
MASTER’S THESIS 2024

Cache replacement policies and
their impact on graph database
operations
Tora Elding Larsson, Lukas Gustavsson

ISSN 1650-2884
LU-CS-EX: 2024-08

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-08

Cache replacement policies and their
impact on graph database operations

Cacheutbytespolicyer och deras inverkan på
grafdatabasoperationer

Tora Elding Larsson, Lukas Gustavsson

Cache replacement policies and their
impact on graph database operations

(Performance considerations of the Neo4j database with

regards to caching)

Tora Elding Larsson
tora.eldinglarsson@gmail.com

Lukas Gustavsson
l.gustavsson9801@gmail.com

February 8, 2024

Master’s thesis work carried out at Neo4j, Inc.

Supervisors: Anton Klarén, anton.klaren@neo4j.com
Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Michael Doggett, michael.doggett@cs.lth.se

mailto:tora.eldinglarsson@gmail.com
mailto:l.gustavsson9801@gmail.com
mailto:anton.klaren@neo4j.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:michael.doggett@cs.lth.se

Abstract

In this master thesis project, the page caching strategy of the Neo4j database is
researched and attempted to be improved. Focusing on the eviction protocol of
the page cache, several different algorithms are evaluated in both experimental
prototyping using Python, and in the Neo4j database kernel. Using the mea-
surements of the prototypes and the results of the Neo4j benchmarks conclude
that the current page replacement policy is hard to beat with a different strategy.
However, modifying the current page replacement policy by using a global in-
stead of thread-local data structure and tuning parameters increased the hit rate
and throughput. Furthermore, the measurements on the different implementa-
tions showed that the hit rate can be increased at the cost of some overhead,
but implementing a complicated algorithm quickly increases the overhead and
might decrease the throughput enough to make the algorithm ineffective.

Keywords: software cache, replacement policies, graph database, performance, hit rate,
LRU, CLOCK

2

Acknowledgements

We would like to thank Jonas Skeppstedt, our supervisor at LTH, for answering all our ques-
tions and having helpful discussions with us whenever we needed to. Thank you for all the
knowledge we have received from your courses at LTH.

We would also like to thank Anton Klarén and the rest of the kernel team at Neo4j for
answering all our questions with patience and eagerness. Thank you for inviting us to your
weekly games, you have both helped us with our thesis and made us feel like part of the team
at Neo4j.

A special thank you to Simon Priisalu at Neo4j for helping us with benchmarking mea-
surements and answering an endless amount of questions.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Problem statement . 9

2.1.1 Research questions . 9
2.2 Distribution of work . 9
2.3 Cache memories . 10

2.3.1 Software implemented cache . 11
2.3.2 Cache optimizations . 11

2.4 Cache replacement policies . 12
2.4.1 Béladý . 12
2.4.2 LRU . 13
2.4.3 LFU . 13
2.4.4 CLOCK . 13
2.4.5 LIRS . 14
2.4.6 CLOCK-Pro . 14
2.4.7 CLOCK-Pro+ . 16

2.5 The Muninn Page Cache . 16
2.5.1 Structure . 16
2.5.2 Eviction . 17

2.6 Benchmarking . 17
2.6.1 Linked Data Benchmark Council 17

2.7 Related work . 17
2.7.1 Multigen LRU . 18
2.7.2 Detox . 18

3 Method 19
3.1 Analyzing the current policy . 19

3.1.1 Algorithms to implement . 19
3.2 Testing . 20

5

CONTENTS

3.3 Benchmarking . 20
3.4 Implementation . 20

3.4.1 Random replacement . 21
3.4.2 Tuning of usage count . 21
3.4.3 Introducing a global arm . 21
3.4.4 CLOCK . 21
3.4.5 CLOCK-Pro . 21
3.4.6 Added history . 22

3.5 Prototyping . 22

4 Results 25
4.1 Weaknesses in the current policy . 25
4.2 Benchmarking . 26
4.3 Implementations . 26

4.3.1 Random and baseline . 26
4.3.2 Tuning the usage count . 26
4.3.3 Using a global arm . 29
4.3.4 CLOCK implementations . 31
4.3.5 Added history . 32
4.3.6 Summary . 33

4.4 Prototyping . 33

5 Discussion 35
5.1 RQ1 - What improvements can be made in the current policy? 35

5.1.1 Changing the usage counter . 35
5.1.2 Atomic clock arm . 35
5.1.3 Added history . 36
5.1.4 CLOCK algorithms . 36

5.2 RQ2 - How much is there to gain by using a more effective cache replacement
policy? . 37

5.3 RQ3 - How big can the implementation overhead be before the implemen-
tation costs more than it gives? . 37

6 Conclusion 39
6.1 Future work . 39

6.1.1 Other implementations . 39
6.1.2 Accurate performance benchmarks 40
6.1.3 Transactional hit rate . 40

References 41

Appendix A Java pseudo code 45

Appendix B Python pseudo code 51

6

Chapter 1

Introduction

Graph databases are a field that has proved to be very efficient for certain operations [15],
and Neo4j’s distribution is one of the commonly used graph databases [15]. The database
has several demands, such as maintaining a consistent state and being capable of handling
multiple transactions in parallel, and everything whilst maintaining a good performance.
One of the things that slows down the performance in a Neo4j database is when a page has
to be accessed from the disk and not from the cache [11]. Therefore, minimizing the amount
of faults, whilst still maintaining a small overhead in memory and minimizing locking, is
desirable.

Cache replacement policies are a field that has been researched a lot since it could mini-
mize the amount of page faults. However, most research presented in this thesis is on hard-
ware caches with only one thread and not on multi-threaded software caches. Neo4j has
solved the problem with the replacement policy by using a simple implementation with a
minimized amount of locking and overhead, realized with an algorithm that takes very sim-
ple decisions on what to evict [9].

This thesis investigates the current cache and compares the performance to implementa-
tions with more overhead and more locking, but with smarter decisions on what to evict. It
also compares the current cache to a random cache replacement policy to see how much the
algorithm improves the cache hit ratio.

The thesis presents the background and describes the research questions in chapter 2,
gives an overview of the method used in chapter 3, presents the results from the investigation
in chapter 4 and discusses the results in relation to the research questions in chapter 5. It ends
with chapter 6, giving a conclusion of what have been found during the work of the thesis
and presenting some possible future work that can be done.

7

1. Introduction

8

Chapter 2

Background

2.1 Problem statement
The thesis investigates the cache replacement policy used by Neo4j to see if it could be im-
proved. The problem was to increase the hit rate without affecting the latency of the program
negatively.

2.1.1 Research questions
To limit the extent of the thesis work, three main research questions were formulated and
investigated:

RQ1. What improvements can be made to the current cache replacement policy?

RQ2. How much is there to gain by using a more effective cache replacement policy?

RQ3. How big can the implementation overhead be before the implementation costs more
than it gives?

2.2 Distribution of work
For the most part, everything has been worked on by both students. Tora is the only contrib-
utor to graphics in the background chapter, and Lukas is the only contributor to the charts
in the result chapter. Tora has contributed to the majority of the background chapter and
Lukas has contributed to the majority of the results chapter. The rest of the work can be
assumed to have been equally divided.

9

2. Background

2.3 Cache memories
A cache is a small volatile memory that is fast to access but limited in size. Since the latency of
writing and reading memory is much higher than the latency of executing instructions, cache
memories are of high importance [4]. Computers have a hierarchy of hardware memories,
going from large but slow memories to fast but small ones [10]. Figure 2.1 shows the memory
hierarchy in computers. Caches that are high up in the hierarchy are smaller and faster than
the ones further down.

Increasing
distance
from CPU

Decreasing
memory
size

Level 1

Level 2

Level 3

…

Level n

Figure 2.1: Figure showing how the memory in a computer is hier-
archically structured, drawn from image in [10]

When discussing caches and their performance, there are some terminology worth know-
ing:

• Hit: When a wanted page is in the cache.

• Miss: When a wanted page is not in the cache.

• Fault: When a page that is not in the cache is loaded into the cache from memory.

• Evict: When a page that is in the cache is thrown out of the cache - often to make room
for something else.

10

2.3 Cache memories

Most often when talking about cache memories, the discussion goes around hardware
caches, as has been done so far. However, in this thesis, a software implemented cache is
investigated.

2.3.1 Software implemented cache
Neo4j uses a software implemented cache to decrease the latency of operations for the database.
What this means is that during program execution, pages are loaded from hard drive into
memory allocated by the program. This makes it much faster to access the data in the pages.
The entire implementation, how to handle misses, evictions, faults, etc. are all implemented
in Java classes and interfaces. This means that it is easier to configure and adapt compared to
a hardware cache, but it still has some limitations. For program execution to run smoothly
and effectively, the cache needs to be limited in size and the operations on it can not have
too high latency, since this leads to a slower execution time.

The software cache implemented by Neo4j is shared among multiple threads and there-
fore needs to be thread safe. This places further demands on the implementation, which
needs to make sure that the cache is in a coherent state while still not introducing too much
overhead in the form of locking.

