

Department of Automatic Control

Data Augmentation for Object Detection
using Deep Reinforcement Learning

Axel Andersson

Nils Hallerfelt

MSc Thesis
TFRT-6225
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2024 Axel Andersson & Nils Hallerfelt. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2024

Abstract

Data augmentation is a concept which is used to improve machine learn-
ing models for computer vision tasks. It is usually done by firstly, defining
a set of functions which transforms images and secondly, applying a ran-
dom selection of these functions on the images. Since the quality of train-
ing data is one of the, if not the most important factor to obtain a good
model, this master thesis poses the question whether an intelligent deep re-
inforcement learning (DRL) agent can select augmentation functions in a
better way. More specifically, can the agent select augmentations such that
the performance of an object detection model increases? Besides improving
the performance of an object detection model, the DRL agent provides in-
sights in what constitutes good data augmentation. The project results in an
agent which augments images such that mean average precision (mAP50)
increases with 2.3% compared to a baseline detector, trained with random
augmentations. This is a promising result that encourages further research
on this area. To our knowledge, this is the first time a deep reinforcement
learning agent has been used to improve an object detection model via bet-
ter data augmentation.

Key words: data augmentation, deep reinforcement learning, machine
learning, computer vision, object detection

3

Acknowledgements

Firstly, we would like to sincerely thank our supervisors, Robin Göransson,
Joel Sjöbom and Albin Heimerson for supporting us throughout the entire
process of this thesis. Our weekly meetings steered us in the right direction
and your feedback and insights have always been valuable to us.

We would also like to thank everyone at the Core Technologies Analytics
department at Axis Communications for continuous feedback, interest in
the project, helping us understand the code base and letting us use your
resources to conduct our experiments. We couldn’t have asked for a better
environment to do this master thesis.

5

Contents

1. Introduction 10
1.1 Motivation . 11
1.2 Research Questions . 11
1.3 Related Work . 12
1.4 Limitations . 12
1.5 Ethical Considerations . 13
1.6 Outline . 13

2. Theory 15
2.1 Foundations of Machine Learning 15
2.2 Reinforcement Learning . 22
2.3 Deep Learning . 41
2.4 Deep Reinforcement Learning 47
2.5 Data Augmentation . 51
2.6 Evaluation Metrics . 52

3. Methodology 55
3.1 Overview of Methodology 56
3.2 Designing the Environment 56
3.3 Mathematical Model . 63
3.4 Designing the Agent . 65
3.5 Agent Training Algorithm 67
3.6 Data Usage . 67
3.7 Evaluating the Agent . 68
3.8 Implementation Details . 70

4. Results 71
4.1 Establishing a Baseline . 71
4.2 Selecting a Reward Function 72
4.3 Detector Performance Results 73
4.4 Policy Evaluation . 75

7

Contents

5. Discussion 81
5.1 Baseline and Reward Function 81
5.2 Detector Results: Agent Augmentation or Random Aug-

mentation . 83
5.3 Analysis of Learned Policy 84

6. Conclusion 87
6.1 Does the proposed DRL framework increase performance? 87
6.2 What kind of policy is learned by an RL Agent? 88
6.3 What does good data augmentation depend on? 89
6.4 Future Work . 89

A. Augmentations 91
B. Training Details 93
Bibliography 95

8

List of Abbreviations

AI Artificial Intelligence
AP Average Precision
CNN Convolutional Neural Network
DP Dynamic Programming
DRL Deep Reinforcement Learning
DQN Deep Q-Network
DDQN Double Deep Q-Network
FC Fully Connected
FFN Feed Forward Network
GAN Generative Adversarial Network
GPI Generalized Policy Improvement
GPU Graphics Processing Unit
IoU Intersection over Union
MAE Mean Absolute Error
MAP Mean Average Precision
MC Monte Carlo
MDP Markov Decision Process
ML Machine Learning
MSE Mean Squared Error
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
RNN Recurrent Neural Network
(S)GD (Stochastic) Gradient Descent
TD Temporal Difference

9

1
Introduction

In recent years, the field of computer vision has witnessed remarkable ad-
vancements in a variety of tasks such as classification, segmentation and
object detection. The demand for robust and accurate object detection mod-
els continues to grow since it is a key component in various applications like
video surveillance, medical imaging and autonomous vehicles. Due to the
lucrative applications, researchers are interested in enhancing the perfor-
mance of these systems. The quality of a model is heavily reliant on the qual-
ity of training data, a common expression in machine learning is "garbage
in, garbage out". Furthermore, a model, in particular a deep learning model,
needs vast amounts of data to learn meaningful tasks. Perfect, labeled data
can be hard to find or expensive to create more of. In areas such as video
surveillance or medical imaging, training data can contain sensitive infor-
mation which prohibits researchers from licensing datasets as open source,
making the data publicly available. A common strategy to improve models
when data is scarce is to augment data. Each training point is slightly mod-
ified according to some function which provides new data to train models
on.

An important question is how these augmentations are picked. One
promising avenue to improve object detection systems is to leverage tech-
niques from deep reinforcement learning. This has shown impressive re-
sults in other areas of machine learning such as natural language process-
ing. An example of this is Reinforcement Learning with Human Feedback which
is a technique used by OpenAI during training of models used in ChatGPT
[Ouyang et al., 2022].

This thesis addresses the challenge of optimizing the performance of ob-
ject detection models by incorporating a deep reinforcement learning agent.
The primary focus is to empower the model by providing it with a dataset
which has been dynamically augmented with pre-defined augmentations
selected by an intelligent agent. This intelligent augmentation strategy aims
to overcome the limitations associated with static augmentation pipelines.
Some augmentations might not contribute at all, and there might be aug-

10

1.1 Motivation

mentations which suits better to certain images compared to others. Static
augmentation pipelines does not consider these issues.

In this initial chapter, the thesis will be motivated, related work will
be presented and research questions are introduced. The chapter will also
cover limitations, ethical considerations and present the outline of the the-
sis.

1.1 Motivation

The motivation for this research stems from the realization that the effec-
tiveness of object detection models should be coupled with the quality and
relevance of the data augmentations applied to the training dataset. Tra-
ditional methods rely on fixed augmentation pipelines, neglecting the dy-
namic nature of diverse datasets. As a result, models may not generalize
across different scenarios as well as it could. Poor generalization leads to
sub-optimal performance in real-world applications.

By leveraging the power of deep reinforcement learning, we seek to im-
prove an object detection model with intelligently selected data augmenta-
tions. This approach is motivated by the need to enhance model adaptabil-
ity, ultimately enabling it to better capture and understand intricate patterns
in various image contexts. In particular when data is scarce. The intelligent
augmentation strategy aims to optimize feature learning, address overfit-
ting concerns and improve the model’s robustness across various domains,
thereby improving the overall model capabilities.

In summary, the research seeks to understand the demand of a dynamic
augmentation strategy in real-world datasets. This will be done by integrat-
ing a deep reinforcement learning agent during training of an object detec-
tion model. The envisioned outcome is a more resilient and adaptive ob-
ject detection model that excels in diverse environments, laying the ground-
work for advancements in computer vision applications.

1.2 Research Questions

• What does good data augmentation depend on?

– Is there an optimal strategy for augmenting an image?
– ... or does a good augmentation strategy depend on the dataset?

Is there an optimal strategy which can be applied to all images in
a dataset?

• Can our proposed Deep Reinforcement Learning Algorithm improve
the data augmentation strategy? Ideally, such that the performance of
an object detection model increases when using the framework.

11

Chapter 1. Introduction

– Investigate if previously impressive results of DRL for data aug-
mentation extend from image classification problems to object
detection.

• What kind of policy is learned by a reinforcement learning agent?
Which augmentations does it use and when?

1.3 Related Work

Previous work has been done on improving AI systems by letting another
AI-system do the data augmentations. In a paper by Google Brain [Cubuk
et al., 2019] a deep reinforcement learning agent is trained using the Prox-
imal Policy Optimization algorithm to improve data augmentation strate-
gies on CIFAR-10 [Krizhevsky, 2012] and ImageNet [Russakovsky et al.,
2015] which are publicly available image classification datasets. The pro-
posed method in this paper receives state of the art results with their aug-
mentation strategy. In this research paper, the authors try to find a policy
which consists of a number of sub-policies for augmenting an image. For
each image in every mini-batch, one of the sub-policies is randomly selected
for augmenting the image.

[Qin et al., 2020] uses a reinforcement learning algorithm to augment
data for a segmentation task. They try to improve a model trained to seg-
ment kidney tumours from medical images. In contrast to the paper by
Google Brain, this paper aims to learn a specific augmentation strategy for
each image in the dataset.

Other approaches to augmenting images with neural networks is to use
a Generative Adversarial Network (GAN) to create new images or change
the style of images in the dataset. [Perez and Wang, 2017] does this suc-
cessfully. They do this for a classification task and it could be argued that
GAN:s might work better in this setting compared to object detection. In
object detection, both class labels and locations of objects are required in or-
der to train on the data. It is certainly a harder task for a GAN to produce
an image which also has reliable ground truth labels.

The take-away from this is that reinforcement learning agents previously
have been used for other tasks than object detection to successfully augment
data which improves models.

1.4 Limitations

The first limitation of this thesis regards the domains for which we expect
our system to work well on. As this thesis is done in collaboration with Axis
Communications, a company famous for its video surveillance cameras, the

12

1.5 Ethical Considerations

primary domain will be surveillance images. We will not evaluate reinforce-
ment learning agents on datasets from other domains such as medical im-
ages and do not attempt to create an agent which generalizes well across
vastly different image domains.

The second limitation is that the object detection model architecture
which we test and evaluate the agent on will be fixed. This research will not
investigate whether the developed agent can improve the performance of
different model types, the agent will be optimized for one particular model
architecture.

The duration of a master thesis is approximately five to six months
which sounds like a long time, but training these systems can take weeks.
The field of deep reinforcement learning is quite new but despite this, there
exists thousands upon thousands of ideas and concepts to improve rein-
forcement learning systems. This means the thesis will only consider a few
different algorithms which we believe have potential.

1.5 Ethical Considerations

The datasets which are used in this research contains, among other things,
people. This means there is a risk of built-in representational, demographic
and cultural bias in the dataset. This can in turn make the model perfor-
mance vary depending on where and how it is used. The datasets which
are used in this research is a public dataset which is well curated by profes-
sionals and the other datasets are collected in-house by Axis Communica-
tions and are also well-curated and continuously monitored. Despite this,
the datasets are large and this makes it difficult to keep track of every image
which means fairness or bias issues can still occur.

Another concern with images on people is data privacy. With the public
dataset the curators again have to be trusted to include images with peo-
ple’s consent. People in the European Union are protected by the General
Data Protection Regulation (GDPR) and this regulation is honored by Axis
Communications.

Training AI systems also have an environmental impact since computa-
tional power is needed. However, we think AI will have a positive impact on
most societal challenges, including the environment. This particular thesis
also investigates how to train AI systems more efficiently, also implicating a
reduced environmental impact.

1.6 Outline

In the next chapter, the theory behind the used methods will be presented.
Concepts from machine learning, deep learning and reinforcement learn-

13

Chapter 1. Introduction

ing will be described extensively. The theory section will also consider data
augmentation and evaluation metrics. In Chapter 3, Methodology we will
describe our methods and formulate the problem in a reinforcement learn-
ing framework. After the methodology chapter we will present the results
from our experiments. Finally, we will discuss and conclude our results as
well as present future work which can be done within the area.

14

2
Theory

This chapter will cover the most important concepts to get through this the-
sis. The concepts are within the area of machine learning and data process-
ing. Most important are the concepts covered in sections 2.2, 2.4 and 2.5 and
if you already feel proficient in machine learning, feel free to skip the other
sections.

2.1 Foundations of Machine Learning

Machine learning is a broad term for computational methods that can learn
from data. This is interesting as it allows one to make predictions about new,
unseen data or discover useful patterns. In this section, some methods and
algorithms will be presented that can learn from data. Let us begin with an
example of when techniques from machine learning can be useful.

15

Chapter 2. Theory

EXAMPLE: TITANIC KAGGLE CHALLENGE
A famous machine learning competition from the website kaggle.com
is called "Titanic - Machine Learning from Disaster" [Cukierski, 2012]
where the objective is to predict whether or not a person survived the
Titanic disaster. The competitor in this challenge is given a dataset of
people who embarked on the journey and if they survived or not. A
person, x is described by a set of features. In this particular challenge,
a person is described by:

x = {age, ticket class, number of siblings onboard, sex, fare, ...}

Thus, a person is encoded by a set of numerical features. Each person
also has a label associated with it. In this case, the label, denoted y, can
take on one of two different values:

y ∈ {survived, not survived}

The task is to build a model, which maps a person’s features, x, to
the correct label, y. In this competition, a competitor is scored on the
accuracy (#correct predictions / #predictions) of its predictions on a set
of new data, a dataset where the label is unknown to the competitor.
In order to do this, a model which utilizes the labeled data must be
learned. This problem is called a classification problem. Given a set of
features, the objective is to assign the correct class (survived or not
survived) to the entity described by the features.

During the course of this section, several other problems suited for ma-
chine learning will be explored. We will cover the main concepts to enable
learning and show that a learning task can be reformulated to an optimiza-
tion task. This section will also introduce the two main paradigms in ma-
chine learning; supervised and unsupervised learning.

Loss Functions
A core part of a machine learning problem is to choose and design a loss
function. This is a function that describes the loss or the error of the model.
Say the aim is to predict peoples heights (in an arbitrary unit). Let a model
prediction of the height of N people to be an N × 1 vector, ŷ, where the i:th
element is denoted with ŷi. The actual height of those N people is denoted
y. The loss function is a measurement of how wrong the model was in its

16

2.1 Foundations of Machine Learning

prediction and can for instance be:

LMSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.1)

where MSE is short for mean squared error. The squared difference between
the prediction and the truth is averaged over the N samples. Another com-
mon loss function is the mean absolute error:

LMAE(y, ŷ) =
1
N

N

∑
i=1
|yi − ŷi| (2.2)

where the squared difference is replaced by the absolute value of the dif-
ference. As mentioned earlier, each of the predictions, ŷi is the result of a
model, f (·; θ), which is parameterized by some vector, θ. Hence, given some
input data point, xi, the prediction is:

ŷi = f (xi; θ) (2.3)

If relation 2.1 and 2.3 are combined it results in:

LMSE(θ) =
1
N

N

∑
i=1

(yi − f (xi; θ))2 (2.4)

Loss functions are often denoted like this, as a function of the model param-
eters as those are the parameters to be changed and improved to minimize
the loss function. There are several approaches to minimize loss functions,
which will be discussed further.

Optimization
In the previous subsection, it was seen that the learning problem could be
reformulated as an optimization problem. To minimize a loss function, an
optimization algorithm is needed. In some cases, a simple closed form solu-
tion that is not too computationally expensive exists and that can be used.
An example of this is if linear regression is used. An example would be to
again try to predict the height of people, y given some features, e.g. those
described in example 2.1. The linear regression model is described by:

ŷi = f (xi; θ) = xT
i θ (2.5)

Here, xi is the D× 1 feature vector describing person i. Let X be the N × D
matrix which describes the features of all people in the dataset. Then it’s
possible to write:

ŷ = Xθ (2.6)

17

Chapter 2. Theory

Let 2.1 be the loss function, this can be rewritten in matrix form:

LMSE(θ) =
1
N

N

∑
i=1

(yi − xT
i θ)2 =

1
N
(y− Xθ)T(y− Xθ) (2.7)

The objective is to find θ which minimizes 2.7 which can be done by finding
θ such that the gradient of the loss is the null vector.

∇θLMSE(θ) = 0 =
2
N

XT(y− Xθ) =⇒ θ∗ = (XTX)−1XTy

In this case, a mathematical expression for the optimal model parameters,
θ is obtained without the need for an optimization algorithm. However,
sometimes the model, f (·; θ) is more complex than in this linear regression
exercise and a closed form solution is out of scope. This is when iterative
optimization algorithms are needed.

Gradient Descent Algorithms. A classic iterative optimization algorithm is
gradient descent. In this algorithm, the model parameters, θ are iteratively
updated in the opposite direction of the gradient. The update rule is:

θ(t+1) = θ(t) − α∇θL(θ(t)) (2.8)

where α is called the step size or learning rate. This is called a hyper parameter,
it is not a parameter belonging to the model but a parameter that affects
the training of the model. The choice of learning rate is essential for good
learning. If the learning rate is too small, the risk is that the optimum is not
reached within a feasible number of steps. On the other hand, if the learning
rate is too large, it is possible to overshoot and miss the optimal value. This
phenomenon is visualized in fig. 2.1. A popular variant of gradient descent
is Stochastic Gradient Descent (SGD). Instead of computing the gradient on
the entire dataset, the gradient is computed on one sample from the dataset
chosen at random. The update rule is:

θ(t+1) = θ(t) − α∇θLi(θ) (2.9)

where Li is the loss for one example in the dataset such that L(θ) =
1
N ∑N

i=1 Li(θ) (in the case of MSE or MAE loss). The motivation for this is
that in expectation, the gradient taken for one sample is equal to the gradi-
ent of all samples.

E[∇θLi(θ)] = ∇θL(θ)
Another common variant is mini-batch SGD which is an alternative between
GD and SGD. Instead of updating the gradient on one sample, we update it
on a mini-batch consisting of B samples. If, g is defined by:

g =
1
|B| ∑i∈B

Li(θ)

18

2.1 Foundations of Machine Learning

(a) Issue with a too large learning rate. (b) Issue with a too small learning rate.

Figure 2.1 Potential issues with iterative optimization algorithms such as gradient
descent. In the first case, the optimum is missed because the size of the steps is too
large. In the second case, the size of the steps is too small and the optimum is not
reached within a feasible amount of time.

then the update rule for mini-batch SGD is given by:

θ(t+1) = θ(t) − αg (2.10)

In the extreme case where |B| = N, mini-batch SGD is equivalent to the
original (batch) GD proposed in 2.8. The motivation for using mini-batch
SGD is that the computation can be easily parallelized on a GPU by running
it on B threads. That is, mini-batch SGD is (about) as fast as SGD but should
provide a slightly better estimate of the full gradient.

