

Department of Automatic Control

Towards Automated Log Message Embeddings
for Anomaly Detection

Adrian Murphy

Daniel Larsson

MSc Thesis
TFRT-6222
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2024 Adrian Murphy & Daniel Larsson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2024

Abstract

Log messages are implemented by developers to record important runtime infor-
mation about a system. For that reason, system logs can provide insight into the
state and health of a system and potentially be used to anticipate and discover er-
rors. Manually inspecting these logs becomes impractical due to the high volume
of messages generated by modern systems. Consequently, the research field of ma-
chine learning-based log anomaly detection has emerged to automatically identify
irregularities. Parsing log messages into a structured, tractable format is a vital step
in log anomaly detection. This degree project investigates the application of log
message embeddings, a recently proposed log parsing method, for anomaly detec-
tion in complex IT systems and measures their resilience to concept drift, where the
format of log messages changes over time, in comparison with a traditional parsing
approach. Empirical analyses are conducted on two benchmark datasets, revealing
that log message embeddings not only achieve anomaly detection results on par
with traditional methods but also demonstrate considerable robustness against con-
cept drift. A key focus of this project is on the application of large language models
to automate the log embedding pipeline by handling out-of-vocabulary words and
extracting synonymous and antonymous word relationships. These capabilities are
important for distinguishing log messages that are identical except for one or more
synonymous or antonymous word pairs. While large language models show promise
in these tasks, experiments highlight the need for further refinement to match the
performance achieved through manual operator feedback.

Keywords— IT System Monitoring, Log Anomaly Detection, Large Language Models, Log
Message Embeddings, Concept Drift

3

Acknowledgements

First of all, we would like to express our sincere gratitude to Advenica and their employees
for providing us with office space and equipment throughout this degree project. Not least, the
daily office breakfast has fuelled much of the thought in this project. We would particularly
like to thank Ola Angelsmark and Fanny Söderlund at Advenica for their continuous support,
supervision, and input. Moreover, we would like to thank Johan Eker at the Department
of Automatic Control, LTH, for his guidance and support. The guidance of Ola, Fanny, and
Johan has been invaluable to the direction of this project. Finally, we would like to thank Karl-
Erik Årzén, also at the Department of Automatic Control, for his flexibility and swiftness in
all matters pertaining to our examination.

5

Contents

1. Introduction 9
1.1 Thesis Purpose . 10
1.2 Contributions . 10

2. Background 11
2.1 System Logs . 11

Log Anomalies . 12
2.2 Log Anomaly Detection . 13

Parsing . 13
Feature Extraction . 16
Anomaly Detection . 17

2.3 Embeddings . 22
Word2vec . 22
Cosine Similarity . 24
K-means Clustering . 24
Log Message Embeddings . 25
Lexical Databases . 30

2.4 Similar Approaches . 32
Template2vec . 32
Log2vec . 32

3. Method 34
3.1 Baseline . 34
3.2 Embeddings Approach . 35

Lexicons . 36
The Embedding Space . 36
OOV Words . 42
Log Message Embeddings . 43

3.3 Evaluation . 44

4. Results 45
4.1 LLM Lexicons . 45
4.2 Anomaly Detection . 46

HDFS_v1 . 47
BGL . 48

7

Contents

4.3 Concept Drift Resilience . 49
HDFS_v1 . 49
BGL . 50

5. Discussion 52
5.1 LLMs as Lexicons . 52
5.2 Anomaly Detection . 53
5.3 Concept Drift Resilience . 54
5.4 LWET and the OOV Engine . 55
5.5 Future Work . 58

6. Conclusion 59
Bibliography 60
7. Appendices 63

7.1 Concept Drift Changes . 63

8

1
Introduction

“Log messages, one of humanity’s
few infinite resources”

Ola Angelsmark
Advenica

In the modern digital landscape, we have come to rely on systems designed to operate 24
hours a day, serving millions of global users. For instance, vital societal functions, such as
hospitals, public transport, and banks, all rely on complex IT systems for smooth operation.
Reliability and availability are crucial, as outages can lead to serious revenue losses, or worse,
for service providers and cause major disruptions for end users.

Despite rigorous efforts to ensure the stability of these systems, errors inevitably occur. For
example, a system may face an attack by an adversary or malfunction due to errors or weak-
nesses in its implementation. To aid in debugging and troubleshooting, developers use so-
called system logs: digital traces of system state and behavior that can be used to track down
and address errors. Manually sifting through the entirety of these logs is infeasible due to
their volume; for instance, a large-scale modern system might generate log messages at a
rate of ∼120-200 million lines per hour, corresponding to a file size of about 50 gigabytes
[7].

The process of automatically reading system logs and detecting potential anomalies is an ac-
tive research field. Machine learning-based methods are often employed for anomaly detec-
tion, with a pronounced emphasis on unsupervised learning. Expert labeling of anomalous
logs is an arduous and costly task, especially considering the scale at which modern sys-
tems produce log messages, thereby rendering supervised learning approaches impractical
in real-world scenarios. In recent years, neural network approaches – employing technolo-
gies like Autoencoders, Long short-term memory (LSTM) networks or even Transformers –
have shown promising results, emerging as predominantly favored over more traditional ap-
proaches such as Principal component analysis (PCA), Cluster analysis or Isolation forests
(iForest) for anomaly detection.

9

Chapter 1. Introduction

1.1 Thesis Purpose

Anomaly detection in log analysis is typically preceded by the parsing and feature extraction
of log messages. Traditionally, parsing methods such as Drain [6], that uses a parsing tree
to extract templates from log messages, have been favored. However, in recent years, with
the supposition that the natural language in log messages matters, researchers have taken
an interest in models established in natural language processing to analyze the language
in system logs. Efforts have been made, for example by Meng et al. [13], to look at how
word embeddings can be used for a more robust parsing of log messages that considers the
language within them.

To the best of our knowledge, current log embedding models rely on manual operator feed-
back, particularly in the extraction of synonyms (words with the same or similar meaning)
and antonyms (words with opposite meanings) to account for lexical contrast in word em-
beddings. The purpose of this thesis is twofold: firstly, we want to explore the feasibility,
the challenges, and the potential advantages with using embeddings of log messages over
traditional parsing methods. In particular, we are interested in the resilience against concept
drift, where the format of log messages changes over time. Secondly, we want to explore
the opportunities to automate the log embedding pipeline by using large language models. In
particular, we are interested in finding in-vocabulary candidates for words that do not exist in
the embedding space and in extracting synonymous and antonymous word relationships used
to account for lexical contrast.

The findings and the topic of log anomaly detection hold significant importance for Advenica,
a key stakeholder in this degree project. Advenica, a company specializing in cybersecurity,
provides a wide variety of software and hardware solutions dedicated to enhancing the infor-
mation security of nations, authorities and corporations alike. Guided by the signature phrase,
“Cybersecurity solutions that protect what matters most”, Advenica prioritizes the utmost re-
liability and security of their products. This degree project marks the first of a comprehensive
series focusing on log anomaly detection at Advenica. The ultimate objective is to integrate
log anomaly detection into new products and enhance existing solutions, aligning with the
company’s commitment to advancing the field of cybersecurity.

1.2 Contributions

The scientific contributions of this project emanate from (1) our comparison between Drain
and a log embedding approach, and (2) our quest to automate the log embedding pipeline
using large language models. The main findings from the comparison with Drain is that
a log embedding approach can achieve results comparable with Drain in regular anomaly
detection tasks, but excels and outperforms Drain when introducing concept drift in log mes-
sages. This verifies and supports initial findings by Meng et al. [13] [14]. The main findings
from our attempt to automate the log embedding pipeline are that large language models
show some potential in extracting synonymous and antonymous word relations and finding
in-vocabulary candidates for out-of-vocabulary words. There are, however, limitations and
further challenges.

The authors have contributed equally in the execution of the project.

10

2
Background

2.1 System Logs

Log messages, to put it briefly, are implemented by developers to record run-time informa-
tion about a system. An example implementation, provided by He et al. [8], could look like
the code snippet in Listing 2.1.

1 try {
2 renew();
3 lastRenewed = Time.monotonicNow();
4 } catch (IOException ie) {
5 LOG.warn("Failed to renew lease for "
6 + clientsString() + " for " + (elapsed / 1000)
7 + " seconds. Will retry shortly...", ie)
8 }

Listing 2.1 System log implementation example

As explained by He et al. [8], developers and system operators can inspect the produced log
messages to monitor system behavior and to perform error analysis. In general, a log message
will follow a structure with a timestamp, a verbosity level – such as INFO, WARNING, or
ERROR – indicating the severity of a message, and some free text content. The article presents
a real-world example of a log message, taken from a collection of Hadoop Distributed File
System (HDFS) logs:

>> 2008-11-09 20:46:55 INFO dfs.DataNode$PacketResponder: Received
block blk_3587508140051953248 of size 6710

Per the general structure of a log message described above, this example can be divided into
three separate components as seen in Table 2.1.

11

Chapter 2. Background

Timestamp Verbosity Level Free Text Content
2008-11-09 20:46:55 INFO (...) Received block (...) of size (...)

Table 2.1 Example log message structure

He et al. [8] have made a commendable contribution to the research field of AI-driven log
analytics by releasing Loghub, a collection of 19 publicly available system log datasets. The
datasets are generated from a wide variety of systems, ranging from server applications to
supercomputers. In this thesis, we use two datasets from Loghub to test and validate our
methodology: HDFS_v1, log messages generated by a Hadoop Distributed File System set-
up provided by Xu et al. [22], and BGL, log messages generated by the Blue Gene/L super-
computer provided by Oliner and Stearley [18].

Both datasets are labeled, in the sense that domain experts have classified the log messages
as either anomalous or normal. As mentioned in the introduction, supervised learning for log
anomaly detection is impractical in real-world scenarios. In this thesis, however, we use both
supervised and unsupervised learning to evaluate the efficiency of log message embeddings
for anomaly detection. In the unsupervised approaches, we discard the labels during model
training, instead using them as a ground truth that we can compare the model predictions
with.

Log Anomalies
Meng et al. [14] categorize log anomalies into two separate classes: sequential and quanti-
tative anomalies. Programs are executed according to a certain flow. In fact, programs may
even be represented as control-flow graphs that describe the paths a program can take during
execution where log messages are produced as a deterministic sequence of the program’s ex-
ecution path. During normal execution of a program, paths are generally traversed in a typical
order. If a pattern of log events deviates from normal program flow, Meng et al. [14] describe
it as a sequential anomaly.

Quantitative anomalies, on the other hand, arise from the fact that log events often come in
“pairs”, or perhaps more generally in “groups”. Meng et al. [14] provide an example where a
log message “Interface ae3, changed state to down” is produced. This log message
is most likely often followed by a message “Interface ae3, changed state to up”. If
this quantitative relationship between related logs is violated, Meng et al. [14] describe it as
a quantitative anomaly.

HDFS_v1. Per the documentation by Borthakur [2], HDFS is, as the name suggests, a
distributed file system where data is stored across multiple machines, referred to as nodes.
HDFS breaks files down into block-sized chunks that are stored independently on the nodes.
Each block is stored on multiple nodes for redundancy. The blocks of data are stored in
so-called DataNodes, responsible for serving read and write requests, whereas a so-called
NameNode manages the namespace of the system and controls access to the files by users.
As explained by He et al. [8], the HDFS_v1 dataset of logs is generated by a 203-node system
using a benchmark with a typical workload.

Xu et al. [22] have manually labeled the HDFS_v1 logs with anomaly descriptions. One

12

2.2 Log Anomaly Detection

example of an anomaly is that the system may attempt to delete a block that no longer exists
on a data node. Other examples include how write operations may fail or how the system
may receive blocks that do not belong to any file.

BGL. As described by Oliner and Stearley [18], Blue Gene/L was ranked as one of the
world’s 500 most powerful supercomputers in 2006. The BGL logs are records of various
events and messages generated by the supercomputer, providing insight into the system’s
operational status.

Oliner and Stearley [18] divide log anomalies in the BGL dataset into three types based
on their origin: hardware, software, or indeterminate. For instance, the hardware anomalies,
among others, have an alert category KERNSTOR with the example message “data storage
interrupt”. An example of a software alert category is KERNRTSP with the example mes-

sage “rts panic! stopping execution”.

Some important features of the two datasets are summarized in table 2.2 below.

Dataset Time span #Lines #Anomalies Size
HDFS_v1 38.7 hours 11,175,629 16,838 (blocks) 1.47GB

BGL 214.7 days 4,747,963 348,460 708,76MB

Table 2.2 Summary of the datasets

In summary, what constitutes an anomaly completely depends on the system at hand. There
is often a discrepancy between what an anomaly detection model, often trained to recognize
normal behavior, considers to be an anomaly and what is truly malignant system behavior.
This discrepancy is difficult to bridge,

2.2 Log Anomaly Detection

System log anomaly detection usually comprises three separate steps: parsing, feature extrac-
tion, and anomaly detection.

Parsing
As described by He et al. [7], parsing is the process of matching raw log messages to
structured event templates. If we consider the log message that is printed in Listing 2.1,
we see that some parts of the free text component are variable: clientsString() and
(elapsed/1000) will be different from execution to execution. The purpose of log parsing
is to extract the constant parts of a log message, corresponding to a so-called event. Consider
the example provided by He et al. [8] once again.

