
Self-Supervised Learning for Tabular Data:
Analysing VIME and introducing Mix Encoder

Max Svensson

Thesis for the degree of Bachelor of Science in Physics
Thesis advisor: Mattias Ohlsson

Made at the Division of Computational Biology and Biological Physics in the autumn semester

2023. Will be presented at the Department of Physics at Lund University in February 2024.

Abstract

We introduce Mix Encoder, a novel self-supervised learning framework for deep tabular
data models based on Mixup [1]. Mix Encoder uses linear interpolations of samples with
associated pretext tasks to form useful pre-trained representations. We further analyze the
viability of tabular self-supervised learning by introducing VIME [2], an established rep-
resentation learning framework for tabular data structures, to scarce healthcare datasets.
We demonstrate that Mix Encoder outperforms VIME and a normal MLP in classifying
breast cancer tabular data as well as show that both self-supervised learning frameworks
can grant deep tabular models increased performance. Finally, we demonstrate that the
combination of both representations, VIME and Mix, can yield even higher performance
on certain datasets, such as early classification of diabetes.

Populärvetenskaplig beskrivning

Having a meaningful conversation with a machine can be an incredible, yet slightly eerie,
experience. Being able to tell it to write a short poem can make you crack a smile, but at
the same time, it can make you cringe. With the recent breakthrough of self-supervision, a
framework that largely removes humans as a necessary part of a machine’s training, humans
are now getting used to the prospect of machines aiding us in various writing tasks. But we
have yet to feel the profound impact of self-supervision across other, possibly more urgent,
domains.

It is easy to think that the solution to crossing intellectual domains is to just keep training
our machine learning models on more and more text. After all, this is what made them
successful, right? Perhaps surprisingly, this is no longer the belief among experts who now
understand that text is limited, not only in content but as a medium. Painfully obvious
statements, that are not obvious to machines, are rarely written down, and such a thing as
common sense is often not discovered by reading, but by experiencing. Forcefully pursuing
this path when we enter even more foreign concepts than creative writing might be utterly
pointless. Important domains such as economy, science, and healthcare are mostly based
on tabular presentations of data that have so far been inaccessible to the self-supervised
approach. New studies, applying to tabular data the ideas that have made language models
so successful, hint at great improvements in speed and performance over previous models,
both of which are of utmost importance in healthcare. The studies take the main idea
of self-supervision, namely removing the need for manually labeled data, and are instead
letting the machines understand the data by augmenting what they are given. The type
of augmentations is most clearly explained in the context of vision. A model can be made
to rotate an image of a dog and later compare it with the original, non-rotated image.
It is different, yes, but not as different as an image of a cat would have been, much like
turning our heads sideways does not fundamentally change the world around us. If the
model understands this, it has found some understanding of how our world functions and
can, hopefully, apply it effectively. With this type of training, the size of the data at hand
becomes less important, such that possibly life-saving predictions on both very small and
very large data sets can gain a significant performance boost.

Following the studies, it can now be said that some sort of nuanced understanding can be
found in tabular data. The deep implications this has can resonate across all large tabular-
dominated domains, sparking new fascinating discoveries in important societal issues, such
as cancer research. In this project, we apply this new approach to tabular cancer treatment
data, confident that taking this journey further, by introducing novel augmentations such
as mixing, will prove once more that we can teach machines to not only process information,
but dig deeper and reveal its secrets.

2

Contents

1 Introduction 5

1.1 Related Works . 5

2 Background theory 7

2.1 Supervised learning . 7

2.2 Self-supervised learning . 7

2.3 VIME . 8

2.4 Proposed model: Mix Encoder . 10

2.5 Combined Encoder . 11

3 Method 12

3.1 Breast cancer dataset . 12

3.2 Early classification of diabetes dataset . 12

3.3 Model validation . 12

4 Results 13

4.1 Pre-training results . 14

4.2 Downstream results . 15

4.3 t-SNE analysis . 17

5 Discussion 19

6 Conclusion 20

A Appendix 20

A.1 Mix parameter generation . 21

A.2 Pre-training . 21

A.3 Downstream training - Breast cancer . 21

A.4 Downstream training - Diabetes . 22

B Appendix 22

3

List of acronyms

SSL (Self-Supervised Learning)

VIME (Value Imputation and Mask Estimation)

MLP (Multilayer perceptron)

ReLU (Rectified Linear Unit)

t-SNE (t-Distributed Stochastic Neighbor Embedding)

List of Figures

1 VIME architecture . 9

2 Mix architecture . 11

3 Unoptimized encoder pre-training . 14

4 Encoder pre-training . 15

5 AUC results . 16

6 t-SNE breast cancer results . 17

7 t-SNE diabetes results . 18

List of Tables

1 Detailed results (10%, 25%) . 16

2 Detailed results (75%) . 16

3 Pre-training . 21

4 Breast cancer parameters . 21

5 Breast cancer regularization . 22

6 Diabetes parameters . 22

7 Diabetes regularization . 22

4

1 Introduction

Supervised learning with deep neural networks has shown great success on a variety of tasks
given labeled data. However, acquiring large amounts of carefully labeled data is often very
costly, or even impossible in the cases where it does not exist. This bottleneck prevents
models solely trained with supervised learning from utilizing the entirety of the existing
data; especially in the domains of text and images where an abundance of potentially useful
unlabeled data is known to exist. These large domains have thus provided opportunities
for alternate forms of training to emerge that can extract useful information from the
data, even if it is unlabeled. For this purpose, self-supervised learning supplies deep neural
networks with a pre-training process in many areas where normal, supervised learning
has reached a plateau [3]. Recently, self-supervised learning has shown great progress in
doing so and has escalated the usage of artificial intelligence on text and images to the
mainstream. Still, many data structures lend themselves poorly to this and have yet to be
subject to this new approach.

