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Abstract

Static type checkers are a popular method for early detection of bugs in
computer programs, by ensuring the correct data types are used throughout the
program. One approach for implementing type checkers are Reference Attrib-
ute Grammars (RAGs), a formalism for specifying the static semantics of pro-
gramming languages by declaring attributes on an abstract tree-representation
of the program, and is used by the JastAdd meta-compilation system.

This report contains a study on the usability of JastAdd to programmatic-
ally generate executable type checkers from a subset of possible typing rules,
known as ’syntax-directed’ typing rules. This aims to provide integration with
existing compilers implemented with JastAdd, as well as a playground for type
systems usable as an educational tool.

We find RAGs to be a flexible model for syntax-directed typing rules, and
our software was able to support small languages from research literature. It
proved difficult to provide compile-time verification of the typing rules, and
further work is required to extend the compiler to support type environments,
a necessity for most real-world type systems.
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Chapter 1
Introduction

While writing software, developers often make mistakes. Catching these mistakes, as early
as possible, can prevent these bugs from ever reaching production code. Type checkers are
one of the most common static checking methods, ensuring that the correct data types are
used. While some languages include type checkers in their compilers, work has also been
done to add static type checkers to existing languages. This requires writing large amounts
of specialised code on a per language basis, but has shown to be effective at detecting
bugs[1][2][3]. Furthermore, making changes to the typing rules of a language can require
extensive rewrites in many different parts of the type checker’s codebase.

In this thesis we examine the feasibility of automating the writing of type checkers,
based on the formal definition of the language’s typing rules, using JastAdd’s implement-
ation of Reference Attribute Grammars (RAGs).

Pacak et al. have previously implemented a compiler for generating incremental type
checkers using declarative logic programming language Datalog[4]. It focused on defining
a way of expressing typing rules as a series of relations solvable by the Datalog compiler.
Our use of RAGs allows us instead to build our analysis directly onto a representation of
the program’s structure. JastAdd is also an interesting target because it has already been
used to implement compilers of several languages, to which our typing rule implement-
ations could potentially be integrated. It is also used extensively in courses within the
Department of Computer Science at LTH, where our project could serve as an educational
tool, providing students an interactive way to define and test simple type systems.

Typing rules form a complex, often ambiguous, and infinite relation. To be able to
translate them into JastAdd code, we will need to define a limited subset of syntax-directed
typing relations. We identify a number of different kinds of typing rules, used in previous
work in the field[5], which share a common set of features for us to implement. We then
devise a strategy to translate these rules into snippets of iterative Java code, which can be
evaluated by JastAdd.

We define a custom parsable language for typing rules adapted from natural semantics,
and introduce a strategy to compile it into RAG attributes. Our case studies show that
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1. INTRODUCTION

simple type systems can be systematically compiled into attributes on the Abstract Syntax
Tree (AST), and the tree syntax provides a natural approach for recursive evaluation. Over-
all, this initial exploration shows that RAGs are a flexible approach for implementing type
checkers for syntax-directed typing rules, though there are difficulties when implementing
rule verification at compiler runtime.

1.1 Research questions
To formulate our goals more concretely, we have set out to answer the following research
questions:

• RQ1: What kinds of typing rules can we translate using RAGs?

• RQ2: How can we implement the translations and what algorithms should we use
for the output code?

• RQ3: What are the challenges in translating typing rules into JastAdd-based RAGs?

1.2 Chapter outline
The rest of this thesis is outlined as follows. Chapter 2 presents the necessary background
information for the report. Chapter 3 describes the design and implementation of our
program, followed by demonstrations of its results in chapter 4. Chapter 5 discusses the
results in a more general sense, before the conclusion in chapter 6.

8



Chapter 2
Background

This chapter aims to provide all the background information required to understand the
work presented in the rest of the report. Section 2.1 explains abstract syntax trees, a sim-
plified tree-based representation of a program, suitable for performing static analysis on.
These are extensively utilised in almost every stage of our project, both in terms of our im-
plementation and the input to the program. Section 2.2 details type systems, by explaining
each of the component pieces, followed by a description of their use within static type
checking.

2.1 Abstract syntax trees
The syntax of a language is the definition of the symbols and structures which make up a
valid program. An abstract syntax tree (AST) is a simplified tree-based representation of
the syntax. Each node in the tree represents a syntactic construct of the language, such as
expressions, statements or declarations and the branches represent the structure. It is ab-
stract in that it neglects to include all the concrete details of the syntax, but rather focuses

If

True FalseGreaterThan

Int
value: 1

Int
value: 0

Figure 2.1: Example of an abstract syntax tree
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2. BACKGROUND

on the structure of the program. Structural elements of the source code, such as paren-
thesis, commas and brackets, are no longer necessary, as the structure of the tree conveys
this semantic information.

This makes it easier to write analysis based on the behaviour of a program, without
concerning oneself with its exact formulation. Several different formulations of a program
with identical behaviour may be abstracted into identical ASTs. The hierarchical structure
of the tree lends itself especially well for recursive analyses, and eases the passing of in-
formation between connected structures by connecting them as parent and children nodes.
Figure 2.1 shows an example of an abstract syntax tree representation of the expression
if 1 > 0 then true else false.

2.2 Type theory
In this section we will discuss the elements of type theory required to understand this
thesis. Firstly, we will discuss what types are and give some examples of their use. Next,
we will describe type systems, which form a relation between types and expressions.

2.2.1 Values and expressions
The main purpose of most computer software is to handle and manipulate data. Each of
these individual pieces of data is a value, which could be anything from the number 4 or
the text ‘Hello!’.

Expressions are a broader term, indicating any syntactic structure which evaluates to
a value. This includes but is not limited to values, which evaluate to themselves, but also
constructs of values, operators or function calls, etc.

2.2.2 Data types
Data types can be considered a categorisation of values which share common properties,
such as supporting numerical operations or accessing a certain element in a list of char-
acters. While expressions may be arbitrarily complex, nested structures, by assigning it a
type, we can perform useful analysis on it, without having to evaluate its value.

Most programming languages come with a number of built-in data types, from different
kinds of numbers (integers, floating point) to strings or lists and arrays.