2.3.2 Cache optimizations
Caches can be implemented in different ways to optimize their performance. One way to
optimize the cache is to make sure that the data that the program needs is almost always in
the cache, since if it is not, it must be collected from memory with much higher latency [10].
To measure how well a cache performs on this matter, the hit rate is usually investigated. The
hit rate is calculated according to equation 2.1, where s is the number of memory requests
resulting in a hit and r is the total number of requests made to the cache [4].

s
r

(2.1)

One way to improve the hit rate would be to increase the size of the cache [4]. However,
for hardware caches, the faster memories are often more expensive to implement than the
larger ones, and caches therefore have a limit to how large they can be before the cost of
manufacturing them is unfeasible [10]. In software caches it is not the hardware implemen-
tation of a cache that is the expensive part, but since there is a limited amount of memory
available to allocate memory for a program execution, the size of the cache still must be lim-
ited. It is therefore possible to assume that all data might not fit in the cache and that during
execution, old data may have to be evicted from the cache to make room for newer.

This leads to another way of improving the hit rate; to optimize the algorithm which
decides what to evict from the cache when it is full [4]. If something is thrown out that needs
to be accessed again soon, it has to be faulted in from memory which is a timely operation.
Therefore, the algorithm should be optimized so that it evicts data that is not going to be
accessed shortly. This way of increasing the hit rate is what this thesis investigates.

The problem with optimizing this part of the cache is that it is impossible to tell what
the program will need in the future [4]. Several different cache replacement policies, which use

11

2. Background

the current behavior of the cache to predict what might happen exist, and some of these are
presented in the next section.

2.4 Cache replacement policies
As mentioned in the previous section, cache replacement policies try to predict the future
to make good decisions on what to evict from the cache when it is full. There are several
different approaches to how these algorithms can be implemented, but all of them look at
the history or the current situation of the cache to try and predict how it will behave in
the future. Some policies prioritize pages when they are faulted into cache. They do the
prioritizing based on the access history of the pages. These policies are called fine-grained
policies [4]. Another group of policies prioritize pages during their time in the cache based
on what happens to them once they are faulted into cache. These policies are called course-
grained policies [4]. The following sections present some different cache replacement policies
important for this thesis work.

2.4.1 Béladý
Béladý’s algorithm for cache replacement is also known as Béladý’s optimal algorithm since it
gives the optimal replacement for a cache [14]. The algorithm decides what to evict based on
what page is accessed farthest in the future [4][14]. Figure 2.2 shows an example of a full cache
containing three pages, and a trace of pages that are about to be accessed. Béladý’s algorithm
looks through the trace and decides to throw out page 1 since it is the page that is accessed
farthest into the future.

Figure 2.2: Figure showing a full cache containing three pages, and
a trace of pages that are about to be accessed.

The problem with Béladý’s algorithm is that it is impossible to implement since it decides
based on actions that will happen in the future [4][14].

12

2.4 Cache replacement policies

2.4.2 LRU
LRU stands for Least Recently Used and is an algorithm that is recency-based. This means
that it decides what to evict from the cache based on how recently it was accessed [4]. It is
a simple algorithm and one of the most commonly used recency-based algorithms. It keeps
track of how recently pages were accessed and evicts the least recently used page [4]. For it to
work effectively, the access pattern in the cache has to make use of temporal locality, i.e. if a
page has been accessed it will be accessed soon again [4]. However, for other patterns, LRU
performs badly.

One of these problematic examples is scans, where many pages are accessed once, possibly
evicting important residing pages in cache [5]. Since LRU only evicts the least recently used,
the pages accessed during the scan will not be evicted even though they might not get any
more hits during program execution.

Another example of an access pattern where LRU performs badly is in loops, where data
is accessed several times, but the recency distance is too large for it to remain in the cache
between each iteration [5].

2.4.3 LFU
LFU stands for Least Frequently Used and is an algorithm which is frequency-based. Instead of
deciding what to evict from the cache based on when pages were last accessed, as with LRU,
it bases the decision on how many times a page has been accessed [4]. In the LFU algorithm,
this means that the page that has been accessed the fewest times is evicted. The simplest way
of implementing such an algorithm is to simply have a counter for each page and evict the
page with the lowest count [4].

This algorithm performs well on patterns where pages are accessed several times but with
longer intervals. It also solves the problem the LRU algorithm has with scans [4] since the
pages faulted in will not be prioritized over pages residing in the cache that have been fre-
quently accessed.

However, as with LRU, this algorithm also has some disadvantages. One example is that
the algorithm prioritizes pages that have been accessed a lot previously over pages that will
be accessed a lot in the future. When a new page that will be frequently accessed is faulted
in for the first time it will be chosen to be evicted over pages that might not be accessed in
the future simply because they have a history of being accessed a lot [4].

2.4.4 CLOCK
CLOCK is an algorithm that is a very good approximation of LRU [5]. The cache structure is
maintained as a circular list, and each page has a reference bit that is set when it is accessed.
A clock arm is used to go through the pages in the cache. In case of an eviction, the page the
clock arm points to is evicted if the reference bit is set to 0. If the bit is set to 1 it is set to 0
and the arm goes to the next page and does the same procedure. This continues until a page
is evicted [5].

Figure 2.3 shows the clock structure. The arm points to a page with the reference bit set
to 1. If an eviction is happening the bit is set to 0 and the arm is moved to the next page
which is evicted since its reference bit is set to 0.

13

2. Background

1

1

1

1

0

0

0

0

Figure 2.3: The structure maintained by the CLOCK algorithm. The
cache is seen as a circular structure, and every page has a reference
bit. The clock arm points to the current page.

2.4.5 LIRS
LIRS stands for Low Inter-reference Recency Set and is an algorithm that was created to try
and remove the disadvantages with LRU [6]. The difference between LIRS compared to LRU
is that it evicts based on reuse distance rather than recency. To be able to do this it keeps track
of two sets, LIR (Low Inter-reference Recency) and HIR (High Inter-reference Recency).
LIR contains cache pages that currently reside in the cache and have a low reuse distance,
indicating that they are accessed more frequently than pages with a high reuse distance. HIR
contains pages that both reside in the cache and previously have resided in the cache but have
been evicted. These pages have a high reuse distance. When a page has to be evicted, a page
that is in the HIR set and resides in the cache is evicted [6]. This means that a page with
higher recency can be evicted simply because it is not accessed particularly often.

Since a page might go from being accessed infrequently to being accessed frequently, or
the opposite way around, there must be a way for a page to switch between the different sets.
Therefore the algorithm makes it possible for a HIR page that suddenly gets a very small
reuse distance to switch with a LIR page with less reuse distance [6].

2.4.6 CLOCK-Pro
CLOCK-Pro is an algorithm that aims to bring the LIRS functionality into CLOCK [5]. The
implementation is based on CLOCK but additionally keeps track of hot- and cold pages and
some information about recently evicted pages.

14

2.4 Cache replacement policies

Instead of only having one clock arm as in the CLOCK algorithm, CLOCK-Pro has three
arms; a cold-, hot- and test arm. The residing pages in the cache are divided into hot pages,
which are accessed frequently, and cold pages, which are accessed infrequently. In addition
to this, the algorithm keeps track of non-resident pages, i.e. pages that have been recently
evicted. The set with non-resident pages is never larger than the size of the cache [5].

As can be seen in figure 2.4, the three arms represent the hot-, cold- and test arms. The
slots filled with red numbers contain hot pages, and the numbers represent their reference bit.
The empty slots contain non-resident pages and the slots filled with black numbers contain
cold pages.

T

H

C

10

1

10

1

Figure 2.4: Structure of the CLOCK-Pro algorithm. The slots con-
taining red numbers are hot pages, the empty slots are non-resident
pages, and the slots containing black numbers are cold pages. The
clock arms represent the hot-, cold- and test arm.

When a page is faulted into cache, it starts as a cold page and begins its test period. If it
is accessed during its test period, the page turns into a hot page. If it is evicted during its test
period, it is saved as a non-resident page. A non-resident page can either be faulted in again,
in which case it is turned into a hot page, or it is removed because it has not been faulted in
again during its test period. If a cold page is evicted outside of its test period it is not saved
as a non-resident page. When the cache contains too many hot pages, a hot page that has its
reference bit set to 0 is turned into a cold page.

Song Jiang, Feng Chen and Xiadong Zhang add another layer to their CLOCK-Pro al-
gorithm by making it adaptive. The algorithm will then adapt to the pattern of the cache,
and change how many hot pages can reside in the cache depending on how many hot pages
are needed [5]. They propose that if there is a hit on a cold page during its test period, the
capacity of cold pages should be increased by one, and if a cold page terminates its test period

15

2. Background

without being accessed, the capacity of cold pages should be decremented by 1. This means
that when the access pattern is LRU friendly and there is not a set of hot pages which are
accessed very frequently, the set of hot pages will be small and the algorithm will behave like
a CLOCK algorithm. However, if there are some pages that have a much higher frequency in
their accesses, the cache will make room for these pages.

CLOCK-Pro has some limitations which occur when there is a large number of hits in
non-resident pages simultaneously as a large number of cold pages are terminated [8].