>> 2008-11-09 20:46:55 INFO dfs.DataNode$PacketResponder: Received
block blk_3587508140051953248 of size 6710

13

Chapter 2. Background

Which parts of the log message will vary from execution to execution? Trivially, the times-
tamp depends on when the message is printed and should not be included in the correspond-
ing event. Moreover, the resource dfs.DataNode$PacketResponder, the block identifier
blk_3587508140051953248, the block size 6710, and even the verbosity level are likely
variable and different depending on execution. If we let <*> symbolize the varying parame-
ters, as a type of placeholder, we obtain an event template:

<*> <*> <*> Received block <*> of size <*>

This event template is the constant part of the log message that does not depend on the inter-
nal parameters that the system is considering at the time of printing the message. Addition-
ally, most log parsers provide an opportunity to incorporate expert knowledge about varying
parameters; if a system administrator knows the exact format of, for example, a timestamp
or a block identifier, they can map these parameters to specific placeholders by using reg-
ular expressions. The event template will subsequently be on the following, arguably more
informational, form:

<TIMESTAMP> <LEVEL> <RESOURCE> Received block <BLOCK_ID> of
size <*>

Drain. One popular log parser, that we also use in this thesis for our baseline approach, is
Drain, suggested by He et al. [6]. Drain employs a fixed-depth tree, meaning that the depth is
provided a priori as a hyperparameter and may not be increased during parsing, to create and
match raw log messages to event templates. The method requires minimal previous domain-
specific information or assumptions of the system being analyzed; the raw log messages are
sufficient. A log message is assigned a template by traversing the fixed-depth tree, where the
path is decided by internal rules stored in the nodes until a leaf node is reached. The first
layer of nodes, right after the root node, simply divide log messages based on their length.
The subsequent layer(s) divide the log messages based on the content in terms of the words,
or tokens, contained in the messages. The leaf nodes, in turn, contain lists of log groups. A
log message is ultimately assigned one of the log groups in a leaf node based on a similarity
measure simSeq, defined in Equation 2.1.

simSeq =
∑

n
i=0 equ(seq1(i),seq2(i))

n
(2.1)

In Equation 2.1, n denotes the length of the log message, seq1 and seq2 denote the log mes-
sage and a log template respectively, seq(i) refers to the ith token of a sequence, and the
function equ is defined as in Equation 2.2. Simply put, simSeq calculates the share of match-
ing tokens between a log message and a log template.

equ(t1, t2) =

{
1 if t1 = t2
0 otherwise

(2.2)

14

2.2 Log Anomaly Detection

The structure of Drain’s parse tree is visualized in Figure 2.1.

Figure 2.1 Structure of the parse tree in Drain with depth 3, showing how a log message is
parsed by first considering the length of a message and subsequently by considering individ-
ual words. A leaf node contains suitable log event candidates in a list of groups

As is apparent in Figure 2.1, the first layer of nodes, right after the root, in the parse tree
decides the path of a log message depending on the length of the message. The second layer
of nodes considers the first token of a log message. For example, if we have a log message
comprising five tokens, where the first token is “Sending”, we will reach the leaf node with
the log groups shown in Figure 2.1. The asterisk * is a so-called wildcard, a special token
that matches with anything.

If the similarity score for a log message and the most similar template in the list of log groups
does not exceed a certain similarity threshold, Drain updates the parse tree and creates a new
template based on that log message. This process is visualized in Figure 2.2.

In some cases, the initial words of a log message could include varying parameters. This
is not an ideal scenario, since Drain parses a message from left to right; for example, mes-
sages on a form such as “120 bytes received” could lead to branch explosion since every
leading numerical parameter would lead to a new branch being created. To handle this, to-
kens containing numerical values are automatically changed into wildcard tokens by Drain.
Furthermore, operators with domain knowledge can apply an optional masking in a prepro-
cessing step, using regular expressions to replace any varying parameters with a wildcard or
a given mask name, akin to what we previously have referred to as a placeholder, such as NUM
for any numerical tokens.

15

Chapter 2. Background

Figure 2.2 Parse tree update example (depth = 4). The log message being added is
“Receiving 120 bytes”

Feature Extraction
The purpose of feature extraction, in the context of log analysis, is to obtain computable,
numerical features from the parsed log messages that can be used in an anomaly detection
model. While some types of data have natural numerical interpretations – such as temper-
ature, weight, or even the color values for individual pixels in an image – log messages,
containing natural language, do not. Consequently, a different approach is needed. Ideally,
the numerical representation of incoming log messages should be able to capture the infor-
mation present in the logs and how they relate to each other. One common way to represent
log messages numerically is through a so-called event count matrix, described by He et al.
[7].

The Event Count Matrix. The event count matrix consists of rows of so-called event
count vectors. An event count vector, in turn, counts the occurrences of event templates in
a given window. For example, consider a scenario where a log parser, such as Drain, has
learned the following two event templates during training:

(1): <TIMESTAMP> <LEVEL> <RESOURCE> Received block
<BLOCK_ID> of size <*>

(2): <TIMESTAMP> <LEVEL> <RESOURCE> Added block <BLOCK_ID>

Now, if we consider a window of three incoming log messages, where Drain maps two logs
to the first event template and one log to the second event template, the resulting event count

16

2.2 Log Anomaly Detection

vector would be e1 = [2,1]. If we consider yet another window where the first event template
does not occur at all and the second event template occurs thrice, the event count vector
would be e2 = [0,3]. e1 and e2 constitute the event count matrix E = [2,1; 0,3]. If we let k
denote the number of event templates learned during training, an event count vector ei will
generally be on the form ei ∈ Zk

≥0. Moreover, if we let w denote the number of windows
considered, an event count matrix E will generally be on the form E ∈ Zw×k

≥0 .

Windows are simply groups of log messages collected through some chosen strategy, used
for the purpose explained above. He et al. [7] describe three different types of windowing
techniques: fixed windows, sliding windows, and session windows. A visual example of how
the windowing techniques work can be found in Figure 2.3.

Fixed Windows. Fixed windows are, in some sense, the most basic technique out of the
three. This technique relies on a fixed time interval, a “window size”, ∆t that divides the log
messages into time windows.

Sliding Windows. Sliding windows consider two parameters: window size ∆t, that is also
used in a fixed window approach, and step size. The step size is generally smaller than the
window size. For example, we might define a window with a size of one hour and a step of
five minutes, yielding an hour long window that slides or shifts forward every five minutes.
Since the step size is generally smaller than the window size, sliding windows may overlap.

Session Windows. Session windows rely on identifiers in the log messages. Identifiers,
which are only present in some types of log messages, are used to mark different execution
paths. An example would be the HDFS_v1 dataset, where each log message is associated
with a block identifier. Session windows, i.e. windows containing log messages with a cer-
tain identifier, might be able to better represent the internal state of a system, given that the
windowing technique is applicable.

Anomaly Detection
The anomaly detection step is aimed at, given the numerical representations from the feature
extraction step, detecting anomalous windows of log messages. In this thesis, we evaluate
three different models that can be used for anomaly detection: Isolation forests, Autoen-
coders, and Logistic Regression.

Isolation Forests. An Isolation forest (iForest) is an unsupervised anomaly detection
model proposed by Liu et al. [10]. Under the assumption that anomalies are “few and differ-
ent”, in other words that they are the minority in a dataset and that they have attributes that
differ from normal data, an iForest tries to isolate, or separate, anomalous points through an
ensemble of so-called Isolation trees (iTrees).

An iTree is a data structure comprising several nodes T . Each node T is either (1) an external
node without children or (2) an internal node with exactly two children Tl and Tr with a “test”
that stores an attribute q and a split value p such that q < p decides the traversal to either one
of the internal node’s children. An iTree is constructed by recursively partitioning a sample
of data X by repeatedly picking a q and p, such that min(q) ≤ p ≤ max(q), uniformly at
random. As explained by Liu et al. [10], the recursive partitioning of X continues until either
(1) the tree reaches a height limit, (2) when the cardinality of a set equals one (#X = 1), or (3)

17

Chapter 2. Background

Figure 2.3 Visual examples of windowing techniques. W1, W2, and W3 refer to the created
log windows. In this example, the window size for the fixed windows and sliding windows
is 2, and the step size for sliding windows is 1. The numbers in the demonstration of session
windows correspond to session IDs

all the elements in X are equivalent. To clarify, the cardinality, here and henceforth denoted
as #, refers to the number of elements, or items, within a set. In a grown iTree, an anomalous
point x will likely have a shorter path length h(x), such that the corresponding external node
is reached faster from the root, given the assumption that anomalies are “few and different”.
An example of isolating a 2-dimensional normal point xi and an anomalous point xo in an
iTree, is shown in Figure 2.4; the split value affects the position of the dividers, while the
choice of the two possible attributes affects the orientation of the dividers, either vertical or
horizontal.

As illustrated in Figure 2.4, the path length to xo’s external node is only 2, while the path
length to xi’s external node is greater than 10 in the example iTree. Intuitively, we can see
that anomalous points are more likely to be isolated in fewer steps.

Ultimately, an iForest, comprising a collection of iTrees, wants to calculate an anomaly score
s(x,n) for each data point x in the test dataset, where a point is considered anomalous if its
anomaly score exceeds a certain threshold. Liu et al. [10] accomplish this by normalizing the
path length h(x) with an estimation of the average path length of an iTree, c(n). The structure

18

2.2 Log Anomaly Detection

Figure 2.4 Example isolation of an anomalous point xo (left) and a normal point xi (right)
in an iTree

of an iTree, with at most two children in each node, is equivalent to that of a binary search tree
(BST). Moreover, the path length h(x) to reach an external node is, on average, equivalent to
the average path length of an unsuccessful search in a BST, given by Equation 2.3.

c(n) = 2H(n−1)− 2(n−1)
n

(2.3)

In Equation 2.3, n denotes the size of the testing data and H is the harmonic number, esti-
mated as H(i) = ln(i)+0.5772156649. Thus, an anomaly score s for a point x can be calcu-
lated according to Equation 2.4.

s(x,n) = 2−
E(h(x))

c(n) , 0 ≤ s(x,n)≤ 1 (2.4)

In Equation 2.4, E(h(x)) denotes the average path length to reach the external node that
isolates x in a collection, or ensemble, of iTrees.

Autoencoders. Autoencoders, as explained by Farzad and Gulliver [4], are feed-forward
neural networks with an encoder-decoder structure. An autoencoder aims to learn a compact
representation of an input, meaning that the input is transformed to one or several hidden lay-
ers with smaller dimension, referred to as the encoder. The decoder is subsequently tasked
with reconstructing the input from the compact hidden representation. Thus, the training con-
sists of minimizing a loss function that ensures that the output is close to the input, i.e., that
the reconstruction error is low. This means that they must be trained of data not contaminated
by anomalies. Autoencoders are as such often called semi-supervised, since the anomalies
have to be filtered out but otherwise do not require any labels during training. The architec-
ture of an example autoencoder with an input layer, one hidden layer, and an output layer is
presented in Figure 2.5.

Farzad and Gulliver [4] explain the encoder output as y= a(Wx+b), where a is the activation
function, W is the encoder weight matrix, x is the input, and b a bias vector. The activation
function a(x) can, for example, be the ReLU function max(0,x) or the sigmoid function

1
1+e−x . The decoder output can be explained as z= a(Ŵy+ b̂), where Ŵ is the decoder weight
matrix.

19

Chapter 2. Background

Figure 2.5 Example architecture of an autoencoder

In log anomaly detection, such as in the work by Chen et al. [3], autoencoders can conceptu-
ally be seen as models that learn the distribution of normal log event sequences. If an anoma-
lous sequence of logs is passed through the network, in other words an event count vector
that should deviate from the distribution learned by the autoencoder, the reconstruction error
should be high. If the contamination rate of a dataset is 3%, meaning that 3% of the entries
are anomalous, any event count vector with a reconstruction error in the 97th percentile may
be classified as an anomaly.

Logistic Regression. Logistic regression, as explained by Agresti [1], is a statistical
method to estimate the probability of a certain event, for example an anomaly in a sequence
of log messages, occurring. We say that we have a so-called dependent variable Y with two
discrete outcomes. In our case, the two discrete outcomes correspond to either a normal (0) or
anomalous (1) sequence of logs. Y is said to follow a Binomial distribution with one attempt,
Yi ∼ Bin(1, pi), where Yi may denote the outcome for one specific window of logs. From the
properties of a Binomial distribution, P(Yi = k) = pk

i (1− pi)
1−k, where k = 0,1.

Logistic regression differs from Isolation forests and autoencoders in the sense that it is a
type of supervised learning; labels are used during training. The goal is to find appropriate
coefficients β during a training phase such that some explanatory variables x, in our case the
event count vectors, predict Y well. The model uses the so-called logit function, defined in
Equation 2.5.

20

2.2 Log Anomaly Detection

logit = log
P(Yi = 1)
P(Yi = 0)

= xiβ (2.5)

The logit function in Equation 2.5 can be rewritten as in Equation 2.6.

P(Yi = 1)
P(Yi = 0)

= exiβ =
P(Yi = 1)

1−P(Yi = 1)
=

pi

1− pi
⇐⇒ pi =

exiβ

1+ exiβ
(2.6)

To estimate β , we want to maximize the likelihood function L (β ;Y), which describes the
probability of observing the dependent variable, in our case the labels, given the explanatory
variables, corresponding to the event count vectors. The likelihood function is defined in
Equation 2.7.

