
MASTER’S THESIS 2024

Automated product
categorization using
transformer models
Joel Bäcker, Victor Winkelmann

ISSN 1650-2884
LU-CS-EX: 2024-07

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-07

Automated product categorization
using transformer models

Automatiskt produktkategorisering genom
transformermodeller

Joel Bäcker, Victor Winkelmann

Automated product categorization
using transformer models

Joel Bäcker
jo4383ba-s@student.lu.se

Victor Winkelmann
vi6253wi-s@student.lu.se

February 2, 2024

Master’s thesis work carried out at Theca Systems AB.

Supervisors: Marcus Klang, marcus.klang@cs.lth.se
Rasmus Ros, rasmus.ros@theca.com

Examiner: Krueger Volker, volker.krueger@cs.lth.se

mailto:jo4383ba-s@student.lu.se
mailto:vi6253wi-s@student.lu.se
mailto:marcus.klang@cs.lth.se
mailto:rasmus.ros@theca.com
mailto:volker.krueger@cs.lth.se

Abstract

This thesis explores the effectiveness of fine-tuning BERT models for
product classification. There is a growing interest in enabling accurate
automatic product hierarchical categorization following the rapid growth
of e-commerce. This work explores the effectiveness of BERT models in
the Swedish e-commerce sector, leveraging the models renowned capabil-
ities in language understanding. The pre-trained BERT models used in
this work where Distilled KB-BERT.

This thesis has concluded that a fine-tuned BERT model with a data
set specifically designed for product classification shows promising re-
sults. With an average precision of 82% across multiple product cate-
gories. The fine-tuned BERT models demonstrated the ability to capture
meaningful representations and to make accurate predictions for classi-
fying products into their respective categories.

However, this study acknowledges the need for further investigation
into the generalization capability of fine-tuned BERT models. While the
accuracy achieved in our experiments is encouraging, it remains unclear
how well these models perform when applied to unseen or out-of-domain
product data. Future research should focus on evaluating the robustness
and generalization of fine-tuned BERT models across different product
taxonomies.

Keywords: Machine Learning, NLP, automated categorization, hierarchical
categorization, BERT

2

Acknowledgements

We want to thank our supervisor at LTH, Marcus Klang for all the valuable input,
guidance, and support.

We would also like to extend our gratitude toward Theca Systems AB and espe-
cially Rasmus Ros for being our supervisor and helping us during the project. We
are also grateful for the hardware that was provided to us, without it, this thesis
would never have been possible.

3

4

Contents

1 Introduction 9
1.1 Background . 9
1.2 Problem Statement . 10
1.3 Scientific Contributions . 10
1.4 Related Work . 11
1.5 Limitations . 11
1.6 Contribution statement . 11

2 Theory 13
2.1 Machine Learning . 13

2.1.1 Supervised Learning . 14
2.1.2 Unsupervised Leaning . 14
2.1.3 Reinforcement learning . 14
2.1.4 Train, Validation and Test . 15
2.1.5 Loss Function . 15
2.1.6 Top-𝑘 Learning . 15
2.1.7 Tools . 16

2.2 Natural Language Processing . 17
2.2.1 Tokenization . 17
2.2.2 Word Embedding . 18
2.2.3 Self-Attention . 18
2.2.4 Term Frequency-Inverse Document Frequency 19

2.3 Transformer . 20
2.3.1 BERT . 20
2.3.2 Pre-trained and fine tuning models 21
2.3.3 Zero-shot classification . 22

2.4 Category Path . 22
2.5 Model proposed by Liu et al. (2021) 23
2.6 Scrapy . 24
2.7 Evaluation metrics . 24

5

CONTENTS

3 Method 27
3.1 Data Set . 27

3.1.1 Taxonomy . 28
3.1.2 Common Product Handling 30
3.1.3 Creating Train, Validation and Test Sets 30

3.2 Baseline Models . 31
3.2.1 TF-IDF . 31
3.2.2 Zero-shot Classification . 32
3.2.3 Pre-trained BERT with Sequence Classification 33

3.3 Transformer Models . 34
3.3.1 Sequence Classification Model 34

3.4 Evaluation . 38
3.4.1 Sequence Classification Model 38
3.4.2 Evaluation Methods . 39

3.5 Experimental Setup . 40
3.5.1 Hardware . 40
3.5.2 Data Set . 40
3.5.3 Source of Pre-Trained Models 42
3.5.4 Model and Parameters . 43

3.6 Model Summary . 43
3.6.1 Model 𝛼 . 43
3.6.2 Model 𝛽 . 44
3.6.3 Model 𝛾 . 44
3.6.4 Model 𝛿 . 44

4 Results 45
4.1 Baselines . 45

4.1.1 TF-IDF . 45
4.1.2 BERT zero-shot classification 48
4.1.3 Using Pre-trained Model . 48

4.2 Hyperparameter Tuning . 48
4.3 Training and Evaluation . 50

4.3.1 Model 𝛼 . 52
4.3.2 Model 𝛽 . 55
4.3.3 Model 𝛾 . 57
4.3.4 Model 𝛿 . 57

5 Discussion 63
5.1 Data Set . 63
5.2 Baselines . 64

5.2.1 TF-IDF . 64
5.2.2 Zero-shot Classification and Pre-trained model 64
5.2.3 Conclusion of baselines . 65

5.3 Model proposed by Liu et al. (2021) 65
5.3.1 Fine-tuning . 65
5.3.2 Reinforcement Learning . 66
5.3.3 Hardware Restrictions . 66

6

CONTENTS

5.4 Sequence classification model . 66
5.4.1 Model training . 66
5.4.2 Model Evaluation . 69
5.4.3 Summary of Results . 70

5.5 Ethics . 71
5.5.1 Carbon Emission . 71
5.5.2 Affect on Consumer Behaviour 72
5.5.3 Biased Model . 72

6 Conclusion 73

References 75

Appendix A Data set details 81

Appendix B Hyper-parameter optimization 83
B.1 Hyper-parameter optimization 1 . 83
B.2 Hyper-parameter optimization 2 . 83

Appendix C Training parameters 85

7

CONTENTS

8

Chapter 1
Introduction

1.1 Background
Classifying product titles/descriptions into an appropriate category is a crucial part
of many industries, for example, e-commerce. Effectively organizing products not
only facilitates more efficient navigation for customers but also enables a company
to conduct a better analysis of consumer behavior. Categorizing products accord-
ing to some pre-determined taxonomy is a time-consuming task and even more so
the impossible task to re-categorize every product if the taxonomy is changed. To
address this challenge, the application of artificial intelligence (AI) based methods
could be a suitable solution. By the use of algorithms and state-of-the-art machine
learning models, AI has the potential to learn complex relationships between text
and categories and thereby automate categorization.

Imagine being able to search for a product by describing it and getting results
for all products that could belong to that type of text. This is another example of
how AI could help create a more comfortable browsing experience.

If one searches for Vatten- och isdispenser on Elgiganten’s website1 a large num-
ber of relevant products is returned in the search result. However, if you search
for Kyl med vatten och is only one relevant product can be found. With the use
of AI both searches could get a similar range of relevant search results. AI imple-
mentation would also enable companies to re-classify a product to another category
structure. This could help retail companies lower their expenses in terms of mar-
keting now spent on Google’s ad services (Lindberg and Facht, 2022). Such a model
would enable companies to send potential companies directly to the most relevant
site without the need to rely on Google’s services. This work set out to explore the
possibility to implement an AI model that could solve such tasks. It also aimed to
develop, train and evaluate models that could accurately classify products according

1https://www.elgiganten.se/

9

https://www.elgiganten.se/

1. Introduction

to some taxonomy. Various factors such as accuracy, requirements, scalability, and
generalization are taken into consideration while designing the solution. Potential
challenges, limitations, and ethical aspects are also discussed.

In conclusion, the automation of product classification holds tremendous poten-
tial for enabling a better consumer experience, a lower amount of tedious manual
labor and lower expenses to tech giants such as Google. By overcoming these limi-
tations, this research aims to contribute to the growing field of AI-driven tools that
could help to streamline companies’ product management.

1.2 Problem Statement
This thesis aims to explore how an AI-based model could be constructed and imple-
mented to automatically generate categories for product text from a given taxonomy.
A taxonomy is a method of structuring categories in a hierarchical way by pairing
parent and child categories. The idea of using a taxonomy is that a parent category
is broader than the child, which is more specific. This helps us group similar things
and separate those that are different. Using a taxonomy to structure relationships
between parent and child categories is common in, for example, web-based stores.
The resulting model should ultimately be able to produce ordered categories in a
hierarchical manner, similar to a web-based store.

To develop a model capable of generating hierarchical categories, fine-tuning of
a large language model (LLM) is carried out. Fine-tuning is the process of adapting
an LLM to a specific task using a vast amount of product data. The data is collected
from several different stores, all of which are among the largest e-commerce platforms
in Sweden. During fine-tuning, some of the data will not be seen and will not
be present in the taxonomy; this is done to assess the model’s performance on
products and categories it has not encountered before. The model can predict unseen
categories thanks to the methods employed during fine-tuning, such as zero-shot
learning. By leveraging this data, the project will explore which model architecture
is most suitable for category prediction. The research aims to be able to answer the
following questions:

1. How well can a Machine Learning model predict the category to which a
product belongs in different stores with different taxonomies?

2. How does publicly available technology/models perform when compared to
our proposed model?

3. What is the performance on unseen stores and taxonomies that are not part
of the training set?

1.3 Scientific Contributions
Previous research has shown successful methods for accomplishing automatic hier-
archical classification on single-domain products and categories. One such example

10

1.4 Related Work

is presented in ’Improving pre-trained models for zero-shot multi-label text classifica-
tion through reinforced label hierarchy reasoning.’ (Liu et al., 2021). In this paper,
however, the goal is to expand upon these methods in order to be usable for cross-
domain categorization with different taxonomies. This implies that new products
from known or unknown domains can be automatically categorized once the model
is created.

1.4 Related Work
The approach for the report is to use a transformer-based model called Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al., 2019a). As
mentioned previously has there have been successful methods to solve parts of the
problem, one such is solution is Liu et al. (2021), where only one domain is analyzed
at once. This report aims to expand the method in the paper in order to get it to
work for several domains.

1.5 Limitations
Even though a large language model like BERT can understand and use several lan-
guages, the data in this project will only be in one language: Swedish. Constructing
a model in another language or one that is multilingual, i.e., understanding more
than one language, is far from impossible. However, considering the scope of this
work, which aims to construct the framework for hierarchical product categorization,
only one language is used.

Before the data set was created, containing product information fetched from
some of the largest e-commerce platforms in Sweden, a search was conducted to
find another one. The search yielded nothing that fit into this thesis problem; thus,
no benchmarking and comparisons were possible. Comparing the results from the
models with something similar might be challenging, as a proper baseline data set
was not available at the time.

1.6 Contribution statement
The project was designed and written by Joel Bäcker and Victor Winkelmann, see
Tab. 1.1 for detailed contributions.

11

1. Introduction

Table 1.1: Contribution statement.

Joel Bäcker Victor Winkelmann
Contribution [%]

Data preparation 60 40
Baseline 40 60
Liu et al. (2021)
model 40 60

Other transformer models 40 60
Report 40 60

12

Chapter 2
Theory

This chapter will provide relevant theory about the model that is used for automatic
categorization.

2.1 Machine Learning
Computer problem-solving requires an algorithm, a recipe of instructions that a ma-
chine can follow in order to produce a solution to the problem at hand. Algorithms
can be used to solve problems like the shortest path in a graph, e.g. by using Di-
jkstra’s Algorithm, or sorting a list of numbers, maybe using Quick Sort (Dijkstra,
1959; Hoare, 1961). However, there are problems that prove to be harder to con-
struct a set of instructions, i.e. it is hard to construct a function that can transform
the input into a desired output if both are not given explicitly.

Instead of explicitly writing an algorithm to solve a problem, we would like a
program to extract the features of an input and associate those with an output.
Given enough data, the idea is that a machine could hopefully learn the most im-
portant parts of an input and relate these to the correct output and to also make
accurate prediction on both similar and new data. This is called machine learning
(ML) (Alpaydin, 2010).

The typical steps to solve a machine learning problem is to first find or create
data for the problem. Data could be, e.g. time series data, text, pictures, numbers
etc., but it needs to be relevant for the problem at hand. From this, the data is
prepared so that an ML model can be trained on the gathered data. During the
training phase some parameters are tweaked in order to maximize the performance
of the model. A part of the data goes to model training, often it is most of the data,
another part of the data, i.e. not seen during training, is used for model evaluation
(Mitchell, 1997; Brown, 2021).

Depending on the task and data that is available for the problem a ML strategy

13

2. Theory

needs to be picked, where the most common are Supervised, Unsupervised and
Reinforcement Learning.

2.1.1 Supervised Learning
Supervised Learning is a ML paradigm where an algorithm is trained on a labeled
data set, i.e. a set that contains pairs of input and correct labels. This could be
pictures of animals where the animal in the picture is the label, or handwritten
characters where the label is the correct character (Brown, 2021). During training
the algorithm identifies patterns in the data and tries to optimize the predictions to
be as close to the correct ones. Evaluating the model’s performance is done on data
that have not been seen during the training phase.

2.1.2 Unsupervised Leaning
Instead of telling a machine what patterns or answers to look for, the program
attempts to do it automatically. For instance, let us say we have some sort of sales
data, the patterns present in the data set can sometimes be hard to extract and/or
find. Thus, the machine can be used to find patterns in the data, it could perhaps
find what type of person buys what products or shopping trends such as a correlation
between buying two products or holiday shopping trends (Brown, 2021). Here, the
main difference is that the data has no definite right answer (unlabeled), the goal
of the model is used to find trends and relationships within the input data.

2.1.3 Reinforcement learning
Reinforcement learning (RL) differs from the other methods since it is based on a
trial and error system and not needing a labeled data set. The model is instead
trained by optimizing a reward function, the reward is calculated from some expres-
sion of the current state. The state is some sort of environment to which the model
is connected to. Depending on the usage of the model the environment could be a
video game or roads used for traffic. In these cases, the reward function could be
how far the model gets from the starting point, and the goal is to reach some goal
or target.

In addition to the state and reward function the available actions that the model
can take also need to be provided. The chosen action for some state during training
will affect the state during the next iteration. If the model is trying to play a video
game then the action it could take would be the different buttons and other inputs
from a controller (Brown, 2021; Kaelbling et al., 1996).

A reinforcement learning process can be summarized into five step:

1. Observe state

2. Choose an action

3. Interact with the state

14

2.1 Machine Learning

4. Get reward

5. Repeat

2.1.4 Train, Validation and Test
Before constructing any models, it is often good practice to divide the data set into
three parts, which are used during different stages of model creation, as suggested
by Ng (2023) (note that this is not applicable for RL). These three parts are:

1. train, used when fine-tuning a model in order to tailor it to a task,

2. validation, used to tune the hyper-parameters in a model to ensure the best
performance on the final model

3. test set which is used to evaluate the performance of the model, not seen
during training.

To make these parts different criteria are put upon them to maximize the efficiency
of the corresponding part. A typical consideration taken when making these are
e.g. randomizing or random sampling the data in order to mitigate any potential
relation between two data points.