Different parts of programs may have different constraints on the types of expressions,
such as a print function requiring a string of text, or a plus function requiring some kind
of number.

2.2.3 Type checking
Verifying that these constraints are upheld can assist us in catching programming mistakes,
preventing the wrong data types from being used in the wrong places, which may have led
to erroneous or unpredictable behaviour. There are two main approaches to ensuring the
constraints are upheld, dynamic and static type checking. As our project generates a static

10



2.2 TYPE THEORY

1 abstract Type;
2
3 Bool : Type;
4 Int : Type;

Figure 2.2: Type syntax consisting of two types, for boolean and
integer values, written as a JastAdd AST specification (see Section
2.3.2.1).

type checker, we will focus our explanations on that topic, but provide a quick overview
of their differences here.

Dynamic checking is performed at runtime, with each type checked only when needed.
While this means no checks are performed unnecessarily, it makes it harder to verify the
constraints over the whole program, as it will not be tested until each specific part is ex-
ecuted.

Static checking is performed on the code before it is run, usually as part of compilation,
preventing many faulty programs from being run at all. However, since it lacks knowledge
of what happens at runtime, it is required to take a more conservative approach, flagging
potential errors even in code which will never executed. Static checkers analyse the struc-
ture of the source code, often in the form of an abstract syntax tree.

2.2.4 Type systems
A type system typically consists of two parts, a type syntax, describing the available types
of a language; and typing rules, denoting how types should be assigned to expressions
within the language.

2.2.4.1 Type syntax
We’re using the term ‘type syntax’ to mean a definition of the valid types within a lan-
guage, often referred to simply as the set of types. It can consist of fundamental types,
such as integers or booleans. There may also be parameterised or composite types, for
example lists may have a type parameter defining what values it can contain. This enables
differentiating lists that store integers from those that store strings and ensuring that any
item added to a list must be of the same type as the type parameter.

Figure 2.2 shows an example specification of a type syntax, consisting of only two
types, integers and booleans. This specification is used for all the languages used in our
project.

2.2.4.2 Typing rules
The typing relation, notated t : T, is the link between the expressions of a language and
the types of the type syntax. The left-hand side is an expression in the object language,
typically written in its native syntax, the right-hand side a type from the aforementioned
type syntax.

11



2. BACKGROUND

Typing rules are a manner of inference rules, which in their simplest form, consist of
no more than a typing relation. The typing rule T-True seen in Figure 2.3, for example,
simply assigns the type of Bool to the expression true. Additionally, the typing rules in
these examples have a name, given in parentheses next to the rule, though this is merely
for reference.

true : Bool (T-True)

Figure 2.3: Typing rule for a true value

Typing rules may also have premises, a number of conditions that must hold for the
typing rule to apply. The notational convention here is to put the premises above a bar,
with the conclusion underneath it.

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-If)

Figure 2.4: Typing rule for an if-expression

Figure 2.4 shows an example rule, typing an if-expression. The bottom line, the conclu-
sion, contains the keywords of the if-expression and three free variables ti which represent
any term within the language. Above the bar are three premises, placing constraints on
the three variables, which must hold for the typing rule to apply. The first constrains t1 to
the type bool, the second two constrain t2 and t3 to a type variable T, which represents any
single arbitrary type within the type syntax. While T may be any type, it must consistently
be the same type within any single evaluation of the rule, i.e. the two terms must have the
same type. This T also appears in the conclusion, as the resulting type of the if-expression,
meaning the result of the entire expression will be that of the t2 and t3 terms.

2.2.4.3 Evaluating typing rules
While performing static type checking, the typing rules form the basis of our analysis. By
analysing the program, we attempt to match the syntactic form with the typing rules, to
find the type of the expression. If no matching typing rules can be found, a type error is
produced.

The simplest program possible with the typing rules T-True and T-If, consists of the
single value true. It can immediately be matched to the rule T-True, giving the type Bool.

A somewhat more complex case can be expressed as if true then true else
true. The only rule that matches the structure, is T-If, with true values taking the place of
each of the ti variables. To evaluate this rule, we are thus required to recursively evaluate
the types each of our ti variables, to ensure they match the premises. In this case, the
type of t1 evaluates to Bool, matching the first premise of T-If. The types of both t2 and
t3, represented as the type variable T, also evaluate to Bool. Since both the uses of this
type variable within the premises are consistent, all three of the rule’s premises have been
fulfilled, and the entire expression can be typed as T, which has been found to correspond
to Bool.

12



2.3 REFERENCE ATTRIBUTE GRAMMARS

zero : Int (T-Zero)

Figure 2.5: Typing rule for a zero value

Adding a second value of a different type allows us to express incorrectly typed pro-
grams, for example the program if zero then zero else true. Recursively evaluat-
ing this according to T-If, we find that the premise concerning t1 no longer upholds, as
the type of it now evaluates to Int. Additionally, the type variable T typed by both t2 and
t3 now has contradictory use, being assigned both as the type Int and Bool. As this pro-
gram cannot be found to satisfy any set of typing rules in our type system, it is found to be
invalid.

2.3 Reference Attribute Grammars
This section introduces the subject of Reference Attribute Grammars (RAGs), first ex-
plaining the theory behind them, then introducing JastAdd, an implementation of RAGs
within a Java meta-compilation system[6].

2.3.1 Reference Attribute Grammars
Reference Attribute Grammars are an extension to Attribute Grammars (AGs), a formal-
ism used for specifying the static semantics of programming languages. AGs provide a
systematic way to define computations on the nodes of an abstract syntax tree, associat-
ing attributes with language constructs and are commonly used in the context of compiler
construction, where they help define the translation of source code into executable code[7].

RAGs extend these properties by introducing a new kind of attribute, allowing refer-
ences to other nodes in the AST, and through the references accessing the attributes of
other nodes. This provides a simplified and more flexible method for interconnectedness
between nodes[8].

2.3.2 JastAdd
JastAdd is an implementation of RAGs for Java, offering a flexible system for writing
language analysis in an object-oriented fashion[6]. Our project uses it both for the imple-
mentation of our compiler and as a compilation target, as it outputs JastAdd code.