L (β ;Y) =
n

∏
i=1

pYi
i (1− pi)

1−Yi =
n

∏
i=1

(
exiβ

1+ exiβ

)Yi
(

1− exiβ

1+ exiβ

)1−Yi

= . . .=
n

∏
i=1

eYixiβ

1+ exiβ
(2.7)

Maximizing the likelihood function in Equation 2.7 is equivalent to maximizing its more
pleasant logarithm, the log-likelihood function l(β ;Y), defined in Equation 2.8.

l(β ;Y) = ln(L (β ;Y)) =
n

∑
i=1

(
Yixiβ − ln(1+ exiβ)

)
(2.8)

Using the log-likelihood function in Equation 2.8, β can be estimated by using some numer-
ical optimization technique to maximize l(β ;Y).

After estimating β using a training set of labels and event count vectors, the logistic regres-
sion model can output a probability score for new observations, indicating the likelihood of
an event count vector being a normal or anomalous window of logs. To make a final predic-
tion, i.e., normal or anomalous, a threshold or cutoff value is used to classify an observation.

Evaluation. Precision, recall, and F1 score are three common measures to evaluate the
performance of a log anomaly detection model. As described by He et al. [7], precision
reports the percentage of correctly classified anomalies, whereas recall reports the percentage
of detected true anomalies. For example, consider a scenario where a dataset contains 100
true anomalies. If a model successfully detects 80 out of the 100 true anomalies, that would
equate to a recall of 80%. However, if the model reports 80 false anomalies in addition to the
80 true detected anomalies, that would equate to a precision of 50%. The F1 score is simply

21

Chapter 2. Background

the harmonic mean of the precision and recall, providing a single measure for both concepts,
defined in Equation 2.9 below.

precision =
#Anomalies detected
#Anomalies reported

recall =
#Anomalies detected

#All anomalies

F1 =
2 ·precision · recall
precision+ recall

(2.9)

2.3 Embeddings

Embeddings, in the context of natural language processing, are vector representations of
words, capturing the features of words as numerical values.

Word2vec
A tried and proven method to create word embeddings is a group of models called Word2vec,
proposed by Mikolov et al. [15]. The models are shallow, two-layer neural networks aimed
at embedding words that occur in a corpus, i.e., a dataset containing natural language, in a
continuous vector space. Word2Vec relies on the so-called distributional hypothesis, suggest-
ing that words occurring in similar contexts tend to have similar meanings. In their paper,
Mikolov et al. [15] propose two primary approaches to create word embeddings: continuous
bag-of-words (CBOW) and continuous skip-gram.

Continuous Bag-of-Words. The CBOW approach tries to predict a target word, w(t),
given its context of surrounding words w(t + R), R = ±1,±2, . . . ,±C, where 2 ·C is the
amount of surrounding words that the model considers. The architecture is summarized in
Figure 2.6.

The words w are typically represented as one-hot encoded vectors, where the dimension of
each vector is equal to the size of the vocabulary. To clarify, one-hot encoding is a process
in which a categorical variable is converted into binary vectors, where exactly one value in
each vector is “hot” (1) and the rest are “cold” (0). In the input layer, the sum of the one-
hot encoded word vectors of the context words is typically used. In other words, the input-
projection layer of weights is a fully connected layer with a linear activation function. In the
projection-output layer, the target word w(t), also represented as a one-hot encoded vector, is
predicted, often using softmax as the activation function. An example could be the sentence
“He jumped over the stream”, where we want to predict the word w(t) corresponding to
“over” given w(t − 2) (“he”), w(t − 1) (“jumped”), et cetera. If we only have a vocabulary
size equal to 5, the one-hot encoded vectors could be [1,0,0,0,0] for “he”, [0,1,0,0,0] for
“jumped”, et cetera.

22

2.3 Embeddings

Figure 2.6 Continuous bag-of-words architecture

Continuous Skip-Gram. The skip-gram approach tries to predict the context of sur-
rounding words, w(t +R), R = ±1,±2, . . . ,±C, given a particular word w(t). The architec-
ture is summarized in Figure 2.7.

Figure 2.7 Continuous skip-gram architecture

Under the assumption that more distant words, in terms of a larger |R|, are less related to w(t),
they are given smaller weights in a skip-gram approach. A skip-gram approach is generally
more computationally expensive than a CBOW approach, since it handles multiple context
words for each target word. A skip-gram approach does, however, usually perform better on
small datasets and in handling rare/infrequent words. Given the same example as for CBOW,
we instead try to predict the surrounding words w(t − 2) (“he”), w(t − 1) (“jumped”), et
cetera, from the one-hot encoding of the word w(t) (“over”).

After training a network either in a CBOW approach, where the error in predicting a target
word is minimized, or skip-gram approach, where the error in predicting the context of a

23

Chapter 2. Background

target word is minimized, each word in the vocabulary will have certain associated weights.
These weights are used as the word embeddings, since they constitute dense vector represen-
tations of how a word relates to the rest of the vocabulary.

As observed by Mikolov et al. [15], Word2Vec can capture complex relationships between
words. For example, vector operations can represent analogies; the vector representation for
“king” minus the embedding for “man” plus “woman” will result in a vector closest to the
embedding for “queen”.

Cosine Similarity
The cosine similarity is a way to calculate how similar two vectors are. Two similar words,
such as “hot” and “warm”, should ideally have vector representations with a high cosine
similarity in an embedding space. The cosine similarity is bounded as −1 ≤ cos(θ) ≤ 1,
where θ is the angle between the two vectors. Cosine similarity scores closer to 1 would then
mean a small angle θ between the vectors (since cos(0) = 1) indicating that vectors, and thus
the words themselves, are similar, and vice versa for scores closer to -1. The formal definition
for two d-dimensional vectors a,b ∈ Rd is given in Equation 2.10.

cos(θ) =
a ·b

∥a∥∥b∥
=

∑
d
i=1 aibi√

∑
d
i=1 a2

i ·
√

∑
d
i=1 b2

i

(2.10)

A more in-depth explanation of the cosine similarity can be found in Singhal [21].

K-means Clustering
Per the description provided by MacQueen [12], k-means aims to partition observations
(x1, . . . ,xn), xi ∈ Rd , into k(≤ n) sets S = {S1, . . . ,Sk} where k is chosen as a hyperpa-
rameter. For instance, we can use k-means clustering to partition n log message embeddings
into k clusters that ideally share similar features. If µi denotes the mean, or centroid, of points
in Si, where µi =

1
#Si

∑x∈Si
x, the clustering algorithm attempts to minimize the within-cluster

sum of squares (WCSS), defined in Equation 2.11.

argmin
S

k

∑
i=1

∑
x∈Si

∥x−µi∥2 = argmin
S

k

∑
i=1

#Si ·Var [Si] (2.11)

Optimizing Equation 2.11 should be thought of as finding centroids µ such that the variance
of points in each cluster Si, Var[Si], is minimized.

The initial centroids µ are often chosen at random. K-means clustering is iterative, in the
sense that the algorithm alternates between assigning points to the nearest centroid and re-
calculating the centroid of each cluster until it converges. Typically, the convergence criteria
of k-means clustering is that the centroids no longer move significantly or that points stay in
the same clusters.

24

2.3 Embeddings

Log Message Embeddings
Early demonstrations of the benefits of log message embeddings can be attributed to Meng
et al. [14]. The authors discuss two primary problems with traditional log anomaly detection,
based on learning event templates from logs and matching incoming logs to template indices,
that embeddings potentially can mitigate:

1. In a traditional approach, false alarms can be induced if two log events are indexed
differently but semantically similar. If they are semantically similar, they may essen-
tially represent the same event but are, nonetheless, treated as two separate events by
a model that maps them to two separate event templates

2. Traditional models lack a method to naturally deal with concept drift, a change in the
distribution and especially the format of log messages over time, since they cannot
match new, previously unseen and distinct, log messages with the templates learned
during the training phase

Concept drift, in the context of log anomaly detection, emanates from log messages being
edited, for example by simply changing a word or rephrasing the message. Completely new
types of log messages can also be added. Concept drift is a natural occurrence, since log
messages can be updated at any time during the development of a project. New developers
joining a project might also introduce some variation in how logs are written.

The task of actually generating log message embeddings poses two main challenges: (1)
handling so-called out-of-vocabulary (OOV) words and (2) incorporating knowledge about
antonym and synonym pairs, often referred to as lexical contrast.

Out-of-vocabulary Words. OOV words are words that do not occur in the lexica or
corpora used to train an embedding model. In Word2vec, where words are mapped to their
vector representations in a key-value structure, an OOV word will simply result in a key
lookup error.

MIMICK, proposed by Pinter et al. [20], is an approach trained over an existing vocabulary to
generate embeddings for previously unseen, OOV words. Given a language L , a vocabulary
V ⊆ L , and a pre-trained embeddings table Q̂ ∈ R#V×d where each word {wi}#V

i=1 in the
vocabulary is assigned a vector representation qi ∈Rd , MIMICK is trained to find a function
f : L 7→ Rd , where the projected function f |V approximates, or more abstractly mimics,
f (wi) ≈ qi. Thus, an OOV word wi∗ ∈ L \V can be assigned a vector representation qi∗ =
f (wi∗).

MIMICK utilizes a so-called Word Type Character Bi-LSTM network, which considers single
characters ci for a given word w = {ci}, 1 ≤ i ≤ n. Each character ci is converted into a vector
representation, a character embedding, and the Bi-LSTM network, a combination of one
forward-LSTM and one backward-LSTM network, processes the character embeddings from
first to last and last to first character respectively. The final hidden state of the forward-LSTM
network, h f

n , and the final hidden state of the backward-LSTM network, hb
0, are combined

to form a representation of words based on the contextual information from both directions.
The final word embedding is computed using h f

n and hb
0 by a multilayer perceptron, where the

25

Chapter 2. Background

training task is to minimize the Euclidean distance between the computed word embedding
and the true word embedding.

A mis- or alternative spelling of a word can potentially be OOV. In these cases, the Leven-
shtein distance can be used to find the most similar word that exists in the vocabulary. The
Levenshtein distance was first proposed by Levenshtein [9] and can be used to measure the
difference between two strings. For two strings a and b with length |a| and |b| respectively,
the Levenshtein distance is defined as in Equation 2.12.

lev(a,b) =

|a| if |b|= 0
|b| if |a|= 0
lev(tail(a), tail(b)) if head(a) = head(b)

1+min

lev(tail(a),b)
lev(a, tail(b))
lev(tail(a), tail(b))

otherwise

(2.12)

The tail in Equation 2.12 is defined as all but the first character, whereas the head is only
the first character. Intuitively, the Levenshtein distance corresponds to the number of changes
(deletions, substitutions, and insertions) that must be made to one string to transform it to the
other.

Lexical Contrast in Embeddings. As explained by Liu et al. [11], traditional word
embedding models rely on the distributional semantics hypothesis, which assumes that words
occurring in the same contexts resemble each other and should be grouped closely together
in a vector space. Since both synonyms and antonyms often occur in the same contexts, for
example “hot” and “cold” in a sentence such as “the coffee is . . .”, they are ultimately placed
closely together in most embedding spaces.

Meng et al. [14] recognize that antonyms with similar vector representations, in other words
embeddings with a lack of lexical contrast, are problematic in the matter of log messages.
We further demonstrate this by defining 6 hypothetical log event templates:

1. Sending block <*>

2. Receiving block <*>

3. Reciving block <*>

4. Server <*> in <*> is in state poweredOn

5. Server <*> in <*> is in state poweredOff

6. Adding an already existing block <*>

In the context of the hypothetical event templates, “sending” and “receiving” are
antonyms; event template number 1 and 2, in some sense, represent the opposite events and
should ideally have dissimilar vector representations. This also applies to template number 4
and 5, with the added complexity that “poweredOn” and “poweredOff” likely are OOV for

26

2.3 Embeddings

most embedding models. Furthermore, event template number 3 should ideally have a sim-
ilar vector representation to template number 2, since they are identical aside from a minor
spelling mistake.

OpenAI provides an API with text embedding functionality. We call the API to create em-
beddings for the hypothetical log event templates, using the text-embedding-ada-002 engine,
and calculate the cosine similarities between the vectors, presented in Figure 2.8.

Figure 2.8 Cosine similarities between vector representations of the 6 hypothetical event
templates using OpenAI embeddings

In Figure 2.8, we observe that “Sending block <*>” and “Receiving block <*>”, as
well as “Server <*> in <*> is in state poweredOn” and “Server <*> in <*>
is in state poweredOff” have high cosine similarities, 0.94 and 0.97 respectively, even
though they represent opposite events. “Receiving block <*>” and “Reciving block
<*>” also have a high cosine similarity; in this case, however, it is desired.

