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Abstract

Some numerical methods approximate the Jacobian using finite differences as
part of their process. The finite difference method of approximation resem-
bles the limit definition of the derivative. Since a computer cannot handle
the mathematical concept of limits, a sufficiently small number has to be
chosen as an increment. However, when the increments are chosen outside of
certain acceptable ranges, we need to account for error stemming from issues
regarding representability. In this thesis we will look at the mathematical
limitations of the increments. We will also go over how they are chosen in 3
different solvers, and suggest ways to improve upon them.

Populärvetenskaplig sammanfattning

Inom matematik så används något som kallas derivator för att beräkna förän-
dring. Ett exempel är hastighet som är positionens derivata. När man up-
pskattar hastighet så dividerar man förflyttningssträckan med tidsåtgången.
För att ge en mer precis uppskattning för hastigheten i stunden så kan man
då minska tiden man beräknar över. När detta görs på datorer så stöter man
på problem när stegen blir för små. Detta grundar sig i hur datorer lagrar
information. Det blir helt enkelt problem när man försöker summera ett stort
och litet tal. Lite förenklat så kan datorn inte se skillnaden på hastigheten
vid 15 minuter efter fyra och 15 minuter och 113 miljontedels sekunder efter
fyra. Detta arbete ser över de matematiska begränsningarna för hur denna
tidsskillnad kan väljas, och hur det praktiskt görs i 3 olika simuleringsalgo-
ritmer. Vi föreslår sedan hur förbättringar skulle kunna göras.
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Chapter 1

Introduction

Simulations play an increasingly important role in industry. There are several
advantages to being able to test a theory or model in a computer simulation
instead of manufacturing prototypes. Most obvious are the financial and
ecological savings that follow from having less prototypes. Another is the
possibility of more technical progress when more ideas can easily be tested.

One widely used standard for setting up simulations is the Functional
Mock-Up Interface (FMI) [1] standard. The FMI standard has been in de-
velopment for over a decade. Version 1.0 was released in October 2010 and
version 3.0 was released in May of 2022. It is developed as a Modelica
Association Project [2] along the Modelica language [3] and the Modelica li-
braries [4]. The problems are stored as Functional Mock-Up Units or FMUs.
It is a well established standard which means that if a model is defined as
an FMU it can easily be handled by a range of different softwares without
the need to rebuild it. One important advantage is also that FMUs do not
reveal the inner workings of the model which could very well contain trade
secrets.

FMI defines two types of models [5, p.3]. In this thesis we will consider
model exchange FMUs, these contain a model to be solved using external
tools. These FMUs make all the information necessary for a solver to perform
a simulation available. The other type, co-simulation FMUs, are used for
coupled models. They contain not only the model but also a solver. Because
of this the FMUs can keep much more information hidden, exposing only the
ability to make time steps.

The idea for this thesis comes from the company Modelon. Modelon de-
velops PyFMI [5], an open-source Python package for interacting with FMUs.
They had experienced performance issues with two of the ODE solvers they
use, called CVode [6, p.366] and Radau5 [7, p.118]. Both of these solvers
build on implicit methods and at each timestep they use versions of New-
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2 CHAPTER 1. INTRODUCTION

ton’s method. Newton’s method utilizes the Jacobian, and when it is not
supplied by the user an approximation of it has to be made. The issue arose
when, instead of using the Jacobian approximation native to the methods, an
approximation defined in PyFMI was used. This led to the simulation need-
ing to take a lot more steps in order to finish. Since both the solvers and
PyFMI use a difference approximation [8, p.79], what sets the them apart is
how they choose the increments in the approximation.

Since the Jacobian is costly to approximate due to the number of function
evaluations, we instead use a simplified version of Newton’s method. The
simplified Newton’s method, or Chord method [8, p.76], reuses the Jacobian
as long as the result is satisfactory.

PyFMI has access to problem specific information from the FMU and uses
this to improve its performance. For example, PyFMI compresses the process
of approximating Jacobians by calculating directional derivatives of indepen-
dent state variables simultaneously [5, p.8]. PyFMI also utilizes the nominal
values of state variables stored in the FMU for choosing the increments in
the difference approximation.

An initial look at the models provided by Modelon indicated that some
of the simulations using PyFMIs Jacobian approximations got stuck and at-
tempted smaller and smaller timesteps. For some of the models this resulted
in the simulations needing a lot more steps to finish than when using the
methods Jacobians. Some of the models could not finish at all.

In this thesis we will make an in-depth analysis of the different error
sources for the difference approximation of the Jacobian. We will present a
mathematical motivation for how the increments in the approximation should
be chosen in order to control the error. We shall also see how the increments
are chosen in PyFMI, CVode and Radau5.

We will show that PyFMIs choice of increments based upon nominal
values is sub-optimal and suggest several ways it can be improved upon.

To this end we will first explain floating point numbers in chapter 3 and
the different errors in chapter 4. Then we will look at the different choices of
increments as they are made in PyFMI as well as in the solvers CVode and
Radau5 in chapter 5. The models used and the numerical experiments per-
formend are explained in chapters 6 and 7. Finally our findings are presented
in chapter 8.



Chapter 2

Preliminaries

In this thesis we consider a time dependent ODE of the form

ẏ(t) = f(t, y), y0 = y(t0)

with t ∈ [t0, tEND] and y ∈ RN . Using numerical methods we attempt to
approximate the result  y1

...
yEND

 ≈
 y(t1)

...
y(tEND)

 .

Numerical methods can be separated into two categories, explicit and
implicit. An s-step implicit scheme will depend on previous points as well as
the point solved for,

yn = Φ(tn, . . . , tn−s, y
n, . . . , yn−s), (2.1)

while an explicit would only use previously calculated points. As an example,
for the 1-step Implicit Euler method we have that

ΦIE(tn, tn−1, y
n, yn−1) = yn−1 + hnf(tn, y

n),

with step size hn = tn − tn−1.

In order to solve Equation (2.1) we reformulate it into the problem of
finding the value yn that is a root of

G(y) = y − Φ(tn, . . . , tn−s, y, y
n−1, . . . , yn−s).

There are several root finding algorithms to solve such problems. In this
thesis we will discuss Newton’s method and the simplified Newton’s method.

3



4 CHAPTER 2. PRELIMINARIES

2.1 Newton’s method
Newton’s method [8, p.71] is an iterative root finding algorithm. For a func-
tion G(y) = [G1(y), . . . , GN(y)]

T, y ∈ RN , it finds a root y∗ of G, with an
initial guess yn(0) through the iterative process

yn(m) = yn(m−1) −G′(yn(m−1))−1G(yn(m−1)) (2.2)

where yn(m) → y∗ as m→∞. The Jacobian, G′(y), is defined as

G′(y) :=


∂G1

∂y1
· · · ∂G1

∂yN... . . . ...
∂GN

∂y1
· · · ∂GN

∂yN

 .

Since the inversion of a matrix is very costly, an algorithm would use a
reformulation of Equation (2.2). The process instead becomes

yn(m) = yn(m−1) +∆yn(m−1),

where ∆yn(m−1) is found by solving

G′(yn(m−1))∆yn(m−1) = −G(yn(m−1)) (2.3)

using a linear solver [8, p.74].

With an initial guess close enough to a root, Newton’s method converges
q-quadratically [8, p.71]. This type of convergence is specified in Defini-
tion 2.1.1.

Definition 2.1.1. [8, p.65] Let {xn} ⊂ RN and x∗ ∈ RN . We say that xn

converges q-quadratically to x∗ if xn → x∗ and there is K > 0 such that∥∥xn+1 − x∗∥∥ ≤ K ∥xn − x∗∥2 ,

for n sufficiently large.

It can be shown that a suitable stopping condition for the iterative process
is the relation

∥∥G(yn(m))
∥∥ /∥∥G(yn(0))

∥∥ [8, p.72]. However, if the initial guess
yn(0) is too close to a root, or if there is an error in the evaluation of G, the
process may be stopped too late or not stopped at all. To account for this
we combine a relative and an absolute tolerance, as is common for numerical
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methods for ordinary differential equations [8, p.73]. We stop the Newton
iteration if ∥∥G(yn(m))

∥∥ ≤ γR
∥∥G(yn(0))

∥∥+ γA,

for some relative tolerance γR and absolute tolerance γA. Another possible
termination condition would be if the Newton iteration step∥∥yn(m) − yn(m−1)

∥∥
is sufficiently small [8, p.73].

2.1.1 Finite differences method

When we approximate the Jacobian of the vector valued function

G(y) = [G1(y), . . . , GN(y)]
T y ∈ RN

using the finite difference method [8, p.79] we have that the element at row
i and column j of the Jacobian is

Jij(y) =
Gi(y + σjδij)−Gi(y)

σj

≈ G′(y)ij

for some non-zero σj ∈ R, and δij the Kronecker delta [9],

δij :=

{
1 if i = j,

0 otherwise.

When σj > 0 we can also use the term Forward differences method and
otherwise Backward differences method.

In order to reduce the number of evaluations of the function G we evalu-
ating one column at a time. The jth column is approximated as

Jj(y) =
G(y + σjej)−G(y)

σj

for some non-zero σj ∈ R, and ej the unit vector. Since J ∈ RN×N we thus
need N +1 evaluations of G in order to approximate the Jacobian. However,
since G(y) is also used in the right hand side of Newton’s method, it will
already have been evaluated. This means we only need to make N function
evaluations for the Jacobian.
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2.1.2 Simplified Newton’s method

If we work with dense N ×N Jacobians, each iteration of Newton’s method
requires N + 1 evaluations of the function G. One for the right hand side
of Equation (2.3), and N for the Jacobian on the left hand side. For M
iterations on Newton’s method this means a total of M(N + 1) function
calls. The simplified Newton’s method, or Chord method [8, p.76], attempts
to reduce the number of function calls by only calculating the Jacobian at
the first Newton iteration and then reusing it. This loss of precision that this
entails could lead to more work performed, but this should be outweighed by
the savings made by reducing the number of function calls.

This method is given by

yn(m) = yn(m−1) − J−1
G (yn(0))G(yn(m−1)).