2.3.2.1 AST specification
One of the key components of JastAdd projects are the .ast files, which declare the

structure of the abstract syntax tree. This specification is then used by JastAdd to generate
Java classes representing the nodes of the AST. These AST classes can have a variety of
forms, supporting both abstract classes and subclasses. They can also contain components
such as Java types, tokens and child nodes, and these components may also be optional or
list components.

13



2. BACKGROUND

1 Expression ::= Term;
2
3 abstract Term;
4 True : Term;
5 False : Term;
6 Or : Term ::= Left:Term Right:Term;
7 Zero : Term;

Figure 2.6: AST specification for the Bools language.

1 aspect TypingRules {
2 syn Type Zero.type() {
3 return new Int();
4 }
5 }

Figure 2.7: Snippet of a .jrag file, declaring a type attribute for
the Zero AST node

Figure 2.6 shows a small example of the specificaton syntax. Each of the node defini-
tions begins with a class name. True : Term; indicates that the True node is a subclass
of the abstract class Term. If a node has child nodes, these are provided after the ::=, and
may either have a name and a type separated by a colon, or only a type. For a detailed
overview of the syntax, see the reference manual[9].

2.3.2.2 RAG Modules
The RAG modules are written in .jrag files and declare the attributes to be included in

the classes generated by the AST specification. Figure 2.7 shows a minimal example. The
files use a syntax very similar to that of Java to declare attributes of a variety of different
kinds, and the body of methods corresponds directly to Java code.

14



Chapter 3
Approach

We begin this chapter with a section presenting our language for writing typing rules, an
adaptation of the natural semantics used to notate typing rules in the academic context. In
Section 3.2 we proceed with presenting the overall architecture of our software, including
an overview graph in Figure 3.4, which may be useful to bear in mind while reading the
rest of the report. Section 3.3 goes into the details of our implementation, how we generate
code for different parts of the typing rules.

3.1 Language design
To express typing rules, we have defined an ASCII representation of the natural se-

mantics syntax used by Pierce[5], with its concrete syntax given in Figure 3.1. Our lan-
guage can express a subset of the notation used by Pierce, with some differences.

The largest difference lies in the notation used for the expression to be typed. Pierce
uses the object language’s native syntactic form, whereas our representation is based on
the corresponding AST nodes. Node names are consistent with those used by JastAdd,
followed by parentheses containing variable names to denote their child nodes in the order
of their definition. This change is necessary to allow us to type arbitrary languages without
needing to understand their syntax and grammar, though it does make translating rules
from one syntax to the other less straightforward.

Another difference is the use of the type variables, which have been made lowercase.
This disambiguates them from the concrete types, which as AST nodes themselves are
written with uppercase letters, and also aligns the syntax for type terms with that of regular
terms, where concrete nodes are written in uppercase and variables in lowercase. Commas
are also used to separate the premises, and the horizontal line separating premises from
the conclusion is represented as a series of dashes.

Figures 3.2 and 3.3 show two rules from Pierce in both their original syntax and our
ASCII representation side by side. The former figure describes a simple rule named T-
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3. APPROACH

1 ruleset = rule_list;
2
3 rule_list =
4 rule
5 | rule_list rule;
6
7 rule =
8 '[' uppercase_id ']' premises_list '---+' formula
9 | '[' uppercase_id ']' formula;

10
11 premises_list =
12 formula
13 | premises_list ',' formula;
14
15 formula = term ':' tyterm;
16
17 term =
18 uppercase_id '(' term_list ')'
19 | uppercase_id '(' ')'
20 | uppercase_id
21 | lowercase_id;
22
23 tyterm =
24 uppercase_id
25 | lowercase_id;
26
27 term_list =
28 term
29 | term_list ',' term;
30
31 uppercase_id = "[A-Z][A-Za-z0-9-]";
32 uppercase_id = "[a-z][A-Za-z0-9-]";

Figure 3.1: A definition of the concrete syntax for the typing rule
language in a notation similar to Backus-Naur form (BNF).

true : Bool (T-True)
1 [T-True]
2 True : Bool

Figure 3.2: A typing rule for the value true in natural semantic
syntax on the left and its equivalent ASCII representation on the
right

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-If)

1 [T-If]
2 t1 : Bool,
3 t2 : t,
4 t3 : t
5 -----------------
6 If(t1, t2, t3): t

Figure 3.3: A typing rule describing an if-expression in natural
semantic syntax and its equivalent ASCII representation

16



3.2 ARCHITECTURE

True, which assigns the true expression the type Bool.
Looking at the notation of the typed expressions in Figure 3.2, the difference is minor,

the syntactic term true has been replaced by the name of the AST node True. The nota-
tional change is more apparent in Figure 3.3, where instead of the full native syntactic form,
the expression is written as an AST node with its children represented as parameters.

3.2 Architecture
In this section we will be presenting our architecture. Figure 3.4 provides an overview of
all the components and the connections between them. The rest of the section goes into
further detail about individual components.

3.2.1 Typing rule definition
To express typing rules, we created a simple ASCII representation of the natural deduction
notation used by Pierce[5].

3.2.1.1 Typing rules parser
The parser for typing rules is written using JFlex[10], a scanner generator, and Beaver[11],
a parser generator. JFlex takes a series of regular expressions to generate a tokenizer for
the parsed language. The tokens are passed on to Beaver along with a parser definition in
extended Backus-Naur form (EBNF), to generate a parser.

3.2.1.2 Typing rules AST
The abstract syntax tree for the typing rules language consists of a RuleSet root node.

The root node contains only a list of rules, where each rule has a name, a conclusion and
a list of premises. The rule’s name is currently unused but is intended to be utilised in
error reporting, to clearly specify what rules are available for each node, or which rule is
causing an error.

Both conclusion and premises are represented by the abstract HasType node, consisting
of a term, which may be a function or value; and a typeterm, representing either a type
value or a type variable. For the conclusion, this node represents what type should be
assigned to the term on the left, whereas for the premises, the node represents a requirement
for the node on the left to have the type on the right.