Evidently, we need a way to transform the embedding space so that templates containing
antonyms are easily separable, while still preserving their relation to other templates. For this

27

Chapter 2. Background

purpose, Liu et al. [11] have proposed an approach called Lexicon-based Word Embedding
Tuning (LWET) to include knowledge about lexical contrast in embeddings. To explain the
approach, we first introduce some terminology described in the paper:

• Let V = {w1,w2, . . . ,wn} denote the vocabulary, consisting of n words wi, i ∈ [1,n]

• Let Q̂ denote the matrix with the pre-trained embeddings, where each column q̂i ∈Rd

is the d-dimensional word vector of wi

• Let Q denote the matrix with the retrofitted embeddings, i.e., the embeddings after
applying LWET

• Let ES = {(i, j) | wi,w j ∈ V and wi,w j are synonyms} denote the synonymous rela-
tionships in the vocabulary

• Let EA = {(i,k) | wi,wk ∈ V and wi,wk are antonyms} denote the antonymous rela-
tionships in the vocabulary

• Let EI = {(i, l) | wi,wl ∈ V and wi,wl are semantically unrelated} denote the irrele-
vant relationships in the vocabulary

• Let D(q̂i, q̂ j) denote the Euclidean distance between two vectors q̂i, q̂ j ∈Rd , which is
defined in Equation 2.14

The retrofitted word vectors in Q should ideally have the following three properties:

1. qi and q j should be spaced closely together if (i, j) ∈ ES

2. qi and qk should be spaced far apart if (i,k) ∈ EA

3. The distance between qi and ql , given that (i, l) ∈ EI , should be greater than the dis-
tance to the synonyms of wi but shorter than the distance to the antonyms of wi

Liu et al. [11] express these properties in two mathematical conditions:

1. ∀i ∈ [1,n], D(qi,q j)<D(qi,ql), ∀(i, j) ∈ ES, ∀(i, l) ∈ EI

2. ∀i ∈ [1,n], D(qi,qk)>D(qi,ql), ∀(i,k) ∈ EA, ∀(i, l) ∈ EI

To fulfil the conditions above, Liu et al. [11] propose a cost function Ψ(Q) that should be
minimized:

Ψ(Q) =
n

∑
i=0

[
α ·D(qi, q̂i)+β · ∑

(i, j)∈ES

D(qi,q j)

Ni
S

−γ · ∑
(i,k)∈EA

D(qi,qk)

Ni
A

+δ · ∑
(i,l)∈EI

D(qi,ql)

Ni
I

]
(2.13)

28

2.3 Embeddings

where Ni
S, Ni

A, and Ni
I denote the number of synonyms, antonyms, and irrelevant words for

wi respectively. The hyperparameters α, β , γ, and δ control the relative strength of each
component. Based on grid search, Liu et al. [11] propose α = 1, β = 2, γ = 3, and δ = 4.

The first component in Ψ can be interpreted as a general penalty for increasing the distance
between the pre-trained word vector q̂i and the retrofitted vector qi. The second and third
component of the cost function relate to penalizing increased distances for synonyms and
decreased distances for antonyms respectively, in accordance with the first and second desired
properties of the retrofitted word vectors. The fourth and final component penalizes increased
distances for irrelevant words per the third desired property of Q.

Since most words are unrelated, we have that n = #V ≈ #EI . In other words, the number
of irrelevant words is nearly equal to the size of the entire vocabulary. Consequently, the
computational complexity of Equation 2.13 is O(n2). To speed up computation, Liu et al. [11]
propose two approximation algorithms: positive sampling and quasi-hierarchical softmax. In
this thesis, we will only consider positive sampling.

The idea behind positive sampling is to avoid iterating over all of the irrelevant words by
only considering a subsample of EI . Liu et al. [11] suggest that mi = max(Ni

A, Ni
S) samples

should be randomly selected from EI . They denote this as C(wi) = sample(i,mi)⊆ EI . Con-
sequently, the time complexity is reduced from O(n2) to O(nm), where m = 1

n ∑
n
i=1 mi. The

pseudocode for LWET with positive sampling, which uses gradient descent to optimize Ψ,
is provided by Liu et al. [11] and presented in Listing 2.2.

1 Input: Initial word embeddings Q̂, Learning rate step,
2 Threshold λ, Iterating times t
3 Output: Word embeddings which have been improved Q
4 Initialize: α, β, γ, δ, Ψold = 0, Ψnew = 0, Q = Q̂, i = 0
5

6 while true do
7 i = i+1
8 Ψold = Ψnew
9 Ψnew = 0

10

11 for wi in V do
12 get wi’s synonyms from lexicons, Swi

13 get wi’s antonyms from lexicons, Awi

14 sample m irrelevant words and get C(wi)
15 update Ψnew according to cost function
16 update the first derivative of Ψ(Q) with respect to wi
17 update wi’s vector according to the first derivative
18 end for
19

20 if Ψnew −Ψold < λ or i > t then
21 break
22 end if

29

Chapter 2. Background

23 end while
24

25 return Q

Listing 2.2 LWET with positive sampling pseudocode, provided by Liu et al. [11]

The positive sampling algorithm in Listing 2.2 requires the first derivative of Ψ with respect
to wi. Liu et al. [11] do not provide this equation, and we therefore derive it ourselves. We
must first find which terms in the cost function Ψ, defined in Equation 2.13, depend on wi. It
is easy to see that D(qi, q̂i), D(qi,q j), D(qi,qk), and D(qi,ql) all depend on wi since they all
contain qi, the word vector corresponding to wi. The Euclidean distance between two vectors,
for instance q̂i, q̂ j ∈ Rd , is defined as:

D(q̂i, q̂ j) = ∥q̂i − q̂ j∥=
√
(q̂(1)i − q̂(1)j)2 +(q̂(2)i − q̂(2)j)2 + . . .+(q̂(d)i − q̂(d)j)2 (2.14)

If we only consider the first element of the vector q̂i, we have the partial derivative:

∂D

∂ q̂(1)i

=
2(q̂(1)i − q̂(1)j)

2
√

(q̂(1)i − q̂(1)j)2 +(q̂(2)i − q̂(2)j)2 + . . .+(q̂(d)i − q̂(d)j)2
=

q̂(1)i − q̂(1)j

D(q̂i, q̂ j)

We can subsequently determine the gradient of D with respect to q̂i:

∇q̂iD=

∂D

∂ q̂(1)i
...

∂D

∂ q̂(d)i

=

q̂(1)i −q̂(1)j
D(q̂i,q̂ j)

...
q̂(d)i −q̂(d)j
D(q̂i,q̂ j)

=
q̂i − q̂ j

D(q̂i, q̂ j)
(2.15)

Using Equation 2.15, we can obtain the first derivative of Ψ, defined in Equation 2.13, with
respect to wi as:

∂Ψ

∂wi
=

∂Ψ

∂qi
= α · qi − q̂i

D(qi, q̂i)
+β · ∑

(i, j)∈ES

qi −q j

Ni
S ·D(qi,q j)

− γ · ∑
(i,k)∈EA

qi −qk

Ni
A ·D(qi,qk)

+δ · ∑
(i,l)∈EI

qi −ql

Ni
I ·D(qi,ql)

(2.16)

Lexical Databases
To apply LWET to our embeddings, we first need to extract the synonymous and antonymous
relationships between words. We propose a method that combines WordNet, used by Meng

30

2.3 Embeddings

et al. [14] and Meng et al. [13], with a Large Language Model (LLM) for domain-specific
words.

WordNet. WordNet is a lexical database for the English language, containing meanings
and relations between more than 118 000 words, proposed by Miller [16]. Synonyms are the
fundamental relation, since WordNet organizes words into sets of synonyms called synsets.
A synset, in turn, is linked to other synsets through various semantic relations, such as
antonymy.

Large Language Models. WordNet contains many, but far from all, synonymous
and antonymous word relationships in the English language. We conjecture that modern
LLMs are capable of inferring the meaning of domain-specific and OOV words, such as
“poweredOn” and “poweredOff”, while simultaneously being able to detect and correct
spelling mistakes such as “reciving”. As a consequence, we propose a novel approach to
use LLMs as a lexical database, capable of automatically extracting lexical contrasts for OOV
words.

To quickly demonstrate the capabilities of an LLM in extracting lexical contrasts, we prompt
ChatGPT (GPT-4) as in Figure 2.9 with the vocabulary of the hypothetical event templates.

Determine which of these words are synonyms and which are
antonyms:

{sending, block, receiving, reciving, server, is, in, state,
poweredOn, poweredOff, adding, an, already, existing}

Consider spelling mistakes and give your response in
JSON format.

Figure 2.9 Example prompt to ChatGPT (GPT-4) to extract lexical contrasts

Using the prompt in Figure 2.9, the model responds as in Figure 2.10.

Open Source LLMs. LocalAI, developed by Giacinto [5], allows a user to run large
language models using endpoints compatible with the OpenAI API specifications in a Docker
container locally. LocalAI can be used with a wide variety of models. We settle for a fine-
tuned version of Meta’s LLaMA 2, available on Hugging Face. More specifically, we use the
Q5_K_M method, which is one of the larger versions with very low quality loss.

Prompt Engineering. For an LLM to properly interpret a prompt, and give the user a
more satisfactory answer, careful consideration should be made in regard to how the instruc-
tion is phrased. Recently, the area of prompt engineering has established itself along with the
recent breakthroughs in LLMs.

In the documentation by OpenAI [19], different strategies are described for writing better
prompts. While the importance of the tactics may vary depending on the task, it is generally
true that writing clear and descriptive prompts will give more relevant responses. An example

31

Chapter 2. Background

(...) based on the list provided, and taking spelling mistakes
into account, I can categorize the words as follows:

{
"synonyms": {

"receiving": ["reciving"],
},
"antonyms": {

"poweredOn": ["poweredOff"],
"sending": ["receiving"],
"adding": ["existing"]

}
}

Figure 2.10 Response from ChatGPT (GPT-4) with lexical contrasts

given in the documentation recommends modifying the prompt “How do I add numbers in
Excel?” into “How do I add up a row of dollar amounts in Excel? I want to do this automat-
ically for a whole sheet of rows with all the totals ending up on the right in a column called
‘Total’...”. Additionally, the prompts can include examples of the desired output format, the
desired length of the output, and delimiters – for example using quotes “·” – to accentuate
important details in the input.

2.4 Similar Approaches

Two approaches that have laid the foundation and explored the topic of of log message em-
beddings for anomaly detection are Template2Vec and Log2Vec.

Template2vec
Template2Vec, proposed by Meng et al. [14], is a method to extract the semantic information
in log message templates. The method uses Word2Vec to create word embeddings from a
corpus of log message templates, subsequently using a method called dLCE proposed by
Nguyen et al. [17] to introduce lexical contrast for antonym and synonym pairs. Template2Vec
constructs a log embedding as the weighted average of the log message’s word embeddings.
The method uses WordNet to extract synonyms and antonyms, but relies on manual operator
feedback for domain-specific synonym and antonym pairs.

Log2vec
In many ways, Log2Vec is a continuation of Template2Vec proposed by the same authors:
Meng et al. [13]. As opposed to Template2Vec, Log2Vec can create embeddings from raw, un-
structured log messages. Meng et al. [13] propose a method called log-specific word embed-
ding (LSWE), that accounts for lexical contrast, to create word embeddings. The synonyms

32

2.4 Similar Approaches

are extracted from WordNet and, again, from manual feedback provided by an operator for
domain-specific synonym and antonym pairs. Log2Vec uses MIMICK to handle OOV words.

33

3
Method

Our method aims to evaluate the efficacy of using log message embeddings for anomaly
detection. To accomplish this, we use two datasets, HDFS_v1 and BGL, to compare an em-
beddings approach to a baseline in two tasks:

1. Anomaly detection

2. Concept drift resilience

In the anomaly detection task, we want to compare the baseline, that uses Drain to learn and
match messages to clusters of logs, to an embeddings approach that uses k-means clustering
to learn clusters of log message embeddings. The event count matrices obtained from these
two clustering approaches are ultimately used in three different anomaly detection models.

In the concept drift resilience task, we introduce different phrasing for some of the log mes-
sages in the test dataset. We are interested in evaluating how resilient the baseline and the
embeddings approach are to these changes, i.e., how the anomaly detection performance is
affected when the test dataset is modified with a slightly different wording.

3.1 Baseline

We first implement a baseline for the HDFS_v1 and BGL datasets, with an 80/20 split be-
tween training and test data, using Drain as a parser. The training and test datasets are split in
a so-called class-uniform way, meaning that the share of anomalous windows of logs should
be the same in both datasets. We subsequently construct event count matrices for the training
and test data, using session windows for HDFS_v1, based on block identifiers, and sliding
windows for BGL, using 6 hour long windows with a 2 hour step size.

We set Drain’s tree depth to 4, the similarity threshold to 0.7, the maximum number of
children to 100, and the maximum amount of clusters to 1024. For the HDFS_v1 dataset, we
also mask or substitute the datetimes, block identifiers, IP addresses, and resources in the raw
log messages with fixed tokens. Drain is trained over the training dataset, and subsequently
tries to match the raw log messages in the test dataset to the learned clusters. Each cluster has

34

3.2 Embeddings Approach

an index, which is used as an index in the resulting event count vector for a sequence of logs.
If Drain fails to match a raw test log message to a cluster, we increment an index specifically
designated to non-matched logs in the event count vector. We ultimately train three different
anomaly detection models: an Isolation forest, an autoencoder, and logistic regression. The
hyperparameters for the Isolation forest are presented in Table 3.1, and the hyperparameters
for the autoencoder in table 3.2. The hyperparameters for the logistic regression are the
standard parameters in scikit-learn.

BGL HDFS_v1
n_estimators 100 100
max_samples 0.9999 0.9999

n_jobs 4 4
Contamination 46% 3%

Table 3.1 Isolation Forest hyperparameters

The high contamination rate for BGL arises from the sliding windows. Since sliding windows
may overlap, the anomalous logs are present in and contaminate many more windows.

BGL HDFS_v1
Hidden Activation Function ReLU ReLU
Output Activation Function Sigmoid Sigmoid

Loss MSE MSE
Optimizer Adam Adam

Epochs 30 30
Batch Size 32 32

Dropout Rate 0.2 0.2
L2 Regularizer 0.1 0.1
Validation Size 0.1 0.1
Contamination 46% 3%

Table 3.2 Autoencoder hyperparameters

For the HDFS_v1 dataset, we use four hidden layers in the autoencoder: 32 nodes → 20
nodes → 20 nodes → 32 nodes. For the BGL dataset, which has a much larger input layer,
we also use four hidden layers: 275 nodes → 150 nodes → 150 nodes → 275 nodes.