Other popular optimization algorithms are ADAM (Algorithm 1;
[Kingma and Ba, 2017]) which utilizes the first and second moments of the
gradient to update the parameters. The intuition for using moments in an
optimization algorithm is that it may be less sensitive to ravines in the opti-
mization landscape. A ravine is a region in the landscape where it is much
more steep in some dimensions compared to others. The ADAM-algorithm
introduces more parameters which must be tuned for the algorithm to func-
tion properly, β1 and β2. This is usually a downside as it can be difficult to
know what values are suitable for a task beforehand. However, there are
upsides and downsides with all optimization algorithms. It can be shown
that under some circumstances, ADAM converges faster than SGD [Kim
et al., 2017]. Although, this does not necessarily mean that it converges to a
better local minima in a complex optimization landscape.

Supervised Learning
Several examples of supervised learning have already been seen in the pre-
vious sections. Supervised learning is the type of tasks where the learning

19

Chapter 2. Theory

Algorithm 1: ADAM
Data:

α : step size
βi ∈ [0, 1) : exponential decay rates
L(θ) : stochastic objective function
θ0 : initial parameters

Result:
θt : resulting parameters

m0 ←↩ 0 // Initialize 1st moment vector;
v0 ←↩ 0 // Initialize 2nd moment vector;
t←↩ 0 // Initialize time step;
while θt not converged do

t←↩ t + 1;
gt ←↩ ∇θLt(θt−1) // Get gradient w.r.t. objective function;
mt ←↩ β1mt−1 + (1− β1)gt // Update first moment;
vt ←↩ β2vt−1 + (1− β2)g2

t // Update second moment;
m̂t ←↩ mt/(1− βt

1) // Bias correction of mt;
v̂t ←↩ vt/(1− βt

2) // Bias correction of vt;
θt ←↩ θt−1 − αm̂t/(v̂t + ϵ) // Update step;

end

occurs because a set of supervisory signals are available. Example 2.1 in
the beginning of this chapter is an example of a supervised learning task.
There is a set of input data which we wish to map to a set of output data.
The learning can occur because there is an explicit supervisor which can tell
right from wrong to a model.

Supervised learning includes several different tasks. Example 2.1 is, as
already mentioned, a classification task. More specifically, a binary classifica-
tion task where the model should predict "Survived" or "Not survived". An-
other example of a binary classification task would be to determine whether
an e-mail is spam or not. Binary classification can be generalized to include
a larger number of classes, often called multi-class classification. An example
of a multi-class classification task is found in the MNIST dataset [Lecun et
al., 1998]. This is a dataset containing images of handwritten digits and their
corresponding digit. The task is to predict the correct digit from the image,
hence, there are 10 different classes (digit 0-9) to choose from.

Another class of tasks is regression tasks. In these tasks, the goal is to pre-
dict a continuous variable, such as the height of a person or the number of
traffic accidents on a particular road from a set of features.

In machine translation the aim is to automatically translate speech or text

20

2.1 Foundations of Machine Learning

in one language to another language. Semantic segmentation and object detec-
tion are two common tasks in computer vision and are supervised learning
tasks. The objective in semantic segmentation is to correctly classify each
pixel in an image to a group. As an example, this can be used to detect can-
cer cells in a medical image as an example.

Object Detection. This particular supervised learning task is of special in-
terest for the reader of this thesis. The objective of this thesis is to augment
data such that the performance of a model for object detection increases.
Given an image, the objective is to localize certain objects and predict the
correct class of these objects. In practice, this is often done by letting a model
predict the location, width and height of bounding boxes. A bounding box is

Figure 2.2 An image with its ground truth bounding boxes and classes used to
train a model for object detection. The bounding boxes encapsulates the objects of
interest, in this case people and elephants. Each bounding box is also associated with
a class.

a rectangle where the sides are parallel with the x- and y-axes of the image
and of minimal size such that it fully encapsulates the object. An image with
bounding boxes (from the COCO dataset [Lin et al., 2014]) is visualized in
fig. 2.2. In addition to finding the correct bounding boxes, each box should
be assigned with the correct class from a set of predefined classes (multi-
class classification). With fig. 2.2 as an example, the model is expected to
find two bounding boxes and tell us that one of them contains an elephant
and the other contains a person.

21

Chapter 2. Theory

Unsupervised Learning
Unsupervised learning is a type of learning where no labels are available.
It is a set of algorithms used to discover hidden structures and patterns in
data. Common unsupervised tasks are clustering, anomaly detection, data
generation and dimensionality reduction.

Clustering is the task of grouping data into clusters. Common algo-
rithms for this task is k-means and DBSCAN. Learning an unsupervised
task is also associated with minimizing a loss function as in supervised
learning. The main difference is the absence of a label or some sort of ground
truth. In k-means clustering, the objective is to minimize the objective in
2.11. Given a set of observations (x1, x2, . . . , xN), the aim is to divide these N
points into K(< N) clusters (C = (C1, C2, . . . , Ck)).

arg min
C

K

∑
k=1

∑
x∈C
||x− µk||2p (2.11)

µk is the centroid i.e. the mean of the points in cluster Ck if the L2-norm is
used.

Dimensionality reduction is another common task. This is used to re-
duce the number of dimensions for each data point which can be desirable
in various situations. For instance when visualizing data of high dimension
or to reduce computational cost for a down-stream task. When reducing the
number of dimensions for a data point, there is obviously going to be some
loss of information, so the main challenge in developing a good dimension-
ality reduction algorithm is to keep as much information as possible while
compressing the data. One such algorithm is Principal Component Analysis
(PCA). This algorithm finds the basis vectors which contains most of the
variance in the data and transforms the data to this basis. The data can be
compressed to an arbitrary number of dimensions, however fewer dimen-
sions implicates a greater information loss.

2.2 Reinforcement Learning

Reinforcement learning (RL) aims to learn a strategy, or policy, dictating
what actions to take in various situations; this is essentially learning a map-
ping from states to actions.

While reinforcement learning is its own unique paradigm in the machine
learning landscape, it shares elements with both supervised and unsuper-
vised learning.

In supervised learning, a model learns from labeled examples provided
by a ’supervisor’. This supervisor, equipped with the knowledge of what is
right and wrong, guides the model’s behavior. If this guiding information

22

2.2 Reinforcement Learning

is absent, the model will be unable to adjust or learn effectively. Reinforce-
ment learning replaces this explicit guidance with a reward signal. Though
the reward structure might be designed by an external entity (akin to a su-
pervisor), it offers only implicit guidance. This means that an RL agent can
explore its environment, making decisions and learning from the outcomes
of those decisions, driven primarily by the rewards or penalties it receives.
This style of learning, without explicit examples of right behavior, is similar
with unsupervised learning’s ethos.

However, there are key differences between unsupervised learning and
RL. In unsupervised learning, the primary objective is to uncover hidden
structures or patterns in the data, without a specific target outcome in mind.
On the other hand, reinforcement learning is goal-oriented: the agent’s de-
cisions are geared towards maximizing the cumulative reward over time.

In summary, while reinforcement learning borrows elements from both
supervised and unsupervised learning, it stands apart in its approach and
objectives, emphasizing exploration, interaction, and reward maximization.

Main Components of Reinforcement Learning
One of the most central concepts in RL is that of an agent. An agent would
be what in the previous section was referred to as the learner or model, it
is this entity that is supposed to learn. This agent learns through interact-
ing with what is called an environment. The environment in reinforcement
learning represents everything that the agent interacts with and everything
that is external to the agent. It responds to the agent’s actions by provid-
ing a new state and reward. The environment encapsulates the dynamics,
constraints, and rules that define how states transition and how rewards are
determined based on the agent’s actions. In addition to the agent and envi-
ronment, other important elements in RL are those of policy, reward signal,
value function, and in some cases model. The general RL-setup can be visual-
ized as in figure 2.3.

The policy is a strategy that the agent employs to determine its actions.
More technically, a policy in reinforcement learning is a function that defines
the behavior of the agent. The policy can be understood as including the
probability assignment between action for the current state, and also the
action selection from that distribution. The policy directly selects an action
for each state, based on the underlying probabilities. The deterministic or
stochastic nature of the policy, in this case, refers to whether the same action
is consistently chosen for a given state (deterministic) or whether the action
is sampled based on a probabilistic process (stochastic). For example, when
one says that a policy is made greedy, the policy chooses the action that
gives the highest reward, which would corresponds to the action given the
highest probability. Then, if the policy is made greedy, the same action (the

23

Chapter 2. Theory

Figure 2.3 A visual representation off the interaction between the agent and the
environment in a typical RL-setting. The agent receives a state and reward signal
from environment, before deciding what action to take.

one given the highest probability is always chosen for each state, and the
policy is deterministic.

The reward signal defines the immediate feedback the agent receives
after taking an action in a specific state. This signal serves as the primary
basis for the agent’s learning. By gauging the quality of its actions through
received rewards (or penalties), the agent can adjust its policy over time.
The objective in most reinforcement learning scenarios is for the agent to
maximize its expected cumulative reward over time.

The value function is an estimation of the expected cumulative reward
an agent can achieve from a particular state, or state-action pair. While
the reward signal gives immediate feedback, the value function provides
a long-term perspective, indicating how beneficial it is for the agent to be in
a specific state or to take a certain action from that state. By learning accu-
rate value functions, the agent can make more informed decisions about its
actions.

Lastly, a model represents the agent’s understanding or approximation
of the environment’s behavior. Not all reinforcement learning approaches
utilize a model; those that do, like model-based RL, use this internal rep-
resentation to infer how the environment will respond to different actions,
helping the agent to plan ahead.

In the grand scheme of RL, these components work in tandem, guid-
ing the agent’s learning journey. Through continuous interaction with the

24

2.2 Reinforcement Learning

environment, receiving rewards, and adjusting based on its value function
and policy, the agent strives to find the most effective strategy to achieve its
objectives. Over time, with the right algorithms and adequate exploration,
an agent can converge towards optimal or near-optimal behaviors in many
tasks.

State Transitions & Episodes
An agent can interact with the environment by using a defined action set
A = {A1, A2, ...}, where the action set describes all possible actions the
agent is allowed to take. At an arbitrary time step t, the agent observes the
state St of the environment, with a corresponding reward signal Rt, as can
be seen in figure 2.3. In many cases the agent is allowed to only inspect a
function of the state, which sometimes is lossy. Then the environment out-
puts an observation Ot together with a reward signal, which in turn is cor-
responding to the latent state St. When this is the case the environment is
said to be partially observable.

In order to obtain feedback from the environment a reward function R
generates an immediate reward Rt. The reward function often depends on
the current state of the environment only, but can also be more intricate.

One often also uses the trajectory in reinforcement learning. A trajectory
is a sequence of interactions between the agent, environment, and reward
function:

τ = (S0 ∼ ρ0(·), A0, R0, S1, A1, R1, . . .)

where the initial state S0 is sampled from a start-state distribution ρ0.
In reinforcement learning, the course of interactions, represented by trajec-
tories, can either span a limited time frame or continue indefinitely. This
distinction leads to the concepts of finite and infinite games:

Finite Games (or Episodes): These have a definite ending point, known
as a terminal state. When an agent reaches this state, the episode concludes.
Finite games can be likened to playing a round of chess or completing a level
in a video game. After the episode ends, the agent typically starts over in a
fresh episode, often from a state sampled from the start-state distribution ρ0.
The length of each episode, which can vary from one episode to the next, is
termed the "horizon." An agent’s learning process might involve undergo-
ing numerous episodes, allowing it to improve its policy from cumulative
experiences across all episodes.

Infinite Games: These are perpetual, lacking a terminal state, and the
agent-environment interactions continue indefinitely. In such scenarios, the
agent’s goal usually shifts to maximizing some form of discounted cumula-
tive reward, given the infinite horizon. The discount factor, represented by

25

Chapter 2. Theory

γ, determines the present value of future rewards, with rewards further in
the future being reduced in value.

Given a state St and an accompanying action At, the state of the en-
vironment changes into St+1. Generally there are two types of transition
processes, either deterministic or stochastic. If the transition process is de-
terministic, the next state is governed by a deterministic transition function:

St+1 = f (St, At).

However, if the transition process is stochastic in nature, the process is
instead determined by a random process:

St+1 ∼ p(St, At).

Given the dynamics of state transitions in reinforcement learning, par-
ticularly in environments with stochastic nature, a fundamental challenge
arises: the determination of optimal action selection strategies. An intu-
itive approach is to adopt a greedy policy, wherein the agent, at each deci-
sion point, selects the action that maximizes the expected reward based on
its current knowledge. This strategy emphasizes exploitation of acquired
knowledge. However, the exclusive adoption of a greedy policy may pre-
clude the agent from exploring potentially more rewarding actions that
have not yet been sufficiently evaluated. This leads to a well-known co-
nundrum in the realm of reinforcement learning termed the exploration-
exploitation trade-off. The challenge lies in discerning when to rely on
known strategies (exploitation) and when to investigate lesser-known ac-
tions in the hope of uncovering superior strategies (exploration).

The Markov Decision Process
A Markov decision process (MDP) is a discrete time stochastic control pro-
cess, providing a mathematical framework for modeling decision-making
in situations where the outcome is determined by both the state of the pro-
cess, and the actions that are taken by an agent. One key property of a MDP
is that the transition to a next state in a control process only depends on the
current state, and not on the history of states. This is known as the Markov
property, and is a property inherent to memoryless stochastic processes. By
modelling a process this way, significant simplifications can be made, mak-
ing the decision-problems more tractable and easier to analyse, as transi-
tions can be calculated solely on the current state without regard to the pos-
sibly long history of previous states.

More formally, an MDP is defined as a 5-tuple, (S ,A, P, R, γ), where S
is the state-space, A the action-space, P the transition process, R the reward
function, and γ a discount factor. One may omit γ, however setting γ = 1

26

2.2 Reinforcement Learning

effectively is the same, and using it allows us to define the MDP clearly in a
reinforcement learning setting.

The general goal of optimizing under the framework of MDP is to find
a policy π that maximizes the expected return for an agent that steers the
process. More specifically the policy is a mapping from each state s ∈ S and
action a ∈ A to the probability distribution π(a|s):

π(a|s) = p(At = a|St = s).

The expected return of a policy is the expected return over all possible trajec-
tories τ, given that policy. The probability of a T-trajectory can be expressed
as:

p(τ|π) = ρ0(S0)
T−1

∏
t=0

p(St+1|St At)π(At|St).

As such the expected return of a policy π can be defined:

J(π) =
∫

τ
p(τ|π)R(τ) = Eτ∼π [R(τ)]

where R(τ) is the discounted return:

R(τ) =
T

∑
t=0

γtRt

The Reinforcement Learning optimization problem can now simply be
formulated: find the policy π∗ that maximizes the expected return

π∗ = arg max
π

J(π) (2.12)

In the case of infinite horizon MDPs, this can be seen as finding the policy
function π that maximises the expected cumulative reward:

max
π

E

[
∞

∑
t=0

γtRat(st, st+1)

]
where at = π(st).

In a similar way this can be formulated for the case of episodic MDPs
where the policy intends to maximize the cumulative reward over each
episode. To formalize this, a subset of the state space can be formed that in-
cludes every terminal state, ST ⊆ S . Any time a state s ∈ ST is reached, the
current episode ends. The optimization task can then be easily formulated
with trajectories, where a trajectory ends when a terminal state is reached.
Let {τ} be a set of trajectories where each τi is the trajectory for episode i.
The goal is to maximize the expected reward over trajectories, which can be
formulated as:

27

Chapter 2. Theory

max
π

Eτ∼π

[
Ti

∑
t=0

γtRi,t

]
.

Partially Observable Markov Decision Processes
A Partially Observable Markov Decision Process (POMDP) extends the
framework of MDP to situations where the agent cannot directly observe
the underlying state of the process, as first described by [Åström, Karl Jo-
han, 1965]. Instead the environment emits only an observation signal which
does not fully represent the environments state. In POMDPs the agent can
only infer the true state from perceived observations. Due to partial observ-
ability s ∈ S is hidden to the agent, which instead maintains a belief b ∈ B
to estimate its state. As such, the agent can only infer the believed best ac-
tion a ∈ A from b, which may or may not alter the state as expected. This is
an additional layer of complexity added to the process, which often makes
it more difficult to learn from. On the other hand, it also allows for a wider
range of real-world applications as it is common that all information isn’t
available or that it is computationally intractable to analyse directly. This
thesis does not fully formalize the ideas from POMDP, however they have
been useful in the design of network architectures and for understanding
the increased complexity which is inherited from the partial observability.

The POMDP is defined from a 7-tuple (S ,A, P, R, Ω, Z, γ). This extends
an underlying MDP, and in doing so introduces the new notions Ω and Z,
where Ω denotes the observation space, while Z : S× A → Ω is the obser-
vation function. Do note that the observation space Ω and belief space B are
not the same. The belief space B is a probability distribution over the state
space S , representing the agent’s degree of belief in being in each possible
state given its observations and actions up to the current time. Unlike the
observation space Ω which consists of all possible observations that could
be perceived by the agent, the belief space is typically the set of all possible
probability distributions over the states. It encodes the agent’s uncertainty
about the current state due to partial observability and is updated over time
as new observations are made and actions are taken. The notion of a state
can be recovered from the notion of observation by considering the history
Ht = A0, O1, . . . At−1, Ot−1 where O ∈ Ω. Any history naturally holds all
the information we can know about the underlying state, and can be used
to recover what is meant by a state for the agent. This can be denoted by SH

to distinguish it from the actual underlying state S, and can be described as
a mapping from the history to this state: SHt = f (Ht). However, the Markov
property should not be forgotten and is a property that the function f has if
and only if any two histories H and H′ that are mapped to the same state,
also have the same probabilities for their next observation.

28

2.2 Reinforcement Learning

f (H) = f (H′) =⇒ Pr(Ot+1 = o|H, A) = Pr(Ot+1 = o|H′, A) (2.13)

When this property holds, SH is said to be a Markov state. If f is the iden-
tity function, this naturally holds the Markov property. However it quickly
becomes intractable in most situations, as the state would grow with t. To
overcome this problem, the idea is to instead have some compact represen-
tation of the history, and let this be the new state to consider, that can be
computed incrementally and recursively instead of doing it like f that takes
whole histories as input.