Even with the success of self-supervised learning in text and image domains, approaches to
tailor its application to tabular data are still in their infancy. Based on the self-supervised
concepts of contrastive learning and pretext tasks [4], several papers are taking steps to
accommodate this early gap in applicable domains. The gap mainly stems from the tasks
that are commonplace among images and text not applying to tabular data due to its
differences in spatial and semantic relationships, both of which are usually non-existent
in tabular data. Furthermore, the tight combination of continuous and categorical data
is often unique to tables and provides further complications. Examples of tasks, such as
rotation of images and next-word prediction, have no clear equivalent for tables and must
be adapted. Despite early works of pretext tasks and contrastive approaches that are
relevant for tabular data showing promising results, self-supervised learning in this domain
remains largely unexplored.

Contribution: In this thesis, we introduce a previously established self-supervised learn-
ing framework for tabular data, namely VIME, to authentic real-world data in the form
of scarce healthcare datasets. We further propose a novel tabular self-supervised learn-
ing framework by introducing Mixup [1], a well-known framework for creating out-of-
distribution data points, as a pretext task by adding a mixing and restorative task. To
solve the pretext task, an encoder will learn to minimize their combined loss and thereby
construct a representation space containing useful information about the raw featured data.
Finally, we combine the representation outputs of VIME and Mixup in an attempt to gain
a more nuanced and wider view of the scarce data at hand.

1.1 Related Works

Self-supervised learning (SSL) is an unlabeled representation learning framework that
has garnered a great deal of attention as large language models (LLMs) have entered the

5

mainstream. To achieve training on unlabeled data, self-supervised learning utilizes two
approaches: contrastive learning and pretext task(s).

Contrastive learning is a framework where positive and negative samples are generated
from some anchor sample. Relative to this anchor, their representation vectors are then
pushed closer or further away in representation space with the help of a contrastive loss
[4]. This approach has not been used in this thesis although it has played a major part in
advancing the field of self-supervised learning.

Pretext tasks are predefined tasks that create auxiliary targets for the model. A common
scheme is to apply augmentations to the data such that the corrupted parts can become the
generated labels for the model to predict. The current and most well-known pretext tasks
are applicable only to text and images. Some of these include: image colorization, missing
patch prediction, rotation prediction, solving jigsaw puzzles [3], next-sentence prediction,
and masked-language modeling [5].

Exploration of pretext tasks that are applicable to tabular data has recently also been made.
In TabNet, Arik et al. (2020) use the popular transformer architecture to extract relevant
features [6]. Transformers introduce the concept of only using attention where the model
can capture the relationships of a data sequence and output a single representation of their
correlations by maintaining global dependencies between input and output [7]. In text, this
helps models understand the context of words in a long sentence, which other networks
might struggle to grasp. Furthermore, TabNet utilizes feature selection as a corruption
scheme during the learning process. In doing so, it is not wasting learning capacity on
irrelevant features, which ultimately makes it more efficient. Feature selection in TabNet is
a trainable step, mainly done by using a transformer-based masking process where the mask
is trained to selectively find the relevant features. By also utilizing attentive transformers,
a representation of the input is then created. This is later decoded and reconstructed into
tabular data using a transformer-decoder model. TabNet has shown promising results on
complex tabular data sets.

More recently, Hajiramezanali et al. (2022) introduced STab [8]; an attempt to move away
from the corruptive approach and introduce an augmentation-free framework that aims to
capture non-structured correlations as commonly found in tabular data. The paper argues
that the existing contrastive methods are domain-specific and are therefore inapplicable
to tabular structures. They also note that their performance heavily relies on access to
large computational resources. To solve this issue, STab employs a Siamese model with
two different encoders, both of which are subject to stochastic regularization at each layer.
To provide different views of the data, the regularizations differ between the encoders. A
contrastive, cosine distance loss then measures the similarity between the outputs and is
optimized. However, models like these commonly converge to trivial solutions. This is
overcome in STab by utilizing a stop-gradient operation technique [8].

Similarly, other works have applied Mixup as a pretext task, but this was done in the
context of images [9]. To our knowledge, this thesis is the first paper that introduces

6

Mixup as a self-supervised learning pretext task for tabular data.

2 Background theory

This section aims to introduce the general formulation of self-supervised learning and how
it can be used to stretch small data sets and help us extract information from very large
ones, as well as detailing the specific approaches relating to this thesis.

2.1 Supervised learning

In supervised learning, assume that we are given some labeled data Dl = {xn, dn}n=1...Nl
,

and in some cases also some unlabeled data Du = {xn}n=Nl+1...Nu where each xn ∈ X ⊆ Rd

is sampled independently from an unknown feature distribution PX , and each labeled data
pair Dl = (xn, dn) is sampled independently from a joint distribution PX,D [10]. Given a
labeled sample, a neural network outputs an estimation y(x, ω) of the conditional average
⟨d|x⟩, where ω are the weights of the network. In the learning procedure, the model then
minimizes the empirical supervised loss l(y(x, w), d). Here, l is some loss function, e.g.
mean-squared error for continuous values.

Supervised learning runs into issues when the labeled data set is limited, i.e. when Nl is
small. In this case, the model is very likely to overfit the training data as the empirical
supervised loss deviates from the expected supervised loss, E(l(y(x, w),x)), of the true
data distribution. Furthermore, apart from using regularization techniques, creating a
large labeled data set to circumvent this issue while also increasing model performance is
often very costly and time-consuming.

