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Abstract 
 
Land cover classification is one of the most studied topics in the field of remote sensing, involving the 
use of data from satellite sensors to analyze and categorize different land surface types. There are 
numerous satellite products available, each offering different spatial, spectral, and temporal resolutions. 
Consequently, several methodologies have been developed to efficiently determine land cover using 
remote sensing imagery according to the spectral characteristics of each land cover category. 
 
The objective of this thesis is to classify an area located in the Ionian region of Greece, identifying 
‘Artificial’, ‘Bare Soil’, ‘Cropland’, ‘Dense Forest’, ‘Grassland’, ‘Low-density Urban’, ‘Low/Sparse 
Vegetation, and ‘Water’ classes. To do so, the study investigates the performance of different techniques 
for processing and integrating remote sensing data obtained from various sensors. Multi-spectral and 
thermal imagery are employed, as well as topographic data from the area of interest. Landsat 8 and 
Landsat 9 images were specifically chosen for this project, as they include both multi-spectral and 
thermal information in a single acquisition. Additionally, ASTER GDEM data was used for elevation 
information and the generation of two elevation derivatives, the aspect and the slope of the study area. 
These factors, along with their temporal variability, are considered crucial as the spectral properties of 
certain key classes (specifically those related to vegetation and agricultural activities) are influenced by 
the phenological cycle. 
 
The study addresses several research questions, including the impact of thermal information, elevation, 
and topography on the classification accuracy, as well as the utilization of time series data to enhance 
the results compared to using only the multispectral information as input. The findings indicate that 
combining multi-spectral data with either terrain information, thermal infrared bands, or both, 
significantly improves the classification results using both k-Nearest Neighbor and Random Forests 
classifiers. The highest performance in classification accuracy is achieved when incorporating the time 
series information of all the aforementioned factors as input to the Random Forests classifier. This 
integration yields improvements of up to 68% in specific classes, primarily those associated with 
vegetation.
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1. Introduction 
 
Land cover classification is a multidimensional problem. To deal with the existing landscape 
complexity, either natural or man-made, the photo-interpreter needs to identify and define thematic 
classes, by acquiring knowledge through photo-interpretation, statistical analysis, literature review, and 
personal experience of the phenomenon. This, however, introduces a semantic gap between the high-
order semantics used by the experts in such class definitions - e.g. qualitative descriptions such as "dense 
forest," "urban area," or "wetland”, and the low-level data-driven numeric information often in the form 
of digital numbers and pixel values. Bridging this gap requires the investigation and implementation of 
algorithms and models that can effectively utilize the numerical data to extract human-meaningful land 
cover classifications. To this end, existing studies investigated the (semi)automation of land use/cover 
classification by examining the potential of the application of machine learning algorithms to extract 
thematic categories from multi-modal data.  
 
Liya and Schulz (2015) propose that the combination of multispectral indices along with thermal band 
information via time series analysis of at least 5 or 6 thermal images significantly improves the land 
cover classification results, compared to using only standard VIS/NIR bands. Gounaridis, Apostolou, 
and Koukoulas (2016) found that areas covered with vegetation had the highest inaccuracies due to 
variations of vegetation characteristics as a function of the phenological cycle. These classes are referred 
to as ‘Heterogeneous agricultural areas’, ‘Permanent crops’, ‘Scrub and/or herbaceous vegetation 
associations’, and ‘Forests’ of the CORINE Land Cover 2000. Liu et al. (2018) suggest that the highest 
accuracy (82.78%) can be achieved with fused terrain and multi-temporal multispectral data for the 
identification of forest types. 
 
Both Simonetti, Simonetti, and Preatoni (2014) and Schäfer et al. (2019) studied the temporal aspect of 
the land cover classification procedure. Even if these algorithms that exploit the periodic changes over 
pixel time series of medium-resolution satellite imagery are a very recent innovation in the scientific 
community (Hostert et al, 2015), the findings are promising. The first study achieved an overall accuracy 
of 89.9% through a time series analysis procedure over a mountainous area with a variety of vegetation 
types. The latter which used, among others, the Random Forests (RF) machine learning methods also 
achieved high overall accuracy in the land cover classification procedure (88.7%) for a total of 9 
different classes. The selected classes were namely the: ‘Urban Areas’, ‘Other built-up surfaces’, 
‘Forests’, ‘Sparse Vegetation’, ‘Rocks and Bare Soil’, ‘Grassland’, ‘Sugarcane crops’, ‘Other crops’, 
and ‘Water’ over a study area in the Reunion Island, France. In general, medium-resolution time series 
data have been employed to document forest disturbance, as demonstrated by Kennedy et al. in 2010, 
and to identify surface water bodies, as highlighted by Tulbure and Broich in 2013. Furthermore, it has 
been used to characterize changes in land cover (Zhu and Woodcock, 2014) and to identify the specifics 
of such land cover alterations (Olthof and Fraser, 2014). 
 
Talukdar et al. (2020) examined the application of Random Forests, Support Vector Machine (SVM), 
Artificial Neural Network (ANN), as well as other ML algorithms for Land Use / Land Cover (LULC) 
classification using single-date Landsat 8 imagery. The study area was the river Ganga from Rajmahal 
to Farakka barrage in India and the studied classes were the: ‘Water Body’, ‘Sandbar’, ‘Built-up area’, 
‘Vegetation’, ‘Fallow land’’, and ‘Agricultural Land’. Random Forest achieved the highest Kappa 
coefficient score (0.89). Hosseiny et al. (2022) used more data inputs, including terrain information, 
vegetation indices, as well as land surface phenology, and image texture information in combination 
with Sentinel-2 multispectral imagery to extract better accuracy. Among the studied algorithms, their 
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results from the RF model that showed the best classification performance was the one that incorporated 
all the abovementioned datasets (overall accuracy = 83%, Kappa = 0.81).  Svoboda et al. (2022) applied 
RF for land use / land cover classification from Sentinel-2 data. Having as area of study regions in the 
Czech Republic, the selected classes were the ‘Settlements’, ‘Cropland’, ‘Grassland’, ‘Forest land’, and 
‘Wetlands’. Classification achieved a high accuracy (89.1% overall accuracy, 0.84 Kappa coefficient). 
Thakur and Panse (2022) investigated the application of the Decision Tree (DT), kNearest Neighbor 
(kNN), SVM, and RF for land cover classification. Data used included the 13 bands of 27,000 Sentinel-
2 images (64x64 pixels) included in the EuroSAT dataset. The classes defined for the classification 
process were the ‘Annual Crop’, ‘Forest’, ‘Herbaceous Vegetation’, ‘Highway’, ‘Industrial’, ‘Pasture’, 
‘Permanent Crop’, ‘Residential’, ‘River’, and ‘Sea Lake’. Results showed that RF provided better results 
when compared to the other approaches (94.4% producer’s accuracy). Yuh et al. (2023) examined kNN, 
SVM, ANN, and RF to identify Land Use/Cover changes in the Mayo Rey department of North 
Province, Cameroon. Data used included the multispectral bands from a Landsat 7 ETM+ imagery 
acquired in November 2000 and a Landsat 8 imagery acquired in November 2020. Samples were 
acquired for the Croplands, Dense Forest, Grassland savanna, Open savanna/ barelands, Built-up areas, 
Water bodies, Wetlands, Woody savanna classes. All algorithms showed satisfactory results, with RF 
providing the best result (Kappa statistics 94%). 
 
To summarize all the above, previous studies that incorporated machine learning for land cover 
classification have examined thematic categories corresponding each time to the task at hand, to 
properly model and describe the region of interest. Furthermore, it has been shown that there is potential 
in the integration of additional dataset types such as thermal data and terrain-related indices. 
 
Thus, this study investigates the issue of land cover classification, in the region of Ionian Islands in 
Greece, by bridging the semantic gap between the high order expert semantics and the low-level 
numerical information, through state-of-the-art supervised Machine Learning (ML) techniques and 
multi-modal datasets.  The datasets employed in this study involved multispectral imagery, topography, 
and thermal information describing different aspects of the land surface. Time series analysis was also 
investigated to take advantage of. seasonality which plays an essential role in the spectral properties of 
some key classes (i.e. vegetation and agricultural-related categories).  
 
The knowledge gap addressed in the present thesis is to test the utility of a more complex classification 
method that has as input a larger variety of datasets for the land cover type estimation than it is most 
often used. Hence, the addressed scientific problem includes these two topics: 
 

● Aggregation to the classes’ multispectral (MS) properties of information related to its thermal 
properties and the area’s terrain elevation. 

● The usage of kNearest Keighbor and Random Forests machine learning algorithms for the 
implementation of the land cover classification algorithm. 

 
The research questions are focused on the selected area of interest and will be the following: 
 

● Does the integration of the surface’s thermal information with MS data improve classification 
results?   

● Does the integration of the terrain’s topography information with MS data improve classification 
results?   

● Does the combination of all the above information improve classification results? 
● Does the usage of the time series of all the above information improve classification results? 
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All of the above questions refer not only to the overall classification result, but also to the level of 
performance (User Accuracy, Producer Accuracy, Kappa) of each of the studied land cover classes.  
 
To address the research questions, five classification approaches were tested: 
 

1. Using as input only the MS imagery (reference) 
2. Using as input both MS and thermal information 
3. Using as input both MS and terrain information 
4. Using as input MS, thermal and terrain information 
5. Using as input the time series information of all of the above - MS, thermal and terrain. 

 
In this way, the performance of each classification is calculated for the selected study area and compared 
with the rest of the classification outputs. Both per-class and overall classification accuracies will be 
produced, but kappa statistics (overall and per-class) will also be used for the evaluation of results to 
balance the potential effects of user and producer errors.  
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2. Literature Review 
 
Land cover classification from multispectral satellite imagery is one of the most studied topics in the 
field of remote sensing. Since it benefits from various operational satellite sensors offering diverse 
products in terms of resolution and spectral characteristics, multiple methodologies aim to effectively 
classify land cover using remote sensing imagery tailored to each class's spectral features. 
 
In this thesis, a classification approach for land cover class types over a specific area of interest is 
applied, along with the use of a variety of satellite datasets as input into a machine learning pipeline. 
Many remote sensing sensors capture information over several ranges of wavelengths within the 
electromagnetic spectrum, providing the scientific community with a free-of-charge, valuable means of 
research in fields that demand a large number of datasets, as is the case in the problem of land cover 
classification. Furthermore, this information is in raster form, with coverage available such that even 
areas with rough terrain that are difficult to reach for in-situ fieldwork can be analyzed for land cover 
determination. Hence, remote sensing technology can complement traditional methods while at the same 
time reducing the cost of fieldwork and time. 
 

2.1. Input datasets 
 
In the last few decades, more and more satellites have been launched, acquiring large volumes of satellite 
imagery with global coverage. This, coupled with free data availability, has allowed access to large 
volumes of current and historical data to aid research on the use of multispectral imagery as a primary 
input for LULC modeling (Sohl et al., 2012; Campbell et al, 2011).  
 
Two main sources of free multispectral images are the National Aeronautics and Space Administration 
/ United States Geological Survey (NASA/USGS) Landsat Program and the European Space Agency 
(ESA) Copernicus Sentinel-2 mission. Landsat imagery has been available since the early 1970s and has 
been commonly used for LULC classification with varying degrees of success (Amini et al., 2022; Phiri 
and Morgenroth, 2017; Yuan et al., 2005). Landsat 8 and Landsat 9 are the two latest missions of the 
Landsat program and provide multispectral imagery in the visible, near-infrared, and short-wavelength 
infrared spectra at a spatial resolution of 30 meters with a 16-day recurrence interval, and thermal 
infrared imagery, which is useful in providing more accurate surface temperatures and is collected at 
100 meters (USGS, 2023). 
 
ESA's Sentinel-2 constellation launched in 2015 and 2017 (Sentinel-2A and 2B respectively) and 
provides imagery at finer spatial resolution (10 and 20 m), shorter repetition intervals (5 days), and also 
with improved spectral resolution (three red-edge spectral bands of vegetation in addition to the visible, 
near-infrared and short-wavelength infrared bands) (ESA, 2023). These improvements have given the 
research community free access to high-quality images specifically designed for vegetation studies. This 
leads to an increase in the overall accuracy of LULC classification-including crop classification 
(Forkuor et al., 2018; Sánchez et al., 2022) at the expense of increasing data size and computational 
costs.  
 
 
 

2.2. Land Cover Classification Machine Learning Algorithms 
 
Samuel (1959) defined Machine Learning as the field of study that provides computers the ability to 
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learn without being explicitly programmed for that. To this end, both unsupervised (i.e. techniques 
designed to identify patterns/clusters by examining unlabeled data e.g. Romero et al. 2015, Chen et al., 
2018) and supervised techniques (i.e. employing representative labeled/training data which are used by 
a learning approach that will generate an inferred function mapping the input to its corresponding output 
e.g. Charou et al., 2019) were examined in the literature to address land cover classification problems, 
with the latter being investigated in this thesis as well. Specifically, the kNearest Neighbors and Random 
Forests approaches were investigated in this thesis due to their wide employment in remote sensing 
applications (Liya and Schulz 2015, Schäfer et al. 2019, Abdi 2019). 
 

2.2.1. kNearest Neighbors Classification 
 
kNearest Neighbors is a supervised, non-parametric, proximity-based, machine learning algorithm 
(IBM, 2023). The algorithm assigns a class label utilizing plural voting by examining the kNearest 
samples to the provided input (Figure 1). If k = 1 then the algorithm simply assigns to the input the class 
label of the nearest sample. Identifying k-values may require extensive experimentation since low k-
values may lead to high variance/low bias, and high k-values may lead to lower variance/higher bias. 
Usually selecting an optimum k-value depends on the input dataset. 
 