2.1.5 Loss Function
ML algorithms always involve some sort of optimization, referring to the task of
either maximizing or minimizing some sort of function or state. When training a
neural network, like in a NLP setting, it is called Loss function or objective function.
This function measures how well the model is performing. There are many different
types of loss functions, and they are dependent on the type of problem. Binary Cross-
Entropy Loss (BCE) is a loss function that is used for binary classification tasks and
Categorical Cross-Entropy (CCE) is used for multi-class problems (Goodfellow et al.,
2016).

2.1.6 Top-𝑘 Learning
Often when performing ML tasks only one prediction is accepted. Top-𝑘 aims to
extend this criterion to accept 𝑘 predictions instead. This method can be used in
this project to predict hierarchical categories by doing it one step at a time. A
model would predict the best 𝑘 categories given input and the possible next steps
(Petersen et al., 2022).

This is visualized in Tab. 2.1. In the top-1 scenario, only the first prediction is
counted as correct. In the top-3 scenario, it is considered correct if the right answer
is within the first three predictions. Similarly, for top-5, the answer is counted as
correct if it appears within the first five predictions.

15

2. Theory

Table 2.1: Examples of Top-𝑘 for various values of 𝑘. Cor-
rect guesses are highlighted in bold. Predictions are ordered
according to the most probable class as determined by some
model. The ’Yes/No’ column indicates whether the predic-
tions are included within the corresponding top-𝑘.

Input Predictions top-1 top-3 top-5
Dog Dog, Cat, Bird, Rabbit, Fish, Mouse Yes Yes Yes
Cat Cat, Bird, Fish, Mouse, Rabbit, Dog Yes Yes Yes
Bird Cat, Dog, Bird, Fish, Mouse, Rabbit No Yes Yes
Rabbit Fish, Cat, Mouse, Bird, Rabbit, Dog No No Yes
Mouse Rabbit, Cat, Dog, Mouse, Bird, Fish No No Yes
Fish Bird, Rabbit, Dog, Mouse, Cat, Fish No No No

2.1.7 Tools
There are many tools available for constructing ML based model. For this thesis
the implementations where made in Python and used the packages mention in this
section below.

PyTorch
PyTorch is a machine learning library that shows that two goals are in fact com-
patible: enabling GPU accelerated training and therefore increasing the speed of
training whilst still maintaining a user-friendly interface. PyTorch is one of many
popular frameworks. An alternative is TensorFlow developed by Google. PyTorch
is a framework developed to train various types of neural networks (Paszke et al.,
2019).

Scikit-learn
Scikit-learn is a Python module that integrates a wide range of state-of-the-art
machine learning algorithms. It can be used both for supervised and unsupervised
problems at a medium scale. The idea behind Scikit-learn is to provide state-of-the-
art implementations of many well-known algorithms for classification, regression,
clustering, etc. whilst still keeping a user-friendly interface (Pedregosa et al., 2011).
Scikit-learn is not GPU enabled and therefore used for medium-scaled problems that
have limited complexity. Components used from SciKit-learn:

• MultiLabelbinarizer - transforms the data into a binary format. A binary
matrix where the column represents a unique category and the rows represent
a unique instance

• OneVsRestClassifier - A machine learning strategy that is used for multi-class
classification problems. This method allows you to transform a multi-class
problem into multiple binary classification problems, one for each class

16

2.2 Natural Language Processing

"Hello my name is Bert"
↓

tokeninaztion
↓

[’Hello’, ’my’, ’name’, ’is’, ’Bert’]

Figure 2.1: Example of how a tokenizer might work.

• LinearSVC - An algorithm used for binary classification problems. It is de-
signed to classify products into one of two possible classes

• LabelEncoder - A utility class that encodes texts to numerical values, this is
needed since algorithms often require input data to be in numerical form.

• SGDClassifier - is a classification algorithm. It is used for multi-class classi-
fication and binary tasks and is known for its efficiency and ability to handle
large datasets.

2.2 Natural Language Processing
Natural Language Processing (NLP) can be described as computers trying to under-
stand and analyze human language, such as English, Swedish, German etc. A task
might be used to summarize, translate (between and among languages) or categorize
an input such as speech, text, or any other format of language that we use in our
everyday life (Allen, 2003).

Although there are several core areas in NLP, the focus and most important one
for this report is Language Modeling (LM). The idea behind LM is that single words
contain limited information on their own. It is in a sentence or in a context the true
value of a word takes shape. To comprehend the essence of words, it is integral to
determine the interaction between words. The meaning of words is influenced by
the combination and relation to other words in a sentence or in a larger text (Otter
et al., 2021a).

2.2.1 Tokenization
A crucial part of a NLP task is to tokenize a text. Tokenization is a method that
splits a text into semantically useful parts called tokens. A tokenizer can be used on
different part of the text such as sentences or words, in the context of this project
word tokenization is used. This is a essential part since the data needs to be in
a form that is suitable for a ML model to understand (Trim, 2013; Jurafsky and
Martin, 2009; MonkeyLearn, 2023).

An example of how a tokenizer could work is shown in Fig. 2.1. The usual next
step after tokenization is to convert the tokens into something a computer can read.
One such method is to have each token correspond to an id, e.g. an integer.

17

2. Theory

"unbreakable"
↓

wordpiece
↓

["un", "break", "able"]

Figure 2.2: Example of how a wordpiece algorithm might
work.

WordPiece
Some NLP models operate using a fixed vocabulary, meaning that they can only
tokenize words present in that vocabulary. This becomes problematic when a word
not in the vocabulary needs to be tokenized. Several methods exist to handle these
so-called out-of-vocabulary (OOV) words, one of which is WordPiece (Devlin et al.,
2019b).

WordPiece is a method to break down words into smaller pieces, known as sub-
words. This approach is particularly useful for handling uncommon or unfamiliar
words that are OOV. Instead of the model getting confused by an unrecognized
word, the word is broken down into smaller, more manageable pieces that the model
is likely to know. An example of how this algorithm works is presented in Fig. 2.2.

2.2.2 Word Embedding
Word embeddings are a central component in many neural networks and LM. The
concept revolves around being able to convert text, which we humans understand, to
a vector, that a computer understands. One such algorithm is Word2Vec which can
be used to create word embeddings (Mikolov et al., 2013). Uses for word embeddings
varies, for example, it could be used to find semantic similar words, cluster related
words or displaying the correlation between word/text (Goldberg, 2017).

2.2.3 Self-Attention
Attention is sometimes described as a method that tries to mimic human approach
of paying (cognitive) attention to important path of e.g. sentences (Otter et al.,
2021b). If the following document is given as context The green frog jumped over
the rock. and a question like What did the frog jump over? or What color is the
frog? we instinctively know which parts of the text that contains the answer and
which part do not.

There are many attention methods, like Luong et al. (2015) and Bahdanau et al.
(2015), but the one relevant in this thesis is self-attention since they are used in
Transformers as stated in Vaswani et al. (2017). The self-attention mechanism
allows parts of a sequence, e.g. tokens or words in a sentence or text, to determine
its connection and weight with other parts within that sequence. It means that this
mechanism helps to captures dependencies and relationships within a sequence by
assigning an attention score to individual parts based on the importance of it in the

18

2.2 Natural Language Processing

Table 2.2: Example of calculating the TF-IDF score for the
term ’Machine’ for 4 documents.

Document TF IDF TF-IDF of term ’machine’
1 1/4 = 0.25

log(4/3) ≈ 0.1249

0.25 · 0.1249 ≈ 0.0312
2 0/7 = 0 0 · 0.1249 = 0
3 1/6 ≈ 0.1667 0.1667 · 0.1249 ≈ 0.0208
4 0/4 = 0 0 · 0.1249 = 0

sequence (Galassi et al., 2021).

2.2.4 Term Frequency-Inverse Document Frequency
Term Frequency-Inverse Document Frequency (TF-IDF) is a combination of term
frequency and inverse document frequency. The first one (TF) measures how fre-
quently a term is present in a document relative to the total amount of terms. This
means that a term that has many occurrences gets a higher score compared to other
terms. The latter (IDF) measures the importance/meaningfulness of a term and
is calculated by dividing the total amount of documents by the number of docu-
ments that contain this term. This introduces an attenuating effect for terms that
are present in multiple documents, the more documents the term is present in the
higher the dampening effect becomes. When combined, the weights for each term
are created for each document, thus creating the TF-IDF vector (Manning et al.,
2008). To calculate the TF-IDF for a term 𝑡 in a document 𝑑 it is done by

TF-IDF(𝑡, 𝑑) = TF(𝑡, 𝑑) · IDF(𝑡)

where IDF is found by

IDF(𝑡) = log
(

𝑛

DF(𝑡) + 1

)
,

assuming TF(𝑡, 𝑑) ≠ 0, 𝑛 = number of documents and DF (document frequency) is
the number of documents that contain 𝑡 (Scikit-learn, 2023).

Consider the four sentences (1) Machine learning is fascinating., (2) Natural lan-
guage processing is a subfield of AI., (3) AI and machine learning are closely related.
and (4) AI can help research.. To find the TF-IDF scores for "machine" in these doc-
uments is done in three steps, first find the TF for the word in each documents then
caluculate the IDF and lastly calculate the TF-IDF. For this example the TF is
simply found by counting the occurrences of "machine" divided by the total number
of words in each document and the IDF using the formula above. Calculations are
laid-out in Tab. 2.2. This logic is applied on the specific term ’Machine’ in the
documents. In reality TF-IDF is a vector that represents all term frequencies of a
document.

19

2. Theory

2.3 Transformer
The transformer is a machine learning architecture developed by Vaswani et al.
(2017) and was created in order to process sequential data, such as text. Instead of
using long recurrent neural networks (RNN), the transformer uses a self-attention
mechanism which allows it to selectively focus on certain parts of an input. This
is made possible since the transformer processes the entire input instead of just
a smaller part of it like an RNN, and such long-range relationships can be found
(Vaswani et al., 2017).

The Transformer model consists of two main components: the encoder and the
decoder, as illustrated in Fig. 2.3 showing the entire model architecture. The encoder
processes the input data, encoding it in a way that goes beyond simply understand-
ing the meanings of individual words; it captures the essence of the entire input.
Each word, represented as a vector, embodies not only its own meaning but also
its relationship to all other words in the input, achieved through the self-attention
mechanism.

The decoder then generates the output by interpreting the encoded input. This
decoding process also employs the self-attention mechanism, producing the output
sequentially, word by word. The decoder uses the self-attention mechanism in two
distinct ways: one to focus on relevant parts of the input data and another to
concentrate on the relevant portions of the output generated thus far.

Both the encoder and decoder are composed of several identical layers, enabling
the Transformer to capture complex relationships within the data.

The Transformer model can be applied to tasks such as translation. For example,
it could translate a sentence from Swedish to English, processing the input sentence
in Swedish and generating the corresponding sentence in English as the output.

2.3.1 BERT
Bidirectional Encoder Representations from Transformers (BERT) is a modern NLP
model based on transformer architecture, however it only uses the encoder part of the
transformer model. Unlike other models, BERT is trained on a bidirectional context,
meaning the model is trained to predict both the preceding and the following words
in a sentence. The bidirectional training enables BERT more nuanced and deeper
understanding of language in general (Devlin et al., 2019a).

To train a BERT model, vast quantities of text data, including articles, books,
and web pages, are required. To mitigate the problem of OOV words that may arise
from such diverse sources, BERT employs the WordPiece tokenization algorithm.
The training phase, also called pre-training, consists of predicting words that have
been masked out (hidden), a job which demands the model to understand both the
meaning of words as well as the context of the text. Once the model training is
complete, can a BERT model be fine-tuned for a NLP specific task, such as text
classification or question answering. This fine-tuning step adjusts the pre-trained
model according to the characteristics of the data set from the specific task. The
data set required for fine-tuning is much smaller than the data for pre-training phase.
The ability to fine-tune a BERT model allows the model to be versatile and having

20

2.3 Transformer

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The rst is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

Figure 2.3: Transformer model architecture, provided by
(Vaswani et al., 2017). The left block is the encoder and
the right the decoder.

the ability to be adapted to several different problems, as mentioned previously
(Devlin et al., 2019a).

Layers
As mention previously is BERT model based on the transformer architecture, which
is known for its effectiveness in handling sequential data. A BERT model stacks
multiple of these transformers on top of each other, where more layers allows for
more complex relations to be captured. Between each layer flows information from
the input text, where each step refines the word representations. Different variants
of BERT contain different number of layers, where more layers implies a larger model
and thus more computational complex and need more time training (Devlin et al.,
2019a).

In Devlin et al. (2019a) two models are suggested, BERT-base with 12 layers
and BERT-large with 24 layers.

2.3.2 Pre-trained and fine tuning models
One of the many advantages of a model like BERT is that once trained on large
quantities of data, it can be reused and expanded upon, this is what one would call
a pre-trained model. Once created it can be used to solve domain-specific problems
by further training on data that is specific for that problem, called fine-tuning. This
enables the NLP model to learn complex patterns and structures in the data that

21

2. Theory

were not present in the original data set. The amount of data needed in order
to fine-tune a model is often much lower than the original data set, which implies
that the fine-tuning session takes fewer resources (Devlin et al., 2019a). There are
many different types of pre-trained BERT models, The models presented in BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding have
either 12 or 24 layers. BERT-base has 12 and BERT-large has 24 layers (Devlin
et al., 2019a).

Distilling BERT

The resulting BERT model created after training can be quite large, in terms of
parameters, so when fine-tuning a model it can take quite some time to get it to
perform well. But if one is willing to trade some accuracy with speed then a distilled
version of the model can be used. It works by using Knowledge distillation, described
by Hinton et al. (2015), transferring the knowledge from one bigger model called the
teacher model to a smaller one called the student model where the teacher model
in this case would be BERT. It functions by feeding the class probabilities from the
teacher model as soft targets to the student model. This way the student model
learns to mimic the same behavior as the teacher model. After the initial training is
done, the student model is fine-tuned with the true labels instead of the soft targets
(Hinton et al., 2015). DistilBERT has 6 layers compared to the normal BERT which
has 12 or 24 layers.

2.3.3 Zero-shot classification
Zero-shot classification and training is a sub-field of machine learning where the
aim of a model is to be able to classify classes even though they have not been
present/seen during training. When such model is trained, it is only allowed to see
data not containing any labels that have been put in an unseen set. For a model
that have been trained to classify animals, e.g. elephants, lions, horses, etc., if a
new animal, like a zebra, then the model could still recognize that it is similar to
a horse. Zero-shot learning is a technique used to train a model to recognize items
that are conceptually related to its existing knowledge (Xian et al., 2018).

2.4 Category Path
To represent the categories to which each product in the data set belongs, this thesis
introduces a new term: category path. A category path is a collection of categories
that a product belongs to, organized hierarchically from the most general to the
most specific. Table Tab. 2.3 presents a few examples of category paths. In these
examples, the most generic category is "hem", and subsequent categories become
progressively more specific.

22

2.5 Model proposed by Liu et al. (2021)

Table 2.3: Examples category paths.

Category paths
["hem", "kläder", "jackor", "regnjackor", ...]
["hem", "inredning", "möbler", "soffor", ...]