In self-supervised learning, the final step of training is often supervised, commonly referred
to as the ”downstream task”. The pre-trained model, trained using self-supervision, is
then adapted, or ”fine-tuned”, to perform well on the original task of predicting dn. This
proceeds using normal supervised learning where the loss then backpropagates through the
joint predictive and pre-trained models.

2.2 Self-supervised learning

Self-supervised learning is a representation learning framework that utilizes the entirety of
D = Dl +Du by forming auxiliary labels ds ∈ Ds from augmentations of x. Although, if
Du does not exist, the entirety of D will consist of Dl momentarily stripped of its proper
labels. This process is often called pretext task or pretext learning where the tasks of
predicting ds require finding relationships that are challenging enough and are appropriate
for the downstream task, i.e., when we fine-tune the model afterward using only Dl. In this

7

way, the model can extract relevant information and construct informative representations
of D as dictated by the pretext task.

To this purpose, self-supervised learning employs an encoder e(x) which takes an aug-
mented sample xs ∈ X and outputs a representation z ∈ Z as e : X → Z. The repre-
sentation can then be optimized with e.g. classification or restoration of x by having a
predictive model estimate ds, where the constructed labels here have retained some origi-
nal information about x. In computer vision, the rotation of an image is often used where
the labels ds hold the angle of the rotation. An encoder and a predictive model are then
employed to estimate it. The predictive model can be written as h(z) and performs the
transformation h : Z → Ds. It is jointly trained along with the encoder during the pretext
learning. Learning proceeds by minimizing the expected loss function,

min
e,h

E(xs,ds)∼PXs,Ds
[ls(ds, (h ◦ e)(xs))],

where ls is some standard loss function and PXs,Ds is our pretext distribution as generated
by the pretext task. As we can create a labeled pair (xs, ds) for every sample in D, we are
estimating the expected objective function and not the empirical function, and therefore,
albeit depending on the augmentations, it is usually very difficult for the model to overfit.
The representation space found by the encoder is commonly called an embedding [11] where
it has embedded a, usually, high-dimensional vector xs, in a lower-dimensional space. In
this case, placing correlated inputs in some spatial manner.

Following self-supervised training, the encoder is then decoupled from the rest of the system
and used along with a new predictive model hl(z) for the downstream task, which is the
same task as for supervised learning. Ideally, the pre-trained representations z = e(x)
that are output by the encoder when training hl to predict the actual labels dn ∈ Dl now
contain better correlative information about x, which might improve performance. The
degree of improvement is highly dependent on the pretext task which is therefore the focus
of this thesis.

2.3 VIME

VIME (Value Imputation and Mask Estimation) is an autoencoder-based model proposed
by Yoon et al. (2020) that adapts the self-supervised pretext tasks to tabular data [2].
Tabular data has up until recently been inaccessible to the existing pretext tasks as they
are only relevant for images and text where spatial or semantic relationships are utilized.

VIME proposes a novel augmentation scheme by masking parts of the table, imputing
the masked values by other existing values of the same column, and then introducing
two pretext tasks: estimating the mask vector and restoring the original sample. The
augmentation proceeds as follows: A mask generator outputs a binary mask vector m =
[m1, ...,md]

⊤ ∈ {0, 1}d where each mi is randomly chosen from pm = Πd
j=1Bern(mi|pm), i.e.

a Bernoulli distribution with probability pm. Taking this mask vector and a sample from

8

Figure 1: A diagram of the VIME framework for tabular data as given in the paper [2]. A
pretext generator with input from a mask generator and an unlabeled dataset Du generates
a corrupted sample x̃. An encoder takes this as input and generates a representation z.
Using z, two estimators, sr and sm, predict two different pretext tasks: feature vector
estimation, and mask vector estimation to optimize the encoder representations. Their
joint loss backpropagates through all models.

Du as input, a pretext generator gm : X × {0, 1}d → X overlays the mask vector on top of
the sample vector and then imputes the masked positions with other random values of the
same column. This process can be written as

x̃ = gm(x,m) = m⊙ x̄+ (1−m)⊙ x,

where x̄ is a column-wise shuffled version of the sample x. Column-wise shuffling of the
augmented sample maintains the categorical and continuous separation of the columns, as
opposed to mixing them and possibly leading the model astray. To this end, if several
categorical columns are related and mutually exclusive, as will be the case for our study,
we have taken the liberty of masking all of them if one is randomly chosen.

The amount of randomness, partially controlled by the hyperparameter pm, sets the dif-
ficulty for the model and must be fine-tuned. If too many values are removed the model
will not find any correlations, and if too few are removed, it will not challenge the model
enough, possibly leading to dimensional collapse [12].

Given the corrupted sample x̃, the encoder e transforms the sample to a representation z.
This is given as input to two predictive models with separate pretext tasks: mask vector
estimation and feature vector estimation. The masked vector estimator sm : Z → [0, 1]d,
outputs a vector m̂ = (sm ◦ e)(x̃) that predicts which features have been replaced in x̃.
The feature estimator sr : Z → X returns x̂ which is an estimate of x.

The entire architecture consisting of e, sm, and sr is jointly trained by minimizing the
expected loss

min
e,sm,sr

Ex∼pX ,m∼pm,x̃∼gm(x,m)[lm(m, m̂) + α · lr(x, x̂)],

9

where lm is the binary-cross entropy loss function, lr is the mean squared error, and α is
a hyperparameter that weighs the two losses against each other, giving priority to either.
The encoder can then be decoupled and used for supervised downstream training on the
labeled data set Dl. Figure 1 depicts an overview of VIME.

The model as it has been presented here will be used on our specific scarce data sets to
analyze its usefulness and act as a benchmark. The semi-supervised part that was included
in the original paper will not be included here as it is not the focus of this thesis.