The drawback with using this simplified version of Newton’s method is
that the convergence rate is reduced. Instead of q-quadratic, the convergence
is q-linear [8, 76], a rate of convergence specified in Definition 2.1.2.

Definition 2.1.2. [8, p.65] Let {xn} ⊂ RN and x∗ ∈ RN . Then xn → x∗

q-linearly with q-factor υ ∈ (0, 1) if∥∥xn+1 − x∗∥∥ ≤ υ ∥xn − x∗∥ ,

for n sufficiently large.

By the triangle inequality we have that

∥xn − x∗∥ −
∥∥xn+1 − x∗∥∥ ≤ ∥∥xn+1 − x∗ − (xn − x∗)

∥∥
≤

∥∥xn+1 − x∗∥∥+ ∥xn − x∗∥ .

If the iteration is q-linearly convergent, it implies that

(1− υ) ∥xn − x∗∥ ≤
∥∥xn+1 − xn

∥∥ ≤ (1 + υ) ∥xn − x∗∥ .

Thus we have that the size of the iteration step is a reliable indicator of the
error, as long as υ is not too near 1 [8, p.73].

2.2 Radau IIA
The Radau methods [7, p.118] are a class of implicit Runge-Kutta methods.
Radau IIA are s-stage implicit Runge-Kutta methods of order 2s − 1 that
are A-stable [7, p.118].
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As an implicit RK method they use the scheme

gi = yn−1 + h
s∑

j=1

aijf(tn−1 + cjh, g
j), i = 1, . . . , s (2.4)

yn = yn−1 + h
s∑

j=1

bjf(tn−1 + cjh, g
j), (2.5)

with the coefficients given by the Butcher’s tableau

c A
b

=

c1 a11 · · · a1s
...

... . . . ...
cs as1 · · · ass

b1 · · · bs.

In order to minimize influence of round-off errors, Equation (2.4) is rede-
fined with the smaller quantities zi = gi − yn−1 [7, p.118] yielding

zi = h
s∑

j=1

aijf(tn−1 + cjh, y
n−1 + zj), i = 1, . . . , s. (2.6)

If the solution z1, . . . , zs of Equation (2.6) is known, then Equation (2.5) is an
explicit formula for yn with s function evaluations. However, if the matrix A
is non-singular, these can be avoided. We assume this to be true and rewrite
Equation (2.6) asz1

...
zs

 = A

hf(tn−1 + c1h, y
n−1 + z1)

...
hf(tn−1 + csh, y

n−1 + zs)


and Equation (2.5) as

yn = yn−1 +
s∑

i=1

diz
i (2.7)

where
(d1, . . . , ds) = (b1, . . . , bs)A

−1.

Because of the way the Butcher’s tableaus of Radau IIA methods are
constructed, the vector d will consist of s−1 zeros and a one at the end. For
example, the 3-stage Radau IIA methods has d = (0, 0, 1). This means we
can further rewrite Equation (2.7) as

yn = yn−1 + zs.
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Chapter 3

Floating point numbers

Non-integer numbers on a computer are typically as floating point numbers,
or floats for short. Floating point numbers save on memory by instead of
using all the bits available to store significant numbers, a set number of bits
are used to store the exponent. The term floating point number comes from
the fact that the exponent E varies, or floats, between a lower and upper
limit, L and U . This is contrast to fixed point numbers, where the exponent
is static.

By [10, p.16] a system F of float numbers is characterized by a base, β; a
precision, p; and an exponent range, [L,U ].

An element x ∈ F then has the form

x = (−1)S
(
c0 +

c1
β1

+
c2
β2

+ · · ·+ cp−1

βp−1

)
βE (3.1)

for S ∈ {0, 1}, E ∈ [L,U ] ⊂ Z and ci ∈ [0, β − 1] ⊂ Z for i = 0, . . . , p− 1.
Alternatively, as in [11, p.16], we can write x ∈ F as

x =
s

βp−1
βE = sβE−(p−1), (3.2)

where s = (−1)S (βp−1c0 + βp−2c1 + · · ·+ cp−1) ∈ Z. Since ci ∈ [0, β − 1] it
follows that s ∈ [1− βp, βp − 1] ⊂ Z.

Modern computing follows the IEEE 754 standard for binary formats,
which defines five different float numbers precisions. In this thesis we will
use double precision floating point numbers. A double precision float takes
up 64 bits in total. One bit is used for the sign S, 11 bits are used to store the
exponent E leaving 52 bits to store the significand. However, in the normal
range, the leading 1 is implicit and not stored, meaning that p = 53.

When we say that x is in the normal range, we mean that

βemin ≤ |x| ≤
(
β − βp−1

)
βemax .

9
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When |x| < βemin , we say that x is subnormal.

In this thesis we will use fl(x) to indicate the floating point representation
of x.

In order to define the error that occurs when we perform floating point
operations we first define the notion of exact representability for floats.

Definition 3.0.1. If for a real number x ∈ R

fl(x) = x

we say that x is exactly representable and that fl(x) is exact.

A problem that follows using floating point numbers is that the result
of simple operations between two exact floats might not be correctly rep-
resented. As a simple example, using two numbers in base 10 with 3 digit
precision, and representing the result with the same precision we get

1.23− 0.00456 = 1.23.

In 1974, Sterbenz presented a theorem for subtraction of floating point
numbers specifically for the IBM/System 360 [12, 137]. We use here a version
of what is known as Sterbenz lemma from a more recent source.

Lemma 3.0.2. [11, p.101]
If a, b are non-negative finite floating point numbers such that

b ≤ a ≤ 2b,

then a− b is exactly representable.

Proof. [11, p.101] We first note that if b = 0 then a− b = a and is therefore
exact. Also, if a = b then a − b = 0 and also exact. We assume that
0 < b < a ≤ 2b and represent a and b as

a = saβ
ea−p+1 b = sbβ

eb−p+1,

where

emin ≤ea ≤ emax

emin ≤eb ≤ emax

0 ≤sa ≤ βp − 1

0 ≤sb ≤ βp − 1.
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Since b < a it follows that eb ≤ ea, and thus we can write

a = saβ
ea−ebβeb−p+1,

where βea−eb is a positive integer. With this we can expand a− b,

a− b = saβ
ea−p+1 − sbβ

eb−p+1

=
(
saβ

ea−eb − sb
)
βeb−p+1.

We define s′ := saβ
ea−eb − sb and note that s′ > 0 since a − b > 0. By

assumption we also have that a− b ≤ b, implying

s′βeb−p+1 ≤ sbβ
eb−p+1

or equivalently
s′ ≤ sb.

Since sb ≤ βp − 1 it follows that

s′ ≤ βp − 1.

Since a− b = s′βeb−p+1 with

emin ≤eb ≤ emax

0 ≤s′ ≤ βp − 1,

it follows that a− b is a floating number. Thus a− b = fl(a− b) and therefore
a− b is exact with the stated assumptions.

This lemma 3.0.2 has further implications that Sterbenz presented in a
corollary [12, p.138]. In this thesis we will first show these implication in two
separate remarks, before arriving at the corollary.

Remark 3.0.3. If a, b are two positive floating point numbers of the same
sign such that

b

2
≤ a ≤ 2b,

then the differences a− b and b− a are exactly representable.

Proof. We have from lemma 3.0.2 that a− b is exactly representable if

b ≤ a ≤ 2b.
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In the same way, b− a is exactly representable if

b ≤ a ≤ 2b,

or equivalently,
b

2
≤ a

2
≤ b.

Together, these inequalities gives

b

2
≤ a

2
≤ b ≤ a ≤ 2b,

or
b

2
≤ a ≤ 2b.

The second remark deals with negative floating point numbers.

Remark 3.0.4. If a, b are two finite floating point numbers of the same sign
such that

|b| ≤ |a| ≤ 2 |b| ,

then a− b is exactly representable.

Proof. This follows from lemma 3.0.2 and the fact that for all floating point
numbers, their additive inverse is also a floating point number.

With these two remarks we now reconstruct Sterbenz corollary.

Corollary 3.0.5. [12, p.138] If a, b are two finite floating point numbers of
the same sign such that

|b|
2
≤ |a| ≤ 2 |b| ,

then the differences a− b and b− a are exactly representable.

Proof. This follows from remarks 3.0.3 and 3.0.4.

With a firm grasp of what it means for a number to be exact, we can now
look at the smallest representable difference of two floating point numbers.
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Theorem 3.0.6. The minimal exactly representable difference of two distinct
floating points in the same system with base β, precision p and exponent E
is

βE−(p−1).

Proof. We take x1, x2 ∈ F to be two neighboring floating points. Without
loss of generality we choose x2 > x1. By Equation (3.2) we have that

x1 = s1β
E−(p−1)

x2 = s2β
E−(p−1) = (s1 + 1)βE−(p−1).

It follows that

|x2 − x1| =
∣∣(s1 + 1)βE−(p−1) − s1β

E−(p−1)
∣∣

=
∣∣βE−(p−1)

∣∣ .
It follows from Theorem 3.0.6 that the smallest step from 1 is β−(p−1),

since in that case E = 0.

Closely related to the smallest representable step from a floating point
number is the relative error of a floating point rounding [11, p.26].

Theorem 3.0.7. [11, p.26] For x in the normal range, the floating point
rounding error for a floating point system with radix β and precision p sat-
isfies

εf =

∣∣∣∣x− fl(x)

x

∣∣∣∣ <
{

1
2
β−(p−1) using rounding to nearest,

β−(p−1) using directed rounding.

Proof. [11, p.26] Since x is in the normal range, there is a unique integer
e such that βe ≤ |x| < βe+1 for some e ∈ Z. If |x| = βe then εf = 0. We
assume now that |x| > βe. The distance between two neighboring floating
points is exactly βe−p+1 so the absolute error due to rounding satisfies

|x− fl(x)| < 1

2
βe−p+1, for rounding to nearest,

and
|x− fl(x)| < βe−p+1, for directed rounding.

Dividing by |x| > βe completes the proof.
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We define the unit roundoff [13] as the relative error.