Currently, our compiler does not support type parameters, so they are not included in
the AST. To support this in future, an additional TyTerm could be added which includes a
list of TyTerms along with its ID.

3.2.2 Support library
In addition to the generated type checking files, there are a number of files that are added
to the output file that are identical for all generated type checkers, which we refer to as

17
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Typing rules
definition (3.2.1)

Scan,
parse,
build

Typing rule parser
(3.2.1.1)

Typing rules AST
(3.2.1.2)

Generate
type checker

Typing rule
compiler (3.3)

Type checker
(3.3.1)

AST specification
(2.3.2.1)

Perform
typechecking

Input program
AST

Scan,
parse,
build

Type errors
(3.3.4)Input program

Tree-based
parser

(3.2.2.1)

Project files
(3.2.2.2)

Type checking
aspect (3.3.3)

Type syntax
AST (2.2.4.1)

Support library

Object language
static semantics

Artifact
User provided
Generated
Process
Flow
Flow (Temporary)

Figure 3.4: An overview of the project components and flow. It
represents the flow of the program, with components and artefacts
(represented as rectangular boxes) with arrows linking them to ac-
tions (elliptical boxes) which in turn have arrows to the new com-
ponents and artefacts they produce. The dashed arrows represent
links from the support library components that exist in the current
experimental state of the project, but in a finished product would
instead link from components out of the object language’s own
compilation environment.
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3.2 ARCHITECTURE

1 RuleSet ::= Rule*;
2
3 Rule ::= <Name> Conclusion:Formula Premises:Formula*;
4
5 abstract Formula;
6 HasType : Formula ::= Expr:Term Ty:TyTerm;
7
8 abstract Term;
9 Function : Term ::= <ID> Term*;

10 Value : Term ::= <ID>;
11
12 abstract TyTerm;
13 TyVal : TyTerm ::= <ID>;
14 TyVar : TyTerm ::= <ID>;

Figure 3.5: Typing rules abstract syntax tree specification

the support library. Some of these are key components of the type checker, but others
are dummy components included solely for convenience of testing. We expect that in
a real world use case, our software would integrate into an object language’s compiler
pipeline, and utilise its own parser and project files to provide the abstract syntax tree for
our type checking to tie into. For testing purposes, we have written generic versions of
these components, which work for any supported object language.

3.2.2.1 Input program parser
For testing purposes, our support library comes with a generic tree-based parser. Programs
are written as a tree of AST node names followed by potential parenthesis within which
a comma separated list of child nodes are written. The parser parses the tree recursively,
using Java’s reflection API to find a class with a matching name, and a constructor with
parameters of the same amount and types. Figure 3.6 shows an example input file for the
Bools language, which will be discussed further in Section 4.1.

1 Expression(
2 Or(
3 True,
4 Or(
5 True,
6 False
7 )
8 )
9 )

Figure 3.6: Example tree-representation input for the Bools lan-
guage

This approach does have the issue of occasionally parsing invalid programs, due to
the reflection API finding an additional parameterless default constructor. This leads the
parser to always accept nodes written with no children, such as Expression(Or()), even
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3. APPROACH

if the AST specification requires them. These children will be null, causing issues further
down the line, though as this parser is only intended for testing it is of little concern. Our
tests have been carefully written to avoid this error, and any faulty tests would result in
obvious null pointer exceptions during further evaluation.

3.2.2.2 Project files
For ease of use the compiler will output a complete runnable Gradle project. It can parse
simplified tree-representations of programs, and utilise these to perform the type checking.
In a future real world use case, it is intended for our generated type checking aspects to
integrate into a pre-existing project, which already has all the necessary project files to
parse an AST tree, to which our type aspects could integrate.

3.3 Implementation
In this section we present our approach to translating typing rules. We start by present-
ing pseudocode for our typing rule evaluation. This is followed by Section 3.3.2, which
explains how we generate code to implement this algorithm.

3.3.1 Type checking algorithm

1 foreach typevar in rule.typevars:
2 typevar.type = null;
3 foreach premise in rule.premises where premise.rhs == typevar:
4 if typevar.type == null:
5 typevar.type = premise.lhs.type()
6 else if typevar.type != premise.lhs.type():
7 throw typeerror("Type variable mismatch")
8
9 // Check if all evaluated left-hand side types match their right-hand

side
10 if allTrue(rule.premises.map(p => p.lhs.type() == p.rhs)):
11 return rule.conclusion.rhs
12 else:
13 throw typeerror("Typechecking failed")

Figure 3.7: Pseudocode for the implementation of the type() at-
tribute

Here we aim to give an overview of the algorithm used to evaluate the typing rules.
Figure 3.7 contains a pseudocode algorithm for the evaluation of a typing rule. It is not
representative of the actual generated code, but captures its behaviour in the manner of an
interpreted language.
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3.3.2 Code generation
In this section we will present the code we generate to implement the previously discussed
algorithm. Once typing rules have been parsed, we end up with an abstract syntax tree,
in the form of Figure 3.5, where the RuleSet is the root node. From the root node, calls
propagate down the tree to fill in increasingly specific sections of the code.

3.3.2.1 Aspect generation
The RuleSet node is responsible for generating the overall structure of the output file, a
JastAdd aspect called TypingRules. It sorts its Rule children by which nodes they apply
to, so that if multiple typing rules type the same node, they can be inserted into the same
method implementation (though this feature is not yet fully working).

3.3.2.2 Method implementation overview
The implementation of a typing rule can range from a single return statement to a system
of declarations of variables, type variables and control flow. These are explained in further
detail in subsequent sections, but here follows a quick overview.

Firstly, the algorithm checks if the number of premises is zero, in which case it imme-
diately generates the conclusion, consisting of a return statement. If there are premises, it
first generates code for the declarations of variables and both declarations and unification
for type variables. This is followed by an if-statement to test whether the premises hold
true, containing a return statement. Should the premises not hold, a type error is produced.