2.4 Proposed model: Mix Encoder

This section introduces Mixup as a novel augmentation scheme for pre-training tabular
encoders. It follows the same principles and ideas as VIME, albeit with different corruptions
of the feature data.

The main concept of Mixup is to generate in-between samples of a labeled data set Dl

by mixing two different input feature vectors and their target labels. In doing so, the
labeled data set is extended and can obtain a more generalized performance on out-of-
distribution data points. The process operates on the premise that linear interpolations of
feature vectors should lead to linear interpolations of the associated targets. A problem, as
pointed out by Yoon et al. [2], is that this approach fails when the original data manifold
is non-convex, i.e., when we incorporate categorical as well as continuous values, as is very
common in tabular data.

Our proposed model, Mix Encoder, instead introduces Mixup as a representation learning
framework where mixing can help the encoder separate differences between samples and
find their correlations by introducing two pretext tasks: mix estimation and feature vec-
tor estimation. The pretext mixing introduces a mixing parameter λ ∈ [0.5, 1] which is
randomly drawn from a beta distribution as λ ∼ Beta(α, β). This mixing parameter is
shifted towards 1 and controls the amount of mixing between a leading sample xi ∈ X and
another randomly drawn sample xj ∈ X . See Appendix A for a detailed explanation of
how λ is generated. The resulting mixed vector x̃ is thus given by

x̃ = λxi + (1− λ)xj.

As before, an encoder e(x) takes x̃ as input and generates a representation z. Two different
predictive models, here named hm, and hr, take this as input and collaboratively estimate
λ and xi. In detail, the two models are,

• Mix parameter estimator: hm : Z → [0, 1] takes z as input and outputs an
estimation λ̂ = (hm ◦e)(x̃) of the mixing parameter λ which is shifted towards 1 such
that xi obtains the largest fraction of its values in x̃.

• Feature vector estimator: hr : Z → X takes z as input and outputs x̂ = (hr ◦
e)(x̃), an estimation of xi, the leading mixed feature vector.

10

The encoder and the predictive models together minimize the expected loss

min
e,hm,hr

Exi∼pX ,xj∼pX ,λ∼Beta(α,β)[lm(λ, λ̃) + θ · lr(x, x̂)],

where both lm and lr are the mean-squared error function. Following training, the same
type of supervised fine-tuning as before can be done using the labeled samples of Dl. An
overview of the Mix architecture can be seen in Figure 2.

Figure 2: A diagram of the Mix framework for tabular data. A lambda generator with
input from an unlabeled dataset Du generates a corrupted sample x̃. An encoder takes
this as input and generates a representation z. Using z, two estimators, hr and hm, predict
two different pretext tasks: feature vector estimation, and mix estimation to optimize the
encoder representations. Their joint loss backpropagates through all models.

2.5 Combined Encoder

As an additional study, we analyze the practicality of combining the outputs of two different
encoders when fine-tuning for our downstream task. The two pre-trained encoders, trained
using VIME and Mix, will have their outputs concatenated to a single representation zc
which is then fed into a predictive model.

In more detail, given a VIME representation zv = (zv1, zv2, ..., zvN) and a Mix representa-
tion zm = (zm1, zm2, ..., zmN), the combined representation can be written as

zc = zv
⌢zm = (zv1, zv2, ..., zvN , zm1, zm2, ..., zmN).

A predictive model hc(zc) takes this as input and performs the same supervised training
as before by predicting the labels dn of our downstream task.

11

3 Method

3.1 Breast cancer dataset

As our main study, analysis of the models has been carried out on the so-called ”N0
dataset”; an internal breast cancer dataset used here at Lunds University [13]. It contains
800 data points, 27 features, and 1 target class. The target, N0, denotes whether the can-
cer has spread to the lymph nodes (N0=1 no lymph node metastasis, N0=0 lymph node
metastasis detected). The other features are data taken from a real healthcare setting.
Some of the features include: Age, weight, height, tumor size, tumor localization, histolog-
ical type, and estrogen receptor (positive or negative). Some features are continuous and
some are categorical. Among the categorical, several features, namely diagnosis and posi-
tion, are separated into several columns although they are mutually exclusive. To prevent
the model from inferring these values from its related columns, should they be corrupted,
instead of inferring from other features, we will mask all of the related columns should one
be randomly chosen. This is only an issue when using VIME.

For self-supervised learning, we compare Mix Encoder and Combined Encoders against
VIME. As a benchmark, both these pre-training models are also compared against an
MLP (Multilayer Perceptron).

3.2 Early classification of diabetes dataset

As an additional study, an early classification of diabetes dataset is used [14]. The purpose
of this study is to further analyze the viability of our pre-training, as well as compare the
models on even smaller training data sizes where pre-trained models are expected to have
an advantage. The same evaluations as for the breast cancer dataset are applied here.

The dataset contains 520 data points, 16 features, and 1 target class. Some of its fea-
tures include: Age, gender, polyuria, sudden weight loss, delayed healing, polyphagia, and
alopecia. Non-neural approaches to this dataset, such as XGBoost [15], have shown near-
perfect accuracy and precision scores (99%) on this dataset [16]. As our study concerns the
improvements self-supervised learning can grant neural networks, our benchmark is yet an
MLP.

3.3 Model validation

Model validation is based on predicting the proper labels of the downstream task. To
assess downstream model performance, pre-training and fine-tuning have been carried out
in the following way:

For pre-training, the dataset is stripped of its proper labels and the self-supervised models

12

are pre-trained on 90% of the unlabeled data points. The remaining 10% is used as valida-
tion data to monitor pre-training performance. Monitoring is important to find appropriate
hyperparameters and avoid overtraining, should it occur.