 
Figure 1: kNearest Neighbor algorithm (k=3). (a) A new unlabeled element enters the algorithm (b) The algorithm 
calculates the distance between the input element and all other instances in the dataset. (c) The algorithm assigns 
a class label utilizing plural voting by examining the 3 nearest samples to the provided input 

 
Different metrics were utilized in the literature to compute the distance between the input and the labeled 
samples, with some of the most widely adopted being: 
 

● Euclidean Distance: the most commonly used distance measure, limited to real-valued vectors. 
It measures a straight line between two points: 
 

 
(Equation 1.1) 

 
 

n: number of vector elements 
 

● Manhattan (or City-Block) Distance: It measures the absolute value between two points. It can 
be conceived as the movement one could do when navigating from one grid point to another 
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(similar to moving from one city block to another) 
 

 
(Equation 1.2) 

 
 

n: number of vector elements 
 

● Minkowski Distance: A generalized distance equation which by setting proper values to its p-
parameter can be specialized in both Euclidean (p=2) and Manhattan (p=1) distances. Different 
p-values can derive additional distance equations.  
 

 
(Equation 1.3) 

 
 

n: number of vector elements 
 

2.2.2. Random Forests Classification 
 
Random Forests is an ensemble method (i.e. a method utilizing multiple learning algorithms to improve 
their predictive performance) that constructs multiple relatively uncorrelated decision trees during 
training (Breiman, 2001). When predicting the classification output, it assigns the label which is 
predicted by the most decision trees in the forest. 
 
A decision tree can be conceived as a graph having two node types. A conceptualization is presented in 
Figure 2. 
 

● Decision Nodes have multiple branches (usually utilizing a dichotomic approach with two major 
branches). Based on the outcome of the Decision Node, a certain branch is followed which may 
lead to another Decision Node or a Leaf Node. 

● Leaf Nodes are used when a final decision should be reached by the parent Decision Node. 
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Figure 2: Conceptualization of a Decision Tree. 

 
To automatically train a Classification Decision Tree, usually a greedy divide and conquer approach is 
used. Assuming a dataset (X, Y - X: samples, Y: labels) having f independent variables (features) 
describing its properties, a common training approach is to divide the original training set into different 
subsets (dictated by the input labels) based on dichotomous independent variables (e.g. is ndvi > 0.2). 
The process can be called recursively to further split the resulting sub-population until the dataset can 
be split no more, or a certain stopping condition is met. This training approach is called recursive 
partitioning (Breiman, 1984). 
 
The basic Random Forests training phase can be described with the following pseudocode (B: Number 
of iterations, n: number of samples) 
 
For b = 1 to B:  

● Create an (Xb, Yb) dataset by uniformly sampling with replacement n samples from the original 
training dataset, 

● Train a Classification Decision Tree with (Xb, Yb). 
 

To reduce the correlation of the resulting trees, Random Forests may also select prior to the training of 
the Classification Decision Tree a subset of the features originally provided in the training set (Ho, 
2002).
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3. Materials and Methods 
 
This chapter presents the materials and datasets used to implement the project, as well as the location 
and main land use categories of the study area. This is followed by the methodology adopted to produce 
the results: from the collection and preparation of the data to the training and evaluation of the machine 
learning model and, finally, the land cover classification. 
 

3.1. Datasets 
 

The data employed in the project include multispectral and thermal imagery, as well as terrain 
information over the area of study. Regarding the first two dataset types, Landsat 8 and Landsat 9 images 
were selected for this thesis since they include both multispectral and thermal information in a single 
acquisition. As for the elevation dataset, ASTER GDEM was employed. 
 

3.1.1. Landsat satellite imagery 
 
The Landsat program started in the early 1970s with the launching of Landsat 1, formerly known as 
Earth Resources Technology Satellite. It has included nine satellites over its history, of which two are 
currently operational: Landsat 8, launched on 11 February 2013, and Landsat 9, launched on 27 
September 2021. They both feature two sensors; one is the Operational Land Imager (OLI), providing 
multispectral imagery in the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions of the 
electromagnetic spectrum. The second is the Thermal Infrared Sensor (TIRS), which generates imagery 
in the thermal infrared. The spatial resolution of each of these Landsat sensors is illustrated in Table 1. 
 

 
Table 1: Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (source: 

https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites ) 

Band number Band name Wavelength (μm) Spatial resolution (m) 

1 Coastal aerosol 0.43-0.45 30 

2 Blue 0.45-0.51 30 

3 Green 0.53-0.59 30 

4 Red 0.64-0.67 30 

5 Near InfraRed (NIR) 0.85-0.88 30 

6 SWIR 1 1.57-1.65 30 

7 SWIR 2 2.11-2.29 30 

8 Panchromatic 0.50-0.68 15 

9 Cirrus 1.36-1.38 30 

10 Thermal Infrared (TIRS) 1 10.6-11.19 100 

11 Thermal Infrared (TIRS) 2 11.50-12.51 100 

https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites
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The Operational Land Imager (OLI) collects data from nine spectral channels, of which only seven 
correspond to the channels of the previous satellites of Landsat legacy. Two new channels have been 
added to Landsat 8 and 9, one for water quality assessment (Band 1) and one to improve the detection 
of fine clouds in the upper atmosphere (thunderclouds, Band 9). The Thermal InfraRed Sensor (TIRS) 
measures ground temperature and the data provided are also used in applications related to water 
management applications. The technology available is used in two channels in the thermal infrared, 
making it possible to separate the temperatures of the Earth's surface temperatures from those of the 
atmosphere and thus providing better estimates of temperature measurements compared to the previous 
Landsat receivers, which have a thermal channel. 
 

3.1.2. Elevation dataset 
 
Information related to the elevation profile of the area will be retrieved with the ASTER GDEM product. 
According to USGS (2023), “the Terra Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 3 (ASTGTM) provides a global 
digital elevation model (DEM) of land areas on Earth at a spatial resolution of 1 arc second”, or 30x30 
meters. 
 
It was generated using ASTER Level-1A scenes that were acquired between March 2000 and November 
2013 (NASA et al., 2018). With this information, second-level terrain derivative datasets can be further 
generated, e.g. slope, aspect, and/or topographic positioning index. Even though several studies suggest 
that the specific product is outperformed in terms of accuracy compared to other similar datasets (Han 
et al. 2021, Yao et al. 2020, Rana et al., 2019), ASTER GDEM has low sensitivity to land cover and 
specifically better quality in forest areas than that in the cropland/ grassland/bare land on a flat surface 
(Satgé et al. 2018). 
 

3.2. Study area 
 
The study area of the thesis is located in Greece over the Ionian Islands and their adjacent mainland, 
which includes part of Epirus, and Sterea Ellada regions (Figure 3). This area covers approximately 323 
sq. km. and consists of both island and continental areas of the Greek Peninsula. 

https://asterweb.jpl.nasa.gov/gdem.asp
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Figure 3: Area of interest and broader region covering 76.44 x 126.78 km, or approximately 323 sq.km. 

(Source: Google Aerial) 

 
The CORINE Land Cover product, which stands for 'Coordination of information on the environment', 
provides a pan-European land cover and land use dataset covering 44 classes. It is a three-level 
hierarchical classification scheme that classifies homogeneous landscape patterns, which have more than 
75% of the properties of a specified nomenclature class (Copernicus Land Monitoring Service, 2023). 
The minimum cartographic unit equals 25 ha - and approximately equal to 277 Landsat pixels (30x30m) 
- and it has a geometric accuracy better than 100 m, which is the product’s spatial resolution. Updated 
products are released every six years, with the most recent to be made for 2018 (Copernicus Land 
Monitoring Service, 2023). The major land cover categories (Level 1 classes) are: 
 

● Artificial surfaces 
● Agricultural areas 
● Forest and semi-natural areas 
● Wetlands 
● Water bodies  

 
With respect to the land coverage of the area, a screenshot of the CORINE Land Cover product of 2018 
shows that the existing categories are related mainly to agriculture (yellowish colors in Figure 4A) and 
open vegetation areas and forests (greenish colors in the figure). Urban areas (red color in the figure) 
and water features, such as rivers, estuaries, and inland marshes (light blue colors in the Figure 4A) have 
an adequate presence over the whole study area. 
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Figure 4A: CORINE Land Cover 2018 of the study area. 
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After an analysis of the study area, and according to the CORINE Land Cover dataset of 2018, half of it 
is covered by forests and semi-natural areas, whereas 41% of the land cover is croplands and agricultural 
regions. Only 6% and 3% of the total land area is covered by wetlands/water bodies and artificial surfaces 
respectively. Thus, it includes all of the main land cover class features in a sufficient quantity for this 
study’s purposes. 
 
As to the climate conditions of the area, according to Köppen climate classification, it has a 
Mediterranean climate characterized by temperate dry, and hot summers (Csa) dominantly. An 
indicative profile of these climates is presented in the following table, which refers to the monthly means 
of temperature, precipitation, humidity, and sunshine hours of Corfu Island, as measured by the Hellenic 
National Meteorological Service and NOAA (Table 1). It can be observed that it rains throughout the 
entire year, with higher rainfall measurements between November and December. 
 

 
 

Figure : Level-1 land cover classes and coverage percentages 
of the study area as extracted from CORINE Land Cover 

2018. 

Figure 4B: Level-1 land cover classes and coverage 
percentages of the study area as extracted from CORINE Land 

Cover 2018. 

Figure 5: Monthly means of temperature (°C, °F), precipitation (mm, inches), humidity 
(%), and sunshine hours of Corfu Island (Source: Hellenic National Meteorological 

Service and NOAA) 

Figure 4B: Level-1 land cover classes and coverage 
percentages of the study area as extracted from CORINE Land 

Cover 2018. 
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As shown in Figure 6, the elevation profile of the area contains a varying topography including both steep 
and plain areas, with the highest point at 1592 meters according to ASTER GDEM. 
 

  
Figure 6: Elevation map of the study area. 

 
 
 

3.3. Methodology 
 
The methodology for the implementation of the thesis project includes several steps. These can be 
summarized as follows: 
 

● Data collection 
● Data pre-processing 
● Data preparation and Machine Learning (ML) model training 
● Application of the selected ML method for the land-cover classification 
● Presentation and evaluation of results 
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Figure 7: Methodology steps. 

 
 

3.3.1. Data collection  
 
The first step of the method was the dataset collection. The sources from which the datasets were 
retrieved are shown in the following table: 
 

Table 2:  Input datasets and sources. 

 Product(s) Source 

Multispectral and Thermal imagery Landsat 8 and Landsat 9 USGS EarthExplorer 
(https://earthexplorer.usgs.gov/) 

Elevation data ASTER GDEM V3 
NASA JPL ASTER 

(https://asterweb.jpl.nasa.gov/gdem.as
p) 

 
An essential parameter for the satellite imagery acquisition taken into consideration was, apart from the 
bounding box coordinates of the AOI, the extent of cloud coverage in each scene. A percentage of less 
than 10% of cloud occurrence was selected to be defined as a restriction for imagery downloading. In 
this way, a minimization of the noise reduction, and, thus, the dataset pre-processing overall performance 
was achieved. 
 

Table 3:  Spatial resolution and temporal coverage of input data. 

Sensor Spatial resolution Revisit time Temporal coverage 

Landsat 8 OLI/TIRS 30m/100m 16 days Since February 2013 

Landsat 9 OLI/TIRS 30m/100m 16 days Since September 2021 

ASTER GDEM V3 30m - - 

 

https://earthexplorer.usgs.gov/
https://asterweb.jpl.nasa.gov/gdem.asp
https://asterweb.jpl.nasa.gov/gdem.asp
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A total number of 88 available Landsat scenes that cover the area of interest were downloaded, out of 
which 76 were captured from Landsat 8 sensor and 12 from Landsat 9 (Table 4).  
 

Table 4: Available Landsat scenes with less than 10% cloud occurrence. 

Year 

Available datasets  
( <10% cloud coverage) 

Landsat 8 Landsat 9 

2013 9 - 

2014 8 - 

2015 8 - 

2016 8 - 

2017 8 - 

2018 6 - 

2019  7 - 

2020 7 - 

2021 7 - 

2022 8 12 

TOTAL 88 

 

 
Table 5: Landsat scene acquisition dates and corresponding season used in this study. 

 

Winter 
(11 scenes) 

Spring 
(12 scenes) 

Summer 
(39 scenes) 

Autumn 
(26 scenes) 

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 
2013 8    28  15 1 2, 18 3, 19 21  
2014  9 10 30    4, 20 5  8 9 
2015   13   4, 20  7, 23 24  27 12 

2016     4, 20  7, 23 9 10, 26  13  
2017  1   23  10, 26 12, 28  14 16  
2018   5   12  15, 31  1, 17   
2019       16 2, 18 3, 19 4 22  
2020       18 4, 20 21 6 24 25 
2021      4  7 8, 24 25 27 12 

2022 25 
15, 23, 

31 24  5 15, 31  
2, 10, 
18, 26 19, 27 

4, 12, 
20 22, 30 7 

TOTAL 2 5 4 1 5 6 7 19 13 11 10 5 
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3.3.2. Data pre-processing 
 
The data pre-processing consisted of clipping the downloaded datasets to the study area and their 
alignment at the pixel level, the atmospheric correction of the multispectral satellite imagery, and the 
generation of two elevation products using terrain analysis, having as input the ASTER GDEM elevation 
dataset.  
 

Clipping and Alignment 
To make use of the elevation model and the Landsat 8 and Landsat 9 scenes, initially, the datasets must 
be in the same coordinate system and projection, and cover the same area. 
 
As a first step, all the imagery was reprojected to the WGS 84 / UTM zone 34N (EPSG:32634) using 
the Warp tool in the QGIS software. This step is mandatory in order to prevent any miscalculations 
between the rasters during the classification process. The next step was the clipping of all imagery to the 
boundaries of the region of interest using the Superimpose application of OrfeoToolbox, and the 
downscaling of the thermal bands from 100 meters to 30 meters of spatial resolution. Superimpose 
(Orfeo ToolBox, 2023) performs the projection of an image into the geometry of another one, having as 
a result the first image obtains the same spatial resolution and occupies the same physical space as the 
reference image.  
 
The final images have a size of 2548 x 4226 pixels and a spatial resolution of 30 meters, which 
corresponds to an area of interest covering 76.44 x 126.78 km, or approximately 323 sq.km. 
 