2.4.7 CLOCK-Pro+
Li Cong suggests an algorithm based on CLOCK-Pro, with an improved way of adapting the
cache [8] which should help with the problem mentioned above. Li Cong reasons that if a
non-resident page was accessed, the miss could have been prevented if the capacity of cold
pages were increased by 1. This means that the probability of getting a miss would decrease

by
1

Cn
, where Cn is the number of non-resident pages. The same goes for when a cold page

that previously was a hot page is referenced. In this case, the cold page could have stayed a
hot page had the capacity of hot pages been increased by 1. The probability of it not turning

into a cold page would decrease by
1

Cd
where Cd is the number of resident cold pages that

have previously been hot pages [8].
With this in mind, Li Cong suggests that if a non-resident page is accessed the capacity

of cold pages should be increased by min{1,
Cd

Cn
} and if a cold page which has previously been

a hot page is accessed, the capacity of hot pages should be increased by min{1,
Cd

Cn
} [8].

2.5 The Muninn Page Cache
The page cache implementation currently used by Neo4j is implemented in Java and is called
the Muninn Page Cache [9]. It makes sure the database is not only available in memory but
also on disk, and solves the issue of the database running out of working memory by freeing
some of that memory by writing it back to disk.

2.5.1 Structure
The Muninn Page Cache consists of an array with slots for pages, the size of which is config-
urable by the user at database setup. The currently implemented cache replacement policy
is a CLOCK algorithm [9], with some tweaks compared to the one described in 2.4.4. As was
written in 2.4.4, this means that it is an approximation of the LRU algorithm, described in
2.4.2. One big difference is that the algorithm does not set only one reference bit, but counts
references up to 4 [9]. There are however bits enough to count the references to 7, but the
limit is currently set to 4. Another difference is that it sets the reference bit to 1 instead of 0
when a page is faulted into cache, and evicts a page with reference bit set to 0 or 1 and not
only 0.

16

2.6 Benchmarking

2.5.2 Eviction
Eviction happens in several ways in the Muninn Page Cache. Different types of eviction run
in the Neo4j kernel to cater to different states of the cache. The following sections describe
the two main eviction processes in the page cache. There are some other forms of eviction
in the Muninn Page Cache that have to do with files closing or other external forces forcing
eviction, but the focus in this work is on the most usual eviction procedures.

Background Eviction
If the page cache reaches a threshold of page occupancy, the background evictor thread starts.
The background evictor thread is the one simulating a CLOCK algorithm. The thread loops
through all the pages in the cache and decrements the reference by 1. If a page has its reference
bit set to 1 or 0 before it is decremented, that page is chosen to be evicted [9]. However,
this page might still be spared because the cache is shared between multiple threads, as was
mentioned in 2.3.1. This means another thread might have an exclusive lock to the page,
making it impossible for us to evict it. In that case, the reference count is decremented and
the arm moves on. The reason eviction is beneficial before the cache is full is that a pool of
free pages is kept. This means there is no compounding cost to the database query consisting
of making an eviction decision and the cost of flushing the dirty data to disk.

Cooperative Eviction
If there are no free pages available produced by the background evictor thread, a state called
cooperative eviction is entered. Here the thread that needs a slot in the cache for it to fault
in a page makes room for it itself by running the same algorithm as the background thread,
starting at a random page and looping through the list of pages [9].

2.6 Benchmarking
To study the performance, some way of measuring it is needed. At Neo4j, the benchmarks
are either in-house developed data sets, or based on the Linked Data Benchmark Council.
Neo4j has an extensive framework to benchmark the graph database. The benchmarks that
are presented in the thesis run remotely in a controlled environment, with warm-up runs and
several iterations to try and eliminate measurement faults.

2.6.1 Linked Data Benchmark Council
Linked Data Benchmark Council, or LDBC, is a widely used benchmark framework for graph
applications. The workload that was used in this study mimicked a social network [13] [3].

2.7 Related work
There are other approaches to cache replacement that were not implemented for this thesis
work. Some that seemed promising for performance gain, if implemented with minimal

17

2. Background

overhead, are brought up in this chapter.

2.7.1 Multigen LRU
Linux has for a long time used something akin to the 2Q algorithm [7], which utilizes two
queues that have different priorities based on the frequency of access of the pages within
them [2].

Recently a new patch set that leverages different access patterns to find out what pages are
better to keep in memory than others has been developed and is performing very well. It is in
consideration to be the default for the Kernel, but needs to be proven to be an improvement
"always" for it to fully replace the old algorithm. The strategy is called the Multi-generational
LRU in which generations of pages are brought and kept in memory and the oldest genera-
tions are those considered for replacement by the strategy [2].

How the algorithm works and is implemented is available in open source. However the
implementation and description of the Multigen LRU are very strongly tied to the Kernel,
thus it is a formidable challenge to apply said strategy to another system, even though the
principles might be of great use to all shared memory caches [16].

2.7.2 Detox
There has been research discussing cache hits as a metric of performance, and it not being
a one-to-one ratio in gaining hits meaning gaining throughput. Instead, it has been proven
that scoring hits differently depending on whether they helped speed up a transaction or not,
and replacing the cache based on that metric gained a big performance increase. This was
implemented for a Redis server and showed great potential for performance gains, which is
a similar use case to Neo4j [1]. Perhaps this kind of cache replacement policy can be imple-
mented in the Neo4j kernel to improve overall throughput. However, in the current form of
the database, all queries are served single-threaded, so it might be better to associate pages
that are accessed shortly after one another to be in a group, rather than in parallel. The trans-
actional hit rate as described in the Detox paper would become of great interest if queries
get parallelized in the future.

18

Chapter 3

Method

3.1 Analyzing the current policy
To come up with an improvement plan for the current policy, the first thing done was to
analyze the potential weaknesses it could have, and how well it currently performs. This is
to get some answers to both RQ1 and RQ2, described in 2.1.1. This was mostly done by deep
diving into the current implementation of the cache policy and comparing it to information
gathered from research papers. The study revealed some possible weaknesses in the current
policy, and the findings were used to decide which improvements to implement.

3.1.1 Algorithms to implement
The following changes were decided to be implemented in the cache to measure if it somehow
affected the hit rate. It was decided that the improvements would be close to the current im-
plementation since that would mean the entire cache would not have to be rebuilt. Therefore,
all improvements are close to the CLOCK algorithm.

• Introducing a global clock arm shared between all threads.

• Measuring different values of the max reference count, i.e. counting references from
values 1-7.

• Implementing a pure CLOCK policy which sets the reference bit to 0 when a page is
faulted into the cache, only counts to 1, and evicts it when it is 0.

• Implementing a new adaptive cache replacement policy, based on the CLOCK pol-
icy to make it easily implemented in the current implementation. CLOCK-Pro and
CLOCK-Pro+ were decided to be implemented.

19

3. Method

• Adding a data structure to the current implementation to remember recently evicted
pages so that they can be put on a high frequency when they are faulted into the cache.

• A random replacement algorithm to see how much improvements the current policy
gives.

3.2 Testing
To test the functionality of the code, some existing integrated tests for the page cache were
run. These mostly checked that the cache managed to evict things and did not take too much
time. To test the functionality of the different improvements, some small integration tests
were added for some of the implementations. These were added for the CLOCK-Pro imple-
mentation and were mostly added to see if the implemented algorithm behaved as expected
in terms of adding and removing hot pages and non-resident pages.

The integration tests did not use any user data but only tested specific functionality of
the cache. To get an approximate measurement of how the implementations would work
on real data, a local LDBC benchmark was run. In this run the cache could be specified to
various sizes, meaning every implementation could be checked if they worked when many
evictions occurred. Furthermore, by changing the cache size to a very small value, the algo-
rithms could be checked for livelocks, which occurred when the cache was too small and the
eviction algorithm too slow so that no thread could find anything to evict for a set amount
of time. If an implemented improvement livelocked at a bigger cache size than the original
algorithm, it gave a small hint that the implementation might be too slow to be effective.

3.3 Benchmarking
The Neo4j benchmarks were used to measure the performance and hit rate of the different
implementations. The workload that was used to assess the performance of the page cache is
based on LDBC, which was described in 2.6.

Several different settings of the size of the cache was benchmarked to find a size that
would give enough cache misses without taking too much time. To find a good setting of the
cache size, several benchmarks were run with the initial cache code with different cache sizes.

One problem with the performance measuring was that even though page faults occurred,
most of the data was probably saved in the OS cache of the machine running the benchmark.
Because of that, the time of a page fault would be less than if the page had to be collected
from disk. Therefore, the throughput should be interpreted as how costly an algorithm is,
and the hit rate as how well the algorithm performs.

3.4 Implementation
The following sections describe some of the steps taken to implement the changes listed in
3.1.1.

20

3.4 Implementation

3.4.1 Random replacement
To make a random replacement algorithm, the clock arm was changed. Both the background
evictor thread and each thread that ended up in cooperatively eviction got their indices from
a random integer instead of a set integer. Instead of increasing it by 1 each time it did not
succeed in evicting a page, it was given a new random integer. A page was always evicted if
it was not currently used by another thread, no matter its reference bit.

3.4.2 Tuning of usage count
Since updating the reference was already written for a threaded cache, there was no need
to think about the concurrency. The only thing needed to implement these changes was to
change the max frequency, the reference bit in a fault and at what number a page would be
evicted. Various combinations of these changes were benchmarked.