Given pre-trained encoders, downstream fine-tuning on the dataset with the proper labels
can be done. To gain a broader understanding of the viability of the models, the models
are fine-tuned on varying sizes of the training data. The dataset is therefore split randomly
where the randomization is controlled using a seed. Between seeds, the training and val-
idation data are thus different. For a given training size, we take the mean of a model’s
validation performance across several seeds to acquire its estimated performance. Note
that as the size of the training data varies, the validation size remained at a constant 25%
of the training data across all seeds. K-fold cross-validation is used to find appropriate
hyperparameters across the different sizes. For replicability, all models are initialized the
same, using Xavier initialization [17].

Also, when fine-tuning, loss only backpropagates through the pre-trained encoders after
300 epochs, such that the prediction heads can adjust before optimizing the embeddings.

Before any training, we use z-score normalization [18] to normalize both datasets. Further-
more, as we are analyzing small training splits, regularization during supervised fine-tuning
is necessary to avoid overfitting. We have used L2 regularization on all downstream mod-
els. Lastly, if no validation loss improvement is seen within 70 epochs, the learning rate is
reduced. This is known as ”reduce learning rate on plateau” in PyTorch; a type of early
stopping.

Performance for all models will be evaluated with AUC [19].

4 Results

In this section, we evaluate the methods and present the results of pre-training and fine-
tuning our models on both datasets. Once an appropriate size for the MLP benchmark
had been found, this became the prediction heads for all other models. Throughout this
analysis, the prediction heads across all models therefore consisted of 3 layers. The hidden
size for each layer is equal to the number of input features. Naturally, this doubles the
nodes of the Combined Encoder compared to the other models. Other hyperparameters
can be found in Appendix A. Implementation of all models has been made using PyTorch
and can be found on GitHub1.

1https://github.com/msvenssons/Mix-Encoder

13

4.1 Pre-training results

For pre-training, all of VIME’s and Mix’s models consist of 2 and 3 layers respectively, and
for each dataset, the encoders are trained on 90% of the available data while the remaining
is used for validation. Pretext learning and downstream performance depend heavily on
hyperparameters, especially pm and λ, for VIME and Mix respectively.

Example validation curves showing the VIME and Mix encoders optimizing their embed-
dings can be seen in Figures 3 and 4. The hyperparameters have mostly been kept the
same between the figures. However, in Figure 3, the pretext task for each model is made
more difficult to show an example curve of when the models struggle to find relationships.
There, pm = 0.6, and for Mix, λ ∼ 0.5 ≤ Beta(2, 1) ≤ 1. Similarly, for Figure 4, pm = 0.2
and λ ∼ 0.7 ≤ Beta(5, 1) ≤ 0.9 (if λ ≥ 0.9 then λ = 1; see Appendix A). Note that Mix
reaches roughly the same loss, albeit with much more noise, for both runs.

(a) VIME (b) Mix

Figure 3: Validation loss when pre-training VIME and Mix encoders with bad pm and
λ on the early classification of diabetes dataset. Each encoder is trained on 90% of the
dataset and validated on the remaining 10%. For VIME, pm = 0.6, and for Mix, λ ∼ 0.5 ≤
Beta(2, 1) ≤ 1.

14

(a) VIME (b) Mix

Figure 4: Validation loss when optimizing VIME and Mix encoders on the early classifica-
tion of diabetes dataset. Each encoder is trained on 90% of the dataset and validated on
the remaining 10%. For VIME, pm = 0.2 and for Mix, λ ∼ 0.7 ≤ Beta(5, 1) ≤ 0.9. Note
that, if λ ≥ 0.9 then λ = 1.

4.2 Downstream results

To acquire the desired downstream performances, all models were tasked with predicting
the proper labels dn on varying sizes of the labeled training data: 25%, 37.5%, 50%, 62.5%,
75% for breast cancer and 10%, 26.25%, 42.5% 58.75%, 75% for diabetes. In the process,
the encoders became fine-tuned to perform well on this task. The experiments were then
run over 10 different seeds for the 5 different escalating training sizes. The results can be
found in Figure 5.

Figure 5a shows the AUC performance of all models on the breast cancer dataset for each
training size. Our results show that Mix outperformed the other models on all training
sizes. Moreover, for training sizes 37.5%, 50%, 62.5%, and 75% of the entire dataset,
Combined also outperformed VIME and the benchmark MLP. On the smallest training
size, 25%, the uncombined pre-trained models both exhibited higher performance than the
benchmark MLP, as expected.

Figure 5b shows the AUC performance of all models on the diabetes dataset. Here, the
Combined Encoder outperformed the other models on all training sizes. The results fur-
ther reveal that on sizes 42.5%, 58.75%, and 75%, the pre-trained models showed a clear
improvement over the benchmark. Meanwhile, Mix exhibited the lowest performance on
both 10% and 26.25%.

Note that, for both datasets, all pre-trained models exhibited a higher AUC performance
than the benchmark MLP for sizes >50%.

15

Tables detailing the AUC scores of the important limits, 10%/25%, and 75% of the available
data, can be found in Tables 1 and 2 respectively.

(a) Breast cancer dataset (b) Diabetes dataset

Figure 5: AUC scores for MLP, VIME, Mix, and Combined encoders on the breast cancer
and diabetes datasets. Results are given as the mean of 10 runs with different randomized
data splits and evaluated on different sizes of the training data.

Table 1: AUC scores when using 25% (breast cancer) and 10% (diabetes) of the available
data for downstream training on all models (the higher the better). Each mean and
standard deviation is computed over 10 different seeds.