Definition 3.0.8. [11, p.27] The unit roundoff of a floating point system
with radix β and precision p is defined as

U :=

{
1
2
β−(p−1) using rounding to nearest,

β−(p−1) using directed rounding.

In order to be applicable to all types of rounding we will use the larger
U = β−(p−1) in this thesis.

From
∣∣∣x−fl(x)

x

∣∣∣ < U it follows that

fl(x) = x+O (|x|U) , (3.3)

where O (·) is the Big-O notation [14], indicating the magnitude of the error.

When dividing two floating point numbers,

x1 = s1β
ex−p+1 x2 = s2β

ey−p+1,

the operation [15] is performed as

x1

x2

=
s1
s2
βex−ey .

We know from Equation (3.1) that x1 and x2 each have p digits. If x1

has p− k1 sequential zeros at the end, and x2 has p− k2, that is:

x1 = (−1)S1

(
c0 +

c1
β

+ · · ·+ ck1−1

βk1−1
+

0

βk1
+ · · · 0

βp−1

)
βe1

x2 = (−1)S2

(
c0 +

d1
β

+ · · ·+ dk2−1

βk2−1
+

0

βk2
+ · · · 0

βp−1

)
βe2 .

Then x1/x2 is exact if k1 + k2 ≤ p [11, p.103]. Division is also exact if the
denominator is a power of the radix, β, assuming the division does not result
in over- or underflow [11, p.103].



Chapter 4

Error control

Our aim is to control the total error through control of the increments of
the finite difference method, since we have no way of changing the other
parameters of the error. We will achieve this by assuring that the error
stemming from the finite difference is larger then any other errors that might
occur. The first step to this end is to have an overview of all the different
sources of error.

We assume a 1-dimensional function g : R → R defined around a point
z ∈ R. g is approximated by ĝ, and the point z is approximated by ẑ.

Definition 4.0.1. For a computed approximation ĝ to the function g and a
inexact representation ẑ of the point z we define the total error as

εTOT := ∥ĝ(ẑ)− g(z)∥ .

Using the terminology used in [10, p.6] we then separate the total error
using the following conjecture.

Conjecture 4.0.2. For the total error εTOT as in Definition 4.0.1, we can
perform the following separation.

εTOT = ∥ĝ(ẑ)− g(z)∥
≤ ∥ĝ(ẑ)− g(ẑ)∥+ ∥g(ẑ)− g(z)∥
= εCOMP + εDATA,

where εCOMP is the computational error and εDATA is the data error.

Definition 4.0.3. For a computed approximation ĝ to the function g and
the point ẑ we have the computational error

εCOMP := ∥ĝ(ẑ)− g(ẑ)∥ ,

15
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and

Definition 4.0.4. For a function g and ẑ approximating the point z we have
the data error

εDATA := ∥g(ẑ)− g(z)∥ .

By separating the total error in this fashion we can see that the compu-
tational error depends only on ẑ while the data error depends on both ẑ and
z. This means that we will see no propagation of the error in data input
in εCOMP , and therefore not in the finite difference method. Error propaga-
tion [16] would otherwise mean that a simple linear error in the input data
could grow depending on the unknown structure of ĝ and could overtake the
error of the method.

We can also see that the data error does not depend on the method
of approximation. This means that we cannot control the data error by
improving the method. We can however use it as a lower limit.

The computational error is a combination of rounding errors and trun-
cation error [10, p.8], where the truncation error is the difference between
the true result and approximated result produced by a numerical algorithm.
The name comes from the truncation of infinite series into finite ones.

4.1 Data error for the finite differences method

When we use the finite difference method to approximate the derivative of
the function F (u), we have by Definition 4.0.4 that

εDATA = ∥F ′(fl(u))− F ′(u)∥ . (4.1)

By Equation (3.3) we have that fl(u) = u+O (|u|U). Substituting this into
Equation (4.1) and applying Taylor’s theorem we get

εDATA = ∥F ′(fl(u))− F ′(u)∥
= ∥F ′(u+O (|u|U))− F ′(u)∥
= O (|F ′′(u)| |u|U)

It follows that if the input is exact, i.e. fl(u) = u, then εDATA = 0.
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4.2 Computational error for the finite differ-
ence method

The truncation error of the finite difference method approximation of the
derivative F ′(fl(u)) is

εt =

∥∥∥∥F (fl(u) + σ)− F (fl(u))

σ
− F ′(fl(u))

∥∥∥∥ . (4.2)

As previously mentioned the computational error is a combination of the
truncation error and rounding error, so we add the rounding errors to Equa-
tion (4.2), yielding

εCOMP =

∥∥∥∥fl(fl(fl(F (fl(fl(u) + fl(σ))))− fl(F (fl(u))))

fl(σ)

)
− F ′(fl(u))

∥∥∥∥ .
The outermost floating point rounding is for the division, so if we assume

that the division is exact, we can remove it.

εCOMP =

∥∥∥∥fl(fl(F (fl(fl(u) + fl(σ))))− fl(F (fl(u))))

fl(σ)
− F ′(fl(u))

∥∥∥∥ .
We separate the error from the outermost floating point rounding of the

nominator according to Equation (3.3), giving us

εCOMP ≤
∥∥∥∥fl(F (fl(fl(u) + fl(σ))))− fl(F (fl(u)))

fl(σ)
− F ′(fl(u))

∥∥∥∥
+O

(
|F (fl(u))|U

fl(σ)

)
.

This is the rounding that would give rise to the so called cancellation
error.

Since we have separated the data error we have no error propagation
in the evaluation of F , this would otherwise have been a more significant
source of error [8, p.80]. The evaluation of F might still lose information
due to floating point rounding however. Expanding this rounding, again by
Equation (3.3), we get

εCOMP ≤
∥∥∥∥F (fl(fl(u) + fl(σ)))− F (fl(u))

fl(σ)
− F ′(fl(u))

∥∥∥∥
+O

(
2
|F (fl(u))|U

fl(σ)

)
+O

(
|F (fl(u))|U

fl(σ)

)
=

∥∥∥∥F (fl(fl(u) + fl(σ)))− F (fl(u))

fl(σ)
− F ′(fl(u))

∥∥∥∥+O
(
3
|F (fl(u))|U

fl(σ)

)
.
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If we assume now that fl(fl(u) + fl(σ)) is exact we can write this as

εCOMP ≤
∥∥∥∥F (fl(u) + fl(σ))− F (fl(u))

fl(σ)
− F ′(fl(u))

∥∥∥∥+O
(
3
|F (fl(u))|U

fl(σ)

)
.

(4.3)
Now we have reached the point where the truncation error has been en-

tirely separated. As εt ≤ O
(

|F ′′(fl(u))|
2

fl(σ)
)

we have

εCOMP ≤ O
(
3
|F (fl(u))|U

fl(σ)

)
+O

(
|F ′′(fl(u))|

2
fl(σ)

)
.

Assuming further that fl(σ) is exact, this is the same as

εCOMP ≤ O
(
3
|F (fl(u))|U

σ

)
+O

(
|F ′′(fl(u))|

2
σ

)
. (4.4)

Discarding the constants we are left with

εCOMP ≤ O
(
|F (fl(u))|U

σ

)
+O (|F ′′(fl(u))|σ) .

4.3 Total error of the finite difference method
Combining the data error and the computational error from the previous
sections we get the total error

eTOT ≤ ec + ed

≤ O
(
|F (fl(u))|U

σ

)
+O (|F ′′(fl(u))|σ) +O (|F ′′(u)| |u|U)

In order for the truncation error to be greater than the data error, we
need the following inequality to hold

|F ′′(fl(u))|σ ≥ |F ′′(u)| |u|U.

Or equivalently
σ ≥ |u|U. (4.5)

For the truncation error to be the dominant error in the computational
error we require the inequality

|F ′′(fl(u))|σ ≥ |F (fl(u))|U
σ
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to hold. This equates to the condition

σ ≥

√
U
|F (fl(u))|
|F ′′(fl(u))|

. (4.6)

With these conditions we construct the following theorem.

Theorem 4.3.1. In order for the truncation error to be the dominating error
in a finite difference approximation of F ′(u) we need to select increments σ
such that

σ ≥ max

{
|u|U,

√
U

√
|F (fl(u))|
|F ′′(fl(u))|

}
Proof. By equations (4.5) and (4.6).

While we know F (fl(u)), it is unreasonable for us to know F ′′(fl(u)).
In [17, p.187],

√
|F (fl(u))|
|F ′′(fl(u))| is called the ‘curvature scale’ of F . It is stated that

in the absence of any other information it is usually assumed to be |u|. For
a nice and polynomial-like F , this is true as u→∞.

4.4 The representability of the increments
In equations (4.3) and (4.4) we made the assumption that both fl(fl(u)+fl(σ))
and fl(σ) were exact, that is

fl(fl(u) + fl(σ)) = fl(u) + fl(σ) = fl(u) + σ.

We also made the assumption that the division was exact. If we can select
σ in such a way that that the assumptions hold, then these floating point
roundings will not generate additional errors. What sets these floating point
roundings apart from the ones of the function evaluations is that we have full
control of σ.

In [17, p.186] this is achieved by applying Algorithm 1. This algorithm
will ensure that the σ used in the division is the same as in the addition by
removing the digits that would be rounded away in the addition otherwise.
Also, as long as σ < |y|, it potentially increases the number of sequential
zeros digits at the end of the significand of σ, making the division more
likely to be exact.

Note that some optimizing compilers might automatically concatenate
these two lines, making it necessary to include a dummy function between
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Data: y, σin

Result: σout

temp← σin + y
σout ← temp− y

Algorithm 1: Ensure σ is representable

them. Since we will at some point make a function call with temp as input,
this could be done here instead of using a dummy function. The effects of
this algorithm is demonstrated in example 4.4.1.

Example 4.4.1. For two floating point numbers of precision p = 5,

x1 = 5432.1 and x2 = 1.2345

we see that
fl(x1 + x2)

x2

=
5433.3

1.2345
̸= x1 + x2

x2

.