2.5 Model proposed by Liu et al. (2021)
This thesis has taken great inspiration from the paper Liu et al. (2021). In this
paper, the authors are investigating the possibility of how to improve pre-trained
models to correctly classify a product towards a taxonomy. The model in the paper
is divided into two major parts: fine-tuning and reinforcement learning. First,
the model is fine-tuned on data specific to text classification, using the methods
mentioned in Sect. 2.3.2. This fine-tuning step takes a text description as input,
and the output consists of the category paths (as described in Sect. 2.4). The data
used during the fine-tuning phase includes both true categories and categories to
which the text does not belong, referred to as false data. False data is randomly
sampled from a category path, meaning that the path may contain some correct
categories but eventually leads to false categories. The random sampling can be
achieved by selecting children from a previous category in the path. By combining
both true and false data during fine-tuning, the model learns to associate text with
a category path and is trained using a sequence classification architecture.

Once the pre-training step is complete, the next phase begins. The model pro-
duced during fine-tuning undergoes a second training cycle using reinforcement
learning as the training paradigm. During this second training phase, the model
is expected to learn the necessary steps to reach the final correct category path. To
accomplish this training step, a policy method is introduced. The policy method is
used to determine the next action the model should take in a category path. This
method takes into account the current state, category path, and action space (possi-
ble categories), and it returns a score for each available action. The possible actions
that the model can take are determined by the category tree, as each category may
have zero or more children in the tree. The available actions are the children of the
last category in the path. The model is then updated, and new paths are selected
for investigation based on the prediction scores from the policy

The policy selects the next category by choosing the most probable child of the
last category in the predicted path. The predicted category is then added to the
previously predicted categories, thereby updating the state. This process results in
the accumulation of a path over time, starting from the root.

At each stage of this accumulated path, the model receives a positive reward,
and for every incorrect prediction, it incurs a penalty. If the correct path consists
of categories denoted as c𝑛, where 𝑛 is an unique ID for each category, the entire
correct path is written as (c1, c2, c3). If this complete path is the desired final output,
it means that the model will receive a positive reward during the second training
phase if it predicts (c1), (c1, c2), or the entire path, as the elements in the predicted
path represent the beginning of the correct path. However, if the model selects (c5),
(c2, c1), or (c1, c2, c4), it incurs a penalty because none of these paths are part of the

23

2. Theory

correct path.
This is a brief introduction to the workings of the model presented in the paper,

we urge the interested reader to refer to the paper to get a deeper understanding of
the theory and methodology used in this approach.

2.6 Scrapy
Scrapy is one of many open-source application frameworks that enable web crawling,
a method of going from site to site and gather structured data. At the core of Scrapy
there exists something called spiders. They specify what URLs to start crawling
from and how it should follow links as well as specifying how to parse the retrieved
website data, which often comes in the form of HTML. The spiders work by sending
out an request and receives a response in the form of raw data that are then parsed
according to a predetermined method. Sitemap spiders are used to crawl the product
data. They work by following the sitemap file for a certain site (Scrapy, 2023). The
sitemap file contains a list of links that lead to the different parts of the website. The
sitemaps are located within the robots.txt file which stands for Robust Exclusion
Protocol. Both of them are standardized practices used by websites to indicate to
web crawlers and other web robots what parts of a website the crawler is allowed to
crawl (Sitemaps.org, 2020; Central, 2023; Koster, 2007).

2.7 Evaluation metrics
In order to measure the performance of the models in this thesis, some measurement
metrics need to be introduced. When a model makes a prediction in a classification
task it will either produce a correct or an incorrect guess. As a performance metric
two measures can be constructed, recall and precision. Recall is the proportion of
times a label were correctly predicted out of number of occurrences of that label,
and precision is the proportion of correct predicted labels out of total predictions
for that label (𝑐) Chinchor and Sundheim (1993); van Rijsbergen (1979). In detail
they are defined as:

recall(𝑐) = |correct prediction(𝑐) |
|occurrences(𝑐) | (2.1)

precision(𝑐) = |correct prediction(𝑐) |
|predictions(𝑐) | (2.2)

where | · | is the count operator.
Another measurement is also introduced that combines recall and precision called

𝐹𝛽, and it is defined as:

𝐹𝛽 =

(
𝛽2 + 1

)
· precision(𝑐) · recall(𝑐)(

𝛽2 · precision(𝑐)
)
+ recall(𝑐)

, (2.3)

where 𝛽 is the relative importance between recall and precision. In this thesis the
value of 𝛽 will be 1 since recall and precision are weighted the same (Chinchor and

24

2.7 Evaluation metrics

Sundheim, 1993). The 𝐹1-score is thus:

𝐹1 = 2 · precision(𝑐) · recall(𝑐)
precision(𝑐) + recall(𝑐) . (2.4)

Lastly, the measure accuracy will be used which will be implemented using Scikit-
learn (2023) as:

accuracy =
|correct predictions|

|predictions| (2.5)

note that accuracy and precision is similar but precision per label and accuracy is
for all predictions.

25

2. Theory

26

Chapter 3
Method

This chapter aims to motivate the design decisions that have been made during
this project. The chapter aims to give the reader a good understanding of the
methodology that was set up and used. The chapter will be divided into different
sections explaining the different parts of the project.

In Fig. 3.1 the broad method pipeline is shown, Data Preparation relates to
data crawling and Sect. 3.1. Then, Model Design is both the design of baseline in
Sect. 3.2 and model design in Sect. 3.3. The training process of the models also
includes hyperparameter optimization. After the training phase, the models are
evaluated and training progression is also presented.

Data Preparation Model Design Train Models Evaluate

Figure 3.1: The method outline.

3.1 Data Set
One of the goals of this thesis is to implement a method that takes product infor-
mation and outputs the hierarchical category it belongs to. Thus, a data set was
created prior to this project at Theca Systems by Victor Winkelmann with product
data retrieved from some of the largest e-commerce in Sweden (Gunnilstam, 2021).
In order to create the best setting for a model to generalize on different types of
products, a broad and diverse data set is needed since the idea is that the more
different products a model sees during training the better. Research to find existing

27

3. Method

data sets that met this criterion failed to yield adequate results, thus a data set was
created.

Creation of the data set was done by crawling some of the sites mentioned above,
however, there were both practical issues and some sites made them unavailable
for scraping. As mentioned above the goal is to create a method of automated
categorization from title and description, these two are together with the category
vital information to gather from each site and product. However, some metadata
were also collected, those were Manufacturer Part Number (MPN), Global Trade
Item Number (GTIN) and European Article Number (EAN). The plan was to use
these in order to find products from different sites that had the same product but
different categories so that the model could learn that a product description could
belong to different category hierarchies. Another strategy to find common products
between sites where to scrape price comparison sites (PCS) which contained sources
of common products.

More details on the contents of the data set can be seen in Appendix A and how
the data sets where created can be found in Sect. 3.5.2.

3.1.1 Taxonomy

A taxonomy is the collection of relationships between the categories available in
the training data, a systematic way to organize the categories. In this taxonomy
the parent and child relation is stored, created by examining all the category paths
in the training data. For this project, the main use of the taxonomy is to create
training examples when fine-tuning a model.

In this project, we create a taxonomy by examining the category path of each
product. Since paths are hierarchically organized, starting from the most general
category and progressing to the most specific. This hierarchical arrangement facil-
itates the construction of a tree-like structure for the taxonomy. In this structure,
the first category in the path serves as a parent to the second, the second category
is a parent to the third, and so forth. For visual representations of how this tree is
constructed and its overall structure, refer to Tab. 3.1 and Fig. 3.2.

During this project, two different types of taxonomies were created: one incor-
porating category paths from all stores, and another containing category paths from
only a single store. While developing the taxonomy that included all stores, we en-
countered an issue with cycles forming in the taxonomy tree, as visually represented
in Fig. 3.3. These cycles posed a challenge for the model’s ability to predict the
next path, as it could potentially lead to endless predictions.

Various strategies were attempted to eliminate these cycles, including remov-
ing edges where cycles occurred and renaming categories. However, these methods
proved to be ineffective, as they often disrupted the correct paths for some prod-
ucts. As a solution, we implemented a maximum depth limit. This means that any
category path generated by the model cannot exceed this set limit. This limit were
set to 13 for all models and were chosen based on the longest category path.

28

3.1 Data Set

Table 3.1: Example category paths.

Category paths
["hem", "kläder", "jackor", "regnjackor", ...]
["hem", "kläder", "jackor", "dunjackor", ...]
["hem", "kläder", "byxor", "jeans", ...]
["hem", "kläder", "byxor", "chinos", ...]

Figure 3.2: Taxonomy created from the example category
paths in Tab. 2.3.

...

a

b

c ...

...

Figure 3.3: A cycle present in the taxonomy, a, b and c are
three different categories.

29

3. Method

3.1.2 Common Product Handling
When training a model with this data, it is of interest to find potential overlap of
products between different stores, e.g. if two store sells the same video game console.
Since the text of these products is assumed to be semantically similar to each other
the model should be trained, so that for a single product, several possible category
paths might be correct. By enabling the model to be trained on all different possible
paths for the same text, it can learn complex relationships between categories that
are otherwise lost.

To enable this possibility, the products which had multiple entries were grouped
together using one of the PCSs available in the data set and the metadata tags
MPN, GTIN, and EAN. In other words, there have been four distinct, but not
necessarily, independent groups created. Groups that share one or more members
are joined together since one can assume they are the same if they share some
common metadata element. When the grouping of products is done, new training
examples are created for each product in a group adding the pair product text and
category paths from each other product.

In Table Tab. 3.2, examples of products are displayed, each with associated
metadata values. Product A has associated MPN and EAN values, while Product B
has MPN and GTIN values, and so on. It is important to note that some values may
be missing. Products A and B are grouped together because they share the same
MPN value. Similarly, Products B and C form a group as they have the same GTIN
number. Product D, lacking a common metadata tag with the other products, is
not grouped with any other product. Since Products A and B form one group and
Products B and C form another, and Product B is common to both, these groups
are combined. This results in two distinct groups: the first comprising Products A,
B, and C, and the second consisting solely of Product D.

The idea of creating these new training examples is to further train the model
with more correct paths to reach a product. The hypothesis is that this enables the
model to find better correlations between texts and potential categories to enable
prediction on unseen category taxonomies with higher accuracy.

Table 3.2: Example of products and meta data associated
with them.

Product MPN GTIN EAN
Product A 𝑚𝑝𝑛1 𝑒𝑎𝑛1
Product B 𝑚𝑝𝑛1 𝑔𝑡𝑛1
Product C 𝑔𝑡𝑛1
Product D 𝑚𝑝𝑛2 𝑔𝑡𝑛2 𝑒𝑎𝑛2

3.1.3 Creating Train, Validation and Test Sets
As mentioned in Sect. 2.1.4, is it a often a good practise to split the data into three
parts: train, validation, and test. Let’s start with the training set. To create the

30

3.2 Baseline Models

most diverse and comprehensive data set, all available stores are used, as detailed in
Appendix A. In Sect. 3.5.2, the contribution from each store to the training data.

The validation and test sets are created similarly but are separated by stores. Af-
ter creating each part, the data set is shuffled to remove any accidental dependencies
between two products that could interfere with the model.

During the data set creation process, two steps were taken to clean the data as
thoroughly as possible. First was to filter out any data that was not in Swedish.
Secondly, data that was missing a category path was also filtered out since it would
be of no use for this task.

It is important to mention that there is no overlap between the train, validation,
test data sets, meaning that no product is present in more than one part.

3.2 Baseline Models
A baseline method is supposed to be a naive method that will act as a progress
check. The goal of a newly developed model should always be to perform better
than this baseline. The approach for this work is to use well-established methods to
create such baselines, these methods are TF-IDF, a pre-trained, but not fine-tuned,
BERT and zero-shot classification.

3.2.1 TF-IDF
The reasoning for using two variations of TF-IDF as one of the baseline approaches
is that it is an easy-to-implement method that yields fast results without the need
to do complex machine learning computations and training. In the sections below
the two variations will first be presented and then further discussed. The methods
were implemented with TF-IDF and its components as introduced in Sect. 2.2.4 and
2.1.7.

These baselines using TF-IDF were made:

• TF-IDF: multi-label classifier which baseline uses Scikit-learn’s OneVsRest-
Classifier with LinearSVC.

• TF-IDF: top-𝑘 which uses Scikit-learn’s SGDClassifier and top-𝑘 for predic-
tion.

The difference between these models lies in the classification training and evaluation.
In the sections below, they will be further presented.

TF-IDF: multi-label classifier
In this approach the data was divided in the following manner:

• Document 1: Consisted of the title and text for each product

• Document 2: Consisted of all possible categories that were present in the data
set

31

3. Method

This was the easiest baseline to implement since it required little to no data prepa-
ration work. The only things that are required are to concatenate the title and
description and create a big set containing all possible categories. The decision of
Document 2 meant that the hierarchical structure was lost. The first document
was first fitted and transformed into a vector using the TF-IDF vectorizer. The
second document, containing the categories was thereafter, fitted and transformed
using the MultiLabelbinarizer. For training the OneVsRestClassifier was used with
LinearSVC. It was evaluated by running the test set through the trained model and
then comparing if the prediction was the same as the correct answer. In this ap-
proach, only the top prediction was checked since that is the output from the model.
The model used the following parameters max_features=10000, min_df=100, and
max_df=0.5.

TF-IDF: Top-𝑘
In this approach the goal was to create a baseline that dynamically generates the
next category based on the current state. In order for this to be possible a new
program was written to prepare the data for training. Assuming a product has
category length 3, in the Tab. 3.3 the creation is shown, i.e. we get 4 inputs that
get added to the input list. Two tokens were therefore needed to be introduced:
beginning of sentence <BOS> and end of sentence <EOS>. The approach enables the
baseline to learn when it needs to stop as well as enables dynamic path prediction for
top-𝑘 predictions. The text was first fitted and transformed into a vector using the
TF-IDF vectorizer. The labels in the input data were fitted and transformed using
the MultiLabelbinarizer and the output was generated by using LabelEncoder.

Table 3.3: Input creation for TF-IDF-top-𝑘

Input Output
text + <BOS> c1
text + <BOS>, c1 c2
text + <BOS>, c1, c2 c3
text + <BOS>, c1, c2, c3 <EOS>

The algorithm chosen for this task was Stochastic Gradient Decent with the
parameters, max_features=10000, min_df=100, and max_df=0.5.

During the evaluation, the top-𝑘 path will be saved and predicted until there
exist 10 paths that have the <EOS> token.

3.2.2 Zero-shot Classification
One approach researched for automatic product categorization was the use of zero-
shot classification. Zero-shot classification, introduced in Sect. 2.3.3, has the ad-
vantage of classifying categories, even if some were not present during training.
However, this approach did not provide a solution to the presented problem. There-
fore, it became interesting to evaluate how well the developed model could perform
compared to a model designed to predict product categories even without training.

32

3.2 Baseline Models

Table 3.4: input creation for the zero-shot model

Approach Prediction for depth 2
Non-concatenated [kök-och-tvättstuga, Vitvaror, Badrum]

Concatenated
[Kök-och-bad/kök-och-tvättstuga,
Kök-och-bad/Vitvaror,
Kök-och-bad/Badrum]

Approach Prediction for depth 3
Non-concatenated [Avfallshantering, Köksflakt, Badrumstillbehör]

Concatenated
[Kök-och-bad/kök-och-tvättstuga/Avfallshantering,
Kök-och-bad/kök-och-tvättstuga/Köksflakt,
Kök-och-bad/kök-och-tvättstuga/Badrumstillbehör]

Zero-shot classification was added as a baseline using two different approaches. Both
baselines only considered the top prediction, i.e., top-1, in every iteration. These
approaches were also implemented in a way that takes the hierarchical structure
into account. The following sections will provide further introductions to the two
baselines.

