
XZDDF Bootstrapping in Fully Homomorphic
Encryption

Simon Ljungbeck
si5126lj-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Qian Guo

Examiner: Thomas Johansson

January 2024



© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund



Abstract

Despite the vast research on the topic in recent years, fully homomorphic encryp-
tion schemes remain time-inefficient. The main bottleneck is the so-called boot-
strapping, whose purpose is to reduce noise that has accumulated after having
performed homomorphic operations on a ciphertext. This thesis is about boot-
strapping, and how to do it more efficiently. More specifically, a new algorithm,
here called XZDDF, is analyzed. The thesis contains a solution to a problem
in the original XZDDF algorithm that was encountered during the project. The
new algorithm was then implemented in the open-source library OpenFHE. The-
oretically, the algorithm has lower time complexity than previous bootstrapping
techniques, but the execution time of the implementation was not faster than other
algorithms.

Keywords: Fully Homomorphic Encryption, Homomorphic Encryption, Boot-
strapping, Blind Rotation, XZDDF.

i



Preface

This thesis is a master’s thesis in the program Engineering Mathematics, written
during the Autumn of 2023.

I would like to acknowledge my supervisor Qian Guo for his invaluable guid-
ance and feedback throughout the whole project. Moreover, the topic he sug-
gested suited me perfectly, containing a lot of beautiful mathematics, challenging
problem-solving, and fun algorithm implementation.

At last, I also want to thank my family and friends for their encouragement and
support during my whole time at LTH.

Lund, December 2023
Simon Ljungbeck

ii



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . 7

3 Fully Homomorphic Encryption 10
3.1 Cryptographic Notations and Definitions . . . . . . . . . . . . . . . 10
3.2 Structure of Fully Homomorphic Encryption Schemes . . . . . . . . . 11
3.3 Introduction to Bootstrapping . . . . . . . . . . . . . . . . . . . . . 12
3.4 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 XZDDF Bootstrapping 18
4.1 NTRU-Based Encryption . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Fast Blind Rotation Using the NTRU Setting . . . . . . . . . . . . . 22
4.3 Switching Back to First-Layer Encryption . . . . . . . . . . . . . . . 23

5 Modification of XZDDF Bootstrapping 25
5.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 A Suggestion of Solution . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Efficiency Tests 30
6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusions and Future Work 36

References 38

A Fully Homomorphic Encryption Schemes 41
A.1 First Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Second Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3 Third Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.4 Fourth Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B Figures 56

iv



List of Algorithms

1 Naive bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 AP.BRKGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 AP.BREval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 GINX.BRKGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 GINX.BREval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 NTRU.KSKGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 NTRU.KS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8 NTRU.AutoKGen . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9 NTRU.EvalAuto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 XZDDF.BRKGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 XZDDF.BREval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12 BGV.Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13 BGV.KeyGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14 BGV.Enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
15 BGV.Dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
16 BGV.Eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
17 TRLWE.Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
18 TRLWE.KeyGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
19 TRLWE.Enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
20 TRLWE.Dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
21 TRLWE.Eval_lincomb . . . . . . . . . . . . . . . . . . . . . . . . . 50
22 CKKS.Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
23 CKKS.KeyGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
24 CKKS.Enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
25 CKKS.Dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
26 CKKS.Eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



List of Figures

3.1 Illustration showing how bootstrapping works. . . . . . . . . . . . . 13

6.1 Decryption failure when using the original rotation polynomial. The
AND operation is performed on two zeros, so the result should be 0. 33

B.1 Time distributions for different OpenFHE algorithms and different pa-
rameter sets when doing Test S1 (key generation) 100 times (see
Chapter 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.2 Time distributions for XZDDF with different parameter sets when do-
ing Test S1 (key generation) 100 times (see Chapter 6). . . . . . . . 58

B.3 Time distributions for different OpenFHE algorithms and different pa-
rameter sets when doing Test S2 (single bootstrapping) 100 times (see
Chapter 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.4 Time distributions for XZDDF with different parameter sets when do-
ing Test S2 (single bootstrapping) 100 times (see Chapter 6). . . . . 60

B.5 Time distributions for different OpenFHE algorithms and different pa-
rameter sets when doing Test S3 (OR operation) 100 times (see Chap-
ter 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.6 Time distributions for XZDDF with different parameter sets when do-
ing Test S3 (OR operation) 100 times (see Chapter 6). . . . . . . . . 62

B.7 Time distributions for different OpenFHE algorithms and different pa-
rameter sets when doing Test S4 (AND operation) 100 times (see
Chapter 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.8 Time distributions for XZDDF with different parameter sets when do-
ing Test S4 (AND operation) 100 times (see Chapter 6). . . . . . . . 64

B.9 Time distributions for different OpenFHE algorithms and different pa-
rameter sets when doing Test B2 (10 AND, OR, and NOT operations)
100 times (see Chapter 6). . . . . . . . . . . . . . . . . . . . . . . . 65

B.10 Time distributions for XZDDF with different parameter sets when do-
ing Test B2 (10 AND, OR, and NOT operations) 100 times (see Chap-
ter 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.11 Log-log plots of the average execution times for different OpenFHE
algorithms and different parameter sets when doing the batch tests
B1–B4 in Chapter 6, consisting of x AND, OR, and NOT operations. 67

vi



B.12 Log-log plots of the average execution times for XZDDF with differ-
ent parameter sets when doing the batch tests B1–B4 in Chapter 6,
consisting of x AND, OR, and NOT operations. . . . . . . . . . . . 68

vii



List of Tables

6.1 Description of some simple tests that were performed. . . . . . . . . 31
6.2 Description of the batch tests that were performed. . . . . . . . . . 32
6.3 The parameter sets for bootstrapping in OpenFHE. P128T, P128G,

P192T, and P192G are designed for XZDDF [1]. STD128L (called
STD128_LMKCDEY in OpenFHE) is designed for LMKCDEY. . . . . 32

6.4 The execution time for different bootstrapping algorithms and different
security levels λ (in bits), when performing the four simple tests S1–S4
described in Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 The execution time for different bootstrapping algorithms and different
security levels λ (in bits), when performing the batch tests B1–B4
described in Table 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



List of Abbreviations

Term Meaning Reference
AP Bootstrapping algorithm Section 3.4.1
BGV FHE scheme Section A.2.2
BV FHE scheme Section A.2.1
CKKS FHE scheme Section A.4.1
CVP Closest vector problem Definition 2.9
DLWE Decisional LWE problem Definition 2.13
DRLWE Decisional RLWE problem Definition 2.15
FHE Fully homomorphic encryption Chapter 3
FHEW FHE scheme Section A.3.2
GINX Bootstrapping algorithm Section 3.4.2
GSW FHE scheme Section A.3.1
LHE Levelled homomorphic encryption Definition 3.3
LMKCDEY Bootstrapping algorithm Section 3.4
LWE Learning with errors Definition 2.12, 2.17
NTRU Encryption algorithm Section 4.1
RLWE Ring learning with errors Definition 2.14, 2.18
SHE Somewhat homomorphic encryption Definition 3.2
SIS Shortest integer solution Definition 2.10
SSSP Sparse subset sum problem Definition 2.11
SVP Shortest vector problem Definition 2.8
TFHE FHE scheme Appendix A.3.3
XZDDF Bootstrapping algorithm Chapter 4

ix



Chapter 1
Introduction

Fully Homomorphic Encryption (FHE) was for a long time seen as the holy grail
of cryptography. It was mentioned by Rivest et al. already in 1978 [2], but its
capability of performing arbitrary computations on encrypted data, without the
need to decrypt it first, seemed to be impossible for a long time. However, in
2009, Gentry proved the opposite when he published the first FHE scheme in his
PhD thesis [3]. Since then, the research about FHE has exploded, and in 2022,
the Gödel Prize was awarded to three FHE researchers for their work.

Almost all existing FHE schemes are noise-based, which means that each cipher-
text contains some noise. The noise is an essential part of the encryption since this
is what makes the scheme secure, but if the noise becomes too big, the decryption
will fail. When performing computations on encrypted data homomorphically, the
noise increases, and at some point, the ciphertext needs to be refreshed so that
the decryption does not fail if further homomorphic operations are performed.

The technique that is used for doing this refreshing, i.e. reducing the noise, is
both simple and elegant. Since FHE schemes can compute any function on a
ciphertext, one just computes a second layer of encryption and then evaluates
the decryption function homomorphically (see Figure 3.1 for an illustration of the
process). This technique is called bootstrapping. Although a beautiful solution in
theory, bootstrapping turns out to be quite inefficient in practice, at least for all
known FHE schemes today.

In a recent paper, Xiang et al. [1] propose a new algorithm for doing bootstrapping
more efficiently than previous techniques. We will call the new algorithm XZDDF,
after the authors, and this thesis will be about the XZDDF bootstrapping. We will
learn about the theory behind the algorithm and then implement it in a popular
open-source FHE library. On the way, we will also learn about bootstrapping and
fully homomorphic encryption in general.

1



Introduction 2

1.1 Motivation

FHE does not only contain a lot of beautiful mathematics, but it also has several
interesting real-life applications. One example is when letting a third party, such
as a cloud service or a fog network, do computations on private data. With FHE,
these computations can be performed without compromising the privacy of the
data.

A practical example of this is when a machine learning model, e.g. a neural
network, is trained on an external supercomputer. If using FHE, one can upload
the training data in an encrypted form. Then, the third party can do computations
as usual, i.e. it can train the machine learning model, but it does not what it is
computing or what the training data is. In this way, sensitive data, such as patient
data or bank credentials, can also be used, without revealing it to the third party.

Despite its transformative potential, FHE is still not used much in practice. The
main reason for this is the inefficiency of the bootstrapping, resulting in too slow
homomorphic computations. Finding an efficient bootstrapping algorithm is im-
portant to be able to use FHE more in practice. This is why bootstrapping was
chosen as the main topic in this thesis.

1.2 Goals

The main goal of this thesis is to analyze and implement the XZDDF algorithm.
The underlying mathematics will be studied and presented. In case of any flaws in
the algorithm, the goal is to solve these so that the algorithm can be implemented.
Then, we aim to test the efficiency of the implementation and compare it with the
theoretical time complexity of the algorithm. On the way, FHE schemes and older
bootstrapping techniques will be studied as well to get a deeper understanding of
FHE in general.

1.3 Scope

This thesis primarily focuses on the theory of the XZDDF algorithm that is needed
for implementing it. The thesis will therefore not focus on other aspects of the
algorithm such as its security and how the noise grows when performing homo-
morphic operations. For these things, we refer to the original paper by Xiang et
al. [1] instead.



Introduction 3

1.4 Contributions

This thesis contains theory introducing the reader to the field of FHE and boot-
strapping. It also contains new results about XZDDF bootstrapping. Firstly, it
announces a problem with the rotation polynomial in the original XZDDF algo-
rithm, and secondly, it proposes a solution to the problem in a special case, when
doing Boolean operations with binary messages. At last, an implementation of
the solution was programmed and integrated into the OpenFHE library. The im-
plementation works well but is not as fast as expected from the theoretical results
about the time complexity of the algorithm.

1.5 Structure of the Thesis

In Chapter 2, some cryptographic notations and terms are introduced. The next
chapter is about FHE and bootstrapping in general. Then, in Chapter 4, the
XZDDF bootstrapping is introduced. The following chapter contains a correction
of an error in the original XZDDF algorithm while the last two chapters contain
the results of the implementation and conclusions that can be drawn from the
project. In the end, there are two appendices. The first one contains theory about
a few common FHE schemes, and the second appendix shows figures from the
benchmarking of the implementation.



Chapter 2
Preliminaries

2.1 Basic Notations

In this paper, the set of natural numbers N is defined as all non-negative numbers
(including 0), while N∗ := N\{0}.

R := Z[X]/(XN +1) is a quotient ring of a polynomial ring Z[X] over the integers,
modulo (XN + 1). If nothing else is specified, N = 2d for a d ∈ N∗.

RQ := R/QR = ZQ[X]/(XN + 1), where ZQ := Z/QZ. To specify the degree N
of the polynomial, RQ,N is used.

All vectors are bold, while elements in polynomial rings are not. The scalar product
of two vectors u and v is denoted as ⟨u,v⟩.

⌊x⌋, ⌈x⌉ and ⌊x⌉ = ⌊x + 1/2⌋ denote the floor function, the ceiling function, and
the rounding function, respectively.

X
s←− χ means that a random variable X is sampled from a distribution χ. For

example, X s←− U(S) denotes a sample X that is uniformly drawn from a set S.

2.2 Probability Theory

Marcolla et al. [4] define a negligible probability function in the following way.

Definition 2.1 (Negligible probability function). A probability function
negl(x) : Z → R is called negligible if, for any c ∈ Z, there exists an N ∈ Z,
such that |negl(x)| < 1/xc for all x > N .

The opposite of a negligible probability function is an overwhelming probability
function.