If we however use x̂2 = fl(x1 + x2)− x1 = 1.2, we get

fl(x1 + x̂2)

x̂2

=
5433.3

1.2
=

x1 + x̂2

x̂2

.

However, for Corollary 3.0.5 to be applyable for the finite difference
method we need sgn(y + σ) = sgn(y). For |σ| ≤ |y| this always hold, oth-
erwise we need to choose σ such that sgn(σ) = sgn(y). We can modify a
chosen σ after the fact, as shown in Algorithm 2.

Data: y, σin

Result: σout

if y ̸= 0 then
if σin ≥ |y| then

temp← σin sgn(y) + y
else

temp← σin + y
end
σout ← temp− y

end
Algorithm 2: Ensure σ is representable

Note that Algorithm 2 could change forward differences into backwards
differences, and vice versa.



Chapter 5

Software stack

The Functional Mock-up Interface standard for model exchange specifies
methods for computing the derivatives and setting of states and time. Model
exchange FMUs encode ODEs as a compressed archive containing a model
description as well as binaries and libraries needed for its functionality. The
model description is a .xml file that contains metadata such as names of
variables, parameters, constants and inputs. A simulator tool will read the
.xml file, allowing a user to interact with it. The files for functionality are
implementations of the functions defined by FMI contained in one, or several,
.dll or .so files.

The FMI standard is in C, an efficient, low-level language [18]. It does
not specify how the FMUs are to be generated. The FMUs in this thesis are
generated from models written in the Modelica language [3].

PyFMI is a Python package developed by Modelon for interaction and
simulations of FMUs. Python is a high-level language [19], more user friendly
than C. PyFMI implements Cython in order to facilitate interaction between
the Python and C.

PyFMI [5] imports its solvers from Assimulo [20], a set of general purpose
solvers for ODEs and differential algebraic equations. Assimulo includes some
solvers from the SUNDIALS suite [6], one of which is the variable-order,
variable-step multistep solver CVode [6, p.366]. CVode is written in C and
is an evolution of the Livermore Solver for Ordinary Differential Equation
(LSODE) [21], a FORTRAN subroutine package. Assimulo also includes
codes by Hairer [22] such as RADAU5, which is also a FORTRAN routine.
Besides these two, Assimulo also has their own implementations of Euler and
Runge-Kutta.

21
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5.1 Creating and compiling a model
The models used in this thesis are written in the Modelica language [3], and
contained as *.mo files. As an example we show in listing 1 the code for a
model of the Van der Pol oscillator with nominal value yNOM = 106. Firstly,
the parameters and states of the model are defined. Then the equations for
the model, in this case the time derivatives of the state variables, are defined.

model VanDerPol1e6
parameter Real mu = 1.e6;
parameter Real y1_0 = 2;
parameter Real y2_0 = -2/3;
parameter Real y_nom = 1.e6;
Real y1(start=y1_0, nominal=y_nom);
Real y2(start=y2_0, nominal=y_nom);

equation
der(y1) = mu*(y1-y1^3/3-y2);
der(y2) = y1/mu;

end VanDerPol1e6;

Listing 1: Modelica code for the Van der Pol oscillator with yNOM = 106.

The models were then compiled into FMUs, contained as *.fmu files.

5.2 PyFMI
PyFMI [5] is a Python package for interacting with FMUs. For simulations
of ordinary differential equations, PyFMI uses the solvers available in As-
simulo [20], an open source suite of general purpose solvers for ODEs. When
solving an FMU using Radau5 [7, p.118] or CVode [6, p.366], the solution
requires the Jacobian. If the FMU does not contain the Jacobian, PyFMI
can either use the different solvers internal design of Jacobian approximation
or use its own derivative approximation.

PyFMIs can use information available within the FMU that is not directly
available to the solvers. For example, FMUs contain information on which
states impact derivatives [5, p.6]. With this information an adjacency matrix,
Aadj, can be constructed with the elements

Aadj(F )ij =

{
1 if Fi(y) depends on yj,

0 otherwise.
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With this information the number of function evaluations for the Jacobian
approximation can potentially be reduced.

Example 5.2.1. The function F : R3 → R3,

F (y) =

 y1
y2 + y3
y2 − y3


has the adjacency matrix

Aadj(F ) =

1 0 0
0 1 1
0 1 1

 .

This means that the first column of a difference approximation of the Jacobian
JF can be computed at the same time as one of the other two columns since

F1

y +

δ1δ2
δ3

 = F1

y +

δ10
0

 ,

for all δ2, δ3 ∈ R and

F2

y +

δ1δ2
0

 = F2

y +

 0
δ2
0

 ,

for all δ1 ∈ R.

With this information, a lower bound for the number of zeros in the
Jacobian, as well as their positions, will also be known beforehand.

PyFMI allows options to be set for the simulations [23]. Some of these
are described in table 5.1. The options are provided as an object of the
class AssimuloFMIAlgOptions when invoking the simulation. To set these
options an existing dictionary can be extracted from the model object and
then modified as demonstrated in the listing 2.
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from pyfmi import load_fmu

fmu = load_fmu('VanDerPol1e6.fmu')
opts = fmu.simulate_options()
opts['solver'] = 'Radau5ODE'
res = fmu.simulate(options=opts)

Listing 2: Python code for simulating the FMU VanDerPol1e6.fmu with the
solver Radau5.

Option Description
solver Specifies the solver to be used in the simulation.

In this thesis we use ’Radau5ODE’ or ’CVode’.
ncp Number of communication points to be returned.

If ncp is zero, the solver will return the internal
steps taken.

with_jacobian If set to ’True’ the PyFMI Jacobian is used.
If ’False’ the solver specific Jacobian is used in-
stead.

{solver}_options Solver-specific options that are passed on to the
solver.

Table 5.1: Options available for PyFMI simulations. Note that this list only
contains the options used for the simulations in this thesis, it is in no way
exhaustive.

PyFMI can further pass on options to the solver. The options used in this
thesis are described in table 5.2. A complete list of solver-specific options
can be found in the Assimulo documentation [24].

Option Description
rtol The relative tolerance.
atol The absolute tolerance.
time_limit Number of seconds spent on the simulation before aborting.
maxsteps The maximum number of steps allowed before aborting.

Table 5.2: Solver options. Note that this list only contains the options used
for the simulations in this thesis, it is in no way exhaustive.
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5.2.1 Simulating an FMU model

An example of the Python code used to run a simulation of an FMU using
PyFMI can be seen in listing 3.

from pyfmi import load_fmu

fmu = load_fmu('VanDerPol1e6.fmu')
opts = fmu.simulate_options()
opts['solver'] = 'Radau5ODE'
res = fmu.simulate(0, 2*1e6, options=opts)

Listing 3: Python code for simulating the FMU VanDerPol1e6.fmu using
Radau5 with starting time 0 and final time 2 · 106, using the pyfmi package.

5.2.2 σ in PyFMI

For the PyFMI Jacobian approximation the increments

σj =
√
U max

{∣∣∣yn(0)j

∣∣∣ , yjNOM

}
are used for forward or backward difference, where

yNOM =
[
y1NOM , . . . , yNNOM

]T
is the nominal value of y. The nominal value [25] of a state is an expected
value. A good example is electrical mains that in some areas have the nominal
voltage of 230V , but are allowed a variance of 10%. The nominal values are
stored in the FMU. If no value is defined in the model, or if it is set to zero,
it will default to one.

5.3 CVode

CVode [6, p.366] solves ODEs using variable-order, variable-step methods.
For stiff problems CVode uses Backwards Differentiation Formulas which in
fixed-leading coefficient form are given by

q∑
i=0

αn,iy
n−i + hnβn,0f(tn, y

n) = 0
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for some order q = 1, . . . , 5 with αn,0 = −1. The coefficients are uniquely
determined and well documented [26, p.349].

For each time step CVode uses a version of Newton’s method,such as
simplified Newton as presented in section 2.1.2, to solve the root finding
problem

G(y) ≡ y − hnβn,0f(tn, y)−
q∑

i=1

αn,iy
n−i = 0.

Throughout the code CVode uses a weighted root mean square norm
∥·∥WRMS : Rn → R defined as

∥v∥WRMS :=

√√√√ 1

N

N∑
1

(
vi
Wi

)2

.

With the weights Wj := RTOL
∣∣∣yn(m)

j

∣∣∣+ATOLj defined in [27].

5.3.1 Stopping conditions and error test

After each timestep CVode makes a local error test. The local truncation
error (LTE) for the time integration for order q and stepsize hn is by [6,
p.369]

LTE = Chq+1
n

∂q+1y

∂tq+1
+O

(
hq+2
n

)
for a method- and order dependent constant C. There is a similar relation
for the error in the predictor yn(0) leading to the relation

LTE = C ′ [yn − yn(0)
]
+O

(
hq+2
n

)
for a method- and order dependent constant C ′.

Since ∥v∥WRMS = 1 at the tolerance limit, CVode uses the error test
∥LTE∥WRMS ≤ 1. With yn(m) being the last step and thus yn(m) ≈ yn, the
error test is performed on the predictor-corrector difference yn(m)−yn(0). This
means that if the relation∥∥yn(m) − yn(0)

∥∥
WRMS ≤ ε :=

1

|C ′|
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holds, the step is successful. If the relation does not hold, the step is rejected
and redone with a different stepsize.

A fraction of ε is also used in the stopping condition for the Newton
iteration. Here the difference between the last step taken, yn(m), and the
true solution, y∗, is considered. This difference need to be controlled so that∥∥y∗ − yn(m)

∥∥
WRMS < χε. The default setting is χ = 0.1, but can be set by

the user when solving.
For this CVode also uses an estimated convergence rate constant R which

is initiated as R = 1 whenever I − hnβn,0JG is updated. R itself is updated
as

R = max

{
0.3R,

∥∥∆yn(m)
∥∥

WRMS

∥∆yn(m−1)∥WRMS

}
after each iteration. And with the estimation∥∥y∗ − yn(m)

∥∥
WRMS ≈ R

∥∥yn(m) − yn(m−1)
∥∥

WRMS

the stopping test is

R
∥∥yn(m) − yn(m−1)

∥∥
WRMS < χε.