3.4.3 Introducing a global arm
Introducing a global arm meant that it had to be shared between several threads. The current
implementation of the arm is an integer, specific for each thread, which is increased and
wrapped around whenever it reaches the end of the cache. To implement a shared arm, an
atomic long was used and shared between each arm. It was increased atomically and instead
of resetting it to 0 whenever it had to wrap around, the index was calculated by floormoding
the index with the size of the page cache.

3.4.4 CLOCK
The CLOCK implementation was done by combining the two implementations described
above. An atomic arm was added, and the max usage count was changed to 1. Every page was
faulted in with a reference bit of 0 and eviction could only happen when the reference bit of
a page was 0.

3.4.5 CLOCK-Pro
The CLOCK-Pro implementation is based on the CLOCK implementation, but with two
added arms; one hot- and one test arm. These two arms were implemented in the same way
as described in 3.4.3. The arm in the CLOCK algorithm was called the cold arm. To keep
track of hot pages, non-resident pages, and test periods, some data structures had to be added.
Two concurrent sets were added, one containing hot pages and one containing pages in their
test period. To keep track of the non-resident pages, a synchronized biMap was added. The
biMap mapped indexes in the cache to paths of pages and vice versa. To make sure that the
number of hot pages was limited, an atomic long storing the capacity of hot pages was added.

21

3. Method

Adding adaptiveness
To make the CLOCK-Pro algorithm adaptive, the capacity of hot pages had to be changed
in various places following the algorithm described in 2.4.6. To make sure that the hot pages
did not increase too much, since this could cause a high latency to find a page to evict, a max
capacity of hot pages was added. The max capacity was set to be 5 percent of the cache size.

CLOCK-Pro+
As was described in 2.4.7 CLOCK-Pro+ has a different way of changing the capacity of hot
pages. To be able to do this, cold pages which used to be hot pages needed to be saved. This
was done by adding a set containing all pages which had been demoted.

3.4.6 Added history
An attempted improvement made was to add the possibility of remembering recently evicted
pages and then prioritizing them by setting their usage count high, to the algorithm with the
atomic arm. The counter was first set to 7 when a recently evicted page was faulted in, whilst
the max count in other references was set to 4. However, experiments where the max usage
counter was 7 were also benchmarked. Initially, this was implemented using a concurrent set.
When this set got over a certain capacity the oldest entry was removed, thus only keeping
recent history in memory.

Optimizing the data structures
To implement an approximation of remembering history with minimal blocking data struc-
tures, an ordered queue and a bitset were used. The queue remembered the order of evicted
pages and a specialized thread worked on this queue to remove the oldest entry from the
bitset when over the target number of entries (where the target number was a tunable pa-
rameter). Then, as a second scaling precaution an atomic bitset was implemented to remove
missed writes when writing to the same word concurrently in the bitset.

The approximation was much more lightweight than its original counterpart, but since
hashing and a bitset was used, collisions occurred in the set, meaning some pages got acci-
dentally boosted. This was remedied by making the set bigger, but the risk of collision and
the implication of collisions were still present, only lessened.

There was also some benign data racing for the sake of performance meaning some deci-
sions might be made on stale data. The hope was that if the algorithm would act on somewhat
stale data but not ancient, it would not matter.

3.5 Prototyping
To measure theoretically how well the current policy performs, and how it differs from the
new implementations, prototypes of the algorithms were implemented in Python. These
prototypes were single-threaded, meaning that the potential overhead and benign races in
the real implementation were excluded. To have a trace to benchmark the algorithms on, a
local LDBC benchmark was run and the access order of files was recorded to a text file. The

22

3.5 Prototyping

names of the files recorded were used as the unique pages for the Python experiments, and
the order was used as a trace.

Beyond the implementations described in 3.1.1, an implementation of the Béladý algo-
rithm was also measured. As is described in 2.4.1, Béladý gives the optimal trace and was
used to measure how close to an optimal trace the rest of the algorithms were. Furthermore,
a completely random replacement policy was also implemented. This was to get some mea-
surement of how much the current algorithm improved the hit rate.

The Python code for the prototypes can be found here.

23

https://github.com/Lullebullelukas/trace

3. Method

24

Chapter 4

Results

In this chapter, the results from the experiments are presented.

4.1 Weaknesses in the current policy

This section presents the result of the study done to decide what type of improvements could
be added to the cache.

As described in 2.5, the currently implemented policy is a CLOCK algorithm, an approx-
imation of an LRU algorithm, with the added possibility for more than one second chance
due to the usage counter going to 4 instead of 1. This means that the algorithm can be sum-
marized as an LRU with some LFU functionality. However, the algorithm evicts not only
when the reference bit is set to 0, but when it is 0 or 1, meaning the frequency part of the
algorithm is small. Another difference from the CLOCK algorithm is that a page’s reference
bit is set to 1 instead of 0 when it is faulted into the cache.

As was described in 2.4.2 the LRU algorithm does not perform well for all access patterns.
One such example is scans. Fortunately, when the algorithm was examined it was discovered
that whenever there is a scan pattern, the reference is not counted up. This means that the
cache should not be as contaminated by scans as a regular LRU approximation. However,
access patterns where there are pages which are not accessed frequently enough, for example,
the loop problem described in 2.4.2, should still perform badly with the current policy.

Another problem found when examining the current policy occurs whenever the cooper-
ative eviction is started. When this happens, each thread starts its own clock arm at a random
placement in the cache. This means that the CLOCK approximation is worsened, since one
thread can start an arm just behind the regular clock arm, causing it to evict pages too early.

25

4. Results

4.2 Benchmarking
To find a suitable way to benchmark the cache, several runs were made to measure how
small the cache had to be before evictions were seen. The benchmark run was an LDBC read
benchmark, and the results can be seen in table 4.1.

Cache size (M) Hit rate (%)

300 000 99.84
75 000 97.15
37 500 88.84

Table 4.1: Hit rate for different cache sizes

Since the standard setting, 300,000 Mebibyte, only faulted in pages at the beginning of
the run and never evicted any pages, it could not be used to benchmark the cache. Using a
cache with size 37 500 was very slow to run, and therefore a cache size of 75 000 was decided
to be used in later experiments.

4.3 Implementations
The sections below contain the results from the different implementations presented in 3.4.

4.3.1 Random and baseline
Table 4.2 shows the hit rate for the current cache policy and a random replacement. As can
be seen, the hit rate is better for the current policy.

Algorithm Hit rate (%)

Current 97.15
Random 94.95

Table 4.2: Hit rate for random and current

4.3.2 Tuning the usage count
Figure 4.1 shows the results for different max usage counts on the current page cache. As can
be seen in the figure, the hit rate increases with an increasing max usage count.

26

4.3 Implementations

Max usage

hi
t r

at
e

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

1 2 3 4 5 6 7

Hit rate by max usage (dev) 75000 MiB

Figure 4.1: Hit rate for different max usage counts for the Muninn
Page Cache, measured on a scale factor 100 read benchmark from
the LDBC social network workload 75 000MiB cache. Using the dev
branch of Neo4j as a base. The bar marked orange and labeled dev
is the unchanged development branch of Neo4j.

Figure 4.2 contains the throughput for different max usage counts on the current imple-
mentation. As can be seen, it varies between different usage counts, but the best throughput
is given when the maximum usage count is 7.

Usage count

op
s/

m
s

4.00

4.25

4.50

4.75

5.00

1 2 3 4 5 6 7

Througput by usage count (dev) 75000 MiB

Figure 4.2: Throughput for different max usage counts, measured
on a scale factor 100 read benchmark from the LDBC social net-
work workload 75 000 MiB cache. Using the dev branch of Neo4j
as a base. The bar marked orange and labeled dev is the unchanged
development branch of Neo4j.

27

4. Results

Figure 4.3 and 4.4 show results for the same experimental setup as 4.1 and 4.2 but with
a halved cache. This results in a more stressed cache, observable in both throughput and hit
rate.

Max usage

hi
t r

at
e

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

2 3 4 5 6 7

Hit rate by max usage (dev) 37500 MiB

Figure 4.3: Hit rate for different max usage counts for the Muninn
Page Cache, measured on a scale factor 100 read benchmark from
the LDBC social network workload 37 500 MiB cache. Using the
dev branch of Neo4j as a base. The bar marked orange and labeled
dev is the unchanged development branch of Neo4j.

Usage count

op
s/

m
s

1.00

1.25

1.50

1.75

2.00

2.25

2 3 4 5 6 7

Througput by usage count (dev) 37500 MiB

Figure 4.4: Throughput for different max usage counts, measured
on a scale factor 100 read benchmark from the LDBC social net-
work workload 37 500 MiB cache. Using the dev branch of Neo4j
as a base. The bar marked orange and labeled dev is the unchanged
development branch of Neo4j.

28

4.3 Implementations

4.3.3 Using a global arm
Figure 4.5 shows the hit rate for different max usage counts when using an atomic arm. As
can be seen, the hit rate increases when the maximum usage count increases.

Figure 4.5: Hit rate for different max usage count using an atomic
clock arm, measured on a scale factor 100 read benchmark from the
LDBC social network workload 75 000 MiB cache

Figure 4.6 contains the throughput for different max usage counts when using an atomic
clock arm. As can be seen, it varies a bit for different numbers, but the best throughput is
given when the maximum usage count is seven.