4



Preliminaries 5

Definition 2.2 (Overwhelming probability function). A probability function
overwhelm(x) : Z → R is called an overwhelming probability function if and only
if 1− overwhelm(x) is a negligible probability function.

Now, B-boundedness can be defined similarly to the definition of Gentry et al. [5].

Definition 2.3 (B-boundedness). A distribution χ, supported over integers, is
called B-bounded if

P
X

s←−χ
[|X| > B] = negl(x),

where negl(x) is a negligible function.

In other words, a distribution χ is B-bounded if the probability of sampling a
value X s←− χ greater than B is negligibly small.

Next, the discrete Gaussian distribution [6] is defined.

Definition 2.4 (Discrete Gaussian distribution). A discrete distribution NZ(µ, σ
2),

where µ ∈ Z and σ ∈ R, is called a discrete Gaussian distribution with center µ
and scale σ, if it has the discrete probability function

P
X

s←−NZ(µ,σ2)
[X = x] =

e−(x−µ)2/(2σ2)∑
y∈Z e

−(y−µ)2/(2σ2)
.

Note the similarity between the discrete Gaussian distribution NZ(µ, σ
2) and the

continous Gaussian (normal) distribution N (µ, σ2), where the later has the density
function

P
X

s←−N (µ,σ2)
[X = x] =

1

σ
√
2π
e−

1
2 (

x−µ
σ )2 .

2.3 Number Theory

To understand where the name fully homomorphic encryption comes from, a ho-
momorphic function is defined.

Definition 2.5 (Homomorphic function). A function f : A→ B for two algebraic
structures A and B of the same type is called homomorphic under the operation ⋄
if

f(x ⋄ y) = f(x) ⋄ f(y).

Moreover, the mathematical structure torus is defined as follows.

Definition 2.6 (The real torus). The mathematical structure consisting of the
real numbers modulo 1 is denoted T := R/Z and is called the real torus.



Preliminaries 6

This means that the elements of the real torus can be represented by the interval
[0, 1). Just as the reals, the torus has the addition operation, but the multiplication
operation is not defined, and hence, it is not a ring [7]. To see why multiplication
is not defined, take for example the element

[
1
3

]
=
[
4
3

]
∈ T. Then[

1

3

]
·
[
1

3

]
=

[
1

9

]
̸=
[
7

9

]
=

[
16

9

]
=

[
4

3

]
·
[
4

3

]
.

However, multiplication between elements of the torus and integers is well-defined.

2.4 Lattices

Most FHE schemes rely on hard lattice problems. This section contains some
theory about lattices.

Definition 2.7 (Lattice). For any two positive integers k, n ∈ N∗ where k ≤ n, let
B = (b1, ...,bk) be k linearly independent vectors in Rn. Then the k-dimensional
lattice L generated by B is defined as

L = L(B) =

{
k∑

i=1

γibi : γi ∈ Z

}
.

B is called the base of the lattice, and k is called the rank.

Each lattice L is associated to a problem called the shortest vector problem, which
is defined below.

Definition 2.8 (Shortest vector problem). Given a lattice L and a norm ∥·∥
(usually the L2 norm), the problem of finding

argmin
v∈L\{0}

∥v∥

is called the shortest vector problem (SVP).

The shortest vector problem can be generalized to the closest vector problem.

Definition 2.9 (Closest vector problem). Given a lattice L, a norm ∥·∥ (usually
the L2 norm), and a vector t ∈ Rn, the problem of finding

argmin
v∈L

∥v − t∥

is called the closest vector problem (CVP). The expression minv∈L ∥v − t∥ is called
the distance betwen t and L, and is denoted by dist(t,L) := minv∈L ∥v − t∥.

There is also a problem called the short integer solution.



Preliminaries 7

Definition 2.10 (Short integer solution). Let q,m, n ∈ N∗ be three positive inte-
gers, and take a matrix A ∈ Zm×n

q . Moreover, let β ∈ R be a real number such
that β < q, and let ∥·∥ be some norm. Then the problem of finding a non-zero
vector x ∈ Zn\{0} such that

(i) ∥x∥ ≤ β
(ii) Ax ≡ 0 mod q,

is called the short integer solution problem and is abbreviated SISn,m,q,β.

At last, a problem that partly relies on a version of the SVP problem is defined.
See Marcolla et al. [4] for more details.

Definition 2.11 (Sparse subset sum problem). Let S = {a1, . . . , an} ⊆ Z be a set
of integers. Then the problem of finding a subset A ⊆ S such that∑

x∈A

x = 0

is called the sparse subset sum problem (SSSP).

2.5 Lattice-Based Cryptography

This section gives an introduction to lattice-based cryptography.

2.5.1 Hard Problems

The modern lattice-based cryptosystems are usually based on the learning with
errors (LWE) problem. The LWE problem was introduced by Regev in 2005 [8],
and is defined below.

Definition 2.12 (Learning with errors problem). For two positive integers
q, n ∈ N∗, let a ∈ Zn

q , and b ∈ Zq. Then, the problem of finding a vector s ∈ Zn
q

such that
b = ⟨a, s⟩+ e mod q,

for some sample e s←− χ drawn from an error distribution χ over Z, is called the
learning with errors problem (LWE).

There is also a decisional version of the LWE problem.

Definition 2.13 (Decisional learning with errors problem). For two positive in-
tegers q, n ∈ N∗, and an error sample e s←− χ drawn from an error distribution χ
over Z, the problem of distinguishing the tuple (a, b = ⟨a, s⟩+e mod q) ∈ Zn

q ×Zq

from a tuple uniformly chosen from Zn
q × Zq is called the decisional learning with

errors problem (DLWE).



Preliminaries 8

The LWE and the DLWE problems are reducible to each other [9], and the LWE
problem can be reduced to the worst-case hardness of SVP [10].

The LWE problem also has a ring-version.

Definition 2.14 (Ring learning with errors problem). For two positive integers
Q,N ∈ N∗, let RQ := ZQ[X]/(XN + 1). Moreover, let a, b ∈ RQ. Then, the
problem of finding a ring element s ∈ RQ such that

b = a · s+ e,

for some sample e s←− χ drawn from an error distribution χ over RQ, is called the
ring learning with errors problem (RLWE).

Definition 2.15 (Decisional ring learning with errors problem). For two positive
integers Q,N ∈ N∗, a ring RQ := ZQ[X]/(XN + 1), and an error sample e s←− χ
drawn from an error distribution χ over RQ, the problem of distinguishing the
tuple (a, b = a · s+ e) ∈ RQ ×RQ from a tuple uniformly chosen from RQ ×RQ

is called the decisional ring learning with errors problem (DRLWE).

At last, we will also define the decisional NTRU problem.

Definition 2.16 (Decisional NTRU problem). For two positive integers
Q,N ∈ N∗, a ring RQ := ZQ[X]/(XN+1), and an error sample g s←− χ drawn from
an error distribution χ over RQ, the problem of distinguishing g/f ∈ RQ from a
random polynomial uniformly drawn from RQ is called the decisional NTRU prob-
lem.

2.5.2 Encryption Algorithms

LWE-based encryption can be written on the form defined below.

Definition 2.17 (LWE ciphertext). For two positive integers q, n ∈ N∗, let
m ∈ Zq be a message and let a, s ∈ Zn

q be a public vector and a private key,
respectively. Then the LWE encryption of m is defined as

LWEq,s(m) = (a, b = ⟨a, s⟩+ noised(m)) ∈ Zn
q × Zq,

where noised(m) is a noised encoding of m using some noise e s←− χ drawn from
an error distribution χ over Zq.

Regev [8] uses noised(m) = m · qt + e, so that

LWERegev
q,s (m) =

(
a, b = ⟨a, s⟩+m · q

t
+ e
)
. (2.1)

Note that knowing the private key s, a ciphertext LWEq,s(m) = (a, b) is easily
decrypted:

noised(m) = b− ⟨a, s⟩.

It is also possible to encrypt using the RLWE problem.



Preliminaries 9

Definition 2.18 (RLWE ciphertext). For two positive integers Q,N ∈ N∗, let
m, a, s ∈ RQ, be a message, a public value, and a private key, respectively. Then
the RLWE encryption of m is defined as

RLWEQ,s(m) = (a, b = a · s+ noised(m)),

where noised(m) is a noised encoding of m using some noise e s←− χ drawn from
an error distribution χ over RQ.

Encryption using the NTRU problem is defined in Chapter 4.



Chapter 3
Fully Homomorphic Encryption

3.1 Cryptographic Notations and Definitions

In this section, some notations and definitions related to fully homomorphic en-
cryption are introduced.

First of all, let E denote an encryption scheme that can encrypt and decrypt
messages and ciphertexts, respectively. The set of messages (plaintexts) that the
cryptosystem can encrypt is denoted byM. Similarly, denote the set of ciphertexts
that the system can decrypt by C.

Also, for a given encryption scheme E , let the functions

Enc : M→ C
Dec : C →M

denote the encryption function and the decryption function, respectively. This
means that Dec(Enc(x)) = x for any message x ∈M.

In the case of symmetric-key cryptography, one can use the notations Enck and
Deck to emphasize the need for the secret key k to encrypt and decrypt. Similarly,
we write Encpk and Decsk in public-key cryptography, where sk is the private key
and pk is the public key.

Now, fully homomorphic encryption can be defined.

Definition 3.1 (Fully homomorphic encryption). An encryption scheme E is
called a fully homomorphic encryption (FHE) scheme if its encryption function
Enc : M→ C preserves the two operations addition and multiplication, i.e.

Enc(x+ y) = Enc(x)⊕ Enc(y)

Enc(x · y) = Enc(x)⊙ Enc(y),

for some operations ⊕ and ⊙ on the set of ciphertexts.

10



Fully Homomorphic Encryption 11

This means that in fully homomorphic encryption schemes, computations with
encrypted messages can be performed without the need of first decrypting them.

Being able to perform both addition and multiplication means that we can also
compute XOR and AND operations. Since these two operators form a functionally
complete set of Boolean operators, i.e. they can express all possible truth tables,
any Boolean circuit can be computed in a fully homomorphic encryption scheme
[4].

Now, the following notations are introduced

M = (M,+,×)
C = (C,⊕,⊗).

M is a mathematical structure consisting of the plaintext set M associated with
the addition and multiplication operation. Similarly, C is the cipher text space,
consisting of the corresponding two operators ⊕ and ⊗, operating on ciphertexts
in C. In practical implementations, we usually have that ⊕ = + and ⊗ = ×.

We also define some weaker forms of homomorphic encryption.

Definition 3.2 (Somewhat homomorphic encryption). An encryption scheme E
is called a somewhat homomorphic encryption (SHE) scheme if it is homomorphic
only for a limited class of circuits.

Definition 3.3 (Levelled homomorphic encryption). An encryption scheme E is
called a levelled homomorphic encryption (LHE) scheme if it can evaluate any
circuits of bounded depth, i.e. a depth lower than a predetermined value.

Note that the sets of SHE schemes and LHE schemes are not disjoint.

At last, the security parameter is defined.

Definition 3.4 (Security parameter). The security parameter λ in an encryption
scheme E is a parameter in bits that decides the sizes of the other parameters in
E so that the time complexity for breaking the system becomes O(2λ).

3.2 Structure of Fully Homomorphic Encryption Schemes

Usually, FHE schemes are based on the LWE problem. This means that each
ciphertext has some noise associated with it, and the noise will increase each time
an operation is performed. If too many operations are computed, the cumulative
noise will become so big that the decryption fails. Luckily, there are solutions
to avoid this by decreasing the noise before it becomes too large. We say that a
ciphertext is refreshed when we decrease its noise.

Without refreshing, the encryption scheme is homomorphic only for a limited
number of operations, i.e. it is just an SHE scheme.



Fully Homomorphic Encryption 12

Gentry [3] shows that any SHE scheme can be modified to become fully homomor-
phic. To refresh the ciphertexts, he introduces a technique called bootstrapping.

The general FHE scheme Gentry [3] suggests consists of the four algorithms

E = (KeyGen,Enc,Dec,Eval),

where all components are probabilistic polynomial-time (PPT) algorithms [4]. As
before, Enc and Dec denote the encryption and the decryption functions, respec-
tively.

KeyGen is a function that takes a security parameter λ as input and outputs

KeyGen : λ 7→ (sk, pk, evk),

where sk is a private key, pk is a public key, and evk is a public evaluation key.
The latter is used to evaluate functions on ciphertexts homomorphically.

Eval is a function that takes the following input:

• An evaluation key evk

• A function f :Mt →M taking t inputs x1, ..., xt ∈M

• t ciphertexts (c1, ..., ct).

It then, with overwhelming probability, outputs

Evalevk : (f, (c1, ..., ct)) 7→ Encpk
(
f(Decsk(c1), ...,Decsk(ct))

)
.