By default the iteration stops after a maximum of 3 iterations, this can
however be changed to a different number by the user. Futhermore, the
iteration is deemed to be diverging and aborted if∥∥yn(m) − yn(m−1)

∥∥
WRMS

∥yn(m−1) − yn(m−2)∥WRMS
> 2,

for any m > 1.

5.3.2 σ in CVode

From article [6, p.369] we have that the increments, σj, in CVode are chosen
as

σj = max
{√

U
∣∣∣yn(0)j

∣∣∣ , σ0Wj

}
, (5.1)

where σ0 is a dimensionless value involving the unit roundoff U and the norm
of f [6, p.369].

The term
∣∣∣yn(0)i

∣∣∣√U is described as “the standard choice” in the precursor
to CVode [21, p.66]. But since it will not work close to zero, an alternative
term must be available.
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From the CVode code at Sundials [28] we find that σ0 is defined as

σ0 =

{
103 |h|UN ∥f∥WRMS if ∥f∥WRMS ̸= 0,

1 otherwise.

σ0 was defined in [21, p.66] and will be shown in appendix A.
With this definition of σ0, Equation (5.1) becomes

σj =

max
{√

U
∣∣∣yn(0)j

∣∣∣ , 103 |h|UN ∥f∥WRMS Wj

}
if ∥f∥WRMS ̸= 0,

max
{√

U
∣∣∣yn(0)j

∣∣∣ ,Wj

}
otherwise.

5.4 Radau5
Radau5 is a code based on the 3-stage, order 5 Radau IIA method described
in section 2.2. It has the Butcher’s tableau [7, p.74]

c A
b

=

4−
√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
4+

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√
6

36
16+

√
6

36
1
9

16−
√
6

36
16+

√
6

36
1
9

and requires solving the root finding problem

G(Z) = Z − A

hf(tn + c1h, y
n + z1)

hf(tn + c2h, y
n + z2)

hf(tn + c3h, y
n + z3)

 .

Note that

Z =

z1

z2

z3

 =
(
z11 · · · z1N z21 · · · z2N z31 · · · z3N

)T ∈ R3N .

Solving the system with Newton’s method that would mean that for each
iteration m it would be necessary to solve a linear system with the matrix

I− ha11
∂f

∂z1(m) (tn + c1h, y
n + z1(m)) · · · −ha13 ∂f

∂z3(m) (tn + c3h, y
n + z3(m))

−ha21 ∂f
∂z1(m) (tn + c1h, y

n + z1(m)) · · · −ha23 ∂f
∂z3(m) (tn + c3h, y

n + z3(m))

−ha31 ∂f
∂z1(m) (tn + c1h, y

n + z1(m)) · · · I− ha33
∂f

∂z3(m) (tn + c3h, y
n + z3(m))

 .
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Using a simplified Newton’s method, the number of Jacobian approxima-
tions can be reduced to 3 by replacing all Jacobians

∂f

∂zi(m)
(tn+cih, y

n+zi(m)) with
∂f

∂zi(0)
(tn+cih, y

n+zi(0)), for i = 1, . . . , 3.

This is then further reduced by replacing

∂f

∂zi(0)
(tn + cih, y

n + zi(0)) with Jf ≈
∂f

∂y
(tn, y

n), for i = 1, . . . , 3.

This results in the simplified Newton iteration

(I− hA⊗ Jf )∆Z(m) = −Z(m−1) + h(A⊗ I)F (Z(m−1))

Z(m) = Z(m−1) +∆Z(m)

where ⊗ is the tensor product1 and Z(m) = (z1(m), . . . , z3(m))T is the mth
iteration of Z. Each iteration requires 3 evaluations of f and solving a 3N
dimensional linear system. Since the matrix I − hA ⊗ J is the same in all
iterations it is only calculated once, and because it is normally reused, an
LU-decomposition is performed as it will simplify its use.

5.4.1 Stopping conditions and error test

Assuming at least linear convergence we have that for some constant 0 <
Θk < 1 ∥∥∆Zk

∥∥ ≤ Θ
∥∥∆Zk−1

∥∥ ,
where Θk is called the rate of convergence.

In [7, p.120] the convergence rate is approximated in each iteration as

Θk :=

∥∥∆Zk
∥∥

∥∆Zk−1∥
,

for k ≥ 1.
1The tensor product Q ⊗ R of two square matrices of dimensions p × p and s × s is a

square matrix of size ps× ps structured as

Q⊗R =

[
q11 q12
q21 q22

]
⊗

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =


q11

r11 r12 r13
r21 r22 r23
r31 r32 r33

 q12

r11 r12 r13
r21 r22 r23
r31 r32 r33


q21

r11 r12 r13
r21 r22 r23
r31 r32 r33

 q22

r11 r12 r13
r21 r22 r23
r31 r32 r33



 .



30 CHAPTER 5. SOFTWARE STACK

Note however that in the code for Radau5, the definition

Θk =


∥∆Z1∥
∥∆Z0∥ for k = 1,√
∥∆Zk∥
∥∆Zk−2∥ for k ≥ 2,

is used instead [22, 29].

In [7, p.120], an upper estimate of the error between the step Zk+1 and
the actual solution Z∗ is found.∥∥Zk+1 − Z∗∥∥ =

∥∥∆Zk+1 +∆Zk+2 + · · ·
∥∥

≤
∥∥∆Zk+1

∥∥+
∥∥∆Zk+2

∥∥+ · · ·
≤ Θ

∥∥∆Zk
∥∥+Θ2

∥∥∆Zk
∥∥+ · · ·

=
∥∥∆Zk

∥∥ ∞∑
j=1

Θj
k

=
∥∥∆Zk

∥∥ Θk

1−Θk

.

Since the iteration error should be smaller than the local discretization
error, which is usually kept close to Tol, the following stopping condition for
the iteration process is constructed.

ηk
∥∥∆Zk

∥∥ ≤ κ · Tol, with ηk =
Θk

1−Θk

.

Since Θk is only defined for k ≥ 1, this leaves η0 undefined as well. We
instead use the definition

ηk :=

{
(max {ηOLD, U})0.8 for k = 0,

Θk/ (1−Θk) for k ≥ 1,

with ηOLD being the last ηk of the previous time step. This new definition
allows for the iteration to be stopped after only one step.

For the parameter κ experiments performed for κ ∈ [10−4, 10] showed
that the code worked best for values around 10−1 and 10−2 [7, p.121]. In the
code for Radau5, the whole term κ · Tol can be entered by the user. If a
value lower than 0.1RTOL2/3 is entered, an error is returned. If no value is
entered it is set as

κ · Tol = max

{
10U

0.1RTOL2/3
,min

{
0.03,

√
0.1RTOL2/3

}}
,
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with a user-entered RTOL ≤ 10U returning an error [22, 29].

It is stated in [7, 121] that the iteration is aborted and restarted with a
smaller stepsize if Θk is greater than 1, as that indicates that the iteration
diverges. Looking at the actual code however, we see that this condition is
applied stricter than this. In fact, it aborts when Θk ≥ 0.99. This makes
sense considering that, as stated in section 2.1.2, a convergence rate too close
to 1 would mean the iteration step size is no longer a reliable indicator of the
error.

Radau5 also aborts the iteration if

ΘkMAX−k
k

1−Θk

∥∥∆Zk
∥∥ > κ · Tol,

for some k. This is an estimate of what the iteration error will be after the
maximum number of iterations, kMAX , which is suggested to be relatively
high, the examples given are 7 or 10 [7, p.121].

5.4.2 σ in Radau5

The choice of increments in Radau5 goes back to the original FORTRAN
code [22] where they are chosen as

σj =
√
U max

{√∣∣∣yn(0)j

∣∣∣,√10−5

}
.

The selection of increments in the Assimulo code [29] for Radau5 are
presented in listing 4.

ysafe = y[i];
delt = sqrt(rmem->input->uround * radau_max(1e-5,

radau5_abs(ysafe)));↪→

Listing 4: C code for choice of increments in Radau5.

No mathematical background is provided, but it is possible that the as-
sumption

|G|
|Gyy|

≈ |y|

for Theorem 4.3.1 was used. However, if this is true, the candidate
∣∣∣yn(0)j

∣∣∣U
should still be included for σ, as it would be the greatest of the candidates
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when
∣∣∣yn(0)j

∣∣∣ > 1
U
≈ 1016. As we shall see in chapter 6 however, this does not

effect the models used in this thesis.

Presumably, since this choice will not work when
∣∣∣yn(0)j

∣∣∣ is close to or

equal to zero,
√
10−5 is added as an alternative increment.

We note here that
√
10−5 = 0.01/

√
10 is irrational, since 10 is not a

perfect square. This means that if fl(
√
10−5) ends with zeros, they all stem

from rounding. The chance that the division

G(y +
√
10−5U)−G(y)√
10−5U

is exact is therefore very slim.



Chapter 6

Models

The first model, one modelling the Van der Pol oscillator, was designed for
this thesis. The rest were supplied by Modelon and are three of their models
with issues as mentioned in the introduction. These were supplied as com-
piled FMUs, meaning we had a limited insight into them. These pre-made
models would take more steps to simulate using the PyFMI Jacobian, if they
were able to finish at all.

6.1 Model 1 - Van der Pol oscillator

To test the hypothesis about the nominal values we set up a model of a Van
Der Pol oscillator,

ẏ =

[
ẏ1
ẏ2

]
=

[
µ
(
y1 − 1

3
y31 − y2

)
1
µ
y1

]
, y0 =

[
2
−2

3

]
,

with µ = 106 and t ∈ [0, 2µ].

When a high value of µ is supplied, the y1 term has a slow buildup followed
by a sudden change, see Figure 6.3.

We found that the number of steps needed to finish the simulation in-
creased significantly with the size of the nominal values, see Figure 6.1.

33
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Figure 6.1: Comparison of number of steps needed as an effect of nom-
inal value. The values are observed from successful simulations using
Radau5ODE with PyFMI Jacobian. The FMU was constructed with µ =
106, y0 = [2,−0.7], t0 = 0 and tf = 2µ.