Non concatenated
The first approach was to let the model in a step-wise approach predict labels of
a product text, the labels were in the form of a category starting at root. When
the baseline ran it would explore all possible children of category x at depth I. The
baseline would then choose the child y that was most probable to belong to the text.
It would then continue by exploring all possible children to y and continue until the
selected child had no more children. All selections made by the program would be
added to the result and then be compared to the correct answer. A problem arose
during testing since all context was lost due to the program only comparing possible
categories at a depth I with the text and not taking the accumulated path into
account. In Tab. 3.4 this is shown in the Non-concatenated rows.

Concatenated
This baseline was made to fix the context issue discussed in the previous section. In
this approach, the program would take the context into account by concatenating the
accumulated path. At every iteration, the accumulated path would be concatenated
with all its plausible children and then be predicted and the top prediction would
be chosen. This entailed that the context of a label would never be lost. In Tab. 3.4
this can be seen when looking at the Concatenated row.

3.2.3 Pre-trained BERT with Sequence Classification
When the inference program for the developed model was written it became inter-
esting to see how well a fine-tuned model would compare to a pre-trained model.
This was an easy task to explore since the same inference program could be used

33

3. Method

kök-och-bad

Badrum

Badrums-
tillbehör

Vitvaror

Kök-och-
tvättstuga

Köksflakt

Avfallshantering

Figure 3.4: Figure to clarify how zero-shot baseline was used

with the same pre-trained model as the developed model was initiated with. The
inference program is explained in 3.4.

3.3 Transformer Models

For automatic product categorization using transformer models, the thesis set out
to further analyze, develop and adapt the model presented in (Liu et al., 2021). The
majority of the allocated research and development time was put into adapting this
model to suit this paper’s needs. Since this model was not specifically created to
solve this thesis’ problem, some changes were needed to make it work. Unfortunately,
all attempts did not yield a working model and will be further discussed in chapter 5.
This also led to the new model being created, which is introduced in the next section.

3.3.1 Sequence Classification Model

Since the model proposed by Liu et al. (2021) did not work, a new model was
needed. This new model takes great inspiration from the presented model but uses
a new approach with simpler complexity. The model that was decided upon was to
use sequence classification combined with hierarchical structures to enable product
classification. The new approach utilizes dynamic classification and exploration
using top-10 most predictable paths. In the next few sections the components to
this model will be introduced. The way this was implemented was by introducing
<CONT> and <STOP> symbols for the model, as introduced in 3.3.1, where the main
reason for doing this is to teach the model step-wise behaviors to reach the goal.

34

3.3 Transformer Models

Path Sampling
When fine-tuning an ML model the goal is to enable the model to correctly classify
products to the according category. For this to be possible the train data needs to
consist of both true and false examples. Recall, that true examples are the correct
answer that has been gathered during crawling, and negative examples are categories
to which a product does not belong, similar to Sect. 2.5. The data set, introduced in
Sect. 2.1.4, only contains true values, thus requiring the model to create a negative
example for the training phase. This was implemented by letting the program create
new examples containing pairs of product text and new false categories for every
product. These examples had the same product text but this time with a new
false category path and labeled as false. The false examples are also referred to as
negative examples.

Furthermore, since the model uses dynamic classification it also needs to learn
whether or not it has reached the "final" destination. To enable the model to learn
this behavior, two new tokens are introduced, (<CONT> and <STOP>). These tokens
are used when sampling paths to enable the model to learn, this can be seen in 3.6.

Two more variables were introduced as a result of the negative path sampling,
Negative Path Depth (NPD), how deep the negative examples go, and Number of
Negative Examples (NNE), the number of false paths created for each level. These
variables together decide how many negative examples are created for every positive
entry during the training phase. By introducing NNE and NPD unlocks the pos-
sibility to control of the ratio between positive and negative examples by tweaking
these parameters. The domain of the variables are NNE, NPD ∈ N ∪ {0} and can
be independently chosen. However note, that if any of them were to be chosen to
be 0 no negative examples will be generated.

The main idea of the method of creating false examples is that for each category
in a category path, it creates NNE number of additional negative paths. The length
of these additional paths is controlled by NPD, see the example in Tab. 3.5. In
addition to this, the model also has to choose between the continue or stop token.
Since all of these created paths are false the program randomly decide what token
there should be. Given a true category path (c1, c2, ..., c𝑛) of length 𝑛, the resulting
training data can be seen in Tab. 3.5, the path used for training is the true path
concatenated with the false one.

In Fig. 3.5 an example product is presented with a green line, a red line, and
a purple line. In this example, both NNE and NPD are equal to 2. The red line
represents how many negative examples are created for every level. The purple line
represents the depth of the negative example. For every creation, the end token
is chosen randomly. This false path creation happens at every depth and in the
right figure, one can see the same idea being applied. The false path gets chosen
randomly every time which ensures that the whole taxonomy tree is covered when
running multiple epochs or having many products belonging to the same category.

Finding Optimal NNE and NPD
When training a transformer-based model both the true and false examples are im-
portant to create a well-functioning model. By altering the NNE and NPD parame-

35

3. Method

Table 3.5: Example of false path creation for a single product
using NNE=1 and NPD=2, c𝑛 is the true category and fp𝑛,𝑖

is a false path at level 𝑛. Note, for each level the same false
paths is used and that the End token are randomly chosen.

Level True path False path End token
0 fp0,1 <CONT>
0 fp0,1, fp0,2 <STOP>
1 c1 fp1,1 <CONT>
1 c1 fp1,1, fp1,2 <CONT>
2 c1, c2 fp2,1 <STOP>
2 c1, c2 fp2,1, fp2,2 <CONT>

...
𝑛 c1, c2, ..., c𝑛 fp𝑛,1 <STOP>
𝑛 c1, c2, ..., c𝑛 fp𝑛,1, fp𝑛,2 <CONT>

(a)
depth
at root

(b)
depth

1

Figure 3.5: example product

ters the ratio between negative and positive examples changes, which can impact the
performance of the model. With this in mind, a method of finding the optimal pair
of NNE and NPD was created. However, due to time constraints, the experiment
is perhaps smaller than it should be for a more thorough result. The experiment
works by first deciding the ranges for the two variables, recall that the domain of
the variables are NNE, NPD ∈ N ∪ {0}.
Next, a training set is created by taking a sub-set of the data set, this is done so
that all tests are done using the same data. A training with all the possible combi-
nations of NNE and NPD is done and once completed inference is done to measure
the performance of the different models.

Additional Training Data
Similar to the previous model, the idea of training is based on rewarding the model
when it is on the right track as well as displaying what paths are false and how not
to create new paths. By always having these continue and stop tokens, the model
can learn how to decide whether or not it wants to continue guessing. In Tab. 3.6

36

3.3 Transformer Models

one can see how the true paths are created for the trainer, note that the last entry
should have a stop token not a continuing one.

Table 3.6: How positive examples are structured during train-
ing. There is no value for a false path or end token when its
value does not affect if it is negative or not.

True path End token
c1 <CONT>

c1, c2 <CONT>
c1, c2, c3 <CONT>

...
c1, c2, ..., c𝑛 <CONT>
c1, c2, ..., c𝑛 <STOP>

Lastly, the model also needs to see when the correct path is stopped too early,
i.e. any continue token replaced with a stop one in Tab. 3.6, and when it predicted
a true path too far. The latter of them can happen in two cases, either an end
token in the last row in Tab. 3.6 is replaced with a continue one, or the last row is
appended with further categories. The probability of generating too-short paths is
5% and creating paths beyond the correct answer generates a probability of 10 %.
In Tab. 3.7, an example of how this works is presented.

The positive paths in Tab. 3.6 are combined with the negative ones in Tab. 3.5
and Tab. 3.7 to create the complete set of training examples.

Buffering
To maximize training efficiency the model needs mixed batches where there are both
positive and negative examples, but also mixed products. This would not happen
if one would feed the output from the path sampler into the model. To solve this
problem two buffers were introduced, one for positive and one for negative examples.
The path sampler fills these buffers with the training examples until they have a
certain number of entries each. They are then shuffled to maximize the spread
of product data and then fed to the trainer. When the buffers go below a certain
threshold they get refilled with more examples until they both have at least a certain
number of entries again. The buffers sizes can vary depending on the product that

Table 3.7: How early and late stopping are generated.

True path False path End token
c1 - <STOP>

c1, c2 - <STOP>
...

c1, c2, ..., c𝑛−1 - <STOP>
c1, c2, ..., c𝑛 fp1 -
c1, c2, ..., c𝑛 fp1, fp2 -

...

37

3. Method

gets sampled, which the model keeps track of and creates the training batch with
this ratio in mind. In figure 3.6 this logic is shown.

Figure 3.6: Buffer for model trainer

Training of the model
With everything in place, the model can now be trained, and the buffer will con-
tinuously feed the trainer with batches containing training examples that follow the
predefined ratio of positive and negative examples. The batch sizes can also vary
depending on the training hardware. In figure 3.7 the training process is visualized.
When the batch has gone through the model the prediction is compared to the ac-
tual true values. This information is used in the optimizer and then parameters and
weights are updated to minimize the training loss.

Figure 3.7: Visualization of the trainer for the model

3.4 Evaluation
This section will explain how the inference and evaluation works for the models.

3.4.1 Sequence Classification Model
To verify how well the model performs an inference program was written. This
program works by running through a test set. The program starts by extracting
all possible categories from the root node, and for every category, it adds a <CONT>
symbol. It then proceeds to predict which category it is most likely to belong to. It
works by extracting the positive class from the output logits and applying a sigmoid

38

3.4 Evaluation

function to the values. After the output logits have been transformed it sorts the
input list by score and places both the prediction with the corresponding score in a
list.

The program continues to predict until one of two things happens, all top 10
predictions have a <STOP> symbol or two top 10 lists are identical between two
iterations in a row. At every iteration, a prediction list is created and the top 10
paths are investigated. One of three things happens for each path.

1. a path has a <CONT> symbol and there exists a child/children to that node:
the path gets removed and the following is added to the prediction list. The
removed path concatenated with each child individually. It also adds itself
with a <STOP> symbol, to enable the model to decide if it wants to stop

2. a path has a <CONT> symbol and there exist no child/children to that node.
The node gets placed back into the list with a <STOP> symbol

3. a path already has a <STOP> symbol, nothing happens

The possibilities presented above can be seen in Fig. 3.8 where the green line
represents the first possibility, purple the second, and red the third possibility. The

Figure 3.8: Inference program

score is saved every step of the way and updated when a path is further explored.
It gets updated by multiplying the old score with the new predicted score.

When the program finishes it saves the top 10 predictions and the correct answer
in a result list. This way, one can track how precise the model is if only looking at
the top prediction but also the accuracy when looking further down the list. This
is illustrated in Fig. 3.9

3.4.2 Evaluation Methods
To measure the performance of the model some evaluation methods are needed, the
ones relevant for this thesis have been introduced in Sect. 2.1.5 and Sect. 2.7. To
evaluate the models after training, the accuracy metric is used. For accuracy to be
a valid measure, there must be clear right and wrong answers, which is the case
in our task of predicting product categories. Another method is constructed from
Sect. 2.1.6 using the method described below.

Top-𝑘 Rank
In some models, top-𝑘 learning has been applied, where the top 𝑘 guesses from
each state always is stored. From this learning method, a new evaluation method

39

3. Method

Figure 3.9: Top-10 workflow Inference program. The c in the
boxes stands for the children to a specific parent node with
an added <CONT> symbol. The s represents that no children
are added and only a <STOP> symbol.

is introduced: top-𝑘 rank or simply just rank. The rank is a measure of at which
position the correct prediction is located at. Let us say that the correct answer is
found at rank 𝑥, where 1 ≤ 𝑥 ≤ 𝑘. If the correct answer is first in the list the rank
is 1, the second rank is 2, and if the correct answer is not found then the rank is set
to 10.

3.5 Experimental Setup
In this section, the experimental setup will be presented, and the choices of param-
eters and hardware available for the thesis will be listed in the following sections.

3.5.1 Hardware
The hardware used in this project was either a Nitro 5 AN515-46-R0EQ laptop1

or a machine learning computer with a GTX 4090 installed. Both computers used
Ubuntu as the operating system. The batch size greatly differed depending on
which machine the model was trained on since the Acer only has 8 GB of VRAM
as compared to the machine learning computer where the GTX 4090 has 24 GB of
VRAM. Due to the limited number of available slots to run the experiments for this
thesis, the majority of the results were generated using laptops.

3.5.2 Data Set
The training and validation data set, comprising data from various Swedish e-
commerce sources, is detailed in Appendix A. The combined data sets contain ap-
proximately 20 million products; however, these products are unevenly distributed

1https://www.acer.com/us-en/laptops/nitro/nitro-5-amd/pdp/NH.QH1AA.001

40

https://www.acer.com/us-en/laptops/nitro/nitro-5-amd/pdp/NH.QH1AA.001

3.5 Experimental Setup

cdon

22.6%

boozt 3.4%

PCS1

23.7%

PCS2

23.4%

elgiganten
7.5%

bygghemma

8.3%

Other stores combined
(rusta, cervera, bauhaus, lyko, systemet, akademibokhandeln, nakd,
 chili, hm, kjell, gymgrossisten, plantagen, mediamarkt, ikea)

11.2%

Distribution of Brands

Figure 3.10: Data set Alpha. Product distribution with 1
million products from each store. PCS stands for Price Com-
paring Site

among the various stores that were crawled. For instance, the Bygghemma data
set includes 300,000 products, whereas one of the price comparison sites has over 5
million products. If model were to be trained with this skewed product distribution,
Bygghemma’s contribution would be minimal compared to that of the larger store.
To address this imbalance, it’s necessary to form a more evenly distributed subset
of products from different stores. Consequently, we have created two balanced data
sets for this purpose.

Data set Alpha
This data set has a limit of 1 million products as a maximum from each store. This
limit resulted in a training file of nearly 4 million products and 20 test data sets
with 20% of the products from each store. The reason that the amount is 4 million
is that only a few stores have over a million products in total. The decision to have
a fixed maximum number of products was to ensure that the model does not get
over-fitted for one specific store. In Fig. 3.10 the distributions for the products are
shown.

Data set Beta
Another smaller training data set was also constructed. This data set was con-
structed using only 500.000 products from each store which resulted in a train set
of 2.7 million products. The distribution is shown in Fig. 3.11

The distribution of products among the different stores is more balanced in Data
set Beta.

Validation Set
The validation set is created by sampling 100 products from each store. Since there
are 20 stores present the resulting validation set contains 20 different sets with 100

41

3. Method

boozt

5.2%

cdon

17.7%

akademibokhandeln 3.8%

PCS1

18.1%

elgiganten

11.4% PCS2

17.9%

chili3.5%

bygghemma

12.6%

Other stores combined
(rusta, cervera, bauhaus, lyko, systemet, nakd, hm,
kjell, gymgrossisten, plantagen, mediamarkt, ikea)

9.9%

Distribution of Brands

Figure 3.11: Data set Beta. The distribution when using the
500.000 products from each store. PCS stands for Product
Comparing Site

products each. The inference program is a computationally heavy one and execution
time increases with the number of products in the validation set. By sampling 100
products from each store the time to run the inference program of the models is
kept at a reasonable time.