This means that Eval is a function that takes a given number of ciphertexts as
input and outputs the encrypted value that f would output if inputting the corre-
sponding plaintexts to it. Note that Eval does this without any knowledge about
the private key sk.

Appendix A contains theory about some of the common FHE schemes.

3.3 Introduction to Bootstrapping

The bootstrapping technique that Gentry [3] proposes for reducing the noise is
illustrated in Figure 3.1 below. Algorithm 1 shows more specifically how the
method works. Note that the algorithm does not contain any secret data, and
hence, it may be performed by a third party.

At the last line of Algorithm 1, the new ciphertext c′ encrypts the same message
as the inputted ciphertext c. This can be shown by expanding the expression



Fully Homomorphic Encryption 13

m

noise
f(m)

noisef(·)

First-layer

m

noise

f(m)

noise

f(m)

noise

Dec(·)

Second-layer

reencryption

Figure 3.1: Illustration showing how bootstrapping works.

assigned to c′:

c′ = Evalevk(Dec, c, sk)

= Evalevk(Dec,Encpk(c),Encpk(sk))

= Encpk(Decsk(c))

= Encpk(m)

In other words,

Decsk(c
′) = Decsk(Encpk(m)) = m = Decsk(Encpk(m)) = Decsk(c).

This means that c′ and c are decrypted to the same message, but since many
homomorphic computations have been performed on c, while c′ is new, c′ contains

Algorithm 1 Naive bootstrapping
Require:
sk = Encpk(sk) // encryption of the secret key
pk
evk
c = Encpk(m) // encrypted message to refresh

Ensure: c′ = Encpk(m) // c′ has smaller noise than c
c← Encpk(c)
c′ ← Evalevk(Dec, c, sk)



Fully Homomorphic Encryption 14

less noise. Note, however, that one operation has already been performed, namely
the homomorphic decryption (last line of Algorithm 1), so it does not contain as
little noise as if m was encrypted completely from scratch.

One last note is that bootstrapping, unfortunately, is quite computationally heavy
and requires much memory. Therefore, there is huge interest in today’s FHE
research to increase the efficiency of bootstrapping.

3.4 Bootstrapping

As seen above, bootstrapping refreshes FHE ciphertexts by evaluating their de-
cryption algorithm homomorphically. In Appendix A, we also see that most of the
existing FHE schemes decrypt by computing a function

g(⟨c, s⟩ mod q) = g(

n∑
i=1

cisi mod q),

where c ∈ Zn
q is the ciphertext, s ∈ Zn

q is the private key, and g is a function that
in some way uses the result of the scalar product to decrypt the ciphertext.

The naive approach of doing bootstrapping is to simply compute g homomor-
phically as in Algorithm 1. However, the modulo operation is computationally
expensive [1]. Therefore, in practice, one needs to modify the bootstrapping so
that the execution time is reduced. There are several ways of doing so, and one is
based on so-called blind rotation. This section will give an overview of how this
way of doing bootstrapping usually works. In the next chapter, we introduce a
new, faster blind rotation algorithm developed by Xiang et al. [1].

The main idea of doing bootstrapping with blind rotation is to transform the noisy
ciphertext to a ciphertext in another scheme, where the modulo operations can be
computed cheaper. More specifically, one wants to transform the ciphertext to a
ring-based encryption system, where the ring R = Z[X]/(XN + 1) is constructed
so that q = 2N . In this way, the order of X ∈ R is ordR(X) = q, which means
that that the computations modulo q can be computed easily in the exponent:

X
∑

i cisi = X(
∑

i cisi mod q)+kq = X
∑

i cisi mod q · (Xq)k = X
∑

i cisi mod q.

Then, it is just to read the exponent of X
∑

i cisi to get the result of the modulo
computation.

Usually, bootstrapping using blind rotation consists of three steps:

1. Blind rotation
Transforms the first-layer ciphertext to a ring-based ciphertext.

2. Extraction
Transforms the ring-based ciphertext back to the first-layer encryption again.



Fully Homomorphic Encryption 15

3. Key switching
Switches the new first-layer key back to the original key.

There are two common bootstrapping algorithms that are usually used, and they
differ mainly in how the blind rotation is performed [11]. One performs blind
rotation using the AP algorithm [12], while the other uses the GINX algorithm
[13].

Section 3.4.1 and 3.4.2 below give a short introduction to these algorithms. We
refer to [12] and [13] for more details about how AP and GINX work.

Usually, AP needs a larger evaluation key than GINX. GINX is faster for binary
and ternary secrets, but slower for larger secrets [11].

In Chapter 4, we present a new algorithm from Xiang et al. [1], which both has
a small evaluation key and is fast for large secrets. Another algorithm, that also
beats AP and GINX in memory and time complexity, is called LMKCDEY [14].

3.4.1 AP Blind Rotation

The AP method for doing blind rotation relies on decompositions of ai =
∑

j ai,jB
j

in a base B. All possible values of ai,jsi ∈ Zq, where s = (s0, . . . , sn−1) ∈ Zn
q is

the private key, are pre-computed and encrypted, and then stored in the blind
rotation evaluation key BRKAP.

Algorithm 2 shows how the evaluation key is generated, while Algorithm 3 shows
how the blind rotation is performed, where the operator ⊗ is the external prod-
uct between RLWE ciphertexts and RGSW ciphertexts, defined by for example
Alperin-Sheriff and Peikert [12]. The output ACC is essentially an RLWE cipher-
text of the decryption of the inputted LWE ciphertext c = (a, b).

Algorithm 2 AP.BRKGen

Require:
s ∈ Zn

q // secret key
B ∈ Zq // basis

Ensure: BRKAP // evaluation key
for i = 0 .. (n− 1) do

for j = 0 .. (logB(q)− 1) do
for v = 0 .. B do

BRKAP
i,j,v ← RGSWz(X

vBjsi) // RGSW encryption
end for

end for
end for



Fully Homomorphic Encryption 16

Algorithm 3 AP.BREval

Require:
f ∈ RQ

c = (a, b) ∈ Zn
q × Zq // LWE ciphertext

BRKAP

B ∈ Zq // basis
Ensure: ACC // accumulator
Y ← X

2N
q ∈ RQ // =⇒ ordRQ

(Y ) = q

ACC← (0, Y −b · f) ∈ RQ ×RQ

for i = 0 .. (n− 1) do
for j = 0 .. (logB(q)− 1) do

ai,j ← ⌊ai/Bj⌋ mod B
ACC← ACC⊗BRKAP

i,j,ai,j
// ⊗ is the external product

end for
end for

3.4.2 GINX Blind Rotation

In the GINX method for doing blind rotation, the elements of the private key
s = (s0, . . . , sn−1) ∈ Zn

q are decomposed as si =
∑|U |−1

j=0 uj · si,j where si,j ∈ {0, 1}
and U = {u0, . . . , u|U |−1} is a public set. All si,j are then encrypted and stored in
the blind rotation evaluation key BRKGINX.

Algorithm 4 shows how the evaluation key is generated, while Algorithm 5 shows
how the blind rotation is performed. Just as for the AP blind rotation, the operator
⊗ is the external product between RLWE ciphertexts and RGSW ciphertexts.

Algorithm 4 GINX.BRKGen

Require:
s ∈ Zn

q // secret key
U ⊂ Zq

Ensure: BRKGINX // evaluation key
for i = 0 .. (n− 1) do

si,j ← Solve
(
si =

∑|U |−1
j=0 uj · si,j s.t. si,j ∈ {0, 1}

)
for j = 0 .. (|U | − 1) do

BRKGINX
i,j ← RGSWz(si,j) // RGSW encryption

end for
end for



Fully Homomorphic Encryption 17

Algorithm 5 GINX.BREval

Require:
f ∈ RQ

c = (a, b) ∈ Zn
q × Zq // LWE ciphertext

BRKGINX

Ensure: ACC // accumulator
Y ← X

2N
q ∈ RQ // =⇒ ordRQ

(Y ) = q

ACC← (0, Y −b · f) ∈ RQ ×RQ

for i = 0 .. (n− 1) do
for j = 0 .. (|U | − 1) do

ACC← ACC+ (Y aiuj − 1) · (ACC⊗BRKGINX
i,j )

end for
end for

3.5 Security

As can be seen in Algorithm 1, an encryption of the private key sk = Encpk(sk)
is required when doing bootstrapping. All existing FHE schemes today require
this in one way or another [4]. Therefore, one assumption for FHE schemes to
be secure is that it is safe to decrypt a private key under its public key. This
assumption is called the circular security assumption.

For additional information about the security of FHE schemes, beyond what is
necessary for understanding this thesis, we refer to Chapter VI in [4].



Chapter 4
XZDDF Bootstrapping

Xiang et al. [1] propose a new way of doing blind rotation, using NTRU-based
encryption, instead of RLWE-based encryption, as in AP [12], GINX [13] and
LMKCDEY [14]. The result turns out to be both faster and more memory efficient
than the other three methods. We will now present how this fast blind rotation
works. In this thesis, it will be called XZDDF bootstrapping.

First, let us assume that the first-layer encryption, which is to be refreshed, has
the form (a, b =

∑n−1
i=0 aisi−noised(m)), where a = (a0, ..., an−1) ∈ Zn

q is a public
random vector, s = (s0, ..., sn−1) ∈ Zn

q is the private key, and noised(m) is an
encoding of the plaintext with some noise e ∈ Zq.

As before, we construct a ring RQ = ZQ[X]/(XN +1) where N is a power of 2 and
q = 2N so that the order of X is q and the modulo q operations can be computed
for free in the exponent. We then want to compute

Xnoised(m) = X
∑n−1

i=0 aisi−b mod q = X−bX
∑n−1

i=0 aisi ,

and extract the exponent noised(m) by multiplying the rotation polynomial
r(X) =

∑q−1
i=0 iX

−i, and read the coefficient of the constant term:

noised(m) = coeff0

(
r(X) ·X−bX

∑n−1
i=0 aisi

)
.

Xiang et al. [1] now makes this method more general by introducing looser con-
straints on q and N , allowing us to compute noised(m) with any pair of (N, q),
where q|2N , by just multiplying 2N/q in the exponent. In this way, we get(

X
2N
q

)q
= X

2N
q q = X2N = (XN − 1)(XN + 1) + 1 ≡ 1 mod (XN + 1).

This means, that we once again can do modulo q computations for free in the
exponent. We can then easily compute

noised(m) = coeff0

(
r(X

2N
q ) ·X− 2N

q bX
2N
q

∑n−1
i=0 aisi

)
.

18



XZDDF Bootstrapping 19

Since s is private, we do only have access to encryptions ci(X) ∈ RQ of Xsi under
a private key f(X) ∈ RQ. To get a ciphertext that encrypts Xaisi , Xiang et al. [1]
applies the automorphism X 7→ Xai so that the ciphertext ci(Xai) encrypts Xaisi .

Firstly, note that the new ciphertext ci(Xai) is not under the original private key
f(X), but under a key f(Xai). Since our goal is to homomorphically compute the
product r(X

2N
q ) ·X− 2N

q bX
2N
q

∑n−1
i=0 aisi , we need all encrypted terms to be under

the same private key, and therefore, the private keys f(Xai) to Xaisi need to be
switched back to f(X).

Secondly, note that the automorphism works only if ai is coprime to 2N , which is
not true when ai is even. The proposed solution from Xiang et al. [1] is to require
that q|N instead of q|2N . In this way, one can compute

X
2N
q aisi = X( 2N

q ai+1)si−si = XwisiX−si

instead, where wi =
2N
q ai + 1. Since q|N , wi must be odd, so that it is coprime

to 2N for all ai. Now, what we want to compute has become

noised(m) = coeff0

(
r(X

2N
q ) ·X− 2N

q bX
∑n−1

i=0 wisiX−
∑n−1

i=0 si
)

(4.1)

To solve the key switching problem, Xiang et al. [1] constructs an NTRU-based en-
cryption scheme for the second-layer encryption, designed to switch keys efficiently.
The next section describes how this scheme works.

4.1 NTRU-Based Encryption

Let us begin by defining two parameters (τ,∆):

(τ,∆) :=


(
1,
⌊
Q
t

⌉)
, if noised(m) = e+

⌊
q
t

⌉
·m

(t, 1), if noised(m) = t · e+m

(1, 1), if noised(m) = e+m.

This means that which parameters to use depends on how noised(m) is encoded
in the first-layer encryption.

Xiang et al. [1] then presents two versions of NTRU encryption – one scalar version
and one vector version. Definition 4.1 and 4.2 show how these encryptions work.

Definition 4.1 (Scalar NTRU encryption). Given the two parameters (τ,∆), the
scalar NTRU encryption of a message u ∈ RQ under an invertible private key
f ∈ RQ, is defined as

NTRUQ,f,τ,∆(u) := τ · g/f +∆ · u/f ∈ RQ,

where f, g ∈ RQ are polynomials with small coefficients.