3.2 Embeddings Approach

The embeddings approach contains several components. In essence, we aggregate the embed-
dings for individual words in a log message to a log message embedding. The log message
embeddings are clustered using k-means, where the identifier of a cluster corresponds to a
dimension in an event count vector. We set k in the clustering algorithm to the same amount
of templates that Drain finds in the baseline.

35

Chapter 3. Method

Lexicons
We evaluate the capability of an LLM to obtain synonyms and antonyms by a simple point
system. By first manually annotating the vocabulary obtained from the HDFS_v1 logs with
suitable synonyms and antonyms, we award one point for every synonym and antonym that
the LLM correctly responds with in JSON format. Moreover, we deduct one point for every
synonym that the LLM wrongly considers to be an antonym and every antonym that the LLM
wrongly considers to be a synonym.

Given the background on prompt engineering, we write three different prompts that clearly
state the desired output format, the desired length of the output, and use delimiters to accen-
tuate the words of interest. The three prompts are presented in table 3.3.

Prompt No. Prompt Content
1 Determine a maximum of 10 synonyms and antonyms each to

the word “w”. Respond in JSON format as {’synonyms’: [],
’antonyms’: []}.

2 Please provide synonyms and antonyms for the word “w”.
List up to 10 synonyms and 10 antonyms. Format your re-
sponse in JSON with the structure {’synonyms’: [’synonym1’,
’synonym2’, ...], ’antonyms’: [’antonym1’, ’antonym2’, ...]}.
For example, for the word ’fast’, the response should look
like {’synonyms’: [’quick’, ’rapid’, ...], ’antonyms’: [’slow’,
’lethargic’, ...]}.

3 For the word “w”, identify synonyms and antonyms. Limit the
list to 10 each. Please present your answer in a simple JSON
format, like this: {’synonyms’: [’synonym1’, ’synonym2’, ...],
’antonyms’: [’antonym1’, ’antonym2’, ...]}. Ensure clarity and
relevance in the selection of words.

Table 3.3 Tested prompts to obtain synonyms and antonyms from an LLM

We test the locally running LLaMA model with all three prompts by calling the chat comple-
tion API endpoint. For comparison, we also manually prompt ChatGPT (GPT-3.5) with the
first prompt. Ideally, all prompts should be tried using ChatGPT, but the effort of manually
prompting over a thousand words, with a maximum of 70 allowed prompts per hour, for two
additional prompt formats would simply be too time-consuming.

The Embedding Space
Firstly, we use Word2vec to create an embedding space. We consider two corpora, a general
corpus C , with a vocabulary V , and a corpus with log messages Clogs, with a vocabulary
Vlogs. For our general corpus, we use the so-called Text8 corpus, a collection of English
Wikipedia articles. After training Word2vec on C ∪Clogs, we obtain an embeddings table
Q̂ ∈ R#(V∪Vlogs)×d .

We use 128 dimensions for the word embeddings in Word2Vec. Moreover, we set the window

36

3.2 Embeddings Approach

size, in other words the amount of surrounding words that the model considers, to 5, and the
minimum count of a word to be included in the vocabulary to 5.

Subsequently, we use WordNet to find general synonymous word relationships, Eg
S, and gen-

eral antonymous word relationships, Eg
A, in V ∪Vlogs. We also use an LLM to find domain-

specific synonymous word relationships, Ed
S , and domain-specific antonymous word relation-

ships, Ed
A, in Vlogs \V . We combine this information in ES = Eg

S ∪Ed
S and EA = Eg

A ∪Ed
A. To

be clear, the g in Eg
S refers to the general synonym relationships (and general antonym rela-

tionships in Eg
A), while the d in Ed

S refers to the domain-specific synonym relationships (and
domain-specific antonym relationships for Ed

A).

We finally apply LWET, using Q̂, ES, and EA, to obtain a retrofitted embeddings table that
considers lexical contrast Q ∈ R#(V∪Vlogs)×d . The method for constructing the embedding
space is summarized in Figure 3.1.

Figure 3.1 Pipeline for constructing the embedding space

The preprocessing of the general Text8 corpus simply consists of splitting every sentence on
spaces to obtain lists of words. Thus, we ultimately obtain a list of sentences, where each sen-
tence is a list of words. The preprocessing of the raw logs differs between HDFS_v1 and BGL.
For the HDFS_v1 dataset, we remove all non-alphabetical characters from each log, with the
motivation that we are only interested in the natural language content of each log message.
For the BGL dataset, we remove hexadecimal numbers and all non-alphabetical characters. If
we do not remove the hexadecimal numbers before the non-alphabetical characters, the hex-
adecimal numbers will persist as nonsensical letter combinations in the messages. Finally, we
split each log message on spaces to obtain a list of word lists, analogous to the preprocessed
general corpus.

37

Chapter 3. Method

Parameter Value
step 0.1

λ 0.5
t 100
α 1
β 2
γ 3
δ 4

Table 3.4 Hyperparameters for experimental LWET with positive sampling, step refers to
the step size in gradient descent, λ refers to the threshold (difference in the cost function Ψ

as a stopping condition), t to the maximum number of iterations, and α , β , γ , as well as δ to
the parameters that control the relative strength of each component in Ψ.

LWET. As an initial experiment, we implement the positive sampling approximation algo-
rithm, presented in Listing 2.2, for the HDFS_v1 dataset using the hyperparameters in Table
3.4.

To evaluate the transformation of the embedding space, we consider the cosine similarities
between synonym and antonym pairs to be arbitrarily distributed. We can consequently plot
cumulative distribution functions (CDFs), F , over the cosine similarities for the pairs of pre-
trained synonym and antonym embeddings found in Q̂ and the pairs of retrofitted synonym
and antonym embeddings found in Q.

Consider the following example for some intuition about what the CDFs represent: let X syn
Q

denote the distribution of the cosine similarities between synonym pairs in the retrofitted
embedding space Q, with the corresponding CDF Fsyn

Q . Then, Fsyn
Q (0.8) = P(X syn

Q ≤ 0.8) =
0.2 would mean that 20% of the synonym pairs in the retrofitted embedding space have a
cosine similarity smaller than 0.8.

Naturally, we want the CDF corresponding to the cosine similarities of the antonym pairs to
be shifted to the left, signifying lower similarities, and the CDF corresponding to the cosine
similarities of the synonym pairs to be shifted to the right, signifying higher similarities.
Moreover, the curves should ideally have a sharp slope, corresponding to lower variance in
the cosine similarities.

Figure 3.2 demonstrates how the synonym pairs in our lexicon generally exhibit higher cosine
similarities after applying LWET. The antonym pairs, however, also exhibit slightly higher
cosine similarities after applying LWET. Nonetheless, the difference in cosine similarities
between the synonym and antonym pairs has increased, potentially enabling us to separate
antonyms and synonyms better. In general, however, this transformation does not entirely
accomplish what we want; the cosine similarities between antonyms seem to be distributed
very similarly to the cosine similarities between irrelevant words, and the difference between
synonyms and antonyms may not be large enough to separate the two classes. Interestingly,
the cosine similarity distribution of irrelevant word pairs has been shifted to generally higher
values. It is reasonable to raise concerns about how the relation between seemingly irrelevant

38

3.2 Embeddings Approach

Figure 3.2 Cumulative distributions of the cosine similarities between the synonym,
antonym, and irrelevant/unrelated word pairs for the pre-trained embeddings Q̂ and retrofitted
embeddings Q using the hyperparameters in Table 3.4. The convergence of Ψ in LWET is
shown in the bottom right plot.

39

Chapter 3. Method

words, in the context of synonyms and antonyms, is significantly altered by LWET, giving
a higher similarity score. The CDF corresponding the the distribution of cosine similarities
between irrelevant words in the pre-trained embeddings resembles the CDF of a Gaussian
distribution. The CDF corresponding to the distribution in the retrofitted embeddings, how-
ever, does not look Gaussian. The convergence of ψ , shown in the bottom right image, is
relatively fast, which might be a problem. We will make our reasoning as to why this might
be, and how we have remedied this, later.

Empirically, we find that the total number of synonyms and antonyms in the lexicon affects
the transformation of the embedding space. For example, the lexicon we use to tune our
embedding space contains 147 195 total synonym pairs, but only 7187 antonym pairs. While
Ni

S and Ni
A in the denominators of the cost function in Equation 2.13 attempt to compensate

for these differences, there will inevitably be cases where a word has no antonyms but several
synonyms in the lexicon; in these cases, the term in 2.13 that tries to decrease the distance
between synonyms will contribute to the transformation of the embedding space, while the
term that tries to increase the distance between antonyms will not. To further compensate for
this disparity in the occurrences of synonyms and antonyms in the lexicon, we should scale
β and γ so that fewer antonyms, relative to the number of synonyms, in the lexicon results in
a larger γ and smaller β , and vice versa for relatively fewer synonyms. We therefore suggest
a method to choose β and γ , where ⌈x⌉ denotes the ceiling function, as in Equation 3.1.

β = max
(

2,
⌈

δ · #antonyms
#synonyms+ #antonyms

⌉)
γ = max

(
3,
⌈

δ · #synonyms
#synonyms+ #antonyms

⌉)
(3.1)

The strategy in Equation 3.1 effectively means that 2 ≤ β ≤ δ and 3 ≤ γ ≤ δ . The motivation
for using these intervals is that we do not want β and γ to be smaller than the values suggested
by Liu et al [11]. We furthermore do not want the values to overpower δ , that controls the dis-
tance to irrelevant words. An optimal choice of β and γ could be the one that maximizes the
area between the CDF of the retrofitted antonyms and the CDF of the retrofitted synonyms,
i.e.,

∫
Fant

Q −Fsyn
Q , while simultaneously encapsulating a well-formed CDF of the irrelevant

words. A more extensive hyperparameter tuning of LWET is, however, unfortunately outside
the scope of this thesis. Applying the strategy in Equation 3.1, we obtain β = 2, as before,
and γ = 4, yielding the distributions shown in Figure 3.3.

Considering Figure 3.3, it is evident that the distributions in the retrofitted embedding space
have been shifted significantly. Almost 50% of the antonym pairs have a cosine similarity
lower than 0.25, and more than 95% of the synonym pairs have a cosine similarity higher than
0.75. Furthermore, the cosine similarity distribution of irrelevant word pairs is, as intended,
somewhere in between that of the synonym and antonym pairs. Nonetheless, the worrisome
shift in distribution of cosine similarities between irrelevant word pairs persists.

Given the relatively fast convergence of Ψ, visualized in Figure 3.3, we try to decrease step
from 0.1 to 0.01 and t, the maximum number of iterations, from 100 to 50. The reason, or

40

3.2 Embeddings Approach

Figure 3.3 Cumulative distributions of the cosine similarities between the synonym,
antonym, and irrelevant/unrelated word pairs for the pre-trained embeddings Q̂ and retrofitted
embeddings Q using the hyperparameters in table 3.4, except for γ = 4. The convergence of
Ψ in LWET is shown in the bottom right plot

41

Chapter 3. Method

our suspicion, is that continuously updating the retrofitted embedding space even after Ψ

has converged to a local minimum might scramble the embedding space, potentially destroy-
ing some of the relations between irrelevant word pairs. As seen in Figure 3.4, this set of
hyperparameters preserves the structure of the distributions better.

Figure 3.4 Cumulative distributions of the cosine similarities between the synonym,
antonym, and irrelevant/unrelated word pairs for the pre-trained embeddings Q̂ and retrofitted
embeddings Q using the hyperparameters in Table 3.4, except for γ = 4, step = 0.01, and
t = 50. The convergence of Ψ in LWET is shown in the bottom right plot

OOV Words
Words that do not occur in the training data but do occur in the test data, in other words OOV
words, do not exist in our embedding space. Therefore, we need an OOV engine to obtain
embeddings for OOV words and accurately construct log message embeddings. Initially, we
planned on using MIMICK to obtain embeddings for OOV words. However, as we will dis-

42

3.2 Embeddings Approach

cuss later in the report, we found that MIMICK, at least for our purposes, did not work as
intended. Therefore, we have opted for a different approach.

Our OOV engine first prompts an LLM to ask for synonyms and antonyms of the OOV word.
If one of the provided synonyms occurs in our vocabulary, we use the synonym’s embedding
in place of the OOV word. If several of the provided synonyms occur in our vocabulary, we
use the weighted average of the synonyms’ embeddings in place of the OOV word. If none
of the provided synonyms occur in our vocabulary, we in a sort of best-effort fallback use the
Levenshtein distance to find a word and its corresponding embedding that most resembles
the OOV word.

Log Message Embeddings
We construct a log message embedding by first extracting n individual words in the log mes-
sage in a preprocessing step. If our vocabulary contains a word, we look it up in the retrofitted
embeddings table to obtain its embedding. If our vocabulary does not contain a word, we use
the OOV engine to obtain an embedding for it. The embeddings for each individual word,
qi ∈Rd , i ∈ [1,n], are aggregated according to a simple strategy e = 1

n ∑
n
i=1 qi, where e ∈Rd

is the log message embedding. The method for constructing the log message embedding is
summarized in Figure 3.5.