The reason for dividing the validation set into separate sets is that this thesis
aims to explore how well a product can be categorized for a given taxonomy. This
means that it is interesting to see how a model would classify a product within the
taxonomy where it was originally present. Every model in Sect. 3.6 had the same
validation set.

Test Set
The test set contains 1000 products from each store, divided into separate sets in
order to measure the performance of each store separately. Since the stores were
separated, it enabled the model to be tested on a store that was not present during
training or validation. Every model in Sect. 3.6 had the same test set.

3.5.3 Source of Pre-Trained Models
The pre-trained transformer models and tokenizers used for this experiment were
loaded using the Huggingface interface2.

2https://huggingface.co/

42

https://huggingface.co/

3.6 Model Summary

Table 3.8: Pre-trained models from Huggingface.

Name Huggingface
KB-BERT KB/bert-base-swedish-cased

Distilled KB-BERT Addedk/kbbert-distilled-cased

KB BERT
The National Library of Sweden and KBLab3 released two pre-trained models based
on BERT. This model was trained on Swedish texts aiming to provide a representa-
tive BERT model for Swedish texts (Malmsten et al., 2020). Furthermore, Distilled
KB-BERT was created using knowledge distillation as explained in Sect. 2.3.2.

3.5.4 Model and Parameters
Since this research had a restriction on the hardware it was decided to use Distilled
KB-BERT (see Tab. 3.8). This is to ensure that the model could be trained with a
higher batch size without having to use gradient accumulation (Jiao et al., 2021).
The restriction is based on the VRAM in the GPU. With the laptops, a batch
size of 12 was the highest possible number for the VRAM. When using the machine
learning computer the batch size could be increased to 56. When running the hyper-
parameter optimization it was chosen to investigate the parameter combinations
found in Appendix B. When performing the training phase, the buffer size was
chosen to be 10.000. The different models that were trained all used some variations
of the parameters, batch size, NNE, NPD, and train set. This is a result of the
different hardware that was presented above. It was also decided to still use the
distilled model as the pre-trained model been when running the training on the
machine learning computer. The reason was that we wanted to be able to compare
the results and see how batch size could impact the accuracy. When the last model
was trained, the standard KB-BERT model was loaded but since the model has
more layers the batch size had to be reduced to 30.

3.6 Model Summary
Four models will be trained and evaluated, these choices of hyperparameters are the
results of the hyperparameter tuning in Sect. 4.2. To evaluate the performance of
these models the the metrics accuracy, rank, and loss are used, see Sect. 3.4.2 for
more.

3.6.1 Model 𝛼
The first model, called model 𝛼, is trained with dataset Alpha and with the combi-
nations NNE = 2 and NPD = 2. As introduced later this became a hybrid model
that was also trained with NNE = 1, NPD = 2.

3https://kb-labb.github.io/

43

https://kb-labb.github.io/

3. Method

3.6.2 Model 𝛽
The model 𝛽 used data set Beta and has the combination NNE = 1, NPD = 2, and
will be called model 𝛽.

3.6.3 Model 𝛾
This model also used data set Beta but were trained on the machine learning com-
puter with a bigger batch size. This model will be called model 𝛾.

3.6.4 Model 𝛿
The fourth model uses a BERT model instead of a distilled model and has the same
combinations as the two above, the batch size will be set to 30. This model will be
called model 𝛿.

44

Chapter 4
Results

This chapter presents the results of the experiments and will help answer the research
questions presented earlier. Unfortunately results from Liu et al. (2021) were unable
to be yielded since adapting the model for this problem was unsuccessful, this is
discussed in Sect. 5.3. In Tab. 4.1 an overview of the accuracy’s are presented. In
Tab. 4.2 the rank-specific scores are presented for all trained models. All models
will be separated into sub-sections and more in-depth results will be presented.

The evaluation methods used in this chapter are described in Sect. 2.7.

4.1 Baselines
The following section presents the results of the baselines following the setup de-
scribed in Sect. 3.5.

4.1.1 TF-IDF

TF-IDF: multi-label classifier

Since TF-IDF is not GPU enabled the decision was made to train the model on a
smaller subset based on data set beta 3.5.2. The baseline was trained on 180000
products and validated using 20000 products, the result is presented in Tab. 4.3.
This was also decided since more data could not be loaded into memory and the
time constraint disallowed the project to adapt the code to stream the data to the
trainer. The model would also have taken way to long to train with all data present
in the data set.

45

4. Results

Table 4.1: The model top-10 accuracy of model 𝛼, model 𝛽,
model 𝛾 and model 𝛿 from each store. The average accuracy
of the models is also presented. PCS2 and PCS1 are price-
comparison sites.

Model model 𝛼 model 𝛽 model 𝛾 model 𝛿

Stores Accuracy (%)

PCS2 98.3 97.4 96.6 86.8
Lyko 98.0 96.8 95.4 96.9
Elgiganten 95.8 95.2 86.4 83.2
MediaMarkt 93.5 91.2 84.1 90.2
Akademibokhandeln 93.1 90.8 82.5 95.8
Chili 92.5 89.1 82.1 81.6
Cdon 89.1 88.5 75.1 41.9
PCS1 88.9 86.0 69.5 86.7
Bygghemma 88.4 85.4 68.4 75.8
Ikea 83.2 84.4 67.8 60.8
Cervera 79.8 79.6 63.7 70.0
Gymgrossisten 79.7 78.9 62.2 59.2
Rusta 78.4 78.7 60.1 37.0
Bauhaus 77.4 73.6 55.9 31.9
Kjell & Company 77.3 70.1 40.3 37.9
Systembolaget 75.9 67.6 31.3 73.6
Plantagen 75.7 65.4 30.7 69.3
NA-KD 68.6 64.8 25.3 43.9
Boozt 62.0 54.0 22.8 75.2
H&M 45.9 47.8 13.2 37.1
Average accuracy 81.9 79.3 60.6 66.8

TF-IDF-top-𝑘

The implementation and hypothesis of this baseline were that it should be able to
correctly classify products to some extent. However, during evaluation, this method
was not able to classify a path correctly, as further demonstrated and discussed in
Sect. 5.2.1.

When allowing the baseline to classify a prediction as correct, even when the
correct answer started with either "Startsida" or "Hem", it was occasionally able
to classify products (see Tab. 4.4 for these scores). Without making this exception,
no correct predictions could be made, even when allowing the top-10 predictions for
each iteration, resulting in an accuracy of 0.00%.

46

4.1 Baselines

Table 4.2: Rank specific accuracy (%) for all trained models
(model 𝛼, model 𝛽, model 𝛾, model 𝛿). The highest accuracy
is shown in bold.

Rank model 𝛼 model 𝛽 model 𝛾 model 𝛿

10 81.9 79.2 60.6 66.8
9 81.2 78.3 59.7 65.9
8 80.1 77.1 58.5 64.7
7 78.9 75.8 57.3 63.2
6 77.4 74.4 55.7 61.6
5 75.7 72.2 53.3 58.5
4 73.3 69.7 50.8 55.8
3 69.6 66.2 46.1 50.7
2 64.5 60.9 41.0 43.6
1 53.6 50.3 30.6 30.4

Table 4.3: Scores from TF-IDF: multi-label classifier baseline

Metrics %
Accuracy 13.3
Precision 83.6
Recall 24.0
F1-Score 3.74

Table 4.4: Scores from TF-IDF-top-10 baseline

Metrics %
Accuracy 9

47

4. Results

Table 4.5: BERT Zero-shot classification score

Accuracy (%)
Concatenated path 7.49
Not concatenated 4.22

4.1.2 BERT zero-shot classification
The results were based on the test set used for all models but were interrupted after
12 hours each, the reason for interrupting them is that it would have taken too long
to run the model on the whole set since it has not been trained for this specific
task, this lead to the model nearly having to investigate nearly every path before
coming to a final prediction. The prediction was carried out in two different ways,
as explained in Sect. 3.2.2. The results can be seen in Tab. 4.5 below.

4.1.3 Using Pre-trained Model
The results were created by running the inference program but instead using a
non-fine-tuned model. The pre-trained Distilled KB-BERT model was loaded into
the inference program which was run on the test set and the result can be seen in
Tab. 4.6

A recurring theme observed across all baseline models is their limited capacity
to produce satisfactory results, highlighting the need for further exploration of more
effective methodologies.

4.2 Hyperparameter Tuning
As mentioned previously, several steps are undertaken to ascertain that the model
is equipped with optimal training parameters. The initial step towards achieving
this optimization is the performance of hyperparameter tuning.

During the hyperparameter optimization process, 12 models were individually
trained using 50,000 batches, with parameter adjustments as outlined in Sect. 3.6.
The resulting losses are presented in Fig. 4.1. The table within the figure illustrates
the combination of NNE and NPD values for each trained model.

After the training was complete a validation inference was run on all different
models, this was done to figure out the best parameters for final training. In Tab. 4.7
the results are presented. For each test the average accuracy was created over all
stores that the model was validated on.

Since the learning rate (LR) of 1e-05 proved to have the best score and all
combinations were made with LR 1e-06, a new hyper-parameter optimization was
made, this time with the second parameter combinations found in Appendix B. A
problem with this approach is however that the trainer stops at 50.000 batches since
the different parameter combinations lead to different amounts of training data for
the same amount of products, due to time constraints this could not be taken into
further consideration. The Loss for the second combinations is shown in Fig. 4.2

48

4.2 Hyperparameter Tuning

Table 4.6: Store-specific accuracy for pre-trained model base-
line. Note no product count is included since this model is
not trained.

Stores Accuracy (%)
plantagen 42.0
boozt 23.0
akademibokhandeln 6.0
cervera 2.0
gymgrossisten 2.0
nakd 1.0
chili 1.0
hm 0.0
PCS1 0.0
kjell 0.0
ikea 0.0
rusta 0.0
elgiganten 0.0
cdon 0.0
bygghemma 0.0
lyko 0.0
PCS2 0.0
mediamarkt 0.0
clasohlson 0.0
systemet 0.0
bauhaus 0.0
Average accuracy 4.0

Table 4.7: The average accuracy score for every combination.
The averaging is done over the individual store accuracies.
For NNE and NPD optimization a learning rate of 10e-6

Hyper-parameters Accuracy (%)
Learning rate

1e-05 67
1e-06 52
1e-04 35

NNE NPD
1 3 61
1 2 61
3 3 60
2 2 59
2 3 58
3 2 58
2 1 56
1 1 55
3 1 53

49

4. Results

Number of batches

10000
20000

30000
40000

Par
am

ete
r c

om
bin

ati
on

0
2

4
6

8

Tr
ai

ni
ng

 lo
ss

0.1

0.2

0.3

0.4

0.5

0 - nne_1_npd_1
1 - nne_3_npd_1
2 - nne_2_npd_3
3 - nne_2_npd_2
4 - nne_3_npd_3
5 - nne_3_npd_2
6 - nne_1_npd_3
7 - nne_1_npd_2
8 - nne_2_npd_1

Figure 4.1: The different losses during training.
Labels nne_x_npd_y means that the model used NNE=x and
NPD=y.

and the scores from that run are shown in Tab. 4.8. The second run instead used
50.000 products from the training set without stopping and then validated using the
same validation set. These changes were made due to time constrictions.

The different parameter combinations will generate different amounts of negative
data, which then directly affects the ratio of positive and negative examples for the
training set as explained in Sect. 3.3.1. In Fig. 4.2, one could see that the amount
of batches changes depending on the combinations. The positive/negative ratio is
presented in Tab. 4.8. The time needed for training, therefore, changes relative to the
combinations and was, therefore, an influencing factor. In Tab. 4.8 the time needed
for training for the different combinations is presented. After the optimization was
finished the findings were analyzed and the final training was started.

4.3 Training and Evaluation

In this section, the models will be presented. To create a better outline the models
will be divided into their own subsection. The models that were trained are presented
in Sect. 3.6. The reasoning for the parameters that were chosen will be further
discussed in the next chapter. The models’ evaluation will also be presented in its
own subsection. To see the progress of each step of the training, the inference was
run on as many checkpoints saved as possible. This is due to the time needed to
perform one validation. The results are also based on the last saved model when
training was finished and use the evaluation described in Sect. 3.6.

50

4.3 Training and Evaluation

Number of batches

0 20000
40000

60000
80000

100000

Par
am

ete
r c

om
bin

ati
on

0
2

4
6

8

Tr
ai

ni
ng

 lo
ss

0.10
0.15
0.20
0.25
0.30
0.35

0 - nne_1_npd_1
1 - nne_2_npd_3
2 - nne_2_npd_2
3 - nne_1_npd_2
4 - nne_1_npd_3
5 - nne_3_npd_3
6 - nne_2_npd_1
7 - nne_3_npd_2
8 - nne_3_npd_1

Figure 4.2: Training loss during second hyper-parameter op-
timization. Labels nne_x_npd_y means that the model used
NNE=x and NPD=y.

Table 4.8: Training data from the Second hyper-parameter
optimization. +/- stands for positive to negative batch ratio.
The accuracy averaging is done over the individual store ac-
curacies.

Hyper-parameters

NNE NPD Accuracy (%) +/- ratio Training time
(hours)

1 2 59 0.41 1.3
1 1 59 0.58 1
2 1 55 0.37 1.5
1 3 54 0.39 1.4
3 1 49 0.29 1.9
2 2 44 0.26 2
3 3 40 0.17 3.1
2 3 37 0.24 2.2
3 2 34 0.21 2.7

51

4. Results

Figure 4.3: Training loss during training.

Figure 4.4: Training loss loading the last checkpoint and
changing the parameters.

4.3.1 Model 𝛼
Results from training and evaluating model 𝛼.

Training
The training was done with the parameters found in Appendix C and the training
loss for model 𝛼 can be seen in Fig. 4.3 and Fig. 4.4. Unfortunately, the computer
training model 𝛼 unexpectedly crashed after approximately 2.5 million batches or
close to 72 hours. The last checkpoint was loaded and a new training was started
around the same place in the data set. The parameter was also changed to NNE =
1, NPD = 2. This change in combination was a mistake but proved to be better in
accuracy as well the training time would have been too long with the old combination
of NNE = 2 and NPD = 2. Since the parameters were changed the model becomes
a hybrid of the combinations and thus a new name was needed. The decision was
to name the final model as model 𝛼 and the partially trained model as pre-model 𝛼.

Evaluation
The progress of this training is represented in Fig. 4.5. the start of the training after
the unexpected is viewed from checkpoint 2500000 and onwards.

The saved model was loaded into the inference program and tested using the
test set described in Fig. 3.5.2. The total training took 129 hours where the pre-
model 𝛼 ran for 72 hours and the rest of the training took 57 hours. In Tab. 4.9 and
Tab. 4.10 the accuracy and rank are presented for the pre-model 𝛼. In Tab. 4.11
and Tab. 4.12 the final result for model 𝛼 is presented.

Unseen-data
The model was also run on Biltema and Clasohlsons which was not present during
training, the results are presented in Tab. 4.13.