XZDDF Bootstrapping 20

Definition 4.2 (Vector NTRU encryption). Given the parameter τ and an integer
B ∈ N∗, the vector NTRU encryption of a message v ∈ RQ under an invertible
private key f ∈ RQ, is defined as

NTRU′
Q,f,τ (v) := (τ · g0/f +B0 · v, . . . , τ · gd−1/f +Bd−1 · v) ∈ Rd

Q,

where f, g0, . . . , gd−1 ∈ RQ are polynomials with small coefficients and d = ⌈logB Q⌉.

We also define a bit decomposition function BitDecomB(·) like Xiang et al. [1].

Definition 4.3 (Bit decomposition). Assume that an element a ∈ RQ can be
written as a =

∑d−1
i=0 ai · Bi in a base B ∈ N∗, where d = ⌈logB Q⌉. Then the bit

decomposition of a in base B is defined as

BitDecomB(a) := (a0, . . . , ad−1) ∈ Rd
B .

Xiang et al. [1] now defines an external binary operation.

Definition 4.4 (⊙ product). The external binary operator ⊙ takes in a polynomial
c ∈ RQ and a vector NTRU ciphertext c′ = (c0, . . . , cd−1) = NTRU′

Q,f,τ (v) ∈ Rd
Q,

and outputs the scalar product

c⊙ c′ := ⟨BitDecomB(c), c
′⟩ =

d−1∑
i=0

cic
′
i = τ ·

d−1∑
i=0

cigi/f + cv ∈ RQ.

Like Xiang et al. [1] show, the ⊙ operator has a homomorphic property.

Lemma 4.1 (Homomorphic multiplication). Assume that c = NTRUQ,f,τ,∆(u)
and c′ = NTRU′

Q,f,τ (v). Then ĉ = c⊙ c′ is a scalar NTRU ciphertext of uv.

Proof. By the definitions of scalar and vector NTRU ciphertexts above, we can
write c = τ · g/f +∆ · u/f and c′ = (τ · g0/f +B0 · v, . . . , τ · gd−1/f +Bd−1 · v).
Let us assume that BitDecomB(c) = (c0, . . . , cd−1). Then, we get

ĉ = c⊙ c′

= ⟨BitDecomB(c), c
′⟩

=

d−1∑
i=0

ci(τ · gi/f +Bi · v)

= τ

(
d−1∑
i=0

cigi

)
/f + cv

= τ

((
d−1∑
i=0

cigi

)
+ gv

)
/f +∆ · uv/f

= τ · ĝ/f +∆ · uv/f,

where ĝ :=
(∑d−1

i=1 cigi

)
+ gv. We see that the product has the form of a scalar

NTRU encryption of uv.



XZDDF Bootstrapping 21

4.1.1 Key Switching for Scalar NTRU Ciphertexts

To switch the key of a scalar NTRU ciphertext, Xiang et al. [1] propose two
algorithms (NTRU.KSKGen,NTRU.KS), defined in Algorithm 6 and 7 below. Note
that kskf1,f2 in Algorithm 6 has the same form as a vector NTRU encryption of
f1/f2 under the private key f2.

Algorithm 6 NTRU.KSKGen

Require:
f1 ∈ RQ // invertible key to switch from
f2 ∈ RQ // invertible key to switch to

Ensure: kskf1,f2 // key switching key
kskf1,f2 ← (τ · g0/f2 +B0 · f1/f2, . . . , τ · gd−1/f2 +Bd−1 · f1/f2)

Algorithm 7 NTRU.KS

Require:
c // scalar NTRU ciphertext
kskf1,f2

Ensure: ĉ // ciphertext under the new key
ĉ← c⊙ kskf1,f2

Now, let us prove that Algorithm 7 works for key switching.

Lemma 4.2 (NTRU key switching). The outputted ciphertext ĉ in Algorithm 7
is a scalar NTRU encryption of the same message as the original ciphertext c but
under the new private key f2 ∈ RQ.

Proof. Let us assume that c encrypts a message u ∈ RQ, so that we can write
c = τ · g/f1 + ∆ · u/f1, and let BitDecomB(c) = (c0, . . . , cd−1). Then, since
kskf1,f2 = NTRU′

Q,f2,τ (f1/f2), we get

ĉ = c⊙ kskf1,f2

=

d−1∑
i=0

ci(τ · gi/f2 +Bi · f1/f2)

= τ

(
d−1∑
i=0

cigi

)
/f2 + c · f1/f2

= τ

((
d−1∑
i=0

cigi

)
+ g

)
/f2 +∆ · u/f2

= τ · ĝ/f2 +∆ · u/f2

where ĝ :=
(∑d−1

i=1 cigi

)
+ g. We see that the result is a scalar NTRU ciphertext

of u under f2.



XZDDF Bootstrapping 22

Having access to the key-switching algorithms, we can easily do the needed key-
switching after having applied the automorphisms mentioned earlier. One simply
applies the automorphism

ψt : RQ → RQ

c(X) 7→ c(Xt)

on a scalar NTRU ciphertext c(X) under a key f(X), and then switch the key
f(Xt) of the new ciphertext c(Xt) back to f(x). The procedure can be divided
into two steps, defined in Algorithm 8 and 9 below.

Algorithm 8 NTRU.AutoKGen

Require:
t ∈ Z2N\2Z2N // t must be odd
f ∈ RQ // private scalar NTRU encryption key

Ensure: kskt // ksk for the automorphism
kskt ← KSKGen(f(Xt), f(X))

Algorithm 9 NTRU.EvalAuto

Require:
t ∈ Z2N\2Z2N // t must be odd
c // scalar NTRU ciphertext
kskt

Ensure: ĉ // automorphic transformation
ĉ← NTRU.KS(c(Xt),kskt)

4.2 Fast Blind Rotation Using the NTRU Setting

In this section, we put the previous results together and show how Xiang et al. [1]
perform a fast blind rotation on an LWE-based first-layer ciphertext
LWEq,s(m) = (a, b) ∈ Zn

q ×Zq. If the first-layer encryption is RLWE-based instead,
one first needs to transform the RLWE ciphertext to N LWE ciphertexts, and
then, after the bootstrapping, transform all LWE ciphertexts back to an RLWE
ciphertext again. For more details about these steps, we refer to the paper by
Xiang et al. [1].

The goal is to output a second-layer scalar NTRU encryption of r(Y ) · Y ⟨a,s⟩−b,
where Y ∈ RQ is a monomial of order q. To do so, we introduce two algorithms
(XZDDF.BRKGen,XZDDF.BREval) as Xiang et al. [1]. They are defined in Algo-
rithm 10 and 11. Note that q|N is assumed.



XZDDF Bootstrapping 23

Algorithm 10 XZDDF.BRKGen

Require:
q, n ∈ N∗ // first-layer parameters
s ∈ Zn

q // first-layer private key
Q,N, τ,∆ ∈ N∗ // second-layer parameters
f ∈ RQ // second-layer private key

Ensure: EVKτ,∆ // blind rotation evaluation keys
evk0 ← NTRU′

Q,f,τ (X
s0/f)

for i = 1 .. (n− 1) do
evki ← NTRU′

Q,f,τ (X
si)

end for
evkn ← NTRU′

Q,f,τ (X
−

∑n−1
i=0 si)

S ←
{

2N
q i+ 1

}q−1

i=1
// all elements j ∈ S are odd

for j ∈ S do
kskj ← NTRU.AutoKGen(j, f)

end for
EVKτ,∆ ← (evk0, . . . , evkn, {kskj}j∈S)

4.3 Switching Back to First-Layer Encryption

When having performed the blind rotation with XZDDF.BREval on an LWE ci-
phertext, one gets an NTRU ciphertext which needs to be transformed back to
an LWE ciphertext. We will now show how to do this by using the extraction
algorithm from Kim et al. [15], which is recommended by Xiang et al. [1].

After the blind rotation, we get a ciphertext

c = NTRUQ,f,τ,∆(u) := τ · g/f +∆ · u/f ∈ RQ

where
u = r(X

2N
q ) ·X− 2N

q bX
∑n−1

i=0 wisiX−
∑n−1

i=0 si .

We want to turn the constant term coeff0(u) = noised(m) of u back to an LWE
ciphertext.

Start by defining the coefficient vectors of c, f , and g as

c := (c0, . . . , cN−1) ∈ ZN
Q

f := (f0, . . . , fN−1) ∈ ZN
Q

g := (g0, . . . , gN−1) ∈ ZN
Q .

Now, let us investigate the polynomial fc ∈ RQ. By the definition of scalar NTRU
encryption, we get that

coeff0(fc) = τ · g0 +∆ · noised(m) ∈ ZQ.



XZDDF Bootstrapping 24

Algorithm 11 XZDDF.BREval

Require:
(a, b) = LWEs,q(m) ∈ Zn

q × Zq

r(X) ∈ RQ // rotation polynomial
EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S)

Ensure: ACC = NTRUQ,f,τ,∆

(
r(X

2N
q ) ·X

2N
q

(−b+
∑n−1

i=0 aisi)
)

for i = 1 .. (n− 1) do
wi ← 2N

q ai + 1

w′
i ← w−1

i mod 2N
end for
w′
n ← 1

ACC← ∆ · r(X
2N
q

w′
0) ·X− 2N

q
bw′

0

for i = 1 .. (n− 1) do
ACC← ACC⊙ evki

if wiw
′
i+1 ̸= 1 then

ACC← NTRU.EvalAuto(ACC,kskwiw′
i+1

)
endif

end for
ACC← ACC⊙ evkn

We can also compute the constant term in the product with the binomial theorem,
resulting in another expression for the constant term

coeff0(fc) = f0c0 −
N−1∑
i=1

cifN−i,

where we used that

aXN = a(XN + 1)− a ≡ −a mod (XN + 1).

Let ĉ = (c0,−cN−1, . . . ,−c1) ∈ ZN
Q . Then, putting the two expressions for the

constant term together, we get

0 = ⟨ĉ, f⟩ − (τ · g0 +∆ · noised(m)) ∈ ZQ.

Looking at (ĉ, 0) ∈ ZN
Q×ZQ, we observe that this can be seen as an LWE ciphertext

of m under the private key f . Then, what remains is to switch the key f back to
s, and then switch the modulus Q back to q. This is relatively easy, and we refer
to the paper by Xiang et al. [1] to see how it is done.



Chapter 5
Modification of XZDDF Bootstrapping

There is a problem with the XZDDF blind rotation from Xiang et al. [1]. In this
chapter, we will first explain what goes wrong in the algorithm, and then propose
a solution to the problem when working with Boolean operations.

5.1 The Problem

The problem with the blind rotation from Xiang et al. [1] is related to the ro-
tation polynomial r(X

2N
q ) =

∑q−1
i=0 iX

− 2N
q ·i. Since we are working in the ring

RQ := ZQ[X]/(XN + 1), we have that XN ≡ −1 and X2N ≡ 1, so

X−i =


1, if i = 0

−XN−i, if 1 ≤ i ≤ N
X2N−i, if N + 1 ≤ i ≤ 2N − 1.

To make things simpler, let us assume that q = 2N . Then

r(X) =

q−1∑
i=0

iX−i

= −1 ·XN−1 − 2 ·XN−2 − · · · −N+

+ (N + 1) ·XN−1 + (N + 2) ·XN−2 + · · ·+ (2N − 1) ·X
= −N +N ·X +N ·X2 + · · ·+N ·XN−1.

This means, that when computing the product r(X) · Xnoised(m), in general, the
coefficient term

coeff0

(
r(X) ·Xnoised(m)

)
̸= noised(m).

The problem is that the second half of the terms in the sum r(X) =
∑q−1

i=0 iX
−i

wraps around, and is added to the first half of the terms. This means, that the

25



Modification of XZDDF Bootstrapping 26

problem arises not only for q = 2N that we assumed, but also for any q|2N and
r(X

2N
q ).

An obvious way to avoid the problem with the wrap-around is to just skip the
second half of the terms, i.e. defining the rotation polynomial as

r(X
2N
q ) :=

q/2−1∑
i=0

iX− 2N
q ·i.

However, then for messages noised(m) ≥ q
2 , we still have that

coeff0

(
r(X

2N
q ) ·X

2N
q ·noised(m)

)
̸= noised(m).

We will now explain how this rotation polynomial can be slightly modified so that
we can retrieve all binary plaintext messages.

5.2 A Suggestion of Solution

In this section, a proposal for a solution to the problem above will be suggested.
The solution is, however, constrained to the case when working with Boolean
operations and binary messages.

Assume that the message is m ∈ Z2, and that we are using a Regev-like encryption

c = LWEq,s(m) =
(
a, b = ⟨a, s⟩+m · q

t
+ e
)
,

where t = 4 (this choice will be explained below).

Let ⋄ denote a binary operation that we want to compute on two ciphertexts
c0 = (a0, b0) and c1 = (a1, b1), i.e. we want to compute c0 ⋄ c1. For example, ⋄
can be OR or AND.