Atmospheric correction 
The Landsat bands used in this study are Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 (NIR), 
Band 6 (SWIR1), Band 7 (SWIR2), Band 10 (TIRS1), and Band 11 (TIRS2). Since the downloaded 
Landsat scenes are Level-1 products, further processing is needed to convert the digital values of the 
imagery into atmospherically corrected ground reflectance values. For the two thermal channels, the 
image pre-processing procedure is followed with the conversion of the reflectance values to brightness 
temperature values. The atmospheric correction equations and the process followed are described below. 
 
 

1. Conversion from Digital Numbers (DN) to Top of Atmosphere (TOA) values 
 
Landsat Level-1 data are converted to TOA spectral radiance using the radiance rescaling factors in the 
metadata file of each scene using the following equation: 
 

      (Equation 2.1) 
 
where Lλ is the spectral irradiance (Watts/(m2 *srad*μm)), ML and AL coefficients derived from the 
metadata file and Qcal is the DN of the pixel. 
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2. Conversion to Brightness Temperature (BT) values  
 
The TOA radiation values are then reduced to temperature values (brightness temperature) in degrees 
on the Kelvin scale, based on the following equation: 
 
 
 

(Equation 2.2) 
 
 
where BT is the brightness temperature (°K), Lλ is the spectral irradiance (Watts/( m2 * srad * μm)) and 
K1, K2 coefficients derived from the file metadata file. To convert Kelvin degrees to degrees Celsius, 
the equation is used:   
 
 

(Equation 2.3) 
 

 

Calculation of elevation products 
Two elevation products that can be generated from a Digital Elevation Model and were used in the 
present study are slope and topographic positioning index.  
 
 

 
Figure 8: Digital elevation model, Slope, and Topographic position index of a sub-region over the area of 

interest. 

 
Slope is defined as the rate of change of elevation for each cell of a Digital Elevation Model, or the 
steepness of the surface. The slope value is calculated by measuring the angle between the topographic 
surface and the referenced datum. Both planar and geodesic computations are performed using a 3 by 3 
cell neighborhood (moving window). The formula that transforms elevation to the slope is the following: 
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𝑆𝑙𝑜𝑝𝑒	 = 	𝑎𝑟𝑐𝑡𝑎𝑛	(!"#$

!%&
) 	× 	100    Equation 2.4 

 
 

 
 
Topographic Positioning Index (TPI) measures the difference between elevation at the central point  
(𝑧') and the average elevation (𝑧) around it within a predetermined radius (R) (Wilson and Gallant, 2000, 
Weiss, 2001): 
 
 

TPI = 𝑧' - 𝑧     (Equation 2.5) 
 

     
         (Equation 2.6) 

 
 
 
Positive TPI values indicate that the central point is located higher than its average surroundings, thus 
are indicative of ridges or hilltops. Negative values indicate a position lower than the average, indicating 
valley features in the topography of the area. TPI values close to 0 indicate straight slopes and/or plain 
regions (Knitter et al. 2019). 
 

 
Figure 9: Topographic position index values. 

 
 

3.3.3. Data preparation  
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The next step of the methodology is the preparation for the land cover classification. The classification 
will be supervised, which means that the classes are specific, known, and work as input to the 
classification algorithm. The required steps include the selection of the classes, the manual collection of 
training and ground truth samples, the data cleaning, and the generation of time series that will be used 
as input in the classification process. Each step is described in the next sections. 
 

Selection of classes 
 
According to Chapter 2.2, where the review of the area of interest was implemented, there are five main 
classes that cover the majority of the region and these are manmade (or artificial) surfaces, agricultural 
areas, forests, semi-natural areas, wetlands, and water bodies. After a more detailed photointerpretation 
of the area using a Landsat scene acquired in May 2018 - in order to match the CORINE Land Cover 
product for the year 2018, eight classes were identified and selected for the classification process: 1. 
Artificial, 2. Bare Soil, 3. Cropland, 4. Dense Forest, 5. Grassland, 6. Low-density Urban, 7. Low Sparse 
Vegetation, and 8. Water (Table 6). Photointerpretation method and examples of each class are presented 
in Table 7. 
 

Table 6: The description and correspondence to CORINE Land Cover (CLC) classification of each class used in 
this study. 

Class name Description Correspondence/ Similarity to CLC 
classification 

Artificial 

 

Man-made surfaces. It includes urban 
regions with no green areas, industrial 

sites, transportation networks, 
commercial areas, recreational spaces, 

landfills, and mining areas.  

1.1.1 
1.2 

1.3.1 

Low- density Urban 

 

Urban areas with sparse buildings 
interrupted by vegetation or bare soil. 

1.1.2 

Bare Soil 
 

Uncovered land with no vegetation or 
growth (soil, rock, sand, etc) 

3.3.1 
3.3.2 

Cropland 
 

Seasonal agricultural areas. 2 

Low Sparse Vegetation 
 

Areas with limited and scattered plant 
cover. 

3.2.3 
3.2.4 
3.3.3 

Grassland 

 

Open areas dominated by grasses and 
lack significant tree or woody 

vegetation. 

2.3 
3.2.1 

Dense Forest 

 

Areas with thick, abundant tree cover. 3.1 

Water 

 

Bodies of water, such as sea, lakes, 
rivers, and ponds. 

5 
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In the context of this study, it is important to acknowledge that not all CORINE Land Cover classes 
could be directly correlated with the chosen classes. This is primarily due to two reasons: either certain 
classes were found to be absent in the study area based on the initial analysis, or they were present but 
in a less dominant capacity. 
 

Table 7:  The photointerpretation method and the appearance on a true color composite TCC (RGB-432) and a 
false color positive FCC (RGB-543) over the study area of each class used in this study. For the 

photointerpretation, a Landsat-8 true color and false color image acquired on 12/05/2018 was used, and a very 
high spatial resolution basemap was exploited for cross-reference. 

Class Photointerpretation Example in study area 

TCC (RGB-432) FCC (RGB-543 

Artificial

 

Color in TCC 

Mixed white, gray and 
brown shades with minimal 

to no vegetation (green 
areas) 

  

Color in FCC 
Mixed white, green and 

yellow shades with minimal 
to no vegetation (red areas) 

Other 
characteristics Dense, structured patterns. 

Low- 
density 
Urban 

 

Color in TCC 
Mixed white and brown 
shades with more visible 
vegetation (green areas) 

  

Color in FCC 

Mixed white, green and 
yellow shades with more 

visible vegetation (red 
areas) 

Other 
characteristics 

Buildings may be scattered 
rather than forming 

continuous blocks or 
clusters. Also slightly more 
greenery compared to high-

density artificial zones. 

Bare Soil
 

Color in TCC 
Shades of brown, white or 
gray, with no vegetation 

(green). 
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Color in FCC 
Shades of brown, white or 
gray, with no vegetation 

(red). 

  

Other 
characteristics 

Smoother texture compared 
to vegetated areas. May 

include open spaces, 
construction sites, or 
agricultural fields. 

Cropland
 

Color in TCC 

Patches of varying colors 
(green, white or brown) 

depending on the crop type 
and growth stage. 

  

Color in FCC 

Patches of varying colors 
(red, white or brown) 

depending on the crop type 
and growth stage. 

Other 
characteristics 

Well-defined rectangular or 
geometric shapes often with 
less natural vegetation than 
the surrounding landscape. 
Presence of human-made 
features such as irrigation 

systems, farm structures, or 
roads within or adjacent to 

the cropland areas. 

Low Sparse 
Vegetation

 

Color in TCC Pale green and brown 
tones. 

  

Color in FCC Pale red and brown tones. 

Other 
characteristics 

Irregular shapes of limited 
vegetative cover, with a 

higher proportion of bare 
ground or soil compared to 

regions with denser 
vegetation. 

Grassland

 

 Open areas 
with dominant 
green hues in a 
true color inage, 
indicating grass 

cover and 
minimal tree or 

Vibrant, uniform green 
color. 

Vibrant, uniform red color. 
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building 
presence  

Even and conitnuous 
surfaces, usually 

surrounded by forests. 

  

Dense 
Forest 

 

Color in TCC Rich and dark green colors. 

  

Color in FCC Rich and vibrant red colors. 

Other 
characteristics 

Continuous and solid 
surfaces. 

Water 

 

Color in TCC Deep and light blue shades 

  

Color in FCC Blue or black areas 

Other 
characteristics 

Uniform and relatively 
featureless compared to 

land surfaces, with distinct 
boundaries (coastline, river 

banks, etc). 

 
 
 
For the classes’ photointerpretation, the Landsat scene of 12 May 2018 was used, in order to match the 
reference year of the CORINE Land Cover dataset. The Landsat true color composite (RGB-432) and 
false color composite (RGB-543) were created and used for visualization purposes when digitizing the 
samples, and a very high spatial resolution basemap was exploited as ancillary data. In this study, Bing 
Maps product was used as the ancillary cross-reference dataset thanks to its easy integration into the 
QGIS. The selection of these classes was evaluated through their spectral signatures. As a spectral 
signature of a surface, it is defined as the amount of radiation reflectance of the specific surface in the 
electromagnetic spectrum (ESA-Eduspace, 2009). The spectral signature, as well as the assigned color 
of each class, are shown in Table 8. 

https://en.wikipedia.org/wiki/Bing_Maps
https://en.wikipedia.org/wiki/Bing_Maps
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Table 8:  The spectral signature of each class as extracted from random pixels that represent the correspondent 
classes over the study area. The x-axis represents the Landsat bands as described in Table 1, while the y-axis 

displays the Digital Numbers (DN) or pixel values of each band. 

Class Spectral Signature 

Artificial

 

 

Low- 
density 
Urban 

 

 

Bare Soil
 

 



 
 

 

25 

Cropland
 

 

Low 
Sparse 

Vegetation
 

 

Grassland

 

 

Dense 
Forest 
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Water 

 

 

 
 
As observed in Table 8, ‘Water’, ‘Bare soil’, ‘Low/sparse vegetation’ and ‘Artificial’ classes have very 
distinct spectral signatures, which means that they can be easily distinguished by an algorithm. The 
spectral signatures that could be confused due to their pattern similarity are between ‘Artificial’ and 
‘Low Density Urban’, ‘Dense Forest’ and ‘Cropland’, and ‘Grassland’ and ‘Low density urban’. The 
variations in all three cases that differentiate the respective signatures are:  

● between ‘Artificial’ and ‘Low Density Urban’, ‘Low Density Urban; has lower pixel values in 
the optical (Red - Green - Blue) and Near Infrared bands (Bands 1, 2, 3, 4) 

● between ‘Dense Forest’ and ‘Cropland’, ‘Cropland’ has a higher value in Band 5 (Near Infrared), 
● between ‘Grassland’ and ‘Low density urban’, ‘Low density urban’ class has higher reflectance 

in the Near Infrared and SWIR bands (Bands 5, 6, 7). 
 

Collection of training and ground truth sample polygons 
 
For each class, 23 polygons were digitized manually using the Landsat scene of 12 May 2018, after 
following the photointerpretation guidelines presented in Table 7. Ancillary data, such as the CORINE 
Land Cover 2018 dataset and Bing Maps, were also used. In order to match the epoch of the ancillary 
data, the reference Landsat scene used for the sample generation was acquired within 2018. 
 
Some examples of the selected samples are shown in Figure 10. 
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Figure 10: Sample selection of the different land cover classes from Landsat 8 scene acquired on 12/05/2018 
(RGB-432). 

 

Noise removal 
 
Even though an atmospheric correction was performed, noisy pixels existed in several images, mainly 
due to cloud coverage and shadows. To eliminate these noisy pixels (e.g. cloud-covered) it was assumed 
that the polygon values of each class follow a normal distribution and that the abrupt noise was caused 
only due to clouds and shadows. Thus, to cut off the 1% of each edge, the mean value and the standard 
deviation were computed and the values in the range [xmean - 3*std, xmean+3*std] were preserved. 

 

Generation of training and ground truth pixel samples 
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To perform supervised pixel-based classification for each (a) Landsat imagery (88 scenes x 8 bands) and 
(b) elevation products (elevation, slope, TPI) all the corresponding pixel values from the polygon 
samples and for each class were extracted from the data. A total number of 1,895,168 pixel-samples 
were calculated for all classes and per scene. From these and for each class, 80% was randomly selected 
to be the training samples and 20% to be used as ground truth samples for evaluation. The total and per 
class number of training and ground truth pixel samples that were collected in this study are presented 
in Table 9. 
 

Table 9:  The total and per class training and ground truth samples used in the study. 

Land Cover Class Training (Pixels) Ground Truth (Pixels) 

Artificial 14,925 3,731 

Bare Soil 38,790 9,698 

Cropland 421,274 105,318 

Dense Forest 83,706 20,926 

Grassland 31,187 7,797 

Low Density Urban 25,274 6,318 

Low/Sparse Vegetation 120,314 30,078 

Water 780,666 195,166 

TOTAL 1,516,136 379,032 

 
 

Generation of the time-series dataset 
 
The next step was the organization of both training and ground truth samples in a time sequence for the 
classification using time-series of all datasets. To do this, all samples were sorted by class, date (Table 
5), and data contents. Data contents included the multispectral bands (Band 2, Band 3, Band 4, Band 5, 
Band 6, Band 7), and the thermal bands (Band 10, Band 11) of the available Landsat 8 and Landsat 9 
scenes. This procedure generated a dataset containing the pixel values for each band throughout time, 
labelled by class. Elevation product values remained stable throughout time, since they were generated 
from a single dataset, so they were added at a second stage in the time-series. The pixel time series 
values for all available dates are presented for each band used in this study in Annex B. 
 

3.3.4. Machine Learning model training and evaluation 
 
Training is the process of passing to a Machine Learning (ML) model the prepared dataset in order to 
learn patterns and relationships from the data and make predictions that are better than it would have 
been without training. In this study, two different ML algorithms were used: Random Forests and k-
Nearest Neighbor. As shown in previous chapter, these ML algorithms are two of the mostly used in the 
literature, and with good classification results. For the implementation of the ML training, the Python 
programming language was used, and the scikit-learn Python package. The entire Python script can be 
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found in Annex C.  
 