52

4.3 Training and Evaluation

1000000140000015000002000000250000030000003400000360000038000004000000420000044000004452514
ckpt

0.76

0.78

0.80

0.82

Pr
ec

isi
on

Figure 4.5: Progress of training for model 𝛼.

Table 4.9: The store-specific accuracy and average for pre-
model 𝛼. Products indicate the number of products from a
store in the training set.

Stores Accuracy (%) Products
PCS2 98.4 98300
Lyko 94.8 67900
Elgiganten 94.6 314000
Mediamarkt 92.8 14700
Akademibokhandeln 91.6 103000
Chili 90.8 95000
Cdon 89.8 950000
PCS1 83.8 997000
Bygghemma 83.0 347000
Ikea 75.8 30000
Cervera 74.5 16300
Gymgrossisten 74.1 2280
Rusta 72.1 6160
Bauhaus 70.9 55800
Kjell & Company 68.9 9150
Systembolaget 68.5 23200
Plantagen 63.5 7780
NA-KD 49.9 23100
Boozt 46.5 142000
H&M 38.9 15500
Average accuracy 76.2

53

4. Results

Table 4.10: The rank-specific accuracy for pre-model 𝛼.

Rank Accuracy (%)
10 76.2
9 75.4
8 74.1
7 72.8
6 71.4
5 69.4
4 67.1
3 63.3
2 57.5
1 46.9

Table 4.11: The store-specific accuracy and average for
model 𝛼. Products indicate the number of products from
a store in the training set.

Stores Accuracy (%) Products
PCS2 98.3 98300
Lyko 98.0 67900
Elgiganten 95.8 314000
Mediamarkt 93.5 14700
Bygghemma 93.1 347000
Chili 92.5 95000
PCS1 89.1 997000
Gymgrossisten 88.9 2280
Akademibokhandeln 88.4 103000
Rusta 83.2 6160
Systembolaget 79.8 23200
Plantagen 79.7 7780
Cervera 78.4 16300
Bauhaus 77.4 55800
Kjell & Company 77.3 9150
Cdon 75.9 950000
Ikea 75.7 30000
NA-KD 68.6 23100
Boozt 62.0 142000
H&M 45.9 15500
Average accuracy 81.9

54

4.3 Training and Evaluation

Table 4.12: The rank-specific accuracy and average for
model 𝛼.

Rank Accuracy (%)
10 81.9
9 81.2
8 80.1
7 78.9
6 77.4
5 75.7
4 73.3
3 69.6
2 64.5
1 53.6

Table 4.13: Accuracy on unseen stores and taxonomies.

Store Accuracy (%)
Biltema 16
Clasohlson 16

4.3.2 Model 𝛽
Results from training and evaluating model 𝛽.

Training
The model 𝛽 can be seen in Fig. 4.6. The training of this model took 72h on the
hardware introduced in Sect. 3.5. The training was done with the parameters found
in Appendix C and the training loss for model 𝛽 can be seen in Fig. 4.6. The training
was finished after 72 hours

Evaluation
The progress of this training is represented in Fig. 4.7.

The accuracy is presented in Tab. 4.14 and accuracy at every rank is shown in
Tab. 4.15.

Unseen-data
The prediction accuracy on the unseen stores is presented in Tab. 4.16.

Figure 4.6: Training loss during training of model 𝛽.

55

4. Results

1000000 1200000 1400000 1600000 1700000 2000000 2200000 2300000 2373499
ckpt

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
Pr

ec
isi

on

Figure 4.7: Progress of training for model 𝛽.

Table 4.14: The store-specific accuracy and average for
model 𝛽. Products indicate the number of products from a
store in the training set.

Stores Accuracy (%) Products
Lyko 97.4 67900
PCS2 96.8 494000
Elgiganten 95.2 314000
Akademibokhandeln 91.2 103000
Bygghemma 90.8 347000
PCS1 89.1 499000
Mediamarkt 88.5 14700
Chili 86.0 95000
Gymgrossisten 85.4 2280
Cdon 84.4 486000
Cervera 79.6 16300
Systembolaget 78.9 23200
Ikea 78.7 30000
Bauhaus 73.6 55800
Plantagen 70.1 7780
Boozt 67.6 142000
Kjell & Company 65.4 9150
Rusta 64.8 6160
NA-KD 54.0 23100
H&M 47.8 15500
Average accuracy 79.3

56

4.3 Training and Evaluation

Table 4.15: The rank-specific accuracy for model 𝛽.

Rank Accuracy (%)
10 79.2
9 78.3
8 77.1
7 75.8
6 74.4
5 72.2
4 69.7
3 66.2
2 60.9
1 50.3

Table 4.16: accuracy on unseen stores and taxonomies.

Store Accuracy (%)
Biltema 10
Clasohlson 7

4.3.3 Model 𝛾
Results from training and evaluating model 𝛾.

Training
The training loss is illustrated in Fig. 4.8. The training process was finished after
36 hours.

Evaluation
The accuracy can be seen in Tab. 4.17 and the accuracy at every rank can be seen
in Tab. 4.18. Furthermore, the progress graphs are presented in Fig. 4.9.

Unseen-data

4.3.4 Model 𝛿
Results from training and evaluating model 𝛿.

Figure 4.8: Training loss when training on 4090 graphic cards.

57

4. Results

100000 200000 250000 300000 350000 400000 450000 500000 700000 750000 790891
ckpt

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Pr
ec

isi
on

Figure 4.9: The training progression for the model trained on
GTX 4090

Table 4.17: The store-specific accuracy and average for
model 𝛾. Products indicate the number of products from a
store in the training set.

Stores Accuracy (%) Products
Akademibokhandeln 96.6 103000
Lyko 95.4 67900
PCS2 86.4 494000
Elgiganten 84.1 314000
PCS1 82.5 499000
Chili 82.1 95000
Gymgrossisten 75.1 2280
Boozt 69.5 142000
Mediamarkt 68.4 14700
Cdon 67.8 486000
Systembolaget 63.7 23200
Cervera 62.2 16300
NA-KD 60.1 23100
Plantagen 55.9 7780
H&M 40.3 15500
Bygghemma 31.3 347000
Ikea 30.7 30000
Rusta 25.3 6160
Kjell & Company 22.8 9150
Bauhaus 13.2 55800
Average accuracy 60.6

58

4.3 Training and Evaluation

Table 4.18: The rank-specific accuracy from model 𝛾

Rank Accuracy (%)
10 66.8
9 65.9
8 64.7
7 63.2
6 61.6
5 58.5
4 55.8
3 50.7
2 43.6
1 30.4

Table 4.19: Accuracy on unseen stores and taxonomies for
model 𝛾.

Store Accuracy (%)
Biltema 3.00

Clasohlson 2.20

Training
This model was trained with the same parameters as model 𝛽 but as explained in
Sect. 3.6 this model used the pre-trained model KB/bert-base-swedish-cased instead
of a Distilled KB-BERT model. It was possible to use this 12-layered BERT model
since it was trained on the 4090 graphic card. The logs during training were somehow
they got split after 30 hours, this explains why there are two graphs. the model was
finished after 42 hours of training Fig. 4.10 and Fig. 4.11 . The accuracy and rank
are shown in Tab. 4.20 and Tab. 4.21.

Evaluation
The progress during training is shown in Fig. 4.12, and the accuracy and rank-
specific accuracy is found in Tab. 4.20 and Tab. 4.21.

Unseen-data

Figure 4.10: Training loss during the training of BERT model
(4090) before interruption

59

4. Results

Figure 4.11: Training loss during the training of BERT model
(4090) after it was resumed

50000 100000 150000 200000 300000 400000 500000 650000 750000 850000 921885
ckpt

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Pr
ec

isi
on

Figure 4.12: Training loss during the training of model 𝛿

60

4.3 Training and Evaluation

Table 4.20: The store-specific accuracy and average for
model 𝛿. Products indicate the number of products from a
store in the training set.

Stores Accuracy (%) Products
Lyko 96.9 103000
Akademibokhandeln 95.8 67900
Mediamarkt 90.2 494000
PCS2 86.8 314000
PCS1 86.7 499000
Elgiganten 83.2 95000
Chili 81.6 2280
Bygghemma 75.8 142000
Boozt 75.2 14700
Systembolaget 73.6 486000
Cervera 70.0 23200
Plantagen 69.3 16300
Ikea 60.8 23100
Gymgrossisten 59.2 7780
NA-KD 43.9 15500
Cdon 41.9 347000
Kjell & Company 37.9 30000
H&M 37.1 6160
Rusta 37.0 9150
Bauhaus 31.9 55800
Average accuracy 66.8

Table 4.21: The rank-specific accuracy from model 𝛿.

Rank Accuracy (%)
10 66.8
9 65.9
8 64.7
7 63.2
6 61.6
5 58.5
4 55.8
3 50.7
2 43.6
1 30.4

Table 4.22: Precision on unseen stores and taxonomies for
model 𝛿.

Store Precision
Biltema 15.4

Clasohlson 4.50

61

4. Results

62

Chapter 5
Discussion

In this chapter, we will discuss the results, what did not work, and the possible
sources of error. Discussion regarding ethical aspects will also be conducted.

5.1 Data Set
When training a model the data quality is a key component to be able to generate
a well-performing model. In this section discussion about the data set that was
provided by Theca Systems will be performed. The data set was created prior
to this project to enable this research and contains as described earlier different
product data, see Sect. 3.1. To make sure the data is of high quality, data cleaning
is an important aspect of model training which includes making sure that the data
is suitable for the training. This section will discuss other problems that might
have affected the training. It is hard to guarantee that the data set holds a high
standard since there are so many products, when the products were crawled. There
are methods of removing HTML tags and other Unicode data that should not be
in the final data set. During the research, it was found that some HTML code and
Unicode had slipped through during the cleaning process. But even with these flaws,
it seems like the models learned other complex relationships in the data and could
produce accurate predictions.

Another potential problem in the data set was discovered during the training
of the models. It became clear the product distributions across the stores were
unbalanced since three stores contributed to 70% of the training data. This was due
to the different amounts of products present in each store. It was therefore decided
to create another training set that included 500,000 from each store instead, which
led to a much more well-balanced product distribution.

63

5. Discussion

Table 5.1: A few examples of products predictions from top-𝑘
baseline

Predicted path ["gaming & underhållning", "böcker"]
Correct path ["hem", "gaming & underhållning", "underhållning", "böcker"]
Predicted path ["golv, vägg & tak", "malarfarg-och-tapet", "fototapet"]
Correct path ["renovering & bygg", "golv, vägg & tak", "tapeter"]
Predicted path ["sortiment", "rött vin"]
Correct path ["hem", "sortiment", "vin", "rött vin"]
Predicted path ["fordon & tillbehör", "bildäck", "fordon & tillbehör", "sommardäck"]
Correct path ["hem", "fordon & tillbehör", "däck och fälgar", "sommardäck"]

5.2 Baselines
In this section the results from the baselines will be discussed and analyzed.

5.2.1 TF-IDF
As explained in Sect. 2.2.4, TF-IDF is one way of classifying texts to a certain
taxonomy, the implementation was explained in Sect. 3.2.1. The reason why there
were so many attempts to create a working baseline was to enable better model
comparisons with the developed models and already existing methods. One could
see in Sect. 4.1.1 that all baseline approaches performed very poorly.

TF-IDF: multi-label classifier was the only one that actually managed to cor-
rectly classify products. It however had, one serious flaw: this model did not check
top-𝑘 predictions and, it did not predict category paths dynamically, since it only
made one prediction and checked the top predicted path. A top -𝑘 approach should
have been implemented to enable equal comparison with the developed model since
the accuracy score changes quite rapidly when looking at what rank the correct
answer is found. This was the main reason for creating other baselines.

TF-IDF-top-𝑘 used the same approach as our developed model during evaluation
and showed that it was not able to produce paths even when continuously exploring
the top-𝑘 predictions, that is dynamically predicting category paths. In Tab. 5.1
one can see a few examples from the developed model.

Both of the approaches have a flaw in common: they both lose their hierarchical
structure since the taxonomy is flattened during training. This means that both
models could potentially predict paths that can not possibly exist.

5.2.2 Zero-shot Classification and Pre-trained model
The reason to use zero-shot classification as a baseline is to test how well a pre-
trained zero-shot classification model would compare to a fined-tuned sequence clas-
sification model.

Furthermore, it was also tested how well a pre-trained sequence classification
model would compare to the final model in terms of accuracy. This could be easily
achieved since the pre-trained model could use the same inference program that was
written for the final models

64

5.3 Model proposed by Liu et al. (2021)

Table 5.2: Product example from plantagen

Title Description Category
Amaryllis Vad vore väl vinter och jul utan amaryllis... Hem/växte innomhus/julblommor/Amaryllis

As seen in the results for both models Sect. 4.1.2 and Sect. 4.1.3, both of them
were not able to correctly predict categories. Again this was no surprise since none
of the models have been taught the specifics of the task on which they have been
used to make predictions. The results that zero-shot classification and a non-fine-
tuned model produce, are comparable to wildly guessing what category a product
would belong to. It was however interesting to see that the latter could correctly
categorize products belonging to Plantagen, It is believed that this was possible
since their category taxonomy is the naming of plants for example, which enables
the model to correctly classify a text towards that category. in Tab. 5.2 we can see
an example where the categories are well described in the description of the text

5.2.3 Conclusion of baselines
As discussed above, all baselines created showed poor results. The results show that
an already existing method can not be easily applied and produce good scores. Even
though some baselines had some flaws, eg. not predicting dynamically or only check-
ing the top prediction, this paper has shown that already existing techniques are
not sufficient to solve the problem statement of this paper This is further discussed
in chapter 6

5.3 Model proposed by Liu et al. (2021)
As stated earlier, much time was spent trying to get the model suggested in Liu et al.
(2021), to work, unfortunately, no results could be yielded using the model. In this
section, the paper aims to explore and discuss the issues as to why this model did
not work. From here model based on paper (MBP) will be used as an abbreviation.

5.3.1 Fine-tuning
During the fine-tuning of MBP, another problem came to light. After a couple of
iterations, the loss became zero and would not change. Even though, a low loss
could indicate that a model is well enough trained it was unexpected to see it go
down so far after just a couple of iterations. There was no way for MBP to learn
what paths are correct at that speed due to the size of the taxonomy, i.e. the
number of different paths that exist, and the number of products in the training
set. Our hypothesis is that there is an unidentified error in how the model creates
these paths and therefore, this behavior occurs. However, it is possible to train the
model without fine-tuning it first and it was therefore decided to focus on getting
the other step to work first.

65

5. Discussion

5.3.2 Reinforcement Learning
Another problem was discovered in the second step of the training, i.e. the rein-
forcement learning step. When the training was underway, it became clear that the
policy was not working correctly. After a couple of hundred steps, it started predict-
ing categories with a path length of 1. As stated in Sect. 2.5 the path gets rewarded
if the predicted path is a strict subset of the correct path. It seemed like the model
was penalized when trying to further predict the path and therefore learned that
it should stop early since this meant a lower risk of punishment. Even when the
policy was changed to reward the correct nodes and penalized the wrongly chosen
ones, the model could not be trained using our data. The policy works by running
a prediction on certain nodes and then checking the probability of these nodes and
whether it should continue exploring that path or not. It became clear that the
policy was not working correctly since there existed iterations where no nodes were
chosen for further exploration which led to the model crashing. Even after a new
code was added that made sure that the right path was added to every exploration,
the policy still performed in the same manner. The code was further modified to
skip the steps where no further nodes were returned to be explored. This led to the
model running for about 1% of the data and then skipping the rest.