Max usage

op
s/

m
s

4.00

4.25

4.50

4.75

5.00

1 2 3 4 5 6 7

Throughput, atomic clock arm 75000 MiB

Figure 4.6: Throughput for different max usage count using an
atomic clock arm, measured on a scale factor 100 read benchmark
from the LDBC social network workload 75 000 MiB cache

29

4. Results

Figures 4.7 and 4.8 show results for the same experimental setup as 4.5 and 4.6 but with
a halved cache. This results in a more stressed cache, observable in both throughput and
hit rate. The results differ from the larger cache version of the same experiment in that the
throughput penalty is minimal when the maximum usage counter is set to 1. The hit rate is
still best for maximum usage 7.

Figure 4.7: Hit rate for different max usage count using an atomic
clock arm, measured on a scale factor 100 read benchmark from the
LDBC social network workload 37 500 MiB cache

max usage

op
s/

m
s

0

1

2

3

1 2 3 4 5 6 7

Throughput, atomic clock arm 37500 MiB

Figure 4.8: Throughput for different max usage count using an
atomic clock arm, measured on a scale factor 100 read benchmark
from the LDBC social network workload 37 500 MiB cache

30

4.3 Implementations

4.3.4 CLOCK implementations
Figure 4.9 shows the throughput for the different CLOCK implementations. As can be seen,
the clock algorithm has a much higher throughput than the rest of the algorithms.

op
s/

m
s

0

1

2

3

4

5

clock-pro-adapt clock-pro-plus clock-pro clock

CLOCK algorithms throughput

Figure 4.9: Throughput for different CLOCK-based algorithms,
measured on a scale factor 100 read benchmark from the LDBC so-
cial network workload 75 000 MiB cache

Figure 4.10 shows the hit rate for the different CLOCK implementations. As can be seen,
CLOCK-Pro with some adaptiveness has the best hit rate.

Figure 4.10: Hit rate for different CLOCK-based algorithms, mea-
sured on a scale factor 100 read benchmark from the LDBC social
network workload 75 000 MiB cache

31

4. Results

4.3.5 Added history

Figure 4.11 shows the throughput for different implementations of the algorithm that re-
membered recently evicted pages. The implementation used an atomic arm and had a max
count of 4, unless it faulted in a recently evicted page in which case its reference count was
set to 7. As can be seen, the concurrent hashset has a very low throughput compared to the
other two implementations.

op
s/

m
s

0

1

2

3

4

5

small bit set concurrent hashset big bitset

Remembering history throughput

Figure 4.11: Throughput for history-dependent implementations,
measured on a scale factor 100 read benchmark from the LDBC so-
cial network workload 75 000 MiB cache

Figure 4.12 shows the hit rate for the different implementations. As can be seen, the
concurrent hashmap had a higher hit rate than the other two implementations.

32

4.4 Prototyping

Figure 4.12: Hit rate for history-dependent implementations, mea-
sured on a scale factor 100 read benchmark from the LDBC social
network workload 75 000 MiB cache

The experiment where the max usage counter was set to 7 gave an even better hit rate for
a cache of size 75 000 MiB, namely 97.11%.

4.3.6 Summary
Table 4.3 summarizes each section’s best hit rate result so that it can be easily compared to
random and current.

Algorithm Hit rate (%)

Current 97.15
Random 94.95

Count to 7 97.22
Count to 7 with global arm 97.22

CLOCK-Pro adaptive 96.98
History with concurrent set count to 7 97.11

Table 4.3: Best hit rates from each section compared to random and
baseline

4.4 Prototyping
The results from the Python prototypes are summarized in table 4.4. The table shows each
algorithm with their hit count, hit rate and the hit rate in percentage of the optimal hit rate
produced by the Béladý algorithm.

33

4. Results

Algorithm Total number of hits Hit rate (%) Hit rate compared to optimal (%)

Béladý 66 969 47.73 100
Random 65 438 46.64 97.72
Current 66 681 47.53 99.58

Current count to 7 66 690 47.53 99.58
Current count to 6 66 687 47.53 99.58
Current count to 5 66 685 47.53 99.58
Current count to 3 66 671 47.52 99.56
Current count to 2 66 653 47.51 99.54
Current count to 1 65 982 47.03 98.53

Current with history 66 771 47.59 99.71
CLOCK 66 653 47.51 99.54

CLOCK-Pro 66 647 47.50 99.52
CLOCK-Pro+ 66 645 47.50 99.52

CLOCK-Pro adaptive 66 647 47.50 99.52

Table 4.4: Python results

As can be seen in the table, the implementation that had best result was the one which
remembered recently evicted pages. This implementation counted to 4, but every time a
recently evicted page was faulted, its reference bit was bumped up to 7. Furthermore, it is
clear when looking at the result that a random replacement is significantly worse than the
current implementation. It is also clear that the higher the reference, the better the hit rate.

Since counting to 7 and adding history seemed to give the best result, an experiment was
executed combining the two solutions. This means that the references could be counted to
7, and if a recently evicted page was faulted into cache its reference count was set to 7. This
yielded the best result as can be seen in table 4.5.

Algorithm Number of hits Hits compared to optimal (%)

Béladý 66 969 100
Current 66 681 99.57

Current count to 7 66 690 99.58
Current with history 66 771 99.70

History and count to 7 66 782 99.72

Table 4.5: Combining the two best solutions

34

Chapter 5

Discussion

5.1 RQ1 - What improvements can be made
in the current policy?

As the results showed, some experiments did manage to improve the hit rate in the cache.
The sections below summarize the findings that gave an improved hit rate, and some that
did not. Although some findings only improved the trace in Python, others improved the hit
rate in the benchmarks.

5.1.1 Changing the usage counter
Both the Python implementations and the actual benchmarked implementations showed that
an increased usage counter gave an improved hit rate. It was only measured up to a reference
count of 7 since this was the number of bits available, explained in 2.5. These results indicate
that letting some short-term frequency behavior be captured more than it is in the current
state of the cache is of value to Neo4j, i.e. mixing some LFU into the LRU algorithm. Even
though it could be assumed that this would negatively impact the time to evict, since fewer
pages would be ready for eviction, this was not observed in the throughput metrics of the
experiments. However, it is important to consider that the trace used in the Python experi-
ments and the traces run on the benchmark might be more suited for some added frequency.
If more traces and access patterns were tested then maybe the frequency boost would not be
as visible as it was for these experiments.

5.1.2 Atomic clock arm
As was seen in the results for the experiments using one global, concurrently accessible clock
arm for all eviction processes in the page cache 4.3.3, this appeared to increase both through-

35

5. Discussion

put and hit rate.
That the hit rate increased was not very surprising since it gave a more consistent eviction

and less of a random eviction. Since the clock arm during the cooperative eviction process
previously started at a random index, this meant that a page that had just had its reference
count decremented to 0 from 1 could be demoted too fast if the random arm ended up on
that position. As was seen in the results, the current LRU approximation performed better
than a random algorithm 4.3.1, which indicates that removing further randomness from the
eviction process would yield a better hit rate.

The improvement in throughput was more surprising since making a global arm comes
with some increased sequential behavior in the threading structure. However, having a global
arm also decreased the probability of collisions, i.e. that all threads would try to evict the same
page. Since atomic operations are less costly than for example locks, the improvements of
using a global clock arm seemed to outweigh the time added by using some costly operations.

Another interesting thing that could be seen in the results was that the improvement from
using a global arm increased when the size of the cache decreased. This further strengthens
the theory that it is the randomness of the cooperative eviction process that negatively affects
the eviction process. This since if the cache is smaller more pages need to be evicted, which
increases the probability of ending up in cooperative eviction.

5.1.3 Added history
Even though the implementations with added history did not provide an increased hit rate
for the Neo4j implementation, it showed great promise in the Python prototype. This means
that the trace used in the Python experiments had access patterns that were beneficial for
this implementation. The question is whether these access patterns are common enough for
this to be an actual improvement. Since no improvement was visible for the LDBC trace,
either it is not common enough, or more testing on different traces needs to be executed.

That it would be an improvement to prioritize some recently evicted pages goes in line
with the literature study on LRU 2.4.2. This since the problems the LRU algorithm has with
patterns where pages are accessed with longer reuse distances, for example in loops, would
decrease since some reuse distance is taken into account.

The biggest problem with this implementation was how to tackle the large overhead
introduced by the implementation. The algorithm implemented without benign races and a
unique identification for each page, i.e. the concurrent hashset, decreased the throughput by
almost 90%. The implementations that allowed some benign racing and some collisions on
page identification did not experience such a large decrease in throughput but at the cost of
a worse hit rate.

5.1.4 CLOCK algorithms
Neither of the implemented CLOCK algorithms improved the hit rate. That the regular
CLOCK algorithm did not improve the hit rate was not surprising since previous results
showed that an increased reference count gave a better result. However, the hope was that
CLOCK-Pro and CLOCK-Pro+ would increase the hit rate since they are adaptive and take
into account both frequency and recency. However, since none of them increased the hit rate
for either the prototype implementation or the real one, it seems that Neo4j does not benefit

36

5.2 RQ2 - How much is there to gain by using a more effective cache replacement policy?

from these algorithms. One possible explanation for this is that the access pattern has few
short periods of patterns which corresponds to creating hot pages. Whenever this happens
the cache is changed to contain more hot pages, and it takes a while for it to rearrange itself
to work like a CLOCK algorithm again. This contaminates the cache and lowers the hit
rate. Another explanation could be that the implementations are faulty or not optimally
implemented. The implementations have been made to try and follow the articles as closely
as possible, but it is difficult to eliminate all human errors.