Figure 3.5 Pipeline for constructing a log message embedding

Using a class-uniform 80/20 split between training and test data, we cluster the training log
message embeddings using k-means. In an inference step, we match each test log message
embedding to the most similar cluster. Every cluster has a numerical identifier, and we can
thus create event count vectors for each window of log messages to be used in three different

43

Chapter 3. Method

anomaly detection models: an Isolation forest, an autoencoder, and logistic regression using
the same hyperparameters as in the baseline.

3.3 Evaluation

In summary, we test the baseline and the embeddings approach in two tasks: anomaly detec-
tion and concept drift resilience. The only difference between the anomaly detection and the
concept drift resilience task is that we, in the concept drift resilience task, substitute some of
the words in the test dataset before we create the event count matrices. The specific changes
made to the log messages to induce concept drift can be found in the appendix, in Listing 7.1
and 7.2.

Using both the baseline with Drain and the embeddings approach, we evaluate the precision,
recall, and F1 score for both the training dataset and test dataset with the three anomaly detec-
tion models. Since we are interested in how the different components affect the embeddings
approach, we test slightly different set-ups, presented in Table 3.5.

Standard
params

The pipeline in Figure 3.5

W/o LWET Like the standard parameters, except we do not use LWET
to transform the embedding space

W/o OOV
engine

Like the standard parameters, except we do not use the
OOV engine to handle OOV words. Instead, every OOV

word is simply assigned a vector of ones, v = [1, . . . ,1], as
its embedding

CBOW Like the standard parameters, except we use CBOW
instead of skip-gram in Word2Vec

Table 3.5 Evaluated set-ups for the embedding approach

44

4
Results

4.1 LLM Lexicons

First, the synonyms and antonyms of different words produced by LLMs are compared
against a set of manually annotated synonyms and antonyms. The scoring is explained in
the method section. With the total amount of manually annotated synonyms and antonyms
being 386, the maximum score was also 386. The “No JSON” column shows the number
of times the LLM response did not conform to the given JSON format, either by explaining
that the given word was unknown to the model or simply by giving the response in text. The
“Prompt” column refers to the prompts in Table 3.3.

LLM Prompt Synonyms Antonyms No JSON Score

LLaMA 2
1 54 30 21 84
2 18 8 84 24
3 29 11 49 39

GPT-3.5 1 83 42 3 125

Table 4.1 Synonym/antonym extraction performance on annotated HDFS_v1 vocabulary

To be clear, this test was only performed on the HDFS dataset, since the amount of unique
words in the BGL dataset was far too large to annotate.

Considering Table 3.3, prompt 1 undoubtedly performs the best. Having tested the three
prompts with LLaMA 2, prompt 1 extracted more correct synonyms and antonyms compared
to the other prompts, while also responding in the correct format more often. While GPT-3.5
performs considerably better than LLaMA 2, none of the models came close to achieving a
maximum score of 386. For more details on the performance of large language models as
lexicons, we refer to Section 5.1 in the discussion.

45

Chapter 4. Results

4.2 Anomaly Detection

The results, with scores rounded to three decimals from three experiments each, for the
anomaly detection task are presented in Tables 4.2 and 4.3. The rows refer to the set-ups
described in Table 3.5. The baseline refers to the scores produced by using Drain. The high-
est scores for each model are marked in bold.

A quick glance at Tables 4.2 and 4.3 reveals similar anomaly detection performance when
applying both Drain and log message embeddings in the parsing step. Comparing results
between anomaly detection on the HDFS_v1 and BGL datasets, we can also observe a small
drop in scores when for log message embeddings on the BGL data. We refer to Section 5.2 in
the discussion for further details and explanations. The impact of using LWET and the OOV
engine seems, in most cases, to be negligible. For further details about the impact of LWET
and the OOV engine, we refer to Section 5.4 in the discussion.

46

4.2 Anomaly Detection

HDFS_v1
The embeddings were fit into k = 45 clusters, the same amount that Drain produced after
parsing the HDFS logs.

Isolation Forest
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.942 0.707 0.808 0.943 0.690 0.797
Standard
params

0.880 0.682 0.768 0.874 0.666 0.756

W/o
LWET

0.878 0.688 0.771 0.870 0.670 0.757

W/o OOV
engine

0.883 0.692 0.776 0.879 0.679 0.766

CBOW 0.904 0.705 0.792 0.904 0.694 0.785

Logistic Regression
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.994 0.798 0.890 0.992 0.785 0.876
Standard
params

0.994 0.797 0.885 0.991 0.784 0.876

W/o
LWET

0.994 0.797 0.885 0.991 0.784 0.876

W/o OOV
engine

0.994 0.798 0.885 0.991 0.785 0.876

CBOW 0.994 0.798 0.885 0.991 0.785 0.876

Autoencoder
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.890 0.670 0.761 0.886 0.658 0.756
Standard
params

0.889 0.683 0.772 0.886 0.674 0.765

W/o
LWET

0.889 0.683 0.772 0.886 0.674 0.765

W/o OOV
engine

0.889 0.683 0.772 0.886 0.674 0.765

CBOW 0.889 0.682 0.772 0.886 0.674 0.765

Table 4.2 Anomaly detection performance on HDFS_v1 dataset

47

Chapter 4. Results

BGL
The embeddings were fit into k = 390 clusters, the same amount that Drain produced after
parsing the BGL logs.

Isolation Forest
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.744 0.744 0.744 0.731 0.75 0.74
Standard
params

0.700 0.700 0.700 0.678 0.712 0.694

W/o
LWET

0.700 0.700 0.700 0.659 0.728 0.692

W/o OOV
engine

0.684 0.683 0.683 0.695 0.728 0.711

CBOW 0.687 0.687 0.687 0.653 0.711 0.681

Logistic Regression
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.896 0.868 0.882 0.900 0.833 0.866
Standard
params

0.911 0.899 0.905 0.885 0.842 0.863

W/o
LWET

0.908 0.891 0.900 0.890 0.855 0.872

W/o OOV
engine

0.909 0.884 0.896 0.888 0.833 0.860

CBOW 0.893 0.892 0.893 0.864 0.838 0.851

Autoencoder
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.754 0.754 0.754 0.718 0.781 0.748
Standard
params

0.639 0.639 0.639 0.634 0.675 0.654

W/o
LWET

0.641 0.641 0.641 0.633 0.658 0.645

W/o OOV
engine

0.638 0.638 0.638 0.633 0.658 0.645

CBOW 0.641 0.641 0.641 0.628 0.658 0.642

Table 4.3 Anomaly detection performance on BGL dataset

48

4.3 Concept Drift Resilience

4.3 Concept Drift Resilience

The results for the concept drift resilience task, in the same format as in the anomaly detection
task, are presented in Table 4.4 and 4.5.

HDFS_v1

Isolation Forest
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.942 0.707 0.808 0.104 0.800 0.185
Standard
params

0.880 0.682 0.768 0.878 0.741 0.804

W/o
LWET

0.878 0.688 0.771 0.862 0.664 0.751

W/o OOV
engine

0.883 0.692 0.776 0.888 0.739 0.807

CBOW 0.904 0.705 0.792 0.897 0.660 0.760

Logistic Regression
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.994 0.798 0.890 0.047 0.999 0.089
Standard
params

0.994 0.797 0.885 0.972 0.785 0.869

W/o
LWET

0.994 0.797 0.885 0.991 0.785 0.876

W/o OOV
engine

0.994 0.798 0.885 0.972 0.785 0.869

CBOW 0.994 0.798 0.885 0.991 0.785 0.876

Autoencoder
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.890 0.670 0.761 0.615 0.332 0.431
Standard
params

0.889 0.683 0.772 0.886 0.674 0.765

W/o
LWET

0.889 0.683 0.772 0.886 0.674 0.765

W/o OOV
engine

0.889 0.683 0.772 0.886 0.674 0.765

CBOW 0.889 0.683 0.772 0.886 0.674 0.765

Table 4.4 Anomaly detection performance with concept drift on HDFS_v1 dataset

49

Chapter 4. Results

BGL

Isolation Forest
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.744 0.744 0.744 0.476 0.987 0.642
Standard
params

0.664 0.664 0.664 0.644 0.675 0.66

W/o
LWET

0.662 0.662 0.662 0.668 0.68 0.674

W/o OOV
engine

0.673 0.673 0.673 0.717 0.724 0.721

CBOW 0.675 0.675 0.675 0.665 0.68 0.672

Logistic Regression
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.896 0.868 0.882 0.712 0.873 0.783
Standard
params

0.916 0.897 0.906 0.897 0.842 0.869

W/o
LWET

0.910 0.900 0.905 0.888 0.838 0.862

W/o OOV
engine

0.915 0.901 0.908 0.888 0.838 0.862

CBOW 0.889 0.890 0.890 0.871 0.823 0.849

Autoencoder
Training Dataset Test Dataset

Precision Recall F1 score Precision Recall F1 score
Baseline 0.754 0.754 0.754 0.478 0.987 0.644
Standard
params

0.645 0.645 0.645 0.637 0.662 0.649

W/o
LWET

0.642 0.642 0.642 0.632 0.662 0.647

W/o OOV
engine

0.642 0.642 0.642 0.628 0.667 0.647

CBOW 0.639 0.639 0.639 0.623 0.654 0.638

Table 4.5 Anomaly detection performance with concept drift on BGL dataset

The anomaly detection scores after introducing concept drift, presented in Tables 4.4 and 4.5,
display significant differences in performance between using Drain and log message embed-
dings. Here, the baseline scores have dropped substantially, especially in terms of precision.

50

4.3 Concept Drift Resilience

The log message embeddings scores, however, remain consistent. This phenomenon is most
noticeable when performing anomaly detection on the HDFS_v1 data. For further details and
explanations on concept drift resilience, we refer to Section 5.3 in the discussion.

51

5
Discussion

To facilitate a discussion, we first establish some trends in the results.

1. As shown in table 4.1, the first prompt most effectively identifies the synonyms and
antonyms of the HDFS_v1 vocabulary when evaluated using LLaMA 2. Notably, Chat-
GPT (GPT-3.5) demonstrates superior performance compared to LLaMA 2 in this task

2. The results in tables 4.2 and 4.3 indicate that in the anomaly detection task, the embed-
dings approach yields results comparable to, albeit marginally inferior to, the Drain
baseline

3. According to the findings in tables 4.4 and 4.5, the embeddings approach exhibits
significantly better performance for the HDFS_v1 dataset and a modest improvement
for the BGL dataset in the concept drift resilience task

4. The omission of LWET or the OOV engine in tables 4.2, 4.3, 4.4, and 4.5 does not
seem to noticeably impact the performance of the embeddings approach in either the
anomaly detection or concept drift resilience task

5.1 LLMs as Lexicons

Given the scores in Table 4.1, there is undoubtedly room for improvement when it comes
to using LLMs as lexicons for synonyms and antonyms. On a brighter note, GPT-3.5 still
performed relatively well, missing out on some key relationships, such as not finding that
“dest” should be synonymous with “destination”, but also finding some key relationships,
such as “transmitted” being antonymous with “received” and “source” being synonymous
with “src”. The score in Table 4.1, not even reaching half of the maximum score, may not
reflect this fact properly. Nonetheless, given that there is no standardized way to compare the
synonyms and antonyms, the score should not be regarded as an absolute truth. In some ways,
ChatGPT actually outperformed the manually annotated synonyms and antonyms, finding
words that should have been included among the annotated words.

A notable challenge in using ChatGPT for this task was its tendency to generate exactly ten
synonyms and ten antonyms. Sometimes, there was a drift in the meaning and context of the

52

5.2 Anomaly Detection

generated words as the model continued to provide synonyms and antonyms. For instance, the
model claims that “tendon” is synonymous with “thread”, which may be true in a few logical
leaps but is generally not true. The reason for this behaviour may be the model misinterpreting
the instruction to find a maximum of ten synonyms and antonyms as a requirement to always
find ten. If the quality of the generated synonyms and antonyms is poor, the log message
embeddings would be contaminated by the embeddings of these words, skewing the resulting
vector away from the intended meaning. Some more extreme/nonsensical examples of this
would be claiming “chaos creator” is antonymous with “sorter” (very creative!), and that
“disorganization” is antonymous with “file”.

The LLaMA 2 model performed worse than ChatGPT, especially in conforming to the pro-
vided JSON format. Surprisingly, prompt 2 and 3, that contain more information and exam-
ples, perform significantly worse than prompt 1. This could potentially be the effect of an
“information overload”; LLaMA simply loses attention and focus on the target word with a
longer prompt.

Another issue was the differentiation between parts of speech. Some words are both nouns
and verbs, for example “block”, that may mean completely different things. A potential so-
lution lies in refining the prompts. Additionally, the context within which synonyms and
antonyms were found often lacked precision. Words can have different meanings in various
fields, and ChatGPT tended to default to the most generic usage. For instance, ChatGPT
listed “brook”, “creek”, and “current” as synonyms for “stream”, potentially leading to ir-
relevant log message embeddings. Drawing from the principles of prompt engineering in
OpenAI [19], the LLMs could possibly have been instructed to act as a computer engineer, or
at least have been given the proper context, along with being specified to only give one word
answers.

Finally, the models frequently produced synonyms and antonyms that were not part of our
established vocabulary. A possible solution to this issue is to refine the prompts using a list
of words from our vocabulary that exhibit the highest cosine similarity to the target word.
Assuming that synonyms and antonyms typically appear in similar contexts, they should
demonstrate high cosine similarities within an embedding space. Therefore, by requesting
an LLM to identify potential synonyms and antonyms from a curated list of highly similar
words, we could likely achieve more precise and relevant word associations.