3.3.2.3 Child nodes
When the typing rules concern a node with children, these are bound to free variables
which can be named arbitrarily. A variable with the same name will be instantiated at the
beginning of the method, fetching the corresponding child node by index. This naming
format means any errors reported will use the same variable names as the user has defined
in the typing rules, in order to minimise the disconnect when analysing errors from the
generated code. However, it also means it is not possible to name a variable any of the
reserved keywords in Java. This could be alleviated by adding a prefix to the variable
names, at the cost of a slight indirection for the user. These variables are then utilised in
later premises or type variable declarations.

3.3.2.4 Type variables
In the case of type variables, much of the logic is handled at runtime, to simplify the
code generation. Each type variable that appears in the conclusion is instantiated to a null
value, and the code generated by each premise first checks if the value is still null and
either assigns the variable its own type or tests to make sure the existing type matches its
own.

The generated code could be simplified in future work by instantiating the type variable
to the type of the left-hand side of the first premise it appears in, and then only checking
if each of the subsequent uses match it.
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3.3.2.5 Premises/control flow
For rules containing premises, the return statement is protected by an if-statement. At this
point we’ve declared variable for each of the child nodes and type variables used, so the
premises can very directly be translated into boolean expressions. A premise x : Bool
translates into the expression x.type().matches(new Bool());. This includes a call
to the type() of each left-hand side of the premise, recursively evaluating the necessary
types. Since our typing rules can only reference their direct children, this recursion will
always progress down the program’s AST, ensuring termination. Each of the boolean
expressions then joined by the && operator into a single if-statement, protecting the return
of the right-hand side of the conclusion. For the case where any of the boolean expressions
is false, the if-statement is followed by a thrown exception representing a type error.

3.3.3 Type checking aspect
The type checking aspect contains the declaration of the type() attribute for all AST
nodes, as well as a default implementation. This default implementation immediately
produces a type error, to cause an error when the type of an expression not defined in
the typing rules is demanded.

It also contains the implementation of the type matching attribute, as defined in Figure
3.8. The current implementation of Type.matches(Type t) checks that the two types
are the exact same, though we also considered an implementation that checks if the Type
it is called on is either of the same class or a subtype of the type t. This would allow the
language limited sub-typing at the type checker generation step, but at the risk of causing
hard to predict behaviour and hidden order dependencies with type variables.

It is also possible to override the matches implementation for a specific Type, by
adding a definition to a JastAdd aspect included in the output type checker. This could
potentially be used to compare type parameters in future versions, or support for ad-hoc
type polymorphism.

1 syn boolean Type.matches(Type t) {
2 return getClass().equals(t.getClass());
3 }

Figure 3.8: Definition of the type matching method

3.3.4 Error handling
The current error handling consists of throwing a runtime exception at the first discovered
type error, ceasing the type checking immediately. This method was chosen solely for its
simplicity of implementation, rather than its functionality. Possible improvements to it are
discussed in Section 6.1.2.

It provides a stack trace with information on see where in the type checking code the
error occurs (such as what typing rule fails), but doesn’t currently provide any information
about what section of the input program causes the error.
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Chapter 4
Evaluation

In the first section of this chapter, we present typing rule definitions for a few simple type
systems, alongside the resulting code produced as an output when they are input to our
compiler.

In Section 4.2, we evaluate the overall result of our study by answering our research
questions.

4.1 Results
We have chosen to evaluate our program using two example languages, inspired by the
languages Booleans and Numbers introduced in Types and Programming Languages[5].
We have chosen to simplify the languages somewhat, to reduce the amount of equivalent
cases for our program to parse, making it easier to evaluate each feature individually. Thus,
we have defined two languages Bools and BoolsIf, where the former is a simple language
consisting of boolean values, an OR operator, and a zero-value. This is a minimal case to
produce a meaningful type checker, as it contains values of two different types and a rule
with premises limiting the types.

The second language BoolsIf is an extension to the Bools language. It adds an if-
expression, which typing rules utilises type variables to ensure both if and else terms have
the same type, and then uses that type as its own type.

4.1.1 Bools
A simple example of a language is provided in Figure 4.1, consisting of three val-

ues, True, False and Zero; and the boolean operator Or with two parameters, Left and
Right. In the AST specification, there are no limitations on what terms can be provided as
parameters to the Or operator, allowing illogical constructs such as Or(True, Zero).
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1 Expression ::= Term;
2
3 abstract Term;
4 True : Term;
5 False : Term;
6 Or : Term ::= Left:Term Right:Term;
7 Zero : Term;

Figure 4.1: AST specification for the Bools language

1 [T-True]
2 True : Bool
3
4 [T-False]
5 False : Bool
6
7 [T-Or]
8 left : Bool,
9 right : Bool

10 ----------------------
11 Or(left, right) : Bool
12
13 [T-Zero]
14 Zero : Int

Figure 4.2: Typing rules for the Bools language

To prevent cases like these, we define typing rules via the specification in Figure 4.2.
The typing rules for True, False and Zero contain no premises and define the type as Bool
and Int as appropriate. The typing rule for the Or operator, which takes two parameters
left and right, contains two premises, specifying that the Or operator has the type Bool
only if both the left and right terms also have the type Bool.

The typing rules from Figure 4.2 generate the type definitions in Figure 4.3. The simple
rule definitions for the values compile into equally simple implementations, consisting of
a single return statement of a newly constructed Type object. For the Or node, the code
becomes slightly more complex. It declares variables corresponding to the child nodes
given in the parameters, followed by an if-statement to check if the premises are upheld
by recursively evaluating the types of the child nodes. Depending on the result of this
evaluation, either a Bool type is returned, or a type error is thrown.

This type checker accurately captures the intended behaviour of the typing rules.