5.3.3 Hardware Restrictions
The MBP was also clearly developed with no hardware restrictions in mind, the
research was conducted at a company with greater assets than available for this
thesis. The architecture was not built to be able to run on a normal laptop with a
consumer-grade graphics card. Due to the above-discussed problems, a decision was
made to create a new model built from scratch to fit this task’s needs. Unfortunately,
this should have been done a lot earlier since it constricted the amount of time that
was available to develop and tweak the new model.

5.4 Sequence classification model
In this section, the implemented models will be discussed. It will be divided into
subsections in order to discuss the different sections regarding training and validation
more clearly.

5.4.1 Model training
Hyper-parameter Tuning
Finding the optimal hyper-parameters was one of the biggest challenges for this task.
The Equation 5.1 gives an estimate of how many entries the model would have with
different parameters. The estimation is based on the maximum number of possible
path combinations. In the equation 5.1, 𝑝 = entries for each product, 𝑛 = length of
the path.

66

5.4 Sequence classification model

𝑝 = 𝑛 + 1 + (𝑛 + 1) · (𝑁𝑁𝐸 · 𝑁𝑃𝐹) + 1 =

= (𝑛 + 1) (1 + 𝑁𝑁𝐸 · 𝑁𝑃𝐷) + 1
(5.1)

The Equation 5.1 is the absolute max that could be generated. It was not possible
to estimate the correct number of entries since certain paths do not have multiple
children and some paths do not have the desired depth. Another reason is that
the model only generates false paths beyond the final path 10% of the time and
early stopping with 5% of the time for the products in the data set as explained in
Sect. 3.3.1. In Equation 5.1 it is assumed that the generation always goes beyond the
final path and has one early stop path for every product. The motivation for having
probabilities is to keep the number of entries to the model as low as possible to reduce
training time, but at the same time, ensure that the model learns the behavior. This
leads to the entries being lower than the estimated amount of entries.

The numbers presented in the first hyper-parameter optimization, in Tab. 4.7, are
therefore misleading since the models with a higher number on NNE and NPD, see
a lot more different negative examples for each product compared to the NNE and
NPD with lower numbers. This also led to the models not seeing the same number
of examples since every training was stopped after 50.000 batches. However, it was
later identified that the scores in Tab. 4.7 were not correct. This was mainly due
to the fundamental architecture error of the implementation of NNE. The error
entailed that the creations of the negative paths were not correct, no matter the
value of NNE it only generated one negative example with desired depth per level
that was plausible. Two other errors were also found during the second optimization
process and the optimization was therefore canceled. The two other errors that were
found were first, the model did not generate false paths beyond the correct answer,
which meant that the model could potentially continue even though it should not.
The second error was that the model was never trained on paths that went too short
with respect to the correct path. These errors make the scores in table 4.7 obsolete
since they do not correspond to the task they were meant to discover. This does
however explain why the accuracy is highest for all combinations with NPD = 3 and
the lowest for all combinations with NPD = 1, since the trainer saw less data with
NNE higher than one with the exclusion of the combination NNE = 1, NPD = 1.

Due to these errors, a third hyper-optimization was performed after the bug was
fixed. However, due to the time constraint of the project, the number of products
was lowered from 100.000 to 50.000 to ensure a faster process. As mentioned above
the time constraint restricted the number of products that were used during the final
hyper-parameter optimization, which explains why the accuracy score is significantly
lower. It was however not expected that a higher number of NNE and NPD would
produce lower accuracy since the model was allowed to finish its training no matter
the combination. This shows that the positive/negative ratio of the training batch is
important to create a precise model and that more negative examples do not equal
a better model. Instead, the models seem to prefer having a more balanced training
set. The reason for this result could be that the model gets somewhat over-fitted
and therefore does not produce the right answers.

When the optimization was run, the time needed for training was captured as
illustrated in Tab. 4.8. The time needed for training was taken into account when

67

5. Discussion

the parameters were chosen for the final training because time is a limited asset and
it is assumed that more training data implies a better model.

Model training
The models were trained according to Sect. 3.6. The reason for choosing to train
models with different parameters was to be able to compare the difference in accu-
racy. The combinations were chosen since the models were only trained on a subset
of 50.000 when in reality the complete training file consists of approximately 4 mil-
lion product entries and for the latter model, 2.7 million. Since the model randomly
generates false paths it is theorized that a low number is sufficient since there is a lot
more data to train on and therefore all paths will be explored. Additionally, having
too high NNE and NPD seems to have over-fitted the model since it performed lower
in the validation test, as seen in Tab. 4.8. This could correlate to the importance of
the positive/negative ratio when training.

As briefly mentioned in Sect. 4.3.1 the model 𝛼 crashed unexpectedly. Enough
information was fortunately saved to be able to restart the training. A mistake
was made and the NNE and NPD parameters were changed to NNE = 1, NPD =
2, this was not initially the plan but it proved to be reasonable since the training
from the recovery point took 57 hours, this would have been a lot higher if the
previous parameter combination was used. The results were also surprising since it
performs as well or even better than the model with NNE = 1, NPD = 2. These
models do however differ in which data set they are trained on since the first used
1 million products from each store whereas the other used 500.000. One could also
see that the model seems to be performing better on the stores that had close to 1
million products, this is shown in Tab. 4.9. This could however be dangerous since
over-fitting the model for these stores could happen.

The model 𝛽 finished after 72h and as one can see in Fig. 4.7 it never fluctuated
across the checkpoints, one could theorize that the accuracy could go a bit higher if
more products were used during training as seen for the model 𝛼 in Fig. 4.5.

The training data and taxonomy are constructed in a way that ensures the
broadest possible training. Since taxonomies are merged from multiple sites the
model is enabled to be trained on potential paths that do not exist in the crawled
data. The model also becomes more robust as it gets random products from multiple
stores at the same time, which helps to reduce over-fitting on certain stores. By doing
this, it also enables the model to be trained in a more general manner.

When model 𝛾 was trained on the machine learning computer at the end of this
project the bigger batch size was chosen but with the same parameters as the first
trained model. This was done in order to be able to compare how and if the batch
size had a noticeable effect on the accuracy. As one can see in the results presented
in Tab. 4.17 the accuracy did not increase with a bigger batch size, it seems to have
performed worse than the models trained on the laptops with a smaller batch size,
this was an unexpected result since the hypothesis would be that it would perform
at least as good as the others. The results from training with different batch sizes
indicated that a bigger batch size seems to impact the accuracy in a negative way.

All of the models that were trained used a fixed learning rate of 1e-5. If more

68

5.4 Sequence classification model

time was available, the next step would have been to implement a scheduler that
changed the learning rate during training. This is something that will be presented
as future work.

5.4.2 Model Evaluation
This work aimed to research how well a model could predict a product to a be-
longing category taxonomy, as stated in the problem statement (Sect. 1.2). This
is the fundamental reason why the test sets and taxonomies are divided into sep-
arate stores. When predicting a product the user would only be interested in how
the model would classify the product to a given taxonomy. For example, it could
be interesting to see how the model would predict a product from a certain store
and then see what category it would predict given the taxonomy was changed. A
great example is Pricerunner. Pricerunner has products on their websites that are
categorized according to their own category taxonomy. Since Pricerunner does not
sell any products they will link to websites that sell the product and by following
a link the same product is found but categorized to that store’s taxonomy instead.
This model would enable a user to take a product text and predict what category
it belongs to with regard to any store’s taxonomy.

Allowing the model to continuously explore the 10 most probable paths enables
the model to correctly predict the right path even if there are multiple highly likely
paths. The further down in a taxonomy tree, the lower the possibility gets since
fewer and fewer products belong to each category. This makes sense when looking
at products on a website-based store. For example, dishwashers and fridges both
belong to kitchen appliances whereas they most likely belong to their own leaf node,
Fridges/freezers, and Dishwashers are examples taken from elgiganten.se1. This
means that a product text for a dishwasher or a fridge would have a higher possibility
of belonging to kitchen appliances compared to further down in the tree. The trained
models resolve this issue by always getting rewarded for partly correct paths as well
as a <STOP> when the end is reached, details of the implementation are presented
in Sect. 3.3.1.

The inference is based on the same idea as above of predicting the 10 most
probable paths and storing them at the end of each inference iteration. The reason
why the 10 most probable predictions are stored was after discussions among the
people involved. The rank measurement captures how the accuracy changes further
down the list that is accepted as a correct answer. This corresponds to the data in
table 4.10.

Comparing DistilBERT vs BERT
All the models except model 𝛿 used a distilBERT pre-trained model. Our hypothesis
was that a larger BRET model with more layers would be able to find more complex
relationships during training and then perform better than the other models. This
was however not correct, as illustrated in Tab. 5.3 we can see that the BERT-based
model (model 𝛿) proved to be less accurate in nearly all store predictions. What

1https://www.elgiganten.se/

69

https://www.elgiganten.se/

5. Discussion

the comparison indicates is that model distillation works and one can keep the
performance of a BERT even with a smaller model.

Table 5.3: Accuracy comparison between the best DistilBERT
(model 𝛼) and BERT (model 𝛿).

Stores Model
model 𝛽 model 𝛿

PCS2 97.4 86.8
Lyko 96.8 96.9
Elgiganten 95.2 83.2
MediaMarkt 91.2 90.2
Akademibokhandeln 90.8 95.8
Chili 89.1 81.6
Cdon 88.5 41.9
PCS1 86.0 86.7
Bygghemma 85.4 75.8
Ikea 84.4 60.8
Cervera 79.6 70.0
Gymgrossisten 78.9 59.2
Rusta 78.7 37.0
Bauhaus 73.6 31.9
Kjell & Company 70.1 37.9
Systembolaget 67.6 73.6
Plantagen 65.4 69.3
NA-KD 64.8 43.9
Boozt 54.0 75.2
H&M 47.8 37.1
Average accuracy 79.3 66.8

5.4.3 Summary of Results
As one can see in Tab. 4.1, all the produced models are very close to each other
regarding accuracy. This shows that with a large enough data set, enough of the
paths get explored, and therefore higher NNE and NPD are not needed. As they
only entail longer training times, one could instead use the lower combinations and
run the model through multiple epochs to get the same outcome. It is also seen that
the model could not predict some stores very well which can be due to a few reasons.
One reason could be that the crawled text is not sufficient and therefore the model
does not have much to predict on. Another reason could be that the model does
not find good relationships between the text and the category. This could be the
reason why H&M and NA-KD are so low. Trying to classify a text about a t-shirt
is a very hard problem since it could belong to many different categories such as
women, men, children, etc. When looking at the results all stores selling clothes are
performing right at or below average. One can also see that number of products
during training does not have to yield better performance. One example can be seen

70

5.5 Ethics

in Tab. 4.11, where CDON was trained with 950000 products and still performed
lower than Gymgrossiten which was trained with 2280 products.

One can also see by looking at the progression graphs, that a better model could
be loaded and produce better results than what the tables present. For this research,
it was decided to produce the tables based on the last saved models which was done
when the training was completed. Furthermore one could see that a higher batch
size resulted in a lower average accuracy.

This thesis was also able to do a brief comparison of a fine-tuned DistilBERT
model and a BERT model. The findings show that the DistilBERT almost outper-
forms the regular BERT, which proves that the performance of a distilled model can
be quite good compared to the regular one.

This approach proved to work very well compared to all the baselines that were
made. Even when comparing the top-1 scores, the models outperformed all baselines
with an accuracy of 53.6% compared to the best baseline which had an accuracy
of 13.3%. These numbers are found in Tab. 4.10 and Tab. 4.3. However, it was
unfortunate to see that the model was not able to predict unseen stores very well
as seen above, and therefore not viable to use as a general model. We do believe,
however, that more testing should be done to confirm this behavior. The reasoning
for this is that the stores that were tested as unseen was removed from the training
due to the crawled data containing a lot of errors. By applying this model to some
other store that was not present during training one could contradict our findings.

5.5 Ethics
Constructing an AI model can be both a curious and technical challenge, where
new solutions are found for unsolved problems. But while doing this, one needs to
consider some ethical aspects. The following are a few aspects relevant to the work
in this thesis.

5.5.1 Carbon Emission
The evermore popular transformer-based models which have headlined the news
during the past month have an overlooked cost, which many might not reflect upon.
In Hao (2019) it is stated that training of such models has an immense environmental
impact, where the data is the fossil fuel and the model is the motor that burns it.
Training a transformer model with 213 million parameters could release as much as
284, 000 kg CO2, which is more than the lifetime emissions for many of us. When
planning to create these models, one should therefore be aware that training these
largest models can have a major impact on the environment.

However, once these models are created they can be used again, e.g. BERT, and
maybe most importantly they can be fined tuned. So instead of training a large
model from scratch each time, it can be developed to solve a specific problem.

71

5. Discussion

5.5.2 Affect on Consumer Behaviour
As mentioned in the introduction could this model be part of a solution where
traffic is directed between e.g. web-based stores. The idea behind this approach is
to lower the amount of money spent on advertisement services from Google. But
an unwanted side effect of this could be the impact on consumer behaviors. If
such a model would instead increase consumption by enabling easier access to find
products. Assuming that this is true, then this could harm the environment where
the model might contribute to over-consumption.

5.5.3 Biased Model
A transformer-based model’s capabilities are limited to the information it is given
during training and fine-tuning. This also applies to the values present in the texts,
intentional or not. When constructing a model it is important to create one that
does not offend or mistreat an ethnic, vulnerable, or LGBTQ+ group. There is a
real risk of dire consequences if a book, containing intolerant material towards a
certain group, would be labeled as Course Literature, i.e. regarded as the truth.
Thus when creating these model, one need to take into consideration the contents
of the data present in the data set used during training as biased data could very
well lead to a biased model. The resulting model is not better than what it was fed.

72

Chapter 6
Conclusion

Product categorization is no easy task to automate and a time-consuming task to
perform as a human due to the amount of data needed to be categorized. This thesis
aimed to investigate how one could fine-tune BERT models to correctly classify
products based on their descriptions. The approach in this work was to fine-tune
BERT models with sequence classification tasks by using data collected from large
e-commerce.

The research questions for this thesis are:

1. How well can a Machine Learning model predict the category to which a
product belongs in different stores with different taxonomies?

2. Is the constructed model better than technology/models publicly available
today?

3. Does the model predict categories as well on stores and taxonomies that were
not present during training?

The results show that a pre-trained BERT model can be used and fine-tuned and
produce higher accuracy than all of our baselines, however, the reliability of these
baselines is questionable. We are well aware that these models lack a strong mean-
ingful baseline to being able to conclude its performance. But the models have
proved to be able to correctly classify products with an accuracy of 81.9% as an
average across all stores that were crawled and therefore show great potential for
further research. However it was not possible to get Liu et al. (2021) to work, this
is unfortunate since this meant that no comparison could be made with other solu-
tions. Lastly, the model proved to be able to correctly classify products from unseen
stores but unfortunately with accuracy scores far too low to be used in real life.

With the data gathered, we have shown that the model can be used as an efficient
tool since the user could choose between the top 10 predicted categories predicted
for a given product description, but there is still much to be improved upon.