After postexperimental readjustments of the prompts, it was noted that adding “no need to
give exactly 10, include only strict synonyms” improved the model’s tendency to always
respond with a set number of synonyms and antonyms. Unfortunately, we did not notice this
during initial testing. In the initial tests, we used words with 10 clear synonym and antonym
candidates. As such, we did not notice the problem until much later in the process.

5.2 Anomaly Detection

Considering the results in Table 4.2 and 4.3, there is not a large difference in scores between
the baseline and the embeddings approach. One difference between the implementations of
the baseline and the embeddings approach, that may make a difference, is that the baseline

53

Chapter 5. Discussion

has a designated dimension in the event count vectors for “non-matchable” log messages. The
messages that are not matched to a cluster in the baseline (that is, the messages that Drain
is not able to parse) are presumably rare and distinct, since the parsing tree that is generated
during the training phase can not accommodate them. In the embeddings approach, these
rare and distinct messages are simply matched to the closest cluster. The clustering approach
does not consider how well the message fits into the cluster; it simply considers what the
closest cluster is. This may lead to overestimating the occurrence of certain events, using the
embeddings approach, in the event count vectors.

An important remark to make is that we split the training and test dataset in a class-uniform
way, meaning that the datasets are divided so that both have an equal share of anomalies. This
is, of course, not viable in a live setting where labels do not exist. Furthermore, it is far from
true that anomalies will occur at the same rate in the data used to train a model and the new
incoming data in a live setting. Nonetheless, a class-uniform training-test split is common
practice in many articles on log anomaly detection. Many algorithms, such as Isolation forests
and autoencoders that use a contamination rate in order to classify anomalies, are arguably
more sensitive to the share of anomalies in the datasets. For example, an autoencoder that
uses the contamination rate as a threshold for classifying anomalies based on reconstruction
error may either under- or overestimate anomalies if the contamination rate is too low or
too high. Models based on recurrent neural networks, such as LSTM-based DeepLog and
LogAnomaly, generally try to predict the next log template in a sequence. These models are
more robust to varying shares of anomalies since they do not rely on a contamination rate to
classify anomalies. Considering the aim of this thesis, which was to explore the feasibility
of using automated log message embeddings for anomaly detection and not the anomaly
detection itself, we decided on a class-uniform approach to obtain results comparable to
those in much of the literature.

In general, models that require a contamination rate as a hyperparameter may not be ideal
in an anomaly detection context. It is simply difficult to estimate what the rate of anomalies
in a dataset is in a real, unsupervised scenario. Moreover, the contamination rate may differ
between training and other data. Other models, such as the previously mentioned LSTM-
based models, should perhaps be favored.

5.3 Concept Drift Resilience

The ability of a log anomaly detection model to tolerate concept drift, changes in the format
of log messages over time, is important. For example, a developer may rewrite a log message
when refactoring a code base. Of course, one approach to account for concept drift could
be to occasionally retrain a model. This can, however, often be a computationally expen-
sive task. Some models also propose an online update mechanism, where previously unseen
events can be added to the model while running. Arguably, online updates have two primary
disadvantages: they further convolute the models, making them harder to implement, and
they potentially increase the dimension of input by adding new clusters of logs. Log message
embeddings conceptually have some understanding of the natural language content of the
messages and can potentially match a previously unseen message to a semantically similar

54

5.4 LWET and the OOV Engine

cluster. The results in Table 4.4 and 4.5 demonstrate a significantly better ability to absorb
concept drift in the HDFS_v1 dataset, and a marginally better ability for the BGL dataset.

The embeddings approach’s superior performance in the concept drift resilience task for the
HDFS_v1 dataset can potentially be attributed to several factors. Firstly, the HDFS_v1 dataset
is relatively “homogeneous”, in the sense that there is not a large variety in log messages. For
example, Drain only finds 45 templates for the dataset, compared to 390 for the BGL dataset,
indicating a smaller variety of messages. This, in turn, leads to a small set of changes in
phrasing influencing the HDFS_v1 dataset to a greater extent than, for example, in the BGL
dataset. A more heterogeneous log dataset, such as BGL, can absorb more word substitutions
simply because they do not impact the same number of log messages.

An important note is that Drain is especially sensitive against first-word changes. This is,
most likely, due to the fact that Drain parses a log message from left to right. The first level
in the parse tree considers the length of the log message, while the second level considers the
first word. If the first word is changed to one that Drain has not seen before, it will simply fail
in parsing the log message, which was the case for some of the word substitutions in Listing
7.1, such as “received” and “transmitted”.

Interestingly, the autoencoder seems more robust against concept drift considering the base-
line performance which, despite a large decrease, did not deteriorate as much as the Isolation
forest or logistic regression. The reason for this robustness is not entirely clear; it could be
an inherent quality of the autoencoder or a result of our particular implementation. In our
specific implementation, we do use a dropout regularization strategy which can decrease
overfitting. A key distinction that might give the autoencoder an edge over models like the
Isolation forest is that the autoencoder considers the input “all at once”. That is, the event
count vectors are passed through the network and combined in the nodes, as opposed to an
Isolation forest that considers one feature at a time. In a concept drift scenario, the distribu-
tion of one feature, i.e., one event, may change drastically. If we imagine an Isolation tree
that considers one feature with one split value at a time, a shift in the distribution of the fea-
ture may render the split value outdated and decrease anomaly detection performance. With
an autoencoder, however, all of the features are multiplied with a set of weights in the net-
work and passed through an activation function. Consequently, even if one feature undergoes
a drastic distribution change, the other features continue to contribute to the value processed
by the activation function, potentially enhancing the model’s ability to handle concept drift.

5.4 LWET and the OOV Engine

Given the scores in Table 4.2, 4.3, 4.4, and 4.5, omitting LWET and the OOV engine from
the embeddings approach did not noticeably impact performance. In terms of omitting the
OOV engine, we did not find the negligible performance difference surprising. Our training
dataset was rather large, and more or less the entire test dataset’s vocabulary was contained
in the training dataset. In fact, we only found 3 OOV words in the HDFS_v1 test dataset and
4 in the BGL test dataset. In general, the LLM could find suitable synonyms for OOV words.
However, the same challenges we had with using LLMs as lexicons were also present here.
The Levenshtein distance was a laudable fallback. For example, some OOV words, such

55

Chapter 5. Discussion

as “grepa” and “grepb”, had trailing letters. It is possible that the trailing letters emanate
from flags for the Unix command “grep”, such as in “grep -a”. The Levenshtein distance
successfully managed to match both examples with the in-vocabulary word “grep”.

Before we settled on the current OOV engine strategy, we intended to use MIMICK. Sim-
ply put, MIMICK would be trained on the embeddings produced by Word2Vec and learn to
generate new embeddings for OOV words. Nonetheless, after an initial testing of MIMICK,
we opted for a different approach. Given that MIMICK analyzes words on the basis of single
characters, we expected that it would be able to find the proper embeddings for words where
a single character is wrong. However, the average cosine similarity between the embeddings
for the correctly spelled word and the embeddings produced by MIMICK for misspelled
words was only 0.412, close to the average cosine similarities between irrelevant words in
Figure 3.4.

With the suspicion that our specific training of MIMICK was sub-optimal, we also tested
MIMICK in Log2Vec’s implementation. Initially, this implementation seemed to perform bet-
ter; the embeddings produced by MIMICK for misspelled OOV words had an average cosine
similarity around 0.99 with the corresponding correctly spelled words. To further validate
whether this implementation indeed performed better, we also calculated the cosine similar-
ities between a misspelled words and all the other correctly spelled words. In this specific
test, we found that the OOV words had an average cosine similarity around 0.99 with all the
other correctly spelled words. Words such as “block” and valid OOV misspellings such as
“blook” could as such have promising cosine similarities of 0.998, but also share the same
similarity with gibberish OOV words such as “dfj”. The Log2Vec implementation only tests
the cosine similarities between an OOV word and its corresponding correctly spelled word,
meaning that the other similarities, such as the one demonstrated, went unnoticed. It is dif-
ficult to deduce whether this is an inherent weakness in MIMICK or an error on our part.
Nevertheless, it caused enough concern to make us opt for a different approach.

In our specific case, LWET did not alter the clustering of log message embeddings. The
only candidates for two “opposite” events in the HDFS_v1 dataset are “received block...”
and “transmitted block”. However, the messages were, given our specific set-up, different
enough to be placed in separate clusters, with or without LWET. GPT-3.5 indeed finds “trans-
mitted” as an antonym to “received”, and vice versa, and LWET places the embeddings for
each respective word further apart. However, the aggregation method, which is the weighted
average of each word embedding q, does to some extent suppress this difference. Intuitively,
as n in e = 1

n ∑
n
i=1 qi grows, the significance of a single antonym pair in a total log message

embedding e is diminished.

Arguably, the choice of k in k-means clustering largely affects the importance of handling
lexical contrast in embeddings. Intuitively, there is a maximum number of possible event
templates in a dataset of log messages. As k potentially exceeds this maximum number of
possible event templates, the importance of handling lexical contrast decreases, since the log
embeddings, even though they may contain synonym and antonym pairs, will be sufficiently
dissimilar to end up in different clusters. We can think of it as the pigeonhole principle, where
the maximum number of possible event templates, say n, must be put into k containers. It is
possible that k = 45 exceeds this theoretical maximum number of possible event templates n.

56

5.4 LWET and the OOV Engine

If k > n, that would imply that at least one event template must be placed into two separate
clusters. If we manually inspect the clusters that Drain found with the tested parameters,
there are signs of essentially the same events occurring several times. For example, there are
two clusters:

1. <DATETIME> 19 INFO <RESOURCE>: BLOCK* ask <*> to replicate <BLOCK
> to datanode(s) <*> <*>

2. <DATETIME> 19 INFO <RESOURCE>: BLOCK* ask <*> to replicate <BLOCK
> to datanode(s) <*>

These two clusters essentially represent the same event. Moreover, there are three clusters
with some variation of “receiving block”. On the other hand, if k < n, handling OOV words
and lexical contrast correctly may be more important; several templates must now be placed
in the same clusters and it is important that we can differentiate between events that are
semantically similar but represent widely different system events.

However, even if two “opposite” events were merged into the same dimension in an event
count vector, it may not, depending on the type of anomalies in the dataset and depending
on the model, be to the detriment of performance. For instance, consider an event count
vector e = [2,2,0] where the first and second dimension correspond to two opposite events:
“sending...” and “receiving...”. If the opposite events are merged, producing ê= [4,0], is there
truly a complete loss of information about the event sequence? In fact, when we reduce the
number of clusters k in the embeddings approach to only 10 for the HDFS_v1 dataset, much
lower than the 45 clusters used in Table 4.2, the performance is not significantly affected, as
demonstrated in Table 5.1.

Model Precision Recall F1 score
Isolation Forest 0.898 0.692 0.781

Logistic Regression 0.974 0.627 0.763
Autoencoder 0.736 0.577 0.647

Table 5.1 Anomaly detection performance for the HDFS_v1 dataset using the embeddings
approach with standard parameters and k = 10 in k-means clustering

The results in Table 5.1 are somewhat disconcerting, especially considering that supposedly
opposite events such as “received block...” and “transmitted block...” are placed in the same
cluster with k = 10. It is possible that, given our choice of feature extraction method and
anomaly detection models, it suffices to look at the quantitative relationship between very
general groups of log messages to find log anomalies.

If we recall the theory about quantitative and sequential anomalies (where quantitative
anomalies refer to an anomaly in the relation, quantitatively, between one event and another,
and sequential anomalies refer to an anomaly in the typical flow between event types) event
count vectors, as a feature extraction method, in some sense try to capture both. Even though
the vectors do not contain the exact sequence of events, the count of each event type does

57

Chapter 5. Discussion

provide some information about the particular sequence of events in the sense that one typical
event may be missing, that a rare event may have occurred, or that the events, in relation to
each other, may have occurred with an unusual frequency. There may be an inherent weak-
ness, at least when looking at anomalies in the context of quantitative and sequential anoma-
lies, in using event count vectors as a feature extraction method. By trying to account for both
quantitative and sequential aspects, event count vectors may not be optimally tailored for ei-
ther. Models that look at a sequence of events, such as DeepLog and LogAnomaly, may be
more suitable since they potentially have more information about a specific sequence of log
events. For these specific models, it may also be increasingly important to accurately clus-
ter the log events. For example, it may be more important to precisely know that “received
block...” occurred after “transmitted block...”, rather than knowing that either one occurred
after the other.

5.5 Future Work

Several aspects of the model and method can be improved. Here are a selection of them.

• Prompts. As mentioned before, the used prompts could, and should, be further refined
to obtain more contextually accurate synonyms and antonyms. The most interesting
way forward would be to instruct the language model to act as an engineer, and using
a list of candidate words from our vocabulary that exhibit the highest cosine similarity
to the target word.

• Word Embeddings. More sophisticated embedding models than Word2Vec could be
used. For example, BERT can potentially provide more accurate word embeddings.
Moreover, it would be interesting to approach the “lexical contrast problem” from a
fine-tuning perspective instead of an optimization perspective.

• Aggregation Method. Another interesting task would be to improve the aggregation
method, with the purpose of increasing the importance of antonym pairs. Currently,
the log message embedding is calculated as the weighted average of all the contained
word embeddings, which, as the amount of words in a log message increases, dimin-
ishes the effect of any potential synonyms and antonyms.