Nine different models with different inputs for each algorithm were created to produce land cover 
classifications (LCCs), according to the five classification approaches of this thesis project (Table 10). 
The parameters used for each classifier were the defaults, since the scope of this study was to compare 
the land cover classification performance according to the different data inputs. For the kNearest 
Neighbors, the selected (by default) number of neighbors was set to 5, and the number of trees for the 
Random Forests classifier was set to 100. Since the default maximum depth of the Random Forests’ 
trees was set to ‘None’, the number of features in each tree was equal to the total number of training 
samples as calculated in Table 9. All the scikit-learn library’s default parameters of the kNearest 
Neighbors and Random Forests classifiers used in this study are presented in Table 11.  
 

Table 10:  The nine classification Machine Learning models created in the study. 

Land Cover Classification Input Algorithm 

1A Multispectral  kNearest Neighbor 

1B Multispectral  Random Forests 

2A Multispectral and thermal kNearest Neighbor 

2B Multispectral and thermal Random Forests 

3A Multispectral and terrain kNearest Neighbor 

3B Multispectral and terrain Random Forests 

4A Multispectral, thermal and terrain kNearest Neighbor 

4B Multispectral, thermal and terrain Random Forests 

5 Time series of multispectral, thermal and 
terrain 

Random Forests 

 
Table 11:  The scikit-learn library’s default parameters of the kNearest Neighbors and Random Forests 

classifiers used in the study. 

Machine Learning 
Classifier 

Scikit-learn Module 
(v1.3.2) 

Main Parameters (default) 

kNearest Neighbors sklearn.neighbors.KNeig
hborsClassifier 

● Number of neighbors (n) = 5 
● Weight function used in prediction: uniform. All 

points in each neighborhood are weighted equally. 
● Algorithm used to compute the nearest neighbors: 

‘auto’. It attempts to decide the most appropriate 
algorithm based on the values passed to fit method. 

● Metric to use for distance computation: standard 
Euclidean distance 

Random Forests sklearn.ensemble.Rando
mForestClassifier 

● The number of trees in the forest (n) = 100 
● Function to measure the quality of a split: Gini 
● Maximum depth of the tree: None 
● Minimum number of samples required to split an 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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internal node: 2 
● Minimum number of samples required to be at a leaf 

node: 1 
● Number of features to consider when looking for the 

best split: sqrt 

 
 
It should be noted that due to the computational complexity of the model creation of the time series 
dataset, kNearest Neighbors was slow and its model was not calculated. Thus, the ML model for the 
time series dataset was generated only using the Random Forests classifier. 
 
After the training of the ML models, the evaluation of the models’ performance took place using the 
ground truth data as validation. This was performed by calculating the confusion matrices per model, 
whose values indicate how well each model would work on new data. 
 

3.3.5. Land cover classification 
 
The application of the trained Random Forests and kNearest Neighbor models to the entire dataset was 
the next step of the method. Nine different classification results were generated, one for each LCC 
approach using the corresponding inputs. The final results are presented in Chapter 3. 
 

3.3.6. Accuracy assessment 
 
The post-classification accuracy assessment has been considered as the most vital part of validating the 
LULC maps produced (Manandhar 2009, Hurskainen 2019). In this study, the performance of each 
classification experiment was calculated with respect to the selected study area and compared with the 
rest of the classification outputs, both per class and as an overall classification score using User 
Accuracy, Producer Accuracy, and Kappa coefficient metrics. The equations used for the calculation of 
each metric are the following: 
 
 
Overall  Accuracy:        (Equation 2.7) 
 
 
User Accuracy :       (Equation 2.8) 
 
 
Producer Accuracy:       (Equation 2.9) 
 
 
 
Kappa (Classification):     (Equation 2.10) 
 
 
 
Kappa (per class):      (Equation 2.11) 
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where: 
A, refers to the correctly mapped sampling points for each class (diagonal of confusion matrix), 
B, refers to the total number of ground truth points for each class, 
C, refers to the total number of map data points for each class, 
N, refers to the total number of sampling points, 
d, refers to the sum of correctly mapped points, 
q, refers to the sum of the products between B and C for each class. 
 
 
User accuracy refers to the correctly mapped sampling points per category, whereas producer accuracy 
refers to the correctly interpreted ground truth points per category. The Kappa Coefficient ranges from 
-1 to 1. A value of 0 indicates that the classification is no better than a random classification. A negative 
number indicates the classification is significantly worse than random. A value close to 1 indicates that 
the classification is significantly better than random (Humboldt State University, 2019). 
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4. Results 
 
In this chapter, the classification results of the entire area of interest and the calculated confusion 
matrices of each classification model are presented, as well as the land cover classification results over 
three different sub-regions of the entire area of interest. These areas have been selected carefully to 
include all the classes, so that the differences in the results of the classification approaches and the 
different algorithms used in this study are visible. The accuracy assessment metrics, both per class and 
as an overall score, are also presented in this chapter.  
 
The designations used in the sub-chapters for the different classification approaches in terms of inputs 
are presented in Table 12. 
 
 

Table 12: Designations of the different classification approaches used in the presentation of results. 

Classification Approach Input 

1 Multispectral (MS) imagery 

2 MS and thermal information 

3 MS and terrain information 

4 MS, thermal and terrain information 

5 Time series information of all of the above - MS, thermal and terrain 

 
 

4.1. Classification results 
 
The classification results generated by the five different classification approaches and the two machine 
learning algorithms (kNearest Neighbor and Random Forests) are shown in Figure 11. Overall, it is 
observed that water areas were classified very satisfactorily accurately in all cases. Furthermore, 
vegetation classes (‘Dense Forest’, ‘Low/Sparse Vegetation’, ‘Grassland’), as well as ‘Bare Soil’, seem 
to be strongly affected by the topography of the area. This is visible in classifications 3A, 3B, 4A, 4B, 
and 5 of Figure 11, where terrain information was used as input in the classification process. The same 
is applied also for the category ‘Cropland’; it is better interpreted and delineated in the classifications 
where terrain information is incorporated. In terms of evaluating the algorithms, the main observation is 
that ‘Bare Soil’ surfaces are best classified with the kNearest Neighbor. The kNearest Neighbor 
algorithm also seems to overestimate artificial surfaces (classification results 3A and 4A) compared to 
the Random Forests algorithm.  
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Figure 11: Overall qualitative inspection of the land cover classification results having as reference the 

original Landsat-8 true color image (acquisition date: 12/05/2018, RGB = 432) of the full study area using 
kNearest Neighbor (A) and Random Forests (B) algorithms. (0) True color composite, (1) Classification result 
using only multispectral imagery (2) Classification result using MS and thermal information, (3) Classification 
result using MS and terrain information, (4) Classification result using MS, thermal, and terrain information, 
(5) Classification result using the time series of MS, thermal, and terrain information with Random Forests. 

 
4.2. Confusion matrices 

 
This section showcases the results of all methods developed on the test dataset. The evaluation of each 
model was implemented using as a reference the ground truth sample dataset per class, which is 
independent of the training dataset. The confusion matrices - one for the kNearest Neighbor and one for 
the Random Forests algorithm, as well as the classification accuracies (User Accuracy, Producer 
Accuracy, Kappa, Overall) achieved by each method are presented in Tables 13Α and 13Β. 
 
For the classifications where kNearest Neighbor machine learning algorithm is used (Table 13A), 
‘Artificial’ is generally confused with ‘Cropland’ when MS, thermal, and terrain information are 
incorporated as inputs in the algorithm (CA4), whereas there is a confusion at lower levels mainly with 
‘Low Density Urban’. ‘Bare Soil’ class shows a higher confusion level with ‘Cropland’ and ‘Low/Sparse 
Vegetation’, mainly when only MS and the combination of MS and thermal data are used as inputs in 
the classification. The ‘Cropland’ class is mainly mixed with the ‘Low/Sparse Vegetation’, while a 
confusion also exists with the classes ‘Grassland’, ‘Bare Soil’, and ‘Dense Forest’. However, when 
terrain information is used, these confusions are relatively eliminated. The highest confusion for the 
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‘Dense Forest’ class is with ‘Cropland’ in classifications where input data were MS and both MS and 
thermal information. As for the ‘Grassland’ category, this is the only class that is highly confused with 
the ‘Cropland’ class in CA1 and CA2. The remainder of classification approaches, in which terrain 
information is used as input, show good results. For the ‘Low Density Urban’ class, it is observed that it 
is largely confused with ‘Cropland’ in classification approaches that incorporate thermal information 
(CA2 and CA4). ‘Low/Sparse Vegetation’ is mostly confused with the ‘Cropland’ category and at lower 
levels with ‘Bare Soil’ in CA1 and CA2. CA3 shows the lowest confusion results for this class, while in 
CA4 ‘Low/Sparse Vegetation’ is slightly confused with all classes apart from ‘Artificial’ and ‘Water’. 
‘Water’ shows the lowest confusion results compared to the rest of the classes. Only in CA2, where the 
input datasets are both MS and thermal information, a generic confusion is observed, which nevertheless 
exists at low levels. 
 
In general, for the classifications performed using the kNearest Neighbor algorithm, and especially in 
CA1 and CA2, a confusion between the majority of classes and the class ‘Cropland’ is observed. 
Furthermore, the classification approach with the lowest confusion level between the different classes is 
CA3, where the algorithm inputs were the MS and the terrain products. 
 
 
Table 13A: Confusion matrices and classification accuracies of the different Classification Approaches (CA) for 

kNearest Neighbor algorithm. 

CA kNearest Neighbor (n=5) 

1  
Overall Accuracy = 0.92 

Kappa = 0.88 
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2  
Overall Accuracy = 0.89 

Kappa = 0.84 
 

 

3  
Overall Accuracy = 0.97 

Kappa = 0.99 
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4  
Overall Accuracy = 0.96 

Kappa = 0.97 
 

 

 
 
The classification results generated from the Random Forests algorithm (Table 13B) show a similar 
trend to those from the kNearest Neighbor algorithm, but with differences to some categories. ‘Artificial’ 
shows low confusion results in all classifications, with a slight confusion with ‘Low Density Urban’ in 
CA1 and CA2. The ‘Cropland’ class is mainly mixed with the ‘Low/Sparse Vegetation’, again in CA1 
and CA2. A confusion also exists with the classes ‘Grassland’, ‘Low Density Urban’ and ‘Dense 
Forest’. However, as with kNearest Neighbor, when terrain information is used, these confusions are 
relatively eliminated. ‘Grassland’, on the other hand, is largely confused with ‘Cropland’ in the 
classification approach where only MS data are used (CA1). When thermal information is also used for 
the classification (CA2), this confusion is almost halved, but still is at high levels. As in kNearest 
Neighbor classifications, the classification approaches where terrain information is used as input show 
good results for this category. ‘Low/Sparse Vegetation’ is, again, mostly confused with the ‘Cropland’ 
category and at lower levels with ‘Bare Soil’ in CA1 and CA2. Finally, ‘Water’ class shows the lowest 
confusion results compared to the rest of the classes. 
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Table 13B: Confusion matrices and classification accuracies of the different Classification Approaches (CA) for 

Random Forests ML algorithms. 

CA Random Forests (n = 100) 

1  
Overall Accuracy = 0.92 

Kappa = 0.89 
 

 

2  
Overall Accuracy = 0.94 

Kappa = 0.92 
 

 



 
 

 

39 

3  
Overall Accuracy = 0.98 

Kappa = 0.99 
 

 

4  
Overall Accuracy = 0.98 

Kappa = 0.99 
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5  
Overall Accuracy = 0.98 

Kappa = 1.00 
 

 
 
 

 
 

4.3. Classification results 
 
This section includes the results of each classification as derived from each approach. For the 
presentation of these results, three sub-regions of the entire study area were selected for which it was 
judged that they encompass all of the land use categories studied in this paper, and from which 
representative conclusions can be drawn. These sub-areas are shown in Figures 12A, 12B, and 12C. 
 
The classification approaches with the highest overall accuracy score (OA) are: 

● Random Forests, using as input multispectral bands and terrain products (OA = 98%) 
● Random Forests, using as input multispectral bands, thermal infrared imagery, and terrain 

products (OA = 98%) 
● Random Forests, using as input the time-series of all datasets (OA = 98%) 

 
The classification approaches with the lowest overall accuracy score (OA) are: 

● kNearest Neighbor, using as input multispectral and thermal infrared bands (OA = 89%) 
● kNearest Neighbor, using as input multispectral bands (OA = 92%) 
● Random Forests, using as input multispectral bands (OA = 92%) 

 
The kappa coefficient, as already mentioned, indicates the correctness of the points referring to the 
minimum statistical correctness. The algorithms with the highest overall kappa score, concerning the 
data inputs, are the following: 

● Random Forests, using as input the time-series dataset (Kappa = 1) 
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● Random Forests, using as input multispectral bands, thermal infrared imagery, and terrain 
products (Kappa = 0.99) 

● Random Forests, using as input multispectral bands and terrain products (Kappa = 0.99) 
● kNearest Neighbor, using as input multispectral bands and terrain products (Kappa = 0.99) 

 
The algorithms with the lowest overall kappa score, concerning the data inputs, are the: 

● kNearest Neighbor, using as input multispectral bands and thermal infrared imagery (Kappa = 
0.84) 

● kNearest Neighbor, using as input multispectral bands (Kappa = 0.88) 
● Random Forests, using as input multispectral bands (Kappa = 0.89) 

 
Quantitatively, the best classification results achieved in this study were generated from Random 
Forests, using as input the time-series dataset, with overall accuracy equal to 98% and kappa coefficient 
equal to 1.00. This means that 98% of the evaluation points were correctly mapped, with a percentage 
of the map 100% better than the map that would have been produced by chance. On the contrary, the 
combination of algorithm and classification approach with the lowest performance was the kNearest 
Neighbor using as input the multispectral and thermal bands. The overall accuracy of this approach is 
89% and the kappa coefficient equals 0.84. This means that 89% of the evaluation points were correctly 
mapped, with a percentage of the map 84% better than the map that would have been produced by 
chance. 
 