5.2 RQ2 - How much is there to gain by us-
ing a more effective cache replacement
policy?

Several examples show that when the hit rate goes up, it comes with an increased throughput,
and since the OS cache is doing some heavy lifting for us when our page cache is full the real-
world implications are even bigger than the results we have observed in the benchmarks.
However, we saw an upwards of 0.07% increase in hit rate for no additional overhead cost.
Given that a page fault roughly takes 0.1 ms in a real system, the performance implication of
just a tiny change in hit rate can be massive [12]. This decrease in page faults in the benchmark
was approximately 12 500 000 fewer. Without the OS cache stepping in this would result in
a 1 250 seconds faster run, or approximately 20 minutes.

The prototype implementations revealed that the current implementation has a hit rate
that is 99.58% of an optimal replacement. This means that the margins of improvement are
very small, and any small increase could be beneficial.

5.3 RQ3 - How big can the implementation
overhead be before the implementation
costs more than it gives?

As was seen in the results, adding blocking data structures has massive performance costs.
This could especially be seen in the results of the algorithm with added history which counted
to 7 and was implemented with a concurrent hashset. The hit rate for this implementation
was 97.11% compared to the current implementation which had a hit rate of 97.15%. Even
though the hit rate is very close to that of the current implementation, the throughput de-
creased by almost 90%. Even if the algorithm had led to a small increase in hit rate, the
overhead was too much for it to be efficient.

To attempt to answer more precisely how big the overhead can be, a thought experiment
can be done. If a page fault is assumed to take 0.1 ms - a very generous estimate -, then
reducing 1 page fault can take a maximum of 0.1 ms [12]. For a run with a 10% fault rate,
that means that there are 9 page accesses with hits and 1 with a fault. Those ten accesses can
together have an overhead of 0.1 ms, so every decision can have an overhead of 0.01 ms.

If the numbers presented here are applied to the example with the concurrent hashset, it

37

5. Discussion

can be easily seen that the cost of the implementation is too expensive. The hit rate decreases
by 0.04% for the concurrent hashset, corresponding to an increase in runtime of 80 ms. This
would lead to a decrease in throughput corresponding to approximately 0.02%. Instead, the
algorithm yields an increase in throughput of almost 90%, which is way too high. If the OS
cache did not exist, the runtime would decrease by approximately 10 seconds. This would
be a decrease of throughput by approximately 2%, which still is much less than the actual
increase.

38

Chapter 6

Conclusion

As was seen, the page cache could be improved with a fairly small and not costly imple-
mentation. Increasing the usage count and using a global arm increased the hit rate by 0.07%,
corresponding to approximately a 20 minutes faster run. However, for more accurate conclu-
sions it should be tested on a wider range of benchmarks. Other algorithms had the potential
to increase the hit rate had they not increased the throughput as much as they did.

The Python implementation of Beládý’s algorithm suggests that the cache replacement
policy has a maximum limit of improvement of 0.42%. The best real improvement that was
seen was an improvement of 0.07%. This improvement means the hit rate is now 17% closer
to a hypothetical optimal hit rate, so even though it seems small, it is in reality a big improve-
ment.

Since the cost of a page fault is very expensive compared to other costs in the database,
an algorithm could add some overhead without affecting the throughput if the hit rate is in-
creased. However, adding very expensive blocking structures seems to add too much overhead
for it to be an efficient improvement. It seems like the most important thing for throughput
is to keep the cache as parallel as possible, whilst still being somewhat smart in its decision.
However, it is hard to draw any concrete conclusions regarding this since none of the exper-
iments had an increased hit rate and a higher throughput at the same time.

6.1 Future work
The following sections describe what could be worked on for future investigations.

6.1.1 Other implementations
As evident by the results from the experimentation with the usage counter, it seems that
capturing frequency is of value. However, using purely LFU to make eviction decisions was
tested in a small Python implementation and did not yield an improved result.

39

6. Conclusion

Furthermore, as was mentioned in 2.4, there are two main types of replacement policies,
course-grained and fine-grained. This thesis only investigated how different course-grained
policies could improve the cache, but a future investigation could look into whether a fine-
grained implementation would be a better improvement.

6.1.2 Accurate performance benchmarks
The cost of actually going to storage is offset in the current Neo4j benchmarks by instead
going to the operating system cache in many cases. To gain an accurate estimate of how
much time is lost and saved dependent on the caching and eviction, the OS cache would
need to be disabled to force access to storage instead.

6.1.3 Transactional hit rate
As discussed in the Detox paper it might be of interest to create metrics and measure how
many blocking faults we are waiting on that make some hits useless. This might become more
relevant in the future if Neo4j starts parallelizing the queries to a greater degree.

40

References

[1] Audrey Cheng, David Chu, Terrance Li, Jason Chan, Natacha Crooks, Joseph M. Heller-
stein, Ion Stoica, and Xiangyao Yu. Take out the TraChe: Maximizing (tra)nsactional
ca(che) hit rate. In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 419–439, Boston, MA, July 2023. USENIX Association.

[2] Jonathan Corbet. The multi-generational lru. https://lwn.net/Articles/
851184/, April 2021.

[3] Linked Data Benchmark Council. https://ldbcouncil.org/.

[4] A. Jain and C.Lin. Cache replacement policies: synthesis lectures on xyz
#13. https://par.nsf.gov/servlets/purl/10113803https://
par.nsf.gov/servlets/purl/10113803. Accessed Nov. 08. 2023.

[5] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-pro: An effective improvement of
the clock replacement. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, page 35, USA, 2005. USENIX Association.

[6] Song Jiang and Xiaodong Zhang. Lirs: An efficient low inter-reference recency set re-
placement policy to improve buffer cache performance. In Proceedings of the 2002 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’02, page 31–42, New York, NY, USA, 2002. Association for Computing
Machinery.

[7] Theodore Johnson and Dennis Shasha. 2q: A low overhead high performance buffer
management replacement algorithm. In Very Large Data Bases Conference, 1994.

[8] Cong Li. Clock-pro+: Improving clock-pro cache replacement with utility-driven adap-
tation. In Proceedings of the 12th ACM International Conference on Systems and Storage,
SYSTOR ’19, page 1–7, New York, NY, USA, 2019. Association for Computing Machin-
ery.

[9] Neo4j. Muninn page cache architecture and internals. https://github.com/
neo4j/neo4j/blob/5.10/community/io/src/main/java/org/

41

https://lwn.net/Articles/851184/
https://lwn.net/Articles/851184/
https://ldbcouncil.org/
https://par.nsf.gov/servlets/purl/10113803https://par.nsf.gov/servlets/purl/10113803
https://par.nsf.gov/servlets/purl/10113803https://par.nsf.gov/servlets/purl/10113803
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc

REFERENCES

neo4j/io/pagecache/impl/muninn/page-cache-internals.
adoc. Accessed Nov. 08, 2023.

[10] David A. Patterson and John L. Hennessy. Computer Organization and Design. Morgan
Kaufmann, Burlington, MA, USA, 2014.

[11] José Rocha. Understanding memory consumption. https://neo4j.com/
developer/kb/understanding-memory-consumption/. Accessed Nov.
27. 2023.

[12] PassMark Software. Top disk - random seek read write (iops 32kqd20) chart. https:
//www.harddrivebenchmark.net/random-read-write.html. Ac-
cessed Nov. 29. 2023.

[13] Gábor Szárnyas, Brad Bebee, Altan Birler, Alin Deutsch, George Fletcher, Henry A.
Gabb, Denise Gosnell, Alistair Green, Zhihui Guo, Keith W. Hare, Jan Hidders, Alexan-
dru Iosup, Atanas Kiryakov, Tomas Kovatchev, Xinsheng Li, Leonid Libkin, Heng Lin,
Xiaojian Luo, Arnau Prat-Pérez, David Püroja, Shipeng Qi, Oskar van Rest, Benjamin
A. Steer, Dávid Szakállas, Bing Tong, Jack Waudby, Mingxi Wu, Bin Yang, Wenyuan Yu,
Chen Zhang, Jason Zhang, Yan Zhou, and Peter Boncz. The linked data benchmark
council (ldbc): Driving competition and collaboration in the graph data management
space. In Proceedings of the Fifteenth TPC Technology Conference on Performance Evaluation &
Benchmarking, July 2023. Fifteenth TPC Technology Conference on Performance Eval-
uation; Benchmarking (TPCTC 2023), TPCTC 2023 ; Conference date: 28-08-2023.

[14] Wikipedia. Cache replacement policies. https://en.wikipedia.org/wiki/
Cache_replacement_policies. Accessed Nov. 07. 2023.

[15] Po Wu, Jiangnan Zhang, Yiming Ruan, Guanghui Chang, Yi Wang, and Yanlou Song.
Construction of knowledge graph for substation automation equipment ledger based
on neo4j graph database. In 2023 3rd Power System and Green Energy Conference (PSGEC),
pages 1080–1086, 2023.