4.1.2 BoolsIf
As an example of rules utilising type variables, we have extended the Bools language

with an if term, as used in Pierce’s Booleans language[5]. This if term captures each of the
utilities of type variables in typing rules, using it both to ensure that multiple terms are of
the same type and then using that same type as the result of the rule evaluation. As shown
in the AST extension in Figure 4.4, it consists of three terms: a conditional, a term to be
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1 aspect TypingRules {
2
3 syn Type Zero.type() {
4 return new Int();
5 }
6
7 syn Type Or.type() {
8 ASTNode left = getChild(0);
9 ASTNode right = getChild(1);

10
11 if(left.type().matches(new Bool()) &&
12 right.type().matches(new Bool())) {
13 return new Bool();
14 }
15 throw new RuntimeException("Typechecking failed");
16 }
17
18 syn Type True.type() {
19 return new Bool();
20 }
21
22 syn Type False.type() {
23 return new Bool();
24 }
25 }

Figure 4.3: Generated typing rules for the Bools language (re-
formatted for readability)

1 If : Term ::= Cond:Term Then:Term Else:Term;

Figure 4.4: The additional term introduced in the BoolsIf lan-
guage, extending the Bools AST in Figure 4.1

1 [T-If]
2 x: Bool,
3 y: a,
4 z: a
5 --------------
6 If(x, y, z): a

Figure 4.5: Additional typing rules for the BoolsIf language, an
extension for the Bools typing rules in Figure 4.2 with an if term
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1 syn Type If.type() {
2 ASTNode x = getChild(0);
3 ASTNode y = getChild(1);
4 ASTNode z = getChild(2);
5
6 Type tyvar_a = null;
7 if(tyvar_a == null)
8 tyvar_a = y.type();
9 else if (!tyvar_a.matches(y.type()))

10 throw new RuntimeException("Typechecking failed: Type variable
mismatch");

11 if(tyvar_a == null)
12 tyvar_a = z.type();
13 else if (!tyvar_a.matches(z.type()))
14 throw new RuntimeException("Typechecking failed: Type variable

mismatch");
15 if(x.type().matches(new Bool()) &&
16 y.type().matches(tyvar_a) &&
17 z.type().matches(tyvar_a)) {
18 return tyvar_a;
19 }
20 throw new RuntimeException("Typechecking failed");
21 }

Figure 4.6: Generated typing rule for the if term added in the
BoolsIf extension. The rest of the typing rules are identical to
those in Figure 4.3. (Reformatted for readability)
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evaluated if the condition is true and a condition to evaluate if false. A typing rule of this
if term can be seen in Figure 4.5. The rule has three premises, the first of which declares
the conditional must have the type Bool. The next two declare that the two other children
must be of the type a, with the lowercase identifier indicating a type variable. This type
variable a also subsequently appears in the resulting type of the if term.

The code for this rule is shown in Figure 4.6, and begins with three local variable
declarations as in previous rules, followed by a new type variable declaration on line 6,
which is instantiated to null. For each invocation of the type variable, a code section is
generated, which checks if the type variable is still null, and if so assigns it to the type
of the left-hand side term, or if it has been assigned checks whether the types match each
other. Should any non-matches be found, a type error is thrown.

The rest of the method is similar, with premises being checked – including a redundant
check of the type variables, as mentioned in Section 3.3.2.4 – before returning the type
variable, or a type error being thrown. This type checker accurately captures the intended
behaviour of the typing rule.

4.2 Research questions

4.2.1 RQ1: What kinds of typing rules can we trans-
late using RAGs?

Our project has shown that generating type checkers using RAGs is a viable solution for a
number of different language constructs. To evaluate the completeness of our implement-
ation, we refer to Pierce[5] as a reference work. Typing rules are first introduced in chapter
8, with two simple languages in Figure 8-1 and 8-2. The first, Booleans (generally referred
to as B) consists of only the syntactic structures true, false and if t then t else t.
Extracts of the typing rules for the B language were used Section 3.1. The second lan-
guage called Numbers (NB) is an extended version of B, adding arithmetic expressions.
This introduces the terms 0, succ t, pred t and iszero t.

Both the B and NB languages are fully supported by our project, and our Bools and
BoolsIf languages were devised to utilise all the same language features but in a more
condensed form. In chapter 9, Pierce introduces the Simply Typed Lambda Calculus,
which typing rules our compiler does not yet support, as they require environments, a
feature we’ll discuss in Section 6.1.1.

We have implemented support for simple syntax-directed type declarations, where a
value or function always has a certain type. These simple rules are not of much interest
in themselves but are an important backbone to the subsequent analysis. We also support
type declarations with premises that must hold for the rule to apply, allowing us to express
relationships between types and bringing with them the possibility of type errors.

Type variables extend these relationships further by providing a layer of abstraction,
allowing us to write rules where the types are not precisely defined. This enables rules
where the return type of an expression depends on its child expressions, or where child
expressions must have the same types.
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4.2.2 RQ2: How can we implement the translations
and what algorithms should we use for the
output code?

The basis of our approach has been to translate typing rules into type() attributes added
to the program’s AST. We opted for an approach where a successfully evaluated typing
rule returns a Type value, defined in a separate type syntax file, while a failed rule throws
a runtime exception representing a type error.

In this section we will be analysing different aspects of this approach, and compare
them to potential alternative approaches.

4.2.2.1 Type syntax

We have chosen to represent the right-hand side of type equations, the types themselves, as
an abstract AST class. While our current implementation only supports simple types, this
representation gives us a lot of flexibility for future extensions. Parametric types, such as
lists where the type of the list contains information about the types of its elements, could
be expressed as simply as MyList : Type ::= Type;.

The current implementation of matches() would however consider all lists to match,
without comparing the child nodes. Perhaps the default implementation could be extended
to compare all child elements, at the risk of potentially tricky evaluation, or these more ad-
vanced types would require manually overriding the method. Yet another approach may be
to design a way to define type equality within the typing rules, allowing users to customise
the behaviour without having to resort to manually writing JastAdd code.

4.2.2.2 Error handling

We have implemented premises as conditions of a single if-statement, where we check that
each premise holds true before returning the type, or falling through to a type error if the
premises do not hold. It might instead be worthwhile to check each condition individually,
to be able to specify in the error message precisely which premises have failed and why.
If paired with the current error handling of throwing an exception to convey type errors,
it would make it harder to implement having multiple valid rules providing the type of an
expression, as the first failure would throw an exception, stopping the evaluation of any
further typing rules which may have been successful. An alternative error handling would
suit it better, one able to collect multiple errors without seizing evaluation, perhaps merely
adding all the errors to a list and checking whether it is empty before returning a type.