Regarding the per class accuracy, all categories apart from ‘Grassland’, ‘Low/Sparse Vegetation’, ‘Bare 
Soil’, and ‘Artificial’ performed well in all classification approaches, with more than 70% for both user 
and producer accuracy. The approaches in which the first three of the above-mentioned classes show the 
lowest accuracies are those that have as input only the multispectral bands and those that have as input 
both multispectral and thermal bands for both algorithms. ‘Artificial’ class has low user accuracy in the 
kNearest Neighbor algorithm where inputs include all datasets - multispectral bands, thermal bands, 
terrain products (CA4), whereas water areas (i.e. sea) and ‘Dense Forest’ were the two classes that 
performed well in all CAs. 
 
Qualitatively, results extracted from the kNearest Neighbor algorithm appear to have significant speckle 
noise compared to Random Forests, as it can be observed in Figures 12A, 12B, and 12C. Furthermore, 
when terrain datasets were used as input, they optimized the results over classes that refer to vegetation 
and soil (Figures 12A, 12B). On the contrary, artificial areas were overestimated and confused with 
cropland (Figure 12A). Another finding depicted from the qualitative assessment of the classification 
results and showed in Figure 12C, is that due to crop seasonality, there was high confusion between 
cropland and other vegetation classes when using multispectral and thermal infrared bands as inputs in 
the algorithm (CA2). However, this was something that was fixed when terrain information was 
additionally used as input (CA4). 
Specifically, having as reference the true color scenes, the main observations that can be depicted from 
the produced land cover areas per class are the following: 

● Artificial: Man-made surfaces (urban areas, airport, road network, remote infrastructures) have 
been identified effectively in results generated from Random Forests algorithm. Also, the terrain 
information lowers the effectiveness of the resulting classification when being used as input 
together with multispectral band information (CA1).  

● Bare Soil: This class is mainly observed in mountainous areas over the area of interest, and 
shows better performance when terrain information is used as input, among others.  
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● Cropland: Croplands have been overestimated in most cases, where there should have been 
other classes instead (such as artificial, bare soil, and vegetation areas - dense forest, low/sparse 
vegetation or grassland), and show a better performance with Random Forests. ‘Cropland’ class 
is also classified well when input in the algorithm is the time-series dataset, which takes into 
consideration the seasonality of cultivation activities.  

● Dense Forest: In general, this class shows good performance in all approaches. However, 
shadowed areas, e.g. due to steep slopes, are also classified as ‘Dense Forest’. Additionally, 
when time-series data are used as input in the classification process (CA5), this class shows an 
underperformance compared to the reference image (Figure 12C). This may occur because of 
several factors, such as the canopy seasonality depending on the tree type (deciduous or 
evergreen trees) that has not been considered as a variable in this study, or other events like tree 
cutting/wildfires and reforestation activities, which interfere in the time-series of the specific 
pixel and, thus, its identification as a class with a time-series curve similar to ‘Dense Forest’. 

● Grassland: As presented in the quantitative analysis and the confusion matrices, ‘Grassland’ is 
a class that is mostly misinterpreted by the algorithms in this study. Better results are shown 
when terrain information is present, and the classification seems to be the most accurate, when 
compared to the reference image, in CA4 with Random Forests, where all datasets are used as 
inputs.    

● Low Density Urban: ‘Low Density Urban’ shows the same findings as ‘Artificial’, since it 
seems to perform better with Random Forests algorithm, and in CA1 and CA2 cases, where no 
terrain information is employed as input. The only difference is that it is not interpreted correctly 
in time-series generated classification results. 

● Low/Sparse Vegetation: This class shows the almost the same response to the different 
classification approaches as the ‘Grassland’ category, but with better and more compact results 
generated from Random Forests algorithm. 

● Water: Water features that correspond to sea have been delineated and classified well enough in 
all sub-regions. Those that represent other water areas, for example rivers, seem to be sensitive 
to classifications that incorporate MS and terrain information (CA3). 

 
Most of the aforementioned issues can be justified due to the similarities observed in the spectral 
signatures of the employed classes (e.g. ‘Bare Soil’ and ‘Artificial’, or ‘Cropland’ and ‘Low/Sparse 
Vegetation’).
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Figure 12A: Original Landsat-8 true color image (acquisition date: 12/05/2018, RGB = 432) and land cover 

classification results using kNearest Neighbor and Random Forests algorithms for sub-region 1. 
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Figure 12B: Original Landsat-8 true color image (acquisition date: 12/05/2018, RGB = 432) and land cover 

classification results using kNearest Neighbor and Random Forests algorithms for sub-region 2.  
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Figure 12C: Original Landsat-8 true color image (acquisition date: 12/05/2018, RGB =432) and land cover 

classification results using kNearest Neighbor and Random Forests algorithms for sub-region 3.  
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5. Discussion 
In this study, the main goal is to investigate the benefit of a more complex classification method that 
takes as input a wider variety of satellite image datasets than multispectral data, for the land cover type 
estimation. The research questions that are ‘Yes or No’ questions are focused on the selected area of 
interest and are the following: 

● Does the integration of the surface’s thermal information with MS data lead to better 
classification results?   

● Does the integration of the terrain’s topography information with MS data lead to better 
classification results?   

● Does the combination of all the above information lead to better classification results? 
● Does the usage of the time series of all the above information lead to better classification results? 

 
Five different classification approaches were designed, implemented and performed, having in each one 
different input datasets in order to generate land cover maps that include the following eight classes: 
‘Artificial’ surfaces, ‘Bare Soil’, ‘Cropland’, ‘Dense Forest’, ‘Grassland’, ‘Low Density Urban’ areas, 
‘Low/Sparse Vegetation’, and ‘Water’. The approaches were:  
1. Using only the multispectral bands of Landsat 8/9 satellite sensors,  
2. Using both multispectral and thermal infrared bands of Landsat 8/9,  
3. Using both multispectral bands and terrain information of the area, as derived from ASTER GDEM,  
4. Using all the above - multispectral/thermal infrared bands and terrain information, and,  
5. Using the time-series of all datasets.  
 
The first approach was considered as reference for the extraction of the thesis results. Furthermore, the 
performance of two different machine learning algorithms was investigated on the classification of the 
above-mentioned classes: kNearest Neighbor and Random Forests. 
 
According to the findings extracted from the visual photointerpretation and numerical comparison of the 
evaluation of the two algorithms, as presented in Chapter 3, very high accuracies were achieved for most 
classifications, reaching up to 0.98 for the OA and 1 for the Kappa, and for most classes. A further 
analysis was implemented in order to determine which algorithm generated the highest confusion 
between the selected classes. From the confusion matrices (Table 13A, Table 13B), the percentage of 
wrongly classified pixels to the total number of correctly classified pixels was calculated per class. From 
these, only these that indicate a percentage of more than 15% of the have been collected and summarized 
in Table 14.  
 

Table 14: Confusions of each land cover class for the different classification approaches used in this study 
(Green: only in kNearest Neighbor algorithm, Black: in both algorithms). 

Class CA1 CA2 CA3 CA4 CA5 

Artificial - 
 - - Cropland (kNN: 

71%) - 

Bare Soil 

● Low/Sparse 
Vegetation 
(kNN: 30%, 
RF: 39%) 

● Cropland 
(kNN: 19%, 

● Low/Sparse 
Vegetation 
(kNN: 37%, 
RF: 16%) 

● Cropland 
(kNN: 45%, 

- - - 
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RF: 24%) RF: 27%) 

Cropland - - - - - 

Dense Forest - - - - - 

Grassland Cropland (kNN: 
183%, RF: 192%) 

● Cropland 
(kNN: 220%, 
RF: 103%) 

● Low/Sparse 
Vegetation 

(kNN: 30%) 

- - - 

Low Density 
Urban 

Cropland (kNN: 
21%, RF: 24%) 

● Cropland 
(kNN: 80%, 
RF: 23%) 

● Low/Sparse 
Vegetation 

(kNN: 36%) 

- Cropland (kNN: 
34%) - 

Low/Sparse 
Vegetation 

Cropland (kNN: 
35%, RF: 38%) 

Cropland (kNN: 
53%, RF: 24%) - - - 

Water - - - - - 

 
 
Quantitative, both algorithms performed well when the inputs were both the multispectral bands and the 
terrain products, with a chance of a pixel to be classified correctly to be more than 85%. Studies that 
incorporated terrain data as input into the classification algorithms, however, showed lower accuracies 
(Liu et al, 2018, Hosseiny et al., 2020). Good performance is also observed for the classification using 
time-series data, a result that agrees with other relevant studies that achieve more than 88.9% overall 
accuracy when using time series for land cover classification (Simonetti, Simonetti, and Preatoni, 2014, 
and Schäfer et al, 2019).   
 
Both algorithms did not perform well in CA1, where only multispectral bands were used as input. In 
most classes there was a chance of confusion of more than 19%. However, the kNearest Neighbor 
algorithm is observed to have better performance than Random Forests in this classification approach. 
The opposite is shown in CA2, where inputs were both multispectral and thermal infrared bands. For 
classes that presented high levels of confusion, Random Forests performed better than the kNearest 
Neighbor algorithm, with the latter also having worse performance for more classes (e.g. ‘Grassland’ 
and ‘Low Density Urban’ were largely confused with ‘Low/Sparse Vegetation’ apart from ‘Cropland’ 
with the kNearest Neighbor algorithm. Additionally, the Random Forests algorithm performed better in 
distinguishing artificial surfaces, as compared to kNearest Neighbor. Finally, for CA4, where all data 
were used as input, Random Forests showed good performance in terms of class confusion, whereas 
kNearest Neighbor had high levels of confusion in ‘Artificial’ and ‘Low Density Urban’. 
 
Taking all the above into consideration, it can be summarized that, in this study, between kNearest 
Neighbor and Random Forests machine learning classification algorithms: 

● Both algorithms have shown good performance for the selected classes over the study area when 
having as input multispectral bands and terrain products (elevation, slope, TPI), 

● Random Forests performs better when thermal information is included in the input datasets, 
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● The kNearest Neighbor algorithm had the lowest performance in this classification approach, 
● The kNearest Neighbor generates better results than Random Forests when inputs are only 

multispectral data, 
● The Random Forests algorithm performs better in distinguishing artificial surfaces compared to 

kNearest Neighbor, and 
● The kNearest Neighbor algorithm appears to have significant speckle noise, whereas Random 

Forests classification results are more consistent. 
 
From all the above results and findings from Chapter 3, and using as reference the classification results 
as generated using only multispectral data, the answers for the research questions set in this study are 
the following: 
 
 
Question 1 
Does the integration of the surface’s thermal information with MS data lead to better classification 
results? 
 
After computing the performance change between the classification approach 2 compared to the 
reference approach, the percentile difference of the accuracy metrics was calculated. The % difference 
of the Overall Accuracy (OA) and the Kappa coefficient equals to -2.8% and -4.9% for the kNearest 
Neighbors classification results, and 1.7% and 3.3% for the Random Forests classification respectively. 
This means that, overall, when surface thermal infrared information is added to the multispectral bands 
while performing a supervised classification using kNearest Neighbor classifier, the result of this study 
shows no better performance than using only the multispectral bands. On the contrary, when using a 
Random Forests classifier, the resulting accuracies perform slightly better. Liya et al. (2015) conducted 
a similar study using Landsat 4/5 images. When the thermal bands of Landsat were added to the 
multispectral bands for a land cover classification, there was an increase of 3-6% in the OA, slightly 
bigger than the improvement calculated in this study. However, kNearest Neighbor classifier performed 
better than the Random Forests (Liya et al, 2015)- something that in this study was not achieved. 
 
 

Table 15: Percentage difference of the User and Producer Accuracy metrics for each class as generated from 
kNearest Neighbors and Random Forests classifiers for the performance assessment between the Classification 

Approach 2 (CA2) and the Classification Approach 1 (reference) used in this study. 

Class 

kNearest Neighbors (n=5) Random Forests (n=100) 

% User Accuracy 
difference 

% Producer Accuracy 
difference 

% User Accuracy 
difference 

% Producer Accuracy 
difference 

Artificial -28 -9 0 -4 

Bare Soil -28 -21 12 8 

Cropland -2 -4 2 4 

Dense Forest -4 -4 2 2 

Grassland -19 -15 32 15 
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Low Density 
Urban -84 -29 1 1 

Low/Sparse 
Vegetation -16 -15 12 9 

Water 0 0 0 0 

TOTAL OA = -2.8% 
Kappa = -4.9% 

OA = 1.7% 
Kappa = 3.3% 

 
 
The percentile differences for the accuracy metrics of each class are presented in Table 15. The classes 
whose accuracy metrics (User Accuracy, Producer Accuracy) presented the biggest decreases are Low 
Density Urban (with a decrease of -84% and -29% respectively), Bare Soil (with -28% and -21% 
respectively), and Artificial (with -28% and -9% respectively). 
 
On the contrary, when using a Random Forests classifier, the resulting accuracies performed slightly 
better, depending on the class. The classes whose accuracy metrics (User Accuracy, Producer Accuracy) 
presented the biggest increases are: Grassland (with an improvement of +32% and +15% respectively), 
Low/Sparse Vegetation (improved by +12% and +9% respectively), and Bare Soil (with +12% and +8% 
respectively). 
 
Of the classes selected in this study, only the ‘Water’ didn’t show any change in its performance. This 
may be due to the fact that water bodies were already clearly discriminated from the classification using 
as input the multispectral information, due to absence of spectral mixtures (Sinha et al, 2015). 
 
 
Question 2  
Does the integration of the terrain’s topography information with MS data lead to better 
classification results? 
 
After computing the performance change between the classification approach 3 compared to the 
reference approach, the percentile difference of the accuracy metrics was calculated. The % difference 
of the OA and the Kappa coefficient equals to 6.5% and 13.0% for the kNearest Neighbors classification 
results, and 5.8% and 11.8% for the Random Forests classification respectively. This means that, 
overall,when adding the terrain’s topography information to multispectral bands while performing a 
supervised classification, the output has better results when using either kNearest Neighbor classifier or 
Random Forests. This comes to support the outcome of other studies that demonstrate this improvement 
having as input terrain information, as well, even though using other algorithms (Liu et al, 2018, Sang 
et al, 2021, Jwan et al, 2022). 
 