St+1 = u(St, At, Ot+1) (2.14)

Here u is a so called state-update function. For the purpose of tractability
u must be efficient to compute. For POMDPs, the environment is assumed
to have a well defined latent state S . The Markov (belief) state Bt = bt ∈ Rd

that lies closest to hand is the distribution over the latent state space of the
environment:

bt [i] = Pr(Xt = i|Ht) ∀i ∈ {1, . . . , d} (2.15)

Given complete knowledge of the dynamics of the environment, the i:th
component of the belief can be computed utilizing Bayes’ theorem:

u(b, a, o)[i] = ∑d
x=1 b[i]p(i, o|x, a)

∑d
x=1 ∑d

x′=1 b[x]p(x′, o|x, a)
(2.16)

where p(x′, o|x, a) = Pr(Xt = x′, Ot = o|Xt−1 = x, At−1 = a). Unfor-
tunately, this approach is often to cumbersome to use in practise, especially
for high-dimensional, continuous (where the summations are swapped for
integrals), cases. For a more conclusive theory on POMDPs both [Sutton
and Barto, 2018] and [Zhu et al., 2018] provide interesting sources. When
dealing with partial observability in a deep reinforcement learning setting,
it is not so easy to explicitly define a belief state, history, and update func-
tion. These have instead been assumed to be learnt implicitly by a neural
network, and so these ideas have influenced the choice of state space and
neural architecture in a way that is hypothesised to increase learning effi-
ciency and potential.

Value Functions and the Bellman Equation
As mentioned earlier, the policy and value function are fundamental con-
cepts in reinforcement learning, and so these will now be handled with a
more formal approach. The value of state s under policy π is denoted by

29

Chapter 2. Theory

vπ(s), and is measured by the expected return obtained by following tra-
jectory τ sampled from policy π starting in state s. This is the state-value
function, which with the MDP framework can be defined by:

vπ(s) = Eτ∼π

[
R(τ)

∣∣∣∣S0 = s
]

= EAt∼π(·|St)

[
∞

∑
t=0

γtR(St, At)

∣∣∣∣S0 = s

]
, ∀s ∈ S

(2.17)

A more action-centric function is the state-action-value function qπ(s, a),
which measures the value of taking action a in state s, and then follow the
policy π. This can also be defined in a similar way to the state-value func-
tion:

qπ(s, a) = Eτ∼π

[
R(τ)

∣∣∣∣S0 = s, A0 = a
]

= EAt∼π(·|St)

[
∞

∑
k=0

γkR(St, At)

∣∣∣∣S0 = s, A0 = a

] (2.18)

As we can see from 2.17 and 2.18 there is a close resemblance, and the
state-value function can written in terms of state-action-value function.

vπ(s) = Ea∼π [qπ(s, a)] (2.19)

Optimality in the context of value functions paves the path to finding
better policies that yield the best possible expected returns. For any given
policy π, if there exists no other policy that achieves a higher expected re-
turn, across all states, then π is deemed an optimal policy. Interestingly,
there may be several optimal policies for a particular task, all of which share
the same state-value function, denoted as v∗(s), and the same action-value
function, denoted as q∗(s, a).

The optimal state-value function, v∗(s), for all s ∈ S , is defined as the
maximum value function over all policies:

v∗(s) = max
π

vπ(s)

Similarly, the optimal action-value function, q∗(s, a), for all s ∈ S and
a ∈ A, is the maximum action-value function over all policies:

q∗(s, a) = max
π

qπ(s, a)

These definitions imply that if we know v∗(s) or q∗(s, a), we can conse-
quently determine an optimal policy by choosing, at each state, the action

30

2.2 Reinforcement Learning

that maximizes the expected return. Specifically, the optimal policy can be
found from the optimal action-value function as follows:

π∗(s) = arg max
a

qπ(s, a)

However, the central challenge is that we rarely know v or q to begin
with. Reinforcement learning algorithms are designed to estimate these op-
timal functions and thereby derive optimal or near-optimal policies. Many
of these algorithms make use of the Bellman Equation and the Bellman Opti-
mality Equation, which are to be discussed next.

The Bellman Equation. The Bellman Equation is a recursive decomposi-
tion of the state-value function or state-action-value function which pro-
vides great insight to the structure of the problem as well as on how to cal-
culate optimal policies. The idea stems all the way back to the 1950:s and the
groundbreaking work done by Richard Bellman [Bellman et al., 1957]. His
theories in the then new field of dynamic programming (DP) has been influ-
ential in many parts of science, especially in reinforcement learning where
"Reinforcement Learning: An Introduction" by Richard S. Sutton and An-
drew G. Barto popularized the approach.

To better see the recursive structure in 2.17 and 2.18, note the following
relation:

R(τt:T) = Rt + γRt+1 + · · ·+ γT RT

= Rt + γ(Rt+1 + γRt+2 + · · ·+ γT−1RT)

= Rt + γR(τt+1:T)

(2.20)

Note that the right hand sides appear in the expectation of the definitions
of the state-value function and state-action-value function. One should also
keep in mind that if the task is continuing, T −→ ∞, the sum must be dis-
counted (γ < 1), or else it will diverge. Using 2.20 the state-value function
can be expanded:

vπ(s) = Ea∼π(·|s),s′∼p(·|s,a)

[
R(τt:T)

∣∣∣∣St = s
]

= Ea∼π(·|s),s′∼p(·|s,a)

[
Rt + γR(τt+1:T)

∣∣∣∣St = s
]

= Ea∼π(·|s),s′∼p(·|s,a)

[
Rt + γEa′∼π(·|s′),s′′∼p(·|s′ ,a′) [R(τt+1:T)]

∣∣∣∣St = s
]

= Ea∼π(·|s),s′∼p(·|s,a)

[
Rt + γvπ(s′)

∣∣∣∣St = s
]

= Ea∼π(·|s),s′∼p(·|s,a)
[
r + γvπ(s′)

]
(2.21)

31

Chapter 2. Theory

This equation 2.21 is the Bellman Equation for vπ . The equation states
that the value of a state s under policy π is the expected return from that
state. The expected return from that state is the sum of the immediate re-
ward and the discounted value of the subsequent state s′, averaged over
all possible actions a in state s′. The policy π(a|s) weights the sum with
the likelihood of taking action a in state s, while p(s′, r|s, a) is the transition
probability given the current state and the chosen action. With minor modi-
fications the Bellman Equation can also be derived for the state-action-value
function:

qπ(s, a) = Ea∼π(·|s),s′∼p(·|s,a)

[
R(τt:T)

∣∣∣∣St = s, At = a
]

= Ea∼π(·|s),s′∼p(·|s,a)

[
Rt + γR(τt+1:T)

∣∣∣∣St = s, At = a
]

= Es′∼p(·|s,a)

[
Rt + γEa′∼π(·|s′),s′′∼p(·|s′ ,a′) [R(τt+1:T)]

∣∣∣∣St = s, At = a
]

= Es′∼p(·|s,a)

[
Rt+1 + γEa′∼π(·|s′)

[
qπ(s′, a′)

] ∣∣∣∣St = s
]

= Es′∼p(·|s,a)

[
r + γEa′∼π(·|s′)

[
qπ(s′, a′)

]]
(2.22)

The value of taking action a in state s under policy π is the expected
immediate reward plus the discounted value of the action values in the next
state, averaged over all possible next states s′, and subsequent actions a′, as
described by [Sutton and Barto, 2018].

From these equations the Bellman optimality equation can be derived
for value functions, which is a way of formalizing when a value function is
optimal. Intuitively this is an equation that says that if we recursively max-
imize the value function over each state, we get the optimal value function:

v∗(s) = max
a

Es′∼p(·|s,a)
[
R(s, a) + γv∗(s′)

]
(2.23)

and for the state-action-value function:

q∗(s, a) = Es′∼p(·|s,a)

[
R(s, a) + γ max

a′
q∗(s′, a′)

]
. (2.24)

For a full derivation of these and a more in depth theory on the Bell-
man Equation and the Bellman Optimality Equation, both [Dong et al., 2020]
and [Sutton and Barto, 2018] provide excellent resources. A natural question
now is how to learn an optimal or close to optimal policy that solves the RL
optimization problem from 2.12.

32

2.2 Reinforcement Learning

Learning and RL Algorithms
Having established the Bellman Equation as a foundational concept in un-
derstanding the dynamics of value functions in reinforcement learning, this
section shifts focus towards the learning aspect in RL. Here, learning is
defined as an algorithmic process enabling an agent to refine its decision-
making capabilities through accumulated experience. These algorithms are
the mechanisms through which an agent improves its policy based on inter-
actions with the environment.

The goal of finding an optimal policy, as formalized by the Bellman Opti-
mality Equation, is at the core of reinforcement learning. However, the prac-
tical challenge lies in how an agent can learn such policies efficiently, espe-
cially when the state space, action space, and dynamics are complex or vast.
When the complexity of the task is not too great, the concept of dynamic pro-
gramming and straight forward, often fully deterministic, algorithms can be
deployed and function well. One of the most important such algorithms is
policy iteration. Even though policy iteration and its closest relatives cannot
be applied directly in some tasks, many of the more advanced algorithms
build upon the overall idea, these more advanced methods are called Gen-
eralized Policy Iteration.

Policy Iteration and Generalized Policy Iteration. Policy iteration, a DP
algorithm, is a two-step process involving policy evaluation and policy im-
provement. Initially, one starts with an arbitrary policy and evaluate it to
determine the value of each state under that policy. As the dynamics of the
environment is assumed to be completely known here, and as the problem
is assumed to be modelled as an MDP, the Bellman equation for state-value
functions from 2.21 can be applied recursively. This is the policy evaluation
step. Once the policy evaluation is finished, the next step is to improve that
policy. For some state, s its desirable to take another action a ̸= π(s) such
that the returns are improved. This action can be evaluated by the state-
action-value function for that state action pair, as given by 2.18. Then if

q(s, a) = q(s, π′(s)) ≥ v(s)

the new policy π′ must be at least as good as π. This shows the process for a
single, arbitrary, state. However it can be extended to all states as each value
function is built up recursively from the other value functions as seen by the
Bellman Equations. Consider the new greedy policy π′ given by:

π′(s) = arg max
a

qπ(s, a) = arg max
a

Eτ∼π

[
R(τ)

∣∣∣∣St = s, At = a
]

(2.25)

The greedy policy fulfills that qπ(s, π′(s)) ≥ vπ(s)∀s. It can be shown that
this necessarily improves the policy if it is not optimal, and that the policy

33

Chapter 2. Theory

does not change if it is optimal. Suppose that this happens, that policy π′

is as good as but not better than policy π. Then vπ = vπ′ , and the policy is
thus optimal by the Bellman optimality equation from 2.23.

Generalized Policy Improvement (GPI) represents a foundational con-
cept in reinforcement learning, encapsulating the cyclical process of policy
evaluation and improvement. This iterative approach hinges on two core
steps:

1. Policy Evaluation: Assessing the current policy’s effectiveness, typi-
cally by estimating the value function, which represents the expected
return from each state under the current policy.

2. Policy Improvement: Refining the policy to make more optimal deci-
sions, often based on the updated value function.

The interplay between these steps is nuanced. On one hand, they work
in opposition: a policy made greedy based on current evaluations may ren-
der those evaluations less accurate, necessitating further evaluation. On the
other hand, they are complementary, as each cycle of evaluation and im-
provement incrementally nudges the policy towards optimality. GPI is more
general than classic policy iteration. It does not mandate a complete or pre-
cise evaluation of the policy at every step. Instead, it allows for partial up-
dates to the value function, followed by adjustments to the policy. This flex-
ibility is what makes GPI more of a meta-algorithm, a framework underpin-
ning many specific reinforcement learning algorithms.

Monte Carlo Methods. One of the primary limitations with DP algorithms
such as policy iteration is the need of a complete model of the environment.
These algorithms need knowledge of the state transition dynamics condi-
tioned on each action. Monte Carlo (MC) methods are a family of sampling
based learning algorithms in reinforcement learning which do not rely on
any model of the environment, instead it can learn solely from experience.

Monte Carlo methods represent a model-free approach in reinforcement
learning, where learning is achieved directly from episodes of experience
without any assumption of knowledge about the environment’s dynamics.
This method is particularly useful in scenarios where the environment’s
model is unknown or too complex to be formulated. The key idea behind
Monte Carlo methods involves learning from complete sequences of states,
actions, and rewards, and using these to estimate value functions. A simple
MC update rule, where V under policy π is the estimate of vπ is:

V(St)←↩ V(St) + α [Rτ −V(St)] , (2.26)

where α is a step-size parameter like the learning rate in traditional machine
learning. Here Rτ is the target for the update rule.

34

2.2 Reinforcement Learning

The process in Monte Carlo methods involves:

• Generating episodes based on the current policy.

• Calculating returns (cumulative rewards) for each state visited in the
episode.

• Averaging these returns over multiple episodes to estimate the value
function.

This approach is distinct from DP methods, which require a complete
model to predict state transitions. Monte Carlo methods only need the abil-
ity to generate episodes, making them applicable to a broader range of prob-
lems. GPI can be effectively used together with Monte Carlo methods. In
this context, GPI becomes a framework for iteratively improving the policy
based on the value function estimates derived from the Monte Carlo ap-
proach. The integration of GPI with Monte Carlo methods can be described
as follows:

1. Use Monte Carlo methods for policy evaluation: Estimate the value
function of the current policy by averaging the returns from complete
episodes.

2. Apply GPI for policy improvement: Based on the estimated value
function, refine the policy to make it more optimal. This can be
achieved by making the policy greedier with respect to the estimated
value function.

By combining Monte Carlo methods with GPI, we obtain a powerful
algorithmic framework that benefits from the model-free nature of Monte
Carlo methods while leveraging the systematic policy improvement mech-
anism of GPI. This results in a flexible and robust approach to learning in en-
vironments where a model is either unavailable or impractical to use. While
Monte Carlo methods provide a valuable model-free approach in reinforce-
ment learning, particularly in environments where a complete model is un-
available or impractical, they have several inherent limitations:

• High Variance: Monte Carlo methods can exhibit high variance in
their value estimates, especially in stochastic environments. This vari-
ance can lead to slow convergence and unstable learning.

• Exploration Dependence: These methods require thorough explo-
ration of the state and action space to generate reliable estimates. In
large or complex environments, achieving sufficient exploration can
be challenging, leading to poor performance in under-explored re-
gions.

35

Chapter 2. Theory

• Episode Length Sensitivity: From 2.26 it is apparent that the full tra-
jectory for the episode must be computed before any update can be
made. The reliance on complete episodes for updates makes Monte
Carlo methods less efficient in scenarios with very long or continuous
episodes.

• Lack of Bootstrapping: In reinforcement learning, bootstrapping
refers to the process of using current estimates to update future esti-
mates. Monte Carlo approaches do not utilize bootstrapping, relying
solely on actual returns for updates. This absence of bootstrapping
can limit the speed of learning compared to methods that use existing
estimates to inform updates.

• Suitability for Episodic Tasks: These methods are primarily designed
for episodic tasks with clear terminal states. They are not ideally suited
for continuous, non-terminating tasks.

• Delayed Credit Assignment: In environments with sparse or delayed
rewards, Monte Carlo methods can struggle with the credit assign-
ment problem, as it can be difficult to determine which actions were
responsible for obtaining the reward.

These limitations often make Monte Carlo methods less preferable in cer-
tain scenarios, leading to the adoption of alternative approaches like Tem-
poral Difference learning.

Temporal Difference Learning. Temporal Difference (TD) learning is an-
other learning method in RL that combine the ideas from both DP and
Monte Carlo methods. Just like DP, TD learning uses information from other
subsequent states to update the value for the current state (bootstrapping),
and just like MC it is a sample-based and model-free technique.

From 2.26 it was noted that the target for the MC update was Rτ , which
can only be known after a full episode is completed. The TD method does
not require this, as the target for the update is changed. The simplest TD
update rule can be formulated as:

V(St)←↩ V(St) + α [Rt+1 + γV(St+1)−V(St)] (2.27)

This means that the update can be made as soon as the transition from St
to St+1 is complete, with no need to wait for the full trajectory τ for the
current episode. This means that the problem of delayed credit assignment
found with the MC method is made less prominent, as well as the problem
of episode length sensitivity. It is also apparent from the TD update rule that
it uses bootstrapping and sampling, as it updates the current value of V(St)
based on the estimated value of the next state V(St+1) (bootstrapping), and

36

2.2 Reinforcement Learning

the actual reward received Rt+1 (sampling). However, although bootstrap-
ping is used as in DP methods, there is no need for a complete model of the
dynamics, as the bootstrapping in itself is sampled based.

The method from 2.27 is also called the TD(0) (one-step TD), as it looks
one step forward. The TD(0) method can be used for policy evaluation, as
shown in algorithm 2.

Algorithm 2: TD(0) Policy Evaluation Algorithm
Data:

π : The policy to be evaluated
Result:

Vπ(s) : The evaluated state-value function under policy π

initialize V(s) // An arbitrarily initialized state-value function;
for each episode do

S ∼ ρ0;
for each step in current episode do

A←↩ π(S);
S′, R←↩ Env(A);
V(S)←↩ V(S) + α [R + γV(S′)−V(S)];
S←↩ S′;

end
end
Vπ(s)←↩ V(s);
return Vπ(s)

It is also important to note that the terms inside the brackets of 2.27 forms
an error term:

δ = Rt+1 + γV(St+1)−V(St) (2.28)

This error, the TD-error, measures the difference between the estimated
value of St and the better estimate Rt+1 + γV(St+1) of the same quantity
(better in the sense that it is estimated from more samples).