The algorithm then starts by computing

c = c0 + c1 = (a0 + a1, b0 + b1) =: (a, b).

Since LWE is homomorphic, we now have that

Dec(c) =


0, if (m0,m1) = (0, 0)

1, if (m0,m1) = (0, 1) or (1, 0)

2, if (m0,m1) = (1, 1).

This is why we set t = 4 – we want to be able to handle twos and threes so that
we keep the information about whether the sum was an addition of two zeros or
two ones.

Now, we will do a modified version of XZDDF bootstrapping on c.



Modification of XZDDF Bootstrapping 27

Let us denote noised(m) := b− ⟨a, s⟩ = m · qt + e, and define t intervals

Ii :=
[
i · q
t
− q

2t
, i · q

t
+

q

2t

)
⊂ Zq,

for i ∈ {0, 1, . . . , t− 1}. In our case, we have the t = 4 intervals

I0 =

[
−q
8
=

7q

8
,
q

8

)
,

I1 =

[
q

8
,
3q

8

)
,

I2 =

[
3q

8
,
5q

8

)
,

I3 =

[
5q

8
,
7q

8

)
.

If for example ⋄ = OR, we now want a function fOR that maps

fOR :
(
X

2N
q

)noised(m)

7→


0, if noised(m) ∈ I0
1, if noised(m) ∈ I1
1, if noised(m) ∈ I2
0, if noised(m) ∈ I3.

Similarly, if ⋄ = AND, we want a function fAND that maps

fAND :
(
X

2N
q

)noised(m)

7→


0, if noised(m) ∈ I0
0, if noised(m) ∈ I1
1, if noised(m) ∈ I2
1, if noised(m) ∈ I3.

Working cyclically, modulo q, the interval I0 can be seen as the following interval
to I3. We then see that for both operators OR and AND, the intervals that are
mapped to 0 and 1 consist of two following intervals

I0 = Ik ∪ I(k+1 mod 4)

I1 = I(k+2 mod 4) ∪ I(k+3 mod 4),

where k = 3 for OR and k = 0 for AND. In fact, as can be seen in the binfhe/
directory of OpenFHE [16], one can for any binary operation find two intervals
I0 = [q0, q1) and I1 = [q1, q0), where q1 = q0+q/2 (sometimes the binary operation
needs to be computed as a composition of other binary operations).

Working in RQ, we know that Xi wraps around negacyclically at i = N , so that
aXi = −aXi+N mod (XN+1). This property was the cause of failure when using



Modification of XZDDF Bootstrapping 28

the original rotation polynomial, but it can also be used to solve the problem by
forming a new rotation polynomial

r(X
2N
q ) : = −

q/4−1∑
i=0

(
X− 2N

q

)i
+

q/2−1∑
i=q/4

(
X− 2N

q

)i
= −1 ·

(
X− 2N

q

)0
− 1 ·

(
X− 2N

q

)1
− · · · − 1 ·

(
X− 2N

q

) q
4−1

+

+ 1 ·
(
X− 2N

q

) q
4

+ 1 ·
(
X− 2N

q

) q
4+1

+ · · ·+ 1 ·
(
X− 2N

q

) q
2−1

In this way,

m′ := coeff0

(
r(X

2N
q ) ·

(
X

2N
q (noised(m)+( q

4−q1))
))

=

{
−1, if noised(m) ∈ [q0, q1)

1, if noised(m) ∈ [q1, q0).

We compute this constant term just as in the original XZDDF bootstrapping. The
final problem to overcome with this algorithm is to find a way to map the constant
term back to binary values:

m′ 7→

{
0, if m′ = −1
1, if m′ = 1.

This is easily achieved by first choosing ∆ = Q
4 ·

1
2 = Q

8 in the NTRU encryption.
The output from the XZDDF blind rotation is an LWE ciphertext on the form

c′ = LWEQ,f (m
′) = (a, b′ = ⟨a, s⟩+∆ ·m′ + e)

in modulo Q and under the secret key f . We know that m′ ∈ {−1, 1}, and with
∆ = Q

8 , we get

c′ = LWEQ,f (m
′) =

{
(a, b′ = ⟨a, s⟩ − Q

8 + e), if m′ = −1
(a, b′ = ⟨a, s⟩+ Q

8 + e), if m′ = 1.

Finally, we compute a ciphertext

c = (a, b) =

(
a, b′ +

Q

8

)
.

In this way,

c = LWEQ,f (m
′) =

{
(a, b = ⟨a, s⟩+ e), if m′ = −1
(a, b = ⟨a, s⟩+ Q

4 + e), if m′ = 1,

so that

m = Dec(c) =

{
0, if m′ = −1
1, if m′ = 1,

which is just the map we wanted. Then, it is just to do the modulo switch and
the key switch back to q and s as usual. Now, the problem has been solved.



Modification of XZDDF Bootstrapping 29

5.2.1 Summary of Solution

In summary, we have found a modification of the XZDDF algorithm that works
when doing Boolean operations with binary messages, and when the first-layer
encryption is Regev LWE encryption. The modified XZDDF bootstrapping is
performed by the following steps.

1. Set ∆ = Q/8.

2. Add (q/4 − q1) to the last element bin of the inputted LWE ciphertext
cin = (ain, bin), where q1 is depends on the binary operation and can be
computed by for example OpenFHE.

c′in = (ain, bin + q/4− q1) .

3. Use the rotation polynomial

r(X
2N
q ) = −

q/4−1∑
i=0

(
X− 2N

q

)i
+

q/2−1∑
i=q/4

(
X− 2N

q

)i
.

4. Perform XZDDF bootstrapping as usual and extract the LWE ciphertext.

5. Add Q/8 to the last element b′out of the outputted LWE ciphertext
c′out = (aout, b

′
out):

cout =

(
aout, b

′
out +

Q

8

)
.



Chapter 6
Efficiency Tests

6.1 Implementation

A part of this thesis work was about implementing the new blind rotation algo-
rithm. I chose to start from the open-source FHE library OpenFHE and then add
support for the XZDDF blind rotation algorithm to it. In this way, others can
hopefully make use of the implementation as well. The implementation is available
at

https://github.com/SL2000s/masters_thesis_xzddf

The core of OpenFHE consists of two different directories: binfhe/ and pke/.
The first one only handles fully homomorphic encryption for binary messages and
Boolean operations, while the second increases the message space and the number
of functions that can be evaluated. Since there was a problem with the origi-
nal XZDDF algorithm, and the solution suggested in Chapter 5 just works for
the Boolean operations, the support for XZDDF was just added to the binfhe/
directory.

One thing to note about the implementation is that the paper by Xiang et al. [1]
assumes that the LWE encryption is on the form

c = LWEq,s(m) = (a, b = ⟨a, s⟩ − noised(m)) ,

so that the decryption algorithm becomes

Dec(c) = ⟨a, s⟩ − b,

but the LWE encryption in OpenFHE is implemented as

c = LWEq,s(m) =
(
a, b = ⟨a, s⟩+m · q

t
+ e
)
,

30

https://github.com/SL2000s/masters_thesis_xzddf


Efficiency Tests 31

with the decryption algorithm

Dec(c) = b− ⟨a, s⟩.

This was easily solved by modifying (4.1) to

noised(m) = coeff0

(
r(X

2N
q ) ·X

2N
q bX

∑n−1
i=0 −wisiX

∑n−1
i=0 si

)
,

where wi =
2N
q ai + 1 as before.

6.2 Testing Methods

After having implemented the algorithm, the efficiency of it was tested. The
efficiency tests can be found at the following link.

https://github.com/SL2000s/masters_thesis_xzddf/tree/main/benchmark

Using Regev LWE encryption as the first-layer encryption algorithm, the tests
timed a few different actions a user potentially would like to do when using FHE
encryption. We divide the tests into two categories: simple tests (Table 6.1), and
batch tests (Table 6.2).

Table 6.1: Description of some simple tests that were performed.

Test Description

S1: Generate a bootstrapping key.
S2: Perform a single bootstrapping.
S3: Perform an OR operation on two ciphertexts c0 and c1.
S4: Perform an AND operation on two ciphertexts c0 and c1.

In the batch tests, where a ciphertext c1 was updated x times in a row by the
following sequence of homomorphic operations:

c1 ← NOT(AND(c0,OR(c0, c1))) =: f(c0, c1).

In all tests, the ciphertexts were initially (c0, c1) = (1, 0). For the simple tests
S1–S4, and for the batch tests B1–B2, the actions were executed 100 times each,
and then the average execution time was computed. For Test B3 and B4, the
average execution time was instead computed over 10 tests and 3 tests, respectively,
to decrease the total execution time for the test.

All of the blind rotation algorithms AP, GINX, LMKCDEY, and XZDDF were
tested with the same setup. Each algorithm was tested with one parameter set

https://github.com/SL2000s/masters_thesis_xzddf/tree/main/benchmark


Efficiency Tests 32

Table 6.2: Description of the batch tests that were performed.

Test Description

B1: Update c1 with the value of f(c0, c1) 1 time.
B2: Update c1 with the value of f(c0, c1) 10 times.
B3: Update c1 with the value of f(c0, c1) 100 times.
B4: Update c1 with the value of f(c0, c1) 1000 times.

corresponding to 128-bit security, and one parameter set corresponding to 192-
bit security. Table 6.3 shows the parameter values in each parameter set. The
key distribution for each parameter set was either ternary, i.e. U({−1, 0, 1}), or
discrete Gaussian with mean 0 and standard deviation 3.19, i.e. NZ(0, 3.19

2). For
XZDDF, the four optimized parameter sets (P128T, P128G, P192T, and P192G)
from Xiang et al. [1] were tested as well.

Table 6.3: The parameter sets for bootstrapping in OpenFHE.
P128T, P128G, P192T, and P192G are designed for XZDDF
[1]. STD128L (called STD128_LMKCDEY in OpenFHE) is de-
signed for LMKCDEY.

Set Dist. n q N Q B Qks Bks

STD128 Tern. 503 1024 1024 134215681 29 214 25

STD128L Gauss. 446 1024 1024 268369921 210 213 25

P128T Tern. 512 1024 1024 995329 24 214 27

P128G Gauss. 465 1024 1024 995329 24 214 27

STD192 Tern. 805 1024 2048 137438822401 213 215 25

P192T Tern. 1024 1024 2048 44421121 29 219 28
P192G Gauss. 870 1024 2048 44421121 29 217 28

At last, the tests S3 and S4 were also performed with the original rotation poly-
nomial in the XZDDF paper [1]. This implementation can be found in the branch
XZDDF_original of the GitHub repository.

The tests were conducted on a laptop equipped with an Intel Core i7-6600U CPU
running at 2.60GHz (4 cores). To decrease noise in the result caused by background
activities as much as possible, all other programs on the computer were shut down
before the test, and the internet connection was also turned off.

6.3 Results

The results when doing the simple tests can be seen in Table 6.4. In Appendix B,
Figure B.1–B.10 show the distribution of the execution times.



Efficiency Tests 33

Table 6.4: The execution time for different bootstrapping algorithms
and different security levels λ (in bits), when performing the four
simple tests S1–S4 described in Table 6.1.

Algorithm Param. S1 (ms) S2 (ms) S3 (ms) S4 (ms)

AP STD128 10541 182 175 175
GINX STD128 2583 153 145 145
LMKCDEY STD128L 2121 120 132 134
XZDDF STD128 2438 174 184 185
XZDDF P128T 6386 214 216 216
XZDDF P128G 5820 194 195 195
AP STD192 38489 651 662 645
GINX STD192 8546 467 467 468
LMKCDEY STD192 8833 493 512 435
XZDDF STD192 8391 626 622 626
XZDDF P192T 11808 700 699 699
XZDDF P192G 9989 592 592 592

Figure 6.1: Decryption failure when using the original rotation poly-
nomial. The AND operation is performed on two zeros, so the
result should be 0.

The results when doing the batch tests can be seen in Table 6.5. In Appendix B,
Figure B.11–B.12 show log-log plots of the execution times for each bootstrapping
algorithm and each parameter set.

Figure 6.1 shows an example of a decryption failure when using the original
XZDDF algorithm.

6.4 Discussion

Looking at Table 6.4, we see that when using STD128, XZDDF is among the
fastest when generating the evaluation key (Test S1), beating all other algorithms
except 128-bit secure LMKCDEY. This aligns quite well with the results of Xiang
et al. [1], where XZDDF was faster in all tests. However, theoretically, the key
generation should be even faster than in Table 6.4 – at least twice the speed of
LMKCDEY and even faster when compared with AP and GINX.



Efficiency Tests 34

Table 6.5: The execution time for different bootstrapping algorithms
and different security levels λ (in bits), when performing the
batch tests B1–B4 described in Table 6.2.