Comparing the plots of y1 from two simulations with radically different
nominal values we can see that an erroneous yNOM still produce the correct
result, see Figure 6.2.
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Figure 6.2: Plots of y1 over time for two successful simulation of Van Der Pol
oscillator with µ = 106, y0 = [2,−0.7, ], t0 = 0 and tf = 2µ. Data retrived
from successful simulations using Radau5 with PyFMI Jacobian.

Simulations with yNOM ≥ 107 could not finish within exceeding the
maximal number of steps. This maximum could not be set higher than
2147483647 ≈ 2 · 109 without resulting in an OverflowError as the Python
int could not be converted into a C long.

Method Steps needed
CVode, internal Jacobian Did not finish
CVode, PyFMI Jacobian Did not finish
Radau5, internal Jacobian 105
Radau5, PyFMI Jacobian 1620212

Table 6.1: Steps needed to finish Model 1 with yNOM = 106.

The relative tolerance was set to 10−9 and the absolute tolerance was set
to RTOL yNOM for both components.

Looking more closely at the timesteps we can in Figure 6.3 identify the
issue arises when there is an abrupt change in a component.



36 CHAPTER 6. MODELS

Figure 6.3: The top plot shows steplength as a function of time while the
bottom shows y1 and y2 as functions of t. Observations were made after
simulating the Van der Pol oscillator with Radau5 using PyFMI Jacobian.
The FMU was constructed with µ = 106, y0 = [2,−0.7], yNOM = 106, t0 = 0
and tf = 2µ

State |y|MIN |y|AV G |y|MAX

y1 0.0993 1.4 2
y2 0.0518 0.638 0.667

Table 6.2: The two continuous states of Model 1. The magnitude of the
minimum, maximum and average of the states were observed in a successful
simulation using Radau5 with internal Jacobian.

6.2 Model 2 - Pneumatics

This is a simulation of a piece of pneumatically operated lock valve. The
application of such a component could for example be to lock the bucket of
an excavator in place.

The simulations were run with the relative tolerance RTOL = 10−8 and
the absolute tolerance, ATOL = RTOL ·yNOM where the nominal values,
yNOM , are presented in table 6.3. The model has a total of 21 unknowns in
very different ranges. This is due to the fact that the states are given in a
range of units, such as pressures in Pascal or temperatures in Kelvin.



6.2. MODEL 2 - PNEUMATICS 37

State |yi|MIN |yi|AV G |yi|MAX yiNOM

y1 1 · 10−7 1 · 10−7 1 · 10−7 10−7

y2 1 · 10−7 1 · 10−7 1 · 10−7 10−7

y3 0.137 0.23 0.318 −
y4 290 292 297 293.0
y5 4.79 · 105 4.93 · 105 5.11 · 105 105

y6 291 293 297 293.0
y7 4.83 · 105 4.96 · 105 5.16 · 105 105

y8 0 0.372 1 −
y9 0 0.361 1 −
y10 0 0.658 1 −
y11 293 295 384 293.0
y12 1 · 105 6.14 · 105 6.2 · 105 105

y13 1 · 105 3.02 · 105 6.2 · 105 105

y14 1 · 105 3.05 · 105 6.2 · 105 105

y15 1 · 105 4.79 · 105 5.12 · 105 105

y16 1.3 · 10−13 0.00798 0.01 −
y17 1 · 105 4.82 · 105 5.16 · 105 105

y18 1.12 · 10−14 0.00814 0.01 −
y19 0 0.034 0.0474 −
y20 0 0.0277 0.593 −
y21 0 0.0407 1.25 −

Table 6.3: The different continuous states of Model 2. The magnitude of the
minimum, maximum and average of the states were observed in a successful
simulation using CVode with internal Jacobian. The nominal values are set
beforehand by the user when constructing the FMU. The nominal values
represented by a dash were not set and will therefore default to 1.

We can note from table 6.3 that for all the undefined nominal values that
are defaulted to 1, the nominal value is always used to calculate the Jacobian
increment. For y11 or the states with nominal values set to 10−7 or 105, the
nominal values are always less than or equal to the minimum measured value
and therefore never used. Only for y4, y6 or y21 does it actually vary whether
or not the nominal value is used to calculate σ.

The unknown values, represented as dashes, defaulted to 1.0. While the
number of communication points was intended to be 10000, we will set them
to 0 in order to better compare the efficiency of the methods. Simulations
were done with using both Radau5 and CVode as solvers, using internal
Jacobians, as well as those from PyFMI and the performance of the original
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methods can be seen in table 6.4.

Method Steps needed
CVode, internal Jacobian 5967
CVode, PyFMI Jacobian Did not finish
Radau5, internal Jacobian 1145
Radau5, PyFMI Jacobian Did not finish

Table 6.4: Steps needed to finish simulations of Model 2.

Note that the methods using the PyFMI Jacobians did not finish no
matter how high the number of maximum steps was set. In the case with
Radau5 used as a solver, it surpassed the maximum number of steps, while
in the case of CVode it was manually aborted after not finishing within
reasonable time.

In Figure 6.4 we see the results of a failed simulation of Model 2 using
Radau5 with PyFMI Jacobian, while in Figure 6.5 we have a successful sim-
ulation using Radau5 with internal Jacobian. The figures show the ratio∣∣ynj ∣∣ /yjNOM of the states y16 and y20. Note that the states y8, y9, y10, y18,
y19 and y21 also have ratios that break Sterbenz lemma at some point. The
states that do exhibit this behavior all have a nominal value defaulting to 1.

Figure 6.4: The ratio r =
∣∣ynj ∣∣ /yjNOM over time for the states y16 and y20.

When below
√
U the ratio breaks the assumptions required for Sterbenz

lemma. From a simulation of Model 2 using Radau5 with PyFMI Jacobian.
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Figure 6.5: The ratio r =
∣∣ynj ∣∣ /yjNOM over time for the states y16 and y20.

When below
√
U
√
10−5 the ratio breaks the assumptions required for Ster-

benz lemma. From a simulation of Model 2 using Radau5 with internal
Jacobian.

In Figures 6.6 and 6.7 we can see the behavior of the state y16 and y20
over time from a successful simulation using Radau5 with internal Jacobian.
We can see that both states exhibit sudden changes around t ≈ 8.

Figure 6.6: Values of y16 over time as observed in a successful simulation of
Model 2 using Radau5 with internal Jacobian.
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Figure 6.7: Values of y20 over time as observed in a successful simulation of
Model 2 using Radau5 with internal Jacobian.

6.3 Model 3 - Hydraulics

This a model of a component similar to that of Model 2. However, this
component utilizing liquids instead of gases.
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State |yi|MIN |yi|AV G |yi|MAX yiNOM

y1 0 0.798 1.03 −
y2 0 180 580 −
y3 0 0.795 0.981 −
y4 0.179 0.367 0.45 −
y5 1.26 2.86 4 −
y6 0 2.63 4.17 −
y7 0.999 151 200 1.0
y8 0.999 1.18 1.46 1.0
y9 0.999 4.23 5.04 1.0
y10 0 0.384 1.11 −
y11 0.38 102 200 1.0
y12 4 28.7 107 1.0

Table 6.5: The different continuous states of Model 3. The magnitude of the
minimum, maximum and average of the states were observed in a successful
simulation using CVode with internal Jacobian. The nominal values are set
beforehand by the user when constructing the FMU. The nominal values
represented by a dash were not set and will therefore default to 1.

We can note from table 6.5 that all of the nominal values are either set to
1 or unset and therefor defaulted to 1. Since the states y3 and y4 are never
greater than 1, the nominal value is always used to calculate the Jacobian
increments. The continuous state y5 and y12 is always greater than 1 and
therefore the nominal values are never used. The same is almost true for y7,
y8 and y9 that barely goes below 1. For the other five states it does actually
vary whether or not the nominal value is used to calculate σ.

This model finished using both solver internal Jacobians and PyFMI Ja-
cobian, see table 6.6.

Method Steps needed
CVode, internal Jacobian 13486
CVode, PyFMI Jacobian 10927
Radau5, internal Jacobian 1807
Radau5, PyFMI Jacobian 66345

Table 6.6: Steps needed to finish the simulations of Model 3.

In Figure 6.8 we see the ratio
∣∣ynj ∣∣ /yjNOM for the state y2. Whenever

the ratio dips below
√
U it breaks the condition from Sterbenz Lemma when
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using PyFMI Jacobian. When it dips below
√
U
√
10−5 it breaks the condition

for Radau5. The states y1, y3, y6 and y10 also breaks the condition for PyFMI
at some point, but none as much as y2. Note that all of these states have
a nominal value that is defaulted to 1, meaning that we can easily make a
comparison between the condition for PyFMI and Radau5, as

∣∣ynj ∣∣ /yjNOM =∣∣ynj ∣∣.

Figure 6.8: The ratio r =
∣∣ynj ∣∣ /yjNOM over time for the state y2. When the

ratio dips below
√
U it would break Sterbenz lemma for PyFMI Jacobians,

under
√
U
√
10−5 for Radau5. From a simulation of Model 3 using Radau5

with internal Jacobian.

In Figure 6.9 we can see the behavior of the state y2 over time from a
successful simulation using Radau5 with internal Jacobian.
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Figure 6.9: Values of y2 over time as observed in a successful simulation of
Model 3 using Radau5 with internal Jacobian.