73

6. Conclusion

Future Work
If one were to replicate the models in this thesis, a new approach or refining approach
to the baselines needs to be taken. To ensure that all transformer models perform
better than naive ones and that it is necessary to use such a complex model.

This thesis has shown that it is possible to use BERT for sequence classification
to categorize product text. In the future, it would be good to develop a policy
and train the model using reinforcement training instead of BCE as a loss function
which would enable the model to better classify products with unseen labels during
training. This was the idea of the model in Liu et al. (2021). It is believed that
something went wrong in policy when the code was modified for this research’s
needs and therefore another approach would be to find the error and get the model
working. The reasoning behind the decision of writing another model was due to
time constraints and the purpose of generating some sort of numerical statistics on
the research topic.

The working model was developed during a lot shorter time and has a lot of
future potentials. One could use dynamic false path generation instead of random
generation to make sure that the whole taxonomy tree is explored and all possible
incorrect paths are penalized. This would also help reduce train time since the
entries to the model would become shorter over time. We also strongly believe that
more testing on unseen data and generalization should be done since the unseen data
set contained a lot of errors. One could investigate if fine-tuning based on zero-shot
classification could yield a model better for generalization. We also encourage further
development during fine-tuning such as learning rate scheduler.

74

References

Allen, J. F. (2003). Natural Language Processing, page 1218–1222. John Wiley and
Sons Ltd., GBR.

Alpaydin, E. (2010). Introduction to Machine Learning, Second Edition (Adap-
tive Computation and Machine Learning). Adaptive Computation and Machine
Learning. The MIT Press, 2 edition.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Rep-
resentations, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-2015. 3rd
International Conference on Learning Representations, ICLR 2015 ; Conference
date: 07-05-2015 Through 09-05-2015.

Brown, S. M. (2021). mitsloan.mit.edu/ideas-made-to-matter/machine-learning-
explained. MIT Sloan School of Management.

Central, G. S. (2023). Sitemaps. https://developers.google.com/search/docs/
advanced/sitemaps. 2023-06-01.

Chinchor, N. and Sundheim, B. (1993). Muc-5 evaluation metrics. In Proceedings
of the 5th Conference on Message Understanding, MUC5 ’93, page 69–78, USA.
Association for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019a). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019b). Bert: Pre-training
of deep bidirectional transformers for language understanding. In North American
Chapter of the Association for Computational Linguistics.

75

https://developers.google.com/search/docs/advanced/sitemaps
https://developers.google.com/search/docs/advanced/sitemaps

REFERENCES

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269.

Galassi, A., Lippi, M., and Torroni, P. (2021). Attention in natural language process-
ing. IEEE Transactions on Neural Networks and Learning Systems, Neural Net-
works and Learning Systems, IEEE Transactions on, IEEE Trans. Neural Netw.
Learning Syst, 32(10):4291 – 4308.

Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing.
Morgan & Claypool Publishers.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press,
Cambridge, MA. http://www.deeplearningbook.org.

Gunnilstam, J. (2021). Här Är sveriges 100 största e-handlare. www.ehandel.se/
har-ar-sveriges-100-storsta-e-handlare. 2023-05-30.

Hao, K. (2019). Training a single ai model can emit as much carbon as five cars in
their lifetimes. MIT Technology Review.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

Hoare, C. A. R. (1961). Algorithm 64: Quicksort. Commun. ACM, 4(7):321.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., and Liu, Q.
(2021). Lightmbert: A simple yet effective method for multilingual bert distilla-
tion.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Pearson Education.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
A survey. J. Artif. Intell. Res., 4:237–285.

Koster, M. (2007). The web robots pages: The web robots exclusion protocol. The
Web Robots Pages. 2023-06-01.

Lindberg, T. and Facht, U. (2022). 2.3 REKLAMMARKNADENS UTVECKLING,
volume 2022, page 11–12. Myndigheten för press, radio och tv.

Liu, H., Zhang, D., Yin, B., and Zhu, X. (2021). Improving pretrained models for
zero-shot multi-label text classification through reinforced label hierarchy reason-
ing. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages
1051–1062, Online. Association for Computational Linguistics.

Luong, M., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-
based neural machine translation. CoRR, abs/1508.04025.

76

http://www.deeplearningbook.org
www.ehandel.se/har-ar-sveriges-100-storsta-e-handlare
www.ehandel.se/har-ar-sveriges-100-storsta-e-handlare

REFERENCES

Malmsten, M., Börjeson, L., and Haffenden, C. (2020). Playing with words at the
national library of sweden – making a swedish bert.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to information
retrieval. Cambridge University Press.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. In Proceedings of the International Conference on
Learning Representations (ICLR).

Mitchell, T. M. (1997). Machine learning. McGraw-Hill series in artificial intelli-
gence. McGraw-Hill.

MonkeyLearn (2023). Natural language processing. https://monkeylearn.com/
natural-language-processing/. Accessed on 2023-06-01.

Ng, A. (2023). Splitting into train, dev and test sets. https://cs230.stanford.
edu/blog/split/. Accessed 1 June 2023.

Otter, D., Medina, J., and Kalita, J. (2021a). A survey of the usages of deep learning
for natural language processing. IEEE Transactions on Neural Networks and
Learning Systems, Neural Networks and Learning Systems, IEEE Transactions
on, IEEE Trans. Neural Netw. Learning Syst, 32(2):604 – 624.

Otter, D., Medina, J., and Kalita, J. (2021b). A survey of the usages of deep learning
for natural language processing. IEEE Transactions on Neural Networks and
Learning Systems, Neural Networks and Learning Systems, IEEE Transactions
on, IEEE Trans. Neural Netw. Learning Syst, 32(2):604 – 624.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning
library. Advances in Neural Information Processing Systems, 32:8024–8035.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12:2825–
2830.

Petersen, F., Kuehne, H., Borgelt, C., and Deussen, O. (2022). Differentiable top-k
classification learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 17656–17668. PMLR.

Scikit-learn (2023). 3.3. metrics and scoring: quantifying the quality of predic-
tions. https://scikit-learn.org/stable/modules/model_evaluation.html#
accuracy-score. Accessed 7 June 2023.

77

https://monkeylearn.com/natural-language-processing/
https://monkeylearn.com/natural-language-processing/
https://cs230.stanford.edu/blog/split/
https://cs230.stanford.edu/blog/split/
https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score
https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score

REFERENCES

Scrapy (2023). Scrapy documentation. https://doc.scrapy.org/en/latest/
intro/overview.html. 2023-06-01.

Sitemaps.org (2020). Sitemaps.org. https://www.sitemaps.org. 2023-06-01.

Trim, C. (2013). The art of tokenization. Developer Works.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth-Heinemann, 2nd
edition.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. (2018). Zero-shot learning - a
comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(9):2251–2265.

78

https://doc.scrapy.org/en/latest/intro/overview.html
https://doc.scrapy.org/en/latest/intro/overview.html
https://www.sitemaps.org

Appendices

79

Appendix A
Data set details

We chose to exclude Biltema, Apotea, and Clas Ohlsson from the data set since they
had incorrect category paths that resulted in the model not being able to train. Two
of these stores were later used as unseen data tests instead.

Store Title Brand Description Description plus Category SKU GTIN MPN EAN
Akademibokhandlen x x x x x x
Apotea x x x x x x
Bauhaus x x x x x x x
Biltema x x x x x
Boozt x x x x x x x
Bygghemma x x x x x x
Cdon x x x x x x x
Cervera x x x x x x x
Chili x x x x x x
Clas Ohlson x x x x x
Elgiganten x x x x x x x
Gymgrossisten x x x x x x x
H&M x x x x x x
Ikea x x x x x x
Kjell x x x x x x x
Lyko x x x x x x
Mediamarkt x x x x x x x
NA-KD x x x x x
Plantagen x x x x x x x
Rusta x x x x x
Systemet x x x x x x
PSC1 x x x
PSC2 x x x x x x

Tab. A.1 displays a table listing the number of products from each store used to
create the data sets.

81

A. Data set details

Table A.1: Each store and the number of products in each
dataset.

Store Number of products
Akademibokhandeln 103258
Apotea 43940
Bauhaus 55891
Biltema 29325
Boozt 147910
Bygghemma 346948
Cdon 6733696
Cervera 16333
Chili 146895
Clas Ohlson 45129
Elgiganten 314071
Gymgrossisten 2482
H&M 26492
Kjell 9156
Ikea 31903
Lyko 68094
Mediamarkt 14744
NA-KD 32215
Plantagen 7777
Rusta 6408
Systemet 23306
PCS1 1602846
PSC2 3709534

82

Appendix B
Hyper-parameter optimization

B.1 Hyper-parameter optimization 1
In the first hyper-parameter optimization study these combinations were made.

Table B.1: Caption

Iterations Learning rate NNE NPD
1 1e-06 1 1
2 1e-06 1 2
3 1e-06 1 3
4 1e-06 2 1
5 1e-06 2 2
6 1e-06 2 3
7 1e-06 3 1
8 1e-06 3 2
9 1e-06 3 3
10 1e-04 2 2
11 1e-05 2 2
12 1e-06 2 2

B.2 Hyper-parameter optimization 2
In the second hyper-parameter optimization study these combinations were made.

83

B. Hyper-parameter optimization

Table B.2: Caption

Iterations Learning rate NNE NPD
1 1e-05 1 1
2 1e-05 1 2
3 1e-05 1 3
4 1e-05 2 1
5 1e-05 2 2
6 1e-05 2 3
7 1e-05 3 1
8 1e-05 3 2
9 1e-05 3 3

84

Appendix C

Training parameters

The parameters that were given to the model during the final training are presented
in the table below.

Parameter name Value
learning_rate 0.00001
gradient_accumulation_steps 1
save_steps 50000
logging_steps 10000
batch_size 12
max_length 512
num_train_epochs 1
number_of_negative_examples 1 & 2
negative_example_depth 2
pre-trained model_name Addedk/kbbert-distilled-cased

The models that were trained on the machine learning computer with the GTX
4090 used the following parameters and settings:

85

C. Training parameters

Parameter name Value
learning_rate: 0.00001

gradient_accumulation_steps: 1
save_steps: 50000

logging_steps: 10000
batch_size: 56

max_length: 512
num_train_epochs: 1

number_of_negative_examples: 2
negative_example_depth: 2
pre-trained model_name: Addedk/kbbert-distilled-cased

Parameter name Value
learning_rate: 0.00001

gradient_accumulation_steps: 1
save_steps: 50000

logging_steps: 10000
batch_size: 30

max_length: 512
num_train_epochs: 1

number_of_negative_examples: 1
negative_example_depth: 2
pre-trained model_name: KB/bert-base-swedish-cased

86

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-15

EXAMENSARBETE Automated product categorization using transformer models
STUDENTER Joel Bäcker, Victor Winkelmann
HANDLEDARE Marcus Klang (LTH), Rasmus Ros (Theca Systems)
EXAMINATOR Volker Krueger (LTH)

Automatiskt produktkategorisering
genom transformermodeller

POPULÄRVETENSKAPLIG SAMMANFATTNING Joel Bäcker, Victor Winkelmann

Produktkategorisering är en viktigt del av flera industrier, bland annat e-handels
företag. Att effektivt organisera produkter ger enklare navigering för en användare
samt underlättar för företag att analysera kundmönster. Detta arbete har tagit fram
metoder för att automatisk kategorisera produkter.

Idag läggs mer och mer pengar för att synas
tidigt bland resultaten från en sökmotor för att
öka trafiken till en hemsida. Då summorna för
att synas ökat väldigt har det medfört att före-
tag intresserar sig allt mer för att istället skicka
relevant data mellan varandra direkt istället för
en mellanhand så som en sökmotor. En del av
att möjliggöra trafiken mellan företag är att im-
plementera automatisk produktkategoriering som
dessutom kan kategoriera produkter till en an-
nan butiks kategorier. Att kategorisera produk-
ter görs genom att träna artificiell intelligens (AI)
modeller, så kallade transformers. Transformers
modeller har fördelen att de kan tränas på stora
mängder text av någon annan för att sedan tränas
en andra gång och då specialiserar sig på en speci-
fik uppgift. Den första träningen görs vanligtvis
på mycket stora mängder text.

I examensarbetet har olika modeller utvecklats
och utvärderas som ska med så hög pricksäker-
het förutspå vilka kategorier som en produkt till-
hör. Det första som gjordes var att skaffa data
från flera butiker, som ska användas för att mod-
ellen ska kunna tränas på produktinformation för

att specialisera sig på kategorisering. Datan som
införskaffades innehöll titel, beskrivning, kategori
med mera. När datan hade insamlats kunde kon-
struktion och träning av modellerna göras som i
sin tur följdes av modellernas prestanda utvärder-
ades. Utvärdering gjordes genom att jämföra hur
bra olika modeller var, de två typer av modeller
som fanns var ett par simpla modeller och några
transformer modeller.

Skaffa data Träna
modellerna

Utvärdera
modellerna

Modellkonstruktion

Välja bästa
modellen

Resultatet från modellerna visar att den bästa
modellen gissade rätt ungefär 82% av alla gånger,
jämfört med de simpla modellerna som hade som
bäst rätt 14% av gångerna. Detta visar på att
problemet med att automatiskt kategorisera pro-
dukter inte kan lösas med en simpel modeller utan
att det faktiskt behövs tillämpas mer komplexa
modell som transformers.

	Introduction
	Background
	Problem Statement
	Scientific Contributions
	Related Work
	Limitations
	Contribution statement

	Theory
	Machine Learning
	Supervised Learning
	Unsupervised Leaning
	Reinforcement learning
	Train, Validation and Test
	Loss Function
	Top-k Learning
	Tools

	Natural Language Processing
	Tokenization
	Word Embedding
	Self-Attention
	Term Frequency-Inverse Document Frequency

	Transformer
	BERT
	Pre-trained and fine tuning models
	Zero-shot classification

	Category Path
	Model proposed by Liu et al. (2021)
	Scrapy
	Evaluation metrics

	Method
	Data Set
	Taxonomy
	Common Product Handling
	Creating Train, Validation and Test Sets

	Baseline Models
	TF-IDF
	Zero-shot Classification
	Pre-trained BERT with Sequence Classification

	Transformer Models
	Sequence Classification Model

	Evaluation
	Sequence Classification Model
	Evaluation Methods

	Experimental Setup
	Hardware
	Data Set
	Source of Pre-Trained Models
	Model and Parameters

	Model Summary
	Model a
	Model b
	Model c
	Model d

	Results
	Baselines
	TF-IDF
	BERT zero-shot classification
	Using Pre-trained Model

	Hyperparameter Tuning
	Training and Evaluation
	Model a
	Model b
	Model g
	Model d

	Discussion
	Data Set
	Baselines
	TF-IDF
	Zero-shot Classification and Pre-trained model
	Conclusion of baselines

	Model proposed by Liu et al. (2021)
	Fine-tuning
	Reinforcement Learning
	Hardware Restrictions

	Sequence classification model
	Model training
	Model Evaluation
	Summary of Results

	Ethics
	Carbon Emission
	Affect on Consumer Behaviour
	Biased Model

	Conclusion
	References
	Appendix Data set details
	Appendix Hyper-parameter optimization
	Hyper-parameter optimization 1
	Hyper-parameter optimization 2

	Appendix Training parameters
	Tom sida