Algorithm Param. B1 (ms) B2 (ms) B3 (ms) B4 (ms)

AP STD128 350 3476 35364 355842
GINX STD128 293 2898 29325 315418
LMKCDEY STD128L 259 2475 28362 280270
XZDDF STD128 330 3687 33481 331717
XZDDF P128T 432 4316 42416 426885
XZDDF P128G 392 3925 38949 391517
AP STD192 1146 13052 115382 1213410
GINX STD192 949 9417 96319 1005410
LMKCDEY STD192 854 8172 86082 822024
XZDDF STD192 1254 12439 114381 1163360
XZDDF P192T 1397 13913 139535 1387043
XZDDF P192G 1183 11799 117632 1175503

The measured execution time of 128-bit secure XZDDF might be slower than
128-bit LMKCDEY due to noise since 192-bit XZDDF is faster than 192-bit
LMKCDEY, but it might also be slower because OpenFHE has an optimized se-
curity parameter set for LMKCDEY when using 128-bit security (STD192L), but
not for 192-bit security.

When using the parameter sets P128T, P128G, P192T, and P192G from Xiang et
al., designed specifically for XZDDF, we see that the key generation (Test S1) is
significantly slower for these than when using STD128. This is probably due to
the larger n, resulting in a longer vector of values to compute in the evaluation
key. However, the performance of the homomorphic operations is better, although
still slower than when using STD128 for XZDDF.

Just as the results of Xiang et al. [1], there seems to be a small efficiency gain
when using a Gaussian distribution instead of a uniformly ternary distribution
(compare P128T vs. P128G, and P192T vs. P192G in Table 6.4).

When looking at the results of Test S2–S4 in Table 6.4, one can first note that
the Boolean operations (which include one bootstrapping) take about the same
time as just performing a single bootstrapping. This is as expected because boot-
strapping is the main bottleneck in FHE. In OpenFHE, Boolean operations involve
one addition and one bootstrapping, with the addition being performed basically
instantly compared to the bootstrapping.

Next, one can note that the XZDDF implementation does not seem to perform
bootstrapping better than GINX and LMKCDEY, and just marginally better than
AP. This differs from the results of Xiang et al. [1], where the XZDDF bootstrap-



Efficiency Tests 35

ping was more than two times faster than GINX and even faster compared to AP
(see e.g. Table 5 in [1]).

One possible explanation for this is that the other implementations have existed
for a longer time in OpenFHE, so a lot of good programmers have had time to read
the code and optimize it. The XZDDF implementation in this project likely has
parts that can be optimized more.

There are two different ways to represent polynomials in the OpenFHE library
– Format::COEFFICIENT and Format::EVALUATION. The first representation is
probably what we are used to – a vector of coefficients – while the second format
is a format that makes polynomial multiplications more efficient. The XZDDF
implementation switches polynomials back and forth between these representations
a few times. Some switches are necessary, but each switch seems to be significantly
inefficient. Therefore, if one aims to optimize the XZDDF implementation further,
reducing the number of format switches might be a good starting point.

In Figure B.1–B.10, we see that the distributions of the measured execution times
usually seem to have a high peak around one value, and then a smaller number of
measured times around that peak. There are some exceptions, e.g. 128-bit secure
GINX in Figure B.7 that has two peaks, which could be interesting to investigate
further, but a possible explanation for these figures is that they arose due to noise,
e.g. some background activity on the computer.

In Table 6.5 and in Figure B.11–B.12, we see that the execution time of multiple
Boolean operations in a row seems to be linear in the number of operations. This
is also logical since the part of the OpenFHE library that was used for testing did
not support any batching of operations, so the Boolean operations were always
followed by a bootstrapping operation.



Chapter 7
Conclusions and Future Work

Although the XZDDF algorithm is faster in theory, the implementation in this
project did not perform better than GINX and LMKCDEY when doing the boot-
strapping. The XZDDF key generation, on the other hand, performed better,
beating all algorithms except the optimized 128-bit secure LMKCDEY. One con-
clusion that can be drawn from this project is that the implementation of the
XZDDF algorithm most likely can be optimized more so that it beats all algo-
rithms in bootstrapping, just as it theoretically should.

Future work on this topic would be to optimize the XZDDF implementation avail-
able on GitHub and to verify that the implementation is indeed secure to use.
Moreover, the problem related to the rotational polynomial, explained in Chapter
5, needs to be solved for the general case, and not only for Boolean operations on
binary messages.

Another area, that was not investigated in this thesis, is the theoretical security
of the XZDDF algorithm. Since XZDDF is a new algorithm, based on the NTRU
problem instead of the RLWE problem, it could be interesting in the future to see
if any new kinds of attacks can be made on it.

From a broader perspective, a conclusion that can be drawn from this project is
that, although FHE schemes contain a lot of beautiful mathematics, all existing
algorithms remain inefficient. Even if the XZDDF implementation can be opti-
mized so that the bootstrapping time is reduced, the execution time for Boolean
operations will still be in the magnitude of around 100 milliseconds on today’s per-
sonal computers, which is far too slow to be of practical use. The bootstrapping
in FHE needs to be further developed.

I believe that bootstrapping will continue to be a hot topic in the research about
FHE, having interesting applications in other hot research areas such as AI and
machine learning. Considering the fact that Gentry’s first implementation for
bootstrapping took 30 minutes [17], and we already can do the bootstrapping in
about 100 milliseconds, I think that bootstrapping still has the potential to become

36



Conclusions and Future Work 37

even more efficient. Hopefully, we can soon see FHE being used in practice by cloud
services and other third parties.



References

[1] B. Xiang, J. Zhang, Y. Deng, Y. Dai, and D. Feng, “Fast blind rotation for
bootstrapping fhes,” in Advances in Cryptology – CRYPTO 2023, H. Hand-
schuh and A. Lysyanskaya, Eds. Cham: Springer Nature Switzerland, 2023,
pp. 3–36.

[2] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy
homomorphisms,” in Foundations of secure computation, vol. 4, no. 11, 1978,
pp. 169–180.

[3] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation,
Stanford University, Stanford, CA, USA, 2009.

[4] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek,
and N. Aaraj, “Survey on fully homomorphic encryption, theory, and
applications,” Cryptology ePrint Archive, Paper 2022/1602, 2022. [Online].
Available: https://eprint.iacr.org/2022/1602

[5] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in
Advances in Cryptology – CRYPTO 2013, R. Canetti and J. A. Garay, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 75–92.

[6] C. L. Canonne, G. Kamath, and T. Steinke, “The discrete gaussian for
differential privacy,” CoRR, vol. abs/2004.00010, 2020. [Online]. Available:
https://arxiv.org/abs/2004.00010

[7] M. Joye, “Guide to fully homomorphic encryption over the [discretized]
torus,” Cryptology ePrint Archive, Paper 2021/1402, 2021. [Online].
Available: https://eprint.iacr.org/2021/1402

[8] O. Regev, “On lattices, learning with errors, random linear codes, and cryp-
tography,” Proceedings of the thirty-seventh annual ACM, pp. 84–93, 2005.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast fully
homomorphic encryption over the torus,” Cryptology ePrint Archive, Paper
2018/421, 2018. [Online]. Available: https://eprint.iacr.org/2018/421

38

https://eprint.iacr.org/2022/1602
https://arxiv.org/abs/2004.00010
https://eprint.iacr.org/2021/1402
https://eprint.iacr.org/2018/421


References 39

[10] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) lwe,” Cryptology ePrint Archive, Paper 2011/344, 2011.
[Online]. Available: https://eprint.iacr.org/2011/344

[11] R. Leluc, E. Chedemail, A. Kouande, Q. Nguyen, and N. Andriaman-
dratomanana, “Fully homomorphic encryption and bootstrapping,” 2022.
[Online]. Available: https://hal.science/hal-03676650

[12] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polynomial
error,” Cryptology ePrint Archive, Paper 2014/094, 2014. [Online]. Available:
https://eprint.iacr.org/2014/094

[13] N. Gama, M. Izabachene, P. Q. Nguyen, and X. Xie, “Structural
lattice reduction: Generalized worst-case to average-case reductions and
homomorphic cryptosystems,” Cryptology ePrint Archive, Paper 2014/283,
2014. [Online]. Available: https://eprint.iacr.org/2014/283

[14] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, and D. Yoo,
“Efficient fhew bootstrapping with small evaluation keys, and applications
to threshold homomorphic encryption,” Cryptology ePrint Archive, Paper
2022/198, 2022. [Online]. Available: https://eprint.iacr.org/2022/198

[15] A. Kim, M. Deryabin, J. Eom, R. Choi, Y. Lee, W. Ghang, and D. Yoo,
“General bootstrapping approach for rlwe-based homomorphic encryption,”
Cryptology ePrint Archive, Paper 2021/691, 2021. [Online]. Available:
https://eprint.iacr.org/2021/691

[16] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor, D. Suponitsky,
M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe: Open-source
fully homomorphic encryption library,” Cryptology ePrint Archive, Paper
2022/915, 2022. [Online]. Available: https://eprint.iacr.org/2022/915

[17] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” Cryptology ePrint Archive, Paper 2010/520, 2010.
[Online]. Available: https://eprint.iacr.org/2010/520

[18] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from
ring-lwe and security for key dependent messages,” in Advances in Cryptol-
ogy - CRYPTO 2011 - 31st Annual Cryptology Conference, P. Rogaway, Ed.
Springer Berlin Heidelberg, 2011, pp. 505–524.

[19] S. Halevi and V. Shoup, “Helib,” https://github.com/homenc/HElib.

[20] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) LWE,” SIAM Journal on Computing, vol. 43, no. 2, pp.
831–871, 2014. [Online]. Available: https://doi.org/10.1137/120868669

[21] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomor-
phic encryption without bootstrapping,” ACM Transactions on Computation
Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

https://eprint.iacr.org/2011/344
https://hal.science/hal-03676650
https://eprint.iacr.org/2014/094
https://eprint.iacr.org/2014/283
https://eprint.iacr.org/2022/198
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2010/520
https://github.com/homenc/HElib
https://doi.org/10.1137/120868669


References 40

[22] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012. [Online].
Available: https://eprint.iacr.org/2012/144

[23] A. Kim, Y. Polyakov, and V. Zucca, “Revisiting homomorphic encryption
schemes for finite fields,” in Advances in Cryptology – ASIACRYPT 2021 -
27th International Conference on the Theory and Application of Cryptology
and Information Security, Proceedings, Part 3, ser. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), M. Tibouchi and H. Wang, Eds. Germany:
Springer Science and Business Media Deutschland GmbH, 2021, pp. 608–639.

[24] L. Ducas and D. Micciancio, “Fhew: Bootstrapping homomorphic encryption
in less than a second,” Cryptology ePrint Archive, Paper 2014/816, 2014.
[Online]. Available: https://eprint.iacr.org/2014/816

[25] D. Micciancio and Y. Polyakov, “Bootstrapping in fhew-like cryptosystems,”
Cryptology ePrint Archive, Paper 2020/086, 2020. [Online]. Available:
https://eprint.iacr.org/2020/086

[26] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” Advances in Cryptology — ASI-
ACRYPT 2017, pp. 409–437, 2017.

[27] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
approximate homomorphic encryption,” Cryptology ePrint Archive, Paper
2018/153, 2018. [Online]. Available: https://eprint.iacr.org/2018/153

[28] B. Li and D. Micciancio, “On the security of homomorphic encryption on
approximate numbers,” Cryptology ePrint Archive, Paper 2020/1533, 2020.
[Online]. Available: https://eprint.iacr.org/2020/1533

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2020/086
https://eprint.iacr.org/2018/153
https://eprint.iacr.org/2020/1533


Appendix A
Fully Homomorphic Encryption Schemes

Fully homomorphic encryption schemes are usually divided into four generations.
The first generation started in 2009 when Gentry [3] proposed the first FHE
scheme. Since then, a bunch of other schemes have been invented, and this chapter
will present some of the more common ones.

A.1 First Generation

The first generation of FHE schemes can be further divided into two categories:

• Ideal lattice-based

• Approximate greatest common divisor problem (AGCD) based

All first-generation schemes rely on the assumption that the SSSP problem is a
hard problem. The second category also relies on another problem called the AGCD
problem [4].

First-generation schemes are quite inefficient, and today they have been replaced
by more efficient FHE schemes. For example, the implementation of Gentry’s first
scheme in [3], which is ideal lattice-based, needed 30 minutes to bootstrap [17].

A.2 Second Generation

The second-generation FHE schemes are based on the LWE problem and the RLWE
problem. The development of schemes in this generation was, according to Mar-
colla et al. [4], started by Brakerski and Vaikuntanathan, who published some
initial papers [10] and [18] about FHE with LWE and RLWE, respectively. The
subsequent research and development of these schemes finally led to the so-called

41



Fully Homomorphic Encryption Schemes 42

BGV and B/FV schemes, which are nowadays implemented by many open-source
FHE libraries, such as HElib [19] and OpenFHE [16].