Model Breast cancer Diabetes

MLP 0.7017 ± 0.0100 0.9504 ± 0.0044
VIME 0.7047 ± 0.0088 0.9493 ± 0.0065
Mix 0.7079 ± 0.0069 0.9435 ± 0.0048

Combined 0.6952 ± 0.0099 0.9539 ± 0.0043

Table 2: AUC scores when using 75% of the available data for downstream training on all
models (the higher the better). Each mean and standard deviation is computed over 10
different seeds.

Model Breast cancer Diabetes

MLP 0.7298 ± 0.0099 0.9840 ± 0.0014
VIME 0.7348 ± 0.0088 0.9861 ± 0.0014
Mix 0.7378 ± 0.0077 0.9905 ± 0.0013

Combined 0.7355 ± 0.0085 0.9940 ± 0.0009

16

4.3 t-SNE analysis

In this section, we visualize the latent representations of each model using t-SNE (t-
Distributed Stochastic Neighbour Embedding) [20]. An overview of this method can be
found in Appendix B. To obtain these results, t-SNE was implemented using sklearn’s
library and applied to the latent representations of the MLP, VIME, Mix, and Combined
Encoder for both the breast cancer and diabetes datasets. The visualized data points are
representations of the validation data for seed 2127 with fine-tuning being done on 75%
of the training data. Note that these are therefore representations that contributed to the
downstream results (same hyperparameters).

(a) MLP (b) VIME

(c) Mix (d) Combined

Figure 6: t-SNE analyses of the breast cancer validation data for seed 2127 with 75% of
the remaining training data used for fine-tuning.

17

(a) MLP (b) VIME

(c) Mix (d) Combined

Figure 7: t-SNE analyses of the diabetes validation data for seed 2127 with 75% of the
remaining training data used for fine-tuning.

As can be seen in Figure 6, the pre-trained models demonstrate a clearer attempt at
separating the classes of breast cancer data compared with the MLP. Comparing Mix
with VIME, Mix arguably finds a clearer separation. This also becomes evident in the
Combined representation as it utilizes most of Mix’s representation. Figure 7 shows that
the high performance on the diabetes dataset corresponded to a clear separation of the
representations for all models. The distinct difference between Mix and VIME is the
respective dense and sparse separations. In this case, it can be seen that Combined Encoder
optimized its representations by inheriting the dense clusters of Mix, but with the shape
and divisions of VIME.

18

5 Discussion

The results gathered in this research show that our proposed model, Mix Encoder, con-
stitutes a viable pre-training model by exhibiting the highest AUC performance across all
sizes on the breast cancer dataset. For most training sizes, our Combined Encoder also
outperformed VIME and the benchmark MLP. Still, given the large variation for all mod-
els, a larger set of seeds would be preferable for further analysis. This would come to the
detriment of computation times.

A clearer result is shown on the diabetes dataset where the Combined Encoder exhibits the
highest AUC performance across all sizes. And, for larger training sizes, Mix outperformed
both VIME and the MLP and remained the highest performer of its size. Surprisingly,
however, VIME and Mix performed the worst on both the 10% and 26.25% sizes.

These downstream results of VIME, Mix, and Combined depend on the pre-training pro-
cess. For both approaches this process is stochastic. Due to this, large jumps during
training can be seen in Figure 4. As a consequence, the fully trained representation space
might have been subject to a difficult final pretext step and therefore had a poorer repre-
sentation space than that of a previous epoch. Variance of this kind originates from the
design of the pretext tasks and is a limitation of the model. Here, Mix shows a more stable
training procedure than VIME.

Why does this work? As interpreting and understanding deep neural networks is no-
toriously difficult, in this study we only gather an intuitive view as to why Mix Encoder
achieves good performance. In comparison to VIME, Mix does not attempt to find cor-
relations by discretely looking at surrounding features, instead, it continuously compares
all features of a patient to all features of another patient and has to reconstruct them
entirely. For certain datasets, this could be a more efficient approach, especially if only
a few features are correlated which might not be captured by VIME. Whether or not the
datasets are suitable for representation learning therefore greatly affects the applicability
of pre-trained models. If the dataset is simple, other methods, such as XGBoost, could
provide better results. Given that the dataset is somewhat suitable, demonstrated using
t-SNE, we have shown that Mix Encoder might provide better performance than state-
of-the-art models such as VIME. Combined Encoder on the other hand is an attempt to
minimize the shortcomings of both pre-training methods by supplying two views of the
same object. The latent vector does, however, become doubled. It is also possible that the
performance gained by doing this is limited by the inferior representation such that the
combined representation simply confuses the model.

Analysis of proper hyperparameters for pre-training models is another important aspect
that requires further study to draw more certain conclusions about its viability on scarce
datasets. The hyperparameters used here are approximated to obtain good results but
could be better given proper study. Yoon et al. [2] carried out a detailed hyperparameter
analysis of pre-training VIME in the context of the MNIST dataset. This has been taken
into consideration here.

19

On the topic of pre-training, this study is limited by information leaks potentially occurring
during the pre-training stage as most of the dataset is used for this purpose. The impact
of this is difficult to estimate but could lead to some of the overfitting issues. In the same
vein, a dedicated test set is also important to avoid overfitting on validation data. To
obtain a large range of different data sizes it was omitted in this study and we instead
opted for a randomized approach.

Important to note is that the diabetes dataset was analyzed in a shorter amount of time
and has less optimized hyperparameters.

6 Conclusion

In this thesis, we have analyzed the viability of pre-trained models on tabular data. By
using VIME and introducing a novel pre-training scheme, Mix Encoder, we have shown that
a signal can be found in tabular data by utilizing self-supervised learning. Our proposed
model shows higher AUC performance on breast cancer predictions compared to state-of-
the-art pre-training, namely VIME, and a benchmark MLP. Furthermore, by combining
the representations of two different pre-trained models, a strong signal was possibly found
when classifying early onsets of diabetes, as compared with an MLP and the respective
pre-trained models of their own. However, further studies should be made.