A more informative solution to this might be to view rules as a kind of pattern match-
ing, where each rule is evaluated one by one until a matching one is found. Instead of
reporting the reason any individual rule failed, the error might instead display either all
or only the best matching of the rules it tried to apply, perhaps with a list of non-holding
premises for each one.
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4.2.2.3 Variables
The variables in the typing rules are compiled into regular Java variables containing the
AST node. Notably, the declarations of these variables type them merely as ASTNode. As
we currently only utilise the type() attribute, which is declared for all nodes, this lost
information has little impact. However, in the future it may become relevant to type these
more specifically, to support more complex rules that require deeper analysis within the
tree.

4.2.2.4 Type variables
Type variables are implemented as Java variables and as we currently only support type
variables scoped within a single typing rule and lack support for type parameters, all uses
of it will be known directly at the evaluation of the typing rule. Thus, our unification
algorithm can be very simple. All our type variables are initiated as null, to represent the
type variable’s unassigned state. This is followed by a check for each point of use in the
typing rule, to see whether the type variable is still unassigned and if so assign it to the
type of the left-hand side.

This approach could be improved by finding the first use of each type variable during
the rule compilation, and generating a single declaration statement initialising it to the type
of the corresponding expression.

4.2.3 RQ3: What are the challenges in translating
typing rules into JastAdd-based RAGs?

4.2.3.1 Technical challenges
Writing idiomatic JastAdd components often requires splitting a single algorithm into
many different pieces of code. Our approach to generating type attributes was based
around recursively traversing the typing rule AST to fill in each bit of information, rather
than having one parent node trying to form an understanding of the entire tree. The plus
side of this recursive approach is that each component does not need an intricate under-
standing of the nodes underneath it. For example, a Rule node does not need to know
whether the right-hand side of the conclusion is a concrete type or a type variable. The
HasType node representing the conclusion generates the structure of the return statement,
calling on the right-hand side node to fill in the exact type.

However, this code could at times become complex, as certain lines required bits of
information from several different parts of the AST, several steps apart. Propagating this
information required adding intermediate attributes to nodes throughout the AST, lead-
ing to a complex set of interdependencies. If we want to change a specific token of the
generated code, tracing down the exact attribute it is generated in can be tricky.

Using JastAdd simultaneously as a library and a build component proved difficult on
several occasions. The largest issue was that some of the features we intended to support,
such as verifying that typing rules correspond to valid nodes within the object language
AST, were complicated by having to parse the object language AST at runtime, using
JastAdd as a library rather than a build tool. JastAdd does not expose any methods for
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Γ ⊢ t : S S <: T

Γ ⊢ t : T
(T-Sub)

Figure 4.7: A typing rule for subtyping, an example of a non
syntax-directed typing rule.

parsing an AST tree at runtime, and we had to access undocumented, private methods
through Java’s reflection API to get the relevant information. Unfortunately, the resulting
data was hard to work with, and we could not allocate enough time to implement the
planned features. It may be that this use case is beyond the intended scope of JastAdd, or
it is perhaps only poorly documented. In either case, while our experimentation has shown
it to be technically possible, the complexity is worth bearing in mind for future work.

Not being able to perform these error checks during the generation of our type checker
means our translation will emit nonfunctional typing definitions if a mistake is written in
the typing rules. These errors will then go unreported until the output project is compiled
or run, at which point the user will have to attempt to trace these errors back to the typing
rule definition, to find the actual cause. As JastAdd itself also adds a layer of indirection,
by taking the attributes defined in RAG modules and compiling them into generated Java
class files, this can be particularly tricky.

We also ran into a few tooling issues. The first was Gradle not willing to recognise
JastAdd as both a library and a build component, which we eventually solved by manually
providing a jar file separately from the resolved build dependency. The second one was
our Language Server Protocol (LSP) server, jdtls, not recognising JastAdd imports and
flagging every use thereof as an error, which we never managed to fix.

4.2.3.2 Conceptual challenges
On the more conceptual side, a fundamental challenge of our approach is how to implement
non syntax-directed rules. The structure of our program is based around turning typing
rules into evaluable attributes on the AST. This means we inherently tie typing rules to a
specific AST node, creating a direct link between typing rules and the syntax.

However, more complex type systems may require rules that are not syntax-directed,
where a rule does not apply to any specific AST node. A common example use case for
this is subtyping, where any expression of a certain type can also be considered to be any
of that type’s supertypes. Figure 4.7 shows a subtyping rule taken from Pierce[5].

With our approach, this rule would have to change the behaviour of every generated
type() attribute. Additionally, we would require an implementation supporting type poly-
morphism, where a single term can be evaluated to have multiple different types.
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Chapter 5
Related work

Pacak et al. implemented a compiler for generating incremental type checkers using de-
clarative logic programming language Datalog[4]. While the goal is similar to ours, their
project defines a formalism for expressing typing rules within the Datalog language, whereas
ours defines a language which aims to keep as close as possible to the traditional inference
rules used for typing rules, to minimise the difficulty of translation.

Their work ends up largely focused on expressing typing rules within the limits of
the Datalog language, which can only compute finite relations. We have a significantly
different compilation target, JastAdd, which allows us to use reference attribute grammars
to evaluate the typing relations, utilising a built-in AST structure. Whereas Datalog is a
fully declarative language, with JastAdd we express typing relations as declared attributes
on the AST, with their implementations written in imperative Java code.

Other related work has been done in the domain of compiling natural semantics, without
the specific focus on generating type checkers.

An early compiler for natural semantics was made by Mikael Pettersson in 1996[12].
They wrote a compiler in Standard ML which generated C code, linked to a custom runtime
system.

Saioc and Hüttel developed a compiler for natural semantics[13]. They did so by de-
fining a parsable meta language adaptation of natural semantics, similar to the one we
defined for writing typing rules. Their project was however focused on verifying the cor-
rectness of these definitions and finding errors in their definitions. This was something we
had hoped to explore more in our own work, but ended up deprioritising after running into
issues with JastAdd.
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Chapter 6
Conclusions

Our experiments have shown that reference attribute grammars are a flexible method for
implementing type checker generators. Implementing the first end-to-end prototype was
challenging and took quite a lot of work, but extending it with additional features such as
type variables turned out to be a surprisingly painless experience.