Q-learning Algorithm. Q-learning is a simple TD-learning algorithm, de-
veloped by [Watkins, 1989]. The algorithm was initially developed to over-
come some of the most obvious problems with MC methods, not least the
delayed credit assignment issue. In Q-learning the goal is to find the Q-
function that best approximate the true optimal state-action-value function
q∗(s, a), and in doing so finding the optimal policy implicitly. In order to
do this the Q-learning algorithm uses an iterative TD approach for the Q-
function:

Q(St, At)←↩ Q(St, At) + α
[

Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)
]

(2.29)

37

Chapter 2. Theory

The learned state-action-value function directly tries to approximate the op-
timal policy q∗, independently of the current policy. However, the policy
is still used to decide which state-action pairs are visited. This means that
the Q-learning algorithm has convergence proofs as long as all state-action
pairs continues to be visited. A consequence of this is that one usually de-
fines two policies, a collect policy and an evaluation policy. The collect policy
is only used to collect experiences and updating the Q-function, while the
evaluation is the resulting policy when the algorithm finishes. This is why
the Q-learning algorithm is an off-policy algorithm, it learns from a different
policy than the current policy, allowing it to collect more diverse experi-
ences in contrast to the policy iteration and MC methods described, where
the learning happens from the current policy. That the Q-learning algorithm
is off policy can be seen from that the target in 2.29 has no connection to the
current policy, it is instead a maximization over the current Q-function.

It is common to have an ϵ-greedy collect policy, but there are many more
potential options here. By letting πC stand for an arbitrary collect policy, the
full (one-step) Q-learning algorithm can be presented in procedural form,
as seen in Algorithm 3.

Algorithm 3: Q-learning algorithm
Data:

πC : The collect policy.
Result:

Qπ∗(s, a) : The evaluated state-action-value function.

initialize Q(s, a) // An arbitrarily initialized state-value function;
for each episode do

S ∼ ρ0;
for each step in current episode do

A←↩ πC(S) // Get action according to policy;
S′, R←↩ Env(A) // Observe reward + next state;
Q(S, A)←↩ Q(S, A) + α [R + γ maxa Q(S′, a)−Q(S, A)];
S←↩ S′;

end
end
Qπ∗(s, a)←↩ Q(s, a);
return Qπ∗(s, a)

This algorithm can be extended to multi-step Q-learning, where the
bootstrapping is done over multiple steps forward, however the ideas are
essentially the same. An interesting, and problematic, property of the Q-
learning algorithm is the maximization bias inherently introduced by the

38

2.2 Reinforcement Learning

update rule from 2.29. Here the policy is derived as a maximization from
the target policy, given the current Q-function. The maximization is taken
over the estimated values Q(S′, a) ∀ a , which may lead to significant pos-
itive bias. Assume the expected value of some fixed state s, in which any
of the actions {a1, a2, . . . an} can be taken, each of which has an expected
value b. As the maximization is done over the estimated state-action-values
{Q(s, a1), Q(s, a2), . . . , Q(s, an)}, its obvious that there is a positive bias to a
value c > b, although the true value is b.

To mitigate the maximization bias problem in Q-learning, the Double Q-
learning algorithm has been developed. Double Q-learning addresses the
maximization bias by using two separate Q-value estimators, QA and QB,
and updates them alternately. The key idea is to decouple the action that is
chosen from the action whose value is updated. This is achieved as follows:

1. During each update, one of the two Q-functions is selected for updat-
ing the action value. Suppose QA is selected.

2. The action A∗ for the state S′ is chosen based on the Q-function not
being updated (in this case, QB).

3. The target value for updating QA is computed using QB(S′, A∗) along
with the received reward.

By using two Q-function and updating them alternately in this manner,
Double Q-learning effectively reduces the overestimation bias. The overesti-
mation from one table is not immediately used to reinforce the other table’s
estimates. This separation allows for more accurate estimation of the true
value of actions. The algorithm can be described as follows:

This approach allows Double Q-learning to provide a more stable and
less biased estimation of the state-action values, for more accurate policy
learning. The obvious drawback of this approach is the increased memory
requirements needed to hold two Q-estimators in memory.

Function Approximation
Function approximation is an important concept in reinforcement learning,
particularly crucial in context where state and or action spaces are too vast
for tabular methods. It involves approximating value functions, such as the
state-value function or the state-action-value function, with parameterized
functions. This enables extrapolation from seen data to unseen data. As-
suming no computer has infinite memory and instant look-up time, this is
necessary in many real world applications where problems often are large
or continuous. Using function approximation can also enable very efficient
learning, as information can be shared across similar states.

39

Chapter 2. Theory

Algorithm 4: Double Q-learning algorithm
Data:

πC : The collect policy.
Result:

Qπ∗(s, a) : The evaluated state-action-value function.

initialize QA(s, a) and QB(s, a) // Arbitrarily initialized tables;
for each episode do

S ∼ ρ0;
for each step in current episode do

A←↩ πC(S);
S′, R←↩ Env(A);
if randomly select QA for update then

A∗ ←↩ arg maxa QB(S′, a);
QA(S, A)←↩ QA(S, A) + α [R + γQB(S′, A∗)−QA(S, A)];

else
A∗ ←↩ arg maxa QA(S′, a);
QB(S, A)←↩ QB(S, A) + α [R + γQA(S′, A∗)−QB(S, A)];

end
S←↩ S′;

end
end
Qπ∗(s, a)←↩ 1

2 (QA(s, a) + QB(s, a));
return Qπ∗(s, a)

Basis of Function Approximation. The function approximation approach
involve representing the value functions (such as the Q-function in Q-
learning) not as discrete tables but as continuous functions. This represen-
tation is achieved through various approximates, such as:

• Linear functions: Simple and effective for certain problems, linear
functions offer ease of computation and interpretation.

• Polynomials: Here the value function is represented by a polynomial
of the state variables. For example, a quadratic function in with two
state variables would be v(x, y) = ax + bxy + cy + dx + ey + f where
the coefficients are the learnable parameters.

• Basis Functions: The value functions can be expressed as a linear com-
bination of basis functions, where each basis function is a transforma-
tion of the input state, and the input is weighted by learned param-
eters. Common choices of basis functions include Fourier bases and
radial basis function, among others. If we exemplify with a Fourier

40

2.3 Deep Learning

basis, and assume a state represented by the singleton state x, the fea-
ture representation of x might be:
u(x) = [1, sin πx, cos πx, sin 2πx, cos 2πx]T , and the learnable weights
ω⃗ = [ω1, ω2, ω3, ω4, ω5]

T . Then the estimated value for state x would
be v(x) = w⃗Tu(x) .

Although the above have the advantage of being able to handle large or
continuous problems, there are a few drawbacks. In order for the approxi-
mation to be effective, the value functions true form should be compatible
with the choice of function approximator. This makes the choice of function
approximator problem specific, as the user must assume a domain a pri-
ori. If this is possible, the above can be very effective. But for complicated,
non-linear functions where the value function landscape is not known be-
forehand, more expressive function approximators can be necessary.

Function Approximation in Q-learning. In Q-learning, function approxi-
mation can be used to estimate the state-action-value function, Q(s, a). Tra-
ditionally, Q-learning employs a tabular approach, which becomes imprac-
tical in large-scale problems. When adopting function approximation the
standard Q-learning changes somewhat:

• Generalized Q-function: The Q-function is represented as Q(s, a; θ),
where θ are the parameters of the approximator.

• Update Rule Adaptation: The update rule in Q-learning is modified
to adjust the parameters θ based on the temporal difference error δ
(see eq2.28), aiming to minimize the difference between predicted Q-
values and observed rewards.

Integrating function approximation into Q-learning transforms it into
a powerful tool capable of handling complex, high-dimensional environ-
ments. This approach retains the core principles of Q-learning – learning
from the temporal difference error and updating estimates towards a policy
that maximizes future rewards – while making it applicable to a broader
range of real-world problems where less information (but more data) is
available. One very expressive and powerful function class that is often uti-
lized to express the generalized Q-function are artificial neural networks to-
gether with learning approaches from deep learning, which will be covered
next.

2.3 Deep Learning

This section will primarily discuss deep learning in the context of artificial
neural networks. However, deep learning and artificial neural networks are

41

Chapter 2. Theory

actually separate terms and cannot be used interchangeably. Deep learning
is the concept of stacking entities such that each layer can learn some level of
abstraction. The most widely used form of deep learning today is artificial
neural networks which consists of layers of neurons. Other forms of deep
learning exists, a variant could be stacking Boltzmann machines on top of
each other.

Feed-Forward Neural Networks
A feed-forward network (FFN) is a type of neural network in which the in-
formation flows in one direction. Each layer receives information from the
previous layer and sends it to the next layer. The layers consists of neurons
or perceptrons (these terms will be used interchangeably), these are repre-
sented by the circles in fig. 2.4. A neuron takes several inputs, does some

Figure 2.4 Schematic sketch of a feed-forward network. Data flows in through the
input layer, then to a hidden layer (often multiple such layers). The hidden layers
passes on information to the output layer.

mathematical operations on them which includes a non-linear operation,
and then outputs the result. The output for neuron j can be described by

oj = f
(K

∑
k=1

wkjxk + bj

)
where x is the input, f is a non-linear activation function, w.. is conventionally
referred to as the weights and b. as the bias. Popular choices for activation
functions are the sigmoid function:

σ(x) =
1

1 + e−x (2.30)

42

2.3 Deep Learning

the rectified linear unit (ReLU):

ReLU(x) = max(0, x) (2.31)

and the hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x (2.32)

This pattern of calculating a linear combination of the outputs from the pre-
vious layer and then applying an element-wise non-linear function is what
constitutes the representational power of the neural network. They are in
fact universal function approximators under certain circumstances. A fa-
mous result is Barron’s Theorem [Barron, 1993] which states that for any
function f : Rd → R that has a Fourier transform:

f̂ (ω) =
∫

Rd
f (x)e−iωT xdx

and is sufficiently smooth such that:∫
Rd
|ω|| f̂ (ω)|dω < C

where |ω| = (ω ·ω)1/2. Then there exists a function, fn for n ≥ 1 and r > 0
on the form:

fn(x) =
n

∑
j=1

cjϕ(xTwj + bj) + c0

such that ∫
|x|<r

(f (x)− fn(x))2dx ≤ (2Cr)2

n
This is quite a remarkable result as it states that any sufficiently smooth
function can be approximated by a one-hidden layer neural network. The
approximation error is bounded by the smoothness of the function (C), the
size of the region (r) and the number of neurons (n). It is possible to shrink
this bound by using more neurons, n, i.e using a larger neural network.
Many similar theorems could’ve been picked to demonstrate the represen-
tational power of neural networks and new mathematical results are still
found today.

Neural networks are trained by using the back-propagation algorithm
which was first proposed in this context by [Rumelhart et al., 1986]. The
back-propagation algorithm is a smart way of computing the partial deriva-
tives of the weights and biases with respect to the loss function in a neural
network. It utilizes a forward pass and a backward pass through the net-
work, resulting in a time complexity ofO(K2L) for a neural network with L
layers, each containing K neurons.

43

Chapter 2. Theory

Convolutional Neural Networks
So far, the examples of neural networks have been fully connected. In fig.
2.4 for instance, it is possible to see that each neuron in layer l is connected
to every neuron in layer l− 1 and every neuron in layer l + 1. Convolutional
networks consists of convolutional layers and work slightly differently. In
this thesis, images are often the input to the network and this is a good
application for convolutional neural networks. If a fully connected network
were to process an image, the first step would be to flatten the image as
described in fig. 2.5. This might remove the spatial properties of the image.
A convolutional layer consists of a convolution which is made up of one or

Figure 2.5 A 2×2 pixel image and its shape after flattening. The flattened version
is what a fully connected network sees.

more filters. The filters are local, in the sense that the convoluted feature is
affected only by the pixels closest to it. Weights of the filters make up the
trainable parameters in a convolutional neural network. Figure 2.6 shows
a 2×2 filter applied to a 3×3 pixel image. An image often have multiple

Figure 2.6 A 2×2 filter applied to an image produces a convoluted feature.

channels, such as an RGB-image which has three channels, one for each of
the base colors; red, green and blue. It is a common strategy to use at least
one filter for every channel and often more than one filter per channel. This
results in data that grows in depth during inference through the network.

44

2.3 Deep Learning

(a) 2×2 Average Pooling operation. (b) 2×2 Max Pooling operation.

Figure 2.7 Example of two pooling operations, average and max pooling. The pool-
ing operations down-samples the input, this can be seen in both examples where the
input size is 3×3 while the output is 2×2.

An image of input size (H, W, C) which passes though a convolutional layer
resulting in shape (H′, W ′, C′) have a smaller or equal-sized height (H′ ≤ H)
and width (W ′ ≤W) while the number of channels grows of stays the same
(C′ ≥ C). An image passing through a convolutional neural network can
therefore often look like a pyramid. The number of output channels can vary
between layers and is an architectual choice in a convolutional neural net.
Filters in the convolutional layer are followed by a non-linear function such
as 2.30, 2.31 or 2.32 and the non-linearity is usually followed by a pooling
function. This is a down-sampling operation and the most common way to
do this is through either average pooling (take average of nearby pixels)
or max pooling (take the maximum of nearby pixels. Examples of max and
average pooling can be found in fig. 2.7. Choosing a pooling operation can
also be seen as a kind of hyper-parameter. It is often desirable to down-
sample images, especially if the resolution is high since the input space is
very large. An image in full HD resolution is 1920× 1080 = 2, 073, 600 pixels
per channel.

Other common layers in convolutional neural networks are skip-
connections in which a few layers are skipped. If F is a series of layers
and X is the input to those layers, then

Y = F(X)

but with a skip connection the input to F is added to the output such that:

Y = R(X) + X (2.33)

where R is called a residual branch. This addresses the vanishing gradient
problem where the gradient goes to zero during training of a network, which
results in very small or no updates in the network. The skip-connections
forces the gradient in 2.33 to be at least 1. The vanishing gradient prob-
lem can arise during training of very deep neural networks. The paper in-
troducing the ResNet architecture [He et al., 2015] showed that a deeper

45

Chapter 2. Theory

network does not always perform better despite having more trainable pa-
rameters, they proposed skip-connections as a solution to make deeper net-
works function better.

Another common operation to do in a deep neural network is batch-
normalization. This keeps track of a running average and running vari-
ance in order to normalize each batch seen by the network. Often a batch-
normalization layer also contains two trainable parameters which are mul-
tiplied respectively added to the normalized batch.

When designing a convolutional neural network, it is common to use a
combination of all the mentioned layers. A common design is to construct
a block of layers where a block might consist of convolutional filters, an
activation function, a pooling function and batch normalization. A few of
these blocks can be repeated to obtain a deeper neural network. After the
series of convolutional blocks, it is common to flatten the output and process
it through a fully connected network to complete the task, which can be
classification or regression for instance.

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) is a class of neural networks that are
well-suited for sequential data and tasks where the order of information is
crucial. Unlike feed-forward networks, which process input data in a single
pass, and convolutional networks, which operate on fixed-size input, RNNs
can handle sequential data of varying lengths. This makes them particularly
useful for tasks like natural language processing, time series analysis, and
speech recognition.

RNNs have recurrent connections that allow information to persist
across different time steps. This is achieved through loops in the network,
enabling the hidden state to capture information from previous time steps.
The hidden state in an RNN serves as a memory of the network, captur-
ing information about the sequence processed so far. It is updated at each
time step based on the current input and the previous hidden state. Fig. 2.8
shows a schema of an RNN in rolled and unrolled form. The unrolled form
shows the computational flow of an RNN.

Each hidden state is computed by using the previous hidden state, the
following equations describe how data from previous time-steps is incorpo-
rated:

yt = σ(Wyhht + by)

ht = σ(Whxxt + Whhht−1 + bh)

The hidden state is calculated from the previous hidden state and the cur-
rent input.

46

2.4 Deep Reinforcement Learning

Figure 2.8 Schema of a Recurrent Neural Network drawn rolled and unrolled
which shows the computational flow of an RNN.

Training RNNs can be challenging due to the vanishing problem and ex-
ploding gradient problem where the gradient grows out of control as they
are propagated back through time, making it difficult for the network to
learn long-range dependencies. While RNNs are designed to capture se-
quential dependencies, they can struggle to learn long-term dependencies.
This has led to the development of more advanced RNN architectures, such
as Long Short-Term Memory (LSTM) networks [Hochreiter and Schmidhu-
ber, 1997] and Gated Recurrent Unit (GRU) networks [Cho et al., 2014].

LSTMs and GRUs are specialized RNN architectures that address the
vanishing gradient problem by incorporating gating mechanisms. These ar-
chitectures enable the network to selectively update and forget information
in the hidden state. A useful resource that provides a good introduction to
recurrent neural nets is [Schmidt, 2019].

2.4 Deep Reinforcement Learning

In deep reinforcement learning, the concepts of deep learning and reinforce-
ment learning are combined as the name indicates. This is often done by
estimating different relevant quantities in RL, such as q-values with neu-
ral networks. The motivation for doing this is that keeping a large table of
state-action values is not always feasible. Say that the state space, S , consists
of images of high resolution, then the size of this state-space is simply too
large to keep track of a q-value for each image and each action. A method to
approximate the q-values is needed.

47

Chapter 2. Theory

Deep Q-Networks
The deep Q-network (DQN) is one of the first deep reinforcement algo-
rithms developed and the intuition behind it has already been briefly out-
lined. The idea is to pass the state through a neural network to obtain the
q-values for each action. An example of this is found in fig. 2.9 where a neu-
ral network is used to approximate the q-values of three different actions,
a1:3 to a state, s. DQN builds upon the off-policy Q-learning algorithm de-

Figure 2.9 When using a deep Q-network the state, s is passed through a neural
network with equal number of output neurons as there are possible actions. In this
case the problem allows for 3 actions, a1, a2 and a3. Hence, the network outputs three
q-values; Q(s, a1), Q(s, a2) and Q(s, a3).

scribed in section 2.2. The update rule for the q-values in (1-step) Q-learning
is:

Qnew(st, at)← Q(st, at) + α
(

rt + γ max
at+1

Q(st+1, at+1)−Q(st, at)
)

(2.34)

where the temporal difference error is defined by the expression in the large
parenthesis:

δ = rt + γ max
at+1

Q(st+1, at+1)−Q(st, at) (2.35)

To optimize the deep Q-network, a convex function (such as MSE (2.7) or
MAE (2.2)) of δ in 2.35 should be minimized. The objective function for DQN
can then be described by 2.36

LDQN(θp) =
(

rt + γ max
at+1

Q(st+1, at+1; θt)−Q(st, at; θp)
)2

(2.36)

where θ· are the parameters for the deep Q-network. Note that there are
two different subscripts on the network parameters, θp and θt. These two
subscripts stand for target and policy. Two different neural networks, the
target net and the policy net both approximates the q-value. The policy net

48

2.4 Deep Reinforcement Learning

is updated by optimizing the loss function in 2.36 with some optimization
algorithm (e.g one from 2.1) while the target net is set equal (hard update) to
the policy net every C steps. The idea of doing this was proposed by [Mnih
et al., 2015] and is an idea to mitigate divergence during training. A further
refinement of this method, proposed by [Kobayashi and Ilboudo, 2021] is to
not do a hard update but a soft update, meaning; every C steps the target
net is updated according to the following rule:

θt ← (1− τ)θt + τθp (2.37)

i.e a weighted average is taken between the two networks and this can fur-
ther improve training stability. Both τ (soft update-parameter) and C (how
often to update the target network) are hyper-parameters which can have a
great impact on learning.