The initial paper [10] about LWE-based FHE was extended to a new version [20]
in 2014. This section will start by presenting some of the main ideas from that
paper before the actual BGV scheme is described. Finally, some notes about the
B/FV scheme will be made.

A.2.1 BV Scheme

The LWE-based FHE scheme presented by Brakerski and Vaikuntanathan [20] is
called the BV scheme. We will now describe how the encryption and decryption
work in the BV scheme.

To get the encryption c of a message m ∈ Z2, one computes

c = (a, b = ⟨a, s⟩+ 2e+m) ∈ Zn
q × Zq,

where a is a public vector, s is a secret vector and e is a random noise from an
error distribution χ.

The ciphertext c can then be decrypted as

m′ = (b− ⟨a, s⟩ mod q) mod 2.

If the error term is small enough, we can assume that e < q/2, and then we see
that the decryption succeeds because

m′ = (b− ⟨a, s⟩ mod q) mod 2

= (2e+m mod q) mod 2

= 2e+m mod 2

= m.

One advantage of the BV scheme is that it, in contrast to the FHE schemes in the
first generation, does not rely on the SSSP problem [4]. In fact, it only relies on
the LWE problem, which, as we have seen, can be reduced to the shortest vector
problem (SVP) on arbitrary lattices [10].

There is also an RLWE-based1 version of the BV scheme, presented by Brakerski
and Vaikuntanathan [18].

1To be precise, it is based on the so-called PLWE problem, but this problem relies on
RLWE problem, i.e. if RLWE can be solved, PLWE can also be solved [18].



Fully Homomorphic Encryption Schemes 43

A.2.2 BGV Scheme

In 2014, Brakerski, Gentry, and Vaikuntanathan [21] introduced a new levelled
fully homomorphic encryption scheme. It is called the BGV scheme, and the level
of computations it can handle is set by the user and depends on the purpose,
i.e. how deep the circuits to evaluate will be. The purpose of this structure is to
avoid bootstrapping. However, there are also bootstrapping techniques for BGV,
so that the scheme becomes fully homomorphic. Brakerski et al. [21] present one
bootstrapping technique for the scheme. In Chapter 4 and 5, we present another
bootstrapping technique, based on a technique from Xiang et al. [1], that can be
used for BGV.

There are two versions of the BGV scheme – one based on the LWE problem and
one based on the RLWE problem. The RLWE-based is more efficient and usually
the one implemented in open-source FHE libraries [4].

We will now present a simplified version of the original BGV scheme in Brakerski
et al. [21]. The simplified scheme will consist of the algorithms

EBGV = (BGV.Setup,BGV.KeyGen,BGV.Enc,BGV.Dec,BGV.Eval),

and our notations and procedures are based on the BGV presentations in Brakerski
et al. [21] and Marcolla et al. [4]. See Algorithm 12 – 16 for the pseudocode.

BGV.Setup is described in Algorithm 12. L is the level of the scheme, i.e. the
maximum depth of an arithmetic circuit that the scheme can evaluate without
bootstrapping.

The output of BGV.Setup is a list, or a ladder, of parameter sets – one for each level
in the arithmetic circuit. The main idea of Brakerski et al. [21] to achieve a levelled
FHE scheme is to decrease the modulo Qj between each homomorphic operation.
In this way, the size of the error also decreases, so that it does not escalate when
performing many multiplications. For each modulo, there is a parameter set for
encrypting and decrypting. Note that in our simplified version, R, N, n and χ are
the same at all levels of the ladder, but this is not necessary.

In Algorithm 13, the procedure of generating a public and a private key is pre-
sented. The output is a list of key pairs – one for each circuit level. Algorithm 14
and 15 then show how to use these keys to encrypt and decrypt.



Fully Homomorphic Encryption Schemes 44

Algorithm 12 BGV.Setup

Require:
λ // security parameter
L // number of levels

Ensure: params = {paramsj}Lj=0 // a ladder of parameters
N ← N(λ) // degree of the ring
R ← Z[x]/(XN + 1)
n← n(λ) // dimension of the ring
χ← χ(λ) // error distribution over R
for j = L .. 0 do

Qj ← Q(λ, j, L) // modulo at level j
Mj ←M(λ, j, L) = n · polylog(Qj)
paramsj ← (R, n, χ,Qj ,Mj)

end for

The correctness of the decryption algorithm can be shown in the following way:

BGV.Dec(params, sk, c, j)

= (⟨c, sj⟩ mod Qj) mod 2

= (⟨m+ rTAj , sj⟩ mod Qj) mod 2

= (⟨m, sj⟩+ ⟨rTAj , sj⟩ mod Qj) mod 2

= (m+ rTAjsj mod Qj) mod 2

= (m+ rT (bj · 1−Bjtj) mod Qj) mod 2

= (m+ 2rTej mod Qj) mod 2

= [rTej is small so (m+ 2rTej) does not wrap around Qj ]

= m+ 2rTej mod 2

= m

To evaluate a function f on some encrypted data, Algorithm 16 can be used.
Without loss of generality, the algorithm assumes that f is represented by an
arithmetic circuit. The additions and multiplications are performed one at a time,
and between each operation, the result is refreshed by moving to the next step of
the parameter ladder. The refreshing consists of two steps, where a new ciphertext
(still encrypting the same plaintext message) is computed in each step. First, it
switches the key pair to the next key pair, and then it decreases the modulo under
which, the message is encrypted.

One final note about the BGV scheme is that Brakerski et al. [21] also present
a batching technique, that can be used when having many blocks of encrypted
data that should be evaluated with the same function f . Batching increases the



Fully Homomorphic Encryption Schemes 45

Algorithm 13 BGV.KeyGen

Require:
{paramsj}Lj=0

Ensure: (sk, pk) // private and public key pair
for j = L .. 0 do

tj
s←− χn

sj ← (1, tj [0], ..., tj [n− 1]) ∈ Rn+1
Qj

Bj
s←− U(RMj×n

Qj
)

ej
s←− χMj

bj ← Bjtj + 2ej

Aj ← (bj || −Bj) ∈ R
Mj×(n+1)
Qj

end for
sk ← {sj}Lj=0

pk ← {Aj}Lj=0

Algorithm 14 BGV.Enc

Require:
params
pk
m ∈ R2

Ensure: c
m← (m, 0, ..., 0) ∈ Rn+1

QL

r
s←− U

(
RML

2

)
c←m+ rTAL ∈ Rn+1

QL

performance a lot for some types of functions f . One example, given by Brakerski
et al. [21], is when deciding whether a word is present or not in a text. If batching
the words to one text block, instead of having one block for each word in the text,
we do not have to do a lot of OR operations. To batch messages, Brakerski et
al. [21] suggest replacing the plaintext space R2 with a ring Rp, where p is a prime.
The BGV scheme then needs some other modifications as well, see the paper by
Brakerski et al. [21] for further details.

A.2.3 B/FV Scheme

The BGV scheme was further developed by Fan and Vercauteren to the so-called
B/FV scheme [22], and this scheme is also implemented in many open-source FHE
libraries. We refer to their paper for more details about how this scheme works.



Fully Homomorphic Encryption Schemes 46

Algorithm 15 BGV.Dec

Require:
params
sk
c
j // level of c

Ensure: m
m← (⟨c, sj⟩ mod Qj) mod 2

Kim et al. [23] compare optimized versions of the BGV and the B/FV schemes.
The conclusions are that the noise grows slower in B/FV and that B/FV is faster
for small plaintexts, but that BGV is faster for medium and large plaintexts.

A.3 Third Generation

The third generation of FHE schemes started when the GSW scheme [5] was pub-
lished in 2013 [4]. Just as the schemes in the second generation, third-generation
schemes are based on the LWE and RLWE problems. However, an important dif-
ference is that the GSW scheme has a new approach for performing homomorphic
operations, using a method called approximate eigenvector method instead [4].

In this section, we will first briefly present how the GSW scheme encrypts and
decrypts since all schemes in the third generation more or less are built on the
basics of these techniques. Then we will describe the FHEW and the TFHE
schemes, which also belong to the third-generation schemes but have taken care
of some of the drawbacks of the GSW scheme.

A.3.1 GSW Scheme

A brief presentation of the GSW scheme, based on the simplified GSW scheme
from Marcolla et al. [4], can be found below.

Firstly, choose a random private key s = (1, s1, ..., sn−1) ∈ Zn
q , and let A ∈ Zn×n

q

be the public key, chosen so that A · s = e ≈ 0.

The encryption C of a message m ∈ Zq is then computed as C = mIn+RA, where
In is the identity matrix and R ∈ Zn×n

2 is randomly chosen matrix.

To decrypt, one computes Cs = mIns+RAs = mIns+Re ≈ mIns, because both
R ∈ Zn×n

2 and e are small. Since, mIns = (ms0, ...,msn−1) = (m,ms1, ...,msn−1),
one simply outputs the first element of the vector Cs as the decryption.



Fully Homomorphic Encryption Schemes 47

Algorithm 16 BGV.Eval

Require:
params
pk
f // circuit with add. and mult. gates
(c0, ..., cl−1)

Ensure: c′ = Enc(f(Dec(c0), ...,Dec(cl−1)))
Function add(pk, c0, c1)
c2 ← c0 + c1 mod Qj

Return BGV.Eval.Refresh(c2, Qj , Qj−1)
End Function
Function mult(pk, c0, c1)
c2 ← coefficient vector of ⟨c0⊗c1,x⊗x⟩ // ⊗ is the tensor product
Return BGV.Eval.Refresh(c2, Qj , Qj−1)

End Function
Function refresh(c, Qj , Qj−1)
c0 ← SwitchKey(c, Qj) // switch key to sj−1

c1 ← SwitchMod(c0, Qj , Qj−1) // switch mod to Qj−1

End Function
Use add() and mult() to compute the circuit f on c0, ..., cl−1 and output
the result to c′.

The error when performing homomorphic computations grows slower in the GSW
scheme than in second-generation schemes [4]. However, the ciphertexts are large
compared to the plaintext, leading to high communication costs, and the time
complexity of homomorphic operations is quite high.

A.3.2 FHEW Scheme

Ducas and Micciancio [24] propose some improvements to the GSW scheme, call-
ing the new scheme FHEW. It is provided with some new techniques to achieve
fast bootstrapping. One is that it provides a method for homomorphically com-
puting NAND with a very low noise growth. NAND is functionally complete, and
therefore, any function can be represented as a circuit of NAND gates. In FHEW,
a small refresh is performed on each output of a gate. We will now briefly describe
how the NAND operation is performed on ciphertexts.

The FHEW scheme from Ducas and Micciancio [24] encrypts with standard Regev
LWE encryption (see (2.1) and Definition 2.17). Let LWEt/q

s (m,E) ⊂ Zn+1
q denote

the set of LWE encryptions c = (a, b) of the message m ∈ {0, 1} under the private
key s ∈ Zn

q such that the absolute value of the noise of ciphertext c is less than E.
Then, the homomorphic NAND operation described by Ducas and Micciancio [24]



Fully Homomorphic Encryption Schemes 48

is defined as:

HomNAND : LWE4/q
s (m0, q/16)× LWE4/q

s (m1, q/16)→ LWE2/q
s (m0 ⊼m1, q/4)

((a0, b0), (a1, b1)) 7→
(
−a0 − a1,

5q

8
− b0 − b1

)
,

where ⊼ denotes the NAND operator. We see that one then needs to transform
the output c ∈ LWE2/q

s (m, q/4) to a ciphertext c′ ∈ LWE4/q
s (m, q/16) again. Using

Gentry’s bootstrapping technique [3] as usual, one can do so by homomorphically
decrypting c under an encryption corresponding to LWE4/q

s (m, q/16).

As noted by Ducas and Micciancio [24], the NAND operation itself is very fast –
what takes time is the bootstrapping afterwards.

A.3.3 TFHE Scheme

Chillotti, Gama, Georgieva, and Izabachène [9] improve the FHEW scheme further
by using the real torus T in different ways. They call the new technique TFHE,
where ’T’ stands for torus. In the paper, three versions of the TFHE scheme
are proposed – the TLWE scheme, based on a generalization of the LWE problem
for the torus; the TRLWE scheme, which is the ring version of TLWE; and the
TRGSW scheme, which is an improvement of the GSW scheme, based on rings
and a torus.

In Algorithm 17 – 21, we present how the TRLWE scheme works. One can sim-
ply switch between TRLWE and TLWE by just changing T to the real torus T,
changing R to Z and letting χ be {0, 1}-bounded instead of B-bounded [4].