Table 16: Percentage difference of the User and Producer Accuracy metrics for each class as generated from 
kNearest Neighbors and Random Forests classifiers for the performance assessment between the Classification 

Approach 3 and the Classification Approach 1 (reference) used in this study. 

Class kNearest Neighbors (n=5) Random Forests (n=100) 
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% User Accuracy 
difference 

% Producer 
Accuracy difference 

% User Accuracy 
difference 

% Producer Accuracy 
difference 

Artificial 11 13 10 11 

Bare Soil 27 30 39 18 

Cropland 7 13 5 13 

Dense Forest 6 4 5 4 

Grassland 68 34 67 24 

Low Density 
Urban 24 18 22 14 

Low/Sparse 
Vegetation 31 27 30 22 

Water 0 0 0 0 

TOTAL OA = 6.5% 
Kappa = 13.0% 

OA = 5.8% 
Kappa = 11.8% 

 
 
The classes whose accuracy metrics (User Accuracy, Producer Accuracy) present the biggest increases 
with kNearest Neighbor areGrassland (with +68% and +34% respectively), Low/Sparse Vegetation 
(improved by +31% and +27% respectively), and Bare Soil (with +27% and +30% respectively), while 
for those generated with Random Forests are: Grassland (+67% and +24% respectively), Bare Soil 
(+39% and +18% respectively), and Low/Sparse Vegetation (with an improvement of +30% and +22% 
respectively). 
 
Of the classes selected in this study, only the metrics of ‘Water’ didn’t show any change. 
 
 
Question 3 
Does the combination of all the above information lead to better classification results? 
 
The percentile difference of the accuracy metrics between classification approach 4 and 1 (reference) 
was calculated. The results show that the OA and the Kappa coefficient equals to 5.3% and 10.7% for 
the kNearest Neighbors classification results, and 5.8% and 11.8% for the Random Forests classification 
respectively. Compared to the accuracy improvement in the previous two research questions that referred 
to the integration of thermal and elevation products separately into a land cover classification from 
multispectral data, also in this one, when adding both surface thermal infrared bands and the terrain’s 
topography information to multispectral bands while performing a supervised classification, the output 
has again better results than using only multispectral data  Rehman et al. (2021) performed a land cover 
classification using Random Forests classifier on Landsat-8 imagery and products, and investigated the 
impact of adding elevation and land surface temperature data in the algorithm. Their results showed an 
even higher improvement than the results of this study: an increase of 20% in the OA and 33% in the 
Kappa coefficient. This suggests that ancillary variables carry significant significance in the 
classification process and should be considered in conjunction with spectral bands. 
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Table 17: Percentage difference of the User and Producer Accuracy metrics for each class as generated from 

kNearest Neighbors and Random Forests classifiers for the performance assessment between the Classification 
Approach 4 and the Classification Approach 1 (reference) used in this study. 

Class 

kNearest Neighbors (n=5) Random Forests (n=100) 

% User Accuracy 
difference 

% Producer Accuracy 
difference 

% User Accuracy 
difference 

% Producer Accuracy 
difference 

Artificial -54 5 9 10 

Bare Soil 32 29 39 18 

Cropland 7 10 5 13 

Dense Forest 4 3 5 4 

Grassland 65 33 67 24 

Low Density 
Urban -6 7 21 14 

Low/Sparse 
Vegetation 29 25 30 22 

Water 0 0 0 0 

TOTAL OA = 5.3% 
Kappa = 10.7% 

OA = 5.8% 
Kappa = 11.8% 

 
The classes whose accuracy metrics (User Accuracy, Producer Accuracy) present the biggest increases 
with kNearest Neighbor are Grassland (with an improvement of +65% and +33% respectively), Bare 
Soil (with +32% and +29% respectively), and Low/Sparse Vegetation (improved by +29% and +25% 
respectively), while for those generated with Random Forests are Grassland (+67% and +24% 
respectively), Bare Soil (+39% and +18% respectively), and Low/Sparse Vegetation (with +30% and 
+22% respectively). 
 
Of the classes selected in this study, only the metrics of ‘Water’ didn’t show any change. Furthermore, 
it should be noted that the result generated using kNearest Neighbor algorithm presented a lowered User 
Accuracy for the ‘Artificial’ class, with a -54% decrease from using only multispectral data as input. 
Also, this result generated with Random Forests performed as well as the equivalent result from the 
previous research question. 
 
 
Question 4 
Does the usage of the of all the above information lead to better classification results? 
 
Time series of the multispectral bands, the thermal infrared bands and the terrain’s topography 
information in a supervised classification, was performed only with the Random Forests classifier, due 
to performance restrictions of the kNearest Neighbor classifier. The percentile difference of the accuracy 
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metrics between classification approach 5 and 1 (reference) was calculated. The results indicate a 
noticeable improvement when incorporating time series data into the land cover classification of this 
study. Specifically, the OA increased by 5.8%, while the Kappa coefficient saw a significant rise of 
12.3%. These findings underscore the positive impact of time series data on the classification 
performance. 
In a similar context, Amini et al. (2022) conducted a Random Forests-based land cover classification. 
They, too, integrated Landsat time series data along with thermal bands and elevation information as 
input features. Notably, their study reported even more substantial improvements, with an 11.9% 
increase in OA and a substantial 17.7% boost in the Kappa coefficient. These results demonstrate the 
considerable advantage of incorporating time series data, thermal bands, and elevation information in 
land cover classification, reaffirming its potential for enhancing accuracy in such applications. 
 

Table 18: Percentage difference of the User and Producer Accuracy metrics for each class as generated from 
Random Forests classifiers for the performance assessment between the Classification Approach 5 and the 

Classification Approach 1 (reference) used in this study. 

Class 

Random Forests (n=100) 

% User Accuracy 
difference 

% Producer Accuracy 
difference 

Artificial 7 9 

Bare Soil 40 20 

Cropland 5 14 

Dense Forest 6 5 

Grassland 68 25 

Low Density 
Urban 23 12 

Low/Sparse 
Vegetation 31 23 

Water 0 0 

TOTAL OA = 5.8% 
Kappa = 12.3% 

 
The classes whose accuracy metrics (User Accuracy, Producer Accuracy) showed the biggest increases 
were Grassland (with an improvement of +68% and +25% respectively), Bare Soil (with +40% and 
+20% respectively), Low/Sparse Vegetation (improved by +29% and +25% respectively), and Low 
Density Urban (improved by +23% and +22% respectively). 
 
According to Amini et al. (2022), classes may be affected from height patterns, which assist in the 
increase of the final classification accuracy. In their study, the classes that performed better were the 
‘Bare Land’, and ‘Shrub’, which thematically correspond to the abovementioned (i.e. Bare Soil and 
Low/Sparse Vegetation). Of the classes selected in this study, only the metrics of ‘Water’ didn’t show 
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any change also in this comparison. It should be noted that the generated Random Forests result 
performed slightly better than the equivalent results from the previous research questions.  
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6. Conclusions 
 
The aim of the project was the classification of land cover types in the Ionian Sea region in Greece. The 
study examined different methods of processing and combining remote sensing data from different 
sensors, using the kNearest Neighbors and Random Forests supervised machine learning techniques, a 
total of eighty-eight (88) Landsat 8 and Landsat 9 multispectral and thermal imagery scenes within a ten 
year span (2013-2022), and topography information from the ASTER GDEM. Data variability over time 
through the generation of time series dataset was also considered. Eight different land cover classes over 
the study area were depicted, using as ground truth the 2018 CORINE Land Cover product in 
combination with photo interpretation, with more than 14,000 training pixel samples per class retrieved 
from the entire dataset. 
 
A holistic approach was followed by combining the abovementioned different datasets in different 
classification methodologies. Questions addressed included the effect of thermal properties, elevation 
and topography on classification, as well as the use of time series for improved results compared to using 
only multispectral data. The aim was not only to investigate the effectiveness of this multidimensional 
approach, but also to determine whether it actually leaded to a noticeable improvement in the quality of 
land cover classification results for the study area selected. The findings showed that when multispectral 
data were combined with either terrain information, thermal infrared bands, or both, the classification 
results improved satisfactorily with both kNearest Neighbor and Random Forests classifiers. This 
improvement reached up to 6.5% in the OA and 11.8% in the Kappa coefficient. Best performance in 
the classification output was calculated when time-series information of all the above were incorporated 
as input in the Random Forests classifier. The level of the enhancement reached up to 68% on specific 
classes, mostly relevant to vegetation. 
 
The results presented above validate findings in existing literature. Over the years, numerous research 
studies have tackled the challenge of land cover classification from high-resolution satellite data, 
utilizing input datasets that correspond to those used in this study. Thus, conducting this thorough 
analysis further contributed to the ongoing debate in the field and shed light on the potential benefits of 
integrating different data sources for more accurate land cover classification. 
 
Future work on this study could include the investigation on some of the following topics: 

● Seasonality of specific classes, e.g. croplands, deciduous forests, grasslands 
● Elevation of certain classes, specifically related to vegetation (forests, sparse vegetation, etc) that 

is dependent also to the study area’s climate flora 
● Irregular changes in land cover, for example expansion of urban areas, new construction sites, 

reforestation/deforestation, wildfires, need to be taken into consideration before performing a 
land cover classification 

● Detection of clouds and shadowed areas over the study area, and elimination from the 
classification process 

● Experimentation with different Random Forests and kNearest Neighbors parameters and sample 
numbers  
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Annex A - Corine Land Cover nomenclature 
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Annex B - Time series of the average pixel values per class and per band of 
Landsat scenes 
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Annex C - Python scripts 
 
Step 1: Unzipping the Landsat scenes and performing the atmospheric correction 
 
import os, subprocess, pathlib, sys 
import tarfile, numpy 
from osgeo import gdal 
 
 
def imread(image): 
 img = gdal.Open(image) 
 im_array = numpy.array(img.ReadAsArray()) 
 return numpy.uint16(im_array), img.GetProjection(), 
img.GetGeoTransform() 
 
 
def imwrite (fileName, frmt, projection, geotransform, data) : 
    drv = gdal.GetDriverByName(frmt) 
    rows = data.shape[1] 
    cols = data.shape[0] 
    out = drv.Create(fileName, rows, cols, 1, gdal.GDT_Float64) 
    band = out.GetRasterBand(1) 
    band.WriteArray(data) 
    band = None 
    out.SetProjection(projection) 
    out.SetGeoTransform(geotransform) 
    out = None   
 
 
def extract(path,tilelist): 
    tilenamelist = [] 
    for tile in tilelist: 
        tf = tarfile.open(os.path.join(path,tile)) 
        extraction_path=os.path.join(path,tile[:-7]) 
        if pathlib.Path(extraction_path).exists()==False: 
            pathlib.Path(extraction_path).mkdir(parents=True) 
            os.chdir(extraction_path) 
            tf.extractall() 
        tilenamelist.append(tile[:-7]) 
    return tilenamelist 
 
 
def delete_tarfiles(path): 
    [tars.append(i for i in os.listdir(path) if i.endswith('gz'))] 
    for i in tars: 
        os.remove(os.path.join(path,i)) 
    return 'tar files deleted successfully' 
 
 
def conversion_decimal(string): 
    if string[-1]=='2': 
        number = float(string[:-4])*0.01 
    elif string[-1]=='3': 
        number = float(string[:-4])*0.001 
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    elif string[-1]=='4': 
        number = float(string[:-4])*0.0001 
    elif string[-1]=='5': 
        number = float(string[:-4])*0.00001 
    else: 
        print('Error in MTL. Exiting processing') 
        sys.exit() 
    return number 
 
def parseMTL(path): 
    fl = open(path) 
    metadata = {} 
    for row in fl: 
        if "=" in row: 
            dt = row.split("=") 
            metadata[dt[0].replace(" ","")] = dt[1].replace("\n","") 
    return metadata 
 
 
def atmcorr_landsat(path,tile): 
    MLi = 'RADIANCE_MULT_BAND_' 
    ALi = 'RADIANCE_ADD_BAND_' 
    Mi = 'REFLECTANCE_MULT_BAND_' 
    Ai = 'REFLECTANCE_ADD_BAND_' 
    SE = 'SUN_ELEVATION' 
    K1i = 'K1_CONSTANT_BAND_' 
    K2i = 'K2_CONSTANT_BAND_' 
    current_folder = os.path.join(path,tile) 
    mtlFile = os.path.join(current_folder, tile + '_T1_MTL.txt') 
    metaData = parseMTL(mtlFile) 
 
    se = float(metaData[SE]) 
 
    for band in [1,2,3,4,5,6,7,8,9]: 
        M = Mi+'{0}'.format(band) 
        A = Ai+'{0}'.format(band) 
 
        if M not in metaData or A not in metaData: 
            continue 
 
        M_val = conversion_decimal(metaData[M]) 
        A_val = float(metaData[A]) 
 
        image = [i for i in os.listdir(current_folder) if 
i.endswith('B{0}.TIF'.format(band))] 
        img = imread(os.path.join(current_folder,image[0])) 
 
        spectral_reflectance_band = M_val*img[0]+A_val 
        toa_reflectance_band = spectral_reflectance_band/numpy.sin(se * 
numpy.pi/180.) 
        toa_reflectance_band = numpy.where(img[0]==0,0,toa_reflectance_band) 
        filename = 
os.path.join(current_folder,tile+'_B{0}_refl.TIF'.format(band)) 
        imwrite (filename, 'GTiff', img[1], img[2], toa_reflectance_band) 
         
    for band in [10, 11]: 
        ML = MLi+'{0}'.format(band) 



69 
 

        AL = ALi+'{0}'.format(band) 
        K1 = K1i+'{0}'.format(band) 
        K2 = K2i+'{0}'.format(band) 
 
        if ML not in metaData or AL not in metaData or K1 not in metaData or 
K2 not in metaData: 
            continue 
 