It is known that reinforcement learning with non-linear function approx-
imation can be unstable and even diverge, this was shown by [Tsitsiklis and
Van Roy, 1997]. The cause for this is in part the fact that observations are
often obtained sequentially which implicates temporally dependent data-
points, and in part because of the correlation between the estimate (Q(st, at))
and the target (rt +maxat+1 Q(st+1, at+1)). Using a target network addresses
the second problem. The previously mentioned paper [Mnih et al., 2015]
does however propose a solution to the first problem as well. By using an
experience replay, which is common practice today when training DQN:s, it
is possible in theory to avoid training on temporally correlated data. The
experience replay is a buffer where (state, action, reward, next state)-tuples
(also called experiences) are stored. During training, when exploration of the
environment occurs, the new experiences are stored in the replay buffer and
when the network parameters are optimized, a batch is sampled uniform at
random from the experience replay. Ideally, this replay buffer should con-
tain as much data as possible but due to memory constrains, this might not
be possible. Since the experiences from early episodes in the training session
are in the replay buffer longer, there is a slight bias towards those observa-
tions. This effect can be corrected for by pre-filling the replay buffer with
experiences. The full DQN-algorithm can be seen in algorithm 5.

Double DQN
Double DQN is a variant of DQN which aims to assist in some issues that
can arise with the standard-DQN algorithm. Double DQN was proposed by
[Hasselt et al., 2015] and is an extension of the Double Q-learning algorithm
(tabular method) [Van Hasselt, 2010] which used linear function approxima-
tors for the Q-values. Standard Q-learning have a tendency to overestimate
the Q-values. [overestimation] showed that every Q-value is overestimated
up to a certain upper bound and that the overestimation can lead to sub-
optimal policies. Their assumption for their mathematical results are that

49

Chapter 2. Theory

Algorithm 5: DQN Training Algorithm
Data:

Q(·, ·; θp) : Initialized policy network
R : Empty or pre-filled replay buffer

Result:
Q(·, ·; θp) : Trained policy network

θt ←↩ θp // Initialize target network parameters;
tglobal ←↩ 0 // Initialize time step;
for episode = 0, 1, 2, ... do

Initialize environment and observe s0;
while episode not finished do

// Using ϵ-greedy policy;
if Random(0, 1) < ϵ then

Select random action at;
end
else

at = arg maxat
Q(st, at; θp);

end
Take action at and observe reward rt and next state st+1;
Store (st, at, rt, st+1) in R;
Sample (sj, aj, rj, sj+1) uniform at random from R;
Update θp by taking gradient of LDQN in 2.36;

end
// Update target net every C episodes;
if tglobal%C = 0 then

θt ←↩ (1− τ)θt + τθp;
end
tglobal ←↩ tglobal + 1;

end

50

2.5 Data Augmentation

the Q-values have a random, uniformly distributed error. [Hasselt et al.,
2015] expands on this result and show that any kind of estimation error can
implicate an upward bias. The error may come from the environment, func-
tion approximation or any other source. This in an interesting result for this
thesis as various estimates are used in many parts of the system, e.g the
environment.

To mitigate overestimation [Van Hasselt, 2010] suggested to use a differ-
ent set of parameters to approximate Q-values during action selection and
action evaluation. This means that the first term in eq. 2.36, which often is
called the target is modified from:

YDQN
t = rt + γ max

at+1
Q(st+1, at+1; θt)

to:

YDoubleDQN
t = rt + γQ(st+1, arg max

at+1

Q(st+1, at+1; θ′t); θt) (2.38)

It can be seen in 2.38 that one set of parameters (θ′t) is used for action selec-
tion while another set of parameters (θt) is used for evaluating the action.
In the original double Q-learning paper [Van Hasselt, 2010] one out of the
two sets of parameters are selected at random to be updated at each opti-
mization step. The roles of θt and θ′t can also be switched at random time
steps. [Hasselt et al., 2015] shows that the benefits of double Q-learning over
standard Q-learning translates to the non-linear function approximator-case
with double DQN. They test their methods on six different Atari-games and
see improved policies.

2.5 Data Augmentation

Data augmentation is the concept of transforming or perturbing data such
that new training examples are created. It can be applied to different types
of data such as speech, text or mechanical signals but in this section it will
be discussed in the context of images.

Deep neural networks require a large amount of training examples in
order to perform well. This can be problematic when labeled data in the de-
sired domain is scarce. Training on a small dataset during many epochs is
generally a poor solution as the model is likely to overfit and not generalize
well to new, unseen data. This is a good context to employ data augmen-
tation. A (too small) dataset of size N can by augmenting each training ex-
ample once be increased to a size of 2N. Augmenting data by adding noise
can also be a good strategy to make a model more robust to adversarial
examples and noisy data. Applying data augmentation has been a known

51

Chapter 2. Theory

technique to reduce overfitting as long as convolutional neural networks
have been around. [Lecun et al., 1998] is an early of example where data
augmentation is employed to reduce overfitting on the MNIST dataset.

Common augmentations for images are rotating, flipping, cropping,
adding Gaussian noise or slightly moving the bounding boxes (specific to
object detection) in the images. A more detailed explanation of the different
augmentations used in the experiments in this thesis can be found in the
next chapter.

There exists other types of data augmentation besides the previously
mentioned affine transformations. [Perez and Wang, 2017] use Generative
Adversarial Networks (GANs) to do something called style transfers. This
means a neural network modifies the images such that a different style is ap-
plied to the image. Different styles can mean almost anything, the weather
can for instance be changed in the image. The GAN can also be trained to
alter images such that they look like the work of a certain artist. The tech-
niques involving generative models are however easier to use for image
classification where one can assume that the label of the augmented exam-
ple stays the same. For object detection however, there can of course be mul-
tiple objects, with different labels and different locations. The task of gener-
ating augmented images while still preserving quality of bounding boxes
is a more difficult task. This thesis will not consider augmentations involv-
ing a GAN or any other types of generative models. It will focus on how to
chose between the traditional augmentations described earlier.

2.6 Evaluation Metrics

Evaluation metrics are metrics that are used to understand the performance
of a model for a certain task. In this section, some evaluation metrics for ob-
ject detection will be explained but also metrics that will be used to evaluate
reinforcement learning agents.

Object Detection & Classification Metrics
Two initial, important concepts to understand are precision and recall. These
two metrics are used in classification to understand the general performance
of a model as well as what kind of errors the model tends to do. Precision
and recall are defined as:

Precision =
TP

TP + FP
(2.39)

and

Recall =
TP

TP + FN
(2.40)

52

2.6 Evaluation Metrics

a table explaining the abbreviations in 2.39 and 2.40 can be found in table
2.1. Depending on the task, it can be more important that the model is op-
timized for one of these metrics compared to the other. It is common to op-
timize for precision if false positives are expensive. Say a hypothetical task
is to predict if a patient needs surgery or not and that the procedure can be
dangerous and expensive. In this case it is important that when the model
predicts that the patient needs surgery, then this is actually the case. When
optimizing for recall instead, the false negatives are more expensive than
the false positives. An example of this is fraud detection, where it might be
devastating to miss a fraud.

Table 2.1 Table explaining true/false positives/negatives. If the task is to classify
whether an image contains a cat or not, a positive classification would be to predict
"Cat" while a negative would be to predict "Not Cat".

Abbreviation Full Name Explanation
TP True Positive Labels correctly classified as positive
FP False Positive Labels incorrectly classified as positive
FN False Negative Labels incorrectly classified as negative
TN True Negative Labels correctly classified as negative

One could also construct the precision-recall curve in which recall is plot-
ted on the x-axis and precision is plotted on the y-axis. The points on the
curve are determined by varying the prediction threshold. A model outputs
a probability between zero and one, and a common threshold to use is 0.5,
meaning; if the prediction is above 0.5, then a positive prediction is made.
This curve can help to understand the model performance as well as picking
a suitable threshold. The area under the curve is another important metric
called average precision (AP).

Remember, object detection is not solemnly about classification, but also
localization. The model is expected to output bounding boxes, indicating
where the items are. A metric to measure the quality of bounding boxes is
Intersection over Union (IoU). This is the ratio between the area of the inter-
section and the area of the union of the predicted and the true bounding
box. The IoU is often combined with AP, precision and recall by requiring
a threshold of the IoU. An IoU-threshold can for instance be set to 0.5 and
then positive examples are only counted when the IoU is at least 0.5. If AP is
averaged over all IoU thresholds and all classes, the metric mean Average Pre-
cision (mAP) is obtained. If a number between 0 and 100 is added after mAP,
such as in mAP50, then this is the average precision (over all classes) where
the IoU is at least 0.5. This is hence a metric of both bounding box quality
and classification performance which is suitable for object detection.

53

Chapter 2. Theory

Figure 2.10 Intersection over Union is a metric for the quality of a bounding box.
The area of the intersection of the two boxes is divided with the area of the union.
IoU is a value between 0 and 1 where 1 corresponds to a perfect bounding box.

Reinforcement Learning Metrics
A common evaluation metric for reinforcement learning agents is to look at
the average discounted return over many episodes. The discounted return
is the discounted sum of all rewards collected during an episode and was
introduced in equation 2.20. The return and reward can be more or less in-
terpretable depending on the task (although it should always be as high as
possible) and in case of a less interpretable reward signal, the introduction
of a baseline can be of benefit. The reward signal from the environment can
be noisy and in that case a comparison between agents can be preferable.
Other interesting metrics to monitor are the average episode length and his-
tograms over selected actions. These metrics can reveal the behaviour which
the agent exhibits in the environment.

54

3
Methodology

This chapter will describe how the deep reinforcement learning framework
is developed, how it is trained and tested as well as how the behavior of an
agent is investigated. Reinforcement learning problems can, as mentioned
in section 2.2, be framed as an interaction between an agent and an envi-
ronment (see fig. 2.3). Hence, the chapter will be structured according to
the main components of reinforcement learning. Firstly, an overview of the
work flow will be presented. Secondly, the design of the environment will
be discussed. Thirdly, the design of the agent and how the agent and envi-
ronment are interacting with each other is presented. With this in mind, a
mathematical model inspired by the framework of POMDP is set up. A thor-
ough description of methods for evaluating the agent will also be provided.
Table 3.1 describes some important terminology which is used throughout
this and oncoming chapters.

Table 3.1 A table of used notation describing various components of the reinforce-
ment learning framework. This notation will be used in the following chapters.

Concept Explanation

Detector The object detection model we are trying to optimize with
good augmentations.

Childnet
An object detection model used to calculate the reward sig-
nal in the environment which has been trained for several
epochs.

Backbone
A pre-trained convolutional neural network used to ex-
tract features from an image. It is pre-trained on ImageNet
which is a classification dataset.

55

Chapter 3. Methodology

Figure 3.1 An example of an episode. The agent receives an image from a dataset
and decides how to augment the image. Initially, the agent chooses to augment the
image with a Flip augmentation. The agent then has to decide whether it wants to
further augment the image. It chooses to do the Prison Bar augmentation so that the
image now is both flipped and decorated with black stripes. After that, the agent
chooses to not do anything and this action terminates the episode.

3.1 Overview of Methodology

An agent will be trained to pick good augmentations for images. This will be
done with a reinforcement learning algorithm (deep Q-learning, Algorithm
5) and for this reason an environment will have to be designed.

A crucial part in the problem set-up is deciding how an episode is de-
fined. An episode is the event of augmenting a single image. A step in an
episode is equivalent to applying one augmentation to that image. Termina-
tion of an episode occurs either when the agent has taken a pre-determined
number of actions or when it decides for itself that the best action is to not
augment the image anymore. A visualization of a potential episode can be
seen in fig. 3.1. The environment will see actions (augmentations) selected
by the agent and provide a new state and a reward. The reward will be cal-
culated with the help of a neural network called the "Childnet" (see Table
3.1). This network has the same architecture as the object detection model
that we are trying to improve (the "Detector", see Table 3.1). The role of the
childnet is to simulate how a detector behaves during training.

When an agent has finished training, it can be used to augment a dataset
which is used to train a detector. The quality of an agent can be determined
by comparing performance metrics (e.g. mAP50) for a detector trained with
augmentations done by the agent and a detector trained with some other
augmentation strategy.

In the next sections, we will describe how the different component have
been developed. There are many different variations of environment and
agent designs that are possible to pick.

3.2 Designing the Environment

Given an action provided by the agent, the environment is supposed to out-
put a new state (the next state) and a reward signal. When designing an

56

3.2 Designing the Environment

environment, three different entities needs to be considered; the state space,
action space and reward signal. All three of these entities can be varied with
different combinations of design choices and it is difficult to know what
provides the most efficient learning in the end. Reinforcement learning al-
gorithms are often benchmarked on computer games (see e.g. [Bellemare
et al., 2013]) since there often exists a score which can be used as a reward
function. Games also often define a clear set of allowed actions. The perfor-
mance of the agent is simply defined by its ability to achieve high scores in
the game. However, in a real world application such an obvious reward sig-
nal rarely exists. In this thesis, the objective is to maximize the performance
(e.g. mAP, see section 2.6) of an object detection model through improved
data augmentation. Unfortunately, designing a reward function which pro-
motes good augmentation is not straight-forward.

Reward Function
In the computer games found in the Arcade Learning Environment [Belle-
mare et al., 2013] a common strategy for reward function design is to let
the agent play the game and when it is finished, the agent receives a reward
proportional to the accumulated score (although scores can certainly also be
received during game-play). A naive approach to reward function-design
for our augmentation task, analogous to this would be to:

1. Let the agent augment the training dataset.

2. Train detector on the training dataset.

3. Evaluate detector on the test dataset.

4. Use an evaluation metric for the detector as reward signal to the agent.

The issue with this strategy is that a good detector can take several days to
train and this full detector-training would only account for one training ex-
ample for the agent. The agent will also contain a neural network which will
require thousands of training examples to learn anything useful. Evidently,
the required training time with this approach would extend over hundreds
of master thesis-projects. There are several other issues as well with this ap-
proach, this naive example should demonstrate that the main metric which
should be improved (mAP for a detector) will be difficult to use explicitly
(compared to many computer games). Instead, good heuristics of what de-
fines good data augmentation have to be found.

During the course of this project, three distinctively different ways of
calculating the reward signal have been used. These three algorithms will
be called TrainLoss, GradientNorm and EvalLoss.

57

Chapter 3. Methodology

TrainLoss Reward Function. In the TrainLoss reward function we use the
heuristic that if the training loss of the Childnet (see 3.1) on an image is high
then the neural network learned a lot from that training example. The hy-
pothesis was that, as the images are still in the same domain, this would
mean the detector would also learn a lot from that example. Thus, the larger
the training loss, the higher reward signal yielded to the agent. As will be
seen in the Results chapter, this reward function did not end up working
particularly well. The TrainLoss algorithm is found in algorithm 6. The al-

Algorithm 6: TrainLoss Reward Function
Data:

xt : Image after the previous augmentation
y : Ground truth
Lt−1 : Loss on the image before the previous augmentation
C(·) : Childnet
L(·) : Loss Function for object detection.
f : Monotone and increasing function

Result:
r : Reward

ŷt ←↩ C(xt) // Make prediction;
Lt ←↩ L(y, ŷt) // Calculate loss;
r ←↩ f (Lt − Lt−1) // Compare with previous loss;

gorithm takes an augmented image as input, makes a prediction with the
childnet and calculates the loss of this prediction. This loss is compared
to the loss of the image before the most recent augmentation was applied.
Since f (·) is an increasing function (for example a simple linear function
x = y or the sigmoid function as in eq 2.30), the reward is high if the child-
net received a higher loss after the augmentation was made, indicating it
was a more difficult (and perhaps more useful) training example. An ap-
parent risk with this reward function is that it might promote the agent to
destroy all training examples by applying as many and as difficult augmen-
tations as possible. This is a risk since training examples of very poor quality
probably yields a high loss from the childnet.

GradientNorm Reward Function. The GradientNorm reward function
does not utilize the training loss of the childnet, instead it regards the gra-
dient of the loss function with respect the childnet’s parameters. The idea
behind this is that if the norm of the gradient is large. This means the rate of
change in the childnet’s network parameters would be large and this might
indicate that the childnet would learn a lot from that training example. The
algorithm for GradientNorm can be found in algorithm 7. It takes an aug-

58

3.2 Designing the Environment

Algorithm 7: GradientNorm Reward Function
Data:

xt : Image after the previous augmentation
y : Ground truth
Nt−1 : Norm of image gradient before the previous augmentation
C(·; θ) : Childnet
L(·) : Loss Function for object detection.
f : Monotone and increasing function

Result:
r : Reward

ŷt ←↩ C(xt; θ) // Make prediction;
Nt ←↩ ||∇θL(y, ŷt)|| // Calculate gradient norm;
r ←↩ f (Nt − Nt−1) // Compare with previous gradient norm;

mented image as input and the previous norm of the gradient of the loss
function w.r.t. the childnet’s parameters, θ. Then it calculates the current
gradient norm and compares this with the previous norm. Again, since f (·)
is an increasing function, the reward function yields a high value if the size
of the norm increases after the augmentation. A similar risk exists with this
reward function as with TrainLoss, that the reward function will promote
the agent to destroy images. This function is slightly more computation-
ally expensive compared to TrainLoss since it requires computing the gradi-
ent of the loss, which is done with back-propagation. TrainLoss only does a
forward pass through the network while GradientNorm requires the back-
wards pass too.