[16] Yu Zhao. [patch v1 00/14] multigenerational lru. https://lwn.net/ml/linux-
kernel/20210313075747.3781593-1-yuzhao@google.com/, March 2021.

42

https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://github.com/neo4j/neo4j/blob/5.10/community/io/src/main/java/org/neo4j/io/pagecache/impl/muninn/page-cache-internals.adoc
https://neo4j.com/developer/kb/understanding-memory-consumption/
https://neo4j.com/developer/kb/understanding-memory-consumption/
https://www.harddrivebenchmark.net/random-read-write.html
https://www.harddrivebenchmark.net/random-read-write.html
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

Appendices

43

Appendix A

Java pseudo code

Listing A.1: Current implementation
1 private static final MAX_USAGE_COUNT long = 4;
2

3

4 private long cooperativelyEvict() {
5 int iterations = 0;
6 boolean evicted = false;
7 long pageRef;
8 long armPos = random(0,PageCache.size);
9 do {

10 if (getFreelistHead() != null) {
11 /* Eviction is no longer needed since there is

something in the list of free pages */
12 return 0;
13 }
14

15 if (armPos == pageCount) {
16 armPos = 0;
17 }
18

19 pageRef = pages.deref(armPos);
20 if (PageList.isLoaded(pageRef) && PageList.

decrementUsage(pageRef)) {
21 /* The page was in the cache, and had low enough

usage counter to be eligable for eviciton */
22 evicted = pages.tryEvict(pageRef, faultEvent);
23 }
24 armPos++,
25 } while (!evicted);

45

A. Java pseudo code

26 return pageRef;
27 }
28

29

30 static boolean decrementUsage(long pageRef) {
31 /* get usage count from our meta data */
32 usage = getUsage(pageRef);
33 if (usage > 0) {
34 long update = value - 1;
35 /* Somewhat safely update usage counter
36 of the meta data */
37 }
38 /* ok to evict if counter was 1
39 or zero before decrementing */
40 return usage <= 1;
41 }
42

43

44 /* This function is called when
45 a page in the cache gets a hit */
46

47 static void incrementUsage(long pageRef) {
48 /* get usage count from our meta data */
49 usage = getUsage(pageRef);
50 if (usage < MAX_USAGE_COUNT)
51 {
52 long update = value + 1;
53 /* Somewhat safely update usage counter
54 of the meta data */
55 }
56 }

Listing A.2: Atomic usage 7
1 private static final AtomicLong clockArm = new AtomicLong();
2

3 private static final MAX_USAGE_COUNT long = 7;
4

5 private long cooperativelyEvict() {
6 boolean evicted = false;
7 long pageRef;
8 do {
9 if (getFreelistHead() != null) {

10 /* Eviction is no longer needed since there is
something in the list of free pages */

11 return 0;
12 }
13 long armPos = atomicallyIncrementClockArmAndReturn();
14

15 pageRef = pages.deref(armPos);

46

16 if (PageList.isLoaded(pageRef) && PageList.
decrementUsage(pageRef)) {

17 /* The page was in the cache, and had low enough
usage counter to be eligable for eviciton */

18 evicted = pages.tryEvict(pageRef, faultEvent);
19 }
20 } while (!evicted);
21 return pageRef;
22 }
23

24 /* For the movement of the clock arm we let an atomic long
counter represent the clock arm position, where we use modulo
to get the actual position. We let the atomic long counter
overflow and wrap around, but using floorMod allows this to
still have correct clock arm movement */

25

26 long atomicallyIncrementClockArmAndReturn() {
27 long arm;
28 arm = clockArm.getAndIncrement();
29 return Math.floorMod(arm, pages.getPageCount());
30 }

Listing A.3: CLOCK-Pro
1 private static AtomicLong capacityHotPages = PageCache.size /

100;
2 private static final MAX_USAGE_COUNT long = 1;
3 private final AtomicLong testArm = new AtomicLong();
4 private final AtomicLong coldArm = new AtomicLong();
5 private final AtomicLong hotArm = new AtomicLong();
6

7 MutableBiMap<Object, Object> nonResidentColdPages = new
HashBiMap<>().asSynchronized();

8 public Set<Long> hotPages = ConcurrentHashMap.newKeySet();
9 public Set<Long> testPages = ConcurrentHashMap.newKeySet();

10

11 private long cooperativelyEvict() {
12 boolean evicted = false;
13 long pageRef;
14 long idx;
15 do {
16 if (getFreelistHead() != null) {
17 /* Eviction is no longer needed since there is

something in the list of free pages */
18 return 0;
19 }
20

21 /* The cold arm returns us a index of the list of pages
to apply the eviction logic on */

22 idx = increaseColdArm();

47

A. Java pseudo code

23 pageRef = pages.fetch(idx);
24 boolean hot = hotPages.contains(pageRef);
25 if (hot) {
26 continue;
27 }
28

29 /* If the page is recently referenced (used) the
reference counter will be 1, here returned as true if
so is the case */

30 boolean ref = PageList.getAndDecrementUsage(pageRef);
31 boolean inTestPeriod = testPages.contains(pageRef);
32 String evictedId = obtainUniqueFileMapping(pageRef);
33

34 if(ref && inTestPeriod) {
35 hotPages.add(pageRef);
36 if (hotPages.size() >= capacityHotPages.get()) {
37 moveHotHand();
38 }
39 }
40

41 if (!ref) {
42 evicted = pages.tryEvict(pageRef, faultEvent);
43 if (evicted) {
44 if (inTestPeriod) {
45 addNonRes(evictedId, idx);
46 }
47 if (getNbrOfNonRes() > PageCache.size) {
48 moveTestHand();
49 }
50 testPages.remove(pageRef);
51 }
52 }
53 } while (!evicted);
54 return pageRef;
55 }
56

57 /* Seek a nonRes page and remove it.
58 On the way terminate test periods */
59 void moveTestHand() {
60 while (!closed && nonResidentColdPages.notEmpty()) {
61 int idx = increaseTestArm();
62 long pageRef = pages.fetch(idx);
63 if (testPages.remove(pageRef) && !hotPages.contains(

pageRef) && PageList.getUsage(pageRef) == 0) {
64 increaseCapacityHotPages();
65 }
66

67 if (null != removeNonResIdx(idx)) {
68 return;

48

69 }
70 }
71 }
72

73 void moveHotHand() {
74 while (!closed && !hotPages.isEmpty()) {
75 long idx = increaseHotArm();
76 long pageRef = pages.fetch(idx);
77

78 if (removeNonResIdx(idx) != null) {
79 increaseCapacityHotPages();
80 }
81

82 boolean wasTest = testPages.remove(pageRef);
83

84 if (!hotPages.contains(pageRef)) {
85 if (wasTest && PageList.getUsage(pageRef) == 0) {
86 increaseCapacityHotPages();
87 }
88

89 continue;
90 }
91

92 if (!PageList.getAndDecrementUsage(pageRef)) {
93 if (hotPages.remove(pageRef)) {
94 return;
95 }
96 }
97 }
98 }
99

100 // Called when a page is faulted in
101 void init(long pageRef) {
102 String id = obtainUniqueFileMapping(pageRef)
103 Object wasNonRes = removeNonResId(id);
104 if (wasNonRes != null) {
105 hotPages.add(pageRef);
106 if (hotPages.size() >= capacityHotPages.get()) {
107 moveHotHand();
108 }
109 }
110 testPages.add(pageRef);
111 }
112

113 void increaseCapacityHotPages() {
114 PageCache.capacityHotPages.set(Math.max(value + 1,

capacityMaxValue));
115 }
116

49

A. Java pseudo code

117 void decreaseCapacityHotPages() {
118 PageCache.capacityHotPages.set(Math.max(value - 1, 0));
119 }

Listing A.4: CLOCK-Pro+
1 public Set<Long> demotedPages = ConcurrentHashMap.newKeySet();
2

3 /* called when the reference bit is observed
4 as set on a demoted page */
5 void increaseCapacityHotPages(long maxPages) {
6 /* Change is calculated from the utility of increasing the

hot pages after resident cold page is seen with a ref and
has been demoted from hot */

7 int nbrOfColdPages = PageCache.size - hotPages.size();
8 int change = Math.min(1, nbrOfColdPages / demotedPages.size

());
9 long value = PageCache.capacityHotPages.get();

10 PageCache.capacityHotPages.set(Math.min(value + change,
maxPages / 20));

11 }
12

13 /* called when a page fault is on a non-resident cold page */
14 void decreaseCapacityHotPages() {
15 /* Change is calcuated from the utiltiy of increasing number

of cold pages with hypothetical access to a non resident
cold page.*/

16 int nbrOfColdPages = PageCache.size - hotPages.size();
17 int change = Math.min(1, demotedPages.size() /

nbrOfColdPages);
18 long value = PageCache.capacityHotPages.get();
19 PageCache.capacityHotPages.set(Math.max(value - change, 0));
20 }

50

Appendix B

Python pseudo code

Listing B.1: Simulation
1 def simulate(self, evict):
2 self.cache_refs = {}
3 while self.trace:
4 page = self.trace.pop(0)
5 if page in self.cache_refs:
6 self.hits += 1
7 self.cache_refs[page] = min(self.cache_refs[page] +