6.4 Model 4 - Double wishbone suspension

This is a model for a type of vehicular suspension called double wishbone
suspension. Named for the two wishbone shaped arms with two connection
points each to the body and one to the “upright”, which in turn connects to
the wheel.
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Figure 6.10: Wishbones and upright painted yellow.
“Double wishbone suspension” by RB30DE is licensed under CC BY-SA 3.0

The model was run with a relative tolerance of 10−6 over the time interval
[0, 10]. As we can see in table 6.7 no nominal value was set and therefor all
of them will default to 1. We can further see that none of the components
ever reach a magnitude above 1, meaning that with the PyFMI Jacobian
approximations we will always use the same increment.

https://commons.wikimedia.org/wiki/File:Double_wishbone_suspension.jpg
https://commons.wikimedia.org/wiki/User:RB30DE
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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State |yi|MIN |yi|AV G |yi|MAX yiNOM

y1 0 0.00558 0.00646 −
y2 0 0.0142 0.0164 −
y3 0 0.00142 0.00165 −
y4 0 0.00062 0.00479 −
y5 0 0.0014 0.0116 −
y6 0 0.000176 0.0018 −
y7 0 0.22 0.241 −
y8 0 0.0368 0.0402 −
y9 0 0.0256 0.029 −
y10 0 0.00728 0.0511 −
y11 0 0.00109 0.00922 −
y12 0 0.00182 0.0141 −
y13 0 0 0 −
y14 0 0 0 −

Table 6.7: The different continuous states of Model 4. The magnitude of the
minimum, maximum and average of the states were observed in a successful
simulation using CVode with internal Jacobian. The nominal values are set
beforehand by the user when constructing the FMU. The nominal values
represented by a dash were not set and will therefore default to 1.

When run we can see in table 6.8 that the original simulations with PyFMI
Jacobian required more steps than the internals, in particular with CVode
as a solver.

Method Steps needed
CVode, internal Jacobian 594
CVode, PyFMI Jacobian 563463
Radau5, internal Jacobian 468
Radau5, PyFMI Jacobian 1425

Table 6.8: Steps needed to finish Model 4

In Figure 6.11 we see the results of a successful simulation using Radau5
with internal Jacobian. The points shows are all the states where at some
point the ratio

∣∣ynj ∣∣ /yjNOM breaks the condition from Sterbenz Lemma, which
for this model means all states. Note that all of these states have a nominal
value that is defaulted to 1, meaning that we can easily make a comparison
between the condition for PyFMI and Radau5, as

∣∣ynj ∣∣ /yjNOM =
∣∣ynj ∣∣. We can
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see that the ratio for several states fulfill the condition of Sterbenz Lemma
for Radau5 σj but not for PyFMI σj for the timespan t ∈ [8, 10].

Figure 6.11: The ratio r =
∣∣ynj ∣∣ /yjNOM over time for the states where the

ratio at some point dips below
√
U . From a simulation of Model 4 using

Radau5 with internal Jacobian.



Chapter 7

Numerical experiments

These are experiments conducted on the models described in chapter 6. The
models all have the same tolerances and nominal values as described in that
section. For the Van der Pol model, the nominal values were set to 106.

In the plots for Experiments 2 to 4, the number of steps taken are repre-
sented with a dot. All simulations were run for at least one hour before being
cancelled, if they had not finished by then or if the solver aborted with an
error, there is no dot. To make it clearer where simulations have failed, the
successful simulations will be connected by a line, while a failed experiment
will break this line.

The Cython code for PyFMI, fmi.pyx from [23], was modified to take an
extra option. This was then set at simulation by adding

opts['sigma_0'] = c_0 # Float, default value 1.

to the simulation options in listing 3.
Then the code for the Jacobian increments in fmi.pyx

for i in range(len_v):
eps_pt[i] = RUROUND*(max(abs(v_pt[i]),

nominals_pt[i]))↪→

was modified in some way. Directly and/or by appending some code to with
an additional algorithm.

The algorithms used will be the two presented in section 4.4 and Algo-
rithm 3, which will be more aggressively swap between forward and backward
differences than Algorithm 2.

A Python script for running the simulations were set up, going through
the various experiments, post-processing algorithms, models, solvers and con-
stants. The results were saved in .json files.

47
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Data: y, σin

Result: σout

if y ̸= 0 then
temp← σin sgn(y) + y
σout ← temp− y

end
Algorithm 3: Ensure σ is representable

7.1 Experiment 1 - Post-processing algorithms
For this experiment we used the original definition of increments in PyFMI,
but before evaluation we applied the three post-processing algorithms pre-
sented in section 4.4.

Model 1 Model 2 Model 3 Model 4
Internal 105 1145 1807 468
PyFMI (Original) 1620212 Did not finish 66342 1425
PyFMI (Algorithm 1) 1620326 Did not finish 66414 1470
PyFMI (Algorithm 2) 1620326 Did not finish 66354 1440
PyFMI (Algorithm 3) 16049 Did not finish 66069 1449

Table 7.1: Experiment 1, Radau5ODE

Model 1 Model 2 Model 3 Model 4
Internal Did not finish 5967 13486 594
PyFMI (Original) Did not finish Did not finish 10927 563463
PyFMI (Algorithm 1) Did not finish Did not finish 11365 547584
PyFMI (Algorithm 2) Did not finish Did not finish 11403 544824
PyFMI (Algorithm 3) 273 Did not finish 11838 581669

Table 7.2: Experiment 1, CVode

We can see in tables 7.1 and 7.2 that except for Model 1, the different
algorithms seem to not have any greater effect on the number of steps.

7.2 Experiment 2 - Smaller nominal values
In this experiment we change the formula for selecting the increments to

σi =
√
U max

{∣∣∣yn(0)i

∣∣∣ , c0yiNOM

}
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for different positive values for the constant c0 ∈ R.
We used the following Cython code for the Jacobian increments.

for i in range(len_v):
eps_pt[i] = eps_pt[i] = RUROUND*(max(abs(v_pt[i]),

self._sigma_0*nominals_pt[i]))↪→

We see from the results in Figure 7.1a that when using Radau5 as a solver
Model 1 and 2 show a significant improvement for constants below 6 · 10−2

and 41̇0−3 respectively. Model 4 performs best with a constant in the range
[7 · 10−7, 1 · 10−2]. For Model 3 we see no improvement what so ever.

In Figure 7.1b we see that for Model 1 we get a good result for constants
under 5 · 10−1, where before we would get no result at all. Model 2 shows a
good result for c0 ≤ 4 · 10−3. Apart from an outlier, Model 3 does not seem
to improve at all, just as was the case with Radau5 as a solver. Model 4
exhibits a strange behavior where about a third of the constants results in a
behavior like original PyFMI, a third like the internal solver and a third fails
to finish.

In Figures 7.2a and 7.2a we can see that prepending the additional algo-
rithm seems to have no effect on Models 3 and 4, while Model 1 and 2 gives
a better result with larger constants.
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7.3 Experiment 3 - No nominal values
As a third experiment we disregard the nominal values completely, and in-
stead use

σi =
√
U max

{∣∣∣yn(0)i

∣∣∣ , c0} .

For this experiment we used the following code for the Jacobian incre-
ments.

for i in range(len_v):
eps_pt[i] = RUROUND*(max(abs(v_pt[i]),

self._sigma_0))↪→

temp = v_pt[i] + eps_pt[i]
eps_pt[i] = temp - v_pt[i]

Looking at the results in Figure 7.3a we can see that Model 1 behaves very
well. This is to be expected as instead of using an oversized nominal value
we now use values below 1. The results from Model 2 are more interesting.
However the result does not seem to differ much from those in Experiment
2.



7.3. EXPERIMENT 3 - NO NOMINAL VALUES 53

(a
)

N
um

be
r

of
st

ep
s

ne
ed

ed
to

fin
is

h
th

e
si

m
ul

at
io

ns
of

E
x-

pe
ri

m
en

t
3

fo
r
di

ffe
re

nt
va

lu
es

of
c 0

us
in

g
R

ad
au

5
as

a
so

lv
er

.
(b

)
N

um
be

r
of

st
ep

s
ne

ed
ed

to
fin

is
h

th
e

si
m

ul
at

io
ns

of
E

x-
pe

ri
m

en
t

3
fo

r
di

ffe
re

nt
va

lu
es

of
c 0

us
in

g
C

V
od

e
as

a
so

lv
er

.

F
ig

ur
e

7.
3:

T
he

re
su

lt
of

E
xp

er
im

en
t

3.



54 CHAPTER 7. NUMERICAL EXPERIMENTS

(a)
N

um
ber

of
steps

needed
to

finish
the

sim
ulations

of
E

x-
perim

ent
3

for
different

values
of

c
0

using
R

adau5
as

a
solver.

(b)
N

um
ber

of
steps

needed
to

finish
the

sim
ulations

of
E

x-
perim

ent
3

for
different

values
of

c
0

using
C

V
ode

as
a

solver.

F
igure

7.4:
C

om
parison

the
result

ofE
xperim

ent
3

using
different

post-processing
algorithm

s.



7.4. EXPERIMENT 4 - DIFFERENT CURVATURE SCALE 55

7.4 Experiment 4 - Different curvature scale
As a fourth experiment we used the increments

σi = max
{∣∣∣yn(0)i

∣∣∣U, c0√U}
,

meaning we make the assumption that |G|
|Gyy | is constant instead of |G|

|Gyy | = |y|
2

as in previous experiments.
For this experiment we used the following code for the Jacobian incre-

ments.

for i in range(len_v):
eps_pt[i] = RUROUND*(max(abs(v_pt[i])*RUROUND,

self._sigma_0))↪→

temp = v_pt[i] + eps_pt[i]
eps_pt[i] = temp - v_pt[i]

In Figure 7.5a we see that, when using Radau5 as a solver, Model 1 gives a
good result for higher constants but bad for lower, in contrast to Experiment
2. Most notable however is the behavior for Model 3, where we get a good
result for c0 ≥ 61̇0−6. In Figure 7.5b we see no improvement with CVode as
a solver.
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7.5 Experiment 5 - Powers of 2
This experiment is a essentially the same as Experiment 3, but ensuring that
the increments are always selected as powers of 2.

This means that for some y
n(0)
i = (−1)SsyβEy−p+1 we choose the incre-

ments as
σi =

√
U max

{
βEy , c0

}
,

for c0 ∈
{
2−k; k ∈ N

}
.

The replacement of |yj|
√
U from Experiment 3 with the similar βEy−p+1 is

done using the function nextafter() from the Python package numpy [30].
This function is used to find the next representable floating point number.
nextafter() takes two non-optional arguments, the starting point and the
direction. This way both alternatives for increment is a power of 2, ensuring
that the float division is exact.