EvalLoss Reward Function. The final proposed heuristic for good data
augmentation is EvalLoss. This is by far the most computationally expen-
sive and is quite similar to the reward function proposed by [Qin et al.,
2020]. In this algorithm, the childnet is trained on one image and then eval-
uated on a separate dataset to determine the test loss. If the test loss is low,
then it is a good indication that the training example was useful. Similarly
to TrainLoss and GradientNorm, a quantity is compared before and after
an augmentation is applied. EvalLoss can be seen in algorithm 8. The train-
ing time of an agent is heavily dependent on the size of the dataset Dreward
and it can be seen as a hyper parameter to the agent. There is a trade-off
here between creating a less noisy reward signal, which intuitively would
be the case with a large Dreward and the training time of the agent. Dreward
is a separate dataset to the agent’s training dataset (see section 3.6). The pa-
rameters for the childnet, θ are always reset after the training step. This is to
accurately measure the effect of every augmentation, which would be less

59

Chapter 3. Methodology

Algorithm 8: EvalLoss Reward Function
Data:

xt : Image after the previous augmentation
y : Ground truth
Lt−1 :

Validation loss on the image before the previous augmentation
C(·; θ) : Childnet
L(·) : Loss Function for object detection.
f : Monotone and increasing function
Dreward : Dataset

Result:
r : Reward

ŷt ← C(xt; θ) // Make prediction;
θ′ ← θ // Save Childnet parameters;
θ← θ− α∇θL(y, ŷt) // Update childnet parameters;
Lt ← 0 // Initialize total validation loss;
for x ∈ Dreward do

ŷ← C(x; θ);
Lt ← Lt + L(y, ŷ);

end
Lt ← Lt

|Dreward |
// Get average validation loss;

θ← θ′ // Restore childnet parameters;
r ← f (Lt−1 − Lt) // Compare with previous loss;

clear if the childnet progressively got better (or worse) during training of an
agent.

State Space
The state space can be configured in multiple ways. It is desired to provide
the agent with an accurate representation of the state while keeping the state
space small since this affects the size of the neural networks which will be
used. The neural networks will be kept as small as possible because smaller
networks generally require less data. This will be necessary since the train-
ing algorithm will be significantly slower compared to algorithms used in
supervised learning. The implication being, far fewer training examples can
be seen per time unit.

There are two pieces of information that will be included in a state for
this task.

• The image itself.

60

3.2 Designing the Environment

Figure 3.2 Representation of a state to the agent. The datasets used contains im-
ages and the ground truth, which is a list of vectors containing the bounding box
locations and the labels. The image is passed through a pre-trained neural network
(the backbone) and the extracted feature, together with the ground truth constitutes
the state presented to an agent.

• The ground truth, which is a list of pixel coordinates for the bounding
boxes, along with the label.

Most of the images in the used datasets are of high resolution which will
require quite a large neural network to process. In the spirit of keeping the
neural networks small, we decided to use an observer model in the envi-
ronment which extracts features from the image. This is then treated as the
observation of the state. The observer model will be referred to as the "Back-
bone" (see table 3.1) and is a quite large convolutional neural network which
is pre-trained on the ImageNet dataset [Russakovsky et al., 2015]. The back-
bone is not a part of the agent as it is never trained. It is also possible to
select how many layers of the pre-trained network should be used, using
more layers generates a feature space of smaller dimension. A schema of
how a state is created can be seen in fig. 3.2. In none of the experiments
which will be done is the agent being presented with the full image, it’s
always features extracted from an image. However for the sake of clarity
in this text, the features extracted from images may also be referred to as
images, since "features" is a quite abstract notion and it may not always be
clear what is meant with this.

During some experiments, the state space have been defined to include
an additional piece of information: The previous actions during the episode.
This means the agent is also shown what it has done previously. This infor-
mation can be useful due to some of the augmentations which are used (see
table 3.2). Some augmentations, such as "Flip", does not alter the colors in
the images, it just flips the image on the horizontal axis. Since flipping an
image two times results in the same image, it would be more clever to not

61

Chapter 3. Methodology

do an augmentation to begin with. Without also providing the agent with
its previous actions, one cannot expect the agent to learn this relationship.

Action Space
The action space of the agent is the set of actions it can choose to take. These
actions will be different kinds of augmentations that can be applied to im-
ages. A table of augmentations and their explanation is provided in table 3.2.
Visual examples of what the augmentations do to an image can be found in
Appendix A. Most of these augmentations have one or several parameters

Table 3.2 Table of augmentations which can be used by an agent. This defines the
action space.

Augmentation Explanation Parameters

Rotate
Rotates an image by a
random number of de-
grees

Max Rotation, Min Ro-
tation

Flip Flips the image along
the horizontal axis —

Gaussian
Noise Adds Gaussian Noise Mean and Std. Dev.

Arithmetic Changes the hue, satu-
ration and lightness

Max Hue Difference,
Max Contrast Factor,
Min Contrast Factor,
Max Brightness Differ-
ence, Max Saturation
Factor, Min Saturation
Factor

Prison Bars
Adds vertical black
bars add regular inter-
vals

Bar width

Box Jitter
Slightly changes the
bounding box loca-
tions

Max Difference

Motion Blur
Gives the image the
appearance of being
captured at speed

Kernel Size

None Does nothing to the
image —

which defines the severity of the augmentation. With Gaussian noise for in-
stance, one have to define the mean and standard deviation of the added
noise. Setting a large mean will lead to an image where the motive is harder

62

3.3 Mathematical Model

to recognize. Almost every augmentation have a random component to it,
and this is common as the point of augmenting images is to introduce varia-
tions to the dataset. This property of the augmentations will be kept and this
means that when the agent decides to take action "Arithmetic" for instance,
then the agent will not know exactly how much this will change the image.

Since the augmentations take different parameters which changes the
severity of it, many different actions spaces can be configured. One action
can for instance be Gaussian noise with a high mean and variance while an-
other action is noise with a much lower mean. In our experiments, the action
space will consist of 20 actions, each augmentation in table 3.2 is used three
times (except for Flip and None which does not have any severity parame-
ters). Each augmentation with a low, medium and high severity setting. A
hypothesis is that the random nature of the augmentations can make learn-
ing harder for the agent and specifying the action space into more detail
might mitigate this effect.

The "None" action is treated a bit differently compared to the others. If
the agent chooses "None", then the episode is terminated, the agent will not
be able to augment that image anymore. The agent is allowed to make sev-
eral augmentations to an image and the number of allowed augmentations
per image can be seen as a hyper parameter. Thus, taking the "None" action
means that nothing more should be done to the image.

3.3 Mathematical Model

Given the above explanations and assumptions made on the environment,
agent, and their interaction, the problem can be modelled with a POMDP
in mind. As described from section 2.2, a POMDP can be defined as a 7-
tuple (S ,A, P, R, Ω, Z, γ). From 3.2, the latent state space S includes any
arbitrary high resolution RGB image, which is considered as a continuous
space. As discussed there, the dimensionality of this space is large, and in
order to reduce this problem an observer in the form of a pre-trained neu-
ral network (the backbone, see 3.1) is used. In addition to this NN, a func-
tion that takes the finite history of the actions in the current episode as in-
put and outputs a one-hot encoded representation of this action history is
used. A third function that encodes the images ground truths (class labels
and bounding boxes) is also used. Together these functions make up the
observation function Z : S ×A → Ω, where Ω denotes the latent observa-
tion space that the agent can observe. The latent observation space is then
defined by combining the outputs of these three functions - the backbone
neural network, action history encoding function, and ground truth encod-
ing function. By letting the 3-channel input image be a tensor with shapes
(d1, d2, d3), the backbone down-samples such an image into an (d′1, d′2, d3)

63

Chapter 3. Methodology

tensor, where d′1 < d1 and d′2 < d3. Denote fNN : S → Rd′1×d′2×d3 to be the
backbone neural network that processes the high-resolution RGB images,
faction : H → {0, 1}d4×d5 be the action history encoding function, where d4
is the cardinality of the discrete action space and d5 the maximum number
of allowed actions during a single episode. The ground truth encoding func-
tion is fgt : G → Rd5×d6 , where d6 are the maximum allowed ground truths
we allow to encode. The latent observation space Ω can then be described
as follows. Let F be the unary operator which when operates on a tensor of
dimensions (t1, t2, ..., tn) produces a new tensor of size (1, ∏i ti), and con be
the binary operator concatenating two vectors of size (1, t1) and (1, t2) into
a single (1, t1 + t2) vector. Then the shape of the observation space follows
as:

Ω = { fNN(s), con(F(faction(h)), F(fgt(g))) | s ∈ S , h ∈ H, g ∈ G} (3.1)

An arbitrary tuple in the latent observation space is then:

o⃗ = (fNN(s), con(F(faction(h)), F(fgt(g))) ∈ (Rd′1×d′2×d3 , R(d4·d5)+(d5·d6))
(3.2)

Here, o⃗ represents the final observation tuple (I f , Tr) in Ω, which the agent
uses to make decisions, where I f are image features, and Tr are truths (en-
coded ground truths and encoded action history).

The action space is defined to be discrete, with A = {A0, A1, . . . , AN}.
Most actions are probabilistic functions on images, i.e. on the latent space
off the environment. Thus these actions can be defined as mappings from a
state s ∈ S to a probability distribution ∆(S):

An : S −→ ∆(S) (3.3)

In this setting, where the framework of POMDP are used together with a
model free DRL algorithm, the transition function P is learned implicitly by
the agent. This makes it important to provide the agent with enough infor-
mation and learning potential to extract the dynamics of the environment
through experience, while balancing the dimensionality problem. An exam-
ple of this is how the observation space and observation function has been
constructed. Take for example the Box Jitter augmentation. It only acts on
the bounding boxes of an image, so after applying this augmentation the
agent cannot observe the change from image data alone, and it would not
be plausible to learn the transition dynamics without the extra data from the
ground truths. Another important take away is that, for the agent to be able
to learn temporal dependencies, such as how an image transforms when
applying an action An, some kind of memory of the previous states should
help.

64

3.4 Designing the Agent

3.4 Designing the Agent

Designing the agent involves choosing a DRL algorithm and designing suit-
able neural network architectures. This section will also cover how the agent
is used.

Selection of Deep Reinforcement Learning Algorithm
The agent will be a DDQN-Agent, the theoretical aspects of this was cov-
ered in section 2.4 and 2.4. This means that for a given image, the expected
discounted return (Q-values) for every possible action will be returned by
the agent. The Q-values can be used in different ways, a natural choice is to
always pick the action associated with the highest Q-value. An alternative
approach, which will be used in this project is to instead sample an action
according to the discrete probability distribution generated by the Q-values.
This approach is selected because the we believe that it is advantageous to
have some degree of randomness when augmenting images. The task of
the agent becomes to nudge this probability distribution towards the better
augmentations.

Neural Network Architectures
The neural network in a DQN-agent is responsible for estimating the Q-
values of each possible action given an observation. This means the input
to the neural net will be the state which consists of extracted features from
an image and the ground truth, this could be seen in fig. 3.2. Essentially
there are two pieces of information which needs to be processed by the net-
work, the image features and the ground truth and these are quite differ-
ent. The image features, which are extracted from the backbone, still has
over 100.000 dimensions which are organized into hundreds of channels. In
order to keep the neural net small, we decide to add a few convolutional
blocks which consists of convolutional filters, a non-linear function, batch-
normalization layers and zero-padding operations. After letting the image
features pass through a few convolutional blocks, the feature space is fur-
ther down-sampled. We use enough convolutional blocks to shrink the fea-
ture space from above 100.000 dimensions to 12.800. Shrinking the feature-
space further is done since we later in the network want to combine the
features with the ground truth and pass all information through a common
head. This head consists of a sequence of LSTM and FC layers. A graphi-
cal representation of the architecture is seen in fig. 3.3. The image features
which have passed through the convolutional blocks are then flattened and
concatenated with a flattened representation of the ground truth. Then this
concatenated information enters the common head. The head starts with a
single RNN layer. The reason for using the LSTM comes from the theory

65

Chapter 3. Methodology

Figure 3.3 Neural network architecture for estimating Q-values used by the agent.

of histories from POMDPs in section 2.2. For the agent to to be able to in-
fer as much information as possible from a sequence of observations, the
history of actions and observations is useful. Although this is not directly
implemented, as the DRL framework tries to learn this implicitly, the moti-
vation for using recurrent units at this stage comes from equation 2.14. This
should allow the agent to remember the last observation and compare it to
the current one, leading to a more effective learning of the transition pro-
cess. Another reason for employing the RNN is that the decision making in
a single episode is sequential, as the first augmentation during an episode
influences the second one, and so on. This is a domain where RNNs usually
excels.

66

3.5 Agent Training Algorithm

3.5 Agent Training Algorithm

In this section, the relationship and interaction between the environment,
which was described in section 3.2, and the agent, described in section 3.4
is going to be discussed. The agent will be trained with the DQN Training
Algorithm (Algorithm 5) and this section will explain how the components
designed according to section 3.2 and 3.4 relates to this algorithm.

An episode begins with observing the initial state, s0, in this problem
setting this means to fetch an image and its ground truth from a dataset.
Given this data point, an action is selected with the ϵ-greedy policy. This
means that with a probability of ϵ (∈ [0, 1]) a random action is selected,
otherwise the agent outlined in 3.4 selects the action. The selected action is
communicated to the environment so that it can calculate the reward accord-
ing to Algorithm 6, 7 or 8 and prepare the next state by passing the image
through the backbone to extract features. When the reward and next state
have been calculated, a transition tuple (st, at, rt, st+1) can be constructed,
this tuple is stored in the replay buffer. The parameters of the DQN is then
optimized by sampling a batch of transitions uniformly at random from the
replay buffer, calculating the loss (eq. 2.36) and taking the gradient of it.
These steps are done until the episode ends which happens after a fixed
and pre-determined number of augmentations or when the agent chooses
the "None"-augmentation. After the episode, the target net is updated with
a soft update (eq. 2.37) to more closely match the policy net. However, this is
not done after every episode, we do this update every thousandth episode.
When this procedure is done, a new episode is initiated by sampling a new
image from the dataset and the loop restarts.

The hyperparameters and other parameters used during agent trainings
can be found in Appendix B.

3.6 Data Usage

An essential part of training machine learning models is the data. In this
thesis, two datasets are used, a public dataset which has been modified
and curated by Axis Communications and a dataset which has been col-
lected and curated in-house by Axis Communications. For competitive rea-
sons, we cannot disclose that much information about these datasets but
the dataset which will be referred to as the "In-House Dataset" is more def-
initely within the domain of surveillance images while the "Public Dataset"
also contains surveillance images, although the domain is broader.

Let’s denote all the data which is used during a training session, where a
training session includes training the DRL agent, evaluating the agent (e.g.
calculate average reward), training a detector and evaluating the detector,

67

Chapter 3. Methodology

with D. The dataset D can be a mix of the Public Dataset and the In-House
Dataset or a subset of one of them. This dataset,D and is divided into a few,
mutually exclusive datasets such that:

D = Dtrain ∪Dvalidation ∪Dtest, Di ∩Dj = ∅ ∀i, j ∈ {train, validation, test}

and
Dreward ⊂ Dvalidation

• Dtrain which is used for training the DRL agent, the detector and the
childnet.

• Dreward which is used in algorithm 8 for calculating the reward.

• Dvalidation which is for continuously evaluating the agent during train-
ing. This evaluation includes calculating statistics such as average
episode return or average episode length. It is also used as a validation
set during training of detectors and childnets to monitor trainings.

• Dtest which is used to test the final performance of the detector which
has been trained with agent augmentations.

It can be seen from the list above that the agent is trained on the same data
as the detector and the childnet which is reasonable since it is this data, the
data that the detector is eventually trained on, that the agent should be able
to augment well. The role of the childnet is to simulate the behavior of a
detector during the training of an agent, so it is natural that the childnet is
trained on the same data as well.

The reward dataset, Dreward is separate compared to both the test set,
Dtest and training set, Dtrain and is much smaller in size compared to the
other datasets.

3.7 Evaluating the Agent

The ultimate goal of the agent is to provide augmentations which improves
the final performance of the detector. To evaluate if this is the case, a de-
tector is trained on a dataset which have been augmented by the agent and
then tested on a separate test set to reveal its true performance metrics. This
detector is trained for 20 epochs 1 and each time an image is drawn from the

1 An epoch is defined as 100.000 images in this thesis, even if the size of the dataset is different
than that. This means that the number of backpropagations during a training is constant
regardless of dataset size.

68

3.7 Evaluating the Agent

dataset, it has a 50% chance of being augmented or not. This means that half
of the images seen by the detector during a training is augmented with the
agent, and half is not augmented at all. This is a common setup when using
data augmentation, there is no point in not using the original data as well.
The performance metrics of the detector trained on an agent-augmented
dataset will be compared to a baseline detector which is trained in a similar
fashion. Instead of using augmentations proposed by an agent, the base-
line detector is trained on a dataset where half of the images are augmented
randomly. The random augmentation scheme applies a probability for each
of the used augmentations (see table 3.2). Each of the augmentations have
an equal probability of being applied, and multiple augmentations can be
applied to the same image, also decided by chance. Comparing a detector
trained with agent-augmentations and the baseline detector will reveal how
good the agent is at augmenting images.

Establishing a Baseline
To establish a good baseline detector, several detectors will be trained. In
order to detect if the agent augmentations makes any difference, we first
have to establish that standard, random augmentation actually improves
object detection performance. A hypothesis is that the augmentations will
have a decreasing impact on performance as the size of the training dataset
increases. To find a suitable dataset size, we train several detectors with dif-
ferent dataset sizes. For each dataset size, one detector with random aug-
mentations is trained and one detector with no augmentations. When the
results between these two detectors are compared, it will become apparent
if augmenting the dataset has any impact at all. If there is no measurable
difference in performance between a detector trained without augmenta-
tions and one with random augmentations, we do not think we can expect
an agent to improve that much. So, finding a suitable baseline detector is re-
ally about finding a dataset size for which augmentations can have an effect.
The training dataset with which a good baseline detector was found will be
used as the training dataset, Dtrain described in section 3.6.