• Negations. Similar to how synonyms and antonyms help separate “opposite” events,
negations should be considered as well. In log messages containing segments such
as “...received file...” and “...did not receive file...”, “received” and “not receive” are
essentially an antonym pair. One naive solution could be to consider 2-grams instead
of single words.

• Anomaly Detection Models. More anomaly detection models should be tested. Mod-
els that do not depend on contamination rate are especially interesting. Moreover, it
would be interesting to explore how the log message embeddings themselves, which
are already numerical representations, could be used instead of converting log se-
quences into event count vectors as a feature extraction method. If we look even fur-
ther past the scope of this thesis, transformers also have potential, as highlighted by
several recent papers, in log anomaly detection.

58

6
Conclusion

In conclusion, our exploration of log message embeddings as an alternative to traditional
parsing methods, exemplified by Drain, has yielded promising results and raised valuable in-
sights. The primary objective of this thesis was twofold: firstly, to investigate the feasibility,
challenges, and potential advantages of employing embeddings for log analysis, particularly
in terms of resilience against concept drift; and secondly, to explore the possibilities of au-
tomating the log embedding pipeline using large language models.

Our findings suggest that log message embeddings indeed present a viable and promising
alternative to traditional parsing methods such as Drain. The main challenges lie in handling
lexical contrast, such as antonyms occurring in separate log events, and out-of-vocabulary
words. In our experiments, we have demonstrated how an embeddings approach can achieve
anomaly detection results comparable with Drain. Moreover, we have demonstrated how an
embeddings approach, with embedded knowledge about the language in log messages, can
absorb and improve performance, in comparison with Drain, with concept drift over time.

Experiments pertaining to the opportunities to automate the log embedding pipeline (that is,
in extracting synonyms and antonyms as well as finding suitable in-vocabulary candidates
for out-of-vocabulary words) by using large language models have also demonstrated some
potential. However, a fair amount of work remains to achieve performance comparable to
manual operator feedback. To improve accuracy, refining prompts and contextualizing them
within specific domains, like computer engineering, could be beneficial.

59

Bibliography

[1] A. Agresti. An introduction to categorical data analysis. Wiley, New York,
1996, pp. –. ISBN: 0471113387 9780471113386. URL: http : / / www .
worldcat.org/search?qt=worldcat_org_all&q=0471113387.

[2] D. Borthakur. Hdfs architecture guide. https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html. Accessed: [2023-12-07]. 2008.

[3] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu. “Experience report:
deep learning-based system log analysis for anomaly detection”. CoRR
abs/2107.05908 (2021). arXiv: 2107.05908. URL: https://arxiv.org/
abs/2107.05908.

[4] A. Farzad and T. A. Gulliver. “Unsupervised log message anomaly detec-
tion”. ICT Express 6:3 (2020), pp. 229–237. ISSN: 2405-9595. DOI: https:
//doi.org/10.1016/j.icte.2020.06.003. URL: https://www.
sciencedirect.com/science/article/pii/S2405959520300643.

[5] E. D. Giacinto. Localai: the free, open source openai alternative. https:
//github.com/go-skynet/LocalAI. 2023.

[6] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. “Drain: an online log parsing ap-
proach with fixed depth tree”. In: 2017 IEEE International Conference on
Web Services (ICWS). 2017, pp. 33–40. DOI: 10.1109/ICWS.2017.13.

[7] S. He, J. Zhu, P. He, and M. R. Lyu. “Experience report: system log analysis
for anomaly detection”. In: 27th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October 23-27,
2016. IEEE Computer Society, 2016, pp. 207–218. DOI: 10.1109/ISSRE.
2016.21. URL: https://doi.org/10.1109/ISSRE.2016.21.

[8] S. He, J. Zhu, P. He, and M. R. Lyu. “Loghub: A large collection of sys-
tem log datasets towards automated log analytics”. CoRR abs/2008.06448
(2020). arXiv: 2008.06448. URL: https://arxiv.org/abs/2008.
06448.

60

http://www.worldcat.org/search?qt=worldcat_org_all&q=0471113387
http://www.worldcat.org/search?qt=worldcat_org_all&q=0471113387
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2107.05908
https://doi.org/https://doi.org/10.1016/j.icte.2020.06.003
https://doi.org/https://doi.org/10.1016/j.icte.2020.06.003
https://www.sciencedirect.com/science/article/pii/S2405959520300643
https://www.sciencedirect.com/science/article/pii/S2405959520300643
https://github.com/go-skynet/LocalAI
https://github.com/go-skynet/LocalAI
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448

Bibliography

[9] V. I. Levenshtein. “Binary codes capable of correcting deletions, in-
sertions, and reversals”. In: Doklady Akademii Nauk SSSR. Vol. 163.
4. Available at MathNet: http://mi.mathnet.ru/dan31411, MathSciNet:
http://mathscinet.ams.org/mathscinet-getitem?mr=0189928, Zentralblatt
MATH: https://zbmath.org/?q=an:0149.15905. 1965, pp. 845–848. URL:
http://mi.mathnet.ru/dan31411.

[10] F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation forest”. In: 2008 Eighth
IEEE International Conference on Data Mining. 2008, pp. 413–422. DOI:
10.1109/ICDM.2008.17.

[11] J. Liu, Z. Liu, and H. Chen. “Revisit word embeddings with semantic lexi-
cons for modeling lexical contrast”. In: 2017 IEEE International Conference
on Big Knowledge (ICBK). 2017, pp. 72–79. DOI: 10.1109/ICBK.2017.35.

[12] J. B. MacQueen. “Some methods for classification and analysis of multivari-
ate observations”. In: L. M. L. Cam et al. (Eds.). Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability. Vol. 1. University of
California Press, 1967, pp. 281–297.

[13] W. Meng, Y. Liu, Y. Huang, S. Zhang, F. Zaiter, B. Chen, and D. Pei. “A
semantic-aware representation framework for online log analysis”. In: 2020
29th International Conference on Computer Communications and Networks
(ICCCN). 2020, pp. 1–7. DOI: 10.1109/ICCCN49398.2020.9209707.

[14] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao,
P. Sun, and R. Zhou. “Loganomaly: unsupervised detection of sequential and
quantitative anomalies in unstructured logs”. In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 2019,
pp. 4739–4745. DOI: 10.24963/ijcai.2019/658. URL: https://doi.
org/10.24963/ijcai.2019/658.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. 2013. arXiv: 1301.3781 [cs.CL].

[16] G. A. Miller. “Wordnet: a lexical database for English”. Commun. ACM
38:11 (1995), pp. 39–41. ISSN: 0001-0782. DOI: 10.1145/219717.219748.
URL: https://doi.org/10.1145/219717.219748.

[17] K. A. Nguyen, S. Schulte im Walde, and N. T. Vu. “Integrating distributional
lexical contrast into word embeddings for antonym-synonym distinction”. In:
K. Erk et al. (Eds.). Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers). Association
for Computational Linguistics, Berlin, Germany, 2016, pp. 454–459. DOI:
10.18653/v1/P16-2074. URL: https://aclanthology.org/P16-
2074.

61

http://mi.mathnet.ru/dan31411
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICBK.2017.35
https://doi.org/10.1109/ICCCN49398.2020.9209707
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.24963/ijcai.2019/658
https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/P16-2074
https://aclanthology.org/P16-2074
https://aclanthology.org/P16-2074

Bibliography

[18] A. Oliner and J. Stearley. “What supercomputers say: a study of five system
logs”. In: 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). 2007, pp. 575–584. DOI: 10.1109/DSN.
2007.103.

[19] OpenAI. Prompt engineering. Accessed: [2023-12-11]. 2023. URL: https:
//platform.openai.com/docs/guides/prompt-engineering.

[20] Y. Pinter, R. Guthrie, and J. Eisenstein. “Mimicking word embeddings us-
ing subword RNNs”. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Association for Computational
Linguistics, Copenhagen, Denmark, 2017, pp. 102–112. DOI: 10.18653/
v1/D17-1010. URL: https://aclanthology.org/D17-1010.

[21] A. Singhal and I. Google. “Modern information retrieval: a brief overview”.
IEEE Data Engineering Bulletin 24 (2001).

[22] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. “Detecting large-
scale system problems by mining console logs”. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles. SOSP ’09. As-
sociation for Computing Machinery, Big Sky, Montana, USA, 2009, pp. 117–
132. ISBN: 9781605587523. DOI: 10 . 1145 / 1629575 . 1629587. URL:
https://doi.org/10.1145/1629575.1629587.

62

https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1109/DSN.2007.103
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://doi.org/10.18653/v1/D17-1010
https://doi.org/10.18653/v1/D17-1010
https://aclanthology.org/D17-1010
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1629575.1629587

7
Appendices

7.1 Concept Drift Changes

Word changes made to induce concept drift in the HDFS logs. The keys in the dictionary are
the former words, and the values are their replacements.

1 hdfs_changes = {
2 ’reset’: ’ restarted’,
3 ’received’: ’got’,
4 ’user’: ’usr’,
5 ’but’: ’though’,
6 ’delete’: ’remove’,
7 ’while’: ’when’,
8 ’transmitted’: ’sent’,
9 ’millis’: ’millisecond’,

10 ’replicate’: ’copy’,
11 ’got’: ’received’,
12 ’interrupted’: ’stopped’,
13 ’starting’: ’initiating’,
14 ’terminating’: ’stopping’,
15 ’src’: ’source’,
16 ’dest’: ’destination’
17 }

Listing 7.1 HDFS word changes to induce concept drift

Word changes made to induce concept drift in the BGL logs. The keys in the dictionary are
the former words, and the values are their replacements.

1 bgl_changes = {
2 ’interrupt’: ’stop’,
3 ’critical’: ’crucial’,
4 ’program’: ’prog’,
5 ’corrected’: ’fixed’,

63

Chapter 7. Appendices

6 ’instruction’: ’instr’,
7 ’file’: ’resource’,
8 ’source’: ’src’,
9 ’detected’: ’found’,

10 ’correctable’: ’fixable’,
11 ’max’: ’maximum’,
12 ’maximum’: ’max’,
13 ’single’: ’singular’,
14 ’missing’: ’absent’,
15 ’image’: ’img’,
16 ’directory’: ’dir’,
17 ’message’: ’msg’,
18 ’generated’: ’produced’,
19 ’severed’: ’cut’,
20 ’received’: ’got’,
21 ’receiving’: ’getting’,
22 ’functional’: ’working’,
23 ’terminated’: ’stopped’,
24 ’fully’: ’completely’,
25 ’information’: ’info’,
26 ’attempting’: ’trying’,
27 ’further’: ’additional’,
28 ’imprecise’: ’inaccurate’,
29 ’usr’: ’user’,
30 ’configuration’: ’config’,
31 ’redundant’: ’unnecessary’,
32 ’start’: ’initiate’,
33 ’started’: ’initiated’,
34 ’starting’: ’initiating’,
35 ’disable’: ’deactivate’,
36 ’number’: ’nbr’
37 }

Listing 7.2 BGL word changes to induce concept drift

64

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
February 2024
Document Number
TFRT-6222

Author(s)

Adrian Murphy
Daniel Larsson

Supervisor
Ola Angelsmark, Advenica AB, Sweden
Fanny Söderlund, Advenica AB, Sweden
Johan Eker, Dept. of Automatic Control, Lund
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Towards Automated Log Message Embeddings for Anomaly Detection

Abstract

 Log messages are implemented by developers to record important runtime information about a
system. For that reason, system logs can provide insight into the state and health of a system and
potentially be used to anticipate and discover errors. Manually inspecting these logs becomes
impractical due to the high volume of messages generated by modern systems. Consequently, the
research field of machine learning-based log anomaly detection has emerged to automatically identify
irregularities. Parsing log messages into a structured, tractable format is a vital step in log anomaly
detection. This degree project investigates the application of log message embeddings, a recently
proposed log parsing method, for anomaly detection in complex IT systems and measures their
resilience to concept drift, where the format of log messages changes over time, in comparison with a
traditional parsing approach. Empirical analyses are conducted on two benchmark datasets, revealing
that log message embeddings not only achieve anomaly detection results on par with traditional
methods but also demonstrate considerable robustness against concept drift. A key focus of this
project is on the application of large language models to automate the log embedding pipeline by
handling out-of-vocabulary words and extracting synonymous and antonymous word relationships.
These capabilities are important for distinguishing log messages that are identical except for one or
more synonymous or antonymous word pairs. While large language models show promise in these
tasks, experiments highlight the need for further refinement to match the performance achieved
through manual operator feedback.

Keywords
IT System Monitoring, Log Anomaly Detection, Large Language Models, Log Message Embeddings, Concept
Drift
Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-64

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	Contents
	Introduction
	Thesis Purpose
	Contributions

	Background
	System Logs
	Log Anomalies

	Log Anomaly Detection
	Parsing
	Feature Extraction
	Anomaly Detection

	Embeddings
	Word2vec
	Cosine Similarity
	K-means Clustering
	Log Message Embeddings
	Lexical Databases

	Similar Approaches
	Template2vec
	Log2vec

	Method
	Baseline
	Embeddings Approach
	Lexicons
	The Embedding Space
	OOV Words
	Log Message Embeddings

	Evaluation

	Results
	LLM Lexicons
	Anomaly Detection
	HDFS_v1
	BGL

	Concept Drift Resilience
	HDFS_v1
	BGL

	Discussion
	LLMs as Lexicons
	Anomaly Detection
	Concept Drift Resilience
	LWET and the OOV Engine
	Future Work

	Conclusion
	Bibliography
	Appendices
	Concept Drift Changes