In C the equivalent nextafterf defined in the header math.h [31] can be
used.

We used the following Cython code for the Jacobian increments:

import numpy as N

for i in range(len_v):
eps_pt[i] = max((N.nextafter(abs(v_pt[i]),

N.inf)-abs(v_pt[i]))/RUROUND,
RUROUND*self._sigma_0)

↪→

↪→

We see in Figures 7.7a and 7.7b we can see that using c0 = 0 is no longer
an issue. This is because we are using nextafter() towards infinity, meaning
it will always be non-zero, and gets a build-in minimum of βEMIN−p+1, the
minimal subnormal value. This means the alternative term is no longer
needed to avoid division by zero.



7.5. EXPERIMENT 5 - POWERS OF 2 59

(a
)

N
um

be
r

of
st

ep
s

ne
ed

ed
to

fin
is

h
th

e
si

m
ul

at
io

ns
of

E
x-

pe
ri

m
en

t
5

fo
r
di

ffe
re

nt
va

lu
es

of
c 0

us
in

g
R

ad
au

5
as

a
so

lv
er

.
(b

)
N

um
be

r
of

st
ep

s
ne

ed
ed

to
fin

is
h

th
e

si
m

ul
at

io
ns

of
E

x-
pe

ri
m

en
t

5
fo

r
di

ffe
re

nt
va

lu
es

of
c 0

us
in

g
C

V
od

e
as

a
so

lv
er

.

F
ig

ur
e

7.
7:

T
he

re
su

lt
of

E
xp

er
im

en
t

5.



60 CHAPTER 7. NUMERICAL EXPERIMENTS

(a)
N

um
ber

of
steps

needed
to

finish
the

sim
ulations

of
E

x-
perim

ent
5

for
different

values
of

c
0

using
R

adau5
as

a
solver.

(b)
N

um
ber

of
steps

needed
to

finish
the

sim
ulations

of
E

x-
perim

ent
5

for
different

values
of

c
0

using
C

V
ode

as
a

solver.

F
igure

7.8:
T

he
result

ofE
xperim

ent
5.



Chapter 8

Summary and conclusion

From the numerical experiments performed we can see several ways to im-
prove upon finite difference approximations, not only for PyFMI by for other
solvers as well. Experiments 2 and 3 mainly concerns the use of nominal val-
ues in PyFMI, while the other experiments suggests the possibility of general
improvements. We suggest that moving forward PyFMI uses the following
code for selecting Jacobian increments:

import numpy as N

for i in range(len_v):
eps_pt[i] = max((N.nextafter(abs(v_pt[i]), N.inf) -

abs(v_pt[i])) / RUROUND, RUROUND * 2**(-9))↪→

if N.sign(v_pt[i]):
if N.sign(v_pt[i]) != N.sign(v_pt[i] +

eps_pt[i]):↪→

eps_pt[i] *= N.sign(v_pt[i])

The value 2−9 is chosen as it the lower power of 2 closest to
√
10−5. It is

possible that quantitative studies would suggest a better alternative.

8.1 Regarding nominal values

While Radau5 and CVode uses an alternative increment when |y| is close to
zero, PyFMI uses an alternative when |y| < yNOM , where yNOM is a strictly
positive value that is set at model creation. yNOM defaults to 1.0 if not
entered. If y at this point is considered to be zero, there are possible benefits
to this, as we shall see in section 8.3, but PyFMI does not do this. From
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the experiments we can see that moving forward some adjustment ought to
be done to PyFMIs way of choosing increments. One possibility would be to
stop using nominal values altogether, and replace the choice of increments in
PyFMI to be

σi =
√
U max

{∣∣∣yn(0)i

∣∣∣ , c0} ,

as in Experiment 3. From the experiments we see that c0 ≈
√
10−5, as used

in Radau5, would be a good constant. Further testing with more models
would be necessary to confirm whether this is a good choice. Especially since
all the models used in this thesis had a relatively large nominal value.

If this is to radical of a change, there are other possible improvements
such as using a default value lower than 1.0, for example

√
10−5, for the

nominal values. This change cannot be applied to the FMU, but the .xml
of the FMU should contain the information of which states have a nominal
value entered. An easier way to achieve this could to, as in Experiment 2,
applying a multiplier to all the nominal values.

Another possible alteration, not tested in these experiments, could be to
use nominal values when entered, and otherwise default to use the solver
increments.

8.2 General improvements

From the results of Experiment 4, where we replaced the common assumption
|G|

|Gyy | =
∣∣∣yn(m)

j

∣∣∣2 with a constant, we get good results in the span [10−5, 10−2.5].
This was the only experiment that improved upon Model 3. The internal
Radau5 Jacobian, which uses the curvature scale |G|

|Gyy | =
∣∣∣yn(m)

j

∣∣∣, performs
much better in all other experiments. This could be seen as middle ground
of the standard assumption and a constant. Moving forward it could be
beneficial to let the Jacobian increments be dependent on a user entered
curvature scale. This could either be available as an argument to the solver,
or be added to the FMI-standard. However, as this information is reasonably
unknown to the user, experiments with a curvature adaptive solver would
also be interesting. Such a solver could test whether or not a change to the
curvature scale would be beneficial after a number of discarded time steps.

From Experiment 5 we can see that it can be advantageous to change all
increments to powers of 2 as this makes all divisions exact. We also see that
by replacing |y|U , with programming language functions for retrieving the
next step away from zero, we no longer have a need to have an alternative
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term in order to avoid division by zero. It can however still be a good idea
to have such a term in order to be able to pre-calculate and store function
evaluations for when |y| is close to zero. It is possible that the magnitude
of this alternative could be based on the tolerances. If so, the tolerances
would have to be imported from the solver as they are not properties of the
FMU. Both Radau5 and CVode would theoretically benefit from the same
improvements that were made to PyFMI in Experiment 5. Especially Radau5
that uses a floating point representation of an irrational number instead of a
power of 2.

Some of the improvements we see from the various post-processing algo-
rithms might lie in the fact that the increments get “chopped”, setting a lot
of significand digits to zero. This increased number of zeros make it more
likely for the division to be exact. Using increments like the ones in Ex-
periment 5, the division is always exact. The necessary post-processing is
sign adjustment, preserving the assumptions necessary for Sterbenz lemma
to hold.

8.3 Other considerations
Although it does not directly affect the number of steps, there is also reason
to consider another equation presented in [8, p.80], as it could reduce the
number of function calls. There it is suggested for a chosen increment σj,
to use the following equation for the finite difference approximation for the
Jacobian elements

Jij =

{
fi(u+σjej)−fi(u)

σj
u ̸= 0,

fi(σjej)−fi(u)

σj
u = 0,

with ej the unit vector.
With σj designed to use a static value when the state variable is ap-

proaching zero, as is the case with Radau5, the evaluation f(σjej) can be
done beforehand.

If this equation was used for the Jacobian elements in PyFMI, with σj

chosen as it is now, the Jacobian approximations would not need a single
function evaluation for Model 4, since it always uses the nominal values for
the increments.
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Appendix A

The design of sigma0 in CVode

In [21, p.66] the authors reason that the standard choice of σ =
√
U |y| cannot

be used if |y| is very small or equal to zero and therefore base an alternative
value on noise level.

Since the roundoff error of each fi is of order U |fi| the equation

Jij ≈
fi(tn, y + σjej)− fi(tn, y)

σj

has an error of order U |fi| /σj.
Because the method coefficient β0(= l0) is of order unity the error δPij of

the iteration matrix P = I− hnβ0J is approximately

δPij ≈ |h|U |fi| /σj.

We introduce the vector s ∈ RN with elements

sj = 1/σj, j = 1, . . . , N

and |f | ∈ RN
+ with

|f |j = |fj| , j = 1, . . . , N

and rewrite δP as
δP = |h|U |f | sT.

The idea is then to find σj by bounding δP .
If we construct a diagonal matrix D ∈ RN×N with the elements

Dii = Wi, i = 1, . . . , N
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we see that the weighted RMS-norm can be rewritten as

∥v∥WRMS =

√√√√ 1

N

N∑
i=1

(viWi)
2

=
1√
N

√√√√ N∑
i=1

(Diivi)
2

=
∥Dv∥E√

N
,

where ∥·∥E is the Euclidean norm.
The norm of δP is given by

∥δP∥WRMS = max
v

∥δPv∥WRMS

∥v∥WRMS

,

where

∥δPv∥WRMS = |h|U
∥∥|f | sTv∥∥

WRMS

= |h|U ∥f∥WRMS

∣∣sTv∣∣ ,
for some v ∈ RN . Hence

∥δP∥WRMS = |h|U ∥f∥WRMS max
v

∣∣sTv∣∣
∥v∥WRMS

= |h|U ∥f∥WRMS max
v

∣∣∣(D−1s)
T
(Dv)

∣∣∣
∥v∥

= |h|U ∥f∥WRMS max
v

∥D−1s∥E ∥Dv∥E
∥Dv∥E /

√
N

= |h|U ∥f∥WRMS

√
N

∥∥D−1s
∥∥
E

≤ |h|UN ∥f∥WRMS max
i

(
1

σiWi

)
.

Or equivalently

∥δP∥ ≤ |h|UN ∥f∥
mini(σiWi)

.
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To establish the maximum allowable error in P , we consider the linear
system Px = b, which is the form to be solved in each Newton iteration. To
first order, the error δx in x due to the error δP in P is given by

∥δx∥
∥x∥

≤ ∥δP∥
∥P∥

=
∥∥P−1

∥∥ ∥δP∥ .
∥P−1∥ is unknown but is expected to be unity since P → I, as h → 0.
Therefore, a reasonable strategy is to bound ∥δP∥ alone by selecting a suit-
ably small value for the relative error that can be tolerated in the Newton
correction vector. By using a value of 10−3 for this tolerance, we obtain

min
i

σiWi ≥
|h|UN ∥f∥

10−3
=: σ0.

In the case where σ0 = 0, it is instead reset to 1.
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