Intermediate Evaluation Metrics
Besides the final evaluation described above, other intermediate evaluation
metrics are used to compare different agents with each other. If the settings
for the environment is equal, then two agents can be compared by the aver-
age episode return for the respective agents. To examine the behavior of an
agent, action histograms and heat maps will be used.

69

Chapter 3. Methodology

3.8 Implementation Details

To implement the suggested solution for the POMDP we have used Ten-
sorFlow (TF) [Martín Abadi et al., 2015] and their framework TensorFlow
Agents (TF-Agents) [Guadarrama et al., 2018] which is specialized for re-
inforcement learning tasks. This proved effective as it presents solutions to
many common difficulties appearing in RL implementations.

• Flexibility and Modularity: TF-Agents provides a highly modular
and flexible architecture, allowing for easy code iteration with differ-
ent algorithms and advanced agent architectures.

• Support for Advanced Techniques: TF-Agents provides built-in sup-
port for advanced techniques crucial for POMDPs, such as handling
partial observability and integrating memory components like RNNs.
This support simplified the implementation of strategies required for
our problem.

• Robust Simulation and Evaluation Tools: The framework includes
tools for simulating environments, handling the huge amount of data
that is produced, and evaluating agent performance, which are essen-
tial for rigorously testing and fine-tuning our models.

• Robust Algorithms: The algorithms implemented by TF-Agents are
well tested, meaning one less source of error in the development pro-
cess.

• Accessible Source Code: The framework has a clearly structured and
well documented source code.

Although there was a steep leaning curve to get comfortable with TF in gen-
eral and the concepts of TF-Agents in particular, it proved to be worthwhile
the effort.

70

4
Results

4.1 Establishing a Baseline

To establish a reasonable baseline, many detectors are trained with variable
sizes of the datasets. For each dataset size, one detector is trained without
any augmentations and one is trained where half the dataset is augmented
with random augmentations. Two line plots displays the results from this

Figure 4.1 Performance on the Public Dataset of detectors which have been trained
on datasets of varying size. The blue triangles are detectors trained without any
augmentations. The orange circles are detectors which are trained on a dataset where
half of the images were randomly augmented.

71

Chapter 4. Results

Figure 4.2 Performance on the In-House Dataset of detectors which have been
trained on datasets of varying size. The blue triangles are detectors trained without
any augmentations. The orange circles are detectors which are trained on a dataset
where half of the images were randomly augmented.

experiment. Fig. 4.1 shows the test-mAP on the Public Dataset and 4.2 shows
the test-mAP on the In-House Dataset. From this result we decide to from
now on use a dataset size of 10.000 images as the difference in performance
between the detectors trained with and without augmentations is large for
both the Public and In-House Datasets. A smaller dataset size is favorable as
it shortens the feedback loop during development as models can be trained
a shorter time.

4.2 Selecting a Reward Function

To select a reward function, three agents are trained for 30.000 episodes, all
conditions are equal, except that each agent is trained with a different re-
ward function, Algorithm 6, 7 or 8. In the section 3.2, a potential issue was
discussed, with 6 and 7 there could be a risk that the agent simply tries
to destroy the images as much as possible. To investigate this risk, an ex-
tra action was added to the action space. In this experiment, we added a
"Ruin"-augmentation which the agent could select, the augmentation turns
the image completely black, making it a useless training example for a de-
tector. After the agents are trained for 30.000 episodes, they are evaluated on

72

4.3 Detector Performance Results

100 episodes while the actions the agents take are recorded. Heat maps over
the agents’ action selections are seen in fig. 4.3. This result made us choose
the EvalLoss reward function for all succeeding experiments.

4.3 Detector Performance Results

This section discusses the performance results of object detectors using
different data augmentation strategies. Table 4.1 presents a comparison
between detectors trained with different augmentation and dataset con-
figurations. Detectors trained with agent-selected augmentations/random
augmentations (baseline) and on the Public/In-House Dataset. The perfor-
mance is measured in terms of mAP50 on different combinations of train-
ing and testing datasets, specifically the Public Dataset (PD) and In-House
Dataset (IHD). Each row in the table represents a different training-testing
scenario, comparing the mAP50 results (see 2.6) of the two augmentation
strategies, with 95% confidence intervals. For instance, one scenario in-
volves training on the IHD and testing on the PD.

Table 4.1 Performance of Detectors with different dataset combinations. Both Pub-
lic Dataset (PD) and and In-House Dataset (IHD) training sets have 10K examples.
The third columns are the mAP50 results for detectors trained with augmentations
made by the agent. The last column are the mAP50 results for detectors trained with
random augmentations (Baseline). To exemplify, the second row are results when a
Detector is trained on the IHD, but tested on the PD, with two different augmenta-
tion strategies.

Performance of Detectors
Train Set Test Set mAP50 (Agent) mAP50 (Baseline)
IHD IHD 0.2662± 0.0018 0.2602± 0.0033
IHD PD 0.1629± 0.0015 0.1613± 0.0015
PD PD 0.4118± 0.0021 0.4149± 0.0009
PD IHD 0.1629± 0.0015 0.1613± 0.0015

The data in table 4.1 is generated by first training two agents, one on the
PD and one on the IHD. The agent trained on the PD is then used to train
detectors on the PD. This generates the combination (Agent PD, Detector
PD) This process is then repeated for the IHD for the combination (Agent
IHD, Detector IHD). Each such combination yields two test results, one "on
domain" and one "off domain". This means that a total of 2 unique combi-
nations exist. As each such combination yields two results, giving four data
points. This process was repeated 5 times for a total of 20 data points. A pair-
wise right-sided t-test was then performed, defining the baseline training
sessions as group "Before", and the agent-augmented training sessions as

73

Chapter 4. Results

(a) TrainLoss (Algorithm 6) (b) GradientNorm (Algorithm 7)

(c) EvalLoss (Algorithm 8)

Figure 4.3 Action heat maps for agents trained with three different reward func-
tions (Algorithm 6, 7, 8). The heat map visualizes the occurrences of each action at
each step in the episode selected by the agent. In total 100 episodes was run.

74

4.4 Policy Evaluation

group "After". This tests if the group After is significantly better than group
"Before". The result of the test can be seen in table 4.2. As the data points are
paired the sample size is half the total number of data points, i.e. 20 samples
(remember that we also have 20 baseline trainings). The test was performed
with a significance level of α = 0.05, and effect type Cohen’s d. The result
of the paired t-test indicates a significant medium difference between group
"Before" and group "After", with p = 0.0113, and H0 ("After" less or equal
to "Before" i.e the agent augmentations does not improve the test-mAP50),
the null-hypothesis is rejected in favour of the the H1 ("After" greater than
"Before" i.e. agent augmentations improve the test-mAP50). The t-value was
2.4803, which along with the significant p-value indicates a meaningful ef-
fect size. The sample size of 20 is relatively small, which could affect the
reliability of the results. The normality p-value (Shapiro) of 0.5796 suggests
that the data likely does not significantly deviate from a normal distribu-
tion, which validates the use of a t-test. In summary, these results indicate a
statistically significant improvement with a moderate effect size.

Table 4.2 Statistical analysis results when comparing the baseline with the agent-
augmentation in a right-sided paired t-test.

Metric Value
Significance level (α) 0.05
P-value 0.0113
t-statistic 2.4803
Sample size (n) 20
Average of differences (x̄d) 0.00396
SD of differences (Sd) 0.00714
Normality p-value 0.5796

The validation loss was recorded after each epoch when training each
detector, with the validation dataset as a combination of PD and IHD. The
trainings were then grouped by their conditions (i.e. augmentation strat-
egy and dataset). For each group the expected value and 95% confidence
intervals were calculated via bootstrapping. The result is presented in fig-
ure 4.4. It should be noted that there is a possibility of bias in this data, as
although neither the agent or detector ever gets to see this data, the envi-
ronment sends a reward signal based on the validation data (but never on
the test data). This potential issue is discussed in the discussion.

4.4 Policy Evaluation

The behavior of the agents on different datasets are shown in this section.
To examine the behavior of the agents, we’ve let the agent augment images

75

Chapter 4. Results

Figure 4.4 Validation Losses for Detectors trained on the Public and In-House
Datasets. The blue lines are detectors trained with augmentations determined by
the agent and the orange lines are detectors trained with random augmentations.
The shaded areas are bootstrapped, 95% confidence intervals.

from the different datasets (the Public and In-House Dataset) and images
containing different labels. With this information it is possible to determine
the frequency with which the agent tends to pick augmentations in different
situations. In fig. 4.5 and 4.6 the empirical action probabilities are shown in
bar plots for an agent trained on 10.000 images from the Public Dataset. Fig.
4.6 also shows the severity the agent tended to pick. The figures after, fig.
4.7 and 4.8 show the same quantity for a different agent, trained on 10.000
images from the In-House Dataset. Finally, fig. 4.9 shows how the agent
trained on the Public Dataset augments images which contains a specific set
of labels. Each of these bar plots are constructed by running the agent for
500 episodes and counting the actions it selects. The maximum number of
augmentations the agent is allowed to make on the same image is three 1.

The graphs in fig. 4.10 considers the temporal aspect, i.e when in an
episode augmentations occur. Fig. 4.10 shows the transitions that never
occurs when an agent trained on the In-House Dataset augments the two
datasets. Consequently, this also means that all missing edges in the graphs
are transitions which do occur 2.

1 I.e an episode is at most 3 steps but can be shorter if the agent chooses the None/No Aug-
mentation action.

2 Apart from edges going from "No Augmentation" as this always terminates the episode.

76

4.4 Policy Evaluation

Figure 4.5 Frequency of actions selected for the Public Dataset and the In-House
Dataset by an agent trained on the Public Dataset.

Figure 4.6 Frequency of actions selected for the Public Dataset and the In-House
Dataset by an agent trained on the Public Dataset. The plot also shows which sever-
ity of the augmentation the agent tended to choose. The "Flip" and "No Augmenta-
tion" actions are not shown here as they lack a severity setting.

77

Chapter 4. Results

Figure 4.7 Frequency of actions selected for the Public Dataset and the In-House
Dataset by an agent trained on the In-House Dataset.

Figure 4.8 Frequency of actions selected for the Public Dataset and the In-House
Dataset by an agent trained on the In-House Dataset. The plot also shows which
severity of the augmentation the agent tended to choose. The "Flip" and "No Aug-
mentation" actions are not shown here as they lack a severity setting.

78

4.4 Policy Evaluation

Figure 4.9 Frequency of actions selected by the agent for images containing differ-
ent labels. For instance, the frequencies for "Cars & License Plates" have been cal-
culated by letting the agent augment images that only contains these labels. Images
are taken from both the Public and In-House Dataset. The agent which is used here
is trained on the In-House Dataset.

79

Chapter 4. Results

Figure 4.10 Graph of action transitions that never occur. An edge from node u to
node v means that augmentation u is never followed by augmentation v. This agent
is trained on the In-House Dataset.

80

5
Discussion

Having explored the theoretical foundations, methodologies, and empirical
results of the study, we now transition to a discussion of the results. This
section aims to interpret the findings, and to draw meaningful conclusions
from those. Here, the choice of baseline and reward function will be dis-
cussed shortly, before moving on to interpreting the presented results.

5.1 Baseline and Reward Function

We begin by briefly motivating the choice of baseline for the empirical re-
sults, as well as why the choice of reward signal fell on the EvalLoss algo-
rithm.

On Selecting a Baseline
The choice of baselines is crucial in contextualizing and benchmarking the
performance of our proposed method. The choice of baselines is mainly mo-
tivated by two factors. To start with, the effect of augmenting the dataset
should be empirically measurable. We found that when using very large
datasets this was difficult, as the impact of augmenting the dataset (al-
though randomly) had no real impact on the performance of the trained
model (see figure 4.1 and 4.2). This is supported by the findings of [Yang et
al., 2023], that conclude that the increase of data is not directly proportional
with the performance of the model. We can only speculate about the reasons
for this, but a saturation of the effective capacity of the model is reached,
and that a large dataset is already diverse enough seems like plausible ex-
planations. The second motivating factor for the use of a smaller dataset as
baseline is applicability. Augmentation is often more important when the
access to data within the target domain is sparse, aligning with what was
previously discussed. Then comparing and using smaller datasets should
be more interesting to the research community as well as to the industry.

81

Chapter 5. Discussion

The choice of baseline should thus both increase measurability and inter-
est in the results. This is why it was decided to use datasets with only 10K
examples.

Another question is about what augmentation strategy should em-
ployed for the baseline. One could approach this by using "expert made"
augmentation strategies, where a human with experience has set the best
known probabilities for each augmentation action. We refrained from doing
so because of a few reasons. One reason is that such knowledge is not gen-
erally known, and a core reason for this thesis is to find out if different do-
mains require different augmentation policies, and when the image domain
of interest is not represented among the common benchmark datasets in the
research community, such experience is hard to come by. Furthermore it can
be argued that a uniformly random policy is the most general policy, as it
has maximum entropy and should be less sensitive to different domains,
hopefully allowing for easier reproducibility of the results we present.

Choice of Reward Function
The design of the reward function is a fundamental aspect of any rein-
forcement learning system, directly influencing the learning process and
outcome. This is generally a difficult design process, as the reward sig-
nal needs to be transparent to the agent to infer information from it, pro-
vide the desired guidance for the agent and be computationally efficient.
A badly designed reward signal can have unsuspected consequences, such
as the agent learning unwanted shortcuts to a high reward. This complica-
tion was evident from our initial experiments. The constructed reward sig-
nals from TrainLoss (algorithm 6) and GradLoss (algorithm 7) were specif-
ically designed with Hard-Example-Mining as described by [Shrivastava et
al., 2016], as inspiration. These were considerably less compute heavy, with
about half the training time needed compared to agents using the EvalLoss
reward design (algorithm 8). However, this essentially taught the agent the
wrong thing, as it gained reward from ruining the images, evident from the
experiments presented in figure 4.3 where it is shown that the agent always
chooses the action that destroys the image. Both signals taught the agent
an unwanted shortcut to gain high rewards. In these early experiments the
EvalLoss shoved much more promise for correct, although compute heavy,
learning. The conclusion from this was to leave the ideas of Hard-Example-
Mining influenced learning strategies, and instead focus on the more direct
EvalLoss strategy. The hypothesis prior to developing the TrainLoss and
GradientNorm reward functions was that both would yield poor augmen-
tation policies. This was also the case. It was decided to try them anyway
as they would be slightly easier to implement compared to EvalLoss. This
facilitated the development of other infrastructure in the project.

82

5.2 Detector Results: Agent Augmentation or Random Augmentation

5.2 Detector Results: Agent Augmentation or Random
Augmentation

A critical assessment of the proposed method is of course to evaluate and
compare detectors trained on agent-driven augmentations with detectors
trained with uniformly random-driven augmentations. The random-driven
augmentation strategy forms the baseline, as discussed above. One of the
main results from this thesis is presented in table 4.1 , together with the anal-
ysis that showed a statistically significant improvement in mAP50 when
using our proposed method over the baseline. It can also be seen that our
method outperforms the baseline in three out of the four categories. One
should however be cautious in generalizing these results too optimistically
just yet, as the sample size is small. There are mainly two things needed
to strengthen the significance of the results. The first is simply to collect
more samples. The other is to train more agents, as there could potentially
be a large variation in the results of the training of the agents. As time and
compute were limited, we have simply picked the first agent we trained on
each dataset, which of course certainly introduces an element of random-
ness that might skew the results. To mitigate this, future research should
focus on training a larger number of agents on each dataset. This will allow
for a more robust evaluation of the agent-driven augmentation approach, as
it reduces the likelihood that the observed performance is due to the pecu-
liarities of a single agent rather than the method itself. As the performance
is similar for the two agents we have trained, we are optimistic that future
investigation would be successful.

Another result is presented in figure 4.4. The two plots show how the
validation loss evolves over epochs in different training scenarios, with in-
cluded confidence intervals. Both plots clearly show that the validation loss
is lower with our proposed method over essentially all epochs, implicating
that the proposed method performs better than the baseline during essen-
tially all stages of the training. This is however potentially subject to bias, as
although neither the detector or agent gets to see the validation examples,
the environment sends a reward signal based on the validation dataset, as
can be seen in algorithm 8. As the detectors using our model also perform
better on the test data, this bias, if any, should not be too large. However,
if this implicitly creates bias to the validation should be thoroughly inves-
tigated, especially if the validation data is used in the training process in
some way (for early stopping or similar). This is also the reason to why we
have refrained from using the test data in any stage of the agents training.

83

Chapter 5. Discussion

5.3 Analysis of Learned Policy

This section will cover the results in 4.4 which are results regarding the ac-
tion pattern of agents. In fig. 4.5, 4.6, 4.7 and 4.8 the action frequencies which
also can be interpreted as the empirical action probabilities are visualized.
The behaviour of two different agents are shown in the mentioned figures,
an agent which is trained on 10.000 images from the Public Dataset and an
agent trained on 10.000 images from the In-House Dataset. However, both
agents have been evaluated on both the Public and the In-House Dataset. By
doing this, it is possible to analyze how a given agent behaves in a familiar
domain and an unfamiliar domain 1. It is also possible to analyze how the
agents training dataset impacts the behaviour.

Let’s begin with a comparison between the two agents by consider-
ing fig. 4.5 and 4.7. The first observation is that both agents have an aug-
mentation that it applies often on both datasets. The most common aug-
mentation applied by the agent trained on the Public Dataset is the Arith-
metic augmentation, both for the Public and In-House Dataset. The other
agent, trained on the In-House Dataset, applies the Motion Blur augmenta-
tion most often, regardless of dataset. For this agent, this pattern also holds
for the second and third most common augmentations. This suggests that
some augmentations are preferable to others but that this ranking is dataset-
specific. This is further supported by studying the frequency of the Gaussian
Noise augmentation in fig. 4.5 and 4.7 which is a common action for the
agent trained on the Public Dataset (chosen 17% of the time) while its a rare
augmentation for the other agent (chosen 2%/8% of the time).