Acknowledgments

I would like to thank Mattias Ohlsson for his great supervision and input throughout this
entire project. I would also like to thank family and friends for their support during this
time. A special thanks to Linus, for the endless curiosity you had.

A Appendix

This appendix contains all hyperparameters that were used in this thesis. Table 3 shows
hyperparameters used in pre-training VIME and Mix while Tables 4, 5, 6, and 7 show
hyperparameters used when training/fine-tuning the models for the downstream task. All
models used the ReLU (Rectified Linear Unit) activation function and the Adam optimizer.

The seeds used for the 10 different runs were: 2127, 10291, 61691, 912811, 44444, 7562,
5678910, 192927, 58517, and 5607.

20

A.1 Mix parameter generation

The mix parameter λ is generated using a Beta distribution as λ ∼ Beta(α, β). The
values of α and β can be adjusted to shift the probability distribution towards 1 such that
we are more likely to generate larger values. While doing so, we also set thresholds for
which values λ can take. In general, λ ∼ lower bound ≤ Beta(α, β) ≤ upper bound. If
the generated value is below the lower bound, we set λ = lower bound. Likewise, if the
generated value is above the upper bound, we set λ = 1. The shifting and thresholds are
implemented in order to adjust the pretask difficulty.

A.2 Pre-training

Table 3: A table of the hyperparameters used to pre-train VIME and Mix Encoder for the
breast cancer/diabetes dataset as seen in Figure 3. Note that if λ = Beta(5, 1) ≥ 0.9 then
λ = 1.

VIME Mix

Epochs 2500/7000 15000/50000
Batch size 400/200 400/200
Learning rate 0.0001 0.0001
α/θ 3.0 1.0
Training size 0.9 (90%) 0.9
pm 0.2 None
λ None 0.7 ≤ Beta(5, 1) ≤ 0.9

A.3 Downstream training - Breast cancer

Table 4: A table of the hyperparameters used for supervised training of all models on
the breast cancer dataset. The number of epochs varies due to varying sizes, but this is
handled in the code given a target number of steps.

MLP VIME Mix Combined

Steps 4000 3000 3000 3000
Batch size 200 200 200 200
Learning rate 0.0001 0.0001 0.0001 0.0001

21

Table 5: A table of the training sizes and the respective L2 for each downstream model.
The L2 for VIME’s and Mix’s encoders was 0.01 for all sizes. The sizes are given as fractions
of the entire dataset.

Training sizes: 0.25 0.375 0.5 0.625 0.75

MLP 0.06 0.058 0.056 0.054 0.04
VIME 0.038 0.028 0.028 0.026 0.02
Mix 0.06 0.059 0.058 0.057 0.055

Combined 0.05 0.049 0.048 0.047 0.045
Combined (encoder) 0.05 0.045 0.035 0.025 0.015

A.4 Downstream training - Diabetes

Table 6: A table of the hyperparameters used for supervised training of all models on the
diabetes dataset. The number of epochs varies due to varying sizes, but this is handled in
the code given a target number of steps.

MLP VIME Mix Combined

Steps 4000 4000 4000 4000
Batch size 200 200 200 200
Learning rate 0.0001 0.0001 0.0001 0.0001

Table 7: A table of the training sizes and the respective L2 for each downstream model.
The L2 for VIME’s and Mix’s encoders was 0.01 and 0 for Combined’s encoder, for all
sizes. The sizes are given as fractions of the entire dataset.

Training sizes: 0.1 0.2625 0.425 0.5875 0.75

MLP 0.063 0.062 0.061 0.03 0
VIME 0.05 0.03 0.02 0.005 0.005
Mix 0.08 0.06 0.01 0.005 0.005

Combined 0.005 0.005 0.005 0.005 0

B Appendix

This appendix aims to give a short explanation of SNE and t-SNE.

Created by Geoffrey Hinton and Laurens van der Maaten (2008), t-SNE (t-Distributed
Stochastic Neighbour Embedding) is a method of visualizing high-dimensional data on
a two- or three-dimensional map [20]. The method originates from normal SNE and is
adapted to be easier to optimize and produce better visualization.

22

The main idea of SNE is to convert the high-dimensional Euclidean distances between
data points into conditional probabilities. These conditional probabilities can then be
interpreted as similarities. Thus, pj|i is the conditional probability that xi would pick xj as
its neighbor from a Gaussian distribution. In this way, it is very unlikely for two dissimilar
points to be picked as neighbors. We can write the conditional probability as

pj|i =
exp(∥xi − xj∥2/2σ2

i)∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i)
,

where σi is the variance of our Gaussian, which can be estimated. A similar conditional
probability can be computed for the low-dimensional counterparts of xi and xj. Denote
these as yi and yj and the probability can be written as

qj|i =
exp(∥yi − yj∥2)∑

k ̸=i exp(−∥yi − yk∥2)
.

The goal of SNE is to find a pair of data points such that the discrepancy between the
conditional probabilities pj|i and qj|i is minimized. A good measure for this discrepancy is
the Kullback-Leibler divergence which is used as a cost function,∑

i

KL(Pi∥Qi) =
∑
i

∑
j

pj|ilog
pj|i
qj|i

.

Here, Pi is the conditional probability for all other high-dimensional data points given an
xi, and Qi is the conditional probability for all other low-dimensional data points given an
yi. Normal SNE, which follows this approach, can be subject to a ’crowding problem’. To
solve this issue, t-SNE changes the cost function by using a Student t-distribution instead
of a Gaussian and modifying the SNE cost function such that it is symmetrized.