        ML_val = conversion_decimal(metaData[ML]) 
        AL_val = float(metaData[AL]) 
        K1_val = float(metaData[K1]) 
        K2_val = float(metaData[K2]) 
 
        image = [i for i in os.listdir(current_folder) if 
i.endswith('B{0}.TIF'.format(band))] 
        img = imread(os.path.join(current_folder,image[0])) 
         
        spectral_radiance_band = ML_val*img[0]+AL_val   
        toa_brightness_temperature = 
K2_val/numpy.log((K1_val/spectral_radiance_band)+1)-273. 
        toa_brightness_temperature = 
numpy.where(img[0]==0,0,toa_brightness_temperature) 
        filename = 
os.path.join(current_folder,tile+'_B{0}_temp.TIF'.format(band)) 
        imwrite (filename, 'GTiff', img[1], img[2], 
toa_brightness_temperature) 
 
#============================================= 
PATH = "/path/to/imagery/folder/" 
years = [ '2013','2014', '2015', '2016','2017','2018', '2019', '2020', 
'2021','2022' ] 
 
for year in years: 
    path_process=os.path.join(PATH,year) 
    print(path_process) 
 
    tarBalls = [f for f in os.listdir(path_process) if f.endswith(".tar")] 
     
    subfolders = extract(path_process,tarBalls) 
     
    for scene in subfolders: 
        atmcorr_landsat(path_process,scene) 
 
 
Step 2: Clipping Landsat scenes to the extents of the area of interest  
import os, sys 
 
 
#============================================= 
PATH = '/path/to/imagery/folder/' 
years = ['2013', '2014','2015','2016','2017','2018','2019', '2020', '2021', 
'2022'] 
aoi_path = '/path/to/AOI/extent/shapefile/' 
 
for year in years: 
    path_process=os.path.join(PATH,year) 
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    print(path_process) 
     
    subfolders = [f for f in os.listdir(path_process) if not 
f.endswith(".tar")] 
     
    for scene in subfolders: 
        imagelist=[] 
        current_path1 = os.path.join(path_process,scene) 
        print(current_path1) 
        for i in os.listdir(current_path1): 
            if i.endswith('refl.TIF') or i.endswith('temp.TIF'): 
                imagelist.append(i) 
        for image in imagelist: 
            current_path2 = os.path.join(current_path1,image) 
            os.system('gdalwarp -srcnodata 0 -overwrite -crop_to_cutline -
cutline {0} {1} {2}'.format(aoi_path,current_path2,current_path2[:-
4]+'_clip.tif')) 
 
 
 
Step 3: Creating pixel-based samples from polygons  
 
import os, math, numpy 
 
import numpy as np 
from osgeo import ogr, gdal, osr 
from AlignToGrid import AlignToGrid 
 
def geomRasterizer(id, geom, refGrid, resDict, resolution, parcEPSG=32634, 
destEPSG=32634): 
    drv = ogr.GetDriverByName('MEMORY') 
    ds = drv.CreateDataSource("tmp") 
    parcOSR = osr.SpatialReference() 
    parcOSR.ImportFromEPSG(int(parcEPSG)) 
 
    destOSR = osr.SpatialReference() 
    destOSR.ImportFromEPSG(int(destEPSG)) 
 
    lr = ds.CreateLayer("tmpftlr",parcOSR) 
    idField = ogr.FieldDefn("id", ogr.OFTInteger64) 
    lr.CreateField(idField) 
 
    #create new ogr feature 
    parc = ogr.Feature(lr.GetLayerDefn()) 
    parc.SetField("id",id) 
    parc.SetGeometry(geom) 
    allignedGrid = AlignToGrid(parc, refGrid) 
    grd = allignedGrid.process(vector=True) 
    drv = gdal.GetDriverByName("MEM") 
 
    tmpDataset =  drv.Create("__del\\{0}.tif".format(parc.GetField("id")), 
    int((grd[1][0] - grd[0][0]) / resolution), int((grd[0][1] - grd[1][1]) / 
resolution), 1, gdal.GDT_Byte) 
    
tmpDataset.SetProjection(parc.GetGeometryRef().GetSpatialReference().ExportTo
Wkt()) 
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    tmpDataset.SetGeoTransform((grd[0][0], resolution, 0, grd[0][1], 0, -
resolution)) 
 
    # create temporary dataset 
    ogrDrv = ogr.GetDriverByName("MEMORY") 
    memVSource = ogrDrv.CreateDataSource(str(parc.GetField("id"))) 
    memVLayer = memVSource.CreateLayer("tmp", destOSR, 
geom_type=ogr.wkbPolygon) 
    tmpFtDefn = memVLayer.GetLayerDefn() 
    ft = ogr.Feature(tmpFtDefn) 
    ft.SetGeometry(parc.geometry()) 
    memVLayer.CreateFeature(ft) 
    gdal.RasterizeLayer(tmpDataset, [1], memVLayer, burn_values=[1, ]) 
    resDict[parc.GetField("id")] = {"gt":tmpDataset.GetGeoTransform(), 
"prj":tmpDataset.GetProjection(), 
        "mask":tmpDataset.ReadAsArray(), "RasterXSize": 
tmpDataset.RasterXSize, 
        "RasterYSize":tmpDataset.RasterYSize} 
    tmpDataset = None 
 
def imBlockRead(path, res, id_): 
    tmpDt = gdal.Open(path) 
    tmpGt = tmpDt.GetGeoTransform() 
    col, row = xyToRowCol(res[id_]["gt"][0], res[id_]["gt"][3], tmpGt) 
    tmpArray = tmpDt.GetRasterBand(1).ReadAsArray(col, row, 
res[id_]["RasterXSize"], res[id_]["RasterYSize"]) 
    if tmpArray is None: 
        return None 
 
    tmpArray = tmpArray.astype(float) 
    tmpArray[res[id_]["mask"] == 0] = numpy.nan 
    tmpArray[tmpArray == tmpDt.GetRasterBand(1).GetNoDataValue()] = numpy.nan 
    return tmpArray 
 
 
 
def imread(image): 
 img = gdal.Open(image) 
 im_array = numpy.array(img.ReadAsArray()) 
 return im_array, img.GetProjection(), img.GetGeoTransform() 
 
def xyToRowCol(X, Y, gt): 
    y = int((Y - gt[3]-gt[4]/gt[1]*X+gt[0]*gt[4]/gt[1])/(gt[5]-
(gt[2]*gt[4]/gt[1]))) 
    x = int((X-gt[0]-gt[2]*y)/gt[1]) 
    return [x,y] 
 
 
    #============================================= 
aoi_path = '/path/to/AOI/extents/' 
reference_image = 
"/path/to/reference/image/LC09_L1TP_185033_20220531_20220601_02/LC09_L1TP_185
033_20220531_20220601_02_B6_refl_clip.tif" 
 
PATH = '/path/to/imagery/folder/' 
DEM_PATH = '/path/to/dem_aligned.tif' 
SLOPE_PATH = '/path/to/slope_aligned.tif' 
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TPI_PATH = '/path/to/tpi_aligned.tif' 
 
aoi_path = '/polygon/samples/training_poly.gpkg' 
shp_name = 'training_poly_utm' 
 
samples_path = '/folder/for/the/pixelbased/samples/' 
 
TEMP_fold = '/temporary/folder/' 
im_path_out = os.path.join(TEMP_fold,'output.tif') 
sample_path_out = os.path.join(TEMP_fold,'sample.shp') 
dem_path_out = os.path.join(TEMP_fold,'dem.tif') 
slope_path_out = os.path.join(TEMP_fold,'slope.tif') 
tpi_path_out = os.path.join(TEMP_fold,'tpi.tif') 
    #============================================= 
years = ['2013', '2014','2015','2016','2017','2018','2019', '2020', '2021', 
'2022'] 
names = ['year','month','day','poly_id', 'pixel_id', 
'B2','B3','B4','B5','B6','B7','B10','B11','elevation','slope','tpi','class'] 
 
classes = 
["artificial","bare_soil","cropland","dense_forest","low_density_urban","low_
sparse_vegetation","water"] 
 
    #============================================= 
txt_file = open(os.path.join(samples_path,'dataset.csv'),"w+") 
txt_file.write(",".join(names)) 
txt_file.write("\n") 
file = ogr.Open(aoi_path) 
shape = file.GetLayer() 
refImage = gdal.Open(reference_image) 
gt = refImage.GetGeoTransform() 
refImage = None 
 
for feature in shape: 
    cat = feature.GetField("class") 
    id_ = feature.GetFID() 
    print("Processing id: ", id_) 
    res = {} 
    geomRasterizer(id_, feature.geometry(), reference_image, res, gt[1]) 
 
    rawDt = [None]*11 
 
    rawDt[-3] = imBlockRead(DEM_PATH, res, id_).flatten() 
    rawDt[-2] = imBlockRead(SLOPE_PATH, res, id_).flatten() 
    rawDt[-1] = imBlockRead(TPI_PATH, res, id_).flatten() 
 
 
                         
    for year in years: 
        path_process=os.path.join(PATH,year) 
        subfolders = [f for f in os.listdir(path_process) if not 
f.endswith(".tar")] 
 
        for scene in subfolders: 
            current_path1 = os.path.join(path_process,scene) 
 
            date = os.path.split(current_path1)[1].split("_")[3] 
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            bandId = 0 
            for attr in names_test[4::]: 
                for i in os.listdir(current_path1): 
                    if i.endswith('.tif') and attr in i: 
                        path = os.path.join(current_path1, i) 
                        rawDt[bandId] = imBlockRead(path, res, id_).flatten() 
                        bandId += 1 
 
            rowOffset = 5 
            pixelCount = rawDt[bandId].shape[0] 
 
            for i in range(pixelCount): 
                if np.isnan(rawDt[0][i]): 
                    continue 
 
                new_row = list(range(len(names_test))) 
                new_row[0] = date[0:4] 
                new_row[1] = date[4:6] 
                new_row[2] = date[6:8] 
                new_row[3] = str(id_) 
                new_row[4] = str(i) 
                isNone = False 
 
 
                k = 0 
                for bnd in rawDt: 
                    new_row[rowOffset+k] = str(bnd[i]) 
                    k += 1 
 
                new_row[16] = cat 
                txt_file.write(', '.join(new_row) + '\n') 
 
txt_file.close() 
 
 
Step 4: Building of the time series dataset  
 
import psycopg2, numpy as np 
 
cnStr = "dbname=thesis user=postgres" 
cn = psycopg2.connect(cnStr) 
 
 
query = "SELECT DISTINCT year, month, day FROM dataset_cloud_free ORDER BY 
year, month,day" 
cursor = cn.cursor() 
cursor.execute(query) 
dates = cursor.fetchall() 
dateCount = len(dates) 
print(dateCount) 
 
query = "SELECT DISTINCT  elevation, slope, tpi, poly_id, pixel_id, class 
FROM cloudfree ORDER BY poly_id, pixel_id" 
cursor = cn.cursor() 
cursor.execute(query) 
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polyIDs = cursor.fetchall() 
cols = ["b2", "b3", "b4", "b5", "b6", "b7", "b10", "b11"] 
outFile = open("/dataset_cloud_free_timeseries.csv", "w") 
 
header = [] 
for col in cols: 
        for date in dates: 
            header += [col+"({0}-{1}-{2})".format(*date)] 
 
header+=["elevation", "slope", "tpi", "poly_id", "pixel_id", "class"] 
outFile.write(",".join(header)) 
outFile.write("\n") 
 
 
for rowDt in polyIDs: 
    print(rowDt[-3], rowDt[-2]) 
    #reading multispectral info 
    query = """SELECT {0} 
        FROM cloudfree dv  
        WHERE poly_id='{1}' and pixel_id = '{2}' 
        ORDER BY YEAR,MONTH,day""".format(",".join(cols), rowDt[-3], rowDt[-
2]) 
    cursor = cn.cursor() 
    cursor.execute(query) 
    timeseries = cursor.fetchall() 
    timeseries = np.array(timeseries).T.flatten() 
 
    #appending terrain, class, and id info 
 
    row = timeseries.tolist() + list(rowDt) 
 
    outFile.write(",".join(row)) 
    outFile.write("\n") 
outFile.close() 
 
 
Step 5: kNearest Neighbor and Random Forests model training and classification 
 
import numpy as np, os 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import accuracy_score 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import classification_report, confusion_matrix, 
ConfusionMatrixDisplay 
from pandas import read_csv 
import matplotlib.pyplot as plt 
import seaborn as sn 
from datetime import datetime 
from multiprocessing import Process, Manager 
from osgeo import gdal 
 
 
def imread(image): 
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 img = gdal.Open(image) 
 im_array = np.array(img.ReadAsArray()) 
 return im_array, img.GetProjection(), img.GetGeoTransform()  
 
def imwrite (fileName, frmt, projection, geotransform, data) : 
    drv = gdal.GetDriverByName(frmt) 
    rows = data.shape[1] 
    cols = data.shape[0] 
    out = drv.Create(fileName, rows, cols, 1, gdal.GDT_Float32) 
    band = out.GetRasterBand(1) 
    band.WriteArray(data) 
    band = None 
    out.SetProjection(projection) 
    out.SetGeoTransform(geotransform) 
    out = None   
 
def chunkIt(seq, num): 
    avg = len(seq) / float(num) 
    out = [] 
    last = 0.0 
 
    while last < len(seq): 
        out.append(seq[int(last):int(last + avg)]) 
        last += avg 
 
    return out 
 
 
class ComputeModels(): 
     
    def __del__(self): 
        self.log.close() 
        self.log = None 
         
    def __init__(self, dataPath, outPath, samplesFile, cols2use, mode, 
seasonDivision=0): 
 
        self.PATH_in = dataPath 
        self.classification_output_path = outPath 
        os.makedirs(self.classification_output_path, exist_ok=True) 
 
        self.classes = 
{"artificial":0,"bare_soil":1,"cropland":2,"dense_forest":3, 
"grassland":4,"low_density_urban":5, 
                        "low_sparse_vegetation":6,"water":7} 
        self.classNames = ["artificial", "bare_soil", "cropland", 
"dense_forest", "grassland", "low_density_urban", 
                           "low_sparse_vegetation", "water"] 
        self.samplesFile = samplesFile 
        self.cols2use = cols2use 
        self.mode = mode 
        logFile = 'log_'+'_' + str(mode) +'.txt' 
         
        self.log = open(os.path.join(self.classification_output_path, 
logFile),"w+")  
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        samples = open(self.samplesFile, "r") 
        self.dataset = read_csv(samples,low_memory=False) 
        seasonData = {'all': [[], []]} 
        if seasonDivision == 1: 
            seasonData = 
{'all':[[],[]],'summer':[[],[]],'autumn':[[],[]],'winter':[[],[]],'spring':[[
],[]]} 
        tmpVals = self.dataset.values 
        selectedVals = self.dataset[cols2use].values 
        tmpLabels = [x.replace(" ","") for x in tmpVals[:,-1]] 
        if seasonDivision == 1: 
            for j in range (0, tmpVals.shape[0]): 
                                 
                key = None 
                if tmpVals[j][1] == 12 or tmpVals[j][1] == 1 or tmpVals[j][1] 
== 2: 
                    key = "winter" 
                elif tmpVals[j][1] == 3 or tmpVals[j][1] == 4 or 
tmpVals[j][1] == 5: 
                    key = "spring" 
                elif tmpVals[j][1] == 6 or tmpVals[j][1] == 7 or 
tmpVals[j][1] == 8: 
                    key = "summer" 
                elif tmpVals[j][1] == 9 or tmpVals[j][1] == 10 or 
tmpVals[j][1] == 11: 
                    key = "autumn" 
                     
                seasonData[key][0].append(selectedVals[j]) 
                seasonData[key][1].append(self.classes[tmpLabels[j] ]) 
 
        seasonData["all"][0] = selectedVals 
        seasonData["all"][1] = [self.classes[x] for x in tmpLabels] 
 