Both of the agents act quite similarly in their familiar and unfamiliar
domain. For the agent in fig. 4.5, the four most popular actions (Arithmetic,
Box Jitter, Gaussian Noise & Motion Blur) are common but the internal order
of them is different. The same observation can be made in fig. 4.7, here the
top three most common actions are shared between the dataset-evaluations.
Besides the three most common actions, the distribution is not that simi-
lar. Again, this suggests that the agent finds a few augmentations which it
deems to be best.

Fig. 4.6 and 4.8 shows the same data as 4.5 and 4.7 but the actions have
been split into the three severities. Remember, the agent could choose be-
tween three severities for every augmentation (except Flip and No Augmen-
tation where it is not really applicable). If the distribution of severities is con-
sidered by augmentation, there are some differences in severity-preference
between the two agents. Motion Blur was a common action for both of the
agents for instance, but in fig. 4.6 it is possible to see that the agent trained

1 For example, the Public Dataset is the familiar domain for the agent trained on the Public
Dataset, while the In-House Dataset is a more unfamiliar domain for this agent.

84

5.3 Analysis of Learned Policy

on the Public Dataset preferred the medium severity while the high setting
was selected more often by the agent trained on the In-House Dataset. The
relationship between severity-frequencies within an augmentation is quite
consistent when the agent augments its familiar and unfamiliar domain.

While the two datasets are from different domains, both of them includes
diverse images. In fig. 4.9 the action frequencies are shown when the agent
augments images which contains different labels. The plots show the actions
of the agent trained on the In-House Dataset. This can be seen as all subplots
look quite similar to the plots in fig. 4.7. The three most common actions are
generally Motion Blur, Box Jitter and Arithmetic across all subplots in fig.
4.9 but the internal order of these augmentations are however not shared
between the labels. For images containing Trucks & License Plates the most
common augmentation is Arithmetic while its Motion Blur for the others.
For the labels Humans & Faces and Other Vehicles, Box Jitter is more com-
mon than Arithmetic. This suggests that the agent actually augments im-
ages differently depending on what the image looks like and what is in it.
The resulting action distribution is not just an average of what has been
good in previous images.

A future experiment that could be conducted is to train a detector with a
random augmentation policy but with probabilities according to those seen
in fig. 4.5 or 4.7. This experiment would bring more clarity on whether the
agent has found a set of action probabilities that works well, regardless of
the seen image or if it adjusts the probabilities accordingly. A hypothesis is
that a detector trained with random augmentations but modified probabil-
ities (according to fig. 4.5 or 4.7) would perform somewhere in between the
detector trained with uniformly random augmentations and the agent aug-
mentations. This is because the agent seems to have found augmentations
which it prefers over others (fig. 4.5 & 4.7) while it’s possible to see in fig.
4.9 that the agent tends to augment different images slightly different. This
property is obviously lost with a random augmentation policy.

A closing remark which applies to every bar plot discussed so far is that
a random augmentation strategy would yield a uniform distribution among
actions. All distributions shown in the bar plots are very different from a
uniform distribution. It is obvious that the agent has learned an augmenta-
tion strategy which considers the dataset and images it augments.

Finally, an analysis of how the agent chooses actions within an episode
will be conducted. This will be done by studying the graphs in fig. 4.10
which shows the transitions that never occur. To begin with, the agent ap-
pears to use more action combinations on the In-House Dataset (which is
this agent’s familiar domain) compared to when augmenting the Public
Dataset. This is because the graph to the right in fig. 4.10 has fewer edges
compared to the right graph.

A particularly interesting aspect is that its possible to see that the agent

85

Chapter 5. Discussion

avoids some potentially malicious action combinations. For instance, there
are edges between the Rotation and Prison Bars augmentations which is a
combination which can ruin an image. If Prison Bars is applied, followed
by a rotation, followed by another Prison Bars augmentation, then there is
a significant risk that the image is completely black. It is also possible to see
that the agent tends to avoid using both Motion Blur and Prison Bars on the
same image, this could also be seen as a malicious action combination as
those augmentations decreases the image quality, especially with the high
severity setting. Gaussian Noise also decreases the image quality and is not
used in combination with Prison Bars either.

To end this section, we would like to point out that the results in this
section comes from two agents. A more rigorous approach to analyze the
learned policies would be to train several agents with the same configu-
ration to determine if the policies are persistent. It could be that an agent
trained with the exact same configuration as those analyzed in this section
converges to a different local minima. Due to time constraints, this has not
been done. When training a new agent, which takes several days, a priority
has been to test new ideas. Thus, two agents were rarely trained with the
exact same configuration. However, despite slight differences in configura-
tion, the observed patterns are recognized from other trainings. The agent
tends to find one or a few favorable augmentations and these have been
different between the two datasets, aligning with the results seen in this
section.

86

6
Conclusion

In this thesis we have explored the application of deep reinforcement learn-
ing for data augmentation in the context of object detection in images.
Guided by a set of research questions, this thesis has aimed to investigate
practical and theoretical aspects of this approach. The investigation was mo-
tivated by the potential of DRL to optimize data augmentation strategies, a
critical factor in the performance of computer vision when data is scarce.
This section will answer the research questions in a streamlined fashion,
motivated by empirical results and insight gained during the work.

6.1 Does the proposed DRL framework increase
performance?

In this thesis, we aimed to assess whether a deep reinforcement learn-
ing (DRL) framework could enhance the performance of object detectors
through strategic data augmentation. Our investigation, culminating in the
analysis of detectors trained with agent-driven and random augmentations,
yields promising insights.

Significant Performance Improvement
The statistical analysis, as presented in Table 4.1 and further validated by
the paired t-test in Table 4.2, indicates a significant but small improvement
in the mean Average Precision (mAP50) for detectors trained with our DRL-
based augmentation strategy. Specifically, the results show that in three out
of four scenarios, our method outperforms the baseline, demonstrating the
potential of DRL in refining data augmentation techniques for object detec-
tion.

Cautious Interpretation and Future Directions
While these results are encouraging, we acknowledge the limitations posed
by the relatively small sample size. To strengthen the validity and reliability

87

Chapter 6. Conclusion

of our findings, further research should focus on:

• Increasing Sample Size: More extensive experimentation will provide
a more robust statistical foundation, reducing the likelihood of results
being skewed by random variance.

• Training Multiple Agents: Given the inherent randomness in training
DRL agents, training and evaluating multiple agents will help en-
sure that the observed improvements are genuinely attributable to the
method, not just the peculiarities of a single agents.

• Mitigating Potential Bias: As our method involves using validation
loss to guide the agent’s learning, it is crucial to investigate any poten-
tial bias towards the validation dataset, as the reward encourages aug-
mentations that enhances learning targeted on the validation dataset.
It is thus important for validation dataset and test dataset to have the
same domain, i.e. the validation dataset should be representative for
the test dataset. Ensuring that the improvement also translates to un-
seen test data and not only validation data, as observed in our results,
is vital for confirming the method’s effectiveness.

In summary, the evidence from our research suggests that the proposed
DRL framework can indeed enhance the performance of object detectors
through strategic data augmentation. This improvement, however, should
be further validated with expanded datasets and multiple agent training to
solidify these initial promising results. The potential impact of DRL in opti-
mizing data augmentation strategies opens new avenues in object detection
and other areas of machine learning where data quality and diversity are
critical to model performance.

6.2 What kind of policy is learned by an RL Agent?

The policy learned by the agent uses all augmentations it could choose from.
It seems to learn that one or a few augmentations always are good, regard-
less of the image. We have however seen that the agent learns different ac-
tion probabilities for images containing different labels, this suggests that
the agent also considers the individual image when applying an augmenta-
tion rather than learning a distribution that it uses for all images. We have
also seen that the agent learns that certain combinations of augmentations
are preferable over others, some combinations are never used.

88

6.3 What does good data augmentation depend on?

6.3 What does good data augmentation depend on?

One of the hopes for this thesis was to investigate whether there exists some-
thing like an optimal augmentation strategy for specific images, if a specific
image has a sort of global maxima in how much it can help training the De-
tector. Our results suggests that a good data augmentation strategy depends
on what dataset should be augmented. For our two datasets, belonging to
slightly different domains, the resulting agent augmentation strategies are
quite different. We also have support for the fact that individual images
should be augmented differently, so not only does it matter on a dataset
level, but also on image level. A question that haven’t been investigated is
whether the state of the training affect the augmentation strategy, but more
on this in the next section on future work.

6.4 Future Work

In this project we have been able to conclude that a DRL Agent improve the
data augmentation strategy such that the performance of an object detec-
tion model increases. However, we’ve only been able to show that it works
for relatively small dataset sizes. Our hypothesis is that an object detection
model with a given size becomes saturated after being trained on some
amount of data. In other words, there comes a point when a model of a
given size cannot get any better by increasing number of training samples.
A future project could be to develop a framework like the one proposed in
this project which works well even when models begin to get saturated.

Throughout the course of this project, we’ve had several ideas that we,
unfortunately, haven’t yet found the time to implement. For instance, we’ve
assumed in this project that there is an optimal way of augmenting an im-
age. This is probably valid given our current set-up. However, something
we haven’t considered is that the effect an augmentation has probably varies
depending on when during training the augmentation is used. A hypothe-
sis is that the importance of augmentation increases later in the training.
The state of the training could be encoded in the state that is presented to
the agent. This could be done by modifying the state space and train new
agents.

The agent training algorithm is quite slow since one reward function
calculation includes backpropagating a training example through the child-
net and then evaluating the childnet. If the speed of this training algorithm
could be increased, then it would be possible to run more training episodes
per time unit which probably would yield a better agent. A future project
could be to take inspiration from the GradientNorm reward function (Al-
gorithm 7), but instead of just using the norm of the gradient one could

89

Chapter 6. Conclusion

investigate other properties of the gradient. We believe there should be in-
formation in the gradient that could be used to determine whether a training
example was good or not.

Lastly, the current framework could probably be improved by investi-
gating other deep reinforcement learning algorithms, testing new exciting
exploration algorithms and general tuning of hyper parameters.

90

A
Augmentations

91

Appendix A. Augmentations

(a) Original Image. (b) Arithmetic.

(c) Box Jitter. (d) Motion Blur.

(e) Gaussian Noise. (f) Prison Bars.

(g) Rotation. (h) Flip.

Figure A.1 Augmentations which have been used in this project.

92

B
Training Details

93

Appendix B. Training Details

Table B.1 Hyperparameters and settings for agent trainings. These settings are
used to produce the results in table 4.1.

Parameter Value Note
Number of Train
Episodes 40.000 -

Batch Size 16
Transitions fetched
from replay buffer at
each step

Max Number
of Actions per
Episode

3 -

γ 0.99 Discount factor, eq.
2.36

Size of Dreward 160 See Algorithm 8

Replay Buffer Ca-
pacity 10000

Max Number of tran-
sitions stored in replay
buffer

NLinear 5 See fig. 3.3, number of
FC layers.

NConv 3 See fig. 3.3, number of
Conv. Blocks

Agent Learning
Rate 0.0001 –

Childnet Learning
Rate 0.001 –

ϵ 0.6 For ϵ-greedy policy,
see Algorithm 5

τ 0.6 Target net soft update,
see eq. 2.37

C 1000
Target net hard update
period, see C in Algo-
rithm 5

94

Bibliography

Åström, Karl Johan (1965). “Optimal Control of Markov Processes with In-
complete State Information I”. eng. Journal of Mathematical Analysis
and Applications 10, 174–205. ISSN: 0022-247X. DOI: {10.1016/0022-
247X(65)90154-X}. URL: %7Bhttps://lup.lub.lu.se/search/files/
5323668/8867085.pdf%7D.

Barron, A. (1993). “Barron, a.e.: universal approximation bounds for super-
positions of a sigmoidal function. ieee trans. on information theory 39,
930-945”. Information Theory, IEEE Transactions on 39, pp. 930–945. DOI:
10.1109/18.256500.

Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). “The arcade
learning environment: an evaluation platform for general agents”. Jour-
nal of Artificial Intelligence Research 47, pp. 253–279. ISSN: 1076-9757. DOI:
10.1613/jair.3912. URL: http://dx.doi.org/10.1613/jair.3912.

Bellman, R., R. Bellman, and R. Corporation (1957). Dynamic Program-
ming. Rand Corporation research study. Princeton University Press. URL:
https://books.google.se/books?id=rZW4ugAACAAJ.

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio (2014). Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv: 1406 . 1078
[cs.CL].

Cubuk, E. D., B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le (2019).
“Autoaugment: learning augmentation strategies from data”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 113–123. DOI: 10.1109/CVPR.2019.00020.

Cukierski, W. (2012). Titanic - machine learning from disaster. URL: https://
kaggle.com/competitions/titanic.

Dong, H., Z. Ding, and S. Zhang, (Eds.) (2020). Deep Reinforcement
Learning: Fundamentals, Research, and Applications. http : / / www .
deepreinforcementlearningbook.org. Springer Nature.

95

Bibliography

Guadarrama, S., A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fish-
man, K. Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith,
G. Bartók, J. Berent, C. Harris, V. Vanhoucke, and E. Brevdo (2018). TF-
Agents: a library for reinforcement learning in tensorflow. https://github.
com/tensorflow/agents. [Online; accessed 25-June-2019]. URL: https:
//github.com/tensorflow/agents.

Hasselt, H. van, A. Guez, and D. Silver (2015). Deep reinforcement learning
with double q-learning. arXiv: 1509.06461 [cs.LG].

He, K., X. Zhang, S. Ren, and J. Sun (2015). Deep residual learning for image
recognition. arXiv: 1512.03385 [cs.CV].

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory”. Neu-
ral computation 9:8, pp. 1735–1780.

Kim, H., J. Kang, W. Park, S. Ko, Y. Cho, D. Yu, Y. Song, and J. Choi
(2017). Convergence analysis of optimization algorithms. arXiv: 1707.01647
[stat.ML].

Kingma, D. P. and J. Ba (2017). Adam: a method for stochastic optimization.
arXiv: 1412.6980 [cs.LG].

Kobayashi, T. and W. E. L. Ilboudo (2021). “T-soft update of target network
for deep reinforcement learning”. Neural Networks 136, pp. 63–71. ISSN:
0893-6080. DOI: 10.1016/j.neunet.2020.12.023. URL: http://dx.
doi.org/10.1016/j.neunet.2020.12.023.

Krizhevsky, A. (2012). “Learning multiple layers of features from tiny im-
ages”. University of Toronto.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based
learning applied to document recognition”. Proceedings of the IEEE 86,
pp. 2278–2324. DOI: 10.1109/5.726791.

Lin, T., M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P.
Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick (2014). “Microsoft
COCO: common objects in context”. CoRR abs/1405.0312. arXiv: 1405.
0312. URL: http://arxiv.org/abs/1405.0312.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015).
TensorFlow: large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org. URL: https://www.tensorflow.org/.

96

Bibliography

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C.
Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S.
Legg, and D. Hassabis (2015). “Human-level control through deep rein-
forcement learning”. Nature 518:7540, pp. 529–533. ISSN: 00280836. URL:
http://dx.doi.org/10.1038/nature14236.

Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C.
Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton,
L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and
R. Lowe (2022). Training language models to follow instructions with human
feedback. arXiv: 2203.02155 [cs.CL].

Perez, L. and J. Wang (2017). The effectiveness of data augmentation in image
classification using deep learning. arXiv: 1712.04621 [cs.CV].

Qin, T., Z. Wang, K. He, Y. Shi, Y. Gao, and D. Shen (2020). Automatic data
augmentation via deep reinforcement learning for effective kidney tumor seg-
mentation. arXiv: 2002.09703 [eess.IV].

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning repre-
sentations by back-propagating errors”. nature 323:6088, pp. 533–536.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015). “Im-
ageNet Large Scale Visual Recognition Challenge”. International Journal
of Computer Vision (IJCV) 115:3, pp. 211–252. DOI: 10.1007/s11263-015-
0816-y.

Schmidt, R. M. (2019). Recurrent neural networks (rnns): a gentle introduction
and overview. arXiv: 1912.05911 [cs.LG].

Shrivastava, A., A. Gupta, and R. Girshick (2016). Training region-based object
detectors with online hard example mining. arXiv: 1604.03540 [cs.CV].

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction.
Second. The MIT Press. URL: http://incompleteideas.net/book/the-
book-2nd.html.

Tsitsiklis, J. and B. Van Roy (1997). “An analysis of temporal-difference
learning with function approximation”. IEEE Transactions on Automatic
Control 42:5, pp. 674–690. DOI: 10.1109/9.580874.

Van Hasselt, H. (2010). “Double q-learning.” In: pp. 2613–2621.
Watkins, C. (1989). “Learning from delayed rewards”.
Yang, S., W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen (2023). Image data

augmentation for deep learning: a survey. arXiv: 2204.08610 [cs.CV].
Zhu, P., X. Li, P. Poupart, and G. Miao (2018). On improving deep reinforcement

learning for pomdps. arXiv: 1704.07978 [cs.LG].

97

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
January 2024
Document Number
TFRT-6225

Author(s)

Axel Andersson
Nils Hallerfelt

Supervisor
Robin Göransson, Axis Communications, Sweden
Joel Sjöbom, Axis Communications, Sweden
Albin Heimerson, Dept. of Automatic Control, Lund
University, Sweden
Johan Eker, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Data Augmentation for Object Detection using Deep Reinforcement Learning
Abstract

 Data augmentation is a concept which is used to improve machine learning models for computer
vision tasks. It is usually done by firstly, defining a set of functions which transforms images and
secondly, applying a random selection of these functions on the images. Since the quality of training
data is one of the, if not the most important factor to obtain a good model, this master thesis poses the
question whether an intelligent deep reinforcement learning (DRL) agent can select augmentation
functions in a better way. More specifically, can the agent select augmentations such that the
performance of an object detection model increases? Besides improving the performance of an object
detection model, the DRL agent provides insights in what constitutes good data augmentation. The
project results in an agent which augments images such that mean average precision (mAP50)
increases with 2.3% compared to a baseline detector, trained with random augmentations. This is a
promising result that encourages further research on this area. To our knowledge, this is the first time
a deep reinforcement learning agent has been used to improve an object detection model via better
data augmentation.

Keywords
data augmentation, deep reinforcement learning, machine learning, computer vision, object detection
Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-97

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Tom sida