References

[1] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In: CoRR abs/1710.09412
(2017). arXiv: 1710.09412. url: http://arxiv.org/abs/1710.09412.

[2] Jinsung Yoon et al. “VIME: Extending the Success of Self- and Semi-supervised
Learning to Tabular Domain”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 11033–
11043. url: https://proceedings.neurips.cc/paper_files/paper/2020/file/
7d97667a3e056acab9aaf653807b4a03-Paper.pdf.

[3] Veenu Rani et al. “Self-supervised Learning: A Succinct Review.” In: Archives of
Computational Methods in Engineering: State of the Art Reviews 30.4 (2023), pp. 2761–
2775. issn: 1134-3060. url: https://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&

amp;db=edssjs&AN=edssjs.9DAA2316&site=eds-live&scope=site.

23

https://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1710.09412
https://proceedings.neurips.cc/paper_files/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7d97667a3e056acab9aaf653807b4a03-Paper.pdf
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.9DAA2316&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.9DAA2316&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.9DAA2316&site=eds-live&scope=site

[4] Xiao Liu et al. “Self-supervised Learning: Generative or Contrastive”. In: CoRR
abs/2006.08218 (2020). arXiv: 2006.08218. url: https://arxiv.org/abs/2006.
08218.

[5] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. url:
http://arxiv.org/abs/1810.04805.

[6] Sercan Ömer Arik and Tomas Pfister. “TabNet: Attentive Interpretable Tabular
Learning”. In: CoRR abs/1908.07442 (2019). arXiv: 1908.07442. url: http://
arxiv.org/abs/1908.07442.

[7] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017).
arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[8] Ehsan Hajiramezanali et al. “STab: Self-supervised Learning for Tabular Data”. In:
NeurIPS 2022 First Table Representation Workshop. 2022. url: https://openreview.
net/forum?id=EfR55bFcrcI.

[9] Yichen Zhang et al. Mix-up Self-Supervised Learning for Contrast-agnostic Applica-
tions. 2022. arXiv: 2204.00901 [cs.CV].

[10] Patrik Edén Mattias Ohlsson. “Introduction to Artificial Neural Networks and Deep
Learning”. In: Computational Biology and Biological Physics - Department of As-
tronomy and Theoretical Physics - Lund University (Fall 2022).

[11] Google. “Embeddings”. In: (2022). url: https : / / developers . google . com /

machine-learning/crash-course/embeddings/video-lecture.

[12] Li Jing et al. “Understanding Dimensional Collapse in Contrastive Self-supervised
Learning”. In: CoRR abs/2110.09348 (2021). arXiv: 2110.09348. url: https://
arxiv.org/abs/2110.09348.

[13] Dihge L et al. “Artificial neural network models to predict nodal status in clinically
node-negative breast cancer”. In: Bmc Cancer, 19, Article 610 (2019). url: https:
//doi.org/10.1186/s12885-019-5827-6.

[14] M. M. Faniqul Islam et al. “Likelihood Prediction of Diabetes at Early Stage Using
Data Mining Techniques”. In: Computer Vision and Machine Intelligence in Medical
Image Analysis. Ed. by Mousumi Gupta et al. Singapore: Springer Singapore, 2020,
pp. 113–125. isbn: 978-981-13-8798-2. url: https://doi.org/10.1007/978-981-
13-8798-2_12.

[15] Wikipedia. “XGBoost”. In: (2024). url: https : / / en . wikipedia . org / wiki /

XGBoost.

[16] Pratham Thakral. “Diabetes — EDA Prediction — Bangladesh”. In: (2023). url:
https://www.kaggle.com/code/pthakral1998/diabetes- eda- prediction-

bangladesh.

24

https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.07442
http://arxiv.org/abs/1908.07442
http://arxiv.org/abs/1908.07442
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=EfR55bFcrcI
https://openreview.net/forum?id=EfR55bFcrcI
https://arxiv.org/abs/2204.00901
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2110.09348
https://doi.org/10.1186/s12885-019-5827-6
https://doi.org/10.1186/s12885-019-5827-6
https://doi.org/10.1007/978-981-13-8798-2_12
https://doi.org/10.1007/978-981-13-8798-2_12
https://en.wikipedia.org/wiki/XGBoost
https://en.wikipedia.org/wiki/XGBoost
https://www.kaggle.com/code/pthakral1998/diabetes-eda-prediction-bangladesh
https://www.kaggle.com/code/pthakral1998/diabetes-eda-prediction-bangladesh

[17] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: International Conference on Artificial Intelligence
and Statistics. 2010. url: https://api.semanticscholar.org/CorpusID:5575601.

[18] J Behboodian and Akbar Asgharzadeh. “On the distribution of Z-scores”. In: Iranian
Journal of Science Technology, Transaction A 32 (Dec. 2008).

[19] Google. “Classification: ROC Curve and AUC”. In: (2022). url: https://developers.
google.com/machine-learning/crash-course/classification/roc-and-auc.

[20] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605. url: http://
jmlr.org/papers/v9/vandermaaten08a.html.

25

https://api.semanticscholar.org/CorpusID:5575601
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

	Introduction
	Related Works

	Background theory
	Supervised learning
	Self-supervised learning
	VIME
	Proposed model: Mix Encoder
	Combined Encoder

	Method
	Breast cancer dataset
	Early classification of diabetes dataset
	Model validation

	Results
	Pre-training results
	Downstream results
	t-SNE analysis

	Discussion
	Conclusion
	Appendix
	Mix parameter generation
	Pre-training
	Downstream training - Breast cancer
	Downstream training - Diabetes

	Appendix