        # Split-out validation dataset 
        self.trainXMin = {} 
        self.trainXMax = {} 
        self.X_train = {} 
        self.X_validation = {} 
        self.Y_train = {} 
        self.Y_validation = {} 
        for season in seasonData: 
            seasonData[season][0] = np.array(seasonData[season][0]) 
            seasonData[season][1] = np.array(seasonData[season][1]).reshape(-
1,1) 
            self.trainXMin[season] = seasonData[season][0].min(axis = 0) 
            self.trainXMax[season] = seasonData[season][0].max(axis = 0) 
         
            self.X_train[season], self.X_validation[season], 
self.Y_train[season], self.Y_validation[season] = 
train_test_split(seasonData[season][0], seasonData[season][1], 
test_size=0.20, random_state=1, shuffle=True) 
            self.Y_train[season] = self.Y_train[season].flatten() 
            self.Y_validation[season] = self.Y_validation[season].flatten() 
 
     
    def trainKNeighbors(self): 
        self.KNmodel = {} 
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        for season in self.X_train: 
            self.KNmodel[season] = KNeighborsClassifier() 
            self.KNmodel[season].fit(self.X_train[season], 
self.Y_train[season]) 
 
    def trainRandomForest(self): 
        self.RandomForestModel = {} 
 
        for season in self.X_train: 
            self.RandomForestModel[season] = RandomForestClassifier() 
            self.RandomForestModel[season].fit(self.X_train[season], 
self.Y_train[season]) 
             
         
    def predictModel(self, model, xval, yval): 
 
        for season in xval: 
            self.log.write('\n\n{} prediction results for season: 
{}'.format(model[season],season) + '\n') 
            model[season].n_jobs = 24 
            predictions = model[season].predict(xval[season]) 
            self.log.write(str(accuracy_score(yval[season], predictions)) + 
'\n') 
            self.log.write(str(confusion_matrix(yval[season], predictions)) + 
'\n') 
            self.log.write(str(classification_report(yval[season], 
predictions)) + '\n') 
 
 
            showClasses = [self.classNames[i].replace("_"," ") for i in 
model[season].classes_] 
 
 
 
            cm = confusion_matrix(yval[season], predictions) 
            cm = cm/ cm.sum(axis=1) 
            cm = np.round(cm,3) 
            fig, ax = plt.subplots(figsize=(20, 20)) 
            ax.matshow(cm, cmap=plt.cm.Blues, alpha=0.6) 
            plt.xlabel('Predictions', fontsize=18) 
            plt.ylabel('Reference', fontsize=18) 
            plt.title('Confusion Matrix for season: {0}'.format(season), 
fontsize=23) 
            for i in range(cm.shape[0]): 
                for j in range(cm.shape[1]): 
                    ax.text(x=j, y=i, s=cm[i, j], va='center', ha='center', 
size='xx-large') 
 
            ax.set_yticks(list(range(len(showClasses))), showClasses, 
fontsize=15, rotation=30) 
            ax.set_xticks(list(range(len(showClasses))), showClasses, 
fontsize=15, rotation=20) 
            plt.subplots_adjust(top=0.88) 
 
            
plt.savefig(os.path.join(self.classification_output_path,'confusion_matrix_{0
}.jpg'.format(season))) 
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            plt.close() 
 
         
         
    def writeClassificationResult(self, model, modelName, demPath=None, 
slopePath=None, tpiPath=None): 
 
        years = ['2018',] #'2014','2015','2016','2017','2018','2019' 
        for year in years: 
            path_process=os.path.join(self.PATH_in,year) 
            print(path_process) 
     
            subfolders = [f for f in os.listdir(path_process) if not 
f.endswith(".tar")] 
     
            for scene in subfolders: 
                inData = os.path.join(path_process,scene) 
                pathRow = scene.split("_")[2] 
                inListFiles = os.listdir(inData) 
                inListArray = [] 
                projection = None 
                geoTransform = None 
                for band in self.cols2use: 
                    for fileName in inListFiles: 
                        if band.upper() in fileName and 
fileName.endswith(".tif") and "clip" in fileName: 
                            tmpDataset = gdal.Open(os.path.join(inData, 
fileName)) 
                            inListArray.append(tmpDataset.ReadAsArray()) 
                            projection = tmpDataset.GetProjection() 
                            geoTransform = tmpDataset.GetGeoTransform() 
                 
                if "elevation" in self.cols2use: 
                    demImage, demProjection, demGeoTransform = 
imread(demPath) 
                    inListArray.append(demImage) 
                     
                     
                if "slope" in self.cols2use: 
                    slopeImage, slopeProjection, slopeGeoTransform = 
imread(slopePath) 
                    inListArray.append(slopeImage) 
                     
                if "tpi" in self.cols2use: 
                    tpiImage = imread(os.path.join(tpiPath))[0] 
                    inListArray.append(tpiImage) 
                     
                inDataset = np.array(inListArray) 
                normalizedDataset = 
inDataset.T.reshape(inDataset.shape[1]*inDataset.shape[2], 
inDataset.shape[0]) 
                model["all"].n_jobs = 8 
 
                outPath = os.path.join(self.classification_output_path,year) 
                os.makedirs(outPath, exist_ok=True) 
 
                outBand = model["all"].predict(normalizedDataset) 
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                imwrite(os.path.join(outPath,scene 
+'_'+'_'.join(self.cols2use)+'_{0}_class.tif'.format(modelName)), "GTiff", 
projection, geoTransform, outBand.reshape((inDataset.shape[2], 
inDataset.shape[1])).T) 
                print("ok!") 
                return 
 
  
def writeClassificationResultTimeseries(self, model, modelName, dates, 
uniqueBands, demPath=None, slopePath=None, tpiPath=None ): 
        spectralBands = uniqueBands 
        if "elevation" in uniqueBands: 
            spectralBands = uniqueBands[0:-3] 
        bandFiles = [] 
 
        for band in spectralBands: 
            for date in dates: 
                mergeDate = str(date[0])+date[1].replace(" 
","")+date[2].replace(" ","") 
                dataPath = os.path.join(self.PATH_in, str(date[0])) 
                dataset = [f for f in os.listdir(dataPath) if not 
f.endswith(".tar") and mergeDate == f.split("_")[3]][0] 
                dataPath = os.path.join(dataPath, dataset) 
                file = [f for f in os.listdir(dataPath) if "clip" in f and 
band.upper() in f and ".xml" not in f][0] 
                bandFiles.append(os.path.join(dataPath, file)) 
                #bandFiles.append(file) 
 
        #appending elevation data 
        if "elevation" in uniqueBands: 
            bandFiles.append(demPath) 
            bandFiles.append(slopePath) 
            bandFiles.append(tpiPath) 
 
        #reading reference image 
        #tmpDt = gdal.Open(bandFiles[0]) 
        sampleFile = gdal.Open(bandFiles[0]) 
        dims = [sampleFile.RasterXSize,sampleFile.RasterYSize] 
 
        drv = gdal.GetDriverByName("GTiff") 
        outFile = os.path.join(self.classification_output_path, "output.tif") 
        outDataset = drv.Create(outFile, dims[0], dims[1], 1, 
gdal.GDT_Float32) 
                

  gt = list(sampleFile.GetGeoTransform()) 
 
        outDataset.SetGeoTransform(gt) 
        outDataset.SetProjection(sampleFile.GetProjection()) 
 
        outDataset = None 
        sampleFile = None 
        nThreads = 8 
        chunks = chunkIt(range(dims[1]), nThreads) 
        threads = list(range(nThreads)) 
 
        for thread in range(nThreads): 
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            print(chunks[thread]) 
            threads[thread] = Process(target=processRegion, args=(bandFiles, 
chunks[thread], dims, model, outFile)) 
            threads[thread].start() 
 
        for trd in threads: 
            trd.join() 
 
        return 0 
 
 
             
     
def main(): 
    filePath = '/path/to/imagery/folder/' 
    outPath = "/output/path/of/results/" 
    dataset = "/path/to/samples/dataset_cloud_free.csv" 
    demPath = '/path/to/dem_aligned.tif' 
    slopePath = '/path/to/slope_aligned.tif' 
    tpiPath = '/path/to/tpi_aligned.tif' 
 
    trainingModes = { 
 
        "multispectral": { 
            "columns_to_use": ['b2', 'b3', 'b4', 'b5', 'b6', 'b7'] 
        }, 
        "multispectral_thermal": { 
            "columns_to_use": ['b2', 'b3', 'b4', 'b5', 'b6', 'b7', "b10", 
"b11"] 
        }, 
        "multispectral_terrain": { 
            "columns_to_use": ['b2', 'b3', 'b4', 'b5', 'b6', 
'b7','elevation','slope','tpi'] 
        }, 
        "multispectral_thermal_terrain": { 
            "columns_to_use":['b2', 'b3', 'b4', 'b5', 'b6', 'b7',"b10", 
"b11",'elevation','slope','tpi'] 
        } 
    } 
    for algorithm in ["RF", "kNN", ]: 
        print("Algorithm: ", algorithm) 
        for mode in trainingModes: 
            print("Performing mode: ", mode) 
            a = ComputeModels(filePath, os.path.join(outPath,*[mode, 
algorithm]) , dataset, 
                                                     
trainingModes[mode]["columns_to_use"], mode, 0) 
            model=None 
            if(algorithm == "kNN"): 
                a.trainKNeighbors() 
                model = a.KNmodel 
            elif(algorithm == "RF"): 
                a.trainRandomForest() 
                model = a.RandomForestModel 
 
            a.predictModel(model, a.X_validation, a.Y_validation) 
            a.writeClassificationResult(model,algorithm, demPath, slopePath, 
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tpiPath) 
            #computing classification results 
 
 
 
if __name__ == "__main__": 
    main() 
 
 

 
Step 6: Random Forests time series model training and classification 
 
import psycopg2, os 
from train_classify_v2 import ComputeModels 
 
 
def main(): 
    filePath = '/path/to/imagery/folder/' 
    dataset = "/path/to/samples/dataset_cloud_free_timeseries.csv" 
    outPath = "/output/path/for/results" 
    demPath = '/path/to/dem_aligned.tif' 
    slopePath = '/path/to/slope_aligned.tif' 
    tpiPath = '/path/to/tpi_aligned.tif' 
 
    cnStr = "dbname=thesis user=postgres" 
    cn = psycopg2.connect(cnStr) 
    query = "SELECT DISTINCT '('||year || '-' || month || '-' || day || ')', 
year, month, day FROM dataset_cloud_free ORDER BY year, month, day" 
    cursor = cn.cursor() 
    cursor.execute(query) 
    dates = cursor.fetchall() 
 
    terrainCols = ['elevation','slope','tpi'] 
 
    trainingModes = { 
        "multispectral": { 
            "columns_to_use": ['b2', 'b3', 'b4', 'b5', 'b6', 'b7'] 
        }, 
        "multispectral_thermal": { 
            "columns_to_use": ['b2', 'b3', 'b4', 'b5', 'b6', 'b7', "b10", 
"b11"] 
        }, 
 
        "multispectral_terrain": { 
            "columns_to_use": ['b2', 'b3', 'b4', 'b5', 'b6', 
'b7']+terrainCols 
        }, 
        "multispectral_thermal_terrain": { 
            "columns_to_use":['b2', 'b3', 'b4', 'b5', 'b6', 'b7',"b10", 
"b11"]+terrainCols 
        } 
    } 
 
 
    for mode in trainingModes: 
        requestCols = [] 
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        parseDate = [] 
        appendDate = True 
        for col in trainingModes[mode]["columns_to_use"]: 
            if col not in terrainCols: 
                for row in dates: 
                    requestCols.append(col+row[0]) 
                    if(appendDate): 
                        parseDate.append(row[1:4]) 
                appendDate = False 
 
        for col in terrainCols: 
            if col in trainingModes[mode]["columns_to_use"]: 
                requestCols.append(col) 
 
   
        algorithm = "RF" 
        a = ComputeModels(filePath, os.path.join(outPath, *[mode, 
algorithm]), dataset, requestCols, mode, 0) 
        a.trainRandomForest() 
        model = a.RandomForestModel 
        a.predictModel(model, a.X_validation, a.Y_validation) 
        a.writeClassificationResultTimeseries(model,algorithm, parseDate, 
trainingModes[mode]["columns_to_use"], demPath, slopePath, tpiPath) 
 
 
    return 0 
 
 
 
 
 
if __name__ == "__main__": 
    main() 
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