1, self.max_ref)
8 #decrease capacity hot pages if
9 #clock pro adaptive and cold page in test period

10 else:
11 self.faults += 1
12

13 #only for clock-pro implementations
14 self.test_pages.add(page)
15

16 if len(self.cache_refs) == self.cache_size:
17 self.eviction_policies[evict]()
18 self.cache_refs.pop(self.cache[self.free_index])
19 self.cache[self.free_index] = page
20 self.cache_refs[page] = self.fault_ref
21

22 #only for clock-pro and added history
23 #implementations
24 if page in self.non_res_pages:
25 self.non_res_pages.popitem(page)
26 self.non_res_cache[self.free_index] = None
27

51

B. Python pseudo code

28 #decrease hot pages capacity if
29 #clock pro plus or adaptive
30

31 #if clock-pro
32 self.hot_pages.add(page)
33 if len(self.hot_pages) > self.

capacity_hot:
34 self.move_hot_hand()
35 #if added history, set ref to max
36 self.cache_refs[page] = self.max_ref
37 else:
38 self.cache[self.free_index] = page
39 self.free_index += 1
40 self.cache_refs[page] = self.fault_ref

Listing B.2: Random
1 def evict(self):
2 self.free_index = random.randint(0, self.cache_size-1)

Listing B.3: Béladý
1 def evict(self):
2 max_distance = -1
3 self.free_index = 0
4 non_known = set()
5 for i in range(self.cache_size):
6 non_known.add(self.cache[i])
7

8 for i in range(self.cache_size):
9 dist = self.page_distance[i]

10 if dist > 0:
11 non_known.remove(self.cache[i])
12

13 for j in range(len(self.trace)):
14 page = self.trace[j]
15 if page in non_known:
16 for i in range(self.cache_size):
17 if self.cache[i] == page:
18 self.page_distance[i] = j
19 non_known.remove(page)
20

21 if len(non_known) != 0:
22 for i in range(self.cache_size):
23 page = self.cache[i]
24 if page in non_known:
25 self.free_index = i
26 self.page_distance[i] = -1
27 self.decrement_distance()
28 return

52

29

30 max_index = 0
31 for i in range(self.cache_size):
32 if self.page_distance[i] > max_distance:
33 max_distance = self.page_distance[i]
34 max_index = i
35

36 self.free_index = max_index
37 self.decrement_distance()
38 self.page_distance[self.free_index] = -1

Listing B.4: CLOCK variants (including current)
1

2 def clock_evict(self):
3 while True:
4 self.free_index += 1
5 if self.free_index >= cache_size:
6 self.free_index = 0
7 page = self.cache[self.free_index]
8 refs = self.cache_refs[page]
9 self.cache_refs[page] = max(self.cache_refs[page] - 1,

0)
10 if refs == self.evict_ref:
11 return

Listing B.5: CLOCK-Pro
1 def move_hot_hand(self):
2 removed = False
3 while not removed:
4 index = self.hot_hand % self.cache_size
5 self.hot_hand += 1
6 page = self.cache[index]
7 non_res_page = self.non_res_cache[index]
8 if page in self.hot_pages:
9 if self.cache_refs[page] == self.evict_ref:

10 self.hot_pages.discard(page)
11 removed = True
12 self.cache_refs[page] = 0
13 if page in self.test_pages:
14 self.test_pages.discard(page)
15 #increase hot pages capacity if
16 #clock pro adaptive and not referenced cold page
17 if non_res_page:
18 self.non_res_pages.popitem(non_res_page)
19 self.non_res_cache[index] = None
20 #increase hot pages capacity if clock pro adaptive
21

22 def move_test_hand(self):

53

B. Python pseudo code

23 removed = False
24 while not removed:
25 index = self.test_hand % self.cache_size
26 self.test_hand += 1
27 page = self.cache[index]
28 non_res_page = self.non_res_cache[index]
29 if non_res_page:
30 self.non_res_pages.popitem(non_res_page)
31 self.non_res_cache[index] = None
32 removed = True
33 #increase hot pages capacity if clock pro adaptive
34 if page in self.test_pages:
35 self.test_pages.discard(page)
36 #increase hot pages capacity if
37 #clock pro adaptive and not referenced cold page
38

39 def clock_pro_evict(self):
40 evicted = False
41 while not evicted:
42 self.free_index += 1
43 if self.free_index >= self.cache_size:
44 self.free_index = 0
45 page = self.cache[self.free_index]
46 ref = self.cache_refs[page]
47

48 if page in self.hot_pages:
49 continue
50

51 self.cache_refs[page] = 0
52

53 #increase hot pages capacity if clock pro plus
54 #and page is demoted with ref > 0
55

56 if page in self.test_pages and ref > self.evict_ref:
57 self.hot_pages.add(page)
58 if len(self.hot_pages) > self.capacity_hot:
59 self.move_hot_hand()
60 continue
61

62 if ref == self.evict_ref:
63 page = self.cache[self.free_index]
64 evicted = True
65 if page in self.test_pages:
66 self.non_res_pages[page] = 0
67 self.non_res_cache[self.free_index] = page
68 self.test_pages.remove(page)
69 if len(self.non_res_pages) > self.cache_size:
70 self.move_test_hand()

54

Listing B.6: Added history
1 def add_non_res(self, page):
2 if len(self.non_res_pages) == self.cache_size:
3 self.non_res_pages.popitem(last = False)
4 self.non_res_pages[page] = 0
5

6 def added_history_evict(self):
7 while True:
8 self.free_index += 1
9 if self.free_index >= self.cache_size:

10 self.free_index = 0
11 page = self.cache[self.free_index]
12 ref = self.cache_refs[page]
13 self.cache_refs[page] = max(0, ref - 1)
14

15 if ref <= self.evict_ref:
16 self.add_non_res(page)
17 return

55

DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HÖGSKOLA | PRESENTED 2024-01-30

MASTER THESIS Cache replacement policies and their impact on graph database operations
STUDENTS Tora Elding Larsson, Lukas Gustavsson
SUPERVISOR Jonas Skeppstedt (LTH), Anton Klarén (Neo4j)
EXAMINER Michael Doggett (LTH)

What to remember and what to forget

POPULAR SCIENCE SUMMARY Tora Elding Larsson, Lukas Gustavsson

Imagine that you are working on an essay at your desk. Instead of having all your
books on a bookshelf, you have the books you need for the essay at your desk so that
you don’t have to go back and forth all the time. Unfortunately, all books don’t fit
on your desk, so sometimes you need to replace one. The question is which one?

In this thesis, the bookshelf is a long-term mem-
ory and your desk is a cache memory. For Neo4j,
all data must be stored long-term, but you still
want some data in the cache memory so that you
can find it more quickly. Whenever the cache is
full, something needs to be replaced. Imagine the
bookshelf again. If you replace a book that you
need soon after it has been replaced, you would
have to go back and forth to the bookshelf two
times in a very short period. A better idea would
be to replace something that you don’t need in the
future, or at least not for a very long time. In the
cache, the decision of what to replace is made by
an algorithm called the eviction policy. The focus
of this thesis has been to investigate the policy
currently used by Neo4j and to try to improve it.

The algorithm currently used decides what to
replace based on when it was used. If we go back

to the book example it would mean that the book
that was used the longest time ago is replaced,
since we assume that a book that was recently
used will be used again shortly. In Neo4j the cache
is also threaded, meaning several threads use the
cache at the same time. Imagine that several peo-
ple worked on the essay at the same time at the
same desk. Then you wouldn’t want a person to
replace a book that you might need soon.

We tried many approaches to improve the al-
gorithm, based on previous research. Some ap-
proaches were to tweak the current algorithm, and
some was to implement entirely new algorithms.
We discovered that the current algorithm was
working very well. However, tweaking some pa-
rameters in it and changing the structure for how
the different threads were organized, improved the
cache.

	Introduction
	Background
	Problem statement
	Research questions

	Distribution of work
	Cache memories
	Software implemented cache
	Cache optimizations

	Cache replacement policies
	Béladý
	LRU
	LFU
	CLOCK
	LIRS
	CLOCK-Pro
	CLOCK-Pro+

	The Muninn Page Cache
	Structure
	Eviction

	Benchmarking
	Linked Data Benchmark Council

	Related work
	Multigen LRU
	Detox

	Method
	Analyzing the current policy
	Algorithms to implement

	Testing
	Benchmarking
	Implementation
	Random replacement
	Tuning of usage count
	Introducing a global arm
	CLOCK
	CLOCK-Pro
	Added history

	Prototyping

	Results
	Weaknesses in the current policy
	Benchmarking
	Implementations
	Random and baseline
	Tuning the usage count
	Using a global arm
	CLOCK implementations
	Added history
	Summary

	Prototyping

	Discussion
	RQ1 - What improvements can be made in the current policy?
	Changing the usage counter
	Atomic clock arm
	Added history
	CLOCK algorithms

	RQ2 - How much is there to gain by using a more effective cache replacement policy?
	RQ3 - How big can the implementation overhead be before the implementation costs more than it gives?

	Conclusion
	Future work
	Other implementations
	Accurate performance benchmarks
	Transactional hit rate

	References
	Appendix Java pseudo code
	Appendix Python pseudo code

