would change. Therefore this thesis does not
claim to make assertions regarding any specific model. Instead the results of the
thesis gives useful insight into the ongoing discussion regarding model selection when
forecasting on financial data.

Forecasting future values on any financial market is inherently difficult and
pose challenging questions regarding model selection, hyperparamaters and modeling
of complex and non-linear time series data. In relation to the OMXS30 we have ample
reason to question the premise of the efficient market hypothesis as well as Burton
Malkiels comparison of the likelihood of predicting future movement on the stock
market with that of a coin toss. In relation to the question posed at the beginning
of the thesis, the results indicates that ML models seems to more accurately predict
future changes on the Swedish stock market than conventional autoregressive models
during periods of recession. Giving credence to previous researchers assertion that
ML are more suited for forecasting on complex and non-linear data such as financial
data.
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6 Future Research
• As mentioned in the previous section this thesis considers only a small subset

of total hyperparameters available for tuning the ML models. Future research
could consider diving deeper into optimal hyperparameter tuning for ML models
when forecasting on financial data.

• While this thesis only employ a handful of independent variables used for
the multivariate models. Future papers could employ far more independent
variables and evaluate what economic indicators best correlate with changes
on the Swedish financial market and thus evaluate which variables to consider
when forecasting using multivariate ML models.

• As this thesis only considers the financial crises of 2008 for evaluating forecasting
accuracy of different models, it would be interesting to see if other studies would
result in the same result when evaluating different periods of recession.
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Appendix A: AR results

Figure 14: Results of the AR model forecasting 3-months ahead during the period Nov
2007- Oct 2008.

Figure 15: Results of the AR model forecasting 6-months ahead during the period Nov
2007- Oct 2008.

32



Figure 16: Results of the AR model forecasting 1-year ahead during the period Nov 2007-
Oct 2008.

33



Appendix B: VAR results

Figure 17: Results of the VAR model forecasting 3-months ahead during the period Nov
2007- Oct 2008.

Figure 18: Results of the VAR model forecasting 6-months ahead during the period Nov
2007- Oct 2008.
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Figure 19: Results of the VAR model forecasting 1-year ahead during the period Nov
2007- Oct 2008.
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Appendix C: LSTM results

Figure 20: Results of the LSTM model forecasting 3-months ahead during the period Nov
2007- Oct 2008.

Figure 21: Results of the LSTM model forecasting 6-months ahead during the period Nov
2007- Oct 2008.
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Figure 22: Results of the LSTM model forecasting 1-year ahead during the period Nov
2007- Oct 2008.
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Appendix D: RF results

Figure 23: Results of the RF model forecasting 3-months ahead during the period Nov
2007- Oct 2008.

Figure 24: Results of the RF model forecasting 6-months ahead during the period Nov
2007- Oct 2008.
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Figure 25: Results of the RF model forecasting 1-year ahead during the period Nov 2007-
Oct 2008.
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