Algorithm 17 TRLWE.Setup

Require:
λ // security parameter

Ensure: params // a tuple of parameters
k ← k(λ) ∈ N∗

N ← 2k // degree of ring
R ← Z[X]/(XN + 1)
T ← T[X]/(XN + 1) // = R[X]/(XN + 1) mod 1
R2 ← Z2[X]/(XN + 1)
n← n(λ) // dimension of ring
M ←M(λ)
χ← χ(λ) // B-bounded distribution over T
params← (R, T ,R2, n,M, χ)

TRLWE.Setup in Algorithm 17 describes how to set up the parameters used in the
scheme. Algorithm 18 then shows how to generate a private and a public key for



Fully Homomorphic Encryption Schemes 49

Algorithm 18 TRLWE.KeyGen

Require:
params

Ensure: (sk, pk) // private and public key pair
s

s←− U(Rn
2 ) // choose a random private key

A
s←− U(TM×n)

e
s←− χM

D ← (A || As+ e) ∈ T M×(n+1)

sk ← s
pk ← D

Algorithm 19 TRLWE.Enc

Require:
params
pk
m ∈M ⊆ T //M is the message space

Ensure: c ∈ T n+1

D ← pk
r

s←− U
(
RM

2

)
m← (0, ..., 0,m) ∈ T n+1

c← rTD +m ∈ T n+1

the scheme. Similar to the BGV scheme, a matrix with M rows is generated as the
public key, and then the encryption in Algorithm 19 chooses some random rows
of this matrix to form a ciphertext.

We will now explain why the decryption in Algorithm 20 works. In the key gen-
eration (Algorithm 18), we compute

D = (A || As+ e),

and in the encryption (Algorithm 19), we compute

c = rTD + (0, ..., 0,m).

Therefore, for (a, b) = c in the decryption (Algorithm 20), we get

a = rTA

b = rT (As+ e) +m.



Fully Homomorphic Encryption Schemes 50

Algorithm 20 TRLWE.Dec

Require:
params
sk = s ∈ Rn

2

c ∈ T n+1

Ensure: m
T n × T ∋ (a, b)← c
m← round(b− ⟨a, s⟩) // round to nearest point inM⊆ T

Algorithm 21 TRLWE.Eval_lincomb

Require:
params
c0, ..., cp−1 ∈ T n+1

f0, ..., fp−1 ∈ R // coefficients for linear combination

Ensure: c = Enc

(
p−1∑
i=0

fi · (Dec(ci)

)
c←

p−1∑
i=0

fi · ci

This means, that the decryption algorithm outputs

b− ⟨a, s⟩
= rT (As+ e) +m− rTAs

= rTe+m

≈ m,

which is the plaintext message.

The evaluation function in Algorithm 21 is simple but can only handle linear
combinations of messages. This is a drawback of the TRLWE scheme (and the
TLWE scheme). To evaluate a non-linear function on encrypted data, the TRGSW
algorithm can be used instead [4].

One advantage of the TFHE scheme is that when bootstrapping, univariate func-
tions can be evaluated at the same time. This is called programmable bootstrap-
ping (PBS), and it means that with just one algorithm, we can both decrease the
noise and evaluate a function of the ciphertext. Note that normal bootstrapping
can also be seen as programmable bootstrapping with the identity function [7],
but usually, this is the only function that can be evaluated while refreshing.

Micciancio and Polyakov [25] compare the FHEW scheme with the TFHE scheme,
and the conclusion they draw is that the main performance difference between the
schemes mainly is due to the different bootstrapping techniques. FHEW uses AP



Fully Homomorphic Encryption Schemes 51

bootstrapping, while TFHE uses GINX (these are explained more in Section 3.4).
This results in TFHE being faster for binary and ternary messages, while FHEW
is better for larger secrets. On the other hand, TFHE has a smaller bootstrapping
key than FHEW [4].

A.4 Fourth Generation

The youngest generation of the FHE schemes is the fourth one. It was started by
Cheon, Kim, Kim, and Song in 2017 [26] when they published a new kind of FHE
scheme, nowadays called the CKKS scheme. Since then, a lot of improvements
have been suggested, but the basics of the scheme are still the same. We will now
describe how it works.

A.4.1 CKKS Scheme

The original CKKS scheme, from Cheon et al. [26], is a levelled fully homomorphic
encryption scheme, but a bootstrapping technique was presented later by Cheon et
al. [27]. The difference from previous schemes is that it only computes approximate
results, allowing some errors in the last decimal places when evaluating functions.
We will now describe how the scheme from Cheon et al. [26] works, using the
presentation of it from Marcolla et al. [4].

Algorithm 22 – 26 show pseudocode for the encryption scheme, consisting of
ECKKS = (CKKS.Setup,CKKS.KeyGen,CKKS.Enc,CKKS.Dec,CKKS.Eval).

U(S) is the uniform distribution of a set S, while NN
Z (0, σ2) denotes a multi-

dimensional discrete Gaussian distribution over ZN , where each component is
sampled from independent discrete Gaussian distributions with variance σ2.

ZOρ is also a distribution, but over {−1, 0, 1}, and such that P[0] = 1 − ρ and
P[1] = P[−1] = ρ/2, where 0 < ρ < 1.

HWT(h,N) is a function that returns the set of signed binary vectors in {0,±1}N
that has Hamming weight h, i.e. h non-zero elements.

We will now explain why the decryption in Algorithm 25 works. In the key gen-
eration (Algorithm 23), we set

b = −as+ e,

so when encrypting (Algorithm 24), the outputted ciphertext is

c = (vb+m+ e0, va+ e1)

= (−vas+ ve+m+ e0, va+ e1).



Fully Homomorphic Encryption Schemes 52

Then, since s = (1, s), the decryption algorithm outputs

⟨c, s⟩ mod Qj

= ⟨(−vas+ ve+m+ e0, va+ e1), (1, s)⟩ mod Qj

= −vas+ ve+m+ e0 + vas+ e1s mod Qj

= m+ ve+ e0 + e1s mod Qj

≈ m,

where the approximation at the last line can be made since the error terms are
small.

Algorithm 22 CKKS.Setup

Require:
λ // security parameter
L // number of levels

Ensure: params // a tuple of parameters
p← p(λ)
Q0 ← Q0(λ)
for j = 1 .. L do

Qj ← pjQ0 // level(c) = j =⇒ c ∈ R2
Qj

end for
k ← k(λ,QL) ∈ N∗

N ← 2k

R ← Z[X]/(XN + 1)
t← t(λ,QL) // t ∈ Z is for KeyGen
h← h(λ,QL) // Hamming weight for private key
σ ← σ(λ,QL) // variance for sampled errors
params← ({Qj}Lj=0,R, N, t, h, σ)

One last note about CKKS is that there are some attacks on it, for example from
Li and Micciancio [28]. As Marcolla et al. [4] mention, it is possible to extract the
private key by just knowing a ciphertext and its corresponding plaintext. Since
the error is a linear combination of the components of the key, one can compute
the key with just some basic linear algebra.

A.5 Comparison

Marcolla et al. [4] conclude that BGV and B/FV are good choices if working
with finite fields and exact modular arithmetic. However, if bootstrapping will be
needed, or if non-linear functions need to be evaluated, third and fourth-generation
schemes are better instead. TFHE and other third-generation schemes are usu-
ally suitable when performing bit-wise operations or evaluating Boolean circuits,



Fully Homomorphic Encryption Schemes 53

Algorithm 23 CKKS.KeyGen

Require:
params

Ensure: (sk, pk, evk) // private, public, and eval. key
R ∋ s s←− U(HWT(h,N)) // random vector is coefficients
a

s←− U(RQL
)

R ∋ e s←− NN
Z (0, σ2) // random vector is coefficients

b← −as+ e mod QL

a′
s←− U(Rt·QL

)

R ∋ e′ s←− NN
Z (0, σ2) // random vector is coefficients

b′ ← −a′s+ e′ + ts2 mod (t ·QL)
sk ← (1, s) // sk ∈ R2

pk ← (b, a) // pk ∈ R2
QL

evk ← (b′, a′) // evk ∈ R2
t·QL

Algorithm 24 CKKS.Enc

Require:
params
pk
m ∈ R

Ensure: c ∈ R2
QL

v
s←− ZO(1/2)

R ∋ e0, e1
s←− NN

Z (0, σ2) // random vector is coefficients
(b, a)← pk ∈ R2

QL

c← (vb+m+ e0, va+ e1)

while CKKS is a good choice when doing real number arithmetic. At last, sec-
ond and fourth-generation schemes are usually good when doing vector or matrix
computations, since these schemes are provided with packing techniques.



Fully Homomorphic Encryption Schemes 54

Algorithm 25 CKKS.Dec

Require:
params
sk = s ∈ R2

j // level of c
c ∈ R2

Qj

Ensure: m
m← ⟨c, s⟩ mod Qj // m ∈ R



Fully Homomorphic Encryption Schemes 55

Algorithm 26 CKKS.Eval

Require:
params
evk
c0, ..., cp−1

f // function to evaluate
Ensure: c′ = Enc(f(Dec(c0), ...,Dec(cp−1)))

Function rescale(c, l, l′)
c′ ←

⌊
Ql′
Ql

c
⌉

mod Ql′

Return c′

End Function

Function same_level(c0, c1)
l0 ← level(c0)
l1 ← level(c1)
if l0 < l1 then
c0 ← rescale(c0, l0, l1)
l0 ← l1

else if l0 > l1 then
c1 ← rescale(c1, l1, l0)

endif
Return (c0, c1, l0)

End Function

Function add(c0, c1, params)
(c0, c1, l)← same_level(c0, c1) // =⇒ level(c0) = level(c1)
cadd ← c0 + c1 mod Ql

Return cadd
End Function

Function mult(c0, c1, params, evk)
(c0, c1, l)← same_level(c0, c1)
(b0, a0)← c0
(b1, a1)← c1
(d0, d1, d2)← (b0b1, a0b1 + a1b0, a0a1)) mod Ql

cmult = (d0, d1) + ⌊t−1 · d1 · evk⌉ mod Ql

Return cmult
End Function

Use add() and mult() to compute the circuit f on c0, ..., cp−1 and output
the result to c′.



Appendix B
Figures

On the following pages of this appendix, there are plots of the results in Chapter 6.

56



Figures 57

Figure B.1: Time distributions for different OpenFHE algorithms and
different parameter sets when doing Test S1 (key generation)
100 times (see Chapter 6).



Figures 58

Figure B.2: Time distributions for XZDDF with different parameter
sets when doing Test S1 (key generation) 100 times (see Chap-
ter 6).



Figures 59

Figure B.3: Time distributions for different OpenFHE algorithms and
different parameter sets when doing Test S2 (single bootstrap-
ping) 100 times (see Chapter 6).



Figures 60

Figure B.4: Time distributions for XZDDF with different parameter
sets when doing Test S2 (single bootstrapping) 100 times (see
Chapter 6).



Figures 61

Figure B.5: Time distributions for different OpenFHE algorithms and
different parameter sets when doing Test S3 (OR operation) 100
times (see Chapter 6).



Figures 62

Figure B.6: Time distributions for XZDDF with different parameter
sets when doing Test S3 (OR operation) 100 times (see Chapter
6).



Figures 63

Figure B.7: Time distributions for different OpenFHE algorithms and
different parameter sets when doing Test S4 (AND operation)
100 times (see Chapter 6).



Figures 64

Figure B.8: Time distributions for XZDDF with different parame-
ter sets when doing Test S4 (AND operation) 100 times (see
Chapter 6).



Figures 65

Figure B.9: Time distributions for different OpenFHE algorithms and
different parameter sets when doing Test B2 (10 AND, OR, and
NOT operations) 100 times (see Chapter 6).



Figures 66

Figure B.10: Time distributions for XZDDF with different parameter
sets when doing Test B2 (10 AND, OR, and NOT operations)
100 times (see Chapter 6).



Figures 67

Figure B.11: Log-log plots of the average execution times for dif-
ferent OpenFHE algorithms and different parameter sets when
doing the batch tests B1–B4 in Chapter 6, consisting of x AND,
OR, and NOT operations.



Figures 68

Figure B.12: Log-log plots of the average execution times for
XZDDF with different parameter sets when doing the batch
tests B1–B4 in Chapter 6, consisting of x AND, OR, and NOT
operations.


	Introduction
	Motivation
	Goals
	Scope
	Contributions
	Structure of the Thesis

	Preliminaries
	Basic Notations
	Probability Theory
	Number Theory
	Lattices
	Lattice-Based Cryptography

	Fully Homomorphic Encryption
	Cryptographic Notations and Definitions
	Structure of Fully Homomorphic Encryption Schemes
	Introduction to Bootstrapping
	Bootstrapping
	Security

	XZDDF Bootstrapping
	NTRU-Based Encryption
	Fast Blind Rotation Using the NTRU Setting
	Switching Back to First-Layer Encryption

	Modification of XZDDF Bootstrapping
	The Problem
	A Suggestion of Solution

	Efficiency Tests
	Implementation
	Testing Methods
	Results
	Discussion

	Conclusions and Future Work
	References
	Fully Homomorphic Encryption Schemes
	First Generation
	Second Generation
	Third Generation
	Fourth Generation
	Comparison

	Figures