However, our compiler still has a long way to go before it can be used for real world
use cases and general purpose languages. Chief among the missing features is the concept
of environments, without which we are unable to support even common language features
such as variables or functions.

6.1 Future work

6.1.1 Environments
Implementing environments, or type contexts, would be the clear next step for this pro-
ject. However, its implementation is not entirely clear-cut, with several aspects requiring
consideration.

The essence of environments is the mapping of variables or functions to types, and
an appropriate representation of this would need to be found. A method often used by
traditional type checkers is a symbol table, a separate data structure mapping language
constructs to their types. In our case, we may instead be able to leverage our reference
attribute grammars to store the information within the AST. By connecting each use of a
variable or function to the AST node representing its declaration site, we could utilise the
node to store the type information. This approach would however also have to consider the
typing of external language constructs, such as built-in functions or those imported from
external libraries, for which we would not have access to the declaration site.

A type checker working on these principles is certainly a possibility, though it remains
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to be seen how it could be generalised to the generation of typing rules for arbitrary lan-
guages.

6.1.2 Improved error handling
The current exception-based error handling is rather primitive and leaves much to be de-
sired. Some improvements, such as providing more useful error messages, could be pos-
sible by making minor changes to how these exceptions are generated. Information such
as what part of the input program the type error occurred at, what the failing typing rule
was and what prerequisites it has, could be added to the exception message, for a quick
usability improvement.

An improvement demanding more extensive changes would be collecting multiple er-
rors, instead of seizing the type checker at the first discovered error. This could be im-
plemented by adding another type class to be returned when an error occurs, representing
the ‘Any’ type. Any matches() call on this type would return true, to avoid one error
cascading into many, but still allowing other unrelated errors to be discovered. This im-
plementation would also need new functionality to collect the error messages, perhaps by
splitting the type resolution and type errors into separate attributes for each node, where
the type errors propagate to a program-wide collection.

It may be possible to create this by wrapping around the current implementation with
two additional attributes. One would be a total function, that returns the type evaluated
by the current type() method if it is successful or returns the Any type in the case of
an exception. The second attribute would contribute an error to the error collection only
in the case of an exception. The only other changes required would be to use the total
wrapped method within the generated attributes.

6.1.3 Verify rules against AST
Major improvements to the user experience could be made by tying the typing rules to the
object language AST before generating the type checker. Currently, there are no checks in
place to verify the completeness of the typing rules. If a user accidentally leaves out the
typing rule for a certain construct, they will receive no warning until the outputted type
checker attempts to check the expression’s type.

Similarly, no checks are made to ensure the nodes described in the typing rules actually
exist within the language’s AST. Our project will compile invalid or misspelled typing
rules without complaint, leading to errors which will not be caught until the outputted
type checker is attempted to be compiled.

6.1.4 Handle multiple rules for the same node
In type systems it is generally considered valid to have multiple typing rules for the same
construct, with different, non-intersecting prerequisites. It could, for example, be useful
to type an addition operator for a variety of different numerical types, which may not have
a common ancestor.
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Most of the work to support this is in place, though the first rule to fail would throw
a type error exception, preventing the later rules from evaluating. These errors would
either have to be caught, and only emitted if all rules had failed, or a new error handling
system not based around exceptions could be introduced. Additionally, an extra layer of
scoping would have to be introduced, to prevent variable naming collisions between the
different rules. This could be solved simply by wrapping each rule within brackets, creating
a separate scope for the evaluation of each rule, or relabelling the variables to prevent
collisions.
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Appendix A
Source code

The source code for our project is available at
https://github.com/nichobi/thesis-project,
with the README.md file providing instructions for use.
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Typkontrollerare är ett vanligt verktyg för att hitta buggar i datorprogram, men är
relativt komplicerade att skapa. Jag har byggt ett program som automatiskt skapar
typkontrollerare för program utifrån en kort definition.

Datorprogram hanterar ofta många olika dataty-
per, och fel användning av dem är en av de van-
ligaste buggarna. För att hitta dessa buggar an-
vänds typkontrollerare, som systematisk går ige-
nom hela programmet och verifierar varenda an-
vändning av variabler eller värden för att se till
att rätt datatyp använts på rätt plats.

Ett typfel i ett vanligt programmeringsspråk,
där en siffra används istället för ett booleskt
(sant/falskt) värde.

Dessa typkontrollerare är dock komplicerade att
skapa, och är ofta starkt kopplade till ett speci-
fikt programmeringsspråk. Det innebär att varen-
da programmeringsspråk behöver skapa sin egen
typkontrollerare, och leder till en otrolig mängd
upprepat arbete. I mitt arbete har jag skapat ett
verktyg för att generera typkontrollerare per au-
tomatik, utifrån en kort och koncis definition av

programmets regler.
Detta görs genom att baka in kod i ett av mel-

lanleden när programmet omvandlas från männi-
skoskriven text till maskinexekverbar kod. Mellan-
ledet har en struktur lik ett släktträd där allt här-
stammar ifrån roten, med grenar som represente-
rar olika kodstrukturer, och som i sig kan delas av
i flera grenar.

Därmed kan vi enkelt skapa typkontrollerare för
nya språk på ett kortfattat vis, genom att bara de-
finiera vilka regler som ska finnas och inte behö-
va fundera över hur man implementerar dem. Det
underlättar också om man vill göra förändringar i
systemet, eftersom det är mycket lättare att ändra
de koncisa reglerna än att ändra de många raderna
kod som kan krävas för att implementera den.

I nuläget är programmet ganska begränsat i
hur komplicerade typkontrollerare det kan gene-
rera, och skulle inte kunna appliceras på något av
de stora, kända programmeringsspråken. Däremot
klarar det flera exempel från forskningslitteratu-
ren, och tillvägagångssättet har dock visats vara
flexibelt och utbyggbart. Man borde alltså kunna
vidareutveckla programmet för ett bredare stöd i
framtiden